
Available online at scholarcommons.usf.edu/ijs/  &  www.ijs.speleo.it

International Journal of Speleology
Official Journal of Union Internationale de Spéléologie

International Journal of Speleology 42 (2) 141-145 Tampa, FL (USA) May 2013

*sdattag@gwdg.de

vent shrimp (Tokuda et al., 2008). On the other hand, 
it has been argued that the diffusion rate of sulfide into 
the bodies of oligochaete worms and other invertebrates 
far exceeds the rate at which it can be oxidized by 
their ectosymbionts (Dubilier et al., 1995; Ruehland & 
Dubilier, 2010). Thus, whether or not sulfur-oxidizing 
ectosymbionts can assist their hosts in preventing 
sulfide poisoning remains debated.

In the case of Frasassi-dwelling Niphargus, Thiothrix 
ectosymbionts are located on the walking legs of the 
animals, which are close to the amphipod gills (Bousfield, 
1978). It is thus conceivable that the ectosymbionts 
might diminish sulfide diffusion into the amphipods’ 
bodies (Dattagupta et al., 2009). The aim of the present 
study was to determine whether ectosymbionts of N. 
ictus and N. frasassianus increase the sulfide tolerances 
of their hosts. For this purpose, we treated individuals 
of both Niphargus species with antibiotics to kill their 
ectosymbionts and subsequently exposed Thiothrix-
hosting and Thiothrix-lacking Niphargus to cave water 
whose sulfide content was gradually increased until 
lethal concentrations were reached.

MATERIALS & METHODS

In July 2010, 24 N. ictus and 24 N. frasassianus 
individuals were collected from the Frasassi cave 
lake Lago Verde and from the turbulent cave stream 

INTRODUCTION

The Frasassi caves are located in the Apennine 
Mountains of the Marche region in central Italy and 
are actively forming by sulfuric acid-driven limestone 
dissolution (Galdenzi, 1990). Sulfide in the cave waters 
fuels primary productivity by chemoautotrophic 
microbes, which supports the food web of the 
ecosystem (Sarbu et al., 2000). Sulfide is toxic to most 
invertebrates, as it binds to cytochrome c oxidase and 
inhibits mitochondrial electron transport (Nicholls, 
1975). Nevertheless, crustacean amphipods of the 
species Niphargus ictus and Niphargus frasassianus 
live in the sulfidic Frasassi cave waters (Flot et al., 
2010). Both species harbor filamentous, sulfide-
oxidizing Thiothrix ectosymbionts (Dattagupta et al., 
2009; Bauermeister et al., 2012).

A variety of invertebrates living in sulfide-rich marine 
habitats employ effective strategies, partially involving 
microbial symbionts, to avoid sulfide poisoning 
(Cavanaugh et al., 2006; Dubilier et al., 2008). Deep-sea 
tubeworms and shallow-water clams host intracellular 
endosymbionts that can oxidize hydrogen sulfide to non-
toxic sulfur compounds (Anderson et al., 1987; Wilmot 
& Vetter, 1990). A sulfide-detoxifying role has further 
been proposed for ectosymbiotic bacteria covering the 
cuticles of stilbonematid nematodes (Hentschel et al., 
1999) and for those on the gill surfaces of hydrothermal-
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same volume of filter-sterilized, non-sulfidic BG cave 
water was added in a similar manner to B5, serving 
as control treatment. The number of living Niphargus 
in the beakers was determined before each addition of 
SSS. Dissolved sulfide concentrations in the waters 
were measured with a DR 2800 spectrophotometer 
using the methylene blue method (HACH LANGE, 
Düsseldorf, Germany) approximately 15 min after each 
addition of SSS. Simultaneously, dissolved oxygen, 
pH, and temperature in the waters were determined 
using HQ40d multimeter sensors (HACH LANGE). 
After the third addition of SSS, increasing pH-values 
of the incubation waters were repeatedly adjusted 
to ~8 by addition of a few drops of concentrated 
hydrochloric acid (Table 1).

After completion of the experiment, six antibiotically 
treated and five non-treated Niphargus individuals 
were prepared for examination using scanning electron 
microscopy (SEM). The specimens were transferred 
into individual vials filled with 2.5% glutaraldehyde 
solution (SIGMA-ALDRICH) made in filter-sterilized 
BG cave water. They were later sequentially dehydrated 
in ethanol concentrations from 30% to 90%, with a 
final dehydration in hexamethyldisilazane (SIGMA-
ALDRICH) for 5-10 min. The samples were mounted on 
carbon-coated aluminum sample holders, sputtered 
with gold-palladium (11 nm thickness), and examined 
with a LEO 1530 GEMINI field emission SEM (Zeiss, 
Göttingen, Germany).

Both N. ictus and N. frasassianus are reported to be 
endemic to the Frasassi cave ecosystem (Karaman, 
1986; Karaman et al., 2010). Due to concerns about 
threatening their potentially delicate populations, we 
used a limited number of individuals of each species 
for our experiment. This precluded replication of the 
various treatments and statistical analyses of our data.

RESULTS & DISCUSSION

SEM revealed that non-treated Niphargus individuals 
harbored numerous intact Thiothrix filaments, 
whereas animals treated with streptomycin prior to 
the experiment featured empty filament sheaths or 
remnants of Thiothrix holdfasts still attached to their 
exoskeletons (Fig. 2). These observations confirmed 
the effective killing of Thiothrix ectosymbionts by the 
antibiotic treatment. Temperatures in the incubation 
waters ranged between 20 and 22 °C, which is 7-9 °C 
above Frasassi cave water temperatures (Macalady 
et al., 2006). However, all control animals in B5 

Sorgente del Tunnel, respectively (for a map of the 
Frasassi caves, please refer to Bauermeister et al., 
2012). Animals were caught using small fishing nets 
and forceps, as appropriate, and transferred into 
polypropylene bottles filled with cave water from the 
respective sampling site. Additionally, non-sulfidic 
water was collected from the Frasassi cave pool Il 
Bugianardo (BG). Niphargus individuals and cave 
water samples were kept at ambient cave temperature 
during transfer to the laboratory.

The experiment was conducted at the Osservatorio 
Geologico di Coldigioco field station in Frontale 
di Apiro, in a basement room which typically has 
ambient temperatures of 13-22 °C. Three of the 24 N. 
ictus individuals died during transfer, so experiments 
were conducted with only one instead of four N. ictus 
control individuals (details below). An antibiotic 
solution (12.5 mg/L) was prepared from streptomycin 
sulfate (Roth, Karlsruhe, Germany) dissolved in filter-
sterilized BG cave water. Eleven of the 21 N. ictus 
and 14 of the 24 N. frasassianus individuals were 
incubated in the solution for 24 h in order to kill their 
Thiothrix ectosymbionts. Streptomycin was chosen 
as the antibiotic agent due to its high effectiveness 
against Thiothrix as demonstrated in a previous 
study (Williams & Unz, 1985). After the antibiotic 
treatment, Niphargus individuals were immersed in 
filter-sterilized BG cave water to wash off any excess 
streptomycin.

Five beakers, hereafter referred to as B1-B5, were filled 
with a layer of autoclaved limestone gravel covered by 
500 mL BG cave water (sterilized by filtration through 
0.2-micron membranes). Antibiotically treated and 
non-treated Niphargus were divided into B1-B5 as 
shown in Fig. 1. Antibiotically treated N. ictus (N=1) 
and N. frasassianus (N=4) individuals in B5 served 
as control animals to check whether the streptomycin 
treatment or other experimental parameters would 
cause mortality in the absence of sulfide.

A sulfide stock solution (SSS) was prepared from 
60 mg of sodium sulfide nonahydrate (Na2S · 9H2O; 
SIGMA-ALDRICH, Steinheim, Germany) dissolved in 
45 mL of filter-sterilized BG cave water. Starting one 
hour after placing the animals in the beakers, a sterile 
pipette was used to add several milliliters of SSS to 
B1-B4 at approximately hourly intervals for 13 hours 
(12 additions in total). The pipette tip was dipped into 
the water and slowly stirred while releasing the SSS 
to ensure uniform mixing and prevent rapid oxidation 
of the sulfide by oxygen (Chen & Morris, 1972). The 

Fig. 1. Experimental set-up of this study.
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Table 1. Overview of the results of the sulfide exposure experiment. Full-length vertical lines indicate time points of sulfide addition.

Fig. 2. Scanning electron micrographs of intact filaments and remnants of Thiothrix ectosymbionts on Niphargus. Panels A and B: Intact ectosymbiotic 
Thiothrix filaments on Niphargus (images are of Niphargus individuals not subjected to the sulfide experiment). Panels C and D: Empty Thiothrix 
sheaths and holdfasts on Niphargus individuals treated with streptomycin solution.

Time [h:min] 0:00 1:00 2:15 4:00 5:30 6:45 7:45 8:45 9:45 10:45 12:30 13:15 14:00

Beaker B1 
N. ictus 

non-treated

Sulfide [mM]
 
Oxygen [µM]

0.0 0.3 1.1 0.6 0.5 1.0 2.1 3.4 2.5 3.9 7.4 7.4 14.3

236 231 201 134 100 80 63 13 85 14 7 32 22

Number of animals alive 10 10 10 10 10 10 10 10 10 10 10 10 3

Beaker B2 
N. ictus 

antibiotically 
treated

Sulfide [mM] 

Oxygen [µM]

0.0 0.1 0.3 0.5 0.5 1.1 1.7 4.2 3.6 5.9 9.2 12.0 16.3

236 227 214 158 133 108 82 29 45 17 7 14 6

Number of animals alive 10 10 10 10 10 10 10 9 8 8 8 7 0

Beaker B3 
N. frasassianus

non-treated

Sulfide [mM] 

Oxygen [µM]

0.0 0.3 0.5 0.5 0.6 1.0 2.0 3.9 4.4 6.6 11.1 9.8 13.0

236 224 195 143 117 94 58 14 16 20 47 52 13

Number of animals alive 10 10 10 10 10 10 10 10 10 10 10 10 0

Beaker B4 
N. frasassianus 

antibiotically treated

Sulfide [mM] 

Oxygen [µM]

0.0 0.2 0.4 0.5 0.5 0.9 1.5 3.2 3.7 5.5 7.4 11.5 11.4

236 234 195 135 112 82 64 32 33 19 10 12 9

Number of animals alive 10 10 10 10 10 10 10 10 10 10 10 6 2

Beaker B5 
control animals 

antibiotically 
treated

Sulfide [mM] 

Oxygen [µM]

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

236 254 254 235 252 249 247 246 247 242 239 238 237

Number of animals alive 
(N. ictus + N. frasassianus)

1+4 1+4 1+4 1+4 1+4 1+4 1+4 1+4 1+4 1+4 1+4 1+4 1+4

survived the entire experiment (Table 1), implying that 
temperature did not play a defining role in mortality.

All antibiotically treated N. ictus and N. frasassianus 
individuals survived sulfide concentrations of 1.7 mM 
and 1.5 mM, respectively (Table 1). These concentrations 
are more than three times as high as those measured in 
Frasassi cave waters (0.1 to 0.5 mM sulfide; Galdenzi 
et al., 2008). Thus, the Thiothrix ectosymbionts of N. 
ictus and N. frasassianus are probably not essential 
for preventing sulfide poisoning of their hosts in the 

cave waters. At sulfide levels between 3 and 7 mM, we 
observed that two antibiotically treated N. ictus died, 
whereas all untreated individuals survived (Table 1). 
Although we cannot rule out that the ectosymbionts 
provided a survival advantage at these high sulfide levels, 
it is perhaps more likely that the antibiotic treatment 
weakened the Niphargus, making them less resistant to 
high sulfide and/or low oxygen concentrations.

Amphipods generally have low sulfide tolerances 
(Theede et al., 1969; Oseid & Smith, 1974; Sandberg-
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Galdenzi S., Cocchioni M., Morichetti L., Amici V. & 
Scuri S., 2008 - Sulfidic ground-water chemistry in 
the Frasassi Caves, Italy. Journal of Cave and Karst 
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Schiodte (Fam. Niphargidae) in Italy and adjacent 
regions (Contribution to the Knowledge of the Amphipoda 
138). Bollettino del Museo Civico di Storia Naturale, 
Verona, 12: 209-228.

Karaman G., Borowsky B. & Dattagupta S., 2010 - Two 
new species of the genus Niphargus Schiödte, 1849 
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Kilpi et al., 1999). Knezovich et al. (1996) found that all 
20 individuals of the infaunal amphipod Rhepoxynius 
abronius used for their experiment had died after 
48 h exposure to 78 µM sulfide, and 14 out of 20 
individuals of the infaunal amphipod Eohaustorius 
estuarius had died after 48 h exposure to 116 
µM sulfide. In our experiment, all 20 non-treated 
N. ictus and N. frasassianus individuals survived 
sulfide concentrations as high as 7 mM (Table 1). To 
the best of our knowledge, this is to date the highest 
experimentally determined sulfide concentration 
tolerated by a crustacean (Vaquer-Sunyer & Duarte, 
2010). Frasassi-dwelling Niphargus could presumably 
employ symbiont-independent sulfide detoxification 
processes. Crustaceans are commonly not able to 
exclude sulfide from their bodies, but they can oxidize 
it to non-toxic thiosulfate or sulfite. Detoxification is 
either mediated enzymatically by sulfide oxidase (Vetter 
et al., 1987) or proceeds via oxygen-independent sulfide 
binding to metallic ions (Vismann, 1991). Additionally, 
mitochondrial sulfide oxidation has been suggested 
to occur in the muscle tissue of certain crustaceans 
(Vismann, 1991; Johns et al., 1997).

CONCLUSION

N. ictus and N. frasassianus amphipods living in 
sulfide-rich waters of the Frasassi cave system appear 
to have exceptionally high sulfide tolerances compared 
to other crustaceans studied to date. However, their 
sulfide-oxidizing Thiothrix ectosymbionts are unlikely 
to play a critical role in sulfide detoxification. It 
remains to be examined whether these bacteria 
provide the Niphargus with other benefits.
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