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A comparative analysis of the costs of onshore wind energy: Is there a case for 

community-specific policy support?  

Abstract 

There is growing policy interest in increasing the share of community-owned renewable 

energy generation.  This study explores why and how the costs of community-owned projects 

differ from commercially-owned projects by examining the case of onshore wind in the UK.  

Based on cross-sectoral literature on the challenges of community ownership, cost 

differences are attributed to six facets of an organisation or project: internal processes, 

internal knowledge and skills, perceived local legitimacy of the project, perceived external 

legitimacy of the organisation, investor motivation and expectations, and finally, project 

scale. These facets impact not only development costs but also project development times 

and the probability that projects pass certain critical stages in the development process. Using 

survey-based and secondary cost data on community and commercial projects in the UK, a 

model is developed to show the overall impact of cost, time and risk differences on the value 

of a hypothetical 500kW onshore wind project. The results show that the main factors 

accounting for differences are higher pre-planning costs and additional risks born by 

community projects, and suggest that policy interventions may be required to place 

community- owned projects on a level playing field with commercial projects.  
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1. Introduction 

In order to inform the debate over the desirability of different low-carbon energy scenarios in 

the UK, recent research has started comparing the relative costs and benefits of policies 
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aimed at maximizing the cost-efficiency of national energy infrastructure on the one hand, 

versus decentralised, place-based socio-economic regeneration on the other (Bolton & Foxon, 

2013; Catney et al., 2014; Foxon, 2013; Johnson & Hall, 2014).  Community-owned 

renewable energy projects are thought to be able to generate a number of local economic, 

social and environmental benefits over and above those which arise from commercially-

owned projects, although benefits incurred are context-specific (Berka and Creamer, 2016; 

Seyfang et al., 2013). These benefits may range from socio-economic regeneration 

(Callaghan and Williams, 2014; Entwistle, Roberts and Xu, 2014; Gubbins, 2010; Hain et al., 

2005; Hinshelwood, 2001), to improved access to affordable energy (Callaghan and 

Williams, 2014; Gubbins, 2010; Chmiel and Bhattacharya, 2015; Yadoo and Cruickshank, 

2010), knowledge and skills development (Armstrong, 2015; Hicks and Ison, 2011; 

Martiskainen, 2016;), social capital (Allen et al., 2012; Armstrong, 2015; Gubbins, 2010; van 

der Horst, 2008), empowerment (Callaghan and Williams, 2014; Hicks and Ison, 2010; 

Radtke, 2014) as well as improved energy literacy, environmentally benign lifestyles (Cox et 

al., 2009; Hamilton, 2011; Hauxwell-Baldwin, 2013; Letcher et al., 2007; Middlemiss, 2011; 

Rogers et al., 2012) and increased local support for renewable energy (Warren and 

McFadyen, 2010; Musall and Kuik, 2011; McLaren-Loring, 2007).  

 

Discourse around community benefits has generated varying degrees of policy support for 

community energy across the UK (Walker et al., 2007; Slee and Harnmeijer, 2017). Unlike in 

Germany or Denmark, where community energy was more integral to national renewable 

energy strategy from the onset, community energy in the UK emerged at the periphery 

through replication of demonstrator projects, a gradual emergence of regional intermediaries 

that worked to lobby and adjust market support mechanisms designed primarily to facilitate 

large-scale commercial development and, eventually, the more systematic adoption and 
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expansion of support frameworks pioneered by a pro-active devolved Scottish Government 

(Berka, 2017; Mitchell, 2004; Nolden, 2012; Smith, 2014). Because of this ad-hoc and 

bottom-up pattern of emergence, UK community energy today encompasses an array of 

motivations, ownership and organisational structures, and financial arrangements (see Berka 

and Creamer, 2016 for a characterisation of different types of community energy projects and 

their relative size and distribution). However, despite the introduction of Feed-In-Tariffs and 

various grant and public loan programmes to date, the total share of community-owned 

renewable energy in the UK remains limited (DECC, 2014).  

 

In order to support further growth in community ownership, policy makers require evidence 

of not only the benefits but also how the costs of community owned renewable energy (CRE) 

projects compare to their commercial counterparts. If there are additional costs associated 

with CRE projects, further support may be required in order to realise increased community-

owned energy capacity and level the playing field vis-à-vis other ownership models.   

 

The cost structure and factors influencing the cost of commercial renewable energy projects 

are well established (International Renewable Energy Agency (IRENA), 2012b; Kobos et al., 

2006).  However, very little research has explicitly analysed cost differences across different 

ownership models within the renewable energy industry.  There has been some research on 

the costs of CRE in the context of studies comparing the financial viability or local economic 

impacts of different types of local ownership models (Entwistle et al., 2014; Lantz and 

Tegen, 2009).  Most relevant to the study at hand, Wiser (1997) uses a standard financial 

cashflow model to compare the project costs of (vertically integrated) utility-owned wind 

projects with non-utility privately-owned projects (Wiser, 1997).  While these approaches 

have demonstrated that the nature and terms of finance and tax incentives associated with 
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different ownership models can have a substantial influence on overall development costs, 

they fail to account for a number of factors that may contribute to cost discrepancies between 

commercial and community-owned schemes.  These include the reliance of community 

schemes on voluntary labour and outsourced expertise, and differences in the perceived risks 

associated with the two different ownership models.   

 

Against this background, this paper explores the origin and magnitude of cost differences in 

community-owned and commercial-owned renewable projects, asking: how might social, 

economic and political risks described in community energy literature translate into 

probabilities of success at key stages of the project development process? In addition, how do 

these risks influence actual project costs and viability, compared to commercially owned 

projects? Based on the findings, the paper explores whether there is there a case for CRE-

specific policy support in the UK. Following established definitions of CRE in the UK, we 

limit our analysis to renewable energy projects that are owned and managed by constituted 

for- and not-for-profit distribution community organisations established and operating across 

a geographically defined community (including Community Benefit Societies or Bencoms), 

and commercial projects as owned and managed by professional private entities (Dóci, 

Vasileiadou, & Petersen, 2015; Kobos et al., 2006; Ruggiero, Onkila, & Kuittinen, 2014; G. 

Walker & Cass, 2007; G. Walker & Devine-Wright, 2008).  

 

The analysis is based on an economic model of a hypothetical 500kW onshore wind project, 

parameterised using data collected from a survey of community and commercial renewable 

energy projects in combination with information from secondary sources.  Both the Net 
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Present Value (NPV) and Levelised Cost of Energy (LCOE) 1  of a commercial and 

community-owned project are calculated in a manner that allows for differences in costs, 

development times and risks at different phases of project development.  The financial 

viability of commercial and community projects are compared at different stages of the 

development process and the sensitivity of the results tested through a Tornado analysis.   

 

The results show that not all of the cost differences are biased against CRE and not all give 

rise to substantial differences in project financial viability.  However, CRE projects exhibit a 

number of characteristics that negatively influence financial viability as compared to an 

equivalent commercially-owned project, particularly when valued at point of project 

inception.   

 

The paper is structured as follows. Section 2 reviews literature on the challenges and 

constraints of community-led projects to identify reasons why the costs faced by CRE 

organisations may differ from those of commercial developers, where possible drawing on 

relevant theoretical concepts in transaction cost economics, organisational ecology, and 

technology innovation systems. Section 3 describes the economic model used in the 

comparative analysis and the data collection process.  Results are presented and discussed in 

section 4 while section 5 considers the implications of the findings for community renewable 

energy policy in the UK and beyond.  

 

                                                 
1 Expected LCOE is the total discounted cost per unit electricity over the lifetime of the generating asset (in 

£/MWh), and can be interpreted as the break-even value required by a producer for the project to be financially 

viable. 
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2. The influence of community ownership on the cost of renewable energy 

projects 

Table 1 provides an overview of categories of capital expenditures and operating costs of 

onshore wind energy projects at key stages of the development process, along with the 

associated risks.  Costs that enter directly into project financial evaluations are technology 

choice, size of the project, the cost of finance, tax and support incentives, grid access and 

capacity, as well as site location.  Economic risks influencing project costs are factors such as 

interest and exchange rates (influenced by the general economic environment and market 

context), the ability to find viable project sites, and the nature of contracts associated with the 

particular project.  Non-financial risks inherent to the development process do not typically 

enter project evaluations but can nevertheless be decisive by increasing costs and uncertainty 

(Lüthi & Prässler, 2011; Valentine, 2010).  These include social risks, such as levels of civic 

activism and anti-big-wind sentiment, as well as political and technical risks, such as levels 

of political support for diffused alternative energy and thermal headroom at the nearest grid 

connection point.  These factors affect the perceived risk, bankability and cost of capital, but 

can also increase scoping and planning costs for instance through the need for planning 

appeals or alternative development sites (Klessmann et al., 2013; Wiser, 1997).  

INSERT TABLE 1 

 

While community and commercial renewable energy projects share common generic cost 

categories, literature on community ownership across a range of industries (forestry, water 

and urban sanitation) suggests that community projects in both the developed and developing 

world face common challenges that can influence both project costs and the risks to which 

projects are exposed. These challenges can be categorised as internal process costs, 
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transaction costs, legitimacy costs, and internal diseconomies of scale.  These are discussed 

in turn.  

 

First, communities face higher internal process costs arising from the need to manage their 

activities to the satisfaction of all members (Aggarwal, 2000; Bank, 2006).  Wellens & Jegers 

(2014) call this challenge a multiple principles situation in which various stakeholders may 

not only have different expectations of what should be done but also of how decisions should 

be made.  Internal process costs are likely to be particularly high for new organisations, or 

organisations that have no prior experience in managing complex projects and have not 

developed decision-making processes and internal conflict resolution strategies.  This may 

make community organisations less able to respond effectively to windows of opportunity 

and is likely to translate into increased project management and consultancy costs.  It is also 

likely to lead to longer development times, for early project stages in particular (Adhikari & 

Lovett, 2006; Meshack, Adhikari, Doggart, & Lovett, 2006).  Overall, these factors increase 

the risk that developments do not make it past the initial feasibility stage of the development 

process, due to unresolved impasses in the negotiation process. 

 

Second, communities can face significantly higher transaction costs as they may lack in-

house skills or knowledge and, as a result, external contractors must be sought.  Resulting 

transaction costs can be compounded by the issue of asymmetric information vis-à-vis 

commercial players, where an absence of up-to-date market knowledge brings additional 

search and information costs associated with identifying competent suppliers and negotiating 

contracts.  In addition, community organisations may lack bargaining strength due to a lack 

of experience in negotiating, for example, the terms and costs of land lease, service or power 

purchase contracts.  Finally, the need for outsourcing results in additional policing and 



9 of 40 

enforcement costs associated with monitoring quality of service.  Community groups can 

suffer significant costs from poor service delivery as a result (de Blas et al., 2009; Vega & 

Keenan, 2014). Together, these transaction costs are likely to increase project costs and the 

time taken for certain stages of the development process, as well as generating additional 

risks.  

 

Third, communities may suffer from a lack of external legitimacy which in turn affects their 

ability to access commercial, public or private finance, especially if the community group is 

only recently established or in sectors where commercial development is the norm. For 

example, there is evidence that banks in the US were more likely to lend to well-established 

community-based corporations than recently established groups and there is evidence that 

pre-existing community groups are better able to benefit from government support 

mechanisms (de Blas et al., 2009; Lowe, 2008).  Legitimacy is also a core component of trust 

required to enable local private investment in community projects, where older better 

established groups are perceived as more efficient, effective and more legitimate recipients of 

funding from residents (Bremer & Bhuiyan, 2014; Chand, Kerr, & Bigsby, 2015; Chhetri, 

Lund, & Nielsen, 2012).  

 

Both technology innovation systems theory and organisational ecology set out the importance 

of the density of organisations and the ‘liability of newness’ in relation to legitimation, 

organisational success and sectoral growth (Hannan and Carroll, 1992; Hekkert and Negro, 

2009). Theory predicts that legitimacy costs decrease in contexts where community-led 

management becomes perceived as the norm. However, the process of legitimisation can take 

considerable time in particular when it conflicts with competing interests (Gautam, Shivakoti, 

& Webb, 2004; Makino & Matsuda, 2005).  For instance, there is anecdotal evidence that 
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CRE projects have been classified as high risk by commercial lenders, and that community 

organisations have faced unfavourable terms, conditions and cost of finance even after the 

introduction of Feed-In-Tariffs in 2009 (Pepper & Caldwell, 2010).  

 

Fourthly, CRE organisations in the UK currently have fewer assets, lower turnover and 

smaller less specialised workforces compared to commercial developers and thus lack 

internal economies of scale, making it more difficult to finance high-risk phases of projects 

prior to financial close.  In contrast, commercial renewable developers often enjoy economies 

of scale such as bulk purchasing, administrative savings and can borrow more cheaply.  

Compared to CRE organisations which tend to implement one or two projects at a time, 

larger commercial developers have certain risk-bearing economies with a wide portfolio of 

different renewable energy projects.  Until recently, the Non Fossil Fuel Obligations (NFFO) 

and ROC support mechanisms adopted by the UK government favoured commercial 

developers as they required financial reserves large enough to sustain long planning cycles 

and large uncertainty over project outcomes (Mitchell & Connor, 2004; Stenzel & Frenzel, 

2008; Szarka & Bluhdorn, 2006). In conclusion, community organisations, by virtue of 

facing higher internal process costs, higher transaction costs, lower external legitimacy and 

lower economies of scale, are likely to face higher costs relative to commercial projects 

overall, but particularly prior to financial close.  

 

Literature on local opposition and acceptance points to a fifth cost discrepancy between 

commercial and community models. Commercial development in the UK typically involves a 

technocratic ‘decide-announce-defend’ model of development in which local opportunities to 

express social or environmental concerns and highlight trade-offs with national infrastructure 

development objectives can be very limited (Groves et al., 2013). Planning governance and 
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the historical legacy of infrastructure planning in the UK has invariably generated strong 

local opposition and high planning costs for commercial wind projects (Toke et al., 2008; 

Wolsink, 2007; Breukers and Wolsink, 2007). In contrast, community-led projects, especially 

where they are inclusively and effectively managed or managed by locally trusted parties, 

have been observed to be motivated and designed on the basis of local needs and preferences 

(Bomberg and McEwen, 2012; Walker, 2008). To the extent that community ownership 

represents both procedurally and substantively more effective participation in energy 

infrastructure planning, it can result in perceived ownership over a project within the wider 

community, as well as higher levels of local engagement and support for local and renewable 

energy projects more broadly (Callaghan and Williams, 2014; McLaren-Loring, 2007; 

Mussall and Kuik, 2011; Warren and McFadyen, 2010). Through broader community support 

and the ability to leverage local political opportunities, community energy projects may face 

lower planning risks, reducing planning costs and, while there is no data to substantiate this 

claim, lower land rent (Haggett et al., 2013).   

 

A sixth and final cost discrepancy between community and commercial projects may arise 

from different investor motivations and expectations of returns, where there is anecdotal 

evidence and expectation that sourcing finance locally in the form of community shares can 

manifest itself as a relatively low cost of capital, although hurdle rates may be highly specific 

to the culture of any given community organisation (Entwistle, Roberts and Xu, 2014; 

Maruyama, Nishikido, Iida, 2007). The net impact of this and the other factors on the 

financial viability of community versus commercially-owned projects remains unclear and 

forms the focus of this paper. 
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3. Methods and data 

To explore the nature and magnitude of cost differences between community and 

commercially-owned renewables, an economic model was developed for a hypothetical 

500kW wind single-turbine onshore wind project.  This specification was selected because it 

was the most common in our data set and provided us with the most comprehensive basis for 

estimating detailed costs and time estimates.  The model was designed to be consistent with 

the Ricardo-AEA modelling framework developed as part of the Scottish Governments 

CARES programme 2  but extended to allow for differences in a) project labour costs 

(particularly during the project feasibility and development phases), b) the time taken to 

complete each project phase, and c) differences in the probabilities of progressing beyond 

key stages of project development.  This extension towards risk analysis is well-established 

in corporate finance and decision analysis (e.g. Berk & DeMarzo, 2007; Newendorp & 

Schuyler, 2000). 

 

Figure 1 shows the probability tree upon which the model is based.  The model captures both 

project development and operational phases but excludes costs associated with 

decommissioning.  This is because there is very little data on decommissioning costs and 

because we have no clear expectations of how costs at this stage would differ by ownership 

type.   

 

INSERT FIGURE 1  

 

                                                 
2 Ricardo AEAs CARES Investment Ready Tools can be found at 

http://www.localenergyscotland.org/investmentready.  The Ricardo-AEA model includes a detailed 

representation of financial flows associated with loan repayments and taxation. These were suppressed in the 

model to allow for the other extensions and to facilitate the interpretation of findings. 

http://www.localenergyscotland.org/investmentready
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The model measures the financial viability of a project at each successive stage of its 

development.  Let i be the stages of the project, specified as 1) inception, 2) development 

start, 3) planning decision, and 4) financial close.  The start times and time taken (in days) for 

each stage are defined as is   and  it , with by definition 1i i is s t   . For each stage, we define 

the expected net present value for the project from time is  as  iE NPV . For example, 

 2E NPV  is the project expected value from the development stage onwards as evaluated at 

the start of project development, once feasibility assessment is completed but prior to a 

planning decision.  3E NPV  is the expected value of the project from the planning decision 

onwards as evaluated once the projects planning decision has been made.  The net present 

value of net revenue (or costs) of each stage i relative to start time is  is defined as iNR . This 

simple framework allows us to assess how the financial viability of a project changes by 

calculating the expected values for each stage in a recursive manner as follows:   

 

 
 

 
 1

365

1

1
i

i

i i it

P
E NPV NR E NPV
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where  1 iP   is the transition probability of the project progressing from stage i to stage 

i+1, and r is the annual discount rate (or hurdle rate).  

 

The probability of failure is incorporated at three points in project development: (i) after 

feasibility work is completed before the project applies for planning (P1); (ii) a planning 

application is prepared and submitted but the project fails to receive planning permission 
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(P2); and (iii) the project receives planning permission but fails to reach financial close (P3).3 

Based on the literature, the probability of failure at stages i) and iii) is expected to be higher 

for community than commercial projects, but most likely lower or equal at stage ii). Given 

the lack of empirical data for the magnitude of probabilities, this forms the focus of the 

sensitivity analysis.  

 

In the base case, it is assumed that the project is commercially owned and the expected pre-

tax NPV and expected LCOE are calculated accordingly. The parameters of the model are 

then adjusted to reflect the costs and risks associated with community ownership and the 

same two measures of financial viability (NPV and LCOE) are re-calculated.  This allows the 

difference between the two ownership types to be calculated. Finally, Tornedo analysis is 

used to show the sensitivity of the results to key model parameters including transition 

probabilities, and assumed hurdle rate.  The hurdle rate or cost of finance used for both 

ownership types reflects the return an investor would expect from an investment in a 

comparably risky financial asset, where the higher the systematic risk the higher the required 

return.  This is a standard approach to the valuation of energy projects (PwC, 2012).  

 

To validate the model, we checked that the results were comparable to those produced by 

both the Ricardo-AEA model and the LCOE offshore wind model made available by the 

Crown Estate4.  While this provided assurance that the model is robust, there are limitations 

to the model and subsequent analysis.  In particular the analysis does not account for any 

differences in the terms cost and terms of debt finance, or the opportunity costs of investment 

                                                 
3 There is also a probability of failure between financial close and commissioning with literature suggesting that 

local opposition can increase as projects become closer to completion, however this was not explored in the 

current analysis.    
4  http://www.thecrownestate.co.uk/energy-and-infrastructure/offshore-wind-energy/working-

with-us/strategic-workstreams/cost-reduction-study/ 

http://www.thecrownestate.co.uk/energy-and-infrastructure/offshore-wind-energy/working-with-us/strategic-workstreams/cost-reduction-study/
http://www.thecrownestate.co.uk/energy-and-infrastructure/offshore-wind-energy/working-with-us/strategic-workstreams/cost-reduction-study/


15 of 40 

in a project. It also fails to allow for temporal changes in costs over time, as well as positive 

and negative externalities from the developments. Other shortcomings and areas for model 

extension are considered in Section 6.  

 

Data collection and initial parameter values 

Detailed cost data were collected from a survey of 9 community and 11 commercial onshore 

wind projects in 2015.  This was used to supplement existing data on 31 community owned 

or community partnership projects collected in 2011 and 2012 and updated in 2014 

(Harnmeijer, 2012).  Timescales and expenditure profiles vary from project to project, 

making it difficult to account for inflation in the absence of accurately dated cash-flow data. 

To simplify calculations, all project costs were treated as if they were incurred in the year of 

commissioning. This is likely to have exerted a downward effect on costs reported for 

projects with longer development histories. 

 

Finally, a selection of average cost data were taken from range of industry publications (BVG 

Associates, 2014; Renewable UK, 2015; GL Garrad Hassan, 2010; DECC, 2011).  Where 

necessary, costs were adjusted for inflation using the retail price index inflation measure.  

From this, average cost data was compiled and used to specify the costs for a typical 

commercial and community 500kW project (Table 2). 

 

Average cost data along with the initial transition probabilities used in the model are shown 

in Table 2. Cases where there are differences in costs the between the two ownership models 

are highlighted in bold. Pre-planning costs are higher for CRE projects, and the time taken to 

progress through the various stages of development is also shown to be longer, substantially 

so in some stages. This is reflected in similar total labour costs, despite the fact that CRE 
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projects have lower labour costs per day due to volunteer contributions.  The data collected 

did not suggest significant differences in operational costs.5  

 

INSERT  TABLE  2  

 

The initial value for the hurdle rate used for both ownership types was 8% consistent with 

that used by DECC in their LCOE calculations (2013) for onshore wind. Sensitivity analysis 

is used to explore the implications of community developers benefitting from a lower hurdle 

rate.6 Consistent with the approach used to value voluntary activity in the UK (Foster, 2013), 

the cost of labour for community owned projects used in the model is based on the median 

wages for personal and professional workers reported in the ONS Household Satellite 

Accounts.  For the reported NPV calculations, the assumed FIT rate of 0.184 is consistent 

with a commissioning date of 1 April 2014.  

 

Expert opinion was used to identify the initial base transition probabilities.  The values 

suggest that the probability of a community project of proceeding beyond feasibility stage (1-

P1) is half that of a commercial owner, reflecting differences in the expertise and resources 

available to target viable sites as well as the potential pool of sites assessed for development.  

Community project risk perception remains high up until planning consent stages as 

organisations (particularly in early stages of group formation) face steep learning curves and 

have historically faced difficulties in obtaining pre-planning finance (BRE, 2010; Pepper and 

                                                 
5 There is an argument that land rents for community developments might be lower as a result of 

negotiation with local land owners.  However as these have only a very small impact on total net 

revenues in the operation phase of a project, this has not been explored further.  

 
6 Analysis of community wind shares issued in the UK over the period 2012–2016 suggests that these 

projects may gain access to relatively low cost of capital with a mean projected IRR to individual 

shareholders of approximately 6%.  
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Caldwell, 2010). In contrast, the chances of planning being unsuccessful (P2) are assumed to 

be the same for community and commercial  projects and set at 0.3 for the base case.   Both 

ownership models face a risk of not proceeding past financial close (P3) but community 

projects are assumed to have a higher chance of failing progression through this stage (0.2 

compared to 0.1 for commercial developers), reflecting variable capacity in managing 

construction, grid connection and commissioning.  As noted above, given limited empirical 

grounding, Tornado analysis was conducted to explore sensitivity of results to the assumed 

probabilities.   

 

4. Results and discussion 

Table 3 shows expected NPV and LCOE values from the economic model at each of the four 

project development stages (project inception, development start, planning decision, financial 

close). Values represent all costs and returns incurred from a particular stage in project 

development onwards. For example, the values for inception represent all costs and returns 

accrued from the start of the project onwards; values for the development start are those 

immediately following the successful completion of the feasibility stage and represent the 

value of costs and returns from that point onwards, and so on. Values for financial close are 

comparable to values for LCOE and pre-tax returns that do not account for conception and 

development phases. From this stage onward, there are no differences between the costs of 

the two types of owners and thus the estimated NPV and LCOE values for the community 

and commercially-owned developments are identical. The first panel in Table 3 reports the 

Pre-Tax NPV and LCOE results for the base case commercial project. The remaining panels 

show the impact of allowing for the differences between commercial- and community owned 
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projects in a stepwise manner, providing an indication of the sensitivity of the results to each 

factor. 

 

INSERT TABLE 3  

 

Panel II shows the results when pre-planning and planning costs are set to the community 

values specified in Table 2, changing the value of expected NPV and LCOE with the 

percentage difference between the community and commercial values shown in brackets 

(∆%).  As expected, higher pre-planning and planning costs of community-owned 

developments decreases the expected NPV of the project and increase the LCOE of 

electricity at both project inception and start of development. While the change in LCOE is 

small (+1%), the reductions in expected NPV are significant and as high as 24% when 

considered at inception phase, while somewhat less but still large just after the feasibility 

stage (-17.7%).7  

 

Panels III and IV show results when, in addition to higher pre-planning and planning costs, 

we take into account the additional time taken for community projects (Panel III) and the 

labour input and associated labour costs are set to the community values (Panel IV).  

Allowing for the increased time for community developments has only a small marginal 

effect on expected NPV or LCOE and in fact increases NPV and decreases LCOE somewhat 

compared to the results in Panel II. This is due to a combination of effects; while increasing 

the time taken to conceive and assess project feasibility delays revenues and decreases overall 

discounted income, it also pushes pre-planning and financial costs into the future, reducing 

                                                 
7 The values reported at planning determination and financial close remain unchanged in Panel II because there 

are no differences in costs incurred after these points in the process.  
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the overall discounted costs at each future project stage when valued from project inception. 

Panel IV shows that allowing for differences in the labour input and cost of labour between 

community and commercial developments has only a marginal impact on overall project 

values; valued at project inception, this slightly decreases overall project NPV and increases 

LCOE. Valued from the planning determination stages the project NPVs actually increase. 

This is due to two opposing effects, namely, a relative increase in the labour input required at 

each stage and a decrease in the day rate used (reflecting the lower valuation of volunteer 

time). The combined effect of changing the relative labour costs is that the net present value 

of labour costs of conception and feasibility increase, but the expected NPV of labour costs 

associated with pre-planning and from the planning decision to financial close decrease.  

 

Finally, Panel V reports results when pre-planning and planning cost, time taken, labour input 

and cost assumptions plus community-specific transition probabilities are taken into account. 

Consistent with the project development challenges outlined in the literature review, this 

scenario best captures the overall impact on expected returns and costs associated with 

community ownership. The results are shown diagrammatically in Figures 2 and 3. Allowing 

for higher risks of community ownership has a significant effect on the overall expected 

value of the project and, under the assumptions used in this analysis, a community project 

would exhibit a negative NPV and not be economically viable. The required LCOE to make 

the project viable increases to £0.185/kWh, which is above the net price used in the revenue 

calculations (i.e. the FIT). The difference between these two provides an indication of the 

increase in FIT that would be required by community projects to put them on the same cost 

basis as a commercial developer for this type of project. The relative difference in NPV and 

increase in LCOE when assessed at latter stages of the development process declines but 
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remains substantial, with expected NPV almost 8% lower than that of the commercial scheme 

even after having secured planning approval.  

 

INSERT FIGURES 2 and 3 

 

Tornado analysis 

The results from the economic model are clearly dependent on the parameters used in the 

model.  Given the importance of the transition probabilities on the results, and because their 

values are imperfectly known, a Tornado analysis was conducted focusing on the impact on 

expected NPV of variation in (1-P1), (1-P2) and (1-P3)).  In addition, the sensitivity of the 

results to hurdle rates was explored because there is evidence that they vary between 

commercial and community–owned schemes reflecting differences in access to credit 

markets and risk appetite.  The Tornado analysis explores, for the base community-owned 

project, the implications for NPV of the hurdle rate varying from 6% to 10% while each of 

the probabilities is varied by +/- 0.2 from base values.  In other words, the probability of (1-

P1) varies from 0.3 to 0.7, (1-P2) from 0.5 to 0.9 and (1-P3) from 0.6 to 1.0.  The results are 

shown in Figure 4.  

 

INSERT FIGURE 4 

 

The results show clearly the importance of the hurdle rate on the model outcomes with 

relatively small changes leading to large differences in expected NPV (net impacts range 

from -£42.7k to +£54.8k from the base NPV value).  It follows that if hurdle rates are lower 

for investors in community projects than commercial owners, this will compensate to some 

extent for other observed cost or risk factors associated with community projects.   
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Of the three transition probabilities, the Tornado analysis suggests that the probability of the 

project achieving financial close is most critical in influencing expected NPV.  In particular, 

an increase in the probability of failure at this point of the development process (by 0.2) 

reduces the expected NPV of the project by £17k while a decrease in the probability of 

failure increases expected NPV by £10.5k.  This transition probability has a larger impact 

than the other two probabilities in the model because it influences the revenue generating 

stages of the project only (whereas an increase in the probability of failing to progress from 

the feasibility stage of a project or failing to secure a planning application will both reduce 

costs associated with earlier stages as well as affecting expected revenues further along the 

development process). Of the remaining two probabilities, variations in the probability of 

getting planning approval has the greatest influence on overall expected NPV.  However 

perhaps the most important finding from the Tornado analysis is that the sensitivity of results 

in relation to all three probabilities is much less than the sensitivity of the results to hurdle 

rates.   

 

5. Conclusion and policy implications  

While there is a growing literature on the social and economic benefits of community 

renewable energy, little work has been done on the costs and risks of community renewable 

energy developers or, in particular, how these compare to those of commercial developers.  

This paper aimed to address this gap in knowledge, and in doing so, has highlighted several 

issues that may be restricting the expansion of the community-owned sector.  

 

A cross-sectoral literature review on community ownership suggests that cost differences can 

be attributed to various facets of an organisation or project: higher internal process costs 
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arising from the need for communities to manage their activities to the satisfaction of all 

members; higher transaction costs due to a lack of in-house skills or knowledge; costs 

associated with a lack of external legitimacy, especially for recently established groups or in 

sectors where private commercial developments are the norm; and a lack of economies of 

scale with community organisations having fewer assets, lower turnover and smaller less 

specialised workforces than their commercial counterparts. These aspects were anticipated to 

increase the costs and/or risks of community renewable projects, thus placing them at a 

disadvantage relative to commercial developers. However, community projects may to some 

degree benefit from higher degrees of local legitimacy, benefitting from lower hurdle rates, 

lower planning risk and potentially from lower land rents, with projects likely to be held to be 

motivated and designed in the interest of the local community.  

 

A model consistent with those used in corporate finance and decision analysis was developed 

to compare the NPV and LCOE of a single 500kW onshore wind development owned by 

commercial entity to that of community group.  The model parameters were based on 

information from a survey of renewable energy projects plus information from secondary 

sources.  

 

The data confirm that community projects face higher costs and longer project development 

times than commercial projects. A lack of legitimacy and higher internal process costs 

increases the probability that community projects fail to get past early stages of the 

development process and also reach financial close. However, the overall impact of 

community ownership on project viability are a priori unclear.   

 



23 of 40 

The results from the model demonstrate that the main source of variation in the viability of 

commercial and community projects is the higher risk faced by community groups. In 

contrast, the differences arising from the additional labour input used in community schemes 

has little impact on overall project NPV or the LCOE. When valued from the point of project 

inception, the model suggests community owners would need an increase in FIT in order to 

make projects financially viable and to provide them with the same expected returns as a 

commercial developer.  

 

The Tornado analysis confirmed the significant influence of hurdle rates on project viability. 

If, as anecdotal evidence suggests, community investors are willing to accept lower hurdle 

rates, this will have a significant positive impact on the expected NPV of community-owned 

schemes, compensating for some of their other cost disadvantages and risk factors.  Further, 

there is some evidence that the chances of planning being successful (1-P2) are higher for 

community than for commercial projects (Haggett et al., 2013).  This too would reduce the 

difference in expected NPV between the two ownership models although the Tornado 

analysis suggests the impact will be less than the reduction associated with lower hurdle 

rates.  

 

The results provide useful insights for policy makers, suggesting that policy support for 

community energy should be targeted at reducing specific costs and risk factors.  Potential 

policy mechanisms include those that help build local capacity for community energy 

projects (this can range from the development and targeted dissemination of regionalised pre-

feasibility studies, to guidance on effective inclusive decision-making processes around local 

collective action), knowledge platforms that serve to disseminate essential technical, 

financial, legal, project management information and reduce search and monitoring costs of 
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subcontractors, and those that actively promote community organisations as legitimate 

players in the energy market. In accordance with the findings of others (Capener, 2014) the 

results of the sensitivity analysis suggest that the financial viability of community projects 

remains most vulnerable to legislation that directly or indirectly influences access to low-cost 

capital. To this end, the ‘one-stop shops’ for information and low cost finance for community 

projects and low risk public loan schemes for community energy projects pioneered by the 

Scottish Government in the last decade are well targeted.  The results suggest that, allowing 

for some adaptation to specific regional needs and contexts, these could usefully be extended 

to other parts of the UK.  

 

However, the findings also suggest that for community energy to be more broadly adopted, 

policy support may need to go further still in order to ensure consistent access to low-cost 

capital, and to address or compensate for higher internal process costs, higher transaction 

costs and the perceived lack of (non local) legitimacy experienced by community projects 

that influences their access to credit. The need for community-specific policy support is 

likely to have become even more pertinent following the 2015 reforms to UK renewable 

energy policy support mechanisms which have reduced the number of remaining viable sites 

for onshore wind development and increased competition for remaining sites.  

 

Shared ownership arrangements between commercial (or public) and community 

organisations may help to remove some of key challenges to community-only schemes. 

Where carefully managed, shared ownership may offer a market-led means of eliminating 

some of the cost discrepancies identified in the analysis, at the same time achieving the 

policy goal of increased community engagement in renewable energy generation (Slee, 

2015). In contrast, the auction-based mechanisms recently introduced at UK- and EU level 
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(see Harnmeijer, 2016) would place further risk on the pre-commissioning phase of project 

development, exactly where community projects are already disadvantaged.  

 

Apart from a number of data limitations, discussed in Section 3, the analysis presented could 

usefully be extended in several ways. First, following on from the discussion above, the 

Contract for Difference (CfD) auction system recently introduced in the UK renewable 

energy sector poses an additional sector-dependent transition probability, which could be 

explored using the same modelling architecture as in the current analysis. Second, the 

modelling approach could be used to explore how the costs and risks of different types of 

renewable energy vary by ownership type.  For example, different types of renewables have 

varying degrees of social acceptance and this affects the likelihood of community-led 

schemes being initiated and progressing through the early stages of the development process.  

The pre-planning work required for hydroelectric developments requires complex 

environmental assessments not needed for most other technologies which may act as a 

disincentive for community groups more that commercial developers while, for both types of 

developers, other things being equal, the probability of not receiving planning permission for 

a ground-mounted solar photovoltaic (PV) installation is lower than that for a wind farm of 

equivalent nameplate capacity.  The probability of finding suitable local sites varies between 

different types of renewables as does the relative complexity of operations once the schemes 

are complete with, for example, the ongoing demands of Anaerobic Digesters likely to be less 

attractive to community groups than commercial or local business developers.  

 

Third, and more significantly, a broader analysis would be useful, comparing not only 

differences in the costs and risks faced by community and commercial energy developers but 

also the value and spatial distribution of economic benefits arising from projects.  This is 
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because project net income will be reinvested in very different ways according to ownership 

type. Even community owned schemes can have very different patterns of reinvestment 

depending on community priorities with some communities focussing on investment in 

business infrastructure, others improvements in community amenities (Entwistle et al., 2014). 

Both can give rise to negative displacement effects on other communities. Such an analysis 

should allow for this and other potential positive and negative externalities including, for 

example, environmental costs (Hanley and Nevin, 1999).  

 

Taking a longer-term perspective, considerable changes have occurred in the on-shore wind 

energy sector over the last decade including increases in the cost-efficiency and scale of 

turbines, the gradual development of more local expertise, and improvements in the nature 

and availability of monetary and non-monetary assistance to developers.  Community- and 

commercial projects have to some degree developed as semi-independent sectors, comprised 

of separate actors, networks and institutions and may have been subject to different learning 

processes and different cost changes. The community energy sector in the UK and many 

other countries can still been seen as a new (nursing) market.  It follows that over time, cost 

savings may arise as a result of positive externalities and learning-by-doing (Bergek, 

Jacobsson, Carlsson, Lindmark, & Rickne, 2008; International Renewable Energy Agency 

(IRENA), 2012a) which may erode at least some of the cost discrepancies identified in this 

paper. On the other hand, many community developments are of a “one of a kind” nature, 

perhaps limiting learning-by-doing effects relative to commercial development. This, 

increasing competition for new economically feasible sites, and the changing external 

economic environment may justify the need for continuing community-specific policy 

support.  
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Table 1: Typical risk and cost components for onshore wind projects at different phases of 

development.  
 

 PROJECT STAGE 

 Capital cost (CAPEX) Operating cost (OPEX) 

COST 

CATEGORY Feasibility Planning (Pre)-Construction Operation Decommissioning 

Management 
Project 

management; 

Legal fees 

Project 

management; 

Legal fees 

Project management Project 

management 
Project 

management 

Technology 

Grid appraisal Utility upgrades, 

transformers, 

protection, 

metering and 

wiring; Design 

engineering 

Turbine and tower 

acquisition and 

transport ; Wiring to 

turbine base ; 

Turbine erection 

Insurance & 

Warrantee, 

Operation and 

Maintenance 

Technology 

decommission and 

transport 

Scoping, 

design and 

permission 

Technical 

feasibility study;  
Environmental 

Statement/Impact 

Assessment and 

Planning Fees 

- - - 

Other 

material 

inputs 

- Land acquisition Construction 

contracts, 

construction of 

access roads and 

foundation; Land 

lease 

Land lease - 

Financing 
- - Interest, equity 

returns, financing 

fees 

Interest, equity 

returns, financing 

fees 

- 

Risks 

Erroneous pre- 

feasibility 

assessment; lack 

of viable projects 

sites 

Planning rejection; 

Grid connection 

queues and terms 

of Power Purchase 

Agreement 

Landing delays; 

delays in 

commissioning; 

Changes in support 

mechanisms 

Export/generation 

tariff; Down time; 

Resource 

variability; 

Electrical losses; 

Wake effects 

- 
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Table 2: Costs and transition probabilities for the commercial and community-owned 500kW 

on-shore wind development in 2015. 

 

1. Expenditure (£) Commercial Community 

Feasibility  10,000 10,000 

Pre-Planning and Planning  37,000 48,100 

Financial Close  50,000 50,000 

Grid costs  150,000 150,000 

Plant  785,000 785,000 

Engineering  272,000 272,000 

2a. Time Taken (months)   

Conception to submission of planning 

application 14 24 

Conception and Feasibility  3 6 

Pre-planning to Planning Submission 11 18 

Planning  11 11 

Planning Permission to Commissioning 20 33 

Planning Decision to Financial Close 8 21 

Construction Time 12 12 

2b. Labour Input (person days)    

Feasibility  15 150 

Pre-Planning and Planning  30 60 

Financial Close  40 120 

2c. Labour Cost per Day (£)b 400 100 

Hurdle ratea 8% 8% 

3. Transition Probabilities c   

Moving Feasibility to Full Planning 

Application (1-P1) 1.00 0.50 

Planning Application Successful (1-P2) 0.70 0.70 

Financial Close Achieved (1-P3) 0.90 0.80 

4. Revenue FiT(£)   

Feed in Tariff rate1 0.184 0.184 
Sources: Based on survey data with the exception of: aDECC, 2013.  Nominal costs are recalculated 

in terms of 2015 pounds using RPI time-series (Office of National Statistics, 2015).  Where 

applicable, exchange rates prevailing at the time of transaction were used.  All costs are presented 

exclusive of VAT. 
bCommercial value based on survey data, community value based on ONS, 2013. 
cInitial estimates based on expert opinion.  
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Table 3: Expected Pre–Tax NPV and LCOE Results. % difference over base case shown in 

brackets. Values in red (blue) show a cost disadvantage (benefit) over the commercial base 

case. 

 

  
Inception 

Development Start 

(Post-feasibility, 

pre-planning) 

Planning Decision Financial Close 

Panel I: Base Case 

ENPV (£) 43,671 60,734 178,032 283,700 

LCOE (£ / kWh) 0.177 0.174 0.167 0.161 

Panel II: Extra Preplanning and Planning Cost 

ENPV (£) 33,124 49,981 178,032 283,700 

∆% (-24.2) (-17.7) (0.0) (0.0) 

LCOE (£ / kWh) 0.179 0.176 0.167 0.161 

 ∆% (+1.0) (+1.0) (0.0) (0.0) 

Panel III: Preplanning and Planning Cost, Development time needed 

ENPV (£) 33,906 51,616 186,686 283,700 

∆% (-22.4) (-15.0) (+4.9) (0.0) 

LCOE (£ / kWh) 0.178 0.175 0.165 0.161 

 ∆% (+0.4) (+0.2) (-1.4) (0.0) 

Panel IV: Preplanning and Planning Cost, Development time needed, Labour input & day rate 

ENPV (£) 31,751 58,583 188,893 283,700 

∆% (-27.3) (-3.5) (6.1) (0.0) 

LCOE (£ / kWh) 0.178 0.174 0.164 0.161 

 ∆% (+0.6) (-0.5) (-1.6) (0.0) 

Panel V: Preplanning and Planning Cost, Development time needed, Labour input & day rate, 

Development probabilities  

ENPV (£) -3,359 44,170 164,104 283,700 

∆% (-107.7) (-27.3) (-7.8) (0.0) 

LCOE (£ / kWh) 0.185 0.175 0.165 0.161 

 ∆% (+4.7) (+0.4) (-1.3) (0.0) 
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Figure 1: Renewable energy generation development decision tree upon which valuation 

model is based. 

 

 

 

 

 

 

 

 

 

 
Figure 2: Comparison of expected NPV from commercially-owned and community owned 

development at each project stage (£). 
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Figure 3: Comparison of LCOE from commercially-owned and community owned 

development at each project stage (£). 

 

 

 

 
Figure 4:  Results from the Tornedo analysis showing the net impact on the expected NPV 

for a community-owned project by parameter value. 

 
 


