Provided by Infoteca-e

Avaliação de ácidos graxos da soja: grão inteiro, casca, cotilédones e hipocótilo

SILVA, C.E.¹; CARRÃO-PANIZZI, M.C.²; MANDARINO, J.M.G.²; OLIVEIRA, M.A.²; LEITE,R.S.²; OLIVEIRA, G.B.A³; MOREIRA, A.A.⁴; SANTOS, H.M.C.³; MÔNACO, A.P.A¹; ¹ Faculdade de Apucarana / FAP, ² Embrapa Soja, ³ Universidade Tecnológica Federal do Paraná / UTFPR; ³ Universidade Norte do Paraná / UNOPAR. Caixa Postal, 231, 86001-970, Londrina, Paraná, e-mail: ces@cnpso.embrapa.br

Introdução

A soja contém cerca de 20% de lipídeos sendo a maior parte composta por triacilgliceróis. A composição e distribuição dos ácidos graxos na molécula dos triacilgliceróis é o que determina a qualidade do óleo.

Na soja, os ácidos graxos insaturados correspondem a 86% do total e o ácido linoléico encontrase em maior concentração (54%). Estudos mostram que do total de ácidos graxos presentes nos genótipos de soja, o palmítico (C16:0) pode variar em média de 8 – 17%; o esteárico (C18:0) de 3 – 30%; o oléico (C18:1) de 25 – 60%; o linoléico (C18:2) de 25 – 60%; e o linolênico (C18:3) de 2 – 15% (HAMMOND and GLAZ, 1989). Essa variabilidade na composição dos ácidos graxos pode ser atribuída à genética da cultivar e às condições ambientais do local de cultivo da soja. Dependendo da concentração de determinados ácidos graxos a soja poderá ser destinada para diferentes usos. Por exemplo, elevadas concentrações de ácidos graxos linolênico e linoléico no óleo da soja podem ser inadequadas para o processamento de alimentos devido a sua menor estabilidade à oxidação (ANDERSON & BAKER, 1983).

Os ácidos graxos da soja, assim como qualquer outro ácido graxo, são classificados basicamente em relação às suas estruturas, em cis e trans (MANDARINO et al, 2005). Os isômeros trans são considerados maléficos a saúde aumentando os riscos de doenças cardiovasculares (MARZZOCO & TORRES, 2007). Por esse motivo nos rótulos dos alimentos é obrigatório constar a concentração de ácidos graxos trans. Os ácidos trans se formam na hidrogenação de isômeros di-insaturados e tri-insaturados, no processamento de margarinas. Os ácidos graxos trans mais comuns são os monoinsaturados.

Devido à importância dos diferentes ácidos graxos no processamento de alimentos e na saúde humana, o objetivo deste trabalho foi avaliar a concentração desses ácidos nas diferentes partes dos grãos de cultivares de soja específicas para alimentação humana. Partes dos grãos, como cotilédones, hipocótilo (gérmen) e casca são utilizados de forma distinta, no processamento.

Material e Métodos

Amostras de grãos das cultivares de soja BRS 184, BRS 216, BRS 257 e BRS 267 foram separadas em casca, cotilédones e hipocótilo (gérmen).

Cada constituinte foi moído em moinho refrigerado. Para determinação dos ácidos graxos foram realizadas análises por cromatografia gasosa (CG), (cromatógrafo Hewlett Packard HP, modelo

6890), com auto-injetor de amostras. Foi utilizada coluna capilar de sílica de 30 m de comprimento, 0,32 mm de diâmetro interno e filme com 0,2 μm de espessura (marca Supelco, modelo SP 2340). A temperatura do injetor foi de 250°C, na coluna a temperatura era de 190°C, enquanto que no detector FID (Flame Ionization Detector) a temperatura era 300°C, ABIDI et al. (1999), BANNON et al. (1982), CHRISTIE (1989) e RAYFORD et al. (1994).

A amostra foi quantificada de acordo com padrão externo, e a curva de calibração foi realizada com um mix FAME (Fatty Acid Metil Ester) de concentração conhecida. Os resultados foram expressos em g/100g de amostra em base seca.

Resultados e Discussão

Na análise de ácidos graxos das diversas partes do grão de soja foram encontradas diferenças significativas (Tabela 1). O ácido palmítico apresentou uma variação de 10,90% no grão inteiro (cultivar BRS 184) à 15,24% na casca do grão (BRS 216). Os valores médios das cultivares mostraram que o teor de ácido palmítico foi maior na casca (14,13%) seguido do hipocótilo (13,90%), não diferindo para grãos inteiros e cotilédones (11,57%).

Tabela 1 – Teor de ácidos graxos nas diferentes partes do grão em 4 cultivares de soja.

		2008/2009	ím.o.o			
0.10		DO GRAXO PAL	-	0	MÉDIA	
Cultivares	Grão inteiro	Cotilédone	Hipocótilo	Casca	MÉDIA	
BRS 184	10,90	10,95	13,12	12,92	11,97	(
BRS 216	11,75	11,77	14,37	15,24	13,28	1
BRS 257	11,90	11,88	14,65	14,09	13,13	,
BRS 267	11,72	11,68	13,47	14,26	12,78	I
MÉDIA	11,57 C	11,57 C	13,90 B	14,13 A		
	ÁCII	OO GRAXO EST	EÁRICO			
Cultivares	Grão inteiro	Cotilédone	Hipocótilo	Casca	MÉDIA	
BRS 184	3,49	3,52	2,88	4,05	3,48	(
BRS 216	3,46	3,52	3,08	5,75	3,96	
BRS 257	3,68	3,68	2,95	4,56	3,72	
BRS 267	3,24	3,28	2,61	3,92	3,26	
MÉDIA	3,47 B	3,50 B	2,88 C	4,57 A		
	5.		. 			
Cultivares	Grão inteiro	CIDO GRAXO O Cotilédone	LEICO Hipocótilo	Casca	MÉDIA	
BRS 184	24,83	24,81	13,74	18,98	20,59	
BRS 216	24,63 17,91	18,17	10,41	,	15,93	
BRS 257	,	,		17,23	,	
	20,15	20,25	8,18	15,66	16,06	
BRS 267	23,17	23,76	13,25	18,68	19,71	
MÉDIA	21,52 A	21,75A	11,39 C	17,64 B		
	ÁCI	DO GRAXO LIN	OLÉICO			
Cultivares	Grão inteiro	Cotilédone	Hipocótilo	Casca	MÉDIA	
BRS 184	52,60	52,82	55,81	52,24	53,37	
BRS 216	56,83	56,84	53,25	49,15	54,02	
BRS 257	56,46	56,60	57,87	53,72	56,16	
BRS 267	54,30	53,86	58,36	53,32	54,96	
MÉDIA	55,05 B	55,03 B	56,32 A	52,11 C		
	ÁCIF	O GRAXO LING	DI ÊNICO			
ULTIVARES	GRÃO INTEIRO		-	CASCA	MÉDIA	
BRS 184	7,25	7,00	13,82	11,80	9,97	
BRS 216	9,23	8,86	18,28	12,63	12,25	
BRS 257	6,85	6,62	16,04	11,97	10,37	
BRS 267	6,63	6,48	11,72	9,82	8,66	
MÉDIA	7,49 C	7,24 C	14,97 A	11,56 B	0,00	

ácido graxo não são significativamente diferentes (Teste de Tukey p < 0,05).

Na casca dos grãos houve maior teor do ácido graxo esteárico, média de 4,57%. Interessante que, além do maior teor de ácido palmítico, a cultivar BRS 216 também apresentou o maior teor de ácido graxo esteárico (5,75%) na casca. A menor concentração do ácido graxo esteárico, dentre as partes do grão, foi encontrada no hipocótilo (com um valor médio de 2,88%). A menor concentração do ácido esteárico foi observada no hipocótilo da BRS 267 (2,61%) e o maior valor desse ácido foi encontrado na BRS 216 (3,08%).

Os ácidos graxos insaturados representam cerca de 84% do total de ácidos graxos. Entre as cultivares estudadas, no grão inteiro o ácido graxo oléico apresentou uma variabilidade de 17,91% (BRS 216) a 24,83% (BRS 184), e nos cotilédones que constituem cerca de 90% do grão observou-se quantidade semelhante ao grão inteiro.

No hipocótilo o teor de ácido oléico total (11,39%) foi cerca de 50% menor no grão inteiro (21,52%) e nos cotilédones (21,75%). A cultivar BRS 257 apresentou o menor teor (8,18%) no hipocótilo e a BRS 184 o maior teor (13,74%) no grão inteiro. Na casca também houve menor concentração de ácido graxo oléico (17, 64% em média) em relação ao grão inteiro. A cultivar BRS 184 apresentou o maior valor (18,98%) e a cultivar BRS 257 o menor teor (15,66%) dentre os valores observados na casca. Entre os ácidos graxos oléico e linolênico há uma relação negativa, observada também nesse experimento. Por exemplo, no hipocótilo houve 50% a mais de linolênico que no grão inteiro e cotilédones (14,97 % e 7,36%). A cultivar BRS 216 apresentou o maior teor (18,28%) e a BRS 267 a menor concentração (11,72%).

Na hipocótilo também houve maior percentagem de ácido linolênico (14,96%) em relação ao grão inteiro. A cultivar BRS 216 apresentou maior valor deste ácido na casca e no hipocótilo (12,63% e 18,28%) enquanto que o menor valor da casca foi observado na cultivar BRS 267 (9,82%). A cultivar BRS 216 apresentou o maior teor de ácido graxo linolênico nos grãos inteiros e cotilédones (9,23 e 8,86%). A menor concentração desse ácido graxo foi observada na cultivar BRS 267, no grão inteiro (6,63%) e nos cotilédones (6,48%).

O teor de ácido linoléico foi semelhante para todas as partes do grão, com pouca variação entre as cultivares (em média 55,47% para grãos inteiros, cotilédones e hipocótilo). Na casca do grão foi observada uma exceção, a cultivar BRS 216 apresentou 49,15% de ácido linoléico e, a casca, de um modo geral, foi a que apresentou menor quantidade desse ácido (52,11%).

Dos grãos inteiros, os cotilédones representam cerca de 90%, o hipocótilo 2% e a casca 8% (WOLF & COWAN, 1975). Portanto, diferentes concentrações de ácidos graxos nas diferentes partes do grão justificam a utilização dessas partes no processamento de alimentos principalmente os funcionais.

Conclusões

A composição dos ácidos graxos nas diferentes partes do grão de soja (cotilédones, hipocótilo, e casca) mostrou que há variações nos níveis desses ácidos, que podem ser influenciados por fatores genéticos ou ambientais. Na casca observou-se maior concentração dos ácidos palmítico e esteárico. No hipocótilo, o qual é muito utilizado no processamento de suplementos alimentares, também houve maior teor de palmítico, porém, na mesma parte do grão, foi obtida a menor concentração de esteárico dentre os grupos observados. A média das cultivares para o hipocótilo e casca apresentou grande quantidade de ácido linolênico e ácido linoléico, ou seja, precursor do omega 3 caracterizando o hipocótilo e casca como produtos de importância econômica quando separados. A BRS 216 é, dentre as quatro cultivares observadas, a cultivar que apresenta maior teor de ácido graxo linolênico em todas as partes observadas. Nos

componentes do grão, casca e hipocótilo de todas as cultivares também houve maior teor de linolênico e menor concentração de oléico. O ácido linoléico é o mais abundante em todas as partes dos grãos analisados e não foi encontrado distinção entre as partes da soja para este ácido. Outras determinações de compostos relacionados com a saúde nas diferentes partes dos grãos podem sugerir usos especiais para cada parte do grão.

Referências

ABIDI, S.L.; LIST, G.R.; RENNICK, K.A. Effect of genetic modification on the distribuition of minor constituents in canola oil. **Journal of American Oil Chemistry Society**, v. 76, n. 4, p. 463 – 467, 1999.

ANDERSON, J. D., BAKER, J. E. Deterioration of seeds during aging. **Phytopathology**, v. 73 (2), p. 321 – 325, 1938.

BANNON, C.D.; BREEN, G.J.; CRASKE, J.D.; HAI, N.T.; HARPER, N.L.; CZONYIC, C. **Journal of Chromatography**, v. 247, p. 71, 1982.

CHRISTIE, W.W. Gas chromatography and lipids. A practical guide. The oil Press, Ayr. Scotland, 1989.

HAMMOND, E. G. and GLATZ, B. A. Biotechnology applied to fats and oils. In: KING, R. CHEETHAM, P.S.J. (Ed.) **Developments in Food Biotechnology**, Vol. 2 pp. 173-217. John Wiley & Sons, New York, 1989.

MANDARINO, J. M. G.; ROESSING, A. C.; BENASSI, V. T. **Óleo:** alimentos funcionais. Londrina: Embrapa Soja, 2005. 91 p.

MARZZOCO, A.; TORRES, B. B. Bioquímica básica 3 ed., Rio de Janeiro: Guanabara Koogan, 2007. 386 p.

RAYFORD, W.E.; THOMAS, D.I.; ELAM, L.M.; WALKER, S.M. **Analytical chemical support soybean uniform test analysis**, USDA, Agricultural Research Service, Midwest Area, NCAUR, Peoria, p. 17 – 26, 1994.

WOLF, W.J.; COWAN, J.C. Soybean as a food source. Cleveland, CRC, 1975. 101p.