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Abstract

1. Plant phenotypes reflect trade-offs between competing resource-intensive physi-
ological processes. A shift in resource allocation, away from anti-herbivore de-

fences and towards growth and reproduction, is predicted through plant 
domestication, such that crops are faster growing and higher yielding than their 
wild ancestors. These changes are hypothesized to have come at the cost of de-

fence investment, leaving crops “disarmed by domestication”. Silicon is the principal 
anti-herbivore defence in grasses, including many of our most important staple ce-

real crops, but the impact of domestication on silicon-based defences is unknown.
2. We measured the effects of both domestication and modern agronomic selection 

on growth rate and a suite of anti-herbivore defences, specifically leaf toughness, 
silicon and phenolic concentrations. Our comparison of wild, landrace and modern 
cultivated cereals spanned multiple cereal species, including wheat, barley and 
maize, sampling eight independent domestication events and five examples of 
modern agronomic selection.

3. Leaf silicon concentration showed a small, but significant, 10% reduction through 
domestication, but there was no effect of modern agronomic selection, and phe-

nolic concentration was not affected by either factor. Silicon concentration corre-

lated positively with leaf tensile strength, but negatively with foliar phenolic 
concentrations, suggesting a trade-off between chemical and physical defences. 
Size-standardized growth rate was independent of domestication status, and did 
not trade-off with silicon or phenolic defences. However, modelling showed that 
relative growth rate slowed more with increasing size in plants with higher silicon 
levels, so that they reached a smaller final size, implying a cost of silicon-based de-

fence. We found the opposite pattern for phenolic-based defence, with increasing 
phenolic concentrations associated with a greater plant size at maturity, and faster 
maximum relative growth rates.

4. Silicon-based defences have been reduced in cereals through domestication, con-

sistent with our predicted costs of these defences to growth. However, modern 

Paper previously published as Standard Paper.
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1  | INTRODUCTION

Trade- offs between competing, energetically demanding traits are 
fundamental in shaping an organism’s phenotype. The substantial phe-

notypic changes associated with plant domestication (Hammer, 1984; 
Harlan, 1971; Meyer, Duval, & Jensen, 2012) are thought to have 
resulted, in part, from changes in resource allocation between such 
traits, rather than an increase in productivity (Evans, 1993). Strong 
directional selection by humans for traits of agronomic importance 
(Gepts, 2004), such as enhanced seed production and growth rate, is 
predicted to have driven a re- partitioning of resources in domesticated 
landraces compared with their wild relatives. Modern crop cultivars, 
which have been shaped by recent agronomic selection and breeding 
(Lindig- Cisneros, Dirzo, & Espinosa- Garcia, 2002), are expected to be 
the product of an even greater reallocation of resources than domes-

tication alone.
Life history theory predicts that a consequence of such a shift in 

resources through domestication and agronomic selection may be a 
reduction in other traits not of agronomic interest to humans (Evans, 
1993; Milla, Osborne, Turcotte, & Violle, 2015; Rosenthal & Dirzo, 
1997). In particular, plant anti- herbivore defences may be metaboli-
cally costly and thus trade- off with traits such as growth (Coley, Bryant, 
& Chapin, 1985; Herms & Mattson, 1992). Evidence from between- 
species comparisons shows that growth- defence trade- offs are com-

mon and widespread in natural ecosystems (Kneitel & Chase, 2004; 
Lind et al., 2013), although they are not universally demonstrated (e.g. 
Siemens, Garner, Mitchell- Olds, & Callaway, 2002).

In crop systems, a strong directional selection for faster growth 
is predicted through domestication, so that a reduction in resources 
available for defence investment is expected to have occurred concur-
rently (Massei & Hartley, 2000). In general, domestication has led to a 
reduction in defences in many crops (Bellota, Medina, & Bernal, 2013; 
Chen, Gols, & Benrey, 2015; Massei & Hartley, 2000; Mayrose, Kane, 
Mayrose, Dlugosch, & Rieseberg, 2011; Meyer et al., 2012; Mondolot 
et al., 2008; Rodriguez- Saona et al., 2011; Rosenthal & Dirzo, 1997). 
However, the increase in growth rate through domestication and ag-

ronomic selection assumed to be driving this reduction has not been 
found in several studies (Cook & Evans, 1983; Evans, 1993; Preece 
et al., 2017; Welter, 2000), suggesting that changes in defence in-

vestment through domestication may not result from a trade- off with 

growth rate. Additionally, some studies have not found a defence 
reduction through domestication (Turcotte, Turley, & Johnson, 2014; 
Whitehead, Turcotte, & Poveda, 2017), suggesting that the phenome-

non of plants being “disarmed by domestication” may not be as wide-

spread as first thought.
Cereals are grass species grown for their edible seed, and were 

among the first plants to be domesticated, around 12,000 years ago 
(Zohary & Hopf, 2000). There are c. 30 cereal species (Bouchenak- 
Khelladi et al., 2008), which are grown world- wide at a huge scale, with 
an estimated production of over 2,500 million tonnes for 2014/2015 
(FAO, 2015). Three of these species (maize, rice and wheat) alone 
represent the world’s most important staple crops, together provid-

ing 60% of human food energy intake (FAO, 1995). Through the do-

mestication process, cereals developed a shared suite of traits that are 
strikingly different to their wild relatives (Harlan, Wet, & Price, 1973). 
Traits associated with harvesting (non- shattering of mature seeds), 
seed production (increased seed size and yield), regeneration (loss of 
seed dormancy), development (reduced branching and synchronous 
maturation) and growth (increased seedling size and vigour) were se-

lected for, consciously or unconsciously, through domestication.
The impacts of these major phenotypic changes on cereal re-

sistance to herbivory have been explored in several studies (Bellota 
et al., 2013; Maag et al., 2015; Rosenthal & Dirzo, 1997; Turcotte 
et al., 2014). Cereal anti- herbivore defences consist of chemical de-

fences, including the presence of distasteful phenolic compounds in 
leaves and stems, and physical defences, such as tough leaves (Vicari 
& Bazely, 1993). Domestication appears to have had mixed effects on 
these defences. For example, a reduction in leaf toughness through 
maize domestication was associated with lower resistance to a spe-

cialist herbivore (Bellota et al., 2013). However, in a comparison of 
29 crops, including seven cereals, Turcotte et al. (2014) found that 
most domestication events did not cause differences in leaf pheno-

lic  concentrations or resistance to two common herbivores. However, 
none of these studies investigated the effect of domestication on the 
principal defence of grasses–silicon.

A widespread characteristic of grasses is tissue silicification, in 
which silicon is taken up in unusually large amounts from the soil and 
deposited in the leaves, in the form of spines and as sharp granules 
called phytoliths (Hartley, Fitt, McLarnon, & Wade, 2015; Hodson, 
White, Mead, & Broadley, 2005). Plant silicon has multiple functional 

agronomic selection has not influenced silicon defences in cereal crops and the 
small decrease in silicon concentration associated with domestication is unlikely to 
have a major effect on the ability of cereals to withstand a range of abiotic and bi-
otic stresses. These findings have broad implications for crop protection and our 
understanding of plant trade-offs.

K E Y W O R D S

cereals, crop protection, growth-defence trade-offs, herbivory, landraces, modern cultivars, 
phenolics, silica, wild ancestors
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roles in plants (Cooke, DeGabriel, & Hartley, 2016), including resis-

tance to abiotic stresses, such as drought and salinity, and to biotic 
stresses such as pests and diseases (Cooke & Leishman, 2011; Ma & 
Yamaji, 2008). In addition, silicon may have important structural roles 
in plants, as a compression- resistant stiffening material (Schoelynck 
et al., 2010; Strömberg, Di Stilio, & Song, 2016). One key function 
of silicon is as the main physical anti- herbivore defence in grasses 
(Cooke & Leishman, 2011; Hartley & DeGabriel, 2016). By reducing 
digestibility and the absorption of essential nutrients, leaf silicon can 
detrimentally affect vertebrate and invertebrate herbivore perfor-
mance (Massey & Hartley, 2006, 2009; Reynolds, Keeping, & Meyer, 
2009; Wieczorek, Zub, Szafranska, Ksiazek, & Konarzewski, 2015). 
Phytoliths also make leaves highly abrasive, which wears down the 
mouthparts of herbivores (Massey & Hartley, 2009). In addition to 
being a constitutive defence, silicon- based defences can also be in-

duced, with leaf silicon levels being raised substantially in response 
to herbivore damage (Hartley et al., 2015; Massey, Ennos, & Hartley, 
2007a; Wieczorek et al., 2015). This reactive increase in silicon levels 
implies active control over silicon uptake and/or allocation within the 
leaf, and hence a potential fitness cost of this defence. Although, the 
relative contributions of active and passive processes to silicon uptake 
remain uncertain and are likely to vary between species (Faisal, Callis, 
Slot, & Kitajima, 2012; Hartley, 2015; Kumar, Milstein, Brami, Elbaum, 
& Elbaum, 2016; Quigley & Anderson, 2014), the existence of an ac-

tive proton pump required for efflux of silicon into the xylem in many 
crop species suggests an energetic cost to silicon uptake (Ma & Yamaji, 
2015; Ma et al., 2007). However, costs associated with silicon- based 
defences have not been conclusively demonstrated, and whether 
these defences trade- off with growth or other physiological process 
is currently unknown.

This study aimed to determine how anti- herbivore defences were 
modified through cereal domestication and agronomic selection. 
Through comparisons of cereal landraces with their wild progenitors 
and with modern cultivars, we established the effects of domesti-
cation and agronomic selection on silicon-  and phenolic- based con-

stitutive defences. To determine whether any changes in leaf silicon 
or phenolic concentrations arose from resource reallocation, plant 
growth rate was measured as a performance trait that is expected to 
trade- off against defence. We predicted that wild progenitors would 
be the best defended and slowest growing, modern cultivars would be 

the fastest growing and poorest defended, and landraces would have 
intermediate trait values.

2  | MATERIALS AND METHODS

2.1 | Species selection and plant growth conditions

We chose 21 cereal species, representing eight independent do-

mestication events, from multiple centres of domestication, and five 
periods of modern agronomic selection. Of these, eight species are 
landraces, and eight their wild progenitors (Table 1). Modern cultivars 
were chosen for five major crops (excluding einkorn, Triticum mono-

coccum, and the two millets, Pennisetum glaucum and Setaria italica). 
Seeds for all species were obtained from a variety of germplasm hold-

ings (see Table S1).
Seeds germinated in Petri dishes within a growth chamber set 

to 25°C and a 16- hr photoperiod. After 17 seeds of a species had 
germinated, the seedlings were transplanted into 1- litre pots filled 
with M3 compost (Levington Horticulture Ltd., Ipswich, UK), supple-

mented with fertilizer (Scotts M3- 4 Osmocote Exact Standard fertil-
izer, Maryville, OH, USA), so that nutrient supply was not limiting to 
growth. Plants were grown in a randomized block design within a con-

trolled environment chamber (Conviron BDW 40; Winnipeg, Canada). 
Conditions were: 16/8 hr day/night cycle, 25/16°C (day/night tem-

perature), relative humidity of 80%, and photosynthetic photon flux 
density (PPFD) of 500 μmol m−2 s−1. Plants were top watered to sat-
uration three times a week with deionised water and the blocks were 
re- randomized twice weekly.

2.2 | Growth rate analysis

To examine the effect of domestication on plant growth, we deter-
mined the relative growth rate for each species when plants were at 
a common mass (standardized growth rate, or SGR, Rees et al., 2010). 
Two randomly selected plants of each species were destructively har-
vested at six time points over a 30- day period. At each harvest, plants 
were removed from pots, washed clean of growth medium, and dried 
at 50°C for a week, before weighing the total biomass (both above-  
and below- ground) using a four- point balance (PA413/1, Ohaus, NJ, 
USA).

TABLE  1 Cereal wild progenitor and landrace comparisons

Landrace Wild progenitor Centre of domestication Reference

Hordeum vulgare (Barley) Hordeum spontaneum Southwest Asia Zohary and Hopf (2000)

Oryza sativa subsp. indica (Asian rice) Oryza rufipogon South China Cheng et al. (2003)

Pennisetum glaucum (Pearl millet) Pennisetum violaceum Africa (sub- Saharan) De Wet (1995)

Setaria italica (Foxmail millet) Setaria viridis North China Doust and Kellogg (2002)

Sorghum bicolor (Sorghum) Sorghum arundinaceum Africa (sub- Saharan) Aldrich and Doebley (1992)

Triticum monococcum (Einkorn) Triticum boeoticum Fertile Crescent Feldman, Lupton, and Miller (1995)

Triticum dicoccon (Emmer wheat) Triticum dicoccoides Fertile Crescent Feldman et al. (1995)

Zea mays (Maize) Zea mays subsp. parviglumis Meso- America Doebley (2004)
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Growth curves were fitted to log- transformed total dry mass 
data over time for each species in r (R Core Development Team, 
2013) using nonlinear mixed effects models (NlMe package; Pinheiro, 
Bates, Debroy, & Sarkar, 2016). The four- parameter logistic growth 
function was used with a self- starting routine. Species- specific, inde-

pendent random effects were fitted for maximum plant mass (mmax), 
minimum plant mass (mmin) and the time point when plant mass was 
midway between these (xmid). These species- specific growth curves 
were then used to estimate SGR (see Rees et al. 2010 for further 
details).

2.3 | Plant defence measurements

We examined whether domestication and modern agronomic selec-

tion had consistently altered leaf phenolic and silicon concentrations 
in cereals, and how the latter trait relates to another physical de-

fence, leaf tensile strength. Seven plants of each species were har-
vested 30 days after transplanting (five plants in addition to the two 
plants from the final harvest of the growth rate analysis). Leaf tensile 
strength was tested on freshly harvested leaf material following the 
methods of Cornelissen et al. (2003). The force required to tear two 
leaf sections of known width was determined for each plant, and an 
average value calculated. All leaf material was then oven dried at 60°C 
for 48 hr, before being ground into a fine powder.

The Folin- Ciocalteau method was used to determine total foliar 
phenolic concentration (Kerslake, Woodin, & Hartley, 1998). A sample 
(c. 10 mg) from each individual was extracted in methanol at 80°C for 
30 min, before being centrifuged. 100 μl of the supernatant was added 
to 0.25 ml Folin–Ciocalteau reagent and 1 ml saturated sodium car-
bonate. After 1 hr, the absorbance of each sample was measured on 
a spectrophotometer at a wavelength of 760 nm. Absorbance values 
were converted to tannic acid equivalents using a tannic acid standard 
curve (0–2 mg tannic acid), and results were expressed in % per dry 
leaf mass.

For measurements of leaf silicon concentration, two oven- dried, 
ground samples (>0.1 g) of leaf material from each individual were 
pressed into 13 mm- diameter pellets. Following the methods of 
Reidinger, Ramsey, and Hartley (2012), foliar silicon concentration (% 
dry mass) was determined using a Niton XL3t XRF analyzer (Thermo 
Fisher Scientific, Inc., MA, USA), for a measurement time of 30 s. The 
machine was calibrated using a standard curve of methyl cellulose, val-
idated with certified plant reference material of known silicon concen-

tration (Garbuzov, Reidinger, & Hartley, 2011).

2.4 | Statistical analysis

The effects of domestication and agronomic selection on SGR, leaf sili-
con concentration, phenolic concentration and tensile strength were de-

termined by fitting linear mixed- effects models to the trait data (“lMe4” 
package; Bates, Maechler, Bolker, & Walker, 2014). The fixed effect was 
“domestication status”, and “comparison” was added as a random ef-
fect to account for the phylogenetic non- independence of species 
within each comparison. “Species” was an additional random effect in 

the silicon, phenolic and tensile strength models to account for multiple 
measurements per species. The effects that domestication status had 
on SGR, leaf silicon concentration, phenolic concentration and tensile 
strength were determined through model comparison (complete model 
vs. grand mean model) using a parametric bootstrapping method (“Pbkrt-

eSt” package; Halekoh & Højsgaard, 2014) with 10,000 simulated gen-

erations. As there was a significant effect of domestication status on leaf 
silicon concentration, the same model comparison approach was used 
to determine where in the domestication/agronomic selection process 
this significant change occurred.

To determine whether silicon-  and phenolic- based defences rep-

resent a metabolic cost to plants, two approaches were taken. Firstly, 
the relationships between growth and defence traits were investi-
gated to see if they exhibited a trade- off. Linear mixed effects mod-

els were fitted to the species- level SGR and defence (leaf silicon and 
phenolic concentration) data, with “comparison” as the random effect. 
Model comparison was carried out as above. Secondly, the effect of 
varying leaf silicon and phenolic concentrations on relative growth 
rate (RGR) was modelled by allowing mmax to be a linear function of sil-
icon/phenolic concentration. Using this, the relationship between RGR 
and plant size was predicted for each species, based on the species- 
specific average silicon and phenolic concentrations.

To establish the relationships between the measured anti- 
herbivore defences across species, linear mixed effects models were 
fitted to the species- level leaf silicon concentration data, and both 
the leaf tensile strength and leaf phenolic concentration data in turn. 
Comparison was included as a random effect. To determine the rela-

tionships between silicon concentration and tensile strength/phenolic 
concentration within each species, linear models were fitted to these 
data for each species.

3  | RESULTS

Domestication status had a significant effect on leaf silicon concen-

tration (Likelihood ratio test, LRT = 7.82, df = 2, p = .02), but not on 
leaf phenolic concentration (LRT = 0.90, df = 2, p = .64) or leaf tensile 
strength (LRT = 4.75, df = 2, p = .09). Cereal domestication caused 
an average 10% reduction in leaf silicon concentration (LRT = 4.78, 
df = 1, p = .03), but agronomic selection did not reduce leaf silicon 
significantly (LRT = 0.88, df = 1, p = .34; Figure 1). Species average 
leaf silicon concentration ranged between 0.5 and 1.2% of leaf dry 
mass (see Table S2), and was significantly positively correlated with 
leaf tensile strength between species (LRT = 16.49, df = 1, p < .001; 

Figure 2 and Table S2). Within species, the relationship between 
leaf silicon concentration and tensile strength was not significant 
for 19/21 species (p > .05 in all cases). In the two cases where the 
relationship was significant, it was positive in one species (Sorghum 

bicolor, slope = 0.692, p = .007) and negative in the other (Triticum 

dicoccon, slope = −0.253, p = .01). Species average leaf phenolic con-

centration ranged from 0.2% and 2.1% of leaf dry mass (Table S2), 
and was significantly negatively related to leaf silicon concentration 
across species (LRT = 4.49, df = 1, p = .034; Figure 2), but was only 
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significantly negatively correlated within one species (Hordeum spon-

taneum, slope = −0.693, p = .006).
Domestication status had no effect on SGR (LRT = 2.80; df = 2; 

p = .24), with average values differing little between wild progenitors 
(0.29 g g−1 day−1), landraces (0.32 g g−1 day−1) and modern cultivars 
(0.26 g g−1 day−1). Domestication status also had a marginally signifi-
cant influence on the minimum mass (mmin), consistent with the larger 
seed size of domesticated crops than their wild progenitors, but there 
was no effect on the other parameters used to fit the growth curves 
(p > .05; Figure S1).

We found no direct evidence for a trade- off between SGR and 
leaf silicon concentration (LRT = 0.64, df = 1, p = .42), or between 
SGR and leaf phenolic concentration (LRT = 2.74, df = 1, p = .12), 
when SGR was compared among species at a common size of 0.2 g. 
However, the modelled relationship between leaf silicon concen-

tration and growth parameters throughout plant development pro-

vided evidence for a cost of silicon- based defences that emerged at 
larger plant sizes: increasing foliar silicon concentration was linked 
to a decrease in both the final plant size and the maximum relative 
growth rate (p = .035 for the fitted model, Figure 3). The species 
with the highest silicon concentration (Triticum boeticum) was pre-

dicted to have 18% lower maximum relative growth rate (0.235 vs. 
0.288 g g−1 day−1) and 15% lower final plant size (taken at RGR = 0; 
7.47 g vs. 8.81 g), when compared to the species with the lowest sili-
con concentration (Sorghum bicolor).

In contrast, the modelled relationship between leaf phenolic con-

centration and growth parameters showed that increasing phenolic 
concentrations were associated with a greater plant size at matu-

rity, and faster maximum relative growth rates (p = .001 for the fit-
ted model, Figure 3). Zea mays subsp. parviglumis, the species with 
the highest average foliar phenolic concentration, was predicted to 
have a 25% greater final size (9.47 g vs. 7.15 g) and a 30% higher 
maximum relative growth rate (0.315 vs. 0.222 g g−1 day−1) than 
Triticum aestivum cv.”Hereward”, the species with the lowest pheno-

lic concentration.

4  | DISCUSSION

This study is the first to determine the impacts of domestication and 
modern agronomic selection on silicon- based anti- herbivore defences 
in cereals, which include some of our most economically important 
staple crops. While a handful of studies have explored the influence 
of domestication on other cereal defences (Bellota et al., 2013; Chen 
et al., 2015; Rosenthal & Dirzo, 1997; Turcotte et al., 2014), none 
have investigated silicon, the key anti- herbivore defence in grasses 
(Massey, Ennos, & Hartley, 2007b; Reynolds et al., 2009; Vicari & 
Bazely, 1993). The finding of a small but significant reduction in cereal 
silicon- based defence levels here suggests that this defence has been 
“disarmed” by domestication, but to only a limited extent (Massei & 
Hartley, 2000; Meyer et al., 2012), whilst modern agronomic selection 
had no detectable effect on cereal silicon- based defences.

A high level of accumulated silicon acts as an effective plant anti- 
herbivore defence. Multiple detrimental impacts on herbivore perfor-
mance are well- documented (Hunt, Dean, Webster, Johnson, & Ennos, 
2008; Ma & Takahashi, 2002; Massey & Hartley, 2009). In addition, we 
found that species with high leaf silicon concentrations also tended 
to have high tensile strength. Like silicon, this leaf trait is an import-
ant physical defence against herbivores, reducing their performance 
by increasing the metabolic costs of leaf digestion (Clissold, Sanson, 
Read, & Simpson, 2009; Roces & Lighton, 1995). Interestingly, within 
species there is little evidence of significant correlations between leaf 
silicon concentration and tensile strength, and neither was there ev-

idence of changes in leaf tensile strength through domestication and 
agronomic selection as found elsewhere (Maag et al., 2015). The 10% 
reduction in silicon concentration through domestication we detected 
could imply that cereal landraces may be more susceptible to herbiv-

ory than their wild progenitors. However, whether such changes in 
silicon are sufficient to influence herbivore behaviour is unknown; 
studies demonstrating impacts on herbivore preference and perfor-
mance have involved much larger changes in silicon concentration 
(e.g. Massey, Ennos, & Hartley, 2006; Massey et al., 2007a).

F IGURE  1 The effects of domestication 
and agronomic selection on cereal 
silicon- based defence. Points represent 
mean values of leaf silicon concentration 
for each species, and these are grouped 
within comparisons. Silicon concentration 
was significantly reduced through 
domestication (p = .02) but not modern 
agronomic selection (p = .34). Error 
bars = ±SE. DM, dry mass; cv, cultivar
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The negative relationship between silicon-  and phenolic- based de-

fences is consistent with several studies that have found that silicon 
accumulation is associated with reduced concentrations of phenolic 
compounds (Cooke & Leishman, 2011; Frew, Powell, Sallam, Allsopp, 
& Johnson, 2016). A proposed explanation for this trade- off is that 
plants partly substitute carbon- based defences for silicon- based de-

fences (Cooke & Leishman, 2011; Schaller, Brackhage, & Dudel, 2012). 
This may result in an increased availability of carbon for both defence 
and growth, which would be consistent with the predicted positive as-

sociation here between phenolic concentration, plant growth rate and 
final size. We found no reduction in phenolic concentration through 
cereal domestication, which mirrors the findings of other studies in-

vestigating cereal defences (Maag et al., 2015; Turcotte et al., 2014), 
possibly because allocation to phenolics is known to be particularly 
variable in response to a range of environmental and other parameters 
(Jones & Hartley, 1999).

Agronomic selection has not significantly reduced constitutive 
chemical or physical defence levels in cereals, a result consistent with 
previous findings for maize (Rosenthal & Dirzo, 1997) and cranberry 
(Rodriguez- Saona et al., 2011). An insufficient change in selection 

pressure between cereal landraces and modern cultivars may explain 
these non- significant results. Many modern cultivars are grown out-
side their natural range, so may experience reduced selection pres-

sure for anti- herbivore defences, due to potential “escape” from 
herbivore attack (Keane & Crawley, 2002; Müller- Schärer, Schaffner, 
& Steinger, 2004; Schaffner et al., 2011). Alternatively, breeders may 
have selected for structural traits linked to high silicon concentrations 
through agronomic selection. Silicon- rich stiff straw and strong leaves 
may be associated with desirable properties such as resistance to 
lodging (Shimoyama, 1958) and enhanced photosynthesis (Okuda & 
Takahashi, 1962). Silicon offers multiple, often unrelated, benefits to 
plants simultaneously, so distinguishing between the adaptive signif-
icance of increased structural support and resistance against herbi-
vores is challenging. Indeed, the result of a recent attempt to do this 
in wild grasses was inconclusive and suggested that both herbivore 
pressure and structural support could be important evolutionary driv-

ers of silicon accumulation (Strömberg et al., 2016).
We found no consistent change in size- standardized growth rate 

through cereal domestication or agronomic selection. This adds to a 
growing body of studies that have failed to find growth rate alterations 

F IGURE  2 The relationships of 
leaf silicon concentration with leaf 
tensile strength (top) and leaf phenolic 
concentration (bottom). Values represent 
M ± SE bars. Across species, leaf silicon 
concentration correlated positively 
with leaf tensile strength (p < .001) but 
negatively with leaf phenolic concentration 
(p = .034). Triticum 1 is the comparison 
between Einkorn wheat (Triticum 

monococcum) and its progenitor (Triticum 

boeoticum); Triticum 2 is the comparison 
between Emmer wheat (Triticum dicoccon), 
its progenitor (Triticum dicoccoides) and 
modern cultivar (Triticum aestivum). DM, 
dry mass
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through domestication (Cook & Evans, 1983; Preece et al., 2017; 
Welter, 2000). For example, Evans (1993) found no consistent trends 
in growth rate between wild and domesticated wheats, whilst Preece 
et al. (2017) attributed the greater yield in domesticated wheat and bar-
ley landraces to larger initial and final sizes, and changes in allocation, 
compared with their wild relatives. Some differences in traits relating to 
seed size and dormancy were consistent with the domestication syn-

drome (i.e. an increase in initial plant mass and shorter seedling emer-
gence times); however, these traits are not directly related to growth 
rate. In our SGR analysis, we therefore find no direct evidence that the 
small reduction in silicon- based defence through domestication was 
caused by a reallocation of resources towards faster growth despite 
our modelled prediction that higher silicon concentrations are associ-
ated with lower growth rates and smaller final plant sizes. Through our 
modelling approach, we found that the adverse effect of allocation to 
silicon defences on growth rate increases with plant size, implying that 
the costs of silicon defences are relatively greater for larger plants. This 
could be due to the greater costs of uptake, mobilization and deposi-
tion of silicon in larger plants, or because plants with higher potential 
maximal growth rate and final size suffer most from the costs associ-
ated with silicon uptake. The predictions from our model may contrast 
with the results from the SGR analysis because we conducted this spe-

cies comparison with plants of only 0.2 g, possibly too small to show 
any effects of silicon on growth rate. However, as the plants increase in 
size, the effect is predicted to become more pronounced.

The deposition of silicon in plant tissues is an energetically expen-

sive process involving active efflux transporters (Ma et al., 2007; Ma & 
Yamaji, 2015). Our overall analysis is consistent with this: the species 
with the highest silicon concentration was modelled to be 15% smaller 
than the species with the lowest silicon concentration, and was pre-

dicted to grow more slowly, suggesting silicon uptake is costly. Silicon 
uptake in the roots occurs via a combination of passive uptake in the 
transpiration stream through aquaporin- type transporters and energy- 
demanding processes via proton pumps (Cooke & Leishman, 2011; 
Hartley, 2015; Kumar et al., 2016; Ma & Yamaji, 2006). The balance 

between active and passive processes, which may depend upon tran-

spiration rates, plant silicon demands and soil silicon availability (Faisal 
et al., 2012), could determine the impact of silicon uptake on plant 
growth rate. Despite such potential costs and associated impacts on 
growth, increased silicon concentration may also benefit plant growth 
under different abiotic and biotic stresses (Cooke & Leishman, 2011; 
Gong, Zhu, Chen, Wang, & Zhang, 2005; Guntzer, Keller, & Meunier, 
2012; Ma, 2004), such that the benefits from silicon uptake must 
sometimes outweigh the negative impacts of actively transporting ad-

ditional silicon.
Our finding that silicon, the principal defence in grasses, has been 

unchanged or reduced by only a small degree through domestication 
and modern agronomic selection, suggests that cereal crops have not 
been “disarmed” in this part of their armoury (Massei & Hartley, 2000). 
Silicon also has an important role in alleviating other biotic and abiotic 
plant stresses (Ma & Yamaji, 2006; Zhu & Gong, 2014); in grasses for 
example, silicon increases resistance to fungal and bacterial pathogens 
(Rodrigues, Polanco, Silveira Duarte, Resende, & Ribeiro Do Vale, 2015; 
Seebold, Kucharek, Datnoff, Correa- Victoria, & Marchetti, 2001), and 
to drought (Hattori et al., 2005). The small decrease in silicon concen-

tration associated with domestication is unlikely to have a major effect 
on the ability of cereal plants to withstand a range of abiotic and bi-
otic stresses. Modern agricultural systems are required to produce 
more food, cope with the impacts of climate change and reduce their 
use of synthetic chemicals with negative impacts on the environment 
and human health, so the need for sustainable means of pest control in 
these systems is particularly acute. Our findings suggest silicon is one 
such means which could be further exploited, particularly as we demon-

strate modern crop varieties have retained their ability to deploy it.
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