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Abstract
A novel solver which uses finite wave averaging to mitigate oscillatory stiffness is proposed and

analysed. We have found that triad resonances contribute to the oscillatory stiffness of the problem and

that they provide a natural way of understanding stability limits and the role averaging has on reducing

stiffness. In particular, an explicit formulation of the nonlinearity gives rise to a stiffness regulator function

which allows for analysis of the wave averaging.

A practical application of such a solver is also presented. As this method provides large timesteps at

comparable computational cost but with some additional error when compared to a full solution, it is a

natural choice for the coarse solver in a Parareal-style parallel-in-time method.
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1 Introduction

‘Begin at the beginning,’ the King said, very gravely,
‘and go on till you come to the end: then stop.’

C. S. Lewis, Alice in Wonderland

Numerical simulations are and continue to become more im-
portant for prediction, such as forecasting of the weather, and for
investigation and research, as in their role in scientific simulations
of climate. As these simulations become ever more complex, the
role of high-performance computing (HPC) becomes more relevant.
HPC is the design and implementation of algorithms to efficiently
perform computations, increasingly in a parallel fashion.

Problems of the type which arise in geophysical fluid dynamics
often exhibit oscillatory stiffness (q.v. Section 1.1 below), which refers
to a restriction of the timestep size due to the presence of rapid
oscillations in the solution. When solving problems of this type,
it is necessary to either provide sufficient computational power to
resolve the necessary scales or to model the effect of them. Specif-
ically considering geophysical problems which are modelled with
PDEs of hyperbolic or parabolic type, where we are interested in
modelling the time evolution of some quantities which are defined
on a spatio-temporal domain (Vallis, 2006) a common approach is
to sub-divide the spatial domain into continuously smaller blocks
which may be handled on separate processors, and which commu-
nicate at their boundaries – so-called domain decomposition (Gropp,
1992; Minkoff, 2002).

Increasing the number of processors across which the problem
is distributed increases the speed, but does so subject to a law of
diminishing returns due to various scaling restrictions arising from
communications bottlenecks, non-uniform problem sizes, serial por-
tions, etc. (McCool et al., 2012). The restriction on parallel speedup
due to serial portions of the algorithm in particular is known as
Amdahl’s Law (Rodgers, 1985) and spectral methods, such as those
which we will use here, suffer particularly from this (Temperton,
2000).

Number of Cores

S
pe

ed
up

Parallel Speedup

Optimal
Reality

Figure 1.1: The limitations of the parallel
model. Ideally, doubling the number of
processors would cause the program to
run twice as fast (2× the processors, 2×
the speed) as with the dashed line. In
practice, parallel algorithms follow a law of
diminishing returns, depicted by the solid
line.
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1.1 Numerical Stiffness

Stiffness is a property of differential equations which
makes their numerical solution by standard methods difficult, first
discovered by Curtiss and Hirschfelder (1952) who coined the term
‘stiffness’. They also developed the first backward differentiation
formulas to handle it. In the years since, there have been many
advances, but the problem of stiffness is still with us. This is due to
the difficulties in handling nonlinearity in stiff PDEs, a limitation
which this thesis addresses.

There exist myriad definitions for stiffness, many of which are
particular to a given method or system. In order to describe what
stiffness is and to develop a more general understanding, consider
an ODE of the form

du
dt

= f (t, u), (1.1)

as well as an explicit timestepping algorithm,

un = un−1 + ∆t f (tn−1, un−1), n = 1, 2, . . . , N. (1.2)

If we assume that the solution is Lipschitz continuous, i.e.

| f (t, y)− f (t, x)| ≤ β|y− x|, (1.3)

for some finite constant, β, then a stiff problem is one for which
β∆t � 1 (Spijker, 1996). While this definition is useful numerically,
in the interest of developing intuition it is worth considering some
symptoms of stiff problems, following Trefethen (1996). With stiff
problems:

1. there is a large variation in timescales;

2. stability is a greater constraint on the timestep than accuracy;

3. implicit methods perform significantly better than explicit meth-
ods.

It is important to understand that stiffness as used throughout
this work is a purely numerical phenomenon which does not arise
in the analytical solution of differential equations. According to
Higham and Trefethen (1993),

Instability and stiffness are transient phenomena, involving finite
time intervals [t0, t1]. They cannot be characterised by considering
only the limits t→ ∞ or t→ t0.

This relationship to finite time intervals is an important aspect of
numerical stiffness, and will feature significantly in our attempts to
understand and mitigate numerical stiffness.
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The third symptom in the list above is used as the definition of a
stiff problem by Hochbruck and Ostermann (2010). For the case of
dissipatively stiff problems (cf. Figure 1.2), this definition holds due
to the stability requirements imposed by the CFL condition. In a
dissipatively stiff problem, the right hand side of equation (1.1) has
large, negative, real eigenvalues such that the gradient on the right-
hand side is large. This leads directly to a requirement of small
timesteps in order to resolve the rapidly-varying flow. However,
we are in this work primarily concerned with problems displaying
oscillatory stiffness, for which this definition is inadequate.

t0 t0 + ∆t

du
dt

t

u

Figure 1.2: Dissipative stiffness. The
derivative evaluated at some point in time,
t0, provides a very poor approximation to
the solution, u(t1), that is over a timestep
of ∆t. This requires the use of a smaller
timestep to resolve the gradient.

We may say that a problem exhibits oscillatory stiffness when the
linearisation of equation (1.1) has purely imaginary eigenvalues of
large modulus. Rather than giving rise to a steep gradient like dis-
sipative stiffness does, this instead induces rapid oscillations which
require tiny timesteps in order to resolve. Indeed, the allowable
timestep for explicit Euler methods is reduced for problems which
are stiff in the oscillatory sense due to stability limitations. How-
ever, the implicit Euler method is also an inefficient choice here.
This is not due to stability requirements – implicit methods are uni-
versally stable (Trefethen, 1996) – but rather accuracy requirements.

Durran (2010) showed that implicit methods will poorly resolve
the most rapid waves in the solution. If these poorly-resolved waves
are not physically significant, implicit timestepping methods are
a viable way of solving oscillatory stiff equations. However, as
we will show in this work (q.v. Chapter 4) these rapid waves are
relevant to the accuracy of the solution through their interaction
with other waves. It is therefore important from the standpoint of
accuracy to resolve both the fast and slow waves, leading us to look
beyond implicit solvers for the problem at hand.

t0 t0 + ∆t

du
dt

t

u

Figure 1.3: Oscillatory stiffness. As with
Figure 1.2, the gradient is rapidly-varying
and therefore poorly approximated over
a timestep ∆t as shown here, leading to
a requirement of a smaller timestep to
numerically approximate u(t).

As oscillatory stiffness imposes a limit on the timestep and the
practicalities of computing impose their own restrictions on the ef-
fectiveness of spatial parallelism, development of algorithms which
are able to model the system under stiff conditions are necessary.
We may propose an incomplete taxonomy of methods for handling
oscillatory stiffness: one approach is to develop a model which per-
mits the cost imposed by the oscillatory stiffness to be mitigated
directly by novel parallelism. Another approach is to develop an al-
gorithm which models the system in a non-stiff or less stiff fashion
and to a sufficient degree of accuracy.

In this work, we describe a novel coarse solver which is based
on the idea of fast-wave averaging, and which permits very long
timesteps to be taken in a numerically stable fashion. As we will
show in Chapters 3 and 4, the oscillatory stiffness in problems of
the type given below arises through the fast nonlinear oscillations
which are natural components of the solution. The fast-wave aver-
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aging procedure which we introduce in Section 1.4 below is capable
of reducing stiffness while maintaining accuracy because of its
treatment of the nonlinear oscillatory components, as opposed to a
more common linear wavespace filtering (e.g. Pope (2011); Sagaut
(2011)).

This method is numerically tractable, in particular as the av-
erage itself is embarrassingly parallel in time and is particularly
applicable to heterogeneous computing architectures. The aver-
aged method carries with it a higher approximation error than a
standard method would, but it directly enables the time-parallel
simulation of oscillatory stiff PDEs.

This fast-wave averaged method allows the extension of the
Asymptotic Parallel in Time (APinT) method (Haut and Wingate,
2014) to the case of finite scale separation. APinT uses the fast-wave
averaged integrator developed and analysed in this work to imple-
ment a Parareal method (Lions et al., 2001) which is suitable for os-
cillatory stiff problems. The Parareal algorithm extends parallelism
to the temporal domain and thus improves scalability beyond what
is available spatially. The APinT method can be thought of as being
the first member of the taxonomy given above, where the oscilla-
tory stiffness is mitigated through a parallel computing model (q.v.
Chapter 5).

In the interest of developing a general framework, we will con-
sider an equation of the form

∂u
∂t

+
1
ε
Lu +N (u, u) = Du, (1.4)

where L is a linear operator which has purely imaginary eigen-
values, N (u, u) is a nonlinear operator of quadratic type, and D
encodes the dissipation in the problem. The solution vector field, u
is defined on the domain Ω ∈ x× [t0, tN ]. We assume that the dis-
sipation is not sufficient to induce stiffness limitations, and restrict
ourselves instead to this being an oscillatory-stiff problem. This is
sufficient to describe many of the common equations of fluid dy-
namics, such as the Boussinesq equations and the Rotating Shallow
Water Equations (RSWE) in many flow regimes.

1.2 Some Historical Context

Early numerical models of weather were restricted by sev-
eral considerations, one of which was the timestep limitations im-
posed by the CFL condition (Lynch, 2008). In order to perform the
first successful numerical weather prediction (NWP), a mathemati-
cally filtered model was used which completely eliminated the fast
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oscillations from the solution.

This model led to the physical notion of ‘slow’ dynamics through
the so-called Quasi-Geostrophic (QG) equations, due to Charney
(1948). Based on scale analysis, they were a major advancement
in the modelling of weather. These reduced equations allowed the
fast waves, which were the source of the oscillatory stiffness, to be
filtered while still resolving the large-scale motions of the fluid.
The work was expanded upon in Charney (1949) and Charney and
Phillips (1953).

The reduced equations have been rigorously shown to hold
asymptotically in the limit of ε → 0 (Embid and Majda, 1996).
The QG equations, however, are not accurate enough for modern
weather prediction. Instead, NWP relies on numerical approxi-
mations of the full equations of motion (Davies et al., 2003). The
implication here is that if the QG equations are not accurate enough
for prediction then at least some of the fast oscillations matter, even
at large scales. This leaves us with the problem of finding some way
to resolve the fast waves in order to capture the full dynamics.

Embid and Majda (1996), following Klainerman and Majda
(1981), proposed a framework for fast-wave averaging in which
the slow dynamics evolve independently of the fast, but the fast
waves are not entirely eliminated from the system. This work is
based on earlier work in averaging methods for nonlinear systems
by Krylov and Bogoliubov (1935) and Bogoliubov and Mitropol-
sky (1961). While these methods were developed in the asymptotic
regime as ε → 0, an important advance in this work is the proof
that such methods provide a basis for more general wave averaging
outside of the QG limit.

Let us now introduce the Rotating Shallow Water Equations
(RSWE), which are used for the practical computations in this work.
The QG equations are derived directly from these, but will not be
discussed in more detail here. For a more detailed discussion of the
history of NWP, the reader is referred to Lynch (2008).

1.3 The Rotating Shallow Water Equations

In the practical examples throughout this work, we will use
variations on the RSWE. Note that in the dimensional case, the
parameter ε is absent, as it is effectively absorbed into the linear
operator. In the interest of clarity, we will develop mathematical
theory using the form given in equation (1.4), and perform some
numerical experiments with the dimensional case. In the dimen-
sional case, the theory still holds in common parameter regimes for
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NWP, albeit with some loss of notational elegance.

Much of the theory which we will develop in this work holds for
any equation in the form of equation (1.4). However, in the interest
of performing numerical simulations and further illustrating certain
specifics, we will consider just the RSWE. The RSWE are a hyper-
bolic system of partial differential equations, becoming parabolic if
viscous effects are considered. We will discuss linear dissipation in
theory, and limit ourselves to hyperviscosity for stability in numer-
ical practice (Passot and Pouquet, 1988; Duchon and Robert, 1999).
The RSWE are derived from the Navier-Stokes equations under the
assumptions of constant fluid density and hydrostatic balance, and
a horizontal scale which is much greater than the fluid depth.1 1 Hence ‘shallow’.

An important feature of these equations is that they exhibit
quadratic nonlinearity2, which gives rise to triadic interactions. We 2 The author recalls being told once by Dr.

Alan Hegarty of the University of Limerick
that fluid mechanics is simply the study of
quadratic nonlinearity.

will return to these in more detail in Chapter 3. For now it is suf-
ficent to understand that such interactions provide the discrete
components of oscillation which serve as a natural atomic unit of
solution. We will rely heavily on these in investigating the effects of
averaging on the RSWE.

In less simple models of geophysical flows, the equation of state
may give rise to nonlinearities which are not of quadratic – or even
polynomial – type. This in turn requires the consideration of a
different interaction class or approximation thereof. As long as
such a model gives rise to a partially ordered and countable set
of interactions, the results of this thesis related to averaging and
stiffness mitigation in Chapter 4 hold.

A useful property of equations exhibiting quadratic nonlinear-
ity is that we may order the interactions by their relevance to the
long-term behaviour of the flow (Embid and Majda, 1996) and that
this ordering is the same which allows us to describe the effects of
averaging. We shall return to this in Section 1.4 below and in more
detail in Chapter 3. In order for our analysis to apply to equations
which are not quadratically nonlinear, it would be necessary that
they have the same property. In the interest of making analytical
progress, we limit ourselves to the RSWE and its assumption of
quadratic nonlinearity from this point on.

We shall restrict ourselves to the single-layer case, where there
is one layer of fluid, bounded below and with a fluid of negligible
inertia above. According to Vallis (2006), this is one of the simplest
useful models in geophysical fluid dynamics, as it allows for the
study of the effects of rotation without the complications of stratifi-
cation.

With reference to equation (1.4), the vector of unknowns for the
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RSWE is
u = (u(x, t), v(x, t), h(x, t))T , (1.5)

where the first two components are the fluid velocity fields in the
x- and y-components, respectively, and the third component is the
height of the fluid layer. Following Vallis (2006), we may write the
RSWE in their dimensional form, neglecting dissipation, as the
momentum equation

Dv
Dt

+ f× v = −g∇h, (1.6)

and the mass equation

∂h
∂t

+∇ · (vh) = 0, (1.7)

where v(x, t) = (u(x, t), v(v(x, t)), f = f k̂ is the Coriolis coefficient,

g is the gravitational constant, and
D
Dt

is the material derivative,
defined as

D
Dt

=
∂

∂t
+ u · ∇. (1.8)

1.3.1 Nondimensionalisation

h(x, t)

η∗(x, t)

H0

Figure 1.4: Schematic showing the domain
of the rotating shallow water equations
as well as the height field, broken into a
constant and a perturbation component.

Let us now nondimensionalise the mass and momentum
equations of the RSWE so as to obtain the system in the form given
by equation (1.4). The total thickness of the fluid layer may be con-
sidered as the sum of the average water depth, H0 and a perturba-
tion height, η, as shown in Figure 1.4:

h(x, y, t) = H0 + η(x, y, t). (1.9)

Following Embid and Majda (1996), we now define characteristic
scales for the length, time, depth, perturbation height, and velocity,
such that:

v = Uv∗; t = Tt∗; l = Ll∗, (1.10)

and:
h = H(H∗0 + θη∗), (1.11)

where the asterisk superscript denotes a dimensionless quantity.
Note that the total water depth, h, is written in terms of a perturba-
tion depth, η and a mean water depth, H0. With these scalings, we
may write equation (1.6) as

U
T

∂v∗

∂t∗
+

U2

L
(v∗ · ∇)v∗ + Uf× v∗ =

−gHθ

L
∇η∗. (1.12)

We then define the timescale, T, to be T = L/U, and further define
the Rossby number, Ro, as the ratio of convective to rotational forces:

Ro =
U
f L

. (1.13)
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This allows us to write

Ro
[

∂v∗

∂t∗
+ (v∗ · ∇)v∗

]
+ k̂× v∗ = − gHθ

f UL
∇η∗. (1.14)

We now define the Froude and Burger numbers:

Fr =
U√
gH

, (1.15)

and

B =
Ro2

Fr2 , (1.16)

and so we let
θ = Ro−1Fr2, (1.17)

be the scaling on the perturbation height. Dropping the asterisks as
is customary3, the nondimensional formulation of the momentum 3 We will retain the asterisk on η∗. This

is to prevent confusion when using η to
represent the length of the averaging
window in later chapters, in the interest of
consistency with the HMM literature.

equation (1.6) becomes

Ro
[

∂v
∂t

+ (v · ∇)v
]
+ k̂× v = −∇η∗. (1.18)

We now move onto the mass equation, equation (1.7). We apply the
same scales as in the above derivation for time and perturbation
height, and write the water depth in its expanded form. Thus, we
may say that

HRoB−1

T
∂η∗

∂t
+

UH
L
∇ · (H0v∗) +

UHRoB−1

L
∇ · (v∗η∗) = 0. (1.19)

Dividing across by
UH

L
and applying the same time scaling as

before, we may write the dimensionless formulation of the mass
equation, again dropping the asterisks

RoB−1
[

∂η∗

∂t
+∇ · (vη∗)

]
+∇ · (H0v) = 0. (1.20)

Then applying the scaling for θ yields

RoB−1
[

∂η∗

∂t
+∇ · (vη∗)

]
+∇ · v = 0. (1.21)

All that is left for us to do is to let ε = Ro and to define F = B−1 =

O(1) to obtain the desired form (equation (1.4)). In the limit as
ε → 0, these equations are called the rapidly rotating shallow water
equations. The linear operator, L, takes the form:

Lu =




0 −1 F−1/2∂x

1 0 F−1/2∂y

F−1/2∂x F−1/2∂y 0







u(x, t)
v(x, t)

η∗(x, t)


 , (1.22)

and the nonlinear operator is:

N (u, u) =

[
v · ∇v
∇ · (η∗v)

]
. (1.23)
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1.3.2 The 1-D Equations

The RSWE are normally solved on a 2-dimensional spatial
grid, x = xn × yn, n = 0, 1 . . . , N. For a pseudospectral method
(cf. Appendix A) on a mesh of size N2, this has a complexity in the
FFTs of O(N2 log(N)) and of O(N2) for the nonlinear evaluation in
real space. In the interest of performing parameter studies quickly
(as well as applying some computationally intense algorithms such
as the brute resonance filter of Section 3.5) it is useful to have a
computationally cheaper model.

x1 x2 x3 x4 x5 x6 x7 x8
y1

y2

y3

y4

y5

y6

y7

y8

Figure 1.5: The computational domain
for the RSWE. The 2-D grid is shown
for N = 8 with grey gridlines. The 1-D
reduction of this domain is depicted with a
thick black line.

We may then consider the RSWE defined on a 1-dimensional
mesh, x = xn, n = 0, 1, . . . , N, but retaining the velocities in both
directions and therefore retaining rotational effects. This reduces
the FFT time complexity to O(N log(N)) and the time complexity
of the nonlinear multiplication in space to O(N). The 1-D RSWE
can be thought of as a single spatial slice out of the full 2-D RSWE.
These reduced equations are sometimes called the 1-D St Venant
equations, although we retain rotational effects here which the St
Venant equations generally do not. The modified linear and non-
linear operators become as follows, while retaining all important
properties (skew-Hermicity, quadraticity, etc.) of the full 2-D RSWE

L =




0 −1 F−1/2∂x

1 0 0
F−1/2∂x 0 0


 , (1.24)

and

N (v, v) =




u
∂u
∂x

u
∂v
∂x

∂(ηu)
∂x




. (1.25)

In effect, the derivatives in the y-direction have been lost. The com-
ponent of the flow velocity in the y-direction has been retained and
the unknown vector, u still has three components. The distinction is
that these components are each of length N in the 1-D case, and of
size N × N in the 2-D.

1.4 Fast Wave Averaging

At the core of the work done in this thesis is fast-wave aver-
aging. Following Embid and Majda (1996) and speaking asymptot-
ically we may derive a reduced system of equations which models
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the RSWE but with less oscillatory stiffness. The form of this so-
lution permits wide-ranging conclusions to be drawn about the
dynamical nature of the flow and in particular the elements of its
nonlinear oscillation. Outside of the asymptotic limit, where scale
separation is finite, it is also possible to apply a modified version
of the average derived below and to develop a fast and accurate
approximate solver based on this theory.

Consider the rapidly-rotating shallow water equations, neglect-
ing dissipation:

∂u
∂t

+
1
ε
Lu +N (u, u) = 0. (1.26)

In practice, since L is a wave operator, as the parameter ε gets small
it induces increasingly rapid oscillations and leads to more os-
cillatory stiffness, i.e. a restriction on the numerical step size. As
discussed in Section 1.2, models of fluid flow in the atmosphere
and oceans as ε → 0 have been developed which have permitted
advances in the analytical and numerical modelling of fluid flow.
Following Embid and Majda (1996), we proceed by applying the
method of multiple scales (Hinch, 1991) to equation (1.26). (See also
Klainerman and Majda (1981), Majda (2002), and Haut and Wingate
(2014).)

Let the temporal derivative be the sum of two separated timescales:
a slow timescale, t′, and a fast timescale, τ. In this context, ε is a
measure of the scale separation in the system. The temporal deriva-
tive then takes the form

∂

∂t
=

∂

∂t′
+

1
ε

∂

∂τ
. (1.27)

We expand our solution according to the following asymptotic
expansion

u = u0(t′, τ) + εu1(t′, τ) + . . . (1.28)

By grouping like powers of ε, we find at leading order (1/ε)

∂u0

∂τ
+ Lu0 = 0. (1.29)

The leading order solution is then

u0(x, t′, τ) = e−τLu0(x, t′, τ). (1.30)

Note here that u0 is a function of both the slow and fast timescales.
The effect of the averaging process is to filter the fast waves and
therefore remove the functional dependency on the fast timescale.
In light of this fact and following Embid and Majda (1996) we may
define the averaged solution as that solution which depends only
on the slow timescale and from which the full solution may be
regained by the application of the exponential operator. The leading
order solution then takes the form

u0(x, t′, τ) = e−τLu(x, t′), (1.31)
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where u denotes the averaged u. Importantly, u is a function of the
only the spatial coordinate and the slow timescale, t′. The effects
on the fast timescale are completely described by the exponential
operator, eτL. As will be discussed in more detail in Chapter 2,
the application of the matrix exponential is an analytical operation
and therefore does not suffer from any timestep restrictions which
would otherwise be imposed by the CFL condition.

Now consider the terms of O(ε), which results in the following
differential equation

∂u1

∂τ
+ Lu1 = −

(
∂u0

∂t′
+N (u0, u0)

)
. (1.32)

Applying an integrating factor method where eτL is the integrat-
ing factor we obtain

d
dτ

(eτLu1) = −eτL
(

∂u0

∂t′
+N (u0, u0)

)
, (1.33)

which admits the following solution

eτLu1 = u1 − τ
∂u(x, t′)

∂t′
−
∫ τ

0
esLN (e−sLu, e−sLu)ds. (1.34)

Note that we have used the definition of the leading order so-
lution in terms of the averaged solution from equation (1.31). In
order to prevent the emergence of secularity, the second term in the
asymptotic expansion (equation (1.28)) must be weaker than the
first. This is expressed by the sublinear growth condition:

|u1(x, t′, τ)| = o(τ) uniformly for 0 ≤ τ ≤ T/ε. (1.35)

The operator eτL is norm-preserving, and so eτLu1 satisfies the
sublinear growth condition (equation (1.35)) if and only if u1 does.
From this fact and equation (1.34) comes the following condition,
which the averaged equations must satisfy

∂u(x, t′)
∂t′

+ lim
τ→∞

1
τ

∫ τ

0
esLN (e−sLu(x, t′), e−sLu(x, t′))ds = 0,

u(x, t′)
∣∣
t′=0 = u0(x, 0, 0).

(1.36)

Recall that the application of the matrix exponential is an an-
alytical operation. It therefore requires no timestepping. Rather,
timestepping is performed over the averaged variable u = u(x, t′)
in equation (1.36), and the fast oscillations are reintroduced by
the application of the matrix exponential. Comparing it to equa-
tion (1.4), it has lost the factor of 1/ε and so is less stiff4. This fact

4 Where we use ‘less stiff’ to mean ‘exhibits
a smaller variation in timescales’. The
implication is that larger timesteps may be
taken for less stiff problems.

combined with the ease of applying the matrix exponential permits
very large timesteps with this averaged system.
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Conceptually, the solution consists of both slow and fast com-
ponents as shown in Figure 1.6. There is a slow trend which mod-
ulates the fast waves and which may be determined from the full
solution by a properly-formulated moving average in time over the
fast waves. The improved stability and accuracy when numerically
solving equation (1.36) as compared to the full rapidly-rotating
equations (1.26) is due to the timestepping being performed along
this underlying slower solution.

Time

Slow Solution u
Full Solution u

Figure 1.6: The slow trend which lacks
rapid oscillations and the full solution, which
follows it but features these fast waves
is depicted conceptually. In practice, we
timestep along the solid curve, as the
oscillatory information necessary to regain
the solution shown by the dotted line is
contained entirely in the matrix exponential
eτL/ε.

The wave averaged equation, (1.36), has been studied in detail
since at least 1961 by Bogoliubov and Mitropolsky (1961) and more
recently by Schochet (1994), who described its effects on the sys-
tem in terms of cancellation of oscillations. The idea, which will be
treated more rigorously in the coming chapters, is that the averag-
ing integral filters out the fastest parts of the flow, while retaining
the slowest, which are the most relevant for resolving the long-time
dynamics. The novelty of this work lies primarily in the discov-
ery and proof that the ‘fastest parts of the flow’ are not particular
waves, but rather, when speaking numerically, discrete components of
nonlinear oscillation.

,
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0
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‖x
(t
)
−
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)‖

2

Measured Error in Coarse Timestepping

ε = 0.01
ε = 0.1
ε = 1.0

Figure 1.7: The error between a solution
based on a fast-wave averaged solver
(y∆T(t)) and one from a standard method
integrating the unaveraged equations
(x(t)) is shown for three values of scale
separation. A clear optimal exists as ε
moves farther out of the small-ε limit. Here,
the timestep with the averaged solver was
0.1, and for the full solver it was 0.002. A
pseudospectral method was applied with 64
modes for the 1D RSWE.

We shall discuss the numerical particularities of using this aver-
aged equation and its projection back into real-space by the matrix
exponential in Chapter 4. To provide some idea of the direction
in which this thesis is going, we must confront the problem that
for practical geophysical flows, the scale separation is finite (i.e.
ε in (1.36) is a finite quantity). This means that when modelling
realistic flows, the integral in (1.36) becomes finite. In particular,
we are focussed on explaining the behaviour seen in Figure 1.7,
which measures the error when using a solver based on fast-wave
averaging as compared to a reference ‘full’ solution. The behaviour
observed for finite ε contradicts the predictions of the asymptotic
theory as ε → 0, which predicts increasing accuracy with an in-
creasing averaging integral length. In the finite case, there is clearly



introduction 13

an optimal choice which varies with ε. How does one explain this?
Perhaps more importantly, how does one use it to develop useful
algorithms?

Before numerical analysis of this averaging is possible we will
need to discuss triad interactions, which arise naturally from the
quadratic nonlinearity and the dispersion relation. Triad inter-
actions, and in particular direct and near resonances, provide a
natural way to understand the effect of averaging on our system.
Through making the nonlinear interaction explicit, they are those
discrete components of nonlinear oscillation discussed earlier. From
a wave averaging point of view, they provide a more natural atomic
unit of solution than a single Fourier mode.

Key Points

• Stiffness is a property of differential equations which makes their
numerical solution difficult.

• In the limit of infinite scale separation, a wave-averaged solution
to the rotating shallow water equations exists with an infinitely
long averaging window.

• For finite scale separation, there is an optimal choice for the finite
averaging window length.





2 Exponential Integration

I lost my job as a cricket commentator
for saying ‘I don’t want to bore you
with the details’.

Milton Jones

Exponential integrators are a class of methods for
the numerical solution of differential equations which are other-
wise difficult to handle numerically due to stiffness (Section 1.1).
Stiff systems of ODEs arise organically when solving PDEs with
spatially-periodic boundary conditions via representation as Fourier
series. The associated spectral and pseudo-spectral methods, which
have been quite successful in many applications (cf. Canuto et al.
(1988), Boyd (2000)) lend themselves naturally to exponential inte-
grators. We note as well that analysing our system in terms of the
matrix exponential and the associated eigendecomposition exposes
the nature of the wave resonances, as we shall see in Chapter 3.

Later in this chapter we shall discuss the specific case of de-
veloping an exponential integrator for the rotating shallow water
equations, as exponential integrators form the basis (in subtly dif-
ferent fashions) of both the coarse and fine timesteps in the APinT
method introduced in Chapter 5. It should be noted that the linear
operator in that case is skew-Hermitian (Definition 2.6) and so the
exponential integrator, etL, has several favourable properties such as
uniform boundedness independent of timestep, unlike the propaga-
tor of the explicit Euler method. In the case of oscillatory problems,
this exponential also contains all of the information about the lin-
ear oscillations, unlike the propagator of the implicit Euler method
(Hochbruck and Ostermann, 2010).

We shall consider initial value problems of the following
form in this work:

∂u(x, t)
∂t

= Lu(x, t) +N (u, t),

u(x, 0) = u0,
(2.1)
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where L is a linear operator with purely imaginary eigenvalues of
large modulus and N is a nonlinear operator which is not neces-
sarily of quadratic type. Note that we have modified our notation
somewhat to reflect this broader set of governing equations. As we
proceed further into this thesis, we will place some further restric-
tions on this equation so as to restrict ourselves to the equations of
fluid mechanics, but in the interest of providing a general overview
of exponential integration methods we will prefer this more gen-
eral form for the time being. We shall assume that the nonlinear
operator is non-stiff in that it may be reliably approximated by an
appropriate explicit method. The stiffness in this problem then
arises from the linear operator.

We shall define some numerical timestepping method by {S∆t}
for some timestep, ∆t, where the timestep is a suitably small por-
tion of time, t. We then state the following three definitions:

Definition 2.1 (Order of Accuracy). {S∆t} has order of accuracy p
if

‖u(t + ∆t)− S∆tu(t)‖ = O(∆tp+1) as ∆t→ 0, (2.2)

for any t ∈ [0, T], with u(t) sufficiently smooth. The method is
consistent for p > 0. N

According to Batkai et al. (2009), consistency roughly means that
the approximating difference equations converge in the same sense
to the original abstract initial value problem.

Definition 2.2 (Convergence). {Sk} is convergent if:

lim
∆t→0

‖Sn
∆tu(0)− u(n∆t)‖ = 0, (2.3)

for any t ∈ [0, T]. Here Sn
∆tu(0) denotes the numerical solution at

t = n∆t with initial condition u(0). N

Definition 2.3 (Stability). {S∆t} is stable if there exists some C > 0
such that:

‖Sn
∆tu(0)‖ ≤ C, (2.4)

∀ n and ∆t such that 0 ≤ n∆t ≤ T. Here, the norm is taken over the
solution after n timesteps. N

2.1 Formulation of the Exponential Integrator

Recall that in the abstract equation (2.1), the stiffness was
due to the linear term, L. In practice, this means that a very fine
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timestep will have to be applied to the linear operator in order to
achieve stability in the case of an explicit method or accuracy in the
case of an implicit method. However, the non-linear term, N , does
not impose the same restriction. We shall further assume that the
nonlinear term is significantly more expensive to compute than the
linear one as is the case for pseudospectral methods. In the interest
of computational expense, we aim to limit the number of expensive
computations required via an increase in the step size.

The first step towards exponential integration methods as we
will use them comes from the fact that an analytical solution exists
to the linear form of equation (2.1), where the nonlinear term has
been neglected, i.e.:

u(t) = e−tLu0. (2.5)

The aim of exponential integrator methods is then to solve the
linear term exactly and to employ some numerical method for the
nonlinear term. This permits larger timesteps to be taken for a
given level of accuracy, as the analytical solution for the linear term
is trivially stable and convergent, and the nonlinear term is not
the source of stiffness. An exponential integrator has the following
properties (Berland, 2005):

1. If L = 0 the scheme reduces to a standard general linear method,
which we shall term the underlying scheme.

2. If N (u, t) = 0 ∀ u and t, the scheme reduces to the exact solution
of the linear equation.

Consider the full equation (2.1), from which the exponential
integrator form of the solution is derived. We begin by multiplying
both sides by the integrating factor, e−tL, a process which is familiar
from the solution of ordinary differential equations (Stewart, 2007)

e−tL
(

∂u
∂t
−Lu

)
= e−tLN (u, t). (2.6)

Then, group the linear terms and combine them using the chain
rule, i.e.:

∂

∂t
(e−tLu) = e−tLN (u, t). (2.7)

We are now presented with the option of solving equation (2.7) as
it is currently formulated through some numerical method (termed
the Integrating Factor Method) or proceeding as below to obtain an
Exponential Time Differencing Method.

Integrating both sides from 0 to t yields:

u(x, t) = etLu0 + etL
∫ t

0
e−sLN (u, s)ds, (2.8)

which, as the integral is taken over the dummy variable in time s
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and not t, may be simplified to

u(x, t) = etLu0 +
∫ t

0
e(t−s)LN (u, s)ds, (2.9)

which may be recognisable as the variation of constants formula for
an ODE. The integration over a dummy variable and re-projection
with the full time arose in the derivation of the averaged equations
in Chapter 1. This is an important idea which will arise again in the
efficient numerical computation of the average in Chapter 4.

2.2 Solution Methods

We are then interested in some numerical scheme which ap-
proximates the integral and permits the solution to be timestepped
forwards. There exist a myriad of numerical schemes which are be-
yond the scope of this work. Exponential Rosenbrock methods are
among them, but the interested reader is referred to Pope (1963),
Tokman (2006), and Hochbruck and Ostermann (2006).

The simplest possible numerical method for (2.9) involves inter-
polating the nonlinearity at the value N (u0, t0) only, leading to the
so-called exponential Euler approximation

un+1 = e∆tLun + ∆tφ1(−∆tL)N (un, tn), (2.10)

where
φ1(z) =

ez − 1
z

. (2.11)

The integrating factor method is obtained by solving equation (2.7)
using some appropriate time-stepping scheme. For example, Cox
and Matthews (2002) give a second-order Adams-Bashforth scheme.
It is notable, however, that integrating factor methods have different
fixed points than the original ODE. They also tend to have large
error constants1 and so Exponential Time Differencing (ETD) methods 1 With respect to Definition 2.1, this means

that the error scales like:
‖u(t + ∆t) − S∆tu(t)‖ ≤ C∆tp+1,

where C is a large constant. The perfor-
mance is good asymptotically, but not for
finite timesteps.

are generally preferred.

2.2.1 Exponential Time Differencing Methods

Exponential Time Differencing methods arise from equa-
tion (2.9) where the linear term is computed exactly and the inte-
gral is approximated in some fashion, with different ETD methods
being distinguished by the method used to approximate this inte-
gral. The simplest approximation is that N (u, t) is constant on the
interval [tn, tn+1], which leads to the ETD1 scheme

un+1 = e∆tLun + (e∆tL − I)L−1N (un, tn). (2.12)
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where I is the identity. Similar ETD methods using higher or-
der polynomials may also be derived. For a truncation error of
O(∆ts+1) it is necessary to use a polynomial of degree s − 1. The
general form of such a scheme (Cox and Matthews, 2002) is

un+1 = e∆tLun + ∆t
s−1

∑
m=0

m

∑
k=0

(−1)kgm

(
m
k

)
N (un−k, tn−k), (2.13)

where

gm = (−1)m
∫ 1

0
ek(1−λ)L

(−λ

m

)
dλ (2.14)

where the binomial coefficient is defined in the usual way and
λ = τ/∆t for 0 < τ < ∆t. In practice, gm may be computed in a
reasonable fashion through the use of an appropriate generating
function. It should be noted here that the ETD methods discussed
above are of multistep type, which require s previous evaluations of
the nonlinear term. This is a problem particularly in initialising the
computation, as only the initial condition is available.

For this reason, as well as larger stability regions and smaller
error constants, Runge-Kutta (RK) methods are often applied. The
construction of an RK scheme of arbitrary order is straightforward,
and may be found in Cox and Matthews (2002) or Iserles (2008),
for example. In particular, the 4-th order ETDRK4 scheme has been
applied to the Kuramoto-Sivashinsky equation in the context of
sequential data assimilation by Jardak et al. (2010) and to the ro-
tating shallow water equations in the context of parallel-in-time
integration by Haut and Wingate (2014).

It should also be noted that several modified ETDRK schemes
have been proposed, for example in Krogstad (2005), and Kassam
and Trefethen (2005). A detailed analysis of convergence and sta-
bility of ETD schemes is provided by Hochbruck and Ostermann
(2010).

2.3 Strang Splitting

We have also employed splitting methods within the con-
text of the exponential integrator. A particularly readable and far-
reaching review of splitting methods is given by McLachlan and
Quispel (2002). They give the following three steps for a splitting
method for some vector field, X:

1. Choose a set of vector fields, Xi such that X = ∑ Xi;

2. Integrate each Xi;

3. Combine these solutions to yield an integrator for X,



20 components of nonlinear oscillation and optimal averaging for stiff pdes

with the caveat that each sub-field, Xi, should be in some sense
simpler than X. In this way, they can be thought of as a class of
divide and conquer algorithms.

The right-hand side of equation (2.1) is written as the sum of
two terms. Splitting proceeds by assuming that each of these is
individually integrable, i.e.

∂u
∂t

= Lu, (2.15)

and
∂u
∂t

= N (u, t). (2.16)

At any point in phase space, we may break up the vector field
(which is tangent to the solution vector) into the two components
above. We first step along one, then the other curve.

The simplest possible splitting method involves taking the full
timestep along one, and then the full timestep along the second
curve, i.e. we first solve equation (2.15) subject to the initial condi-
tion u(0) = un over a time ∆t to find u∗ = u1(x, ∆t), i.e. the solution
of the differential equation on the first vector field. Next, we solve
equation (2.16) subject to the initial condition u(0) = u∗ for a time
∆t. This yields our solution based on a first-order splitting.

un u∗n+1/2

un+1/2

u∗n+1/2

un+1/2 un+1

tn

tn+1/2

tn+1

L

N

L

Figure 2.1: Strang Splitting Schematic

Splitting allows us to take advantage of the fact that we have an
analytical solution for one of our terms in equation (2.1) via the
matrix exponential as long as this term is considered separately.
A simple but powerful improvement on the first-order splitting
method discussed above is available, called Strang splitting (Strang,
1968). Strang splitting is a second-order method, and relies on the
use of half-timesteps. The Strang splitting algorithm is to solve a
half-step of the linear term, followed by a full-step of the nonlinear
term, and then another half-step of the linear term. That is, if we
denote the solution operator to the nonlinear term over a time
interval ∆t as SN (∆t), we write the three-step Strang splitting as
(Chertock and Kurganov, 2009)

u(x, t + ∆t) = e∆tL/2SN (∆t)e∆tL/2u(x, t), (2.17)

where we solve the nonlinear term in practice by midpoint quadra-
ture. This is shown in Figure 2.1 and described in detail in Algo-
rithm 2.1.

Algorithm 2.1: Strang Splitting Algorithm
v← e(∆t/2)Lu0 . Half-step with exponential operator
v← S∆t

N (v) . Nonlinear step by midpoint quadrature

v← S∆t
N
(

u0 +
∆t
2 v
)

u1 ← e(∆t/2)Lv . Final half-step with exponential operator
return u1
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2.4 Matrix Exponential Formulation

The methods discussed above are numerically straightforward
if L is a scalar. In that case, etL would be the scalar exponential.
However, we are concerned here with the more general case which
arises for partial differential equations with vector unknowns, as is
the case for the Rotating Shallow Water Equations as well as other
equations of fluid mechanics and mathematical physics (e.g. the
Navier-Stokes equations, the Boussinesq equations, etc.) In this case
we must compute the matrix exponential.

We introduce the matrix exponential by analogy with the scalar
exponential. While the scalar exponential takes the Maclaurin series
expansion

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . , (2.18)

the matrix exponential may be expanded in series as a matrix ana-
logue of the scalar case:

ex = I + x +
x2

2!
+

x3

3!
+ . . . (2.19)

There exist many different ways to compute the matrix exponential,
whether analytically or through numerical approximation. Moler
and van Loan (2003) give a review of 19 of these methods and note
some of the particular computational difficulties. We shall consider
in this work a linear operator whose representation in Fourier space
is endowed with certain properties which enable us to compute its
matrix exponential analytically.

The method outlined in this section only holds under the re-
strictions placed on the computational domain in Chapter 1, i.e.
constant mean water depth and a spatially-periodic domain. These
restrictions have been made so as to bring the current work in line
with existing results in the literature in which the matrix exponen-
tial is used (cf. Embid and Majda (1996), Majda (2002), and Haut
and Wingate (2014)). A more generally-applicable method of com-
puting etL for similar, i.e. oscillatory-stiff, problems is presented by
Haut et al. (2015) and Schreiber et al. (2017).

2.5 Some Operator Preliminaries

As we are interested in both solving our systems via a Fourier
spectral method and describing these solutions in Fourier space,
we will work extensively with complex vectors and operators. It is
useful then to first define our inner product on a complex vector
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space. Note that for complex numbers with zero imaginary part,
this reduces to the familiar inner product on a real vector space.

Definition 2.4 (Complex Inner Product). The inner product on a
complex vector space is defined

〈u, v〉 = uivi. (2.20)

where the over-bar denotes the complex conjugate and Einstein’s
summation convention is applied. This product is bilinear and
antilinear in the second slot. It has the following properties:

〈u + w, v〉 = 〈u, v〉+ 〈w, v〉 (2.21a)

〈u, v + w〉 = 〈u, v〉+ 〈u, w〉 (2.21b)

〈αu, v〉 = α〈u, v〉 (2.21c)

〈u, αv〉 = α〈u, v〉 (2.21d)

〈u, v〉 = 〈v, u〉 (2.21e)

〈u, u〉 ≥ 0; with equality iff u = 0. (2.21f)

N

We have already restricted our linear operator, L, to having a full
set of purely imaginary eigenvalues, which implies that it is skew-
Hermitian. In this section we shall give some useful results for the
computation of the matrix exponential with this type of operator,
following largely from Horn and Johnson (1986). Firstly, we give
the formal definition of this class of operators.

Definition 2.5 (Linear Operator). Let V be a finite-dimensional
Hilbert space over C with an inner product denoted 〈·, ·〉. A linear
operator T ∈ L(V) is uniquely determined by the values of

〈Tv, w〉 ∀v, w ∈ V. (2.22)

N

We also require that our linear operator (and by extension the
complex-valued matrix which represents it in the Fourier domain)
is Skew-Hermitian.

Definition 2.6 (Skew-Hermitian). Given T ∈ L(V), the skew-adjoint
of T is the operator T∗ such that:

〈Tv, w〉 = −〈v, T∗w〉 ∀v, w ∈ V. (2.23)

T is called a skew-adjoint operator if T = −T∗. N

One system of recurring interest throughout this work is the one-
dimensional Rotating Shallow Water Equations (1D RSWE). The
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matrix representation of the linear operator associated with the 1D
RSWE is, in Fourier space:

L =




0 −1 F−1/2ik
1 0 0

F−1/2ik 0 0


 . (2.24)

Taking the adjoint to denote complex conjugation, we find that L
is indeed a skew-Hermitian operator, as M(L) = −M(L)∗, where
M(L) denotes the matrix representation of the linear operator:




0 −1 F−1/2ik
1 0 0

F−1/2ik 0 0


 = −




0 1 −F−1/2ik
−1 0 0

−F−1/2ik 0 0


 .

(2.25)
All skew-Hermitian operators are also normal operators:

Definition 2.7 (Normal Operators). We call T ∈ L(V) a normal
operator iff it commutes with its adjoint, i.e.:

TT∗ = T∗T. (2.26)

This implies that T is normal iff:

‖Tv‖ = ‖T∗v‖ ∀v ∈ V. (2.27)

N

In order to construct the matrix exponential, we require a set of
orthogonal eigenvectors. The spectral decomposition theorem ensures
that the eigenvalues of our linear operator, i.e. the eigenbasis of the
problem, are orthogonal.

Theorem 2.1 (Spectral Theorem). Let V be a finite-dimensional Hilbert
space over C and T ∈ L(V). T is normal if and only if there exists an
orthonormal basis for V consisting of eigenvectors of T.

�

Proof.
=⇒ Let T be a normal matrix. For any operator T on a complex

Hilbert space V of dimension n, there exists an orthonormal basis
e = [e1, e2, . . . , en]T for which the matrix representation of T, M(T),
is upper-triangular

M(T) =




a11 · · · a1n
...

. . .
...

0 · · · ann


 . (2.28)



24 components of nonlinear oscillation and optimal averaging for stiff pdes

We may then say that M(T) = aij with aij = 0 for i > j. This means

that Te1 = a11e1 and T∗e1 =
n
∑

k=1
a1kek. By the Pythagorean Theorem

and Definition 2.7

|a11|2 = ‖a11e1‖2 = ‖Te1‖2 = ‖T∗e1‖2 =

∥∥∥∥∥
n

∑
k=1

a1kek

∥∥∥∥∥

2

=
n

∑
k=1
|a1k|2.

(2.29)
Thus, |a12| = · · · = |a1n| = 0. This argument can be repeated
to eliminate all non-diagonal entries in M(T). Thus, T is diagonal
with respect to the basis e and so e1 . . . en are eigenvectors of T.

⇐= If there exists some orthonormal basis of V consisting of
eigenvectors of T, then M(T) with respect to this basis must be
diagonal. Also, M(T∗) = M(T)∗ must be diagonal with respect
to this basis as well. Any two diagonal matrices commute, so it
follows that

M(TT∗) = M(T)M(T∗) = M(T∗)M(T) = M(T∗T). (2.30)

Theorem 2.1 means that a matrix containing the eigenvectors
of L as columns will be a unitary matrix by Theorem 2.2 below.
Unitary matrices have useful properties with respect to their inverse
which will simplify the implementation of the matrix exponential.

Definition 2.8 (Unitary Matrix). A unitary matrix is a complex
square matrix whose conjugate transpose is also its inverse, i.e.

U∗U = UU∗ = I. (2.31)

N

Theorem 2.2 (Orthogonality of Columns). The columns of a unitary
matrix are mutually orthogonal.

�

Proof. We may write the requirement of Definition 2.8 in index
notation

ukiukj = δij, (2.32)

where δij is the Kronecker delta. Thus, the complex inner product
of a column with itself must equal one, and with any other col-
umn must equal zero. By the properties of the inner product, the
columns must be orthogonal.
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The linear operator associated with the 1D RSWE then yields
purely imaginary eigenvalues and an orthogonal basis of eigen-
vectors which may be written as a unitary matrix. This is sufficient
to compute the matrix exponential in a computationally efficient
fashion.

2.5.1 Construction of the Matrix Exponential

We consider some matrix A ∈ Rn×n. If A has a complete set of
linearly independent eigenvectors such that

Avk = λvk for k = 1, . . . , n, (2.33)

then there exists a matrix T, such that the columns of T are the
eigenvectors of A. Then

AT = [Av1, Av2, . . . , Avn] = [λ1v1, λ2v2, . . . , λnvn] = TΛ. (2.34)

We may then simplify this to the form

ATT−1 = TΛT−1, (2.35)

=⇒ A = TΛT−1. (2.36)

Consider now the case of the exponential, keeping in mind that
A may be taken to be an operator and thus the exponential may as
well.

eA =
∞

∑
k=0

1
k!

Ak =
∞

∑
k=0

1
k!

(
TΛT−1

)k
. (2.37)

As TT−1 is the identity, this generalises for any arbitrary number of
multiplications to yield:

eA = T

(
∞

∑
k=0

1
k!

Λk

)
T−1, (2.38)

where Λ is a diagonal matrix of eigenvalues and so the term in
brackets, recognisable as the Maclaurin series, reduces to yield:

eA = T




eλ1 0 · · · 0
0 eλ2 · · · 0
...

...
. . .

...
0 0 · · · eλn




T−1. (2.39)

The matrix of eigenvectors, T, may be precomputed, either nu-
merically or analytically (q.v. Section 2.5.2). Because of its unitary
property (Definition 2.8), there is no requirement to numerically
invert and store this matrix: it is sufficient only to know T, as its
inverse is readily available as its conjugate transpose.
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2.5.2 Eigenbasis of the RSWE

Now consider the linear problem alone, i.e. neglecting the
nonlinear term

∂u
∂t

+ Lu = 0. (2.40)

Assume that u is spatially-periodic and consider its Fourier repre-
sentation

u(x, t) = ∑
k∈C

ûk(t)ei(k·x−ωt). (2.41)

Substituting equation (2.41) into (2.40) gives


−iωv̂1

−iωv̂2

−iωĥ


+




0 −1 F−1/2ik
1 0 0

F−1/2ik 0 0







v̂1

v̂2

ĥ


 = 0, (2.42)

which gives the eigenvalue problem



−iω −1 F−1/2ik
1 −iω 0

F−1/2ik 0 −iω


 = 0. (2.43)

Solving this problem yields:

ω = 0, ω2 = F−1k2 + 1. (2.44)

In a physical context, these eigenvalues are the dispersion relation
and represent one slow mode and two branches of dispersive waves
moving in opposite directions. For convenience, we introduce the
index α, such that:

ωα
k = α

√
1 + F−1k2, (2.45)

where α = −1, 0, 1. We then find the eigenfunctions corresponding
to each of these eigenvalues for |k| 6= 0 to be

r−1
k =




iω
k

−iF1/2

k
1


 ĥ; r0

k =




0
F−1/2ik

1


 ĥ; r1

k =




−iω
k

−iF1/2

k
1


 ĥ.

(2.46)

2.5.3 Orthonormalisation

These eigenfunctions are orthonormal to one another by
the spectral decomposition theorem (Theorem 2.1). While the eigen-
functions are guaranteed to be orthogonal, they are not guaranteed
to be orthonormal, i.e. they may have lengths which are not equal
to one. The procedure for orthonormalisation is to divide each vec-
tor by its own length, where we define the norm of a vector in the
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usual way using the inner product

rα
k, normed =

rα
k
‖rα

k‖
=

rα
k√

rα
k · rα

k

. (2.47)

We then compute and report the norms of the various eigenvectors
here. The orthonormalised eigenfunctions are

r−1
k =




iω
k
√

2+2F/k2

−iF1/2

k
√

2+2F/k2
1√

2+2F/k2


 ĥ; r0

k =




0
ik

Fω
1
ω


 ĥ; r1

k =




−iω
k
√

2+2F/k2

−iF1/2

k
√

2+2F/k2

1


 ĥ.

(2.48)
For the special case when |k| = 0, the orthonormalised eigenfunc-
tions are

r−1
k =




−i√
2

1√
2

0


 ĥ; r0

k =




0
0
1


 ĥ; r1

k =




i√
2

1√
2

0


 ĥ. (2.49)

2.6 Symmetrisation of the Full RSWE

The 1D RSWE are a simplification of the more general Rotat-
ing Shallow Water Equations. Practical considerations require that
this system be solvable in its dimensional form as well. The issue
arises immediately that the linear operator for this system is not
skew-Hermitian, and so does not permit work with the framework
described above. This is may be remedied easily upon rescaling.
Recall the dimensional RSWE (equations (1.6) and (1.7)) given in
Chapter 1:

Du
Dt

+ f× u = −g∇η, (2.50)

∂h
∂t

+∇ · (uh) = 0, (2.51)

where the unknown vector, u = [u, v, h]T ; and where u(x, t) and
v(x, t) are the velocities in the x- and y-directions respectively and
h(x, t) is the perturbation height of the fluid. In a similar fashion
to their nondimensionalisation, we begin by rewriting the above
equations, written in terms of a total water depth, h, in terms of
a perturbation about some mean water depth, denoted η and H0

respectively, such that
h = H0 + η. (2.52)

Upon substitution of equation (2.52) into equations (1.6) and (1.7),
the following equations are obtained, keeping in mind that H0 is a
constant,

Du
Dt

+ f× u + g∇η = 0, (2.53)
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∂η

∂t
+ H0∇ · η +∇ · (uη) = 0. (2.54)

In order to achieve a skew-Hermitian operator, we rewrite the equa-
tions in terms of the geopotential height, φ, defined as:

φ ≡ gη, (2.55)

which, along with multiplying the mass equation by g everywhere,
yields

Du
Dt

+ f× u +∇φ = 0, (2.56)

and
∂φ

∂t
+ Φ0∇ · φ +∇ · (uφ) = 0, (2.57)

where Φ0 = gH0. Multiplying equation (2.57) by a factor of Φ−1/2
0

gives
1√
Φ0

∂φ

∂t
+
√

Φ0∇ · φ +
1√
Φ0
∇ · (uφ) = 0. (2.58)

Finally, we rewrite both equations in terms of a modified vector of
unknowns involving a scaling on the geopotential height

[
u, v, φ′

]T
=

[
u, v,

1√
Φ0

φ

]T
, (2.59)

which yields
Du
Dt

+ f× u +
√

Φ0∇φ′ = 0, (2.60)

∂φ′

∂t
+
√

Φ0∇ · φ′ +∇ · (uφ′) = 0. (2.61)

In these modified variables, the linear and nonlinear operators take
the following form

Lu =




0 − f0
√

Φ0∂x

f0 0
√

Φ0∂y√
Φ0∂x

√
Φ0∂y 0


 ·




u
v
φ′


 , (2.62)

N (u, u) =

[
u · ∇u
∇ · (φ′u)

]
. (2.63)

Subject to this linear rescaling and when working in Fourier space,
the linear operator is skew-Hermitian and so the theory described
in Section 2.4 is directly applicable.

2.7 Numerical Results

In order to quantify the error of two of the main methods
we have discussed here, the ETDRK4 and Strang Splitting methods,
we have performed some numerical studies. We compare these to a
common non-exponential method, the 3rd-order Adams-Bashforth
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(AB3) method. For all three integrators, we have used a Fourier
spectral method with 642 grid points and 2/3 dealiasing, and are
solving the 2-D non-dimensional RSWE with an initial Gaussian
height field and a doubly-periodic spatial domain (cf. appendix A).
As no analytical solution is available, we compare the solution to a
numerical one found by a 4th-order Runge Kutta method with 2562

grid points and a timestep of 10−6.
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Figure 2.2: Exponential Integrator Conver-
gence Studies, ε = 1. The error relative to
a reference solution is shown as a function
of timestep. Note the improved accuracy
of the two exponential integrator methods
compared to the explicit 3rd-order Adams-
Bashforth method, as well as stability for
larger timesteps.

Figure 2.2 shows the ‘non-stiff’ case, where ε = 1.0. We see here
that the exponential methods do not suffer from the same timestep
limits as the AB3 method does, and were able to stably integrate
with timesteps of up to 0.1. This is because the oscillations, which
are primarily contained in the linear operator, are handled ana-
lytically through the matrix exponential. The AB3 method, on the
other hand, was timestep-limited by the CFL limit (Trefethen, 1996)
arising from the need to properly resolve all oscillations present
in the solution. For larger timesteps than the largest shown in Fig-
ure 2.2 the AB3 method was numerically unstable.

The ETDRK4 method converged to single precision more quickly
than the other two, achieving this degree of accuracy with a timestep
of up to slightly less than 0.01. However, it does so at noticeably
higher computational cost than the Strang splitting method.

In the more classically oscillatory-stiff case where ε = 0.01,
shown in Figure 2.3, we see that the timestep limit imposed by
the CFL condition on the AB3 method is even smaller than in the
ε = 1.0 case, as would be expected, with the maximum timestep
being roughly an order of magnitude smaller. The exponential in-
tegrators both continued to permit a timestep up to the order of
∆t = 0.1. In this case, convergence was not achieved as quickly for
the ETDRK4 method, which performed similarly to the Strang split-
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ting integrator. This is explained by the fact that, while the linear
term is resolved exactly by the matrix exponential, the nonlinear
term is not and so is subject to numerical error. The quality of the
solution depends on the interaction of the oscillations through the
nonlinearity, as we shall see in more detail in chapters 3 and 4.
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Figure 2.3: Exponential Integrator Conver-
gence Studies, ε = 0.01. The accuracy
compared to a reference solution is shown
as a function of the timestep. Note both
the improved accuracy of the exponential
integrator methods and the fact that stable
computations were possible for timesteps
approximately three orders of magnitude
longer.

In this stiff case, it is fair to say that while ETDRK4 slightly out-
performs Strang splitting for intermediate timesteps, both methods
are similarly matched. This is due to the fact that at this degree
of scale separation, the majority of the timestepping error arises
from the fast waves, which are being similarly treated analytically
through the exponential integrator in both cases.

Because of the implementational simplicity of the Strang splitting
and the single nonlinear function call involved, we shall use expo-
nential integrator-based Strang splitting for the remainder of this
work. In particular, as we move on to performing numerical wave
averages (q.v. Chapter 4) the simplicity of the method will prove
useful both from the perspective of implementation and numerical
performance. In the interest of making fair comparisons between
both averaged and non-averaged computations, we will restrict
ourselves to using the same numerical method in both cases.

This chapter has provided an introduction to both to the idea of
using exponential integrators for numerical computation and the
practical matter of constructing them for our RSWE system and
pseudospectral method. In the next chapter, we will consider ma-
trix exponentials in the analytical sense as they provide an elegant
way of dealing with the particularities of solutions to the RSWE. We
shall return to using matrix exponentials in the context of exponen-
tial integrators for computational purposes thereafter.
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Key Points

• Exponential integrator methods aim to mitigate stiffness by
analytically computing the linear term.

• When the linear operator of the system of differential equations
is skew-Hermitian, we may efficiently compute the matrix expo-
nential in its eigenvector basis.





3 Wave Averaging and Triad Resonances

First Witch: Thrice the brinded cat hath mew’d.
Second Witch: Thrice and once the hedgepig whined.
Third Witch: Harpier cries ’Tis time, ’tis time.

William Shakespeare, Macbeth, Act IV, Scene I.

It is no accident that we have been so explicit in earlier chapters
in stating the quadratic nature of the nonlinear term in our general
system under study. The study of this quadratic nonlinearity is
fundamental to fluid mechanics and understanding of turbulence.
As a direct result of this quadratic nonlinearity the transfer of en-
ergy between scales involves a set of three spatial modes called a
triad (Kraichnan, 1958; Newell, 1969; Kramer et al., 2002; Kadri and
Akylas, 2016).

Definition 3.1 (Triad Interaction). A triad interaction or triad is a set
of three wavevectors, (k, k1, k2) such that:

k = k1 + k2. (3.1)

N

The concept of triadic interactions was first introduced by
Kraichnan (1958), who showed that triadic interactions are con-
servative. Breakthroughs in the study of triadic interactions came
as a result of high-performance computing in the early 1990s when
Domaradzki and Rogallo (1990) analysed triads in direct numerical
simulations of turbulent flow, finding that triads involving modes
with very different wave numbers, so-called nonlocal triads, may
exist and have very large amplitudes, although energy transfer is
dominated by more local triads.

Another important result was due to Waleffe (1992), who nu-
merically identified which triads contributed to forward and which
to inverse energy transfers. This work was extended by Biferale
et al. (2013), who used the same helical decomposition as Waleffe
(1992) to build a ‘decimated’ version of the Navier-Stokes equa-
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tions, where different classes of triadic interaction (q.v. Section 3.3)
could be switched on and off. Decimation models of this type have
been employed for rotating stratified turbulence by, e.g. Remmel
et al. (2014) and Hernandez-Duenas et al. (2014).

We shall use the term triadic to refer to any interactions which
satisfy the condition of equation (3.1). In dispersive flows, there is
a second condition which may be considered in addition to that of
triadicity, which is the resonance of the interaction. We then define a
directly-resonant triad.1 1 Some authors refer to this simply as a

resonant triad, but the distinction between
direct- and near-resonance is important to
this work.

Definition 3.2 (Direct Resonance). A directly resonant triad, often
referred to as a direct resonance, is a triad (Definition 3.1) such that:

ω(k) = ω(k1) + ω(k2), (3.2)

where ω(k) is the dispersion relation evaluated at wavevector k.
N

We will show in Section 3.2 that direct resonant interactions arise
quite naturally and come to dominate the flow in the averaged
equations in the asymptotic limit which were derived in Section 1.4.
As noted by Clark di Leoni and Mininni (2016), “if a flow is domi-
nated by rapidly varying waves, non-resonant interactions should,
in principle, die out in front of resonant ones, thus leaving the bulk
of the nonlinear energy transfer to the resonant triads”. In fact, in
the asymptotic limit of quasi-geostrophy, only the direct resonances
remain to first order (Embid and Majda, 1996; Babin et al., 2000).

The restriction to direct resonant triads in the asymptotic limit
leads to a decoupling between the slow manifold and the fast
waves. This is sometimes thought of as the slow dynamics evolving
independently of the fast, while the fast are ‘swept’ by the slow.
Ward and Dewar (2010) use the term ‘scattering’ for this phe-
nomenon, which is evocative of the way in which the fast inertia-
gravity waves ‘bounce off of’ the slow PV waves. The concept of
direct resonance has enjoyed widespread recognition in the geo-
physical community and has been applied in many geophysical
wave models, e.g. Phillips (1968), Lelong and Riley (1991), and Em-
bid and Majda (1998). The concept of direct resonance has also been
applied in the context of weak turbulence by, e.g. Nazarenko (2011)
and Newell and Rumpf (2011).

While much has been made of direct resonances, it has been
known since as early as 1969 that near-resonant interactions play a
role as well over particular timescales and for finite degrees of scale
separation. Newell (1969) extended the direct resonance condition
of Definition 3.2, and defined near-resonant interactions as those
triads for which the sum of dispersion relations does not equal
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zero, but rather some small finite value. That is to say,

ω(k)−ω(k1)−ω(k2) = O(ε). (3.3)

According to Newell (1969), in an asymptotic sense, these inter-
actions are relevant on a timescale of O(1/ε). Similar findings
were made by Chen et al. (2005), who concluded that for the rotat-
ing Navier-Stokes equations, direct resonant triads become more
dominant as rotation is increased (which corresponds to the case
as ε → 0 for our problem). A particularly illustrative study was
performed by Smith and Lee (2005), who numerically simulated
decimated systems like those of Waleffe (1992), finding that for
intermediate Rossby numbers consideration of purely direct reso-
nances was insufficient to reproduce the characteristics of the flow,
while the consideration of near-resonances up to O(ε) provided
much better agreement with the full flow.

Analysis of a numerical data set by Alexakis (2015) showed that
the quasi-two dimensional components of the rotating Navier-
Stokes equations can only be modelled correctly if both direct- and
near-resonances are considered. Work by Gallet (2015) suggested
limitations of considering solely direct resonances even in the limit
as ε→ 0 in the context of energy transfer.

In order to better understand near resonance and its relation-
ship to wave averaging, it is instructive to begin with the somewhat
stricter case of direct resonance. We will see how the quadratic
nonlinearity gives rise to triad interactions, and how the averaging
procedure (in the limit as ε → 0) leads to only direct resonances.
We will go on to show, numerically in Section 3.5 and later rigor-
ously in Chapter 4, that near-resonant interactions are crucial to
the evolution of the solution to differential equations of the type
introduced in Chapter 1.

3.1 Projecting to Different Bases

The basis induced by the eigenvectors of the linear operator
provides a more natural basis in which to discuss the effects of
the wave averaging. We then need to take some time to discuss
projections between different bases. Consider some quantity which
may be represented in two orthonormal bases, which we shall call
φ(x) and ψ(x). Then we may represent the solution as either

u(x) = ∑
k

ûφ
k φk(x), (3.4)

or in the second basis as

u(x) = ∑
k

ûψ
k ψk(x). (3.5)
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If we know the coefficients for the first equation but not the second,
we may solve for them as follows

∑
k

ûφ
k φk(x) = ∑

k
ûψ

k ψk(x). (3.6)

We then multiply by the new basis and integrate over the domain:

∑
k

ûφ
k

∫
φk(x)ψm(x)dx = ∑

k
ûψ

k

∫
ψk(x)ψm(x)dx. (3.7)

As we are here concerned only with orthogonal bases, the integrals
are non-zero if and only if m = k, which yields:

∑
k

ûφ
k

∫
φk(x)ψm(x)dx = ûψ

m. (3.8)

We may then rewrite the above in terms of the standard inner prod-
uct and over all wavenumbers:

u(x) = ∑
m

∑
k

ûφ
k 〈φk(x), ψm(x)〉ψm(x). (3.9)

3.2 Resonance in Time

We proceed by writing the unknowns of our system in an
eigenvalue basis. As our linear operator is skew-Hermitian, the
basis vectors in this basis are orthogonal. Without loss of generality,
we will consider a vector wavenumber, k, which may be a 1-vector
in the case of the 1D RSWE. In the interest of generality, we use the
two-dimensional form of the RSWE, as the one-dimensional form
follows directly from that. In the interest of notational simplicity,2 2 ‘Simplicity’ being here a very relative term.

we will use the nondimensional form of the RSWE, noting that the
results of this section hold in the dimensional case as well. Recall
from Chapter 2 that the linear operator has three eigenvalues

iωα
k = iα

√
1 + F−1k2, α = −1, 0,+1. (3.10)

These eigenvalues, familiar to geophysicists as the dispersion re-
lation, are written in terms of α for convenience. Here, α = 0 cor-
responds to the ‘slow’ or ‘potential vorticity’ (PV) mode of the
system, while α = ±1 corresponds to fast, or ‘inertia-gravity’ waves
travelling in opposite directions. The solution may be written in a
Fourier basis as

u(x, t) = ∑
k∈Z2

1

∑
α=−1

eik·xσα
k(t)r

α
k, (3.11)

where σα
k is the Fourier coefficient associated with wavenumber k

and mode α and rα
k is the right eigenvector of the linear operator.

We then expand the vector rα
k in the following form

u(x, t) = ∑
k

∑
α

eik·xσα
k(t)




ru
rv
rh




α

k

, (3.12)
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where rα
k = ([ru, rv, rh]αk)

T exposes the three components of the
right eigenvector. In this basis, applying the exponential integrator
may be performed directly

e−τLu = ∑
k

∑
α

ei(k·x−ωα
kτ)σα

k(t)r
α
k. (3.13)

Using this expression, we will compute the nonlinear term, N (e−τLu, e−τLu).
Beginning with the first component

N (e−τLu, e−τLu)1 = u
∂u
∂x

+ v
∂u
∂y

, (3.14)

N (e−τLu, e−τLu)1 =
[
∑
k1

∑
α1

σk1 ruα1
k1

ei(k1·x−ω
α1
k1

τ)

]
·
[
∑
k2

∑
α2

ik1
2σα2

k2
ruα2

k2
ei(k2·x−ω

α2
k2

τ)

]
+

[
∑
k1

∑
α1

σk1 rvα1
k1

ei(k1·x−ω
α1
k1

τ)

]
·
[
∑
k2

∑
α2

ik2
2σα2

k2
ruα2

k2
ei(k2·x−ω

α2
k2

τ)

]
, (3.15)

which we may tidy up to form

= ∑
k1,k2

∑
α1,α2

iσα1
k1

σα2
k2

ruα2
k2
(k1

2ruα1
k1

+ k2
2rvα1

k1
)ei(k1+k2)·x−i

(
ω

α1
k1
+ω

α2
k2

)
τ
.

(3.16)
The procedure for the second term is similar and is thus omitted
here, but the result is:

N (e−τLu, e−τLu)2 =

∑
k1,k2

∑
α1,α2

iσα1
k1

σα2
k2

rvα2
k2
(k1

2ruα1
k1

+ k2
2rvα1

k1
)ei(k1+k2)·x−i

(
ω

α1
k1
+ω

α2
k2

)
τ
. (3.17)

Finally, we consider the third nonlinear term, which takes the
form

N (u, u)3 = ∇ · (hv) = h
(

∂u
∂x

+
∂v
∂y

)
+ u

∂h
∂x

+ v
∂h
∂y

. (3.18)

In terms of the Fourier basis

N (e−τLu, e−τLu)3 =
(

∑
k1

∑
α1

rhα1
k1

ei(k1·x−ω
α1
k1

τ)

)
·

[(
∑
k2

∑
α2

σα2
k2

ik1
2ruα2

k2
ei(k2·x−ω

α2
k2

τ)

)
+

(
∑
k2

∑
α2

σα2
k2

ik2
2rvα2

k2
ei(k2·x−ω

α2
k2

τ)

)]

+

[
∑
k1

∑
α1

σα1
k1

ruα1
k1

ei(k1·x−ω
α1
k1

τ)

]
·
[
∑
k2

∑
α2

σα2
k2

ik1
2rhα2

k2
ei(k2·x−ω

α2
k2

τ)

]

+

[
∑
k1

∑
α1

σα1
k1

rvα1
k1

ei(k1·x−ω
α1
k1

τ)

]
·
[
∑
k2

∑
α2

σα2
k2

ik2
2rhα2

k2
ei(k2·x−ω

α2
k2

τ)

]
.

(3.19)
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This simplifies to

N (e−τLu, e−τLu)3 =

∑
k1,k2

∑
α1,α2

iσα1
k1

σα2
k2
[rhα1

k1
(k1

2ruα2
k2

+ k2
2rvα2

k2
)+

rhα2
k2
(k1

2ruα1
k1

+ k2
2rvα1

k1
)]ei[(k1+k2)·x−

(
ω

α1
k1
+ω

α2
k2

)
τ]

. (3.20)

Keeping in mind that the ru, rv, and rh terms denote vector
components, we write

N (e−τLu, e−τLu) =

∑
k1

∑
k2

∑
α1

∑
α2

iσα1
k1

σα2
k2

ei(k1+k2)·x−i
(

ω
α1
k1
+ω

α2
k2

)
τ
[
ruα2

k2
î(k2 · rvα1

k1
)+

rvα2
k2

ĵ(k2 · rvα1
k1
) + rhα1

k1
k̂(k2 · rvα2

k2
) + rhα2

k2
k̂(k1 · rvα1

k2
)
]

, (3.21)

where î, ĵ, and k̂ denote unit vectors such that

rα
k = ruα

k î + rvα
k ĵ + rhα

kk̂. (3.22)

rv denotes a 2-vector comprised of the ru and rv components, i.e.
rvα

k = ruα
k î + rvα

k ĵ. As the wavenumbers and branches of the dis-
persion relation appear as dummy variables in the summations,
we consider the nonlinear operator as N = 1/2 f (k1, α1; k2, α2) +

1/2 f (k2, α2; k1, α1), which gives

N (e−τLu, e−τLu) =

∑
k1

∑
k2

∑
α1

∑
α2

i
2

σα1
k1

σα2
k2

ei(k1+k2)·x−i
(

ω
α1
k1
+ω

α2
k2

)
τ
[
ruα2

k2
(k2 · rvα1

k1
) î+

rvα2
k2
(k2 · rvα1

k1
)ĵ + rhα1

k1
(k2 · rvα2

k2
)k̂ + rhα2

k2
(k1 · rvα1

k1
)k̂+

ruα1
k1
(k1 · rvα2

k2
)î + rvα1

k1
(k1 · rvα2

k2
)ĵ+

rhα2
k2
(k1 · rvα1

k1
)k̂ + rhα1

k1
(k2 · rvα2

k2
)k̂
]

. (3.23)

This expression simplifies quite neatly in terms of our basis
vector

N (e−τLu(x, t), e−τLu(x, t)) =

∑
k1

∑
k2

∑
α1

∑
α2

i
2

σα1
k1
(t)σα2

k2
(t)ei(k1+k2)·x−i

(
ω

α1
k1
+ω

α2
k2

)
τ
[
(k2 · rvα2

k2
)rα1

k1
+

(k2 · rvα1
k1
)rα2

k2
+ (k2 · rvα2

k2
)rhα1

k1
k̂ + (k1 · rvα1

k1
)rhα2

k2
k̂
]

. (3.24)

We are finally interested in projecting the solution onto the basis

∑
k

1
∑

α=−1
σα

k(t)e
ik·xrα

k. This is done in the same fashion as Section 3.1,

noting that the rh terms are purely real and so identical to their
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complex conjugates. Applying this projection yields equation (3.25)
below, where the exponentials are written independently of the
interaction coefficient (3.26) to obtain the three-wave interaction
condition in the form given by Majda (2002)

N (e−τLu(x, t), e−τLu(x, t)) =

∑
k∈Z2

1

∑
α=−1

[
∑

k=k1+k2

∑
α1,α2

σα1
k1
(t)σα2

k2
(t)Cα,α1α2

k,k1,k2
ei(k·x)−i

(
ω

α1
k1
+ω

α2
k2

)
τ

]
rα

k,

(3.25)

where the interaction coefficient is

Cα,α1,α2
k,k1,k2

=
i
2
[(k2 · rvα1

k1
)〈rα2

k2
, rα

k〉+ (k1 · rvα2
k2
)〈rα1

k1
, rα

k〉+

(k1 · rvα1
k1
)rhα2

k2
rhα

k + (k2 · rvα2
k2
)rhα1

k1
rhα

k]. (3.26)

The interaction coefficient governs the interaction between two
waves, denoted by subscripts 1 and 2, passing into the nonlinearity
and the outgoing wave, denoted without subscript. We are now
finally in a position to consider the full right-hand side term of
interest, by including the remaining matrix exponential from equa-
tion (1.36)

eτLN (e−τLu(x, t), e−τLu(x, t)) =

∑
k∈Z2

1

∑
α=−1

[
∑

k=k1+k2

∑
α1,α2

σα1
k1
(t)σα2

k2
(t)Cα,α1α2

k,k1,k2
ei(k·x)−i

(
ω

α1
k1
+ω

α2
k2
−ωα

k

)
τ

]
rα

k.

(3.27)

Considering the averaging integral and the limit gives

∂u
∂t

= − lim
τ→∞

1
τ

∫ τ

0
esLN (e−sLu(x, t), e−sLu(x, t))ds (3.28)

= − lim
τ→∞

1
τ

∫ τ

0
∑

k∈Z2

1

∑
α=−1

[
∑

k=k1+k2

∑
α1,α2

σα1
k1
(t)σα2

k2
(t)Cα,α1α2

k,k1,k2

ei(k·x)−i
(

ω
α1
k1
+ω

α2
k2
−ωα

k

)
s
]

rα
k ds, (3.29)

Equation (3.29) is conceptually equivalent to equation (1.36), but
is expressed in the eigenbasis of the linear operator and with the
nonlinearity made more explicit. While complicated, it makes clear
the nature of the nonlinear interactions in this equation. For our
purposes, the interaction coefficient is not the most important term,
but rather the presence of the sum of dispersion relations in the
exponent, which should look familiar from the definition of direct
resonances, Definition 3.2.
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3.3 Direct Resonances

The integral in equation (3.29) is over the variable s, which de-
notes the fast time in the problem. This variable appears only in the
exponential, i.e. σα1

k1
= σα1

k1
(t) and σα2

k2
= σα2

k2
(t). Consider then the

integral of the complex exponential

Iα,α1,α2
k,k1,k2

= lim
τ→∞

1
τ

∫ τ

0
ei(k·x)−i

(
ωα

k−ω
α1
k1
−ω

α2
k2

)
s

ds, (3.30)

where k = k1 + k2. When ωα
k 6= ωα1

k1
+ ωα2

k2
, the integral is over

an oscillatory quantity. As the length of the domain of integration3 3 The ‘length of the averaging window’ from
now on.tends to infinity, these oscillations integrate to zero by the Riemann-

Lebesgue lemma (Tolstov, 1962). The implication is that the only
interactions which do not integrate to zero, which is to say that they
pass through the averaging procedure, are the direct three-wave
resonances from Definition 3.2

k = k1 + k2, ωα
k = ωα1

k1
+ ωα2

k2
. (3.31)

When this directly resonant condition is satisfied the s-term in the
complex exponential is zero and no oscillations occur to be can-
celled out on this timescale.4 Subject to the simplification induced 4 This is closely related to the thinking

behind the method of stationary phase
(Temme, 2013).

by the infinite limit, we may then finally say that the infinitely-
wave-averaged solution (cf. equations (1.36) and (3.29)) follows

∂σα
k

∂t
+ ∑
Sk,α

σα1
k1

σα2
k2

Cα,α1α2
k,k1,k2

= 0, (3.32)

where the sum is taken over the resonant set, Sk,α, which is defined
as

Sk,α ≡ {(k1, k2, α1, α2) : k = k1 + k2, ωα
k = ωα1

k1
+ ωα2

k2
}. (3.33)

In the limit as ε → 0, we may consider the solution as being com-
prised solely of these interacting direct resonances. In the interest of
visualising this, Figure 3.1 shows the direct resonant trace for a given
wavevector, in this case k = (4, 8).

Recall the triad and resonance conditions given in equation (3.31).
For any three waves to form a triad, their vector sum must be zero.
Then in a two-dimensional wavenumber space, any closed triangle
created by three modes is a triad. As discussed earlier in this chap-
ter, triads may be, but are not necessarily, resonant, but due to the
quadratic nonlinearity the solution is comprised entirely of triads.5 5 Some authors, e.g. Hammack and Hen-

derson (1993), consider higher-order
interactions such as quartets. While there
are interesting asymptotic ramifications of
that, due to our interest in numerical mod-
elling we will consider these interactions to
be expressible as sums of triads.

Not all interaction types satisfy the resonance condition of equa-
tion (3.31), for all wavenumbers. Considering the case where k and
one of the other waves are an inertia-gravity mode and the third
mode is a PV mode (which we will show in the next section to be
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the only nontrivial direct resonance for the RSWE), we can visu-
alise the resonant set in terms of the locus of points along which the
resonant condition is satisfied. The curves shown in Figure 3.1 are
those along which

ω±1
k = ω±1

k1
+ ω0

k2
, (3.34)

and its complementary resonance in the other direction. A different
set of loci could be produced for any different fixed wavevector,
k. In the numerical case of restriction to integer wavenumbers,
only locations where the locus intersects the grid lead to a resonant
triad.
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Resonant traces for k = (4, 8)
Figure 3.1: The loci of the direct reso-
nances for a triad where k = (4, 8).
The grid corresponds to discrete, integer
wavenumbers. As we are considering vec-
tor sums, any closed triangle forms a triad.
Only those triads where all three vertices sit
on the resonant trace are directly resonant.
In this case, there is only one more direct
resonance, which trivially corresponds to
taking the sum in the other direction due to
symmetry in the system.

The traces which we have shown here are specifically for the
RSWE. If another dispersive system with quadratic nonlinearity
were to be studied, such as the Navier-Stokes or Boussinesq equa-
tions, the shape of these loci would change. Smith and Waleffe
(1999) give equivalent loci for the rotating Navier-Stokes equations,
for example. The theory which we discuss in the next chapter does
not rely on the specific shape of these loci, rather only on the exis-
tence of triadic interactions and the consideration of the RSWE is
for expository and numerical purposes.6 6 As an interesting aside, for directly

resonant interactions to occur for the
Korteweg-de Vries (KdV) equation would
require that k3 − k3

1 − k3
2 = 0, which

should be familiar to the reader as Fermat’s
Last Theorem. This equation was shown
by Wiles (1995) to admit no non-trivial
solutions and so the KdV equation admits
directly resonant interactions only for a
very restricted set of modes. However, it
is worth pointing out that arbitrarily close
‘near-miss’ solutions exist, such as that
found by Homer Simpson in Treehouse of
Horror VI (Singh, 1997).

3.3.1 Allowable Interactions for the RSWE

Embid and Majda (1996) and Majda (2002) give some restric-
tions on which types of waves may interact to create resonances.
There are only two interaction types which are allowable in the
small-ε limit. We will proceed by showing that all other interaction
types are not possible in lemmas 3.1 through 3.4. In terms of inter-
actions between three fast waves, we have the following lemma.
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Lemma 3.1 (Gravity Wave Interactions). No directly resonant interac-
tions occur solely among the fast modes in the averaged equations. �

Proof. Assume that the wavevector condition is satisfied for three
fast waves, i.e.

k1 + k2 = k. (3.35)

The resonance condition then requires that

ω(k1)±ω(k2) = ω(k), (3.36)

where we may reduce the plus-or-minus to addition by interchang-
ing k and k2 by the fact that ω(k) is a radial function. This equality
is never satisfied, as

ω(k1 + k2) < ω(k1) + ω(k2). (3.37)

Since ω(k) =
√

1 + F−1|k|2, this result follows directly from
√

1 + (x + y)2 <
√

1 + x2 +
√

1 + y2. (3.38)

Lemma 3.2. There are no interactions between two inertia-gravity modes
and a PV mode. �

Proof. Since the dispersion relation is a radial function for the
RSWE, the wavenumbers must have equivalent magnitudes, i.e.

√
1 + F−1|k1|2 −

√
1 + F−1|k2|2 = 0 (3.39)

=⇒ |k1| = |k2|. (3.40)

It may then be directly computed from equation (3.26) that

C0,+1,−1
k1+k2,k1,k2

= C0,−1,+1
k1+k2,k1,k2

= 0 for |k1| = |k2|. (3.41)

Lemma 3.3. Two incoming PV waves can not interact with an outgoing
inertia-gravity wave. �

Proof. Two slow modes resonating with a fast mode would require

ωα=±1
k = ω0

k1
+ ω0

k2
, (3.42)

= 0,

which is a contradiction for

ω±1
k = ±

√
1 + F−1|k| 6= 0. (3.43)
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Lemma 3.4. A fast and a slow mode may not resonate with an outgoing
slow mode. �

The proof of this follows the same logic as that of Lemma 3.3
and is omitted. Combining these lemmas allows us to describe
exactly which resonances exist in the limit as ε→ 0.

Theorem 3.1 (Allowable Interactions). Consider the averaged rapidly-
rotating shallow water equations (3.29). In the limit as ε → 0, only two
direct resonant interactions are possible:

1. Interaction between three slow (PV) waves.

2. Interaction between an incoming gravity and an incoming PV mode
with an outgoing gravity mode.

�

Proof. 1. All triadic interactions between three PV modes are triv-
ially directly resonant, as

ω0
k + ω0

k1
+ ω0

k2
= 0 + 0 + 0 = 0, ∀ k, k1, k2. (3.44)

2. With reference to Figure 3.1, it is shown by example that at least
one direct resonance exists between an incoming PV and inertia-
gravity wave and an outgoing inertia-gravity wave. Consider

k = (4, 8); k1 = (4,−4); k2 = (−8,−4). (3.45)

Clearly, the triad condition is satisfied as k + k1 + k2 = 0.
Considering the case where k1 is the PV mode, we have

ω+
k = ω0

k1
+ ω+

k2
, (3.46)

√
1 + F−1|(4, 8)| = 0 +

√
1 + F−1|(−8,−4)|.

By the properties of the magnitude of a vector, this equality is
satisfied and so this triad is directly resonant.

All other interaction types which would otherwise occur have
been excluded by Lemmas 3.1 through 3.4.

The implication of Theorem 3.1 is that in the limit, PV modes
interact only amongst themselves. Combined with the second part
of the theorem, this gives the concept of a fast singular limit, where
the slow dynamics evolve independently of the fast and the fast
dynamics are ‘swept’ by the slow. This holds in the mathematically
convenient but nonphysical case as ε → 0, which corresponds to
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an upper limit on the averaging integral of τ → ∞. For realistic
geophysical flows, ε is finite and may be of order one or greater. In
order to engage with this in the framework in which we have been
working, we return in earnest to the concept of near-resonance.

3.4 Near Resonant Interactions

We have shown how triads arise as a consequence of the
quadratic nonlinearity, and that the averaging procedure permits
only directly-resonant triads in the limit as ε → 0. For finite ε we
instead consider a finite average. In this case scale separation is no
longer infinite and so complete cancellation of oscillations does not
occur.

When a finite average is taken, the solution set is larger than the
direct resonant set and this has an important effect on the quality of
numerical methods based on finite wave averaging. When ε is finite,
we define concentric shells of near-resonances, i.e. we rewrite the
directly resonant triad-based form (3.32) as

esL/εN (e−sL/εu(t), e−sL/εu(t)) = ∑
λn

eiλnsNn(u(t))

= ∑
Sk,α

Nn(u(t))+

∑
Sε1

k,α

eiλnsNn(u(t))+

∑
Sε2

k,α

eiλnsNn(u(t)) + . . . ,

which we collapse to form

esL/εN (e−sL/εu(t), e−sL/εu(t)) =

∑
Sk,α

Nn(u(t)) +
∞

∑
β=1


∑
S

εβ
k,α

eiλnsNn(u(t))


 , (3.47)

where one of the sums is over the direct resonant set given by equa-
tion (3.33) and the other is over progressively more distant near-
resonant sets, Sεβ

k,α.

Definition 3.3 (Near Resonant Set). Sεβ

k,α, β = 1, 2, . . . is a near-
resonant set, which is the set of all triads such that:

Sεβ

k,α =
{
(k1, k2, α1, α2) : k = k1 + k2, εβ−1 < |ωα

k −ωα1
k1

+ ωα2
k2
| ≤ εβ

}
,

(3.48)
where ε0 = 0 by definition. N
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The direct-resonant set results in a solution consisting of only
the slow dynamics of the system. As we will see in Chapter 4, the
effect of the averaging procedure is to variably retain and reject
triads of various degrees of near-resonance, and the extent to which
it does this is fundamental to the quality of the averaged numerical
approximation.

Figure 3.2 shows the near-resonant traces up to a nearness of
0.1 for the RSWE, and for the same wavevector (k = (4, 8)) as in
Figure 3.1. Here, any closed triad which sits on or inside the curves
is admissible as a fast-slow-fast near resonance. While in the direct
case we saw that there were only two admissible triads in this range
of wavenumbers, there are significantly more possibilities in this
case.
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0.1-Near-Resonant traces for k = (4, 8)
Figure 3.2: The near-resonant traces for
k = (4, 8) which considers fast-slow-fast
resonances of nearness up to εβ = 0.1.
By analogy with Figure 3.1 which admitted
only two resonant triads, it is apparent here
that significantly more near-resonances
are admissible. Near-resonant triads,
visually speaking, are any closed triangles
where one side is the vector from the
origin to (4,8), and where the free vertex is
constrained by the curves.

As we permit progressively farther-resonant sets, the total num-
ber of triads which are retained increases, as a comparison between
Figures 3.1 and 3.2 should make clear. In addition to the inclusion
of progressively more slow-fast-slow triads, additional types of in-
teraction also become possible which did not satisfy the stringent
conditions of a direct resonance (cf. Section 3.3.1).

Figure 3.3 shows the number of allowably-near-resonant triads
whose outgoing wave is k = (4, 8) which are retained as max εβ

increases, on a 322 wavenumber space. As discussed above, all
slow-slow-slow interactions are trivially resonant, and so we see no
change in the total number of these. Note that even a slight increase
in the upper bounds on near-resonance immediately leads to the
inclusion of new resonances while some of the more pathological
cases (such as two gravity waves in the same direction interacting
with a gravity wave travelling in the opposite direction) require a
much looser definition of near resonance.
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Figure 3.3: The increasing number of
admissible triads in shown as the maximum
distance, max εβ = max ωα

k −ω
α1
k1
−ω

α2
k2

increases. The slow-slow-slow interaction
is trivially resonant and so all triads of this
type are admitted everywhere. For certain
modes which more easily lend themselves
to near-resonant interaction, saturation
is observed for small values of εβ, while
some more pathological triads do not
even begin to appear until much later. ±
denotes a ‘fast’ or ‘inertia-gravity’ mode,
while 0 denotes a ‘slow’ or ‘PV’ mode. The
legend follows the same convention as the
superscripts in the interaction coefficient,
i.e. α, α1, α2.

3.5 A Near-Resonant Solver

We have implemented a numerical solver which solves
the rotating shallow water equations on near-resonant sets only.
This amounts to numerically solving the explicit form of the aver-
aged RSWE, equation (3.25), over the near-resonant sets in equa-
tion (3.48), such that the sum over all k = k1 + k2 is further re-
stricted to those triads which lie in the near-resonant set described
in Definition 3.3, i.e.

∂u(x, t, εβ)

∂t
=

− ∑
k∈Z2

1

∑
α=−1

∑
k=k1+k2

|ωα
k−ωα

k1
−ωα

k2
|≤εβ

∑
α1,α2

σα1
k1
(t)σα2

k2
(t)Cα,α1α2

k,k1,k2
ei(k·x)−i

(
ω

α1
k1
+ω

α2
k2
−ωα

k

)
srα

k ds,

(3.49)

with the interaction coefficient as in equation (3.26) and the eigen-
basis is unchanged from Section 3.2. The transformation from the
averaged to the full solution via the exponential linear operator
is as before. In computing the sum, triads of a sufficiently near
resonance are retained and all others are rejected. This process of
retaining and rejecting triads is boolean in the sense that triads
of sufficent nearness are entirely retainined in the solution, while
all triads whose resonance lies outside the cutoff are completely
rejected. Note that here there is no averaging integral which is
evaluated either analytically or numerically. Rather, this process is
intended to model the effect of such an integral.
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Solving the RSWE by this method is computationally unfeasible
for practical simulations, but serves to better investigate the role of
near resonance in the quality of the average. Two experiments were
carried out: one with ε = 0.01 which approximates the limit where
only direct resonances should contribute, and one with ε = 0.1
which is in the finite-ε regime. In both runs, the timestep used for
the decimated equations was ∆T = 0.2 and for the full equations it
was ∆t = 0.0002 over a full simulation time of Tf = 5. The much
longer timestep in the coarse case is because we are, in practice,
interested in this as a method of handling oscillatory stiffness and
performing much longer timesteps than the non-averaged equa-
tions allow. An initial Gaussian height field was used, and the 1-D
RSWE was solved on a spatial grid of size Nx = 32.

It is expected that in the limit as ε → 0, approximated here with
ε = 0.01, optimal performance should be seen for a solver which
retains only the direct resonances. Optimal performance is meant in
the sense of minimal error, where the error is defined as the norm
of the difference between the true and numerical solutions:

error = ‖htrue − hnum‖. (3.50)

As shown in Figure 3.4, this is indeed the case. As progressively
farther resonant sets are included, the error increases as compared
to the full solution. The minimum error was achieved by including
only direct resonances, i.e. where max(|ωα

k − ωα1
k1
− ωα2

k2
|) = 0,

which corresponds to an infinitely-long averaging window.
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Resonant Filter Study, ε = 0.01 Figure 3.4: The measured error in the
decimated RSWE as a function of the
nearness of resonance required for a
triad to be retained. This case closely
approximates the asymptotic limit, with
optimal performance occurring when only
the direct resonances are retained.

In both Figures 3.4 and 3.5 the circles correspond to a unique
model run. They are not evenly-spaced due to the fact that the
inclusion of new triads doesn’t occur linearly as max εβ increases,
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as seen in Figure 3.3. Only those locations when at least one new
triad was found were included in these experiments.

The small-ε case behaved exactly as the asymptotic theory pre-
dicted.7 However, in the case of finite scale separation, i.e. inter- 7 Our experiments have shown that numer-

ical simulations with ε ≤ 0.01 behave as
though ε→ 0.

mediate ε, there is no asymptotic theory to predict the behaviour.
Recalling the numerical results from Chapter 1, it was apparent that
some optimal averaging window exists for finite scale separation. If
that effect is related to the inclusion and rejection of near-resonant
triads, we should expect to see something similar here.

Figure 3.5 shows the error bounds for an intermediate value of
ε = 0.1. Error was minimised by retaining triads up to a certain de-
gree of near-resonance. This is a markedly different result from the
simulation with ε = 0.01, where the optimal limit on triad distance
was to retain only the direct resonances. It also agrees with the
work of, for example, Smith and Lee (2005) or Chen et al. (2005),
both of whom found that near-resonances play an important role at
intermediate degrees of scale separation.
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Resonant Filter Study, ε = 0.1 Figure 3.5: The measured error in the
decimated RSWE as a function of the
nearness required for a triad to be retained.
ε = 0.1 is an intermediate value and leads
to the existence of an optimal degree of
nearness, similar to the averaging window
width optimal.

This result supports the theory that near-resonant triads, which
are effectively individual units of nonlinear oscillation, play a role
in the quality of the solution found through numerical averaging.
In the next chapter we will explore in detail how the nearness of
resonance impacts numerical stiffness. We will also explain the ex-
istence of the optimal averaging window. For the remainder of this
work, we will compute the averaging integral in equation (1.36)
directly in the interests of both computational efficiency and accu-
racy.8 As will be seen, the explicit consideration of triad resonances 8 This also allows us to apply the averaging

method to models which do not use a
Fourier spectral method.

is not necessary for their existence or effect on the solution.
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Key Points

• Triadic interactions arise naturally in the RSWE as a consequence
of the quadratic nonlinearity.

• In the limit of infinite scale separation, only directly-resonant
interactions contribute to the solution.

• For finite parameter regimes, near-resonant interactions occur.

• Near resonant triads of order ε are relevant on O(1/ε) timescales.

• Consideration of near-resonant interactions is necessary for
optimal averaging in the decimated equations.





4 Numerical Wave Averaging

Just then, Goldilocks woke up and saw the three bears.
She screamed, "Help!" And she jumped up and ran out
of the room. Goldilocks ran down the stairs, opened the
door, and ran away into the forest. And she never
returned to the home of the three bears.

Goldilocks and the Three Bears, Robert Southey

In the previous chapters we have seen how a system of PDEs
based on fast-wave averaging is derived in the asymptotic case and
that this has interesting ramifications for the discrete components
of nonlinear oscillation, called triads. We have further seen that for
finite scale separation, which is the problem which arises in prac-
tical geophysical simulations, an infinitely-long averaging window
is not necessary. In fact, taking an infinite averaging window in the
finite-ε case provides a suboptimal solution. What we are lacking so
far is a way of computing this average and an understanding of its
effect on the solution.

Enter the Heterogeneous Multiscale Method (HMM). Based on
earlier solution techniques such as split explicit methods (Klemp and
Wilhelmson, 1978; Tripoli and Cotton, 1982; Wicker and Wilhelm-
son, 1995), HMM provides a mathematical formalisation of these
ideas (E and Engquist, 2003; E, 2003; Engquist and Tsai, 2005). The
intention of a numerical method for the averaged equations is to
resolve the long-time, macroscale behaviour of the solution. In or-
der to do this it relies on both an incomplete macroscale model and
supplementary information from the microscale. HMM provides
a framework, rather than a direct method, for multiscale problems
and so this requires some deeper understanding in order to design
the algorithm for a particular problem. That understanding in our
case comes from the triadic interactions and near-resonance.

The name of the framework is meant to make clear the nature of
the problems to which the framework is intended to be applied:
problems where there are different models at different scales.
The main difference between HMM and traditional multiscale
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methods is that, at their core, multiscale methods are microscale
solvers. Their computational cost is comparable to that of their
associated microscale solver as their purpose is to resolve the mi-
croscale details. On the other hand, HMM uses information from
the microscale to resolve the macroscale, and therefore has the com-
putational cost of a macroscale solver. As noted by E et al. (2007),

‘. . . multiscale problems are commonly recognised for their complex-
ity, yet the main challenge in multiscale modelling is to recognise
their simplicity, and make use of it. This has been a common theme
in modern multiscale modelling. The disparity of time scales, for ex-
ample, has long been a major obstacle in atomistic simulations such
as molecular dynamics. But in methods such as HMM, it is used as
an asset.’

HMM is related to operator splitting (cf. Chapter 2) which has
geophysical and meteorological applications (Browning and Kriess,
1994). It is also related to multirate methods (Gear and Wells, 1984;
Leimkuhler and Reich, 2001). An important distinction for our
purposes is that all of these methods resolve the large eigenvalues
which give rise to stiffness over time intervals independent of ε and
so have a computational cost of O(ε−1), while HMM schemes have
a complexity of O(1).

Recall equation (1.36), which we derived in Chapter 1, and which
is written

∂u(x, t′)
∂t′

= − lim
τ→∞

1
τ

∫ τ

0
esLN (e−sLu(x, t′), e−sLu(x, t′))ds

u(x, t′)
∣∣
t′=0 = u0(x).

(4.1)

Here, there are two timescales which are separated in a notational
sense: the matrix exponential and its inverse are the only locations
where the fast time, τ, appears while the averaged solution, u(x, t′),
is a function of the slow time, t′, only. Timestepping this equation
requires information from the microscale, i.e. the fast timescale, to
be projected to the slow time. This projection is performed by the
averaging integral which is a finite analogue of (4.1).

An important point to be aware of here is that when using the
HMM the coupling between the fast and slow timescales is data-
based rather than solution-based and so this problem can be handled
numerically in a straightforward fashion. That is not to say that an
understanding of the solution will not permit further optimisation –
it does – but beyond the point of algorithm design the problem is a
purely numerical one.

∆T ∆T + η 2∆T

(1) (2)

(3)

←
M
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ro

—
M
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ro
→

Figure 4.1: The thinking behind the HMM.
(1): Information from the macroscale is
used to initialise the microscale model.
(2): The rapidly-oscillating microscale
data are integrated over a window of
length η and the result is projected back to
macroscale.
(3): A large coarse timestep, ∆T, is taken
with the macroscale model.

Our approach is then to evaluate the integral on the right-hand
side of (4.1) over a finite interval and use this information to evolve
the slow solution. Some authors, e.g. Engquist and Tsai (2005), refer
to this as ‘force estimation’. Due to the finite nature of the problem,
we rewrite equation (4.1) as a finite integral, discarding the limit as
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τ → ∞ of Section 1.4.

∂u(x, t′)
∂t′

= − 1
η

∫ η

0
ρ

(
s
η

)
esLN (e−sLu(x, t′), e−sLu(x, t′))ds, (4.2)

:= N (u), (4.3)

where η is the finite length of the averaging window. In order to
solve this numerically, we replace the finite integral with a finite
sum,

∂u(x, t′)
∂t′

≈ − 1
M

M−1

∑
m=0

ρ

(
sm

η

)
esmLN (e−smLu(x, t′), e−smLu(x, t′)),

(4.4)
where M is the number of points in time used to discretise the av-
eraging window and ρ(·) is a smooth kernel of integration which
permits a shorter approximation for very fast oscillations (i.e. as
ε → 0) which would otherwise render the method impractical. The
sum we perform, while containing macroscale information from u,
is solely over the fast time coordinate, and the matrix exponential is
then applied to project the solution back into the fast time coordi-
nate, which is a cheap and stable operation. Algorithm 4.2 provides
a pseudocode implementation.

Algorithm 4.2: Evaluating the Time Average
parfor m = 1, . . . , M− 1 do . Time-Parallel Average

sm = ηm/M
um ← ρ(sm/T0)esmLN (e−smLu0, e−smLu0)

end parfor
return Sum(u1, . . . , uM)

We shall refer to a numerical method for solving this system as a
coarse solver. The terminology has its roots in the Parareal method
(q.v. Chapter 5) but applies in this more general sense as well.

Algorithm 4.3: Coarse Solver
v← e(∆T/2)Du0 . ∆T/2 timestep for linear dissipation.
v← N (v, v) . ∆T timestep for the averaged nonlinearity.
v← N

(
u0 +

∆T
2 v
)

v← e(∆T/2)Du0 . ∆T/2 timestep for linear dissipation.
u1 ← e(∆T/ε)Lv . Transform back to the fast time coordinate.
return u1

In order to solve the RSWE in practice, we will employ mild
hyperviscosity for stability purposes. Considering the definition
of the averaged nonlinear operator (4.3) we write our governing
HMM-style equation as

∂u(x, t′)
∂t′

= N (u) +Du, (4.5)

where following Haut and Wingate (2014) the averaged dissipation
operator is

Du =
1
τ

∫ τ

0

(
esLDe−sL

)
u(t′)ds. (4.6)
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The method which shall be referred to in the remainder of this
work as a coarse solver consists of the application of Strang splitting
to equation (4.5). This algorithm is provided in Algorithm 4.3.
As we are restricting ourselves to very minor hyperviscosity and
studying the effects of the oscillatory nonlinearity on this method,
we shall generally neglect dissipation in the mathematical analyses
from here on, except where otherwise noted.
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Schematic of Fast Wave Averaging Figure 4.2: Two choices of averaging
window. For a slow solution modulated by a
fast, a comparison between the tendencies
in time of the full solution and the averaged
solution is shown. Note how the presence
of the rapid oscillations leads to a time
derivative which is highly inaccurate
in terms of the long-term trend, while
an appropriate choice of the averaging
window resolves the long-term behaviour
comparatively better. When the ‘length of
the averaging window’ is referred to in this
work, it is the choices of η, two of which are
shown here as η1 and η2, which are being
referred to.

In practice, the length of the averaging window, η, is a free
choice and so may be optimised at run-time. A schematic of the av-
eraging window and its relationship to the fast and slow solutions
is shown in Figure 4.2 for an ODE. When solving PDEs or systems
of ODEs, i.e. for higher-dimensional problems, the principle does
not change: the averaging is still performed only in time.

4.1 A Smooth Kernel of Integration

There are three imporant differences in equation (4.4) when
compared to the infinitely-averaged equation (4.1):

• the integral is approximated by a finite sum,

• the previously infinite upper bound of integration is now finite,

• an integrating kernel as been introduced, following Engquist and
Tsai (2005).

The solver we are developing must be applicable to a range of
problems from where ε = O(1) to the rapidly oscillating situation
as ε→ 0. In the small-ε asymptotic limit, the length of the averaging
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window is necessarily very long (cf. Section 1.4) leading to a large
computational cost. The purpose of the integrating kernel is to
improve the accuracy of the averaging for fast oscillations when
using a shorter averaging window (Haut and Wingate, 2014).

Definition 4.1 (Integrating Kernel). Let ρ(s) : R → R be any
function such that:

1.
∫ 1

0 ρ(s)ds = 1;

2. ρ(s) ∈ C∞;

3. supp ρ(s) = [0, 1].

It is directly implied by 3. that ρ(0) = ρ(1) = 0. Furthermore,

conditions 2. and 3. must be satisfied for
dξ ρ

dsξ
, ∀ ξ ∈ N. N

The canonical example of such a function would be the bump
function shown in Figure 4.3 which is defined as

ρ(s) =





Ke

−1
(1− (2s− 1)2) for s ∈ (0, 1),

0 otherwise,

(4.7)

where K is a constant which ensures that condition 1 in Defini-
tion 4.1 is satisfied. For more detail on the integral of a bump func-
tion, the reader is referred to Johnson (2007).

0 1
s

ρ
(s
)

Figure 4.3: A bump function scaled to
be supported on [0, 1]. This is an exam-
ple of an integrating kernel in line with
Definition 4.1

Consider the behaviour of the averaged equations (4.1) in the
limit as ε → 0. Recall from Chapter 3 that in this limit, only direct
resonances survive the averaging procedure (cf. equation (3.30)).
Recalling that τ = t/ε,

1
η

∫ η

0
ei

ωα
k−ω

α1
k1
−ω

α2
k2

ε s =





1 if ωα
k −ωα1

k1
−ωα2

k2
= 0,

0 otherwise.
(4.8)

First consider the case where no integrating kernel is used and the
integral of equation (4.1) is replaced with a finite sum. In this case,
the integral evaluates to

1
η

∫ η

0
ei

ωα
k−ω

α1
k1
−ω

α2
k2

ε s ds =
ε

iωη

(
ei

ωα
k−ω

α1
k1
−ω

α2
k2

ε η − 1

)
. (4.9)

For numerical purposes, we wish to replicate the effect of an
infinitely-long averaging window (i.e. the limit as η → ∞) through
the use of a sufficiently large but finite window. As shown in equa-
tion (4.9), such an integral converges linearly to the solution corre-
sponding to ε→ 0 as η → ∞.1 1 That is to say, the solution which consists

only of direct resonances.
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Now consider the integral when the smooth kernel is considered.
We are ultimately interested in using this kernel to improve the
numerical approximation to our integral for finite η and therefore
must use a discrete approximation to the integral. Disregarding
discretisation error, we are able to describe the convergence of
an oscillatory integral using a smooth kernel as η → ∞ through
Theorem 4.1.

Theorem 4.1 (Convergence with a Smooth Kernel). Let ρ(s) be a
smooth kernel of integration as in Definition 4.1. Consider a numerical
approximation to an oscillatory integral of the type:

Iosc =
1
η

∫ η

0
ρ(s)ei

ωα
k−ω

α1
k1
−ω

α2
k2

ε s ds.

A numerical approximation to this integral where ρ(s) is approximated

with m + 1 collocation points converges at O
(

1
ηm

)
. �

Proof. When ωα
k − ωα1

k1
− ωα2

k2
= 0, Iosc is trivially equal to one,

which is its analytical solution, and so this case does not need to
be considered with respect to the convergence of the numerical
integral. Consider the case where ωα

k − ωα1
k1
− ωα2

k2
6= 0 and ε → 0,

where the analytical solution for the integral is zero (cf. Section 3.3).
For convenience, we will rescale the limits of the integral to be

1
η

∫ η

0
ei

ωα
k−ω

α1
k1
−ω

α2
k2

ε sρ

(
s
η

)
ds =

∫ 1

0
ei

ωα
k−ω

α1
k1
−ω

α2
k2

ε ηsρ(s)ds. (4.10)

Let us then rewrite the integral in a form more amenable to integra-
tion by parts, using Ω to denote the triad sum, ωα

k −ωα1
k1
−ωα2

k2
, and

denoting
dρ(s)

ds
as ρ′(s). Then upon integrating the rescaled form in

(4.10) once by parts we find

ε

iΩ

∫ 1

0

d
ds

(ei Ωη
ε s)ρ(s)ds =

ε

iΩη
ρ(s)ei Ωη

ε s
∣∣∣∣
1

0
− ε

i Ωη
ε

∫ 1

0
eiΩηsρ′(s)ds.

(4.11)
By Definition 4.1, ρ(0) = ρ(1) = 0, along with all its derivatives.
This causes the first term on the right-hand side to vanish. Recall-
ing that the approximation to ρ(s) is performed with m + 1 collo-
cation points, we may repeat the same procedure m times, arriving
after m integrations-by-parts with,

∫ 1

0
ei Ωη

ε sρ(s)ds =
[

ε

iΩη

]m ∫ 1

0
ei Ω

ε ηsρ(m)(s)ds ∀m ∈ Z+. (4.12)

In the limit as ε→ 0, the smooth kernel prevents all non-resonant
triads from surviving the averaging procedure when approximating
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the averaging integral with a shorter window than would otherwise
be necessary, reducing the computational cost. We see in equa-
tion (4.12) that indeed convergence is more rapid. As shown in
Theorem 4.1, for some fixed m it goes to zero like 1

ηm rather than
linearly.

We were able to use a known result here for the limit as ε → 0
to show the improvement in convergence given by the kernel. This
does not mean that when working with finite ε the purpose of
the integrating kernel is to remove all non-resonant triads. It is to
reduce the length of the averaging window which is required to
approximate the integral in (4.1). For finite ε, the window length
will need to be chosen to provide optimal convergence. The role of
the integrating kernel is not to eliminate this choice, but to reduce
the optimal length when it is chosen.

4.2 Finite Averaging Window

The existence and relevance of near-resonant triadic interac-
tions outside of the asymptotic limit was discussed in Chapter 3.
The relevance of these interactions for finite problems motivates
our finite averaging. As we have discussed, we may consider the
time derivative of the solution to be comprised of the sum of triadic
interactions. As we will show here, the degree of nearness of these
interactions affects both the numerical stiffness they induce and
their effect on the accuracy of the macroscale model of the flow. 2 4

0

1

η

1
η

∫ η
0 e

iΩs ds

Ω = 0.00
Ω = 0.99
Ω = 15.13

Figure 4.4: The effect of varying the
averaging window length on individual
triads. Ω = ωα

k −ω
α1
k1
−ω

α2
k2

. The directly
resonant triad, Ω = 0, is unaffected by the
averaging procedure. The near- and far-
resonances are attenuated proportionally
to both their magnitude and the averaging
window length, η. The particular values of
Ω arise in an actual triad of the 1-D RSWE
such that (k, k1, k2) = (8, 1, 7) with
modes (i.e. values of α) chosen to achieve
direct, near- and far-resonance from the
same triad.

Figure 4.4 shows the effect of numerical averaging on three par-
ticular triads. As would be expected, the direct resonances are
unaffected by the averaging procedure, as eiΩs = 1 when Ω = 0,
leading to a trivial and non-oscillatory integral.

All other triads are attenuated in proportion both to their magni-
tude, |ωα

k − ωα1
k1
− ωα2

k2
|, and to the length of the averaging window.

In this case we see that an averaging window of η = 2 has almost
completely annihilated the far-resonant triad (Ω = 15.13) while it
has only begun to affect the near-resonant triad (Ω = 0.99). Choos-
ing the length of this window then provides a method to smoothly
reduce stiffness by targeting the fastest components of the flow
more strongly than the slower ones. We also expect that the fastest
(i.e. farthest-resonant) triads contribute the least to the long time
behaviour of the solution (Clark di Leoni and Mininni, 2016).

Selectively but completely retaining or rejecting triads was
shown in Chapter 3 to improve the performance of a timestepping
method over long timesteps outside of the normal explicit timestep
limit. We see here that filtering triads through an averaging win-
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dow accomplishes the same end. Using a finite averaging window
not only has the advantage of being more numerically tractable in
that it does not require expensive convolutions in wavespace but
also gives improved performance.

Just as with selecting the degree of resonance to retain, we must
choose the length of the averaging window carefully to yield op-
timal convergence. The optimal averaging window is that which
retains sufficient triadic information to be accurate, while rejecting
the fastest components and therefore reducing numerical stiffness.
Figures 4.5 and 4.6 show the HMM averaging procedure given by
equation (4.4). Numerically, ε = 0.01 is close enough to approximate
the behaviour of the asymptotic limit and so it is not surprising that
this case, shown in Figure 4.5, is well-modelled.

0 1 2 3 4 5

Simulation Time

0

1

2

3

4

5

6

x
-c
o
or
d
in
at
e

Slow Approximation of Height Field

-0.4
-0.2
-0.1
0.1
0.2
0.4
0.5
0.7
0.8
1.0

0 1 2 3 4 5

Simulation Time

0

1

2

3

4

5

6

x
-c
o
or
d
in
at
e

Projection of Slow Approximation

-0.4
-0.2
-0.1
0.1
0.2
0.4
0.5
0.7
0.8
1.0

0 1 2 3 4 5

Simulation Time

0

1

2

3

4

5

6

x
-c
o
or
d
in
at
e

True Solution

-0.4
-0.2
-0.1
0.1
0.2
0.4
0.5
0.7
0.8
1.0

Figure 4.5: Comparison of slow, projected,
and full solutions for the stiff case, ε = 0.01.
Here the averaging is optimal, with η =
10∆T. This is a classically stiff problem for
which averaging methods are necessary to
enable such technologies as we will discuss
later.

The regime with ε = 1, on the other hand, is well outside the
range where the asymptotic description as in Section 1.4 should
hold. Using an asymptotic result and taking a very long averaging
window here would indeed yield a poor-quality coarse approxima-
tion. However, results of comparable quality where obtained here
as well through an appropriate choice of the averaging window
length.



numerical wave averaging 59

In both figures, spatio-temporal oscillations for the 1-D RSWE
with an initially stationary height field are depicted, with the only
difference being the degree of scale separation, ε. The bottom-most
plot shows the reference solution, computed by a fine timestepping
method with no averaging. The topmost plot shows the averaged
variable, u, over which the timestepping is performed. It is partic-
ularly clear in the stiffer of the two shown in Figure 4.5 and to a
lesser extent in Figure 4.6 that timestepping over this solution will
suffer less from the timestep restriction imposed by the oscillatory
stiffness than the full solution, u, does.
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Figure 4.6: Comparison of slow, projected,
and full solutions for the case with no scale
separation, ε = 1. Here the averaging
is optimal, with η = ∆T. This is not a
classically stiff problem, but it is novel
and important in the context of practical
problems with time-varying scale separation
that a fast-wave averaging-based solution is
accurate outside of the limit as ε→ 0.

The central plot in both of these figures is the projection of the
slow solution back into the space of the full solution, i.e. u = e−τLu
which is an operation which does not have an associated timestep
restriction. The fidelity of this solution to the full solution, subject
to optimal averaging, is what makes the HMM-style method viable
for approximating the solution to problems of the type studied
here.

With the practicalities of the algorithm in place, we are in a po-
sition to discuss convergence for the case when ε is finite. We shall
neglect numerical error arising from truncation, spatial discreti-
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sation, etc. and consider the two sources of error over which the
averaging procedure has an effect: the averaging error and the
timestepping error.

4.3 Error Analysis

Error bounds on this solver have been proven by Haut and
Wingate (2014) in the context of Parareal convergence in the asymp-
totic limit as ε→ 0. In doing so, they relied on the direct resonances
which we have discussed. In extending their result to finite ε, we
will necessarily consider near-resonances as well. Recalling Chap-
ter 1 and in particular Figure 1.7, the choice of the averaging win-
dow width, η, has a effect on the convergence of the method (i.e. a
four-fold change in η corresponds to an order of magnitude change
in accuracy). While the choice of η is well-understood for the limit
of small ε Haut and Wingate (2014), we show here that η may be
chosen to provide convergence for ε up to O(1) for an appropriate
coarse timestep. In order to use existing results for the averaging
error (Sanders et al., 2007), we need to first reduce the governing
equation (1.4) to a standard form for ODEs. Following Section 3.2,
we write

vt(t) = etL/εN
(

e−tL/εv(t), e−tL/εv(t)
)

, t ∈ [0, ∆T], (4.13)

where the subscript t denotes the time derivative. In doing so,
we make clear that we are interested in the solution over a ∆T
timescale.2 Let τ = t/(ε∆T), and so ṽ (τ), defined on the interval 2 Recall from Section 1.1 that numerical

stiffness and finite time intervals go hand in
hand.

[0, 1/ε],
ṽ (τ) = v (t) . (4.14)

Then differentiation gives,

∂tv (t) = ∂tṽ (t/(ε∆T)) =
1

ε∆T
∂τ ṽ (t/(ε∆T)) =

1
ε∆T

∂τ ṽ (τ) . (4.15)

Upon this substitution over the discrete time interval in (4.13), we
arrive at the desired form which permits us to use the framework
given in Sanders et al. (2007) where they have derived bounds for
averaging methods. This framework is a general form of a nonlin-
ear system subject to wave averaging. The aim of this is to modify
and reapply their result for the error bound due to averaging. We
then write the governing equation in the form:

∂τ ṽ (τ) = ε∆Teτ∆TLN
(

e−τ∆TLṽ(τ), e−τ∆TLṽ (τ)
)

. (4.16)

While our interest is in solving PDEs describing physical systems,
in practice we employ a Fourier spectral method which has the
effect of treating the PDE as a finite-dimensional system of ODEs.
This gives us access to the machinery of the numerical analysis of
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ODEs and averaging methods, following Sanders et al. (2007). Let x
solve the governing equations for the full (i.e. unaveraged) system
when they are written as a finite system of ODEs, i.e. in the form
shown in (4.16). Then we may write:

xt = εf (x, t) . (4.17)

Here, x denotes the ODE solution, and not the spatial variable as
it has before. This is in the interest of consistency with the ODE
literature. Similarly, we consider the coarse solver (4.16) written as a
system of ODEs. Let y solve this averaged form of equation (4.16),
i.e.

yt = εf̄ (y, t) , (4.18)

where the averaging follows directly from the averaged equa-
tion (4.1) and is written

f̄ (y, t) =
1
η

∫ η

0
ρ

(
s
η

)
f (y, t + s) ds, (4.19)

where η denotes the finite length of the averaging window.

4.4 Averaging Error

Let us first consider the averaging error, which is the error
committed by approximating the governing equations with an
averaged analogue. This section does not consider any numerical
effects.

Definition 4.2 (KBM-vector field). Consider the vector field f(x, t),
f : Rn ×R → Rn which is Lipschitz continuous in x on D ⊂ Rn for
positive t, and where f is continuous in t and x on R+ × D. If the
average

f = lim
η→∞

1
η

∫ η

0
f(x, s)ds (4.20)

exists and has a uniform limit on compact sets K ⊂ D, then f
is a KBM-vector field3 (Sanders et al., 2007). It is assumed that 3 KBM stands for Krylov, Bogoliubov, and

Mitropolsky.any parameters in f(x, t), as well as the initial conditions, are ε-
independent. N

In the remainder of this work, we shall assume that f is a KBM-
vector field.

Lemma 4.1. Let φ(t) be a Lipschitz-continuous function with Lipschitz
constant β. Further define φη(t) where the subscript η denotes time aver-
aged φ(t) with integrating kernel ρ(s) and averaging window length η.
Then, ∣∣φ (t)− φη (t)

∣∣ ≤ C0βη, (4.21)
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where

C0 =
∫ 1

0
ρ (s) s ds. (4.22)

�

Proof. Using that

1
η

∫ η

0
ρ

(
s
η

)
ds =

∫ 1

0
ρ (s) ds = 1, (4.23)

we have that

∣∣φ (t)− φη (t)
∣∣ =

∣∣∣∣φ (t)− 1
η

∫ η

0
ρ

(
s
η

)
φ (s + t) ds

∣∣∣∣

=
1
η

∫ η

0
ρ

(
s
η

)
|φ (t)− φ (s + t)| ds

≤ 1
η

∫ η

0
ρ

(
s
η

)
sβ ds

by Lipschitz continuity. Then,

∣∣φ (t)− φη (t)
∣∣ ≤ 1

η
β
∫ η

0
ρ

(
s
η

)
s ds

= ηβ
∫ 1

0
ρ (s) s ds.

Lemma 4.2. Consider

dv
dτ

(t) = ∆Tεf (∆Tt, v (t)) , 0 ≤ t ≤ ε−1, (4.24)

with f continuous in each argument and t < O(1). Also assume that

‖f (∆Tt, u)− f (∆Tt, w)‖ ≤ β ‖u−w‖ , (4.25)

and

M = sup
x∈D

sup
0≤t≤ε−1

‖f (∆Tt, w)‖ < ∞. (4.26)

Then defining

φ (t) =
∫ t

0
f (∆Tτ, v (τ)) dτ, (4.27)

we have that
∣∣∣∣φη (t)−

∫ t

0
fη (∆Tτ, v (τ)) dτ

∣∣∣∣ ≤ C0 (1 + β∆Tε) Mη. (4.28)

�
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Proof. We calculate that

φη (t) =
1
η

∫ η

0
ρ

(
s
η

)
φ (s + t) ds

=
1
η

∫ η

0
ρ

(
s
η

)(∫ t+s

0
f (∆Tτ, v (τ)) dτ

)
ds

=
1
η

∫ η

0
ρ

(
s
η

)(∫ t+s

s
f (∆Tτ, v (τ)) dτ

)
ds + R1

where we have changed the lower bound of integration, introducing
the residual R1 in the process. Then,

φη (t) =
1
η

∫ η

0
ρ

(
s
η

)(∫ t

0
f (∆T (τ + s) , v (τ + s)) dτ

)
ds + R1

=
1
η

∫ η

0
ρ

(
s
η

)(∫ t

0
f (∆T (τ + s) , v (τ)) dτ

)
ds + R1 + R2

where the dependence of the integral on the variation of v with
respect to s is captured by the second residual, R2.

φη (t) =
∫ t

0

(
1
η

∫ η

0
ρ

(
s
η

)
f (∆T (τ + s) , v (τ)) ds

)
dτ + R1 + R2

=
∫ t

0

∫ t

0
fη (∆Tτ, v (τ)) dτ + R1 + R2,

The norm of the first residual is

‖R1‖ ≤
∥∥∥∥

1
η

∫ η

0
ρ

(
s
η

)(∫ s

0
f (∆Tτ, v (τ)) dτ

)
ds
∥∥∥∥

≤ 1
η

∫ η

0
ρ

(
s
η

) ∫ s

0
‖f (∆Tτ, v (τ))‖ dτ ds

≤ 1
η

∫ η

0
ρ

(
s
η

) ∫ s

0
M dτ ds,

by the definition of M. Then we may write:

‖R1‖ = M
1
η

∫ η

0
ρ

(
s
η

)
s ds

= Mη
∫ 1

0
ρ (s) s ds

= C0Mη,

with C0 defined as in Lemma 4.1. The norm of the second residual
may be found to be

‖R2‖ =

∥∥∥∥
1
η

∫ η

0
ρ

(
s
η

) ∫ t

0
(f (∆T (τ + s) , v (τ + s))− f (∆T (τ + s) , v (τ))) dτ ds

∥∥∥∥

≤ 1
η

∫ η

0
ρ

(
s
η

) ∫ t

0
‖f (∆T (τ + s) , v (τ + s))− f (∆T (τ + s) , v (τ))‖ dτ ds

≤ 1
η

β
∫ η

0
ρ

(
s
η

) ∫ t

0
‖v (τ + s)− v (τ)‖ dτ ds
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because of Lipschitz continuity. Continuing, we find that

‖R2‖ ≤
1
η

β
∫ η

0
ρ

(
s
η

) ∫ t

0

∥∥∥∥
∫ s+τ

τ

dv
dσ

(σ) dσ

∥∥∥∥ dτ ds

=
1
η

β
∫ η

0
ρ

(
s
η

) ∫ t

0

∥∥∥∥
∫ s+τ

τ
∆Tεf (∆Tσ, v (σ)) dσ

∥∥∥∥ dτ ds

≤ 1
η

∆Tεβ
∫ η

0
ρ

(
s
η

) ∫ t

0

∫ s+τ

τ
‖f (∆Tσ, v (σ))‖ dσ dτ ds,

from the definition of M. Then

‖R2‖ ≤
1
η

∆TεβM
∫ η

0
ρ

(
s
η

) ∫ t

0

∫ s+τ

τ
dσ dτ ds

=
1
η

∆TεβM
∫ η

0
ρ

(
s
η

) ∫ t

0
s dτ ds

=
1
η

∆TεβMt
∫ η

0
ρ

(
s
η

)
s ds

= C0η∆TβMεt

≤ C0∆TηβMε.

In the last inequality, we have applied the assumption that t =

O(1) and used the definition of C0 from Lemma 4.1.

With Lemmas 4.1 and 4.2 in hand, we are able to proceed to
prove the bounds on the averaged equation.

Theorem 4.2 (Averaging Error). Considering the initial value problems
in x and y as stated above where f is Rn ×R Lipschitz continuous with
constant β in x on D ⊂ Rn and t on an O(1) timescale, i.e. for all
x1, x2 ∈ D, β is such that:

∥∥f (x1, t)− f̄ (x2, t)
∥∥ ≤ β ‖x1 − x2‖ . (4.29)

Let:
M = sup

x∈D
sup

0≤t≤L
‖f (x, t)‖ . (4.30)

Then we can bound the difference between the exact solution x and the
averaged solution y as:

‖x− y‖ ≤ M
(

1 +
1
2

βε

)
ε∆Tη, (4.31)

�

Proof. Note that

x (t) = x (0) + ∆Tε
∫ t

0
f (∆Tτ, x (τ)) dτ. (4.32)

Let E0 be the difference between the time integrals of the full and
averaged functions, i.e.

E0 = φη (t)−
∫ t

0
fη (∆Tτ, x (τ)) dτ. (4.33)
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Then we may write

∫ t

0
f (∆Tτ, x (τ)) dτ =

∫ t

0
fη (∆Tτ, x (τ)) dτ + E0, (4.34)

where by Lemma 4.2,

‖E0‖ ≤ C0 (1 + βε∆T) Mη. (4.35)

Therefore,

x (t) = x (0) + ∆Tε
∫ t

0
fη (∆Tτ, x (τ)) dτ + E1, (4.36)

where
E1 = ∆TεE0 (4.37)

and so
‖E1‖ = ‖∆TεE0‖ ≤ C0 (1 + βε∆T) Mη∆Tε. (4.38)

Also, since

y (t) = x (0) + ∆Tε
∫ t

0
fη (∆Tτ, y (t)) dτ, (4.39)

we have that

‖x (t)− y (t)‖ ≤ ∆Tε
∫ t

0

∥∥fη (∆Tτ, x (τ))− fη (∆Tτ, y (t))
∥∥ dτ +

C0 (1 + βε∆T) Mη∆Tε

≤ ∆Tεβε
∫ t

0
‖x (τ)− y (t)‖ dτ +

C0 (1 + βε∆T) Mη∆Tε.

Finally, by Grönwall’s inequality,4 4 Grönwall’s inequality is commonly used to
estimate the growth of functions that satisfy
an integral inequality (Grossmann et al.,
2007).

‖x (t)− y (t)‖ ≤ C0 (1 + βε∆T) Mη∆Tεe∆Tεβt. (4.40)

Theorem 4.2 follows from a modification of results given by
Sanders et al. (2007) in order to include the kernel of integration.5 5 The necessary modifications to Lem-

mas 4.1 and 4.2 and Theorem 4.2 are
not the original work of the author, but are
primarily the work of Terry Haut extending
the work of Sanders et al. (2007).

We have here bounded the error over an O(1) time interval instead
of O(1/ε) so that the rate of convergence at different degrees of
scale separation may be more easily compared, as in practice we
are interested in simulations over fixed timescales. Taking the un-
modified lemma provides a slightly different result as it gives the
averaging error over a simulation time which scales with ε. Due to
the numerical nature of the proof here, this is not the appropriate
timescale.

Theorem 4.2 places a bound on the error committed by averaging
over the fast waves, independent of the numerical methods used
for spatial or temporal discretisation. It is important to see that it
is proportional to both the averaging window length, η, and the
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coarse timestep, ∆T. Such a result is intuitively understandable if
we consider that as η increases, more averaging is being applied
and so there is more of a difference between the true and averaged
equations. Conversely, as η → 0, no averaging is being performed
and so f → f, i.e. the difference between the solutions becomes triv-
ially zero. With this source of error understood, we now move on to
considering the error arising from the numerical approximation of
equation (4.18).

4.5 Timestepping Error

The other primary source of error which is controllable by
the averaging window is that which arises from the timestepping.
Understanding such a source of error is a central theme in numer-
ical analysis (see for example Trefethen (1996)), and we shall apply
many concepts familiar to the numericist here. There is a particular
novelty in this section in the consideration of the timestepping error
in terms of the near-resonant triads and a rigorous understanding
of the effect averaging has on them. We must first define a suitable
space on which the differential equation is defined.

Recalling the definition of a KBM-vector field (Definition 4.2), we
will choose a Lipschitz-continuous subspace, D, where y is well-
defined and further assume that:

∥∥∥∥
∂f(y, t)

∂y

∥∥∥∥ ≤ M1, y(t) ∈ D ⊂ Rn, (4.41)

where M1 is a finite constant. We further assume that such a bound
exists for higher derivatives of f, such that

max
j

∥∥∥∥∥
∂jf

∂yj
k

∥∥∥∥∥ ≤ M, 1 ≤ k ≤ n, 0 ≤ j ≤ p. (4.42)

where M is defined as in Theorem 4.2. It is helpful to make one
more definition in order to consider the triad interactions in an ap-
propriate form for the upcoming proof. To the best of the author’s
knowledge, this is a novel technique in numerical methods.

Definition 4.3 (Ordered Triads). In a similar fashion to Defini-
tion 3.3, let the set {λn : n ∈ N} be the ordered set of all triadic
interactions, λn = ωα

k −ωα1
k1
−ωα2

k2

∣∣∣
n

such that

|ωα
k −ωα1

k1
−ωα2

k2
|
∣∣∣
n+1
≥ |ωα

k −ωα1
k1
−ωα2

k2
|
∣∣∣
n

(4.43)

N



numerical wave averaging 67

Theorem 4.3 (Timestepping Error). Denote the numerical approxi-
mation to the averaged solution y(t) with timestep ∆T and order 2 as
y∆T(t). Assume that yt(t) = εf(y, t) and that f ∈ D ⊂ Rn exhibits
quadratic nonlinearity. Assume that integration is performed with re-
spect to a smooth kernel, ρ(·), and let λn denote the n-th near resonant
triad (Definition 4.3). Then the local time-stepping error of a second order
time-stepping scheme applied to equation (4.18) satisfies:

‖y(t)− y∆T(t)‖ ≤ CMε∆T3 max
n∈N

(
λ2

n
1
η

∫ η

0
ρ

(
s
η

)
eiλnsds

)
, (4.44)

for some constant, C ∈ R < ∞ and where M is the bound over the
nonlinear operator as given in 4.2. �

Proof. The timestepping error is bounded by

‖y(t)− y∆T(t)‖ ≤ Ct (∆T)p+1 max
t

∥∥∥∥
dp+1y
dtp+1 (t)

∥∥∥∥
2

(4.45)

where p is the order of convergence of the method and Ct is a con-
stant (Kincaid and Cheney, 1991). In order to proceed with a con-
stant Ct we assume that there exists some η0 such that

Ct < C0 +
C1

η
∀η > η0 (4.46)

and that η > η0. We first decompose f in terms of its basis of
eigenvectors as discussed in Section 3.2. As with equation (3.27)
we may write the solution as a sum of ODEs, each for a specific and
ordered resonant nearness, λn (see Definition 4.3). Then for the j-th
component of y, we write

dyj

dt
= ε

1
η

∫ η

0
ρ

(
s
η

)
∑
n

∆Tei∆Tλn(t+s)Nn,j(y)ds, (4.47)

where the nearness of the resonances in any particular ODE is ex-
posed through the eigenvalue sum, λn, in the exponent and where
the subscript , j denotes the j-th component and not a derivative, as
it would with Einstein’s notation. Note that Nn,j is a fully nonlinear
term and so the system of ODEs has not been linearised in any way.
We then seek the third time derivative, which is found to be

d3yj(t)
dt3 = ε

1
η

∫ η

0
ρ

(
s
η

)(
i2∆T3 ∑

n
λ2

nei∆Tλn(t+s)Nn,j+

2i∆T2 ∑
n

∑
k

λnei∆Tλn(t+s) ∂Nn,j(y)
∂yk

dyk(t)
dt

+

∆T ∑
n

∑
k,l

ei∆Tλn(t+s) ∂2Nn,j(y)
∂yk∂yl

dyk(t)
dt

dyl(t)
dt

+

∆T ∑
n

∑
k

ei∆Tλn(t+s) ∂Nn,j(y)
∂yk

d2yk(t)
dt2

)
ds. (4.48)

This is then the right-hand side which is integrated with respect
to the smooth kernel. The magnitude of the near-resonant triad,
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λn, now presents itself as a multiplier on the complex exponential.
Recalling the definition of stiffness in Section 1.1, it is then clear
that it is this value, which is zero for direct resonances but becomes
large in general, which is the source of numerical stiffness. For
notational simplicity, we introduce the function P(η)6, which is

6 This may be read as ‘capital-Rho’ or, if the
reader is given to a poetic mood, as a Latin
P in honour of Saint Prokop of Sázava.
In one of the oldest Czech legends, Saint
Prokop harnessed a devil to his plow and
thus tilled his land. Such wise application
of chaotic, otherwise harmful forces may
be familiar to students of economics as
a metaphor for the invisible hand of the
market, directing greed into productivity
(Heller, 2005; Sedláček, 2011). Such a
metaphor seems particularly apt here as
well.

defined to be

P(n, η) =
1
η

∫ η

0
ρ

(
s
η

)
eiλn∆Ts ds, (4.49)

then

d3yj(t)
dt3 = ε∆T3 ∑

n
P(n, η)

[
−λ2

nei∆TλntNn,j+

(
2iε ∑

k
λnei∆Tλnt ∂Nn,j

∂yk

)(
∑
n′

ei∆Tλn′ tNn′ ,j

)
+

ε2 ∑
k,l

ei∆Tλnt ∂2Nn,j

∂yk∂yl

(
∑
n′

ei∆Tλn′ tNn′ ,j

)(
∑
n′′

ei∆Tλn′′ tNn′′ ,j

)
+

∑
k′

ei∆Tλnt ∂Nn,j

∂yk′

(
ε ∑

n′
λn′ e

i∆Tλn′ tNn′ ,j+

ε2 ∑
n′′

ei∆Tλn′′ tNn′′ ,j ∑
n′′′

∑
l′

ei∆Tλn′′′ t
∂Nn′′′ ,j

∂yl′

)]
, (4.50)

In bounding the timestepping error, we are interested in the
norm of this quantity. Recalling that we are working with a finite-
dimensional system of ODEs and applying the triangle and Cauchy-
Schwarz inequalities we find that

∥∥∥∥∥
d3yj(t)

dt3

∥∥∥∥∥ ≤ ε∆T3 ∑
n
‖P(n, η)‖|Nn,j|

(
‖λ2

n‖+ ‖2λnε‖
∣∣∣∣∣∑k

∂Nn,j

∂yk

∣∣∣∣∣+

ε2|Nn,j|
∣∣∣∣∣∑k,l

∂2Nn,j

∂yk∂yl

∣∣∣∣∣ ‖ελn‖
∣∣∣∣∣∑k

∂Nn,j

∂yk

∣∣∣∣∣+ ε2
∣∣∣∣
∂Nn,j

∂yk

∣∣∣∣
2
)

. (4.51)

Now, as N and all of its spatial derivatives up to and including
p = 2 are bounded by M by (4.41), we write

∥∥∥∥
d3y(t)

dt3

∥∥∥∥ ≤ ε∆T3M max
n∈N

P(n, η)‖λ2
n + 3λnεM + ε2M2‖ (4.52)

≤ ε∆T3M max
n∈N

P(n, η)‖λn + C f εM‖2, (4.53)

where C f is a positive constant. We will now assume that |λn| 6= 0
as we are interested in the sup-norm of these values, which is
nonzero when near-resonances are included. The directly reso-
nant case has been treated by Haut and Wingate (2014). Then we
must consider two possibilities. Firstly, if |λn| ≤ 1, then we define
some constant, K1,

K1 = (1 + C f εM)2. (4.54)
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If |λn| > 1, the binomial theorem yields:

(|λn|+ C f εM)p =
p

∑
j=0

(
p
j

)
(|λn|)p−j(C f εM)j,

≤
p

∑
j=0

(
p
j

)
(|λn|)p(C f εM)j,

= |λn|p
p

∑
j=0

(
p
j

)
(C f εM)j,

= |λn|pK2.

And then we may write

(|λn|+ ε∆TM)2 ≤ max(K1, |λn|2K2). (4.55)

As for the Rotating Shallow Water Equations there must always
be a value of λn which is strictly greater than one, we shall as-
sume that it is the second value which is the maximum. We now let
C = CtK. Finally, we bound the nonlinear term in the same fashion
as 4.2, where the fact that:

M = sup
y∈D

sup
0≤t≤L

‖f (y, t)‖

= sup
y∈D

sup
0≤t≤L

∥∥∥∥∥∑n
∆Tei∆TλntNn (y)

∥∥∥∥∥

≤ sup
y∈D

sup
0≤t≤L

(
∑
n
‖Nn (y)‖

)
< ∞,

completes the proof by providing an upper bound for the nonlin-
ear operator as in 4.2. This provides a bound for the error due to
timestepping which does not depend directly on the solution, but
rather on the general properties of the nonlinearity, in particular the
triadic interactions.

In Section 4.4 we found that the averaging error increases pro-
portional to the length of the averaging window. In this section we
have found that the timestepping error follows the opposite trend:
an increase in the averaging window corresponds to a decrease in
the timestepping error. Recall that with the timestepping error we
are measuring the fidelity of the numerical approximation to the
averaged solution to the averaged solution. Thus concerns of fidelity
to the full solution do not apply – they are dealt with by the bound
on the averaging error instead. Rather, an increase in the averaging
window decreases the stiffness inherent in the equations and with it
the error.
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4.5.1 The Stiffness Regulator Function

To clarify this somewhat, we define the stiffness regulator func-
tion, Λ(η), which describes the filtering independent of the gain
due to the scale separation and the coarse timestep, and which ap-
pears in the bound on the timestepping error. This provides novel
understanding of the role of quadratic nonlinear interaction in
timestepping under averaging.

Λ(η) ≡ max
n∈N
|λn|2

1
η

∫ 1

0
ρ(s)ei|λn |η∆Ts ds. (4.56)

0 1

← ρ(s) = 0→← ρ(s) = 0→

s

ρ
(s
)

Figure 4.7: Extension of the limits of the
integrating kernel to ±∞. Since ρ(s) is
identically zero outside of its support, these
regions do not contribute to the integral and
may be freely integrated over.

Λ(η) provides a measure of the extent to which the averaging in-
tegral mitigates the numerical stiffness. Recall from the discussion
of stiffness in Section 1.1 that when the maximum |λn| is large, as
it is for highly oscillatory problems, it causes the right-hand side of
the ODE to be very large, which is to say it induces steep gradients
requiring a small numerical timestep. In contrast, the integral term
in (4.56) tends to zero as |λn| gets large, and does so superlinearly
because of the integrating kernel, ρ(s) (Haut and Wingate, 2014).

Consider the P-function (4.49), from which Λ(η) is composed.
Note that since the kernel is finitely-supported on s = [0, 1] we may
trivially extend the limits of integration to ±∞. Then,

1
η

∫ 1

0
ρ (s) ei|λn |∆Tηs ds =

1
η

∫ ∞

−∞
ρ (s) ei|λn |∆Tηs ds. (4.57)

This is immediately recognisable as the Fourier transform of ρ(s)
evaluated at ω = |λn|∆Tη, up to a constant of normalisation. If we
assume a bump function as a kernel, we find (following Johnson
(2007)) that in the asymptotic limit of large |λn|,

∫ 1

0
ρ (s) ei|λn |∆Tηs ds ∼ C0e−C1

√
|λn |∆Tη . (4.58)

|λn|2

n

|λn|2 1
ηC0e

−C1(|λn|∆Tηs)2

η Small
η Large

Figure 4.8: The contents of the stiffness
regulator function, i.e. Λ(η) except the
max, is shown for two values of averaging
window length, η and versus n. Resonant
distance increases along the horizontal
axis. If not for the averaging, numerical
stiffness would increase proportionally to
n. The effect of the averaging window is to
filter out the stiffest terms for large n, while
leaving the lower ones unaffected. The
reduction in the maximum of these curves
is visible as η is increased. This is precisely
the mechanism of stiffness reduction which
makes the algorithm viable. |λn|2 with
no averaging applied is shown in grey for
comparison.

If we slightly relax the restrictions of Definition 4.1 and assume
that a sufficiently sharply-peaked Gaussian kernel satisfies them to
within a numerical approximation we may consider the asymptotic
behaviour of the kernel as |λn| is large, from which we find

∫ 1

0
ρ (s) ei|λn |∆Tηs ds ∼ C0e−C1(|λn |∆Tη)2

. (4.59)

In this latter case, we would write for a second-order timestep-
ping method such as Strang splitting that the stiffness regulator
function takes the form

Λ(η) ≈ max
n∈N
|λn|2

1
η

C0e−C1(|λn |∆Tη)2
. (4.60)
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Figure 4.8 shows this function for various values of η. Λ(η) is
exactly the maximum of the curves shown, which we can see are
bounded. The right-hand side multiplier without averaging, on
the other hand, is proportional to |λn|p and so does not achieve a
maximum as n → ∞. This means that the timestep is limited by the
fastest scale in the system, which is itself a function of the spatial
resolution of the model.

We see in studying Λ(η) precisely how the averaging procedure
filters the fast oscillations which arise due to the quadratic nonlin-
earity. For any amount of averaging applied, the stiffness regulator
function achieves a lower magnitude than maxn∈N |λn|p – which re-
places Λ(η) in the unaveraged analogue of this system – would on
its own. This reduction in the multiplier on the right-hand side re-
duces the numerical stiffness. As η is increased the system is more
aggressively averaged leading to further reductions in stiffness at
the cost of some fidelity to the unaveraged equations.

Crucially, the nature of the averaging is such that the slow com-
ponents of the solution, which both contribute the most to the long-
time dynamics of the system and the least to its numerical stiffness
are affected much less than the fast components, which permits
accuracy in the solution. This is readily apparent in Figure 4.8.

Recall from Section 1.1 (cf. Durran (2010)) that implicit methods,
while providing the desired increase in stable timestep, commit
nontrivial errors in the linear waves. This section has shown that
it is the nonlinear combination of linear waves which is relevant
to the quality of the solution, and so it is important to resolve the
linear waves at all scales.

As a final point, Λ(η) is bounded for all p and tends rapidly
to zero as η → ∞. This will prove important to use in proving
convergence of APinT in the next chapter.

It was claimed at the end of Chapter 1 that triad interactions are
in fact discrete components of nonlinear oscillation and that they
provide a natural way to consider wave averaging and solution
quality subject to oscillatory stiffness. Recalling that the set of all
λn is simply an ordering of the set of all triad interactions based on
their resonant nearness provides the justification for this claim.

4.6 The Full Bound and Results

Theorems 4.2 and 4.3 describe the primary sources of error in the
coarse solver. Based on these bounds, we seek a bound on the error
in the coarse solver. Figure 4.9 sketches this bound conceptually.
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Theorem 4.4. Let ∆T denote the coarse timestep for a second order nu-
merical method. We assume a finite scale separation on the order of ε. For
an averaging window of length η, the total error in the coarse timestepping
for the APinT algorithm is bounded by:

‖x(t)− y∆T(t)‖ ≤ Mε∆T
(
(C0 + C1ε)η + D1(∆T)3Λ(η)

)
, (4.61)

where M is the sup-norm over the nonlinear operator as in Theorems 4.2
and 4.3 and C0, C1, and D1 are finite constants.
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Total Error

Figure 4.9: The primary sources of error
in the coarse solver. The averaging error
increases as more averaging is applied to
the system, while the timestepping error
follows the opposite trend and decreases.
The worst-case total error is the sum of
these two sources of error. The minimum
as a function of η is then understandable as
the ‘Goldilocks point’ where the sum of the
two error sources achieves a minimum.

Proof. By the triangle inequality, we may write

‖x (t)− y∆T (t)‖ = ‖x (t)− y (t) + y (t)− y∆T (t)‖ ,

≤ ‖x (t)− y (t)‖+ ‖y (t)− y∆T (t)‖ .

Theorem 4.2 is used to bound the first term, i.e.

‖x(t)− y(t)‖ ≤ M(C0 + C1ε)ε∆Tη. (4.62)

Applying Theorem 4.3 and equation (4.56) to the second term
yields

‖y(t)− y∆T(t)‖ ≤ MCC1(∆T)3εΛ(η), (4.63)

≤ MD1(∆T)3εΛ(η), (4.64)

where Λ(η) is bounded independently of λn for any averaging
window length, η. Combining the bounds in equations (4.62) and
(4.64) gives the theorem as desired.

This proof directly explains the optimisation problem which was
alluded to at the end of Chapter 1 in Figure 1.7. While the errors
arising from either averaging and timestepping may be individually
minimised with η → 0 and η → ∞ respectively, doing either
of these things would cause the other source of error to be very
large – prohibitively large for practical numerical use. The optimal
averaging window is that which minimises the sum of these two
sources of error.

It was also claimed in Section 1.1, following Higham and Tre-
fethen (1993), that stiffness depends on a finite time interval. Again,
we see here that this claim is substantiated. The time interval with
which we are concerned is the coarse timestep, ∆T, which we have
shown has an effect on both the magnitude of the error and on the
location of the minimum point in its appearance in the D1 term
which describes the stiffness.
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Figure 4.10: The measured error in the
coarse timestepping for the RSWE as a
function of the averaging window length,
η, with ∆T = 0.1. The existence of
an optimal averaging window and the
increasing relevance of it as ε gets large
are both visible, in line with the results of
Theorem 4.4.

The effect of varying the averaging window length for various
values of ε is shown in Figures 4.10 and 4.11. The difference in
the two figures is in the coarse timestep, ∆T, which is doubled in
Figure 4.11. As predicted by Theorem 4.4, the optimisation problem
for the averaging window length depends on both ε and ∆T. For a
numerical solver which does not rely on wave averaging, a timestep
of ∆T = 0.1 is quite large for a problem of this type, particularly for
the very stiff problem where ε = 0.01.

Compared to Figure 2.3, which showed the error for an exponen-
tial integrator with ε = 0.01, taking an optimally-averaged coarse
solver with ∆T = 0.1 provides an improvement in accuracy of ap-
proximately an order of magnitude (cf. Figure 4.10) when compared
to the state-of-the-art for oscillatory stiff problems with such a large
timestep. As mentioned in Section 1.1, accuracy can be as much
of a consideration as stability in the context of oscillatory stiffness.
Figure 4.11 provides results of very close to this quality, but with
double the timestep which is possible without using the fast-wave
averaged, HMM-style method which we have discussed in this
chapter.

4.6.1 Timestep Extension Results

It is possible to make a more direct comparison as well. We con-
sider the 1-D RSWE, solved spectrally with Nx = 32 and no hy-
perviscosity so as to more clearly consider the effects of oscillatory
stiffness. We have already shown in Chapter 2 that exponential in-
tegrators with Strang splitting provide a method of increasing the
explicit timestep limit for oscillatory stiff problems. As an illustra-
tion, we compare the timestep limits of the Strang splitting solver
with the HMM-based ‘coarse’ solver. As this is a numerical exper-
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Figure 4.11: The numerically measured
error in the coarse timestepping for the
RSWE as a function of the averaging
window length. Here, the timestep is ∆T =
0.2, which is double that of Figure 4.10. It
is apparent that the different time interval
is relevant to the optimal averaging. In
particular, the optimal η when ε = 1 is
approximately equal to the coarse timestep
in both cases.

iment, we have taken an ‘unstable’ timestep to be one which led
to single-precision overflow when solved on a temporal domain of
t = [0, 50].7 7 This method is undoubtedly imperfect, but

gives a good impression of relative stability
bounds of one method to another on a fixed
problem size.In both cases, an optimal averaging window was used, which

means that for the ε = 0.01 case the averaging applied was much
stronger than in the ε = 1.0 case. We see (cf. Figure 4.12) that solv-
ing the optimally-averaged HMM equations provided a significant
increase in the maximum stability limit for the highly-oscillatory
situation. Again, this is compared to an exponential integrator
which already handles the rapid oscillations much better than most
explicit methods.

In the less-stiff cases, we do not see as much of an improvement
in the timestep limit. This is because, especially when ε = 1.0, the
oscillations are already quite slow and so there is less of a timestep
restriction leading to very little improvement to be made by averag-
ing. In reality, this does not cause a problem, as standard methods
are quite capable of handling this ‘easy’ problem.
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Figure 4.12: The improvement in the
maximum timestep is shown for the fast-
wave averaged method as compared to
an unaveraged exponential integrator. We
see that in the rapidly-oscillating situation
where ε = 0.01 a significant increase is
possible. In the less stiff case, less of an
improvement is made, as there is less room
to improve.

There is also a physical consideration since the coarse solver is
computing optimally-averaged solutions, rather than fully-averaged. To
put it succinctly, optimal averaging minimises error for given con-
ditions of timestep and scale separation, while full averaging filters
everything but direct resonances and therefore maximises timestep
with complete disregard for accuracy. As ε → 0 (cf. Section 3.3)
both methods tend towards one another. For larger ε, however, it
is necessary to retain more near-resonances in order to retain ac-
curacy, as has been shown in this chapter. This necessarily means
progressively less stiffness reduction as ε increases.

It is practically convenient to have a numerical method which
may be tuned in real-time through the choice of the averaging
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window to function across a wide range of ε. The coarse solver
proposed and analysed in this chapter provides such a method, as
opposed to one which only works in the stiff case described by the
asymptotics of Section 1.4.

Now that we have developed and explained the ‘coarse’ solver,
we will look at a practical application of it. The original use of
this solver was in Parallel-in-Time simulation (Haut and Wingate,
2014) and the results of this chapter allow us to extend their proof
of convergence in the limit of ε → 0 to the finite case. We shall
also discuss the particularities of choosing an optimal averaging
window in computational practice in the coming chapter.

Key Points

• We are able to numerically compute the average with the Hetero-
geneous Multiscale Method.

• The error committed by the averaging method is dominated by
the averaging error and the timestepping error, giving rise to the
‘Goldilocks Point’ seen in parameter studies.

• An increase in the averaging window length corresponds to an
increase in averaging error and a decrease in timestepping error,
and vice versa.

• The ordered set of triadic interactions provides a natural atomic
unit of solution for quadratically-nonlinear systems – not the
linear waves.





5 From Parareal to APinT

The way the processor industry is going, is to
add more and more cores, but nobody knows
how to program those things. I mean, two,
yeah; four, not really; eight, forget it.

Steve Jobs, Apple

As discussed in Chapter 1, there is a limit on the extent to
which simulations may be sped up through spatial parallelism.
Parallel in Time methods aim to increase the speedup available on a
massively parallel machine by extending parallelism to the tempo-
ral domain. There are several different methods of time parallelism,
but we shall consider only the Parareal method here.

The Parareal method, proposed by Lions et al. (2001) and further
expanded upon by Maday and Turinici (2003), first approximates
the solution to an initial-value problem via a coarse timestepping
method, which is then iteratively refined parallel-in-time via fine
timesteps, such that the solution converges to the fine solution. To
illustrate this, consider some solution to an initial value problem, U,
and an approximation to that solution, U. It is then an identity that

U = U + (U−U). (5.1)

Let ϕ∆T(u0) denote the evolution operator associated with the
numerical solution of the differential equation we wish to solve
in a Parareal fashion such that u(t) = ϕ∆T(un−1) numerically
solves the full equation over an interval of ∆T. Similarly ϕ∆T(un−1)

numerically solves some suitable approximation thereof.

We then divide the time domain into N finite subintervals,
[n∆T, (n + 1)∆T], where n = 0, . . . N − 1. Writing Un = u(n∆T)
and neglecting truncation and discretisation errors the identity in
equation (5.1) takes the form

Un = ϕ∆T(Un−1) + [ϕ∆T(Un−1)− ϕ∆T(Un−1)]. (5.2)

Parareal methods proceed by computing approximations to the
solution, Uk

n, in an iterative fashion where k denotes the iteration
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level. Formally, we write

Uk
n = ϕ∆T(U

k
n−1) + (ϕ∆T(Uk−1

n−1)− ϕ∆T(U
k−1
n−1)), k = 1, 2, . . . (5.3)

Here, since the right-hand side quantities Uk−1
n−1 in the difference

[ϕ∆T(Uk−1
n−1)− ϕ∆T(U

k−1
n−1)] are already computed at iteration level

k, the difference can be computed in parallel for all n. Since the
computation of ϕ∆T(U

k
n−1) is cheap, the overall computation is fast

in a parallel sense if the iterates converge quickly.

In order to do this in practice, we start with an initial approx-
imation computed by the so-called coarse solver, corresponding
to ϕ∆T(·). We then solve the differential equation using both the
coarse solver and the fine solver, ϕ∆T(·), over intervals of ∆T start-
ing at the initial conditions arising from the first approximation.
This is done in a time-parallel fashion, i.e. each coarse time interval
is computed simultaneously. In this way, Parareal may be thought
of as an extension of domain decomposition methods to the tempo-
ral domain (Maday and Turinici, 2003).

(1) First Iteration

U0
n = ϕ(U0

n−1)

(2) Parallel in Time Iteration

ϕ(U0
n−1) and ϕ(U0

n−1)

U0
n

ϕ(U0
n−1)

0 ∆T 2∆T 3∆T 4∆T 5∆T

(3) Parareal Correction Iteration

U1
n = ϕ(U1

n−1) + (ϕ(U0
n−1)− ϕ(U0

n−1))

Time

ϕ(U0
n−1)

ϕ(U0
n−1))

U1
n

Figure 5.1: A schematic of the first iteration
of the Parareal algorithm. (1): the solution
is found at intervals of j∆T by the coarse
solver in serial. This permits the parallel-in-
time iteration to proceed. (2): the parallel-in-
time iteration. The coarse (not shown) and
fine solvers integrate over intervals of ∆T,
starting from the initial conditions found in
the first iteration. Each interval is integrated
simultaneously, hence the time-parallelism.
(3): the Parareal correction iteration. Using
the results from the previous iteration level,
a serial sweep is made across to correct
the solution at times j∆T. From here, steps
(2) and (3) are repeated with the solution
found in (3) providing the initial conditions
for the parallel-in-time iteration in (2) until
sufficient convergence has been achieved.
The difference ϕ(U0

4)− ϕ(U0
4) is indicated

in the third subplot.

Finally, equation (5.3) is the Parareal correction iteration which
is performed as a serial sweep through time. This process is re-
peated until the solution has converged. This procedure for the
initial coarse solve (iteration 0) and the first Parareal iteration cy-
cle is shown in Figure 5.1. Algorithm 5.4 provides a pseudocode
implementation of the Parareal algorithm for a general differen-
tial equation without specifying the details of the coarse and fine
solvers.

The solution obtained from Parareal will converge to that of
the fine solver if it converges (Gander and Vandewalle, 2005). It
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Algorithm 5.4: The Parareal Algorithm
Uold

0 ← u0 . Initial Condition
for n = 1, . . . , N − 1 do . Initial guess with Slow Solver

Uold
n ←Coarse_Solver

(
Uold

n−1, ∆T
)

end for

Unew
o ← u0

. Iterative refinement to convergence
while maxn ‖Unew

n −Uold
n ‖/‖Unew

n ‖ > tol do
parfor n = 1, . . . , N − 1 do . Parallel-in-Time Step

Uold
n ← Unew

n

Vn ←Fine_Solver
(

Uold
n−1, ∆t, ∆T

)

Vn ← Vn−Coarse_Solver
(

Uold
n−1, ∆T

)

end parfor

for n = 1, . . . , N − 1 do . Parareal Correction Iteration
Unew

n ←Coarse_Solver
(

Uold
n−1, ∆T

)
+ Vn−1

end for
end while
return Unew

1 , . . . , Unew
N

then follows that the choice for which fine solver to use is that
which is desired in practice, but which requires parallel acceleration
through the Parareal framework. The same timestep size as would
otherwise be used, denoted by ∆t and called the fine timestep, is
taken.

The choice of the coarse solver is more difficult and is the major
advancement in this work, extending that of Haut and Wingate
(2014). In practice, there are three requirements on the coarse solver
which must be satisfied for the Parareal method to be of practical
use:

1. The coarse timestepping method must permit large timesteps,
i.e. ∆T � ∆t.

2. The coarse timesteps much be computationally inexpensive.

3. The method must converge quickly, i.e. Uk
n → Un rapidly as

k→ ∞.

Should the differential equation being solved be sufficiently well-
behaved, i.e. lacking in stiffness and without prohibitively expen-
sive nonlinearities, these conditions are easily satisfied. In fact, the
simplest possible Parareal algorithm takes the coarse timestepping
method to be the same as the fine timestepping in every regard
except for a longer timestep (Lions et al., 2001). Other possibilities
include a coarser space discretisation (Fischer et al., 2005), and/or a
modified physical model (Maday and Turinici, 2003). It is the last of
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these which shall prove particularly interesting for our work here.

Examples of applications of the Parareal algorithm being applied
to parabolic PDEs include simulations of financial markets (i.e.
the Black-Scholes equation for an American put (Bal and Maday,
2002)), the Navier-Stokes equations (Fischer et al., 2005; Trindade
and Pereira, 2004), fluid/structure interaction (Farhat and Chan-
desris, 2003), a nonlinear parabolic evolutionary equation via the
finite element method (He, 2010), skin transport problems (Kreien-
buehl et al., 2015) and the p-Laplacian (Falgout et al., 2016).

Hyperbolic systems, on the other hand, are known to be an issue
for the Parareal method. Bal (2005) showed that while a sufficiently
damped coarse solver is unconditionally stable for parabolic sys-
tems, but not hyperbolic ones. Staff and Rønquist (2005) showed
that Parareal is unstable for purely imaginary eigenvalues in the
solution operator. Finally, Gander and Vandewalle (2005) showed
that for advective problems vanilla Parareal is either unstable or
inefficient. Solving hyperbolic problems with the Parareal method
relies on the application of techniques to stabilise the coarse solve
(Haut and Wingate, 2014; Ariel et al., 2016).

There have been several modifications to the Parareal method
which are suitable for highly oscillatory systems which assume that
the system may be separated into fast and slow variables. In terms
of ODEs, Legoll et al. (2013) have proposed a multiscale method
for singularly perturbed ODEs where the fast dynamics are dissi-
pative. Ariel et al. (2016) propose a method for highly oscillatory
ODEs which is multiscale in nature but does not require explicit
knowledge of the fast and slow variables. Gander and Hairer (2014)
suggest Parareal methods for Hamiltonian dynamics.1 Approaches 1 According to Tuynman (2014), the sym-

bol H, commonly used to denote the
Hamiltonian, was chosen by Joseph-Louis
Lagrange in honour of the Dutch scientist
Christiaan Huygens.

using symplectic integrators with applications to molecular dynam-
ics are presented in, for example, Audouze et al. (2009) and Bal and
Wu (2008). Finally, Haut and Wingate (2014) proposed a method
which is motivated by asymptotic solutions for fast singular limits
of nonlinear evolutionary PDEs. It is an extension of this method
which we study here and which we refer to as Asymptotic Parallel-
in-Time (APinT). It takes its name from the modified coarse solver
which is inspired by methods used in the asymptotic analysis of
PDEs.2 2 It cannot be overstated that the APinT

method does not rely on an asymptotic
solution. Rather, it is the asymptotic deriva-
tion of fast wave averaging of Section 1.4
which inspired the method. Perhaps
Asymptotically-Inspired Parallel-in-Time is a
more accurate name.

Consider once again the general PDE (1.4). It is problems of this
type which we are interested in solving with a Parareal method
and we shall assume without loss of generality that ε may become
arbitrarily small, leading to oscillatory stiffness and necessitating a
well-designed coarse propagator.

In general, the maximum timestep for this type of system is
O(ε), so in the case of ε = O(1), i.e. the less-stiff case, Parareal
may be applied without any modifications. However, as ε → 0 this
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would require too small of a coarse timestep. The insight of Haut
and Wingate (2014) was that a slow solution based on a coordinate
transformation and a time average over the fast waves in the non-
linear operator provides a convergent and efficiently-computable
coarse approximation. In fact, they showed that under suitable as-
sumptions of smoothness, superlinear convergence is obtained as
ε→ 0.

The APinT algorithm as we shall apply it here consists of a
Strang splitting-based exponential integrator for the fine timestep-
ping (cf. Section 2.3) and the HMM-style averaged integrator for the
coarse timestepping (cf. Chapter 4).

5.1 Complexity Bounds

Directly following Haut and Wingate (2014) we may discuss
the time complexity of the APinT algorithm, which we reprint
here for clarity with only minor additions. Assume without loss
of generality a time interval [0, 1] which is sub-divided into N
sub-intervals [Tn−1, Tn], each of length ∆T = 1/N. Let M de-
note the number of fine timesteps used in each interval such that
M = ∆T/∆t. Finally, let τc denote the wall-clock time required to
compute the coarse solution, ϕ∆T(u0), over a coarse timestep and
τf denote the wall-clock time required to compute the fine solution,
ϕ∆T(u0), over a fine timestep.

The initial guess (iteration 0 in Figure 5.1) which must be com-
puted serially requires a wall-clock time of Nτc. In order to move
from iteration level k to iteration level k + 1 we must compute the
difference

Vk
n = ϕ∆T(Uk

n)− ϕ∆T(U
k
n). (5.4)

This step may be performed in a parallel fashion and so requires a
wall-clock time of τc + Mτf . Finally, we must carry out the Parareal
correction iteration

Uk+1
n = ϕ∆Tn−1

(Uk+1
n−1) + Vk

n, (5.5)

which runs in serial and requires a wall-clock time of Nτc, as Vk
n is

already known and its addition is therefore an O(1) operation. The
total wall-clock time after ν iterations is then

Tparareal = ν(Mτf + Nτc + τc) + Nτc. (5.6)

This is compared to the serial cost of solving the equations which is

Tserial = NMτf . (5.7)
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The estimated Parareal speedup is then

NMτf

ν(Mτf + Nτc + τc) + Nτc
≤ min

(
τf

τc

M
ν + 1

,
N
ν

)
. (5.8)

This gives an upper bound which is proportional to M = ∆T/∆t,
which is the ratio of coarse to fine timesteps. That this value must
be large was claimed earlier in this chapter to be the first require-
ment for a practical Parareal implementation and this provides the
justification for that fact. Now consider

NMτf

ν(Mτf + Nτc + τc) + Nτc
≈ 1

ντc

(Nτc)(Mτf )

Mτf + Nτc
. (5.9)

We then minimise the wall-clock time with a choice of Nτc = Mτf .
Both τc and τf are fixed constants, leaving N and M to be cho-
sen. In practice, the choice of N will generally be informed by the
practicalities of the parallel architecture, e.g. how many nodes are
available. In order to converge, the fine solver requires timesteps
which are some fraction of ε, ∆t = aε, where 0 < a < 1. This gives

N =

√
τf

τc

√
1
aε

, M =

√
τc

τf

√
1
aε

, (5.10)

which leads to an estimated parallel speedup of

Tserial
Tparareal

=
N
(

τc
τf

N
)

ν
(

τc
τf

N + τc
τf

N
)
+ τc

τf
N

(5.11)

=
1

2ν + 1

√
τf

τc

√
1
aε

. (5.12)

The APinT method then provides an arbitrarily large speedup
compared to serial numerical integrators as ε→ 0.

Recalling Algorithm 4.2, it is possible to compute the time av-
erage in an embarrassingly parallel manner. Doing so reduces
the time complexity of the coarse solver from τc = O(M) to
τc = O(log M). In practice, this is necessary to satisfy the sec-
ond requirement for a coarse timestepping method, which is that it
be computationally inexpensive.

The time complexity is of interest in practice and provides some
additional justification for the lengths we have gone to in develop-
ing the coarse solver. The primary focus of this work, however, is
on the error analysis. We then turn our attention back to a consid-
eration of the role that the errors committed by the coarse timestep-
ping method play in the convergence of APinT. Understanding
these will ultimately allow us to average optimally and therefore
achieve the fastest possible convergence of the APinT method inde-
pendent of scale separation.
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As a final point on time complexity, improving the convergence
means reducing the number of iterations, ν, which feeds directly
back into the analysis of this section (cf. equation (5.12)). This
then allows us to satisfy the third requirement on a useful coarse
timestepper for the Parareal method – rapid convergence.

5.2 Convergence of APinT

The original authors of the APinT method showed super-
linear convergence of the method in the asymptotic limit as ε → 0
(Haut and Wingate, 2014). Recalling Chapter 3 this yields a so-
lution which is comprised solely of directly resonant triads as all
other interactions are filtered by the wave averaging procedure. By
considering only this limit they were able to provide Theorem 5.1,
which describes the convergence of the APinT method to the fine
solution.

Theorem 5.1. Consider a scale of Banach spaces B0 ⊇ B1 ⊇ B2 ⊇ . . .,
such that functions in Bj+1 are smoother than functions in Bj. Assuming
that u0 = u(T0) ∈ Bj+k+1, the error, u(Tn) − Uk

n after k Parareal
iterations is bounded by

‖u(Tn)−Uk
n‖Bj ≤ Ck,j(∆Tp + ε)

(
∆Tp +

ε

∆T

)k
)‖u0‖Bj+k+1 , (5.13)

where p is the order of the coarse timestepping method, the norm is al-
ways taken in the Banach space denoted Bj or Bj+k+1, and Ck,j is a
constant that depends only on the Banach space-dependent constants
Cm, m = 0, 1, . . . , k + j (recalling that the scale of Banach spaces extends
from B0 to Bj+k+1). �

By assuming that the Banach spaces coincide, which may not
hold in the infinite-dimensional setting, they were able to show
that the constants decrease with increasing k, yielding superlinear
convergence. The reader is referred to Haut and Wingate (2014) for
the proof of this theorem and necessary assumptions made. The
central focus of this chapter is the extension of the convergence
proof to the more physical case outside of the small-ε limit which
necessarily requires the consideration of near-resonant interactions
which led to the bounds on averaging and timestepping errors in
Chapter 4.

We may now derive error bounds for the Parareal iteration on
finite systems of ODEs. Using our improved error bound for the
coarse solver which holds for finite ε, we modify the proof given
in Haut and Wingate (2014), which held only as ε → 0. For con-
sistency we define several operators following Haut and Wingate
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(2014). Let ϕ̃∆T(·) be the evolution operator associated with numer-
ically solving the slow equation using a second order method, such
that ϕ̃∆T(·) is a numerical approximation of ϕ∆T(·). Furthermore,
let ϕ∆T(·) denote the evolution operator for the fine solution. We
then define:

Eϕ,ϕ(·) = ϕ∆T(·)− ϕ∆T(·), (5.14)

and
Eϕ,ϕ̃(·) = ϕ∆T(·)− ϕ̃∆T(·). (5.15)

Then, as in Bal (2005), Haut and Wingate (2014), and based on
Chapter 4 we make the following assumptions, where η is the
length of the averaging window, M is the sup-norm over the non-
linear term, and Λ(η) is the stiffness regulator function.

1. The operators ϕ(·) and ϕ(·) are uniformly bounded for 0 ≤ t ≤ 1

‖ϕt(u0)‖ ≤ C‖u0‖ , ‖ϕt(u0)‖ ≤ C‖u0‖. (5.16)

2. The averaging method is accurate in the sense that

‖ϕt(u0)− ϕt(u0)‖ ≤ ε∆TηM(C1 + C2ε)‖u0‖. (5.17)

3. The averaged evolution operator satisfies

‖ϕ∆T(u1)− ϕ∆T(u2)‖ ≤ (1 + C∆T)‖u1 − u2‖, (5.18)

and the numerical approximation to the evolution equation
satisfies

‖ϕ̃∆T(u1)− ϕ̃∆T(u2)‖ ≤ (1 + C∆T)‖u1 − u2‖. (5.19)

4. Following Theorems 4.2 and 4.3 and equation (5.16), the error
operators satisfy

‖Eϕ,ϕ(u1)− Eϕ,ϕ(u2)‖ ≤ ε∆TηM(C1 + C2ε)‖u1 − u2‖, (5.20)

and

‖Eϕ,ϕ̃(u1)− Eϕ,ϕ̃(u2)‖ ≤ ∆Tp+2εΛ(η)MC‖u1 − u2‖, p ≥ 1.
(5.21)

Having quantified the major sources of error in the coarse
timestepping which will affect the convergence of Parareal, the
proof of the convergence follows directly from these bounds.

Theorem 5.2. Subject to the above assumptions, the error, u(Tn)− Uk
n,

after the k-th Parareal iteration is bounded by

‖u(Tn)−Uk
n‖ ≤ MCg

(
C1∆T3εΛ(η) + (C2 + C3ε)εη

)k+1
‖u0‖.

(5.22)
�
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Proof. The proof is by induction on k. When k = 0

‖u(Tn)−U0
n‖ = ‖ϕ∆T(u0)− ϕ̃∆T(u0)‖
≤ ‖ϕ∆T(u0)− ϕ̄∆T(u0)‖+ ‖ϕ̄∆T(u0)− ϕ̃∆T(u0)‖
≤ M((C1 + C2ε)ε∆Tη + C3∆T2)‖u0‖,

where we have used (5.17), which bounds the error induced by the
averaging procedure, to bound the first term and Lemma 4.3, which
governs the timestepping error, for the second. Now assume that

‖u(Tn)−Uk−1
n ‖ ≤ (∆T + ε)

(
C1∆T3εΛ(η) + (C2 + C3ε)εη

)k
‖u0‖.

(5.23)

We may then write the Parareal iteration, (5.3) in the following
form, using (5.20) and (5.21)

u(Tn)−Uk
n = (ϕ̃∆T(u(Tn−1))− ϕ̃∆T(Uk

n−1))+

(Eϕ,ϕ̄(u(Tn−1))− Eϕ,ϕ̄(Uk−1
n−1)) + (Eϕ̄,ϕ̃(u(Tn−1))− Eϕ̄,ϕ̃(Uk−1

n−1))

(5.24)

By directly substituting equations (5.19), (5.20), and (5.21), we
have

‖u(Tn)−Uk
n‖ ≤ (1 + C∆T)‖u(Tn−1)−Uk

n−1‖+
M
(

C1∆T3εΛ(η) + (C2 + C3ε)ε∆Tη
)
‖u(Tn−1)−Uk−1

n−1‖

≤ (1 + C∆T)‖u(Tn−1)−Uk
n−1‖+

M∆T
(

C1∆T2εΛ(η) + (C2 + C3ε)εη
)k+1

‖u0‖.

Finally, application of the discrete Grönwall inequality gives

‖u(Tn)−Uk
n‖ ≤

(
eC(Tn−T0) − 1

)
M
(

C1∆T2εΛ(η) + (C2 + C3ε)εη
)k+1

‖u0‖

= MCg

(
C1∆T2εΛ(η) + (C2 + C3ε)εη

)k+1
‖u0‖,

where

Cg = eC(Tn−T0) − 1. (5.25)

This proof generalises that of Haut and Wingate (2014), where
they showed convergence for the asymptotic limit as ε → 0, to
finite ε as well. This is a significant improvement as for many phys-
ical applications such as weather and climate modelling ε remains
finite.
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5.2.1 Convergence Independent of Scale Separation

For the APinT algorithm to converge, we require (following
Theorem 5.2) that

C1∆T3εΛ(η) + C2εη + C3ε2η < 1. (5.26)

We are then left with the problem of choosing an appropriate aver-
aging window length, η, depending on the degree of scale separa-
tion, ε, and the filtered contribution of the triads as described by the
stiffness regulator function, Λ(η). In the interest of demonstrating
that one exists, we assume the scaling (for example)

η =
∆T
εs , 0 < s < 1. (5.27)

We then have:

C1∆T3εΛ
(

∆T
εs

)
+ C2ε1−s∆T + C3ε2−s∆T < 1, (5.28)

as ε → 0, our error also decreases for any value of the power s.

Λ
(

∆T
εs

)
is bounded, so as ε → 1, all terms remain bounded and we

may choose our coarse timestep accordingly to ensure convergence.
This means that the method proposed here may be applied across
the full range of ε ∈ (0, 1] with only a change of averaging window
length, which allows convergence for physical problems where the
time scale separation may change throughout the computation.
This is in contrast to the proof in the limit (Haut and Wingate, 2014)
which proved convergence only for ε→ 0.

5.3 Optimal Averaging for APinT

It was shown in Section 5.2.1 that it is possible to choose the
averaging window in such a way as to ensure convergence. We may
go one step farther and choose the averaging window to obtain the
fastest possible convergence. This involves a novel optimisation
problem which does not discard the inherent nonlinearity of the
underlying differential equations. Figure 5.2 shows the iterative
error in APinT after three iterations for a range of values of scale
separation.

As with the coarse error, there is a clear minimum with respect
to the averaging window length for larger values of ε which leads
to an optimisation problem to be solved. With reference to Theo-
rem 5.2 above and recalling that k is the iteration level, we write this
as

min
η∈R+

(
C1∆T3εΛ(η) + (C2 + C3ε)εη

)
, (5.29)
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Figure 5.2: The iterative error for the APinT
algorithm is shown after three iterations
for a range of averaging window lengths
and values of scale separation. We see
the same behaviour as for the coarse
solver, with an optimal choice of averaging
window for the values of ε outside of the
limit. As everywhere else in this work, a
pseudospectral method was used on a
spatially-periodic domain with Nx = 64,
∆T = 0.1, ∆t = 10−4.

for some as-yet unknown constants C1, C2, and C3. Seeking station-
ary points with respect to η and explicitly considering the stiffness
regulator function (4.56), this then requires us to find η such that

d
dη

max
εβ

max
S

εβ
k,α

∣∣∣ωα
k −ωα1

k1
−ωα2

k2

∣∣∣
2

ε

∫ 1

0
ρ(s)e

i
∣∣∣∣ωα

k−ω
α1
k1
−ω

α2
k2

∣∣∣∣η∆T

ε s ds

+
C2 + C3ε

C1∆T3 = 0. (5.30)

This expression relies on several unknown constants. If these
constants Cn were known, the optimal averaging window could be
determined computationally. Equation (5.30) would then provide
an approximation to the optimal window. Given some initial data
of the type shown in Figure 5.2, Cn could be fit by, for example,
least-squares. Doing so would require some initial experimental
data for a given timestepping method but would permit the opti-
mal averaging window to be recomputed ‘on the fly’ in a computa-
tion.

Certain practical issues arise in the computation of η. Firstly,
the computation of dΛ

dη requires all triads to be investigated, i.e. the
maximum is taken over the set of all near-resonant sets. Doing so
is computationally expensive, although if this computation were to
be performed infrequently the cost could be negligible compared
to the simulation cost. Additionally, finding η requires solving a
transcendental equation in at least two variables (η, ε), both for the
initial fitting of constants, and for the optimisation on the fly. We
therefore propose a simpler model based on the behaviour of Λ(s).

Restricting ourselves for this example to a Gaussian kernel, we
may consider the asymptotic behaviour of the kernel as λn is large
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as in Section 4.5.1. This gives

1
η

∫ η

0
ρ

(
s
η

)
eiλn∆Tsds ∼ C0e−C1(|λn |∆Tη)2

. (5.31)

We then multiply our approximation by 1 = η2/η2 to obtain

η2

η2 C1∆T3εΛ(η) ≈ D1∆Tε

η2 , (5.32)

for some constant, D1, since x2e−x2
is bounded independently of

x. We then replace our first term in (5.29) and seek fixed points
corresponding to the minimum error. This yields

ηoptimal =

√
D1∆T

C2 + C3ε
. (5.33)

This equation provides an estimate for the optimal averaging win-
dow length, ηopt, in terms of the computational parameters and the
empirically-fit constants. This result is consistent with Theorem 5.2,
as it exhibits a clear minimum for O(1) values of ε, with the op-
timal averaging window increasing as ε → 0, as the asymptotic
theory predicts. Both approximations are shown in Figure 5.3 for a
set of minima extracted from a series of runs of the algorithm.
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Figure 5.3: The optimal averaging window
for the APinT solver is predicted in three
different ways as a function of the scale
separation. The measured optimal values
for several runs with a coarse timestep
of ∆T = 0.05 are shown with the filled
circles. The so-called ‘full’ or expensive
model from (5.30) is shown with the solid
curve. This model shows good agreement
throughout the range and handles the long
averaging windows needed as ε → 0
as well. The simple model derived from
asymptotic analysis on a Gaussian kernel
is shown with a dashed line, and provides
similar accuracy as the full model outside
of the small-ε region, but at a dramatically
reduced computational cost. Finally, the
dotted line indicates the assumed scaling
on the averaging window given in (5.27)
with s taken empirically as 0.2. The trend
towards a longer time averaging window
being necessary for smaller ε is captured,
while this scaling somewhat overestimates
the window for larger values of scale
separation, although it may be computed
very cheaply.

The full model given in (5.30) provides a much closer approxi-
mation both to the behaviour for ε = 1 and as ε → 0, and as an
actual fit to the points. It does this, however, at the cost of several
orders of magnitude more computational difficulty. The simple
model of (5.33), on the other hand, provides a reasonable approx-
imation to the error as a function of ε, but has the disadvantage of
poorly resolving the trend in the limit as ε → 0. While the simple
prediction underestimates the optimal as ε → 0, the behaviour in
this range is well-understood (cf. Haut and Wingate (2014), Ariel
et al. (2016)) and so a hybrid model may easily be applied in prac-
tice.
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5.4 Parameter Studies in One Dimension

In order to validate the convergence results, a series of
parameter studies have been performed with APinT on the 1-D
RSWE. In all cases in this section, a Fourier pseudospectral method
was used. Hyperviscosity was used for stability, but no other dis-
sipation was present in the solution of the problem. The boundary
conditions were periodic and the domain was of size L = 2π. The
initial condition was an initially-stationary Gaussian height field.

Except where otherwise specified, all of the runs in this section
used ∆t = 10−4 and Nx = 64. The smooth kernel of integration was
taken to be Gaussian everywhere.
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Figure 5.4: The relationship between
coarse error and the number of iterations
necessary for convergence is shown. The
rapidly-oscillating case of ε = 0.01 is
shown on the bottom, with the non-stiff
case of ε = 1.0 on the top. The L2 coarse
error is shown in grey corresponding to the
logarithmic scale on the left y-axis. The
total number of iterations for convergence
to single precision is shown with the black
circles, corresponding to the linear scale on
the right. This latter quantity is necessarily
discrete, while the iterative error is a
continuous quantity measured at discrete
points.

Figure 5.4 shows the relationship between the error and the total
number of iterations for convergence as a function of the length of
the averaging window, η, and when ∆T = 0.1. The total number
of coarse timesteps taken parallel-in-time was 50. Both the non-stiff
case where ε = 1.0 and the stiff case where ε = 0.01 are shown, with
the L2 coarse error before any Parareal iterations and the number
of iterations for convergence to single precision shown on the same
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plot. The coarse error is the L2-norm of the difference between the
coarse and fine solutions after the initial coarse sweep as in the
numerical experiments in Chapter 4.

There are two main points here. Firstly, the coarse error is a good
predictor of the convergence rate. This holds true both when the
APinT algorithm converges very quickly and one would expect that
the numerical behaviour is well-approximated, but also for highly
non-optimal averaging windows.

The second important point which follows on the first is that
the convergence properties of the APinT algorithm follow the same
pattern as the coarse propagator. Specifically, we note that in the
small-ε calculation, optimal convergence was obtained for longer
averaging windows which filter all but the direct resonances. Once
this level of convergence has been obtained, increasing the length of
the averaging window does not provide further gains.

When ε = 1.0 the expected behaviour is seen with the clear pres-
ence of the ‘Goldilocks point’ in both the computed error and the
required number of iterations. The averaging window which min-
imises the iteration count corresponds to where the coarse error is
minimised (Theorem 4.4).

To further justify the improvement in simulation provided by
Parareal, we present three comparisons of optimally-averaged AP-
inT with vanilla Parareal, at ε = 0.01, 0.1, and 1.0. By ‘vanilla
Parareal’, we mean a Parareal simulation where the coarse timestep-
ping method is exactly the same as the fine, save for a longer
timestep – no averaging is applied.

In Figures 5.5, 5.6, and 5.7, we show the iterative error of both
methods as a function of iteration level, k. The convergence of AP-
inT is bracketed by that of two vanilla Parareal runs so that the
improvement in timestep may be directly compared to the existing
state of the art.

In all cases, the total simulation time was Tfinal = 5.0. The inten-
tion is to compare the algorithms when acting on problems of sim-
ilar spatio-temporal size irrespective of scale separation, as would
often be the case in practice. A similar study which considers final
times on the order of ε is provided by Haut and Wingate (2014).

Figure 5.5 shows the highly stiff regime with ε = 0.01. This is
the type of problem which APinT was developed to handle, and
so it is not surprising that in terms of accuracy, APinT performs as
well as vanilla Parareal with between five and ten times the coarse
timestep. In real terms, this corresponds to a parallel speedup of
just slightly below five to ten times.
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Figure 5.5: A comparison of the conver-
gence of APinT with vanilla Parareal as a
function of iteration number for the very
stiff case. The convergence rates of two
Parareal runs are shown which bracket a
given APinT run. Note that APinT provides
similar performance to the Parareal algo-
rithms while taking a timestep between five
and ten times longer.

The major novelty of this section is that the averaging window
may be optimised to make APinT an effective method for larger
values of ε. Recalling Chapter 3, the infinitely long averaging win-
dow only applies in the case of infinite scale separation. To a nu-
merical approximation, Figure 5.5 showed this case.
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Parareal, ∆T = 0.03
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Figure 5.6: A comparison of the conver-
gence of APinT with vanilla Parareal as a
function of iteration number for the mod-
erately stiff case. As with Figure 5.5 the
convergence of APinT is bracketed by
two Parareal runs. An improvement is still
visible here with APinT allowing a coarse
timestep of between two and three times
larger for similar performance.

By choosing an optimal averaging window as discussed above
in this chapter, we are able to obtain an improvement on vanilla
Parareal in cases of small or no scale separation. As ε → 1 the AP-
inT method ceases to provide a significant advantage over vanilla
Parareal. Importantly, however, the APinT algorithm easily adjusts
to changes in scale separation and so there is no requirement to
change algorithms when outside the QG limit. Figures 5.6 and 5.7
show the performance of APinT relative to Parareal for ε = 0.1 and
1.0, respectively.

We see that APinT provides an improvement over vanilla Parareal
for intermediate scale separation with ε = 0.1, where there is still
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Figure 5.7: A comparison of the conver-
gence of APinT with vanilla Parareal as a
function of iteration number for the non-
stiff case. As with Figures 5.5 and 5.6 the
convergence of APinT is bracketed by two
Parareal runs. We see that APinT remains
viable outside of the limit of small ε, thus
obviating any need for multiple timesteppers
for different flow regimes.

some degree of oscillatory stiffness present. For ε = 1.0, the AP-
inT method performs approximately as well the vanilla Parareal.
While it may appear that this is a problematic result, it should be
noted that this is the non-stiff case. For this degree of scale separa-
tion wave averaging is not necessary as Parareal methods already
provide good speedup over time-serial methods.
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APinT Iterative Error After 6 Iterations, Grid Convergence
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Figure 5.8: The iterative error after six
iterations is shown versus the averaging
window for two degrees of scale separation
(ε = 0.01 and ε = 1.0) and for three grid
resolutions (Nx = 32, 64, and 256). All
other parameters are identical across all
runs. As expected by Theorems 5.1 and
5.2 the convergence to the fine solution in
independent of grid resolution.

The effect of grid refinement on APinT convergence is shown in
Figure 5.8. Considering three different grid resolutions we find that
there is no effect of grid refinement on APinT convergence. There
is a mild caveat here, which is that Parareal methods converge to
the fine solution and it is this convergence which we are measuring.
There is therefore a different discretisation error in each run, one
which we are implicitly discarding.

Λ(η)

n

SRF Grid Independence

Fine
Coarse

Figure 5.9: A schematic of the stiffness
regulator function for a coarse and fine grid.
The underlying curve is better resolved for
a finer grid but Λ(η) is the maximum value,
which is not affected by grid refinement.

It is not terribly surprising that the grid resolution should have
no effect on the convergence. Considering Theorem 5.2, the effects
of grid refinement present themselves only through the stiffness
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regulator function, Λ(η), and they do so there only through the
larger set of triads which is available at higher resolutions. Recall
the analysis of Section 4.5.1 and in particular the shape of the maxi-
mand of Λ(η), shown schematically in Figure 5.9.

The error in timestepping is bounded by the maximum achieved
after averaging over all triads. When working with a finite grid, the
discrete set of triads leads to a discrete approximation of the max-
imand of the stiffness regulator function. Refining the grid leads
to a consideration of more triads, an ordered set of which generate
the curve in Figure 5.9, thereby improving its resolution but not af-
fecting the magnitude of its maximum. It is this maximum which is
our stiffness regulator function and which bounds the coarse error
and by extension the Parareal error.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

10−4

10−3

10−2

10−1

η/∆T

Ite
ra

tiv
e

E
rr

or
,L
∞

no
rm

APinT Iterative Error After 6 Iterations, Effect of Simulation Time, ε = 1.0

Tfinal = 3.0
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APinT Iterative Error After 6 Iterations, Effect of Simulation Time, ε = 0.01
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Figure 5.10: The effect that the total
simulation time has on APinT is shown for a
non-stiff (top) and stiff (bottom) case. As in
Figure 5.8 the iterative error is shown after
six iterations as a function of the averaging
window length. The familiar trends are
present across a range of simulation times.
Note that increasing the simulation time
hinders convergence, but does not modify
the optimal averaging.

The final parameter study which is interesting in the one-dimensional
case is that of the total simulation time (i.e. the endpoint of the sim-
ulation, Tfinal). Figure 5.10 presents the effect of averaging on APinT
convergence for two values of the scale separation, ε, and three total
simulation times. The coarse and fine timesteps were kept the same
in all simulations. We see that the behaviour of the averaging is un-
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affected by the length of the simulation in terms of the location of
the optimal.

A longer simulation time leads to higher error after six itera-
tions, and therefore more iterations required for convergence. This
is caused by the global coarse error increasing as the total simu-
lation time increases (Kincaid and Cheney, 1991; Trefethen, 1996).
Recalling that the convergence is towards the fine solution, there is
an interesting implication here. Specifically, the global coarse error
increases with Tfinal more rapidly than the global fine error does.

Again, this result is hardly surprising. The global error com-
mitted by the coarse solver is subject to both timestepping and
averaging effects. That averaging error increases with both the de-
gree of simulation time and the degree of averaging was shown
in Lemma 4.2, although we have bundled the former into the con-
stant for clarity in our study of triadic interaction. What we see in
Figure 5.10 is the total effect of the increase in global timestepping
error and averaging error.

5.5 Decaying Shallow Water Turbulence

The 1-D RSWE provide a useful test bed for parameter stud-
ies on the APinT algorithm due to their low computational cost. In
order to have an algorithm of practical use, however, we must be
able to handle more physical problems. We then turn to the 2-D
equations and consider a more challenging problem.

Polvani et al. (1994), extending the work of Farge and Sadourny
(1989) and Spall and McWilliams (1992), numerically investigated
the dynamics of initially balanced decaying turbulence in the rotat-
ing shallow water equations. They found that, as with incompress-
ible 2-D rotating turbulence, coherent vortex structures develop
from the initially random flow field. Following their balanced ini-
tialisation, we have performed an APinT simulation over 1000 eddy
turnover times of the flow.3 3 The numerical initial conditions were

provided by Beth Wingate and Mark Taylor
and are not the work of the author.The case we have used corresponds to case E in Polvani et al.

(1994), which has a Rossby number of 0.25 and a Froude number of
0.2. In the nondimensional framework, this is equivalent to ε = 0.25
and F1/2 = 0.8.

If APinT is to be viable in practice, it is necessary that it be able
to successfully model the physical characteristics of the time dy-
namics of the flow. In particular, it is necessary that the error in-
duced by APinT should not prevent the emergence of coherent
vortex structures. It is known (Gander, 2015) that Parareal methods
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always converge to the fine solution if they converge. This section is
then a numerical study of that fact.

Simulations were performed on a regular grid of size Nx = 1282

with periodic boundary conditions. Hyperviscosity was applied
on both the coarse and fine timesteps, as was 3/2 dealiasing by
padding.4 A coarse timestep of ∆T = te/10 was taken, where te is 4 Some authors would write this as being

the 2/3-rule on a 1922 grid.an eddy turnover time. The fine timestep was ∆t = ∆T/1000. Only
an optimal averaging window was considered, and convergence to
single precision in the L∞ norm was obtained in 6 iterations.

It is not feasible to perform a computation of this size over the
entire time domain simultaneously. Instead, for reasons of both
storage and accuracy (cf. Figure 5.10) APinT was applied over
blocks of size tblock = 200te which were computed back-to-back
as in Figure 5.11. The full simulation then consists of a series of
APinT computations computed sequentially. tblock 2tblock

Block 1 Block 2

Parareal Blocks

Figure 5.11: A Parareal method imple-
mented in blocks of time. Block 1 runs
parallel in time until it has converged. Then,
its solution at its right endpoint is used as
the initial condition for Block 2. The entire
time domain is covered with blocks which
are computed in series until the final time is
reached.

Figure 5.12 shows three snapshots of the vorticity field for an
optimally-averaged APinT simulation with convergence to single
precision. We see that the initially-random flow field has given rise
to coherent vortex structures. From this we deduce that the coarse
timestepping method proposed is sufficiently capable of resolving
the physics of the problem for convergence to the true solution.
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Vorticity Evolution

Figure 5.12: The vorticity field at three
points in time is shown for decaying shallow
water turbulence as computed by APinT.

It is worth comparing the APinT-simulated solution to the true
solution. Figure 5.13 shows the absolute error in the vorticity field
for both a timestep halfway across a block and at the end, and
for three iterations. Iteration 0 is the first coarse solve, before any
Parareal corrections have been applied. We see here that the aver-
aged solution is not qualitatively different from the fine solution,
obtained by Strang splitting in a separate computation.

This also makes clear another useful fact about Parareal algo-
rithms in general: convergence is more rapid closer to the initial
condition. Noting the exponents on the colourbars, we see that the
error after 100 coarse timesteps at any given iteration level varies
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from being between 2× lower to up to almost an order of magni-
tude lower. Knowledge of this fact helps in designing more optimal
blocking algorithms than the naive approach taken in this work.

Key Points

• The Parareal algorithm extends parallelism to the temporal do-
main, but suffers from limitations with oscillatory problems.

• The APinT method applies the coarse solver of Chapter 4 to
enable Parareal convergence for oscillatory problems.

• The optimal averaging window for the coarse solver may be
chosen numerically.

• APinT convergence is largely independent of spatial resolution.

• Both the coarse timestep size and the simulation length affect the
convergence of Parareal methods.
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Error Reduction in APinT

Figure 5.13: The convergence of APinT
to the fine solution is shown in terms of
absolute error. The first column shows the
error in the vorticity field at the halfway point
of the computation, while the second shows
it at the final timestep. The three rows show
the error at iteration 0 (i.e. the first coarse
approximation) and two other iterations.
Pay close attention to the exponents on the
colourmap scale.





6 Conclusion and Future Work

Youre tale anoyeth al this compaignye.
Swich talkyng is nat worth a boterflye.

Geoffrey Chaucer, The Canterbury Tales

Taking the asymptotic understanding of highly oscillatory
PDEs as a starting point, it is possible to construct a numerical
method based on fast-wave averaging. This provides sufficient ac-
curacy to enable more advanced numerical methods for finite scale
separation while permitting a longer timestep. This method permits
accurate and stable numerical solution of highly-oscillatory PDEs
with O(1) timesteps as ε → 0, which stands in stark contrast to
methods which are not designed for this purpose. As an extension
to the work of Haut and Wingate (2014), we have shown that the
averaging may be chosen to ensure Parareal convergence outside of
the small-ε limit.

A particular application of this solver has been presented here in
the form of the Asymptotic Parallel in Time method. The increased
timestep1 and therefore reduced computational time is more im- 1 In fact, the allowable timestep is signifi-

cantly longer than the nonlinear timestep
limit as ε→ 0.

portant than the increased coarse error when compared to a fine
timestepping method which does not employ fast-wave averag-
ing. This is because the Parareal method expects that a coarse error
will be committed and then refines it to the fine solution in a time-
parallel fashion, leading to a speedup in achieving a comparable
solution.

While it is this method which is of interest for practical sim-
ulation of geophysical flows and therefore operational weather
forecasting and climate modelling, the result of the greatest math-
ematical significance shown here is the existence of an optimal
choice of averaging window. By describing the solution in terms
of the discrete components of nonlinear oscillation, called triads,
we have shown that the error incurred by using such a solver is a
trade-off between averaging and timestepping errors and that the
averaging procedure provides a method to control the most rapid
oscillations in the flow while allowing the expression of the low-
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frequency dynamics. In doing so, we have implicitly provided new
numerical analytic evidence in support of previous results (Newell,
1969; Smith and Lee, 2005) which suggested that near-resonant
triads play a vital role in the time evolution of the solution.

The error bounds found in this work improve our understanding
of the numerical simulation of nonlinear dynamics for systems of
the type studied here. It further leads to a practical and easily-
implemented optimisation of the coarse timestepping method
which is applicable to both of the practical algorithms studied.

6.1 Extension to Three Scales

In this work we have assumed that the gravitational and ro-
tational effects were roughly on the same scale, i.e. F = O(1), or
Ro ≈ Fr, where Ro is the Rossby number and Fr is the Froude num-
ber. For realistic geophysical flows, this may not be the case. Con-
sider the coarse error versus the length of the averaging window for
three values of F, shown in Figure 6.1. Recall that ε = Ro = F−1/2Fr.
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Figure 6.1: The effect of two fast time
scales on the coarse error. ε = 1.0 in all
three runs. Note that where F = 10−4, two
distinct optima are visible, corresponding to
two relevant timescales.

The case where F = 1 is the familiar case which we have studied
throughout this work. Taking F = 10−4, however, leads to the
situation where gravitational effects are two orders of magnitude
larger than rotational effects. In this case we see the presence of two
much shallower minima in the error curve. It is suspected that one
each of these corresponds to the gravitational and the rotational
waves being respectively optimally averaged.

Taking the other direction and considering F = 104 gives rota-
tional effects which are two orders of magnitude larger than the
gravitational effects. Here we see that the coarse error improves by
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an order of magnitude. Surprisingly, we do not see two minima. In
fact, the slight trend towards a second one which is visible in the
F = 1 curve has vanished here. This phenomenon is unexplained,
although it is fair to say that in both of these situations, there are
three separated scales, two of which are to some extent fast, as op-
posed to the fast-slow separation which we have considered so far.

Whitehead et al. (2014), considering the rotating stratified Boussi-
nesq equations in the same operator formulation as we have in this
work, wrote their system in terms of two linear operators. Follow-
ing their work we rewrite our governing equation (1.4) in the form

∂u
∂t

+
1

Ro
Ru +

1
Fr
Gu +N (u, u) = Du, (6.1)

where the nondimensional linear rotational operator is

Ru =




0 −1 0
1 0 0
0 0 0







u(x, t)
v(x, t)

η∗(x, t)


 , (6.2)

and the nondimensional linear gravitational operator is

Gu =




0 0 ∂x

0 0 ∂y

∂x ∂y 0







u(x, t)
v(x, t)

η∗(x, t)


 . (6.3)

We may immediately regain the linear operator used previously in
this work as

1
ε
L =

1
Ro
R+

1
Fr
G (6.4)

by using the fact that ε = Ro = F−1/2Fr. Using the expanded
form (6.1) makes the presence of three scales explicit and shows
the need to take an average over both fast timescales.

Based on the intuition developed in this work and the numerical
study shown in Figure 6.1, we expect that there is a method of
optimally averaging in this case as well. Whitehead et al. (2014)
developed an asymptotic slow solution in the limit where both of
the fast scales are infinitely fast and separated from one another but
it did not yield convergent numerical results when both scales were
finite.

If a method of fast-wave averaging which is suited to three scales
may be found, it will enable the APinT algorithm presented in
Chapter 5 for more realistic flow conditions. We then leave the
reader with the following conjecture.

Conjecture 6.1. Let u ∈ L2 be the solution to the following initial-
boundary value problem:

∂u
∂t

+
1

Ro
Ru +

1
Fr
Gu +N (u, u) = Du, (6.5)



102 components of nonlinear oscillation and optimal averaging for stiff pdes

where u(x, t = 0) = u0 and where the solution on the boundary is known.
There exists some averaged numerical solution, u(x, t) = ϕ∆T,ηR ,ηG (u(x, t))
where the averaging method is not specified and where u varies slowly in
time.

For Ro 6= Fr and for all Ro, Fr ∈ (0, 1], there exists an optimal choice
of the averaging windows, ηR and ηG such that min

ηR ,ηG
‖u− u‖ exists and

for any given coarse timestep, ∆T,

0 < η∗R(Ro), η∗G(Fr) < ∞, (6.6)

where the asterisk denotes the optimal choice of the averaging window.

N



A Pseudospectral Methods

There are three things, young
gentlemen, which you are constantly to
bear in mind. Firstly, you must always
implicitly obey orders, without
attempting to form any opinion of
your own respecting their propriety.
Secondly, you must consider every
man your enemy who speaks ill of
your king; and thirdly, you must hate a
Frenchman, as you do the devil.

Vice Admiral Horatio Nelson

When solving PDEs numerically it is necessary to develop
an appropriate discretisation of the system. Spectral methods use
global representations of functions, as opposed to finite difference
or finite element methods, which employ local representations.
This allows them to significantly outperform these methods as long
as the circumstances of the problem are suited to the particular
spectral approximation. Let us assume that the unknown solution
to our PDE of interest, u(x), can be approximated by a series of
N + 1 basis functions, φk(x),

u(x) ≈ uN(x) =
N

∑
k=0

akφk(x). (A.1)

Following Boyd (2000), we substitute this into the equation

Lu = f (x) (A.2)

where L is the operator of the differential equation. The result is the
residual function, defined as

R(x; a0, a1, . . . , aN) = Lu− f , (A.3)

which equals zero for the exact solution and measures the error
induced by the series approximation. Spectral methods take the
basis functions, φk(x), to be global functions of high order which
are non-zero except for at isolated points. This is distinct to, for
example, finite element methods which take the basis functions to
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be local polynomials of fixed degree. While there are several valid
series expansions, we will choose the Fourier series here based on
its widespread use in fluid dynamics (Canuto et al., 1988; Boyd,
2000). The truncated Fourier series with N coefficients also yields
exponential convergence on a periodic spatial domain, which is to
say that the residual goes to zero faster than any power of 1/N as
N → ∞ (Tadmor, 1986).

There is a distinction to be made between ‘interpolating’ (also
known as ‘collocation’ or ‘pseudospectral’) and ‘non-interpolating’
(including Galerkin and tau-style) implementations. Due to its
widespread use in fluid mechanics and its implementational sim-
plicity, we shall restrict ourselves here to pseudospectral methods.
In a pseudospectral method, the unknown is considered in physi-
cal space on a discrete grid of points. The coefficients of the series
expansion are found by requiring that it agree with the known
function at all points on the grid. In practice, this requirement is
enforced through the Fourier transform (q.v. Definition A.1).

A.1 The Fourier Series

Without further ado, let us assume that our basis functions are
trignonometric, leading to the Fourier basis, i.e.

φk(x) = eikx, (A.4)

where x is the spatial coordinate and k ∈ Z are the wavenumbers
familiar from Chapter 3. Using Fourier basis functions as we are
doing here requires that the domain be either periodic or infinite.
In the case of numerical experiments as well as some practical
problems (such as flow around the Earth) it is not problematic
to assume spatial periodicity. Without loss of generality, we will
assume the spatial domain to be 2π-periodic, i.e. u(x) = u(x +

2π), since it is straightforward to rescale the spatial domain such
that this is true. The use of Fourier basis functions with the series
approximation given in equation (A.1) leads to the Fourier Series.

Definition A.1 (Fourier Series). Let u(x) ∈ L2 be some function
u : [0, 2π]→ R. The Fourier series of u is

u(x) =
∞

∑
k=−∞

ûkeikx, (A.5)

where n ∈ Z and where the Fourier coefficients are

ûk =
1

2π

∫ 2π

0
f (x)e−ikx dx. (A.6)

We will refer to the function F : L2[0, 2π] → C, u 7→ û as the
Fourier transform. It has a well-defined inverse, written F−1. N
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An important property of the Fourier series and one which we
have applied several times in this work is that it has an orthogonal
basis.

0 π 2π

−1

0

1

x

Square Wave Fourier Series

N = 1
N = 9

Figure A.1: Two truncated Fourier series
for the square wave. Approximations to
the depicted square wave are shown
for two resolutions of the Fourier series.
In the N = 1 case, the wave is poorly
approximated. Including more basis
functions (in some sense only four more,
as even-numbered modes are identically
zero in this particular case) improves the
approximation.

Definition A.2 (Orthogonality). A set of basis functions, φk(x), is
said to be orthogonal with respect to a given inner product if

〈φm, φn〉 = δnmν2
n, (A.7)

where δnm is the Kronecker delta function and νn is some constant.
N

Theorem A.1 (Orthogonality of Fourier Basis Functions). The
Fourier basis functions, φn,(x), defined in Definition A.1 are orthogo-
nal. �

Proof. Consider the case where m = n. Then we must evaluate the
complex inner product:

〈φm(x), φn(x)〉 =
∫ 2π

0
eimxeimx dx,

=
∫ 2π

0
e0 dx,

= 2π.

Now consider the case where m 6= n. Then,

〈φm(x), φn(x)〉 =
∫ 2π

0
eimxeinx dx,

=
∫ 2π

0
ei(m−n)x dx, m− n 6= 0

= 0,

where the last line comes about because the integral of any trigo-
metric function over an integer number of periods is zero.

In applying a Fourier spectral method, we assume that our spatial
domain is periodic. For initial-value problems, it is not generally
reasonable to assume that the time domain is periodic and apply
basis functions in time. Rather, we will allow the Fourier coeffi-
cients themselves to vary in time, leading to a Fourier series which
takes the form:

u(x, t) =
∞

∑
k=−∞

ûn(t)eikx. (A.8)
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A.2 The Discrete Fourier Transform

In practice, we employ the discrete Fourier transform, or DFT
(Canuto et al., 1988). For any integer N > 0, consider the following
set of grid points

xj =
2π j
N

, j = 0, 1, . . . , N − 1. (A.9)

We may then define the discrete Fourier coefficients, denoted ũk, of
some function, u(x) as

ũk =
1
N

N−1

∑
j=0

u(xj)e
−ikxj , −N/2 ≤ k ≤ N/2− 1. (A.10)

Note that the various Fourier modes are orthogonal to one another,
as in the case of the continuous Fourier transform, and so the in-
verse discrete Fourier transform is

u(xj) =
N/2−1

∑
k=−N/2

ũkeikxj , j = 0, 1, . . . , N − 1. (A.11)

Equation (A.11) is the truncated discrete Fourier representation
which we use in practice. Following Canuto et al. (1988) we may
consider the polynomial

INu(x) =
N/2−1

∑
k=−N/2

ũkeikx (A.12)

to be the N/2-degree trigonometric interpolant of u(x) at the nodes
given by equation (A.9). This interpolation operator may be re-
garded as an orthogonal projection upon the space of trigonometric
polynomials of degree N/2 with respect to a discrete approxima-
tion of the complex inner product.

From this point on, we will drop the tildes to denote a discrete
Fourier representation, and use the more familiar hat notation. We
will also use the discrete, truncated Fourier series for the remainder
of this section.

A.3 Spectral Differentiation

In the preceding algorithm, we made reference to spectral
differentiation. Consider the first spatial partial derivative of the
Fourier series for a given function,

∂

∂x
u(x, t) =

∞

∑
k=−∞

∂

∂x
ûk(t)eikx. (A.13)
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Since the complex exponentials provide an orthogonal basis and the
Fourier coefficients depend only on time, we may write this as

∂

∂x
u(x, t) =

∞

∑
k=−∞

ikûk(t)eikx. (A.14)

Computing spatial derivatives is then both numerically straight-
forward and analytical for the Fourier series. In general, the j-th
partial derivative in space for the discrete Fourier representation is

Dj
N =

N/2−1

∑
k=−N/2

(ik)jûk(t)eikx. (A.15)

A.4 Spectrally Solving Linear PDEs

In practice, we apply the Fourier transform to the initial
conditions to determine the Fourier coefficients, ûk(0). Timestep-
ping is then a matter of integrating in time to predict the Fourier
coefficients for a given basis. Consider some PDE,

∂u
∂t

= Du, u(x, t = 0) = u0, (A.16)

where D encodes some arbitrary combination of partial derivatives
in space only. Let us assume a discrete timestep of ∆t, and denote a
particular timestep with n, such that

ûk(t) = ûk(n∆t) ≡ ûn
k . (A.17)

The spectral algorithm for explicit Euler (with other timestepping
methods generalising from this) is then given in Algorithm A.5.
Note that in practice we must use a truncated Fourier series which
has finite limits.

Algorithm A.5: The pseudospectral imple-
mentation of the explicit Euler method.û0

k ← F (u(x, t = 0)) . Fourier transform by (A.6)
for n < nfinal do

û
′n
k ← DN ûn

k . Spectral Differentiation
ûn+1

k ← ûn
k + ∆tû

′n
k

end for

A.5 Nonlinear Terms

Computing nonlinear terms requires some more careful atten-
tion than nonlinear terms in a pseudospectral framework. Consider
some nonlinear term, which will shall write here without loss of
generality as a general quadratic non-linearity,

w(x) = u(x)v(x). (A.18)
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When solving linear equations we will generally perform a sin-
gle DFT to set up the initial condition and remain in Fourier space
from there on. To perform a nonlinear operation as in equation (A.18)
entirely in the Fourier domain requires the use of a convolution
sum, which takes the form

ŵk = ∑
m+n=k

|m|,|n|≤N/2

ûmv̂n. (A.19)

This is prohibitively expensive, however, requiring O(N2) opera-
tions. We may reduce this complexity to O(N log N) by computing
the nonlinearity in a pseudospectral fashion. This method proceeds
by performing three DFTs – two inverse and one forward – and one
multiplication in real space. Applying equations (A.10) and (A.11),
we may write

Uj =
N/2−1

∑
k=−N/2

ûkeikxj , j = 0, 1, . . . , N − 1, (A.20)

and

Vj =
N/2−1

∑
k=−N/2

v̂keikxj , j = 0, 1, . . . , N − 1, (A.21)

where xj are the grid points. We then perform the multiplication in
real space, i.e.

Wj = UjVj, j = 0, 1, . . . , N − 1. (A.22)

We may then compute the desired quantity, Ŵk, by the DFT

Ŵk =
1
N

N−1

∑
j=0

Wje
−ikxj , −N/2 ≤ k < N/2. (A.23)

By orthogonality we find

Ŵk = ∑
m+n=k

ûmv̂n + ∑
m+n=k±N

ûmv̂n, (A.24)

which implies
Ŵk = ŵk + ∑

m+n=k±N
ûmv̂n. (A.25)

The second term here commits an error, called the aliasing error.

A.5.1 Aliasing

Aliasing was first noticed by Phillips (1956), working on a
model of general atmospheric circulation. In the case of this model,
it led to supersonic winds and a subsequent blowing-up of the
model. Phillips (1959) provided the explanation that the root of this
instability was in the appearance of so-called 2h-waves.



pseudospectral methods 109

The hydrodynamic equations being solved, such as the rotating
shallow water equations, are quadratically nonlinear. This means
that the nonlinear interaction of two waves with wavenumbers
|k| > N/2 will generate a new wave with wavenumber |k| > N.
Aliasing arises because the grid is incapable of resolving these
waves, and instead ‘aliases’ these high frequency waves to lower
frequencies, resulting in a spurious transfer of energy to lower
frequencies which breaks conservation of energy and leads to nu-
merical instability.

Figure A.2 shows this aliasing effect for a simple case, whereby
three different waves all have the same k = −2 interpolation on an
8-point grid despite only one of them having wavenumber k = −2.

k = 6

k = −10

Figure A.2: Demonstration of two higher-
frequency modes aliasing onto y =
sin(−2x).

To illustrate this effect more rigorously, we may write the dis-
crete Fourier coefficients in terms of the exact Fourier coefficients. If
Lu converges to u at every node (A.9) then by the definition of the
DFT (A.10)

ũk = ûk +
+∞

∑
m=−∞

m 6=0

ûk+Nm, −N/2 ≤ k ≤ N/2− 1. (A.26)

Thus, the k-th mode of the trigonometric interpolant of u depends
not only on the k-th mode of u, but in fact on all (k + Nm)-th
modes. These modes are said to alias the k-th mode on a discrete
grid. This happens because for some periodic basis function, φ

φk+Nm(xj) = φk(xj). (A.27)

Equation (A.27) then directly implies

INu = PNu + Rnu, (A.28)

where we write

RNu =
N/2−1

∑
k=−N/2




+∞

∑
m=−∞

m 6=0

ûk+Nm


 φk. (A.29)

This error, RN , between the interpolation polynomial and the trun-
cated Fourier series is the aliasing error. It is guaranteed orthogonal
to the truncation error, u− PNu, such that

‖u− INu‖2 = ‖u− PNu‖2 + ‖RNu‖2. (A.30)

Thus, the error due to interpolation is always larger than the trun-
cation error would suggest due to aliasing. It has been shown that
the aliasing error is asymptotically of the same order as the trunca-
tion error by Kreiss and Oliger (1979).
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A.5.2 Dealiasing by Padding or Truncation

Recall that the instability induced in the GCM model stud-
ied by Phillips (1956) arose in the form of 2h-waves, where 2h de-
notes the wavelength. For this reason, (Phillips, 1959) originally
suggested filtering the spectrum every few timesteps by setting the
upper half of the wavenumbers to zero at regular time intervals in
the computation, i.e. they defined some filter such that

F : ûk 7→





ûk |k| ≤ |k|max/2,

0 otherwise.
(A.31)

According to Orszag (1971), it is not necessary to remove half the
spectrum, which suppresses all waves with wavelengths 2h < k <

4h. Rather, if only the highest third of the wavenumbers are filtered
out (those for which |k| > 2N/3) aliasing will still occur but only in
a region which is itself purged by the filtering.

We may thus dealias equation (A.25) by using a DFT which uses
M rather than N points, where M ≥ 3N/2. To see how this works,
consider a new set of grid points,

yj =
2π j
M

, (A.32)

and a modified pseudospectral method based on the transforms

Uj =
M/2−1

∑
k=−M/2

ũkeikyj , j = 0, 1, . . . , M− 1, (A.33)

Vj =
M/2−1

∑
k=−M/2

ṽkeikyj , j = 0, 1, . . . , M− 1, (A.34)

Wj = UjVj, j = 0, 1, . . . , M− 1, (A.35)

where our spectrum in this space should satisfy1 1 Note that we are using the tilde here to
denote the modified spectrum and that both
spectra are finite and discrete.

ũk =





ûk, |k| ≤ N/2,

0 otherwise.
(A.36)

If we rewrite our DFT similarly in terms of M and yj, we find that
our solution in Fourier space is

W̃k = ∑
m+n=k

ũmṽn + ∑
m+n=k±M

ũmṽn. (A.37)

As we are only interested in W̃k for values of |k| ≤ N/2, we simply
choose M such that the second term vanishes for these k. Since ũm

and ṽm are zero for |m| > N/2, the worst-case is

−N
2
− N

2
≤ N

2
− 1−M, (A.38)
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=⇒ M ≥ 3N
2
− 1. (A.39)

This procedure, a pseudocode implementation of which is given
in Algorithm A.6, is often called the 3/2 rule. It is also possible
to satisfy the above condition by truncating an M-sized spectrum,
yielding the so-called 2/3 rule. According to Boyd (2000), a total
of M basis functions are used at intermediate stages of the compu-
tation, while only the lowest N wavenumbers are retained at each
timestep. According to Bardos and Tadmor (2015), both the spectral
and the 2/3-dealiased pseudospectral methods converge spectrally
for several smooth partial differential equations, but both must
admit spurious oscillations for non-smooth solutions.

Algorithm A.6: Computation of nonlinear
terms with dealiasing by padding.function Nonlinear(ũ, ṽ) . ũ, ṽ: size-N Fourier coeff. arrays

Ũ, Ṽ ← <zeros>[2N] . Create zero arrays of size 2N
Ũ[N/2 : 3N/2], Ṽ[N/2 : 3N/2]← ũ[:], ṽ[:] . Padding
U, V ← F−1(Ũ),F−1(Ṽ)

W ← U ∗V . Multiplication in realspace
W̃ ← F (W) . Fourier transform to wavespace
w̃[:]← W̃[N/2 : 3N/2] . Truncate back to size N

return w̃
end function
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XXXII Workshop, Białowieża, Poland, June 30-July 6, 2013, pages
287–290. Springer International Publishing, 2014.



BIBLIOGRAPHY 121

G. K. Vallis. Atmospheric and Oceanic Fluid Dynamics. Cambridge
University Press, Cambridge, U.K., 2006.

F. Waleffe. The nature of triad interactions in homogeneous turbu-
lence. Physics of Fluids A: Fluid Dynamics, 4(2):350–363, 1992.

M. L. Ward and W. K. Dewar. Scattering of gravity waves by poten-
tial vorticity in a shallow-water fluid. Journal of Fluid Mechanics,
663:478–506, 11 2010.

J. P. Whitehead, T. Haut, and B. A. Wingate. The separation of
three distinct time scales in the rotating, stratified, Boussinesq
equations: Variations from Quasi-Geostrophy. Submitted to Non-
linearity, 2014.

L. J. Wicker and R. B. Wilhelmson. Simulation and analysis of
tornado development and decay within a three-dimensional
supercell thunderstorm. J. Atmos. Sci., 1995.

A. Wiles. Modular elliptic curves and Fermat’s last theorem. Annals
of Mathematics, 141(3):443–551, 1995.


	Introduction
	Numerical Stiffness
	Some Historical Context
	The Rotating Shallow Water Equations
	Fast Wave Averaging

	Exponential Integration
	Formulation of the Exponential Integrator
	Solution Methods
	Strang Splitting
	Matrix Exponential Formulation
	Some Operator Preliminaries
	Symmetrisation of the Full RSWE
	Numerical Results

	Wave Averaging and Triad Resonances
	Projecting to Different Bases
	Resonance in Time
	Direct Resonances
	Near Resonant Interactions
	A Near-Resonant Solver

	Numerical Wave Averaging
	A Smooth Kernel of Integration
	Finite Averaging Window
	Error Analysis
	Averaging Error
	Timestepping Error
	The Full Bound and Results

	From Parareal to APinT
	Complexity Bounds
	Convergence of APinT
	Optimal Averaging for APinT
	Parameter Studies in One Dimension
	Decaying Shallow Water Turbulence

	Conclusion and Future Work
	Extension to Three Scales

	Pseudospectral Methods
	The Fourier Series
	The Discrete Fourier Transform
	Spectral Differentiation
	Spectrally Solving Linear PDEs
	Nonlinear Terms


