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Abstract 

 

Dietary nitrate (NO3
-) supplementation has been shown to speed reaction time 

and enhance linear sprint speed and power production in an unfatigued state.  It 

may therefore be suggested that NO3
- supplementation could be ergogenic 

during all-out sprint running and reactive agility tasks, as well as during explosive 

forms of exercise such as vertical jumping. NO3
- supplementation may also 

attenuate the decline in such exercise performance following fatiguing exercise. 

The purpose of this thesis was firstly to determine the reliability of selected 

exercise tests for measuring running reactive agility (reactive agility test), planned 

agility (change of direction t-test), 15 m linear sprint and countermovement jump 

performance, and then to investigate the effect of NO3
- supplementation on these 

parameters of team sports performance in an unfatigued state and following 

fatiguing exercise that mimics the high-intensity intermittent demands of team 

sport game-play. Chapter 3: Examined the reliability of selected exercise 

protocols for reactive agility, change of direction, sprint and vertical jump 

performance. The lowest coefficient of variation (COV) and highest intraclass 

correlation coefficient (ICC) was observed when the fastest 15 m linear sprint out 

of 5 attempts (COV: 1.0%; ICC: 0.98), and the highest countermovement jump 

out of 3 attempts (COV: 4.6%; ICC: 0.94) were assessed independently and when 

the mean of all 6 reactive agility (COV: 2.0%; ICC: 0.96) and all 3 change of 

direction t-test (COV: 2.9%; ICC: 0.87) attempts were assessed. This information 

was used to inform statistical analyses within chapter 4. Results from chapter 3 

provided confidence in the use of the selected exercise protocols in an 

intervention study due to the low day-to-day variability in performance. Chapter 

4: Five days of NO3
- supplementation did not improve reactive agility (NIT: 2.64 

± 0.21 s vs PLA: 2.65 ± 0.17 s, P > 0.05), change of direction t-test (NIT: 7.12 ± 

0.71 s vs PLA: 7.10 ± 0.76, P > 0.05), 15 m sprint (NIT: 3.204 ± 0.212 s vs. PLA: 

3.215 ± 0.206 s, P > 0.05) or countermovement jump (NIT: 36.38 ± 6.58 cm vs 

PLA: 37.02 ± 6.83 cm, P > 0.05) performance in an unfatigued state. In a fatigued 

state, 15 m sprint (NIT: 3.27 ± 0.25 s vs PLA: 3.27 ± 0.25, P > 0.05) and 

countermovement jump (NIT: 36.7 ± 7.2 cm vs PLA: 36.5 ± 7.0 cm, P > 0.05) 

performance were also unaltered following NO3
- supplementation. Performance 

declined in a fatigued compared to unfatigued state for 15 m sprint performance 

(P < 0.05) but was unchanged for countermovement jump performance (P > 
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0.05). NO3
- supplementation did not attenuate the decline in fatigued 15 m sprint 

performance (P > 0.05). These findings suggest that NO3
- supplementation does 

not alter agility, linear sprint or vertical jump performance. Overall, these findings 

provide an important contribution to the literature regarding the limits of the 

ergogenic effect of NO3
- supplementation for particular determinants of team 

sports performance, specifically in male team sports players at a dose of 8 mmol 

· day-1 for 5 days. 
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CHAPTER 1: Literature Review and Introduction 

 

Nitric Oxide  

 

Nitric oxide production 

The ubiquitous free-radical gas, nitric oxide (NO), also known as nitrogen 

monoxide, is a signalling molecule known to play an imperative role in many 

cellular functions within the human body. These include processes such as 

vasodilation (Moncada & Higgs, 1993), mitochondrial function (Brown & Cooper, 

1994; Larsen et al., 2011), glucose uptake (Merry, Lynch & McConell, 2010), 

calcium (Ca2+) handling (Hart & Dulhunty, 2000; Stamler & Meissner, 2001), 

neurotransmission (Garthwaite, 2008) and skeletal muscle fatigue (Percival et al., 

2010); with the effective production of NO considered essential to facilitate normal 

physiological function.  

Initially, NO was believed to be exclusively synthesised from the oxidation 

of L-arginine by NO synthase (NOS) enzymes (NOS-dependent pathway) with 

endothelial (eNOS), neuronal (nNOS) and inducible (iNOS) isoforms having been 

described, enabling NO production at various locations around the body (Stamler 

& Meissner, 2001). The production of NO via this pathway involves a complex 

five electron oxidation of L-arginine to yield L-citrulline and NO (Alderton, Cooper 

& Knowles, 2001). The oxidation of NOS-derived NO was also known to produce 

nitrate (NO3
-) and nitrite (NO2

-), which were formerly considered inert by-products 

of NO metabolism (Moncada & Higgs, 1993). However, it is now known that both 

NO3
- and NO2

- can be reduced to NO through the stepwise reduction of NO3
- to 

NO2
- to NO (Benjamin et al., 1994; Lundberg et al., 1994); termed the NO3

--NO2
-

-NO (or NOS-independent) pathway. In addition to the endogenous synthesis of 

NO via the NO3
--NO2

--NO pathway, exogenous NO3
- from the diet can also be 

utilised to increase NO bioavailability. Both pathways for NO production can be 

summarised in figure 1.1.  

 

Nitrate-Nitrite-Nitric Oxide pathway 

Approximately 80% of human dietary NO3
- intake originates from the ingestion of 

vegetables (Hord, Tang & Bryan, 2009). Vegetables such as leafy greens 
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(spinach, rocket and lettuce) and beetroot are especially rich in NO3
- (Webb et 

al., 2008) containing up to ~480 mg NO3
- per 100 g of fresh produce (Alexander 

et al., 2008). Other sources of NO3
- in the diet include cured meats (where sodium 

NO3
- and related products are added as a preservative) as well as drinking water 

(Hord et al., 2009). 

 

 

 

 

 

 

 

 

This image has been removed by the author of this theiss for copyright reasons.  

 

 

 

 

 

Figure 1.1: The nitric oxide synthase dependent and nitrate-nitrite-nitric oxide pathways for nitric 

oxide production, and the physiological processes nitric oxide plays a role in (From Bailey et al., 

2012). The dashed lines indicate how nitric oxide can be recycled back to nitrite and nitrate within 

the nitrate-nitrite-nitric oxide pathway. 

 

Following the consumption of NO3
--rich foods, NO3

- is absorbed into the 

systemic circulation from the upper gastrointestinal tract (Lundberg & Weitzberg, 

2009). The majority of this NO3
- (~60%) is excreted in the urine while ~25% enters 

the enterosalivary circulation and is concentrated in the saliva at least 10-fold 

(Spiegelhalder, Eisenbrand & Preussmann, 1976). Following this, facultative, 

anaerobic bacteria located on the dorsal surface of the tongue reduce this NO3
- 

to NO2
-, via NO3

- reductase enzymes (Duncan et al., 1995). This NO2
- rich saliva 

is swallowed and the acidic environment of the stomach permits the further 

reduction of some of this NO2
- to NO and other reactive nitrogen species (RNS; 
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Lundberg et al., 2011). However, some of this NO2
- escapes and is absorbed into 

the systemic circulation increasing plasma NO2
- concentration ([NO2

-] where 

square brackets indicate concentration) where it can then undergo a final one 

electron reduction to NO and other RNS, catalysed by deoxyhaemoglobin (Cosby 

et al., 2003), deoxymyoglobin (Shiva et al., 2007) and xanthine oxidase (Zhang 

et al., 1998) to increase NO availability.  

Interestingly, the reduction of NO2
- to NO within the systemic circulation is 

potentiated in both hypoxic (Castelo et al., 2006) and acidic (Modin et al., 2001) 

environments, and given that during exercise for example, contracting skeletal 

muscle becomes more hypoxic and acidic, the production of NO via the NO3
--

NO2
--NO pathway may be an increasingly important source of NO (Lundberg & 

Weitzberg, 2010).  Furthermore, the activity of NOS in such environments is 

known to be reduced (Lundberg, Weitzberg & Gladwin, 2008), therefore reducing 

the production of NO via the NOS-dependent pathway. It is also important to note 

that NO2
- itself may influence physiological processes, independent of its 

reduction to NO via inducing post-translational modifications to haem groups by 

nitrosylation and protein thiols by S-nitrosation (Bryan et al., 2005). To increase 

NO and NO2
-
 availability through the NO3

--NO2
--NO pathway, dietary 

supplementation of natural NO3
--rich beetroot juice (BR; Webb et al., 2008; 

Vanhatalo et al., 2010; Shannon et al., 2017b) and pharmacological sodium 

nitrate (NaNO3
-; Larsen et al., 2007) and potassium nitrate (KNO3

-; Kapil et al., 

2010) are commonly employed within human experimental studies. This thesis 

will focus on dietary supplementation with BR. 

 

Dietary nitrate supplementation 

Following supplementation with NO3
-, both plasma [NO3

-] and [NO2
-] increase 

after their absorption into the systemic circulation. Wylie et al. (2013a) 

investigated the pharmacokinetic relationship of acute BR supplementation (at 

doses of 4.2, 8.4 and 16.8 mmol NO3
-) and plasma [NO3

-] and [NO2
-]. Plasma 

[NO3
-] was reported to peak 1 h post ingestion at a dose of 4.2 mmol and 8.4 

mmol NO3
- and 2 h post ingestion of 16.8 mmol NO3

- (~160 μM, ~269 μM and 

~581 μM increase above baseline, respectively). A slightly later peak in plasma 

[NO2
-] was reported at 2 h post ingestion of 4.2 mmol and 8.4 mmol NO3

- and 4 

h post ingestion of 16.8 mmol NO3
- (~220 nM, ~374 nM and ~653 nM increase 
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above baseline, respectively; Wylie et al., 2013a). These findings indicate a dose-

dependent relationship between BR supplementation and both plasma [NO3
-] and 

[NO2
-]. Furthermore, the delayed peak in plasma [NO2

-] reflects the time required 

for the stepwise reduction of NO3
- to NO2

- in the oral cavity before it enters the 

systemic circulation. This information is now commonly used to inform human 

physiology studies that administer NO3
- supplementation, whereby supplements 

are generally consumed 2 h prior to physiological assessment of exercise 

performance to coincide with peak plasma [NO2
-]. 

 

Established effects of nitrate supplementation  

The effect of NO3
- supplementation on physiological functions in humans has 

been, and continues to be, extensively researched. This research has 

investigated the potential of NO3
- supplementation to act, not only as a 

therapeutic aid, but also as an ergogenic aid within sports performance. 

 

Reduction in blood pressure 

NO3
- has been shown to significantly reduce resting blood pressure (BP) following 

both acute (e.g. Webb et al., 2008; Kapil et al., 2010; Vanhatalo et al., 2010) and 

chronic (between 3-15 days) supplementation (e.g. Larsen et al., 2007; Bailey et 

al., 2009). A reduction in systolic BP (SBP) of 4-10 mmHg is commonly reported 

in many (Larsen et al., 2007; Webb et al., 2008; Bailey et al., 2009; Kapil et al., 

2010; Vanhatalo et al., 2010) but not all (Larsen et at., 2010; Cermak, Gibala & 

Van Loon, 2012) previous studies. Such variation in reported BP reductions may 

be attributed to the differing NO3
- doses employed within each individual study, 

as SBP is reduced in a dose-dependent manner following NO3
- supplementation 

(Wylie et al., 2013a). Wylie and colleagues (2013a) reported that SBP was 

reduced in this dose-dependent manner following acute BR supplementation of 

4.2 mmol NO3
- (~5 mmHg) and 8.4 mmol NO3

- (~10 mmHg) with no additional 

reduction gained from a higher dose of 16.8 mmol NO3
- (~9 mmHg). These 

authors also reported an ~3 mmHg reduction in diastolic BP (DBP) following the 

acute consumption of 8.4 and 16.8 mmol NO3
- with no change evident following 

a 4.2 mmol NO3
- dose (Wylie et al., 2013a). Similar reductions in DBP following 
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NO3
- ingestion have also been reported elsewhere in the literature (Webb et al., 

2008; Bailey et al., 2009; Sobko et al., 2010; Vanhatalo et al., 2010). 

The hypotensive effect of NO3
- supplementation is likely mediated by the 

stepwise reduction of NO3
- to yield NO (Ignarro et al., 1987). This increase in NO 

can stimulate smooth muscle relaxation leading to vasodilation and reduced 

peripheral resistance (Webb et al., 2008), resulting in a reduction in resting BP. 

It is also known that those with a higher resting BP benefit most from the 

hypotensive effect of NO3
- supplementation (e.g. Kapil et al., 2010). Importantly, 

the reduction in BP commonly reported following NO3
- supplementation (> 

~4mmHg) is of clinical significance as it is in line with the magnitude of BP 

reduction expected to lower the incidence of stroke and ischaemic heart disease 

(Law, Wald & Morris, 2003). NO3
- supplementation therefore has potential to act 

as an effective non-pharmacological therapeutic aid within the general population 

to maintain or improve cardiovascular health. 

 

Improved exercise economy, tolerance and performance 

The oxygen (O2) cost of submaximal cycle exercise has been reported to be 

reduced following 3 days of NaNO3
- supplementation (e.g. Larsen et al., 2007) as 

well as following BR supplementation (e.g. Bailey et al., 2009), indicating 

increased exercise economy for a given work rate. Since then, exercise tolerance 

during constant work rate exercise has been investigated and was reported to 

improve by ~12-25% following dietary NO3
- supplementation within a range of 

modalities including cycling (Bailey et al., 2009; Breese et al., 2013; Kelly et al., 

2013; Thompson et al., 2014), running (Lansley et al., 2011) and knee extension 

(Bailey et al., 2010; Vanhatalo et al., 2011) exercise. Such improvements in 

exercise tolerance would be expected to translate to an improvement in exercise 

performance, determined by the time taken to complete a set distance (e.g. a 

time trial; TT). Improvements in exercise performance of ~1-3% have been 

reported following NO3
- supplementation (Lansley et al., 2011b; Cermak, Gibala 

& Van Loon, 2012; Murphy et al., 2012; Shannon et al., 2017a), however, this 

finding does not seem to be universal, with several studies reporting no 

improvement in performance (Peacock et al., 2012; Muggeridge et al., 2013; 

Sandbakk et al., 2015; McQuillan et al., 2016). Such equivocal findings may be 

attributed to differences in participant population (e.g. trained vs. recreationally 
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active), exercise modality (e.g. cycling vs. running), exercise intensity and 

duration, as well as the NO3
- dose and duration of supplementation (e.g. acute 

vs. chronic) employed within each individual study.  

There is a growing body of literature to suggest that NO3
- supplementation 

may be less effective at improving exercise tolerance and performance in highly 

trained and elite endurance athletes (see Jones, 2014 for review). Indeed, no 

improvements in performance were reported in a highly trained or elite population 

(Peacock et al., 2012; Muggeridge et al., 2013; Sandbakk et al., 2015); 

conversely, improvements in performance have been reported when 

recreationally active participants were recruited (Lansley et al., 2011b; Murphy et 

al., 2012). It must, however, be acknowledged that these particular studies did 

not solely differ on the participant population recruited but also differed in 

supplementation dose/regime, and type/duration of exercise employed. The 

differing effect of NO3
- supplementation between highly trained endurance and 

recreational athletes suggested within the literature (for review see Jones, 2014) 

may, in part, be attributed to highly trained endurance individuals having elevated 

baseline NO3
- and NO2

- (Vassalle et al., 2003) and elevated NOS activity 

(Jungersten et al., 1997) as well as having greater skeletal muscle capillarisation 

(Jensen, Bangsbo & Hellsten, 2004) minimising areas of hypoxia, in which the 

reduction of NO2
- to NO is potentiated (Castelo et al., 2006). Highly trained 

endurance athletes also have a lower proportion of type II muscle fibres 

compared to their untrained counterparts (Tesch & Karlsson, 1985), with recent 

research suggesting a targeted effect of NO3
- supplementation on type II muscle 

fibres. 

 

Fibre type specific effect  

It has been suggested that NO3
- supplementation may preferentially enhance the 

physiological responses of type II compared to type I skeletal muscle fibres 

(Hernández et al., 2012; Ivarsson et al., 2016). This may be attributed, in part, to 

the differing physiology of these muscle fibres. Type II muscle fibres differ 

compared to type I fibres in terms of myofibrillar protein content and Ca2+ handling 

as well as having lower mitochondrial and capillary density (Bottinelli & Reggiani, 

2000). Together, these differences result in type II fibres having a greater reliance 

on non-oxidative compared to oxidative pathways for energy production, which 
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arguably provide a more favourable environment for NO production via the NO3
-

-NO2
--NO pathway as the reduction of NO2

- to NO is potentiated in hypoxic 

conditions (Castelo et al., 2006). 

Hernández and colleagues (2012) were some of the first authors to 

investigate the fibre type specific effects of NO3
- supplementation. They 

supplemented mice with NaNO3
- in drinking water for 7 days and performed force-

frequency assessment of the extensor digitorum longus (EDL) and soleus muscle 

harvested form these mice. A significantly greater force production, up to a 

stimulation frequency of 50 Hz, was reported in the EDL muscle but not the soleus 

muscle of the supplemented mice compared to the non-supplemented controls. 

The EDL muscle is made up almost exclusively of type II muscle fibres in 

comparison to the soleus muscle which is made up of predominantly type I 

muscle fibres. These authors also reported an increased expression of the Ca2+ 

handling proteins calsequestrin-1 and the dihydropyridine receptor in the EDL 

muscle but not the soleus muscle following NaNO3
- supplementation (Hernández 

et al., 2012). However, improvements in force production following NO3
- 

supplementation in humans have been suggested to occur independently of 

changes in Ca2+ handling protein content (Whitfield et al., 2017). It has been 

proposed that changes in cellular redox balance following NO3
- supplementation 

(Whitfield et al., 2016) may underpin improvements in force production in 

humans. However, the exact mechanistic underpinning of improvements in force 

production following NO3
- supplementation in humans has yet to be firmly 

established. 

In recent human studies, NO3
- supplementation has been reported to 

enhance the contractile properties of skeletal muscle and enhance evoked 

explosive force production (Haider & Folland, 2014) and power during voluntary 

exercise (Coggan et al., 2015; Rimer et al., 2016). Coggan and colleagues (2015) 

reported a significant increase in muscle force production at a high, but not low, 

angular velocity during knee extensor exercise in healthy untrained participants 

following an acute 11.2 mmol NO3
- dose. Similarly, Bailey et al. (2015) reported 

enhanced exercise tolerance in healthy recreationally active males when cycling 

at high, but not low, pedal cadences following a chronic supplementation period 

of 9 days (6.2 mmol NO3
- · day-1). Together, these findings suggest that NO3

- 

supplementation can improve human skeletal muscle force and power 
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production, specifically during movements at high contraction speeds, with such 

exercise recruiting a high proportion of type II muscle fibres. 

In addition to the influence on contractile function, fibre type specific effects 

of dietary NO3
- on skeletal muscle blood flow have also been observed.  Indeed, 

Ferguson and colleagues (2013) reported that, following 5 days of BR 

supplementation in rats, hind-limb muscle blood flow was significantly increased 

during submaximal exercise with targeted increases in blood flow to muscles and 

parts of muscles that were predominantly made up of type II muscle fibres.  

Given these preferential effects of NO3
- supplementation on type II fibres, 

it may, in part, explain the ergogenic effect of NO3
- supplementation during short 

duration (< 30 min), high intensity exercise where type II muscle fibres are 

preferentially recruited (Krustrup et al., 2004). A number of previous studies (e.g. 

Bailey et al., 2009; Vanhatalo et al., 2010; Lansley et al., 2011b; Cermak et al., 

2012; Shannon et al., 2017a), have reported improvements in exercise tolerance 

and/or performance during short duration (< 30 min) exercise when sub-elite 

participants were recruited. In contrast to this, no improvement in performance 

over short duration running (Peacock et al., 2012; Sandbakk et al., 2015; 

Boorsma et al., 2016) or cycling (Muggeridge et al., 2014) protocols were 

reported following the recruitment of highly trained or elite participants. In such 

participant cohort, it does however appear that NO3
- supplementation may be 

ergogenic during upper, rather than lower, body short duration exercise such as 

kayaking (Peeling et al., 2015) and rowing (Bond et al., 2012; Hoon et al., 2014) 

exercise. With the upper, compared to the lower, body musculature comprised of 

a higher portion of type II muscle fibres (e.g. Sanchis-Moysi et al., 2010) further 

supporting the preferential effect of NO3
- supplementation on type II muscle 

fibres.  

This provides promising evidence to suggest an ergogenic effect of NO3
- 

supplementation in continuous, short duration exercise performance where type 

II muscle fibres are predominantly recruited. The ergogenic effect of NO3
- 

supplementation in other forms of short duration exercise that also recruit a high 

portion of type II muscle fibres such as intermittent (Krustrup et al., 2006) and 

sprint (Greenhaff et al., 1994) exercise therefore may also appear promising  
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Nitrate supplementation and team sports performance  

 

Intermittent exercise performance  

High-intensity intermittent exercise is a hallmark of many team sports such as 

football, rugby union/league and hockey (Bangsbo, 1994). Intermittent exercise 

is associated with significant type II muscle fibre recruitment due to the nature of 

such exercise (Bangsbo, Iaia & Krustrup, 2008), transitioning from a low to high 

metabolic rate in rapid and repeated succession (Krustrup et al., 2006). Typically, 

intermittent exercise involves repeated short-duration bouts of high intensity 

interspersed with brief periods of recovery. A valid and reliable intermittent 

exercise test that mimics the high intensity, intermittent nature of team sports 

match-play has been developed; the Yo-Yo intermittent recovery level 1 (IR1) test 

(Bangsbo et al., 2008). A significant improvement in Yo-Yo IR1 test performance 

of 4.2% was reported by Wylie et al. (2013b) following supplementation of ~24.6 

mmol NO3
- over a 36 h period prior to exercise testing. This has since been 

replicated by Thompson et al. (2016) and Nyakayiru et al. (2017) who reported a 

similar improvement in Yo-Yo IR1 performance of 3.9% and 3.4% following 5 (6.4 

mmol · day-1) and 6 (~12.9 mmol · day-1) days of NO3
- supplementation, 

respectively. 

The ergogenic effect of NO3
- supplementation on intermittent exercise 

performance, although not found in all studies (Christensen, Nyberg & Bangsbo, 

2013; Muggeridge et al., 2013; Martin et al., 2014), has been reported within 

running (Thompson et al., 2016; Nyakayiru et al., 2017), cycling (Thompson et 

al., 2015; Wylie et al., 2016) and rowing (Bond, Morton & Braakhuis, 2012) 

exercise. Improvements in intermittent exercise performance may indicate that 

NO3
- could be ergogenic for team sports players where intermittent exercise is 

performed throughout the duration of a game. In support of this, Thompson and 

colleagues (2015) reported improved sprint cycling performance during an 

intermittent sprint test (IST), and, interestingly, improved indices of cognitive 

function during computer based cognitive tasks following chronic BR 

supplementation (~12.8 mmol NO3
- · day-1 for 7 days). Throughout the IST, which 

mimicked the metabolic demands of team sports game play, response accuracy 

was maintained but significant improvements in reaction time were reported 

(Thompson et al., 2015). Furthermore, improvements in reaction time were most 
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prominent within the second half of the IST protocol which may suggest that NO3
- 

is effective at attenuating some of the decline in cognitive function (e.g. decision 

making reaction time) that typically occurs during prolonged intermittent exercise 

(Reilly & Smith, 1986; Fery et al., 1997). Interestingly, Thompson et al. (2016) 

went on to report improvements in reaction time, determined by a faster response 

time for the same response accuracy, when completing the Stroop test at rest but 

not at intervals between intermittent running exercise (Thompson et al., 2016). 

The literature remains equivocal regarding improvements in reaction time 

following NO3
- supplementation with some (Gilchrist et al., 2014; Thompson et 

al., 2015) but not all (Kelly et al., 2013; Thompson et al., 2014) reporting 

improvements. 

 

Important determinants of team sports performance  

Improvements in intermittent exercise performance following NO3
- 

supplementation (e.g. Wylie et al., 2013b; Thompson et al., 2015) suggest that 

such supplementation may be ergogenic for team sports performance where 

game-play is highly intermittent in nature (Bangsbo, 1994). However, intermittent 

exercise is not the only hallmark of team sports game-play. Key movement 

patterns also include sprint running, quick changes of direction and vertical 

jumping (Wisløff et al., 2004; Little & Williams, 2005; Gabbett, Kelly & Sheppard, 

2008; Castagna & Castellini, 2013) with such movements being performed 

maximally and repeatedly throughout the entire duration of a game. Movement 

analysis within team sports game-play has highlighted that sprint efforts between 

10-20 m are commonly performed (Spencer et al., 2004; 2005) with over 50% of 

these sprint efforts occurring after >60 s recovery (Spencer et al., 2004). This 

highlights the importance of single sprint efforts within a game in addition to high 

intensity intermittent exercise. Alongside this, over 700 changes of direction are 

made throughout a football game (Bloomfield, Polman & O’Donoghue, 2007) and 

within a rugby game ~16% of sprints involve at least one change of direction 

(Duthie et al., 2006). These data highlight the importance of changes of direction, 

be they planned or unplanned, within team sports game-play. 

The effect of NO3
- supplementation on single sprint performance has been 

investigated, with a significant improvement in 180 m sprint running performance 

reported in 9 elite cross-country skiers following acute KNO3
- supplementation 
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(~9.9 mmol NO3
-; Sandbakk et al., 2015). However, this ergogenic effect on sprint 

performance has not been confirmed in all studies (Christensen et al., 2013; 

Muggeridge et al., 2013; Martin et al., 2014). Thompson and colleagues (2016) 

investigated the effect of 5 days NO3
- supplementation (6.4 mmol · day-1) on 20 

m linear sprint running performance in an unfatigued state, in 36 healthy male 

team sports players. These authors reported a significant improvement of 1.2% 

in all-out sprint running performance, and when sprint performance was 

separated into split times, the improvement in performance over the first 10 m 

was 1.6% and over the first 5 m was 2.3% (Thompson et al., 2016). Taking these 

findings together with improvements in skeletal muscle contractility (Bailey et al., 

2010), explosive force (Haider & Folland, 2014) and maximum power production 

(Coggan et al., 2015), it may be suggested that the ergogenic effect of NO3
- 

supplementation might be most pronounced within the initial acceleration phase 

of all-out sprint running exercise. It may therefore be proposed that NO3
- 

supplementation could be ergogenic during exercise involving repeated 

accelerations such as within planned and unplanned change of direction tasks. 

Moreover, it may also suggest NO3
- supplementation could be ergogenic during 

explosive movements such as vertical jumping. However, these possibilities have 

yet to be investigated. 

Importantly, sprint movements are also performed under fatigue 

throughout the duration of a game, where the ability to perform such high intensity 

explosive exercise is reduced (Mohr et al., 2004). Interestingly, NO3
- 

supplementation has been suggested to reduce fatigue development and 

therefore muscle metabolic perturbation through reducing the adenosine tri-

phosphate (ATP) cost of skeletal muscle contraction while sparing the rate of 

phosphocreatine (PCr) depletion (Bailey et al., 2010). This is important as the 

rate of PCr depletion is a significant determinant of fatigue development during 

maximal intensity exercise (Gaitanos et al., 1993; Fulford et al., 2013). NO3
- 

supplementation has also been suggested to facilitate the O2 dependent recovery 

of PCr (Vanhatalo et al., 2011) which may be related, in part, to its ability to 

improve type II muscle fibre perfusion and oxygenation (Ferguson et al., 2013; 

2015). Independent of this, during exercise following NO3
- supplementation, NO 

availability may be enhanced as the reduction of NO2
- to NO is enhanced in 

hypoxic and acidic environments (Lundberg & Weitzberg, 2010) such as the 

environment within contracting skeletal muscle. Increased NO availability may be 
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advantageous as it may stimulate acute NO-mediated improvements in 

contractile function (Hernández et al., 2012). Overall, fatigue development may 

be reduced and NO availability enhanced with NO3
- supplementation, such that 

the performance decline expected in subsequent exercise bouts may be 

attenuated. However, the effect of NO3
- supplementation on linear sprint or 

vertical jump performance when fatigued has yet to be investigated. 

Understanding the potential ergogenic effect of NO3
- supplementation 

upon planned and unplanned agility, vertical jump and sprint performance in an 

unfatigued state and following fatiguing exercise will build upon the current 

literature and provide information for its use as a nutritional aid to enhance 

performance in movements commonly performed within team sports.  

 

Reliability of exercise tests for agility, linear sprint and vertical jump performance  

Various exercise protocols have been developed to assess planned and 

unplanned agility, linear sprint running and vertical jump performance in a 

controlled, scientific manner rather than within actual game-play (Currell & 

Jeukendrup, 2008; Singh et al., 2010). This enables team sports performance to 

be measured, and also enables the effect of an intervention on performance to 

be assessed in a controlled environment. Before an exercise protocol is 

employed to assess the efficacy of an intervention, it is important to assess the 

day-to-day reliability of each protocol to determine whether it would be 

appropriate to detect small but potentially meaningful changes in performance 

following an intervention. The reliability of test performance refers to the 

consistency or reproducibility of performance when the same person performs 

the same test under the same conditions on a number of occasions, when no 

intervention is used (Atkinson & Nevill, 1998; Hopkins, 2000). 

 For planned and unplanned agility, the change of direction (COD) t-test 

and reactive agility test (RAT) are commonly employed, respectively (Sheppard 

& Young, 2006; Sporis et al., 2010). Information regarding the reliability of these 

tests is rarely reported within intervention studies that employ these protocols 

(Brughelli et al., 2008). When assessed, the reliability of these tests expressed 

as a coefficient of variation (COV) has been reported to be between ~2.0-3.5% 

(McBride et al., 2002; Gabbett et al., 2006; 2008; Oliver & Meyers, 2009; Sassi 

et al., 2009). However, the data used to perform these statistical analyses 
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appears to vary greatly between studies with reports of the mean of 4/8 attempts, 

fastest attempt from 2 efforts and fastest 2 attempts from 8 efforts being used, for 

example. The reliability of linear sprint performance over split times up to 15 m is 

also limited. When assessed as a COV within a simulated team sport circuit, it 

was reported to be 3.7% when the mean of 60 sprint performances was 

assessed, and 2.0% when absolute best sprint performance was assessed 

independently (Singh et al., 2010). This is important as following test completion, 

the data handling techniques employed appear to affect the reliability of test 

performance. In addition to this, the reliability of vertical jump performance 

appears to be varied within the literature. When assessed as a COV, reliability of 

vertical jump performance has been reported between ~2.0-5.2% (Gabbett et al., 

2006; Cormak et al., 2008; Singh et al., 2010) with studies using the highest jump 

from a varying number of attempts for analysis. 

 Prior to conducting an intervention study, it is important that the 

reliability of the required exercise tests are confirmed. Within studies it is common 

for multiple attempts of the same protocol to be completed, yet the selection of 

data for statistical analysis from these attempts is not consistent. However, the 

reliability of test performance appears to vary depending on the data handling 

techniques used and therefore it is important to consider the most appropriate 

selection of data to perform statistical analysis on to ensure the greatest reliability 

of test performance is achieved. This information will enable the selected exercise 

protocols’ suitability for an intervention study to be considered (Hopkins et al., 

1999) where detecting small changes in performance following an intervention is 

important. For example, following caffeine supplementation agility performance 

has been reported to improve ~2% (e.g. Stuart et al., 2005; Duvnjak-Zaknich et 

al., 2011) and following NO3
- supplementation sprint performance has been 

reported to improve ~1% (Sandbakk et al., 2015; Thompson et al., 2016), 

showing the small but potentially meaningful improvements in performance 

(Hopkins et al., 1999) that are required to be detected if present.  

 

Summary 

In summary, dietary NO3
- supplementation is known to act not only as a 

therapeutic aid but also as an ergogenic aid within sports performance. NO3
- 

supplementation may improve team sports performance through its ability to 
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improve intermittent exercise performance (Wylie et al., 2013b), as well as all-out 

sprint running performance (Thompson et al., 2016). However, team sports 

performance is not limited to these determinants. Movements such as planned 

and unplanned changes of direction, vertical jumping and sprint running are 

considered hallmarks of team sports game play. It may be suggested that NO3
- 

supplementation could be ergogenic during such movements as highlighted in 

the above literature review. However, in order to fully understand the efficacy of 

NO3
- supplementation for team sports performance, its effect on these 

determinants of team sports performance must be investigated. Such information 

would build upon our existing knowledge regarding the ergogenic effects of NO3
- 

supplementation and elucidate its efficacy within key determinants of team sports 

performance and therefore the potential of its use as a nutritional aid for team 

sports athletes. Prior to assessing the effect of NO3
- supplementation on 

parameters of team sports performance, it is important to assess the reliability of 

the exercise tests that will be employed. The reliability of test performance also 

appears to vary depending on data handling procedures used, therefore it is 

important to consider the most appropriate selection of data to perform statistical 

analysis on to ensure the greatest reliability of test performance can be achieved. 
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Aims 

The aim of this thesis is therefore twofold. Firstly, to assess the reliability of 

chosen exercise protocols to measure agility, linear sprint and vertical jump 

performance, and secondly, to investigate the effect of NO3
- supplementation on 

agility, linear sprint and vertical jump performance in an unfatigued state and 

linear sprint and vertical jump performance in a fatigued state.  

 

The following research questions will be addressed: 

 

1) What is the reliability of the selected exercise tests that measure agility, 

linear sprint and vertical jump performance? 

 

2) What are the performance effects of NO3
- supplementation on key 

parameters of team sports performance? 

 

- Can NO3
- supplementation improve agility, linear sprint and vertical 

jump performance in an unfatigued state? 

 

- Can NO3
- supplementation attenuate the decline in linear sprint and 

vertical jump performance expected following fatiguing exercise? 

 

Hypotheses  

 

The following hypotheses will be tested: 

 

1) The exercise tests selected to measure agility, linear sprint and vertical 

jump performance will be reliable and suitable for use within an 

intervention study 

 

2) NO3
- supplementation will improve agility, linear sprint running and vertical 

jump performance in an unfatigued state, and, following fatiguing exercise, 

NO3
- supplementation will attenuate the decline in performance in 

subsequent linear sprint and vertical jump performance  
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CHAPTER 2: General Methods 

 

General experimental procedures 

All experimental testing was approved by the Institutional Ethics Committee prior 

to the onset of data collection. All participants gave their written, informed consent 

prior to commencing the study, after the experimental procedures, potential 

benefits and possible risks associated with participation were explained. Any 

additional questions or concerns participants had were addressed before 

volunteers provided written informed consent. Participants who were enrolled 

onto the study were informed that they were free to withdraw at any time, without 

reason and with no disadvantage to themselves should they not wish to complete 

the study. 

During all experimental testing, health and safety guidelines established 

within the department of Sport and Health Sciences were closely followed. The 

researchers were vigilant throughout to ensure the laboratory and sports hall 

provided a clean and safe environment for the testing of human participants. 

 

Participants  

Volunteers were recruited from the University of Exeter student and staff 

population. All participants were competitive but non-elite male, team sports 

players who were non-smokers, free from disease and were not using any dietary 

supplements at the time of data collection. Participants were instructed to report 

to the laboratory ≥3 hours postprandial and fully hydrated having not consumed 

caffeine in the 12 hours or alcohol in the 24 hours preceding each experimental 

visit. Participants were however free to drink water ad libitum prior to, and during, 

experimental visits. All Participants were also instructed to attend the laboratory 

having not performed strenuous exercise in the 24 hours preceding each 

experimental visit. Experimental testing was performed at the same time of day 

(± 2 hours) for each participant. Participants were instructed to replicate their diet 

in the 24 hours prior to visit 1 in chapter 3 and 48 hours prior to visit 3 in chapter 

4, for all subsequent experimental visits. 

In chapter 4, participants were asked to refrain from consuming foods rich in NO3
- 

(beetroot, lettuce, spinach, rocket and cured meats) for the entire duration of the 
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study. Participants were also instructed to avoid the use of antibacterial 

mouthwash for the duration of the study, as it is known to attenuate the reduction 

of NO3
- to NO2

- in the oral cavity (Govoni et al., 2008), thus altering NO3
- 

metabolism. 

Supplementation procedure  

Within chapter 4, dietary NO3
- supplementation was administered in the form of 

a NO3
--rich beverage (PepsiCo Beet product, PepsiCo, USA). Participants were 

instructed to consume either a NO3
--rich (NIT; 100 mL · day-1; 8 mmol NO3

-) or 

NO3
--free (PLA; 100 mL · day-1; PepsiCo placebo product, PepsiCo, USA) 

beverage for 5 days (1 x 100 mL · day-1), in a double-blind randomised cross over 

design. The beverages were colour matched and provided in identical, code-

labelled plastic bottles. They were isocaloric and sugar matched, however, they 

were not taste matched. In order to ensure full blinding of the supplementation 

procedure throughout the investigation, participants were deliberately 

misinformed the aim of the investigation was to compare the effect of two different 

NO3
- containing beverages on performance. Follow up interviews with 

participants confirmed that they were unaware of the actual research hypothesis.  

Participants were instructed to consume the supplement (1 x 100mL) at 

their scheduled visit time for days 1-4 of supplementation, and 2 hours prior to 

arrival at the laboratory on day 5 of supplementation so that they would consume 

one bolus every 24 hours. Consequently, experimental testing began 2 hours 

post supplementation to coincide with expected peak plasma [NO2
-] (Wylie et al., 

2013a). A washout period of at least 5 days separated each supplementation 

period. Prior to the supplementation period, participants were informed that 

supplementation may cause temporary and harmless side effects including 

beeturia (red urine) and red stools.  

 

Measurement procedure 

 

Descriptive data  

Prior to experimental testing, each participant’s age, height (Seca Stadiometer 

SEC-225, Seca, Hamburg, Germany) and mass (Seca Digital Column Scale 

SEC-170, Seca, Hamburg, Germany) was recorded. 
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Blood pressure 

In chapter 4, upon arrival to the laboratory, participants were seated in an isolated 

room for 3 mins before blood pressure of the brachial artery was measured using 

an automated sphygmomanometer (Dinamap Pro, GE Medical Systems, Tampa, 

USA). Four measurements were taken and results for SBP, DBP and mean 

arterial pressure (MAP) were recorded from the automated sphygmomanometer. 

The first measurement was discounted and the mean of the final 3 measurements 

was used for data analysis. 

 

Heart rate 

Within chapter 4, heart rate (HR) was measured (Polar M400, Polar Electro, 

Finland) throughout the Yo-Yo IR1 exercise test performed in visits 2-5. 

 

Exercise testing procedures 

All exercise testing was performed indoors, on the same sports hall surface. The 

floor was swept to remove settled dust prior to each exercise test and participants 

were instructed to wear the same footwear for all exercise testing to ensure 

consistency.   

 In chapters 3 and 4, a standardised warm up was performed prior to 

exercise testing. Specifically, this consisted of 3 minutes continuous jogging 

followed by static stretches of the quadriceps, hamstring and gluteus maximus 

held for 10 s on the left and right side. Participants then performed 3 

countermovement jumps (CMJs) followed by 4 change of direction runs (5 m 

straight line with 45º change of direction, including 2 x left and 2 x right) and 3 

straight line 10 m sprints, all performed at 70% maximum effort. Overall, this was 

completed in ~8 mins.  

For chapter 3, participants reported to the laboratory on 3 separate 

occasions and each time completed the exercise protocol as illustrated in figure 

2.1 and described in full below. In brief, participants completed a series of 

maximal effort tests, including a RAT, COD t-test, 15 m sprint test and maximal 

CMJ test. For chapter 4, the first visit was for screening, visit 2 was used to 

complete the Yo-Yo IR1 test to exhaustion, and all subsequent visits followed the 
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exercise testing protocol illustrated in figure 2.1 and explained in detail below. 

The full exercise testing procedure comprised of a series of maximal effort tests, 

including a RAT, COD t-test, 15 m sprint test and maximal CMJ test. Following 

this, participants completed the Yo-Yo IR1 test to 90% of their predetermined 

maximum achievable distance, before then repeating the 15 m sprint and CMJ 

protocols.  

For all exercise protocols, participants were instructed to start the attempt 

from a split stance with their left foot leading. The time taken to complete all 

exercise protocols was recorded using a timing gate system (Smartspeed, Fusion 

Sports, Australia) positioned with a 2 m wide running lane. Sprint times were 

recorded telemetrically to the nearest 0.001 s and all data was transmitted to a 

personal digital assistant (PDA). Prior to each protocol participants were verbally 

instructed to complete every exercise attempt with maximum effort. 

 

 

Figure 2.1: Exercise testing protocol for reliability and experimental investigation following nitrate 

supplementation (Chapters 3 and 4). 

 

Yo-Yo IR1 test  

The Yo-Yo IR1 test consists of repeated 20 m shuttle runs at a progressively 

increasing speed controlled by an audio recording, with each 40 m running bout 

separated by a 10 s active recovery period (Bangsbo et al., 2008). When an 

exhaustive test was completed (visit 2, chapter 4), the test was terminated at 

volitional exhaustion or when participants failed to reach the 20 m marker on two 

consecutive runs. The distance covered was recorded and this represented the 

test result. For subsequent exercise visits, participants completed the Yo-Yo IR1 

test to 90% of their predetermined maximum achievable distance. 

 



Chapter 2: General Methods  

Page: 32 

 

Reactive agility test  

Four timing gates (Smartspeed, Fusion Sport, Australia) were set up in a ‘Y-

Shape’ formation (See Fig. 2.2). Participants completed 6 maximal effort attempts 

of this protocol, 3 to the left and 3 to the right, with all attempts starting from the 

start line 0.75 m behind the first timing gate. To begin, participants were instructed 

to sprint through the first two timing gates. Forty milliseconds after breaking the 

timing gate beam at 5 m, lights on either the left or right exit gate began to flash. 

Participants were required to react to this light stimuli and sprint through the 

illuminated gate to complete the test attempt. Participants were deliberately 

misinformed that the timing gate system would randomly allocate either a left or 

right attempt and therefore up to 8 attempts may be required to achieve 3 x left 

and 3 x right attempts. This was to ensure participants were unable to determine 

test direction for any attempt and a true measure of reactive agility could always 

be recorded. Total test time was recorded along with 0-5 and 5-10 m split times. 

Each attempt was separated by a 30 s walking recovery. 
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Figure 2.2: Reactive agility test protocol diagram.  

 

Change of direction t-test 

An adapted version of the t-test protocol (Semenick, 1990) was used with minor 

modifications (See Fig. 2.3). Specifically, a modified distance of 5 m was used 

and bells were used in place of cones (A, B and C). Subjects began the test 0.75 

m behind the timing gate (Smartspeed, Fusion Sport, Australia) at the start line. 

Participants were instructed to sprint forwards and ring bell A by hand. They were 

then instructed to sidestep to point B and ring bell B, before sidestepping across 

to point C and ringing bell C, then sidestepping back to point A to ring bell A again. 

Participants were then instructed to sprint backwards from this point, through the 
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timing gate to the start line to complete the test. It was made clear to participants 

that a test attempt would be discounted if they crossed their legs in the sidestep 

movement or failed to ring the bells by hand at the specific points of the test. 

Three attempts were performed separated by 60 s walking recovery. Total test 

time was recorded. 

 

 

Figure 2.3: Change of direction t-test protocol diagram. 

 

15 m linear sprint 

Participants began each sprint with their left foot positioned on a starting jump 

mat (Smartspeed, Fusion Sports, Australia) as shown in figure 2.4. A timing gate 

system positioned at 0, 5, 10 and 15 m provided a randomly timed (0.2-2 s) 

buzzer and light stimuli to start each sprint. Participants were instructed to react 

to the light and buzzer stimuli and sprint the 15 m distance as quickly as possible. 

Five attempts were performed separated by a 30 s walking recovery. Total test 

time was recorded along with reaction time, 5, 10 and 15 m split times. 
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Figure 2.4: Linear sprint protocol diagram. 

 

Countermovement jump 

Participants completed 3 maximal CMJs on a jump mat (Smartspeed, Fusion 

Sport, Australia) each separated by 30 s standing recovery. Participants were 

instructed to start the movement with their feet shoulder-width apart and keep 

their hands on their hips throughout the test. In the countermovement phase 

participants reached a squat position with their upper leg parallel to the ground, 

they were instructed not to pause in this position but immediately perform a 

maximal jump. Participants were instructed to maintain extension in the knee and 

hip joints throughout the time spent in the air to minimise any additional flight time 

from bending the legs. Maximum jump height was recorded. 
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Statistical analysis 

All statistical analysis was conducted using the Statistical Package for the Social 

Sciences (SPSS), version 23. The specific statistical analysis conducted within 

each chapter is outlined where appropriate. All data are presented as mean ± 

standard deviation (SD) unless otherwise stated. Statistical significance was 

accepted at P < 0.05.
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CHAPTER 3: Reliability of exercise tests for agility, linear sprint and 

vertical jump performance in male team sports players 

Abstract 

Purpose: This investigation aimed to determine the day-to-day reliability of 

commonly used exercise protocols that measure agility, linear sprint and vertical 

jump performance. It also aimed to determine the most appropriate data, taken 

from multiple attempts of the same protocol, to perform statistical analysis on to 

yield the greatest reliability of test performance. Methods: Six male team sports 

players (age: 23 ± 1 years; height: 1.80 ± 0.03 m; weight: 80.92 ± 8.21 kg) 

volunteered to complete 3 identical experimental visits. Within each visit, 

participants completed a series of maximal effort tests including 6 attempts of a 

reactive agility test, 3 attempts of a change of direction t-test, 5 attempts of a 15 

m linear sprint test and 3 attempts of a countermovement jump test. Reliability 

was assessed using intraclass correlation coefficients (ICC) and coefficient of 

variation (COV) between trials 2 and 3 and was performed on varying selections 

of test data to assess which data handling technique produced the lowest 

variability. Results: Test performances were considered most reliable when the 

mean of all 6 reactive agility test performances (COV: 2.0%; ICC: 0.96) and all 3 

change of direction t-test performances were considered (COV: 2.9%; ICC: 0.87), 

and when the fastest linear sprint (COV: 1.0%; ICC: 0.98) and the highest 

countermovement jump performance (COV: 4.6%; ICC: 0.94) was considered 

independently. Conclusion: This study highlights the reliability of the selected 

exercise tests and the most reliable selection of data for each exercise protocol 

tested. Such information may be useful for informing data analysis of these 

particular exercise tests within subsequent intervention studies. 
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Introduction 

Important determinants of performance within team sports game-play include 

agility, linear sprint and vertical jump performance (Wisløff et al., 2004; Little & 

Williams, 2005; Gabbett, Kelly & Sheppard, 2008; Castagna & Castellini, 2013), 

with such movements performed maximally and repeatedly throughout the 

duration of a game. Various exercise protocols have been developed to assess 

such exercise performance in a controlled environment rather than within actual 

game-play (Currell & Jeukendrup, 2008; Singh et al., 2010), which not only 

enables changes in performance across a season to be monitored, but also 

enables the effectiveness of an intervention on parameters of team sports 

performance to be assessed. To date, studies that investigate the effect of an 

intervention on such exercise performance rarely report the reliability of the 

exercise tests employed (Brughelli et al., 2008). However, it is important to 

accurately assess the day-to-day reliability of specific exercise tests before they 

are selected to assess the efficacy of an intervention to ensure they are suitable 

to detect small changes in performance that may be meaningful to team sports 

performance (Hopkins, Hawley & Burke, 1999). 

A commonly employed exercise test to measure planned agility 

performance is the change of direction (COD) t-test (Semenick, 1990). Although 

the reliability of t-test performance is not commonly reported within intervention 

studies that have employed this protocol (Brughelli et al., 2008), where assessed, 

reliability determined by intraclass correlation coefficient (ICC) and coefficient of 

variation (COV) appears to be relatively consistent with an ICC of 0.82-0.83 and 

COV of ~2-3% reported (McBride et al., 2002; Gabbett et al., 2006; Hickey et al., 

2009; Sassi et al., 2009; Munro & Herrington, 2011). However, the data used to 

perform this statistical analysis appears to vary greatly between studies with 

reports of a mean of 4/8 attempts, fastest attempt from 2 efforts and fastest 2 

attempts from 8 efforts being used, for example. In addition to planned agility, 

reactive agility is also important for team sports performance (Gabbett et al., 

2008) and is commonly assessed using a reactive agility test (RAT; Farrow, 

Young & Bruce, 2005; Oliver & Meyers, 2009; Sheppard et al., 2006; Gabbett & 

Benton, 2009). To our knowledge, Oliver and Meyers (2009) are the only authors 

to have assessed the reliability of RAT performance in response to a light stimuli, 

compared to other literature that used sports specific cues (Farrow, Young & 



Chapter 3: Reliability of exercise tests for agility, sprint and vertical jump performance 

 

Page: 39 

 

Bruce, 2005; Sheppard et al., 2006; Gabbett & Benton, 2009). Oliver and Meyers 

(2009) reported a COV of 3.3% for RAT performance when the mean of the 

fastest 4 attempts (2 x left, 2 x right) was assessed. Due to such limited research 

regarding the reliability of these exercise protocols, it is important to assess this 

prior to their use within an intervention study.  

Other common movements within team sports game-play include vertical 

jumping (Little & Williams, 2005; Castanga & Castellini, 2013) and all-out sprint 

running typically up to 10-20 m (Spencer et al., 2004; 2005). The reliability of 

vertical jump performance appears to be varied with a COV reported between 

2.0-5.2% (Gabbett et al., 2006; Cormak et al., 2008; Singh et al., 2010) with 

studies using the highest jump from a varied number of attempts for statistical 

analysis. In addition, the reliability of a reactive start sprint has, to our knowledge, 

never been reported in the literature. However, the reliability of 5, 10 and 20 m 

standing start sprint performance has been assessed with a COV of 5.1%, 3.5% 

and 1.9% reported respectively for these distances (Lockie et al., 2013). This 

appears to be consistent within previous literature that report the reliability of 

sprint performance (Cochrane, Legg & Hooker, 2004; Gabbett et al., 2006; 

Sheppard et al., 2006; Oliver & Meyers, 2009; Singh et al., 2010; Till et al., 2011). 

Interestingly, when the reliability of sprint performance was assessed as a COV 

within a simulated team sport circuit, it was reported to be 3.7% when the mean 

of 60 sprint performances was assessed, compared to 2.0% when absolute best 

sprint performance was assessed independently (Singh et al., 2010). This is 

important as following test completion, the data handling techniques employed 

appear to affect the reliability of test performance. Within studies, it is common 

for multiple attempts of the same protocol to be completed yet the data selected 

for statistical analysis appears to be inconsistent. As the reliability of test 

performance appears to be altered depending on data handling technique, it is 

important this is considered for future analysis to ensure the lowest day-to-day 

variability in test performance can be achieved. It is also important to ensure our 

laboratory can at least match the reliability of these tests reported elsewhere as 

a reduced reliability of test performance may indicate a source of test error that 

would need to be eliminated before their use in an intervention study. 

The aim of the current study was to examine the reliability of commonly 

employed exercise protocols to measure performance in key determinants of 

team sports performance; specifically, the day-to-day reliability of COD t-test, 
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RAT, 15 m linear sprint and CMJ performance. As researchers often ask 

participants to complete multiple attempts of the same task, yet the data selected 

for statistical analysis is variable, a second aim was to consider the most 

appropriate selection of test performance data for statistical analysis to yield the 

greatest reliability. This information will enable the selected exercise protocols 

suitability for use within an intervention study to be considered. It may also inform 

subsequent data analysis when using these protocols to ensure the greatest 

reliability of test performance is achieved. 

 

Methods 

Participants  

Six competitive but non-elite male, team sports players (age: 23 ± 1 years; height: 

1.80 ± 0.03 m; weight: 80.92 ± 8.21 kg) volunteered to participate in this study 

which was approved by the institutional ethics committee. This sample size 

reflects that employed by Samozino et al. (2016) where the reliability of 

parameters of sprint running performance was assessed. Written informed 

consent was obtained prior to beginning exercise testing, once the experimental 

procedures, potential benefits and associated risks were explained in full. 

 

Experimental design 

Participants reported to the laboratory on three separate occasions to complete 

experimental testing. All experimental visits were identical. Each visit was 

separated by a minimum of 48 hours and was performed at the same time of day 

(± 2 hours) to account for diurnal variation in high intensity exercise performance 

(Souissi et al., 2007). 

Participants were instructed to arrive at the laboratory ≥3 h post-prandial, 

having avoided strenuous exercise and alcohol consumption in the 24 h and 

caffeine 12 h prior to each visit. Participants were instructed to record their diet in 

the 24 h prior to the first visit and to replicate this in the 24 h preceding each 

subsequent visit. 
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Exercise protocol   

All exercise visits were conducted indoors on the same floor surface and 

participants were instructed to wear the same footwear for all visits to ensure 

consistency. Upon arrival at the laboratory, participants completed a 

standardised warm up prior to commencing exercise testing.  

Each exercise protocol was separated by a 2.5 min walking recovery. A 

timing gate system (Smartspeed, Fusion Sports, Australia) was used for all 

exercise protocols, arranged to allow a 2 m running lane. Time to complete each 

protocol was measured to the nearest 0.001 s. Participants were instructed to 

start every attempt from a split stance with their left foot leading. The exercise 

testing protocols were conducted as described below and have been illustrated 

in the general methods chapter of this thesis (see fig. 2.2-2.4). 

 

RAT: 

Four timing gates (Smartspeed, Fusion Sport, Australia) were set up in a ‘Y-

Shape’ formation (See Fig. 2.2). Participants completed 6 maximal effort attempts 

of this protocol, 3 to the left and 3 to the right, with all attempts starting from the 

start line 0.75 m behind the first timing gate. To begin, participants were instructed 

to sprint through the first two timing gates. Forty milliseconds after breaking the 

timing gate beam at 5 m, lights on either the left or right exit gate began to flash. 

Participants were required to react to this light stimuli and sprint through the 

illuminated gate to complete the test attempt. Participants were deliberately 

misinformed that the timing gate system would randomly allocate either a left or 

right attempt and therefore up to 8 attempts may be required to achieve 3 x left 

and 3 x right attempts. This was to ensure participants were unable to determine 

test direction for any attempt and a true measure of reactive agility could always 

be recorded. Total test time was recorded along with 0-5 and 5-10 m split times. 

Each attempt was separated by a 30 s walking recovery. 

 

COD t-test: 

An adapted version of the t-test protocol (Semenick, 1990) was used with minor 

modifications (See Fig. 2.3). Specifically, a modified distance of 5 m was used 

and bells were used in place of cones (A, B and C). Subjects began the test 0.75 

m behind the timing gate (Smartspeed, Fusion Sport, Australia) at the start line. 



Chapter 3: Reliability of exercise tests for agility, sprint and vertical jump performance 

 

Page: 42 

 

Participants were instructed to sprint forwards and ring bell A by hand. They were 

then instructed to sidestep to point B and ring bell B, before sidestepping across 

to point C and ringing bell C, then sidestepping back to point A to ring bell A again. 

Participants were then instructed to sprint backwards from this point, through the 

timing gate to the start line to complete the test. It was made clear to participants 

that a test attempt would be discounted if they crossed their legs in the sidestep 

movement or failed to ring the bells by hand at the specific points of the test. 

Three attempts were performed separated by 60 s walking recovery. Total test 

time was recorded. 

 

15 m sprint: 

Participants began each sprint with their left foot positioned on a starting jump 

mat (Smartspeed, Fusion Sports, Australia) as shown in figure 2.4. A timing gate 

system positioned at 0, 5, 10 and 15 m provided a randomly timed (0.2-2 s) 

buzzer and light stimuli to start each sprint. Participants were instructed to react 

to the light and buzzer stimuli and sprint the 15 m distance as quickly as possible. 

Five attempts were performed separated by a 30 s walking recovery. Total test 

time was recorded along with reaction time, 5, 10 and 15 m split times. 

 

CMJ: 

Participants completed 3 maximal CMJs on a jump mat (Smartspeed, Fusion 

Sport, Australia) each separated by 30 s standing recovery. Participants were 

instructed to start the movement with their feet shoulder-width apart and keep 

their hands on their hips throughout the test. In the countermovement phase 

participants reached a squat position with their upper leg parallel to the ground, 

they were instructed not to pause in this position but immediately perform a 

maximal jump. Participants were instructed to maintain extension in the knee and 

hip joints throughout the time spent in the air to minimise any additional flight time 

from bending the legs. Maximum jump height was recorded. 

 

Statistical analysis 

In order to assess the reliability of the exercise protocols above, statistical 

analysis was conducted between trial 2 and trial 3. This was conducted to reflect 

the trials that comprise the experimental conditions within the intervention study 
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of this thesis (Chapter 4) while also enabling trial 1 to act as a familiarisation and 

reduce the likelihood of systematic error within the data. 

Paired sampled t-tests were used to determine whether there were any 

differences in performance between trials 2 and 3. Statistical significance was 

accepted at P < 0.05. The ICC and 95% confidence interval and COV and 95% 

confidence interval was calculated using the log-transformed data as proposed 

by Hopkins (2000). Respective mean and standard deviation (SD) values are 

reported as non-transformed data. 

 

Results 

All exercise visits were separated by a minimum of 48 hours with the mean ± SD 

time between each trial 7 ± 4 days. 

There was no significant difference in performance between trials 2 and 3 

for any exercise test (P > 0.05). 

 

RAT:  

The COV and ICC between trial 2 and trial 3 for RAT performance are reported 

in table 3.1 as independent and combined left and right attempts.  The absolute 

COV was lowest when all 6 attempts (3 x left, 3 x right) were considered together 

(COV [95% CI]: 2.0% [1.3 - 5.1]), illustrated in figure 3.1. RAT split times for all 6 

attempts (3 x left, 3 x right) are reported in table 3.2. 

 

COD t-test: 

The COV and ICC between trial 2 and trial 3 for change of direction t-test 

performance are reported in table 3.3. Overall, t-test performance was 

considered most repeatable when the mean of all 3 attempts was considered 

(COV [95% CI]: 2.9% [1.8 - 7.1]), illustrated in figure 3.2. 

 

15 m sprint: 

The COV and ICC between trial 2 and trial 3 for 15 m sprint performance are 

reported in table 3.4. Absolute COV was lowest when only the fastest sprint per 

attempt was considered independently (COV [95% CI]: 1.0 % [0.6 - 2.4]), 



Chapter 3: Reliability of exercise tests for agility, sprint and vertical jump performance 

 

Page: 44 

 

illustrated in figure 3.3. Taking the fastest attempt, analysis of sprint split times 

was conducted and are reported in table 3.5. 

 

CMJ: 

The COV and ICC between trial 2 and trial 3 for CMJ performance are reported 

in table 3.6. The absolute lowest COV was reported when the highest jump 

performance was analysed independently (COV [95% CI]: 4.6% [2.8 - 11.6]), 

illustrated in figure 3.4.
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Figure 3.1: Mean reactive agility test performance from all 6 attempts. The dashed lines indicates 

individual performance times and the solid line indicates the group mean. 

 

 

Figure 3.2: Mean change of direction t-test performance from all 3 attempts. The dashed lines 

indicates individual performance times and the solid line indicates the group mean. 
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Figure 3.3: Fastest 15 m sprint performance from 5 attempts. The dashed lines indicates 

individual performance times and the solid line indicates the group mean. 

 

 

Figure 3.4: Highest countermovement jump performance from 3 attempts. The dashed lines 

indicates individual performance times and the solid line indicates the group mean. 
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Discussion:  

The aim of the current study was to examine the reliability of commonly employed 

exercise protocols used to measure performance in key determinants of team 

sports performance, and, to consider the most appropriate selection of data from 

multiple test attempts to yield the greatest reliability. All exercise protocols were 

considered reliable and in line with that reported elsewhere in the literature for 

the same exercise protocols. Test performances were considered most reliable 

when the mean of all 6 RAT performances and all 3 COD t-test performances 

were considered, and when the fastest 15 m linear sprint and the highest CMJ 

performance was considered independently. 

 

Change of direction t-test 

The reliability of t-test performance is not commonly reported within intervention 

studies that employ this exercise protocol (Brughelli et al., 2008), however, it 

appears to remain consistent when reported. When reliability was assessed as 

an ICC it was reported between 0.82-0.83 and as a COV between ~2-3% 

(McBride et al., 2002; Gabbett et al., 2006; Hickey et al., 2009; Sassi et al., 2009; 

Munro & Herrington, 2011; Steward, Turner & Miller, 2014). In agreement with 

that reported elsewhere, reliability assessed as an ICC was 0.87 and as a COV 

was 2.9% in the present study. Change of direction t-test performance was most 

reliable when the mean of all three attempts was considered for statistical 

analysis. As the data handling processes employed within the literature does not 

appear to be consistent, this is important information to take forward to inform the 

data handling processes of subsequent studies to obtain the greatest reliability. 

 

Reactive agility test 

Several previous studies have assessed the reliability of the RAT, either in 

response to a sports specific (Farrow et al., 2005; Sheppard et al., 2006) or a 

light stimuli (Oliver & Meyers, 2009). In agreement with Oliver and Meyers (2009), 

RAT performance in the present study was considered most reliable when 

reported as the mean of left and right attempts combined, rather than separating 

movements to the left and right independently. The COV reported within the 

present study for the mean of all 6 attempts was 2.0%, compared to the 3.3% 
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reported previously (Oliver & Meyers, 2009) where the mean of 4 attempts (2 x 

left, 2 x right) of the same protocol was evaluated. In addition, reliability assessed 

as an ICC was 0.96 in the present study. This is comparable to the reliability of 

RAT performance in response to a sports specific stimuli evaluated by Farrow et 

al. (2005) and Sheppard et al. (2006) where an ICC of 0.83 and 0.88 were 

reported, respectively. In conclusion, RAT performance in the present study was 

considered most reliable when a mean of all 6 attempts was used for statistical 

analysis. 

 

15 m linear sprint 

To our knowledge, this is the first study to investigate the reliability of sprint 

performance including a reactive start. Fifteen meter sprint performance was 

considered most reliable when the fastest total sprint time (COV = 1.0%) was 

used independently for data analysis compared to other data handling techniques 

assessed such as the mean of all 5  (COV = 1.1%) or a selection of fastest sprint 

attempts (COV = 1.1-1.3%). Comparisons can be drawn between the reliability of 

sprint performance in the present study and that reported by Singh et al. (2010) 

who also reported 15 m sprint performance was most reliable when the single 

fastest sprint was used for analysis compared to the mean of all sprints when 

completed within a team sports specific circuit. Reliability of sprint performance 

assessed as a COV was 1.0% in the present study compared to 2.0% reported 

by Singh et al. (2010). 

 Surprisingly, when sprint split times were assessed, reaction time was 

highly variable with a COV of 60.3% and ICC of 0.42. However, overall 15 m 

sprint reliability as a COV (1.0%) was comparable to that reported by Singh et al. 

(2010) when no reactive start was employed (2.0%) indicating that the reactive 

element did not negatively affect the reliability of the sprint test. Supporting this, 

split time reliability was also comparable to the literature. When 5 m split time was 

assessed, reliability was calculated as an ICC of 0.92 and COV of 1.8%, similar 

to the ICC of 0.89 reported by Cochrane et al. (2004) and higher than the ICC of 

0.76 and lower than the COV of 5.1% reported by Lockie et al. (2013). Similarly, 

10 m split time reliability was calculated in the present study to have an ICC of 

0.92 and COV of 1.7% which is comparable to the literature where an ICC 

between 0.85-0.95 and COV of between 1.8-3.5% have been reported (Cochrane 
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et al., 2004; Gabbett et al., 2006; Lockie et al., 2013). It was therefore considered 

that the reactive start sprint was a highly reliable test and consequently a suitable 

protocol to employ in a future intervention study. 

 

Countermovement jump  

The reliability of CMJ performance within the present study was greatest when 

the highest vertical jump was considered independently. When assessed as an 

ICC, reliability was 0.94 and the COV was 4.6% in the present study. The better 

reliability using solely the highest jump is in agreement with Singh et al. (2010) 

who reported jump performance reliability to be better when the highest jump was 

considered alone (COV = 2.7%) compared to the mean of multiple attempts 

performed (COV = 4.3%). The reliability of CMJ performance in the present study, 

although showing slightly more variation day-to-day than that reported previously 

by Gabbett et al. (2006; COV = 2.9%, ICC = 0.96) and Singh et al. (2008; COV = 

2.7%, ICC = 0.99), is comparable to the COV of 5.1% reported by Cormak et al. 

(2008) when performance was measured using a force plate in a similar 

population of team sports athletes. It is noteworthy that within the literature, 

different participant populations, jump techniques and measurement devices 

have been employed, which may account for some of the variation in jump test 

reliability reported within the literature. Countermovement jump performance 

reliability in the present study is comparable to that reported elsewhere in the 

literature, and, was considered most reliable when the highest jump out of 3 

efforts was used for statistical analysis alone. 

 

Conclusion 

In conclusion, this study highlights the reliability of selected exercise tests for 

planned and unplanned agility, linear sprint and vertical jump performance and 

indicates the most reliable selection of data for statistical analysis for each 

protocol. Specifically, the most reliable data handling procedure was achieved 

when the single fastest 15 m linear sprint out of 5 attempts, and the highest CMJ 

out of 3 attempts was considered independently, and when the mean of all 3 COD 

t-test and all 6 RAT attempts were considered. Such findings may provide 

important information for informing data analysis within these exercise protocols 

in subsequent intervention studies to yield the greatest possible reliability. 
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CHAPTER 4: No improvement in agility, linear sprint or vertical jump 

performance following nitrate supplementation 

Abstract 

Purpose: This investigation tested the hypothesis that nitrate (NO3
-) 

supplementation would improve planned and unplanned change of direction, 

linear sprint and vertical jump performance in an unfatigued state, and secondly, 

would attenuate the decline in performance following fatiguing exercise that 

mimicked the high-intensity intermittent exercise demands of team sport game-

play. Methods: In a double blind, randomised and balanced crossover design, 

32 male team sports players received either a NO3
--rich (NIT; 100 mL · day-1; 8 

mmol NO3
-) or NO3

-- free (PLA; 100 mL · day-1) beverage for 5 days. On day 5 of 

supplementation, participants completed a series of maximal effort tests for 

reactive agility (reactive agility test), planned agility (change of direction t-test), 

15 m sprint and countermovement jump performance. The 15 m sprint and 

countermovement jump protocols were completed at rest and following the Yo-

Yo intermittent recovery level 1 test to 90% predetermined maximum achievable 

distance. Results: NO3
- supplementation did not improve reactive agility (NIT: 

2.64 ± 0.21 s vs PLA: 2.65 ± 0.17 s, P > 0.05), change of direction t-test (NIT: 

7.12 ± 0.71 s vs PLA: 7.10 ± 0.76 s, P > 0.05), 15 m sprint (NIT: 3.20 ± 0.21 s vs. 

PLA: 3.22 ± 0.21 s, P > 0.05) or countermovement jump (NIT: 36.4 ± 6.6 cm vs 

PLA: 37.0 ± 6.8 cm, P > 0.05) performance in an unfatigued state. In a fatigued 

state, 15 m sprint (NIT: 3.27 ± 0.25 s vs PLA: 3.27 ± 0.25 s, P > 0.05) and 

countermovement jump (NIT: 36.7 ± 7.2 cm vs PLA: 36.5 ± 7.0 cm, P > 0.05) 

performance were also unaltered following NO3
- supplementation. Performance 

declined in a fatigued compared to unfatigued state for 15 m sprint performance 

(P < 0.05) but was unchanged for countermovement jump performance (P > 

0.05). NO3
- supplementation did not attenuate the decline in fatigued 15 m sprint 

performance (P > 0.05). Conclusion: NO3
- supplementation did not improve 

reactive agility, change of direction t-test, linear sprint or vertical jump 

performance when performed in an unfatigued state. NO3
- supplementation also 

did not attenuate the decline in 15 m sprint performance in a fatigued state. 

Therefore it may be suggested that NO3
- supplementation is not ergogenic for 

these particular determinants of team sports performance. 
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Introduction  

Recent studies have reported improvements in intermittent exercise (Wylie et al., 

2013b; Thompson et al., 2015) as well as all-out sprint running (Sandbakk et al., 

2015; Thompson et al., 2016) performance following nitrate (NO3
-) 

supplementation. Since team sports match-play can, in part, be characterised by 

such exercise performance (Bangsbo, 1994; Spencer et al., 2004), these findings 

may suggest NO3
- supplementation could be ergogenic for team sports 

performance.  

Following the ingestion of NO3
-, it is reduced in a stepwise fashion to nitrite 

(NO2
-) and then preferentially to nitric oxide (NO; Benjamin et al., 1994; Lundberg 

et al., 1994) and it is this increase in NO2
- and NO that likely mediates the positive 

physiological responses and enhanced exercise capacity reported following such 

supplementation (e.g. Bailey et al., 2009; Lansley et al., 2011). Importantly, the 

production of NO via this pathway is potentiated in hypoxic and acidic 

environments (Lundberg, Weitzberg & Gladwin, 2008; van Faassen et al., 2009), 

such as that within contracting skeletal muscle. Therefore, this pathway may be 

an increasingly important source of NO production during exercise where the 

production of NO through the oxidation of L-Arginine is reduced (Lundberg & 

Weitzberg, 2010). Interestingly, NO3
- supplementation has been suggested to 

preferentially enhance the physiological responses of type II muscle fibres to 

exercise (Hernández et al., 2012; Ferguson et al., 2013; 2015; Ivarsson et al., 

2016). Improvements in intermittent sprint (Thompson et al., 2015; Wylie et al., 

2016) and single sprint (Sandbakk et al., 2015; Thompson et al., 2016) exercise 

performance following NO3
- supplementation may therefore be attributed, in part, 

to the fact such exercise recruits a high portion of type II fibres (Greenhaff et al., 

1994; Krustrup et al., 2006). Given the preferential effect of NO3
- supplementation 

on type II muscle fibres, it may be particularly well placed to improve exercise 

performance in other exercise that recruits a high portion of type II fibres such as 

that requiring high force generation and muscle contraction speeds (Bottinelli et 

al., 1996) like rapid changing of direction and vertical jumping. 

Single effort sprint as well as agility and vertical jump performance are 

hallmarks of team sports performance (Wisløff et al., 2004; Little & Williams, 

2005; Gabbett, Kelly & Sheppard, 2008; Castagna & Castellini, 2013). Multiple, 

maximal effort sprints of 10-20 m (Spencer et al., 2004; 2005) are commonly 
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performed throughout the duration of a game (Little & William, 2005; Gabbett et 

al., 2006) with >50% of sprints occurring after >60 s recovery period (Spencer et 

al., 2004) and with ~16% of sprints involving at least one change of direction 

(Duthie et al., 2006). Following NO3
- supplementation, sprint performance has 

been reported to be enhanced in some (Sandbakk et al., 2015; Thompson et al., 

2016) but not all (Muggeridge et al., 2013; Christensen, Nyberg & Bangsbo, 2013; 

Martin et al., 2014) previous studies. Thompson et al. (2016) reported an 

improvement in 20 m linear sprint performance of 1.2% in an unfatigued state 

following 5 days of NO3
- supplementation (6.4 mmol · day-1). When the sprint was 

separated into split times, performance was enhanced 1.6% over the first 10 m 

split and 2.3% over the first 5 m split (Thompson et al., 2016), suggesting the 

ergogenic effect of NO3
- supplementation is more pronounced in the initial 

acceleration phase of the sprint. This may be attributed to the enhanced 

contractile properties of skeletal muscle (Bailey et al., 2010), enhanced evoked 

explosive force production (Haider and Folland, 2014) and power during 

voluntary exercise (Coggan et al., 2015; Rimer et al., 2016) reported elsewhere 

in the literature following NO3
- supplementation. Taken together, this research 

provides reason to suggest that NO3
- may be ergogenic within movements that 

involve repeated acceleration bouts such as within planned and unplanned 

change of direction tasks. Additionally, it may also suggest NO3
- supplementation 

could be ergogenic within explosive movements such as vertical jumping. 

However, these possibilities have yet to be investigated. 

Within team sports game-play, sprint and jump movements are not only 

performed in an unfatigued state but also under fatigue, where the ability to 

perform such high intensity explosive exercise is reduced (Mohr et al., 2004). 

Interestingly, NO3
- supplementation has been suggested to reduce fatigue 

development and therefore muscle metabolic perturbation by reducing the ATP 

cost of skeletal muscle contraction and sparing the rate of PCr depletion (Bailey 

et al., 2010). In addition, NO3
- supplementation has been reported to facilitate the 

O2 dependent restoration of PCr (Vanhatalo et al., 2011). This is important as the 

rate of PCr depletion is a significant determinant of fatigue development during 

maximal intensity exercise (Gaitanos et al., 1993; Fulford et al., 2013). Overall, 

fatigue development may be reduced with NO3
- supplementation and therefore 

the performance decline expected in subsequent exercise bouts may be 

attenuated. However, the effect of NO3
- supplementation on key parameters of 
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team sports performance, such as linear sprinting and vertical jumping when 

fatigued, has yet to be investigated. 

The purpose of this study was to investigate the effect of NO3
- 

supplementation on key determinants of team sports performance, specifically, 

agility, linear sprint and vertical jump performance in an unfatigued state, and 

linear sprint and vertical jump performance in a fatigued state to simulate the 

nature of exercise performed within match-play. It was hypothesised that: 1) 

dietary NO3
- supplementation would improve agility, linear sprint and vertical jump 

performance in an unfatigued state; and 2) attenuate the decline in linear sprint 

and vertical jump performance when performed in a fatigued state. 

 

Methods 

 

Participants  

Thirty two male team-sports players (mean ± SD; age: 21 ± 3 years, height: 1.79 

± 0.06 m; weight: 81.8 ± 15.2 kg) volunteered to participate in this study which 

was approved by the institutional research ethics committee. All volunteers were 

screened to ensure they were non-smokers, free from disease, and were not 

taking any dietary supplements prior to recruitment. All participants gave their 

written informed consent to participate once the experimental procedures, 

associated risks and potential benefits of participation were explained in full.  

 

Experimental design 

Participants reported to the laboratory on 5 occasions in total. In the first 

laboratory visit participants were screened, and once enrolled onto the study 

reported to the laboratory for visit 2 and completed the Yo-Yo IR1 test to 

exhaustion. During visit 3, participants completed the full experimental protocol 

(see full details below) without any prior supplementation which acted as a 

familiarisation. Then in a double blind, balanced, repeated measures design, 

participants were allocated to receive either a NO3
--rich or a NO3

--free beverage 

to consume for 5 days, with a minimum 5 day washout period separating each 

supplementation period. On day 5 of supplementation, participants returned to 

the laboratory to complete the full experimental protocol. 
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The full experimental protocol completed in visits 3-5 comprised of a 

resting blood pressure (BP) measurement then a series of maximal effort tests, 

including a reactive agility test (RAT), change of direction (COD) t-test, 15 m 

sprint test and maximal countermovement jump (CMJ) test. Following this, 

participants completed the Yo-Yo IR1 test to 90% of their predetermined 

maximum achievable distance, before repeating the 15 m sprint and CMJ 

protocols. A detailed description of each exercise test protocol is provided in the 

exercise protocol section below.  

During the investigation, participants were deliberately misinformed that 

visit 3 was a control condition rather than a familiarisation and that the aim of the 

investigation was to compare the effect of two different NO3
- containing 

beverages to this control condition. This misinformation was relayed to 

participants to ensure full blinding of the supplementation procedure was 

achieved for the duration of the investigation. Follow up interviews with 

participants confirmed that they were unaware of the actual research hypothesis.  

All experimental visits were scheduled at the same time of day (± 2 h). 

Participants were instructed to arrive at the laboratory ≥3 h post-prandial, having 

avoided strenuous exercise and alcohol consumption in the 24 h and caffeine 12 

h prior to each visit. Participants were instructed to record their diet in the 48 h 

prior to the familiarisation visit and to replicate this in the 48 h preceding each 

subsequent visit. For the duration of the study participants were instructed to 

avoid foods rich in NO3
- (e.g., beetroot, spinach, rocket, kale and cured meats), 

and to refrain from consuming any other dietary supplements. Participants were 

also instructed to abstain from the use of antibacterial mouthwash and chewing 

gum for the entire study duration as this is known to alter the reduction of NO3
- to 

NO2
- in the oral cavity and thus effect NO3

-metabolism (Govoni et al., 2008). 

 

Supplementation 

Following initial screening and familiarisation to the experimental protocol, 

participants were allocated either a NO3
--rich (NIT; 100 mL · day-1; 8 mmol NO3

-; 

PepsiCo Beet product, PepsiCo, USA) or NO3
--free (PLA; 100 mL · day-1; 

PepsiCo placebo product, PepsiCo, USA) beverage for 5 days in a double-blind 

randomised cross over design. Participants consumed 1 x 100 mL each day with 

the final dose consumed 2 h prior to arrival at the laboratory for exercise testing. 
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Consequently, physiological testing begun 2 h post supplementation to coincide 

with expected peak plasma [NO2
-] (Wylie et al., 2013a). A washout period of at 

least 5 days separated each supplementation period. Compliance to the 

supplementation regime was assessed through the completion of a 

supplementation log during each supplementation period and with questionnaires 

during each experimental visit.  

 

Measurements  

 

Blood pressure 

Upon arrival at the laboratory, participants were seated in an isolated room for 3 

min before 4 BP measurements of the brachial artery were taken. (Dinamap Pro, 

GE Medical Systems, Tampa, USA). The first measurement was discounted and 

statistical analysis was performed on the final 3 measurements 

 

Exercise protocol 

All exercise visits were conducted indoors on the same floor surface and 

participants were instructed to wear the same footwear for all visits. Before 

commencing exercise testing, participants completed a standardised warm up. 

Participants then completed the exercise protocols described below, interspersed 

with 2.5 min walking recovery. A timing gate system (Smartspeed, Fusion Sports, 

Australia) was used for all exercise protocols and performance was recorded to 

the nearest 0.001 s. Timing gates were arranged to allow a 2 m running lane. 

Participants were instructed to start every attempt from a split stance with their 

left foot leading. For the duration of the Yo-Yo IR1 test in visits 2-5, heart rate 

(HR) was measured (Polar M400, Polar Electro, Finland). 

 

RAT: 

Four timing gates (Smartspeed, Fusion Sport, Australia) were set up in a ‘Y-

Shape’ formation (See Fig. 2.2). Participants completed 6 maximal effort attempts 

of this protocol, 3 to the left and 3 to the right, with all attempts starting from the 

start line 0.75 m behind the first timing gate. To begin, participants were instructed 

to sprint through the first two timing gates. Forty milliseconds after breaking the 

timing gate beam at 5 m, lights on either the left or right exit gate began to flash. 
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Participants were required to react to this light stimuli and sprint through the 

illuminated gate to complete the test attempt. Participants were deliberately 

misinformed that the timing gate system would randomly allocate either a left or 

right attempt and therefore up to 8 attempts may be required to achieve 3 x left 

and 3 x right attempts. This was to ensure participants were unable to determine 

test direction for any attempt and a true measure of reactive agility could always 

be recorded. Total test time was recorded along with 0-5 and 5-10 m split times. 

Each attempt was separated by a 30 s walking recovery. 

 

COD t-test: 

An adapted version of the t-test protocol (Semenick, 1990) was used with minor 

modifications (See Fig. 2.3). Specifically, a modified distance of 5 m was used 

and bells were used in place of cones (A, B and C). Subjects began the test 0.75 

m behind the timing gate (Smartspeed, Fusion Sport, Australia) at the start line. 

Participants were instructed to sprint forwards and ring bell A by hand. They were 

then instructed to sidestep to point B and ring bell B, before sidestepping across 

to point C and ringing bell C, then sidestepping back to point A to ring bell A again. 

Participants were then instructed to sprint backwards from this point, through the 

timing gate to the start line to complete the test. It was made clear to participants 

that a test attempt would be discounted if they crossed their legs in the sidestep 

movement or failed to ring the bells by hand at the specific points of the test. 

Three attempts were performed separated by 60 s walking recovery. Total test 

time was recorded. 

 

15 m sprint: 

Participants began each sprint with their left foot positioned on a starting jump 

mat (Smartspeed, Fusion Sports, Australia) as shown in figure 2.4. A timing gate 

system positioned at 0, 5, 10 and 15 m provided a randomly timed (0.2-2 s) 

buzzer and light stimuli to start each sprint. Participants were instructed to react 

to the light and buzzer stimuli and sprint the 15 m distance as quickly as possible. 

Five attempts were performed separated by a 30 s walking recovery. Total test 

time was recorded along with reaction time, 5, 10 and 15 m split times. 

 

CMJ: 
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Participants completed 3 maximal CMJs on a jump mat (Smartspeed, Fusion 

Sport, Australia) each separated by 30 s standing recovery. Participants were 

instructed to start the movement with their feet shoulder-width apart and keep 

their hands on their hips throughout the test. In the countermovement phase 

participants reached a squat position with their upper leg parallel to the ground, 

they were instructed not to pause in this position but immediately perform a 

maximal jump. Participants were instructed to maintain extension in the knee and 

hip joints throughout the time spent in the air to minimise any additional flight time 

from bending the legs. Maximum jump height was recorded. 

 

Yo-Yo IR1: 

The Yo-Yo IR1 test consists of repeated 20 m shuttle runs at a progressively 

increasing speed controlled by an audio recording, with each 40 m running bout 

separated by a 10 s active recovery period (Bangsbo, Iaia & Krustrup, 2008). 

When completed to exhaustion, the test was terminated when participants failed 

to reach the 20 m marker on two consecutive runs. The distance covered at this 

time was recorded and represented the test result. For subsequent exercise 

visits, participants completed the Yo-Yo IR1 test to 90% of their maximum 

achievable distance. 

 

Subsequent to Yo-Yo IR1: 

In experimental visits, 30 s following the Yo-Yo IR1 test to 90% of maximum 

achieved distance, participants completed the 15 m linear sprint and CMJ 

exercise protocols for a second time. 

 

Statistical analysis 

Statistical analysis for exercise performance was informed by the reliability work 

conducted in chapter 3 of this thesis to ensure analysis was performed on data 

that was most repeatable day-to-day. Analysis was conducted on the mean of all 

6 RAT attempts, mean of all 3 COD t-test attempts and on the absolute fastest 

15 m sprint and the absolute highest CMJ attempt. 

A two-way repeated measures ANOVA (supplement x time) was used to 

assess differences between NIT and PLA in sprint and CMJ performance. 

Significant main and interaction effects were followed up with Fisher’s LSD post 
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hoc tests. Differences between NIT and PLA for resting BP, RAT and COD t-test 

performance was analysed using paired samples t-tests. Paired samples t-tests 

were also employed to assess differences in performance between visit 4 and 5 

for all exercise protocols, to assess the effect of testing order on performance. 

Relationships between change in BP and performance following NIT (vs PLA) 

compared to PLA was assessed using Pearson product moment correlation 

coefficients.  

Determination of an appropriate sample size for this investigation was 

informed by data from Thompson et al. (2016) where 10 m linear sprint 

performance was assessed following NO3
- supplementation. The minimum 

sample size required, determined from these data, was 30 participants (1- β = 

0.80; 0.05 α–level). 

All data are reported as mean ± SD unless otherwise stated. Statistical 

significance was accepted at P < 0.05.  

 

Results 

Both the NIT and PLA treatments were well tolerated by all participants. Each 

participant fully complied with the supplementation protocol and followed all 

instructions prior to each exercise visit.  

 

Blood pressure 

There was no significant difference between NIT and PLA for systolic BP (SBP), 

diastolic BP (DBP) or mean arterial pressure (MAP), (SBP:122 ± 9 mmHg vs 122 

± 11 mmHg; DBP: 67 ± 6 mmHg vs 68 ± 8 mmHg; MAP: 88 ± 6 mmHg vs 88 ± 7 

mmHg respectively; P > 0.05 for all comparisons). However, the change in BP 

following NIT was negatively correlated with baseline BP in PLA (SBP: r = - 0.55, 

P < 0.01; DBP: r = - 0.74, P < 0.01; MAP: r = - 0.64, P < 0.01). 

 

RAT performance 

Reactive agility performance was not different between NIT and PLA (2.64 ± 0.21 

s vs 2.65 ± 0.17 s respectively; P > 0.05; fig. 4.1). Similarly, there was no 

significant difference between NIT and PLA when attempts were considered 

independently to the left (2.65 ± 0.22 s vs 2.65 ± 0.19 s respectively; P > 0.05) or 

to the right (2.64 ± 0.20 s vs 2.66 ± 0.18 s respectively; P > 0.05). There was no 
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significant difference between NIT and PLA for 0-5 m or 5-10 m split time when 

attempts were considered combined or independently to the left or right (P > 

0.05). 

 

 

 

Figure 4.1: Reactive agility test total and split time following PLA (□) and NIT (■) supplementation. 

Data presented as group mean ± SD. 

 

Change of direction t-test performance 

There was no difference between PLA and NIT for change of direction t-test 

performance (7.10 ± 0.76 s vs 7.12 ± 0.71 s respectively; P > 0.05; Fig. 4.2). 
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Figure 4.2: Time taken to complete change of direction t-test. The dashed lines indicate individual 

responses and solid line indicates group mean ± SD. 

 

Sprint performance 

Compared to PLA, there was no effect of NIT on sprint performance for reaction 

time, 5, 10 or 15 m split time in either an unfatigued or a fatigued state (P > 0.05; 

figure 4.3). There was no supplement x time interaction effect for reaction time, 

5, 10 or 15 m split time (P > 0.05; fig 4.3).  

Sprint performance was significantly slower in a fatigued state compared 

to an unfatigued state in 10 m split for NIT (2.53 ± 0.19 s vs 2.49 ± 0.17 s 

respectively, P < 0.05) and for 15 m sprint performance in PLA (3.27 ± 0.25 s vs 

3.22 ± 0.21 s respectively) and NIT (3.27 ± 0.25 s vs 3.20 ± 0.21 s respectively, 

P < 0.05 for both comparisons). However, NIT did not attenuate the decline in 15 

m sprint performance from an unfatigued to fatigued state (P > 0.05). There was 

a trend for slower reaction time in an unfatigued compared to a fatigued state in 

PLA (0.38 ± 0.23 s vs 0.32 ± 0.23 s respectively, P = 0.06). 
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Figure 4.3: Sprint performance following NIT and PLA in an unfatigued (solid line; ●) and fatigued 

state (dashed line; ■). Data presented as mean ± SD. * significantly different to performance in 

unfatigued state within same condition, P < 0.05.  

 

CMJ performance  

There was no effect of NIT, compared to PLA on CMJ performance in either an 

unfatigued (36.4 ± 6.6 cm vs 37.0 ± 6.8 cm) or a fatigued (36.7 ± 7.2 cm vs 36.5 

± 7.0 cm, respectively, P > 0.05 for both comparisons) state. Additionally, CMJ 

performance is an unfatigued state was similar to performance in a fatigued state 

(P > 0.05, fig 4.4). 

 

Heart rate  

Maximum HR at the end of the exhaustive Yo-Yo IR1 was 191 ± 8 bpm. Heart 

rate at the end of the Yo-Yo IR1 completed to 90% maximum achievable distance 

was on average 98% of maximum HR. HR recorded at this point was not different 

between PLA and NIT (186 ± 9 bpm vs 184 ± 15 bpm, respectively; P > 0.05). 
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Figure 4.4: Countermovement jump height following PLA (□) and NIT (■) conditions in an 

unfatigued and fatigued state. Data presented as mean ± SE. 

 

There was no effect of testing order on performance in any exercise test (P > 

0.05). 

 

Discussion  

The principal original finding from this study was that short term dietary NO3
- 

supplementation did not improve agility, 15 m linear sprint or vertical jump 

performance when completed in an unfatigued state. NO3
- supplementation also 

did not improve 15 m sprint or vertical jump performance when completed 

following fatiguing exercise. Fifteen meter sprint, but not CMJ performance, was 

reduced in a fatigued compared to an unfatigued state; however, NO3
- 

supplementation did not attenuate this decline in performance. These findings 

suggest that NO3
- supplementation may not be ergogenic for these particular 

determinants of team sports performance. 

 

Effect of NO3
- supplementation on blood pressure 

In the present study, SBP and DBP were unchanged following NO3
- 

supplementation in agreement with some (Cermak et al., 2012; Wilkerson et al., 

2012; Haider & Folland, 2014) but not all (e.g. Larsen et al., 2007; Webb et al., 
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2008) previous studies. Although no change in SBP or DBP was present at a 

group mean level, the change in both SBP and DBP following NIT (vs PLA) was 

negatively correlated with BP in PLA. Therefore, those with the highest resting 

BP in PLA had the greatest reduction following NO3
- supplementation, in 

agreement with previous literature (e.g. Kapil et al., 2010). The relatively low 

mean BP (SBP: 122 ± 11 mmHg and DBP: 68 ± 8 mmHg) of the study cohort 

may have therefore limited the potential for a significant BP reduction to be found 

at a group mean level. 

 

Effect of NO3
- supplementation on unfatigued agility, linear sprint and 

vertical jump performance  

NO3
- supplementation has been suggested to preferentially enhance some 

of the physiological properties of type II muscle fibres (Hernández et al., 2012; 

Ferguson et al., 2013; 2015) with improvements in human skeletal muscle 

contractility (Bailey et al., 2010), force (Haider & Folland, 2014), and power 

production (Coggan et al., 2015) having been reported. Improvements in 

repeated sprint cycling power output (Rimer et al., 2016; Wylie et al., 2016) and 

sprint performance within an intermittent cycling protocol (Thompson et al., 2015) 

following NO3
- supplementation may be explained, in part, by such exercise 

requiring explosive power production and a high recruitment of type II muscle 

fibres. Single sprint performance has also been reported to be improved following 

NO3
- supplementation over both 180 m (Sandbakk et al., 2015) and 20 m 

(Thompson et al., 2016). In contrast to this and our hypothesis, no improvement 

in unfatigued 15 m sprint, or 5 and 10 m split time performance, was found in the 

present study following NO3
- supplementation. Similar findings have been 

reported in the literature, where no improvement in 8 s sprint cycling (Martin et 

al., 2014) and 10 s sprint kayaking (Muggeridge et al., 2013) was reported 

following an acute ~5 mmol NO3
- dose. Additionally, while improvements in mean 

power output across 24 x 6 s cycle sprints has been reported (Wylie et al., 2016), 

when the first sprint was considered independently, which more closely reflects 

the single unfatigued sprints conducted in the present study, no improvement in 

performance was present. Improvements in intermittent exercise performance 

reported previously in the literature (e.g. Wylie et al., 2013b, 2016; Thompson et 

al., 2015) may have benefited from improved muscle O2 delivery following NO3
- 
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supplementation (Ferguson et al., 2013; 2015) and therefore improved recovery 

of PCr (Vanhatalo et al., 2011) between repeated bouts, something single sprint 

efforts would not benefit from. This may suggest an ergogenic effect in repeated, 

but not single, sprint efforts (Wylie et al., 2016), which has also been reported by 

Thompson et al. (2015). This may suggest that NO3
- supplementation is better 

placed to improve intermittent, rather than single short distance sprint 

performance. However, the present study and that conducted by Thompson et 

al. (2016) show conflicting findings regarding the effect of NO3
- supplementation 

on short distance sprint running performance, which, to our knowledge are the 

only studies to have investigated this to date. It is unclear why these 

discrepancies are present; however, it does indicate that further work in this area 

is required. 

A novel aspect of this investigation was to determine the effect of NO3- 

supplementation on agility and vertical jump performance. In contrast to our 

hypothesis, neither planned (COD t-test) nor unplanned (RAT) change of 

direction or vertical jump performance was improved following NO3- 

supplementation. However, considering the supplementation regime employed 

did not improve 5, 10 or 15 m linear sprint performance, this may be unsurprising. 

Previous studies have reported improved force and power production (Haider & 

Folland, 2014; Coggan et al., 2015) as well as improved short distance (5-20 m) 

running performance, accentuated over the initial acceleration phase (Thompson 

et al., 2016) following NO3- supplementation, which may have been expected to 

translate to improved sprint performance requiring multiple accelerations such as 

change of direction tasks. However, no improvements were found in the present 

study. In addition, previous findings could be interpreted to translate to 

improvements in explosive forms of exercise such as vertical jumping; however, 

no improvement in CMJ performance was found in the present study. In 

agreement with this, Fulford et al. (2013) reported no improvement in peak or 

mean skeletal muscle force production during 50 x 6.6 s maximum voluntary 

contractions following NO3- supplementation. Interestingly, the effect of NO on 

skeletal muscle contractility has been suggested to be dependent on the mode, 

intensity and duration of muscle contraction (Murrant, Frisbee & Barclay, 1997). 

Therefore, improvements in force and power production during knee extension 

exercise reported elsewhere (Haider & Folland, 2014; Coggan et al., 2015) may 

not translate to improved vertical jump performance.  
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Equivocal findings in the literature regarding the effect of NO3
- 

supplementation on sprint performance may be explained, at least in part, by the 

different NO3
--rich supplements employed. A novel NO3

--rich supplement was 

employed in the present study which, although it may contain a similar NO3
- 

content to other NO3
--rich products that have been shown to elevate plasma [NO3

-

] and [NO2
-] (e.g. Larsen et al., 2007; Wylie et al., 2013a; Thompson et al., 2016), 

likely differs in other ingredients such as antioxidant and polyphenol content. 

Since polyphenols and vitamin C can facilitate the synthesis of NO from NO2
- in 

the stomach (Weitzberg & Lundberg, 1998; Rocha at al., 2009; Lundberg et al., 

2011), systemic NO availability may differ following the ingestion of different NO3
-

-rich supplements. Plasma [NO3
-] and [NO2

-] data was however not measured in 

the present study and therefore it is not known whether, or to what extent, the 

product was successful in elevating markers of NO bioavailability. The fibre-type 

distribution of individuals within the study cohort may also partly explain these 

equivocal findings, with NO3
- supplementation known to preferentially enhance 

some of the physiological responses of type II compared to type I muscle fibres 

(Hernández et al., 2012; Ferguson et al., 2013). Therefore, individuals with a 

higher portion of type II fibres may benefit more, and those with a low portion of 

type II muscle fibres may not be as well placed, to benefit from NO3
- 

supplementation. Information regarding individual’s fibre-type distribution is not 

available in the present study to explore this possibility further. 

From the 32 participants of the present study, 17 appeared to positively 

respond to the NO3
- supplementation regime, indicated by improved unfatigued 

15 m sprint performance. However, not all participants responded positively and 

consequently no improvement in performance was seen at a group mean level. 

Such individual variability also appears to be present even where a positive group 

mean response is reported, indicated by individual data highlighted within the 

literature (Wylie et al., 2013b; Muggeridge et al., 2013; Thompson et al., 2016). 

For example, Thompson et al. (2015 unpublished data) reported 10 out of 16 

participants responded to NO3
- supplementation in terms of exercise 

performance. The response to NO3
- supplementation is known to be highly 

individualised, with responders and non-responders having been suggested 

(Wilkerson et al., 2012; Christensen et al., 2013). NO3
- supplementation may be 

less useful as an ergogenic aid to individuals who have elevated baseline [NO2
-], 

such as endurance trained individuals (Vassalle et al., 2003). However, these 
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individuals have been reported to benefit from NO3
- supplementation when 

plasma [NO2
-] is elevated successfully (Wilkerson et al., 2012). Plasma [NO3

-] 

and [NO2
-] data was not available in the present study to determine baseline 

levels or whether plasma [NO2
-] was elevated sufficiently following 

supplementation. It is therefore possible that a selection of participants had a high 

baseline [NO2
-] and subsequently did not show a suitable elevation in plasma 

[NO2
-] following supplementation to elicit positive performance improvements. 

Given that the response to NO3
- supplementation is highly individualised, further 

research is required to explore the mechanisms that govern this individualised 

response. This would enable us to understand those individuals who are most 

likely to benefit from NO3
- supplementation and provide information to develop 

strategies to optimise the effects of NO3
- supplementation. 

 

Effect of NO3
- supplementation on fatigued linear sprint and vertical jump 

performance 

In the present study, 15 m sprint performance following NO3
- 

supplementation was not significantly different compared to PLA when completed 

following exercise that mimicked the high-intensity intermittent nature of team 

sports game-play (Bangsbo et al., 2008). Total sprint time was significantly 

reduced in a fatigued state by 1.7% in PLA and 2.1% in NIT compared to an 

unfatigued state suggesting the protocol did successfully induce fatigue; 

however, NO3
- supplementation did not attenuate this decline in 15 m sprint 

performance. This may be unsurprising considering the supplementation regime 

did not improve 15 m sprint performance in an unfatigued state. During exercise, 

NO3
- supplementation has been reported to improve perfusion and oxygenation 

(Ferguson et al., 2013; 2015) in type II muscle fibres as well as to reduce muscle 

metabolic perturbation by sparing the rate of PCr depletion (Bailey et al., 2010). 

As the rate of PCr depletion is an important determinant of fatigue development 

during maximal intensity intermittent exercise (Gaitanos et al., 1993; Fulford et 

al., 2013) it may be suggested that NO3
- supplementation could reduce fatigue 

development during such exercise. In addition, NO availability may be enhanced 

during such fatiguing exercise as the reduction of NO2
- to NO is potentiated in 

hypoxic and acidic environments (Lundberg & Weiztberg, 2010) such as the 

environment within contracting skeletal muscle. It was therefore hypothesised 
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that NO3
- supplementation may reduce fatigue development and increase NO 

availability and therefore attenuate the decline in performance expected following 

fatiguing exercise. However, in contrast to our hypothesis, the decline in fatigued 

15 m sprint performance was not attenuated following NO3
- supplementation. The 

absence of an attenuation in the decline in performance in this fatigued state may 

indicate that the NO3
- supplementation procedure employed was unsuccessful at 

altering the rate of PCr depletion. It should also be noted here that reaction time 

showed a trend for improvement (P = 0.06) in a fatigued state compared to an 

unfatigued state. However, this should be interpreted with caution as assessing 

reaction time independently of sprint performance was considered highly variable 

in this protocol with a coefficient of variation of 60.3% (See Chapter 3). Therefore, 

this result may be due to the highly variable nature of this outcome measure when 

considered independently.  

 Countermovement jump performance was also assessed in a fatigued 

state, and no improvement in performance was found following NO3
- 

supplementation. Fatigued jump height was also not different to unfatigued jump 

performance. Although the Yo-Yo IR1 test is known to induce fatigue and 

significantly reduce muscle [PCr] and [glycogen], taxing both the aerobic and 

anaerobic energy systems (Krustrup et al., 2003), the restoration of ATP stores 

even after fatiguing exercise is reported to be replenished by ~90-95% within 3 

minutes (e.g. Connolly, Brennan & Lauzon, 2003). Therefore the 2.5 min recovery 

period before the CMJ protocol may have provided adequate time for the 

recovery of ATP (Singnorile, Tremblay & Ingalls, 1993), the predominant energy 

source for explosive jump performance lasting <1 s (McArdle, Katch & Katch, 

2006). 

An explanation for the lack of attenuation in the decline in 15 m linear sprint 

performance in a fatigued state following NO3
- supplementation is not clear. It 

may be related, in part, to differences in baseline as well as supplemented plasma 

[NO3
-] and [NO2

-] following the ingestion of the novel NO3
--rich supplement 

employed in this study, and differences in muscle fibre type distribution; 

previously discussed in detail above. However, as the supplementation regime 

was unable to improve unfatigued exercise performance even when highly 

reliable exercise tests, capable of detecting very small changes in performance, 

were used to assess such exercise performance (See Chapter 3), it might be 
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considered unlikely to have attenuated the decline in fatigued exercise 

performance. 

 

Conclusion 

In conclusion, this study contributes to the literature regarding the boundaries of 

the ergogenic effect of NO3
- supplementation within team sport specific exercise 

performance. Specifically, NO3
- supplementation at a dose of 8 mmol · day-1 for 

5 days did not improve RAT or COD t-test performance in an unfatigued state, 

nor did it improve 15 m linear sprint or CMJ performance in an unfatigued or 

fatigued state. It also did not attenuate the decline in 15 m linear sprint 

performance seen in a fatigued state. NO3
- supplementation therefore may not 

be ergogenic for these particular important determinants of team sports 

performance. 
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CHAPTER 5: General Discussion and Conclusion  

The aim of the current thesis was to expand our knowledge of the ergogenic effect 

of NO3
- supplementation within sports performance, and specifically to elucidate 

its efficacy within key determinants of team sports performance. In order to 

achieve this, two studies were undertaken, and they addressed the following 

research questions: 

 

1) Are the exercise tests selected to measure agility, linear sprint and vertical 

jump performance reliable day-to-day when no intervention is employed? 

 

2) What are the performance effects of NO3
- supplementation on key 

parameters of team sports performance? 

 

Summary of findings 

 

Reliability of exercise tests for key determinants of team sports performance 

In chapter 3, the reliability of commonly employed exercise protocols to measure 

agility, linear sprint and vertical jump performance were assessed; specifically, 

the COD t-test, RAT, 15 m reactive start linear sprint test and CMJ tests were 

examined. The reliability of the tests established within chapter 3 was in line with 

that reported elsewhere in the literature for similar exercise tests, and the 

exercise testing protocols were determined suitable for use within an intervention 

study. Within studies that employ such tests it is common for multiple attempts of 

the same protocol to be completed. However, the selection of data from these 

multiple attempts that is used for statistical analysis is not consistent even though 

the reliability of test performance appears to vary depending on the data handling 

techniques used. Taking the reliability established as a COV, performance was 

most reliable for COD t-test performance when the mean of all three attempts 

was analysed (COV = 2.9%), for RAT when the mean of all 6 (3 x left, 3 x right) 

attempts was analysed (COV = 2.0%), for CMJ when the highest jump out of 3 

was analysed independently (COV = 4.6%) and for 15 m sprint performance 

when the fastest sprint out of 5 was considered independently (COV = 1.0%). 

The specific results from this study may provide important information for 
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informing data analysis within these exercise protocols in subsequent 

intervention studies to yield the greatest possible reliability.  

 

Influence of nitrate supplementation on agility, linear sprint and vertical jump 

performance in an unfatigued state 

In chapter 4, for the first time, the effect of NO3
- supplementation on agility and 

vertical jump performance was investigated. Fifteen meter sprint performance 

was also assessed following NO3
- supplementation due to the limited but 

promising reports of improved 20 m linear sprint speed in the literature 

(Thompson et al., 2016). Such movements are hallmarks of team sports 

performance and therefore this investigation enabled us to elucidate the effect of 

NO3
- supplementation on key parameters of team sports performance. In contrast 

to our hypothesis, the supplementation regime employed in chapter 4 (8 mmol · 

day-1 for 5 days) did not improve performance within the COD t-test, RAT, 15 m 

linear sprint or CMJ protocols in our participant cohort of 32 male team sports 

players. These findings suggest that NO3
- supplementation may not be ergogenic 

for these particular determinants of team sports performance when performed in 

an unfatigued state. 

 

Influence of nitrate supplementation on linear sprint and vertical jump 

performance in a fatigued state 

In chapter 4, for the first time, the effect of NO3
- supplementation on 15 m linear 

sprint and CMJ performance was investigated under fatigue as such movements 

are commonly performed under fatigue within game-play. To achieve this 

fatigued state, participants completed the Yo-Yo IR1 test, which is a valid and 

reliable test that mimics the high intensity intermittent nature of team sports 

game-play (Bangsbo et al., 2008), to 90% of their predetermined maximum 

distance. Following this, 15 m linear sprint and CMJ performance was assessed. 

Fifteen meter linear sprint performance was significantly reduced by  

~2% when completed in this fatigued state compared to an unfatigued state; 

however, NO3
- supplementation did not attenuate the decline in performance 

following such fatiguing exercise. Countermovement jump performance was also 

unchanged following NO3
- supplementation and was not different between 

unfatigued and fatigued tests. These findings suggest that NO3
- supplementation 
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is not ergogenic for linear sprint and vertical jump performance when performed 

under fatigue that mimicked the high-intensity intermittent nature of team sports 

game-play. 

 

Experimental considerations and future directions 

The work completed within the current thesis contributes to the growing literature 

regarding the putative ergogenic effects of NO3
- supplementation in sport and 

exercise. Specifically, this work indicates that NO3
- supplementation does not 

enhance the performance of certain key determinants of team sports 

performance; specifically planned and unplanned agility, linear sprint and vertical 

jump performance.  However, this can only be considered true for the participant 

population of chapter 4 and for the particular dose and duration of the NO3
-

supplementation procedure investigated. Further work is required to investigate 

the effect of NO3
- supplementation on these and other determinants of team 

sports performance within other participant populations such as female team 

sports players. Whilst this thesis does provide an important contribution to the 

literature regarding the boundaries of the ergogenic effect of NO3
- 

supplementation, it also highlights further important questions for future research.  

 

The smallest practically meaningful effect of nitrate supplementation within key 

determinants of team sports performance  

It is important to consider whether improvements in performance following 

supplementation are equal to or above a magnitude eliciting the smallest 

worthwhile change in performance (Hopkins, 2004). This can be done by 

calculating the standardised change or difference in performance, expressed as 

a fraction of the between-subject standard deviation (Cohen’s d statistic (d) = Δ 

mean/SD), where the smallest worthwhile change for sports performance is ~0.2 

(Hopkins, 2004). In chapter 4, considering the unfatigued exercise tests, no 

statistically significant improvements in performance were found following NO3
- 

supplementation. The effect of NO3
- supplementation on performance in the 

linear sprint was considered trivial for 5 m split (d = 0.16), 10 m split (d = 0.09) 

and total time (d = 0.05). The effect of NO3
- supplementation on test performance 

in all other protocols was also trivial (d < 0.2 for all tests). 
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Furthermore, magnitude based inferences using 90% confidence limits 

can also be used to determine the effect of an intervention on performance 

(Batterham & Hopkins, 2006). Using this method, for unfatigued 15 m sprint 

performance, the effect of NO3
- supplementation on performance was considered 

“unclear” for total time and 10 m split time. However, for 5 m split time the effect 

was considered “likely beneficial” (Hopkins, 2002). Although no statistically 

significant improvement in 5 m sprint performance was reported in chapter 4, this 

“likely beneficial” effect of NO3
- supplementation may be important to team sports 

players where even small improvements in performance can be advantageous 

within a game. Taking this information, and the equivocal nature of the literature 

regarding the effect of NO3
- on sprint performance, with reports of positive effects 

(Sandbakk et al., 2015; Thompson et al., 2016), no effects (Christensen et al., 

2013; Muggeridge et al., 2013) and even one reporting a negative effect (Martin 

et al., 2014), it is clear that further research is required to elucidate the effect of 

NO3
- supplementation on sprint exercise performance. 

 

Conclusion 

Scientific investigations into both the therapeutic and ergogenic effect of NO3
- 

supplementation are continuing. This thesis aimed to provide a contribution to the 

literature regarding the ergogenic effects of NO3
-, specifically with regard to key 

determinants of team sports performance. Overall, it can be concluded from the 

investigations conducted within this thesis that NO3
- supplementation does not 

enhance planned or unplanned agility, linear sprint or vertical jump performance 

when performed in an unfatigued state. It also does not improve linear sprint or 

vertical jump performance when completed in a fatigued state. In addition, when 

performance is reduced following fatiguing exercise, NO3
- supplementation does 

not attenuate this decline in performance. 
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