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Conditionally filtered equations have recently been proposed as a basis for modelling

the atmospheric boundary layer and convection. Conditional filtering decomposes the

fluid into a number of categories or components, such as convective updrafts and the

background environment, and derives governing equations for the dynamics of each

component. Because of the novelty and unfamiliarity of these equations, it is important

to establish some of their physical and mathematical properties, and to examine whether

their solutions might behave in counter-intuitive or even unphysical ways. It is also

important to understand the properties of the equations in order to develop suitable

numerical solution methods. The conditionally filtered equations are shown to have

conservation laws for mass, entropy, momentum or axial angular momentum, energy,

and potential vorticity. The normal modes of the conditionally filtered equations include

the usual acoustic, inertio-gravity, and Rossby modes of the standard compressible Euler

equations. In addition, they posses modes with different perturbations in the different

fluid components that resemble gravity modes and inertial modes but with zero pressure

perturbation. These modes make no contribution to the total filter-scale fluid motion,

and their amplitude diminishes as the filter scale diminishes. Finally, it is shown that

the conditionally filtered equations have a natural variational formulation, which can be

used as a basis for systematically deriving consistent approximations.
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1. Introduction14

Conditionally filtered equations have recently been proposed as a basis for mathematical and15

numerical modelling of the atmospheric boundary layer and convection (Thuburn et al. 2018).16

Conditional filtering itself is an extension of coarse-graining ideas that are commonly used in17

large-eddy turbulence modelling, and that enable one to write down equations of motion valid18
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Properties of the conditionally filtered equations 2

for a particular scale of motion, with the subgrid-scale terms then appearing on the right-hand19

side and in need of parameterization – see Leonard (1975), Frisch (1995) and Aluie et al. (2018)20

for a range of examples. The conditionally filtered equations extend this idea so that prognostic21

equations can be constructed for particular fluid types as well as particular scales, for example for22

different ‘components’ of the fluid, such as convective updrafts, downdrafts, and the background23

environment. These prognostic equations may then be solved in a numerical model, even when the24

individual convective updrafts and downdrafts are too small-scale to be resolved.25

The conditionally filtered equations provide a natural way of representing qualitatively quite26

different types of small-scale physical process within the same mathematical framework. For27

example, local turbulent fluxes might be represented by right-hand side subgrid terms as an eddy28

diffusion, while fluxes associated with coherent structures such as deep boundary layer thermals29

or convective updrafts might be represented by one of the fluid components whose dynamics is30

explicitly represented by the left-hand side terms. (See (1)-(5) and figure 1 below.) By making certain31

approximations to the conditionally filtered equations and certain choices for the parameterized32

terms, they can be shown to reduce to a typical mass flux convection scheme, or to a typical eddy33

diffusion scheme, coupled to resolved-scale dynamics. Thus, the conditionally filtered equations could34

provide a useful and self-consistent basis for improving the coupling of different parameterization35

schemes with each other and with the resolved dynamics, or for building unified parameterization36

schemes that can smoothly transition between different regimes, for example between a dry37

convective boundary layer and shallow convection. A particluar motivation for us is the possibility38

of extending the dynamical core of a weather or climate model to solve the left-hand sides of39

the conditionally filtered equations for all fluid components, thus explicitly capturing some of the40

dynamics of convection. Ultimately we wish to explore the potential of this approach to improve41

some of the well-known modelling problems in convection-dynamics coupling, including memory42

of the dynamical state of convection, the propagation of convective systems to neighboring grid43

columns, and the horizontal location of compensating subsidence. These motivations are discussed44

in more detail by Thuburn et al. (2018).45

Similar ideas, leading to prognostic equations for multiple fluid components, may be found in the46

work of Yano et al. (2010), Yano (2012), and in the prognostic cloud scheme of Randall and Fowler47

(1999). The conditionally filtered approach, however, is more systematic and leads to consistent48

prognostic equations for all the dynamical variables as well as thermodynamic variables and49

component volume fractions. Similar equation sets are also used for modelling multi-phase flows50

in engineering applications (e.g. Drew 1983; Abgrall and Karni 2001). The conditionally filtered51

compressible Euler equations are given in section 2 below.52

The right-hand sides of the conditionally filtered equations represent a range of important,53

subgrid-scale physical processes such as local turbulent fluxes and entrainment and detrainment.54

The eventual applications envisaged for the conditionally filtered equations will depend critically55

on the choices made to parameterize these terms. The focus of the present paper, however, is on the56

left-hand sides, which represent a modified form of the resolved-scale dynamics of the compressible57

Euler equations. Complex models, built from multiple components which are themselves complex,58

can behave in unexpected and unphysical ways if the individual components are not sufficiently59

well understood and well behaved (see e.g. Gross et al. 2017, for some examples). This motivates60

us to analyse and document some of the physical and mathematical properties of the conditionally61

filtered equations when their right-hand sides are zero. We consider this an important preliminary62

before attempting to increase the complexity of the system by coupling to parameterized right-hand63

side terms. It is also important to understand the properties of the equations in order to develop64

suitable numerical solution methods. This paper examines their conservation properties and normal65

modes, and presents a variational formulation.66
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Properties of the conditionally filtered equations 3

Conservation properties are fundamental properties of a physical system, and respecting relevant67

conservation properties is widely regarded as essential in any mathematical model. Budgets68

of conserved quantities can help to understand physical mechanisms (e.g. Hoskins et al. 1985;69

Peixoto and Oort 1992; Pauluis and Held 2002), and respecting conservation properties in numerical70

models can help to ensure their stability and accuracy (e.g. Thuburn 2008, and references therein).71

Section 3 discusses conservation of mass, entropy, momentum, energy, and potential vorticity for72

the conditionally filtered equations.73

The conditionally filtered equations have a rather unusual structure, with separate density,74

entropy, and velocity fields for each fluid component, but a single common pressure field (section 2).75

This raises the question of what types of motion the equations might support; these might be76

counter-intuitive or even unphysical. One way to address this question is to examine the normal77

modes of the linearized equations (e.g. Gill 1982; Vallis 2017). This is done for the conditionally78

filtered equations in section 4. Normal modes can also give useful insight for the development of79

numerical solution methods, including choice of grid staggering to best capture mode structures80

(e.g. Arakawa and Lamb 1977; Thuburn et al. 2002), identification of modes that might be most81

challenging for a numerical method, identification of computational modes, and understanding the82

structure of the Helmholtz problem that arises for implicit time integration schemes. They are also83

valuable as test cases for numerical models (e.g. Baldauf and Brdar 2013; Shamir and Paldor 2016).84

A variational formulation of fluid dynamical equations can be useful in several ways. The85

conservation properties of the system can be related to certain symmetries of the Lagrangian (e.g.86

Salmon 1998). Approximate versions of the governing equations, for example hydrostatic, pseudo-87

incompressible, or Boussinesq can be derived in a systematic way by approximating the Lagrangian88

and the conservation properties will be preserved by the approximation provided the corresponding89

symmetries are preserved (e.g. Cotter and Holm 2014; Dubos and Voitus 2014; Staniforth 2014;90

Tort and Dubos 2014). Such approximate versions of the governing equations might be useful for91

more idealized modelling or as the basis for simple theoretical models. Section 5 confirms that the92

conditionally filtered compressible Euler equations can be obtained from a variational formulation.93

2. Governing equations94

As in the derivation of the coarse-grained equations used in Large-Eddy Simulation (LES),95

conditional filtering makes use of an Eulerian spatial filter that retains only the flow variations96

on scales larger than some filter scale. But in addition to the filter it also employs a set of quasi-97

Lagrangian labels Ii, i = 1, . . . , n; at any point in the fluid exactly one of the Ii is equal to 1 and98

the rest are equal to 0. In the proposed application it is envisaged that the labels might be used99

to pick out coherent structures in the flow, such as convective updrafts and downdrafts and their100

environment. This quasi-Lagrangian labelling of fluid parcels is intended to capture, in mathematical101

form, some of the intuitive ideas behind the way we think about coherent structures such as cumulus102

clouds. For example, we typically think of an air parcel as retaining its identity as a cloud parcel103

over some time period until physical processes such mixing and evaporation change its physical104

properties, at which point it may be relabelled as an environment parcel.105

To proceed, the fluid dynamical equations are multiplied by each of the Ii before applying the106

spatial filter. This then leads to a set of equations of motion for each fluid component i. When107

the starting equations are the dry non-hydrostatic compressible Euler equations, the resulting108

conditionally filtered equations are the following (Thuburn et al. 2018):109

n∑

i=1

σi = 1, (1)

110

∂

∂t
(σiρi) +∇ · (σiρiui) =

∑

j 6=i

(
Mij −Mji

)
, (2)
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111

∂

∂t
(σiρiηi) +∇ · (σiρiuiηi) =

∑

j 6=i

(
Mij η̂ij −Mjiη̂ji

)
−∇ · Fηi

SF, (3)

∂

∂t
(σiρiui) +∇ · (σiρiuiui) + σi∇p+ σiρi∇Φ

=
∑

j 6=i

(
Mij ûij −Mjiûji

)
−∇ · Fui

SF − bi −
∑

j

dij , (4)

112

p− P (ρi, ηi) = P i
SF. (5)

Here σi, ρi, ηi, and ui are the volume fraction, density, specific entropy, and velocity, respectively, of113

the ith fluid component on the filter scale, p is the filter-scale pressure, and Φ is the geopotential. See114

figure 1 for a schematic illustration of the meaning of the conditionally filtered fields. Equation (1)115

expresses the fact that the volume fractions must sum to one, (2) expresses mass conservation, (3)116

entropy conservation, and (4) momentum conservation, while (5) is a generic form for the equation117

of state relating pressure to entropy and density. For simplicity the Coriolis terms associated with118

planetary rotation have been neglected here. However, it is straightforward to re-introduce them119

and we do so for the purpose of section 4 below.120

The right-hand sides of the above equations allow for the possibility that fluid parcels may be121

relabelled as the flow evolves; this could represent processes such as entrainment and detrainment122

of fluid between convective updrafts and their environment. Thus, for example, Mij is the rate per123

unit volume at which mass is relabelled from type j to type i, and η̂ij and ûij are representative124

values of specific entropy and velocity for that relabelled fluid. If the fluid labels Ii were exactly125

materially conserved then the relabelling terms Mij would vanish. Note also that the time over126

which a parcel keeps a recognizable identity is much longer than a model timestep – the lifetimes of127

small individual clouds is of order several minutes but in a model approaching cloud resolution the128

timestep is measured in seconds. In a climate model the timestep might be of order tens of minutes,129

but the cloud populations at that resolution last of order hours. Relabelling, and its relation to130

physical processes such as evaporation and mixing, is further discussed by Thuburn et al. (2018).131

As in the equations of LES, subfilter-scale variability contributes to the filter-scale behaviour.132

Here F
ηi

SF is a subfilter-scale flux of entropy, Fui

SF is a subfilter-scale momentum flux tensor, and133

P i
SF accounts for variations in pressure between the fluid components as well as effects of filtering a134

nonlinear equation of state. The right-hand sides cannot be derived from the equations of motion;135

rather, they must be parameterized, as must terms representing similar processes in, for example,136

a mass flux scheme.137

Note that the same filter-scale pressure p appears in the pressure gradient term on the left-138

hand side of the momentum equation (4) for every i. This is a similar assumption to that made139

in conventional parcel arguments, where it is assumed that the parcel takes on the pressure of the140

environment (e.g. Bohren and Albrecht 1998). The assumption may be justified by noting that (in141

most convective circumstances) the acoustic adjustment time—the time required for an acoustic142

wave to propagate the width of a cloud and so remove unbalanced pressure fluctuations—is short143

compared to the timescales of interest. Thus, acoustic oscillations will very quickly equilibrate the144

pressure between components, and by making the equal pressure assumption we are supposing this145

adjustment to take place instantaneously. A consequence of the assumption is that the equations146

do not support those acoustic modes for which fluid component i has a different pressure from147

fluid component j 6= i (see also section 4). These acoustic modes would in any case have very148

small amplitude, and explicitly resolving them would present unnecessary difficulties for numerical149

solution methods with no gain in accuracy. In the Boussinesq and anelastic approximations acoustic150

modes are eliminated ab initio because the speed of sound is taken to be infinite. The acoustic151
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Figure 1. Schematic one-dimensional illustration of the idea of conditional filtering. (a) Hypothetical unfiltered

vertical velocity field w as a function of horizontal coordinate x, showing a number of strong updrafts embedded

in a region of weak descent. (b) Label I2 picking out the updraft regions; in this example n = 2, with I1 = 1 − I2.

(c) Volume fraction of updraft fluid on the filter scale. In this example the filter has a cosine-squared kernel of

full width 19 units. (d) w1: the conditionally filtered value of w in the non-updraft fluid. (e) w2: the conditionally

filtered value of w in the updraft fluid.

adjustment between different fluid components then occurs instantaneously, and the assumption of152

the same filter-scale pressure is a very natural one.153

In a convecting fluid the pressure gradient is not, in fact, homogeneous on the scale of the154

convective updrafts, and rising thermals experience a significant drag due to pressure variations155

on the scale of the thermal (e.g. Romps and Charn 2015). These pressure variations do not156

represent acoustic waves; they are present in Boussinesq and anelastic numerical simulations. In157

the conditionally filtered equations, the fact that the net pressure gradient experienced by fluid i158

departs from ∇p is accounted for by the terms −bi −
∑

j dij on the right-hand side. In particular,159

dij is minus the pressure drag exerted by fluid j on fluid i. These terms have the properties that160

∑

i

bi = 0 (6)

and161

dij = −dji. (7)

These terms are not predicted by the conditionally filtered equations and so, in general must be162

parameterized, just as the analogous terms are parameterized in typical mass flux convection163

schemes (e.g. de Roode et al. 2012, and references therein). In this paper we will mainly be164

concerned with the left-hand sides of the conditionally filtered equations, so we will often neglect165

these terms along with the other right-hand side terms.166

It may be useful to note how the conditionally filtered equations (1)–(5) are related to the167

usual filtered single-fluid equations. The conditionally filtered equations reduce to the usual filtered168
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Properties of the conditionally filtered equations 6

single-fluid equations simply by setting the number of fluid components n to 1; in that case the169

fluid relabelling terms Mij and the terms representing pressure forces between fluid components bi170

and dij all vanish, and σ1 ≡ 1. Thuburn et al. (2018) also show that the usual filtered single-fluid171

equations are obtained by summing the conditionally filtered equations over all fluid components i.172

Note also that, although the left hand sides of (2)-(4) are written here in Eulerian flux form, this is173

not a requirement; it is straightforward to convert them to Lagrangian form, as we do, for example,174

in (18) and (24) below.175

In the absence of the right-hand sides, equations (1)–(5) form a closed system (see below). All of176

the right-hand side terms, on the other hand, must be modelled or parameterized by making some177

additional assumptions. The present paper focuses mainly on the properties of the equations in the178

absence of the parameterized terms, whereupon they reduce to179

n∑

i=1

σi = 1, (8)

180

∂

∂t
(σiρi) +∇ · (σiρiui) = 0, (9)

181

∂

∂t
(σiρiηi) +∇ · (σiρiuiηi) = 0, (10)

182

∂

∂t
(σiρiui) +∇ · (σiρiuiui) + σi∇p+ σiρi∇Φ = 0, (11)

183

p− P (ρi, ηi) = 0, (12)

where (8) is the same as (1) but is included for completeness.184

In the case of a single fluid component n = 1, equations (8)-(12) reduce to the usual non-185

hydrostatic compressible Euler equations. For n > 1 the equations for different i are coupled by186

the common pressure gradient term ∇p and the requirement (8) (these two points are related—see187

section 5). Also, for n > 1 it is not immediately obvious that (8)-(12) form a closed system. It can be188

confirmed, simply by counting, that the number of equations is equal to the number of unknowns.189

Appendix A outlines how the given equations imply the time evolution of σi, ρi, and p and how190

they allow p to be diagnosed. For the linearized version of these equations, the fact that a dispersion191

relation can be derived (section 4) provides further confirmation that they form a closed system.192

A potentially useful variant of the conditionally filtered equations, mentioned by Thuburn et al.193

(2018), is one in which all fluid components are constrained to have identical horizontal velocity:194

vi = v∗† , where ui = (vi, wi). In this variant the horizontal components of the inter-fluid pressure195

forces bi +
∑

j dij are assumed to be just what is required to maintain the equality of the vi.196

The ansatz that the horizontal velocities are all the same is an additional physical assumption that197

may be useful in some circumstances, but it is not demanded by the mathematical structure of the198

equations. Making this assumption does not change the vertical part of (4), namely199

∂

∂t
(σiρiwi) +∇ · (σiρiuiwi) + σipz + σiρiΦz =

∑

j 6=i

(
Mijŵij −Mjiŵji

)
−∇ · Fwi

SF − b
(z)
i −

∑

j

d
(z)
ij , (13)

where subscript z indicates a vertical derivative and superscript (z) indicates a vertical component.200

However, the horizontal part is replaced by the sum over all fluid components201

∂

∂t

(
ρv∗

)
+∇ ·

(
ρu∗

v
∗
)
+∇Hp+ ρ∇HΦ = −∇ · Fv∗

SF, (14)

†The notation X to indicate a filtered value of X and X
∗

to indicate a density-weighted filtered value, so that

ρX
∗
= ρX, is retained for consistency with Thuburn et al. (2018).
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Properties of the conditionally filtered equations 7

where ∇H is the horizontal part of the gradient,202

ρ =
∑

i

σiρi (15)

is the total filter-scale density, and u∗ is the density-weighted filter-scale velocity given by203

ρu∗ =
∑

i

σiρiui. (16)

The b and d terms have cancelled in (14) because of (6) and (7), while the relabelling terms also204

cancel when summed over i and j. Appendix B summarizes how the main results of the paper carry205

over to this equal-vi variant.206

3. Conservation properties207

This section examines the conservation properties of the conditionally filtered equations. We focus on208

the compressible Euler equations, but similar derivations may be carried out for other, approximate,209

governing equation sets such as hydrostatic, pseudo-incompressible, or Boussinesq equations.210

3.1. Mass211

Equation (9) is manifestly in the form of a conservation law for the mass of the ith fluid component. If212

there is no mass flux across domain boundaries then it implies that the mass of each fluid component213

is individually conserved, and hence that their sum, the total fluid mass, is also conserved.214

If relabelling terms are re-introduced, (9) becomes (2). Then the mass of each fluid component is215

no longer conserved. However, summing (2) over i and noting that the relabelling terms then cancel216

(because they are relabelling terms) gives217

∂ρ

∂t
+∇ · (ρu∗) = 0, (17)

with ρ and u∗ given by (15) and (16). Thus the total fluid mass is conserved even when relabelling218

terms are included.219

3.2. Entropy220

Equation (10) is manifestly in the form of a conservation law for the entropy of the ith fluid221

component. If there is no entropy flux across domain boundaries then it implies that the entropy of222

each fluid component is individually conserved, and hence that their sum, the total fluid entropy,223

is also conserved.224

Subtracting ηi times (9) from (10) gives225

Diηi
Dt

≡
∂ηi
∂t

+ ui · ∇ηi = 0. (18)

This shows that ηi is materially conserved following fluid parcels that move with velocity ui.226

If the subfilter-scale flux term ∇ · Fηi

SF is included in (10) then the equation is still in the form of227

a flux form conservation law, so the entropy of each fluid component is still conserved in an integral228

sense, though it is no longer materially conserved. If, in addition, the relabelling terms are included229

to give (3) then the entropy of each fluid component is no longer conserved. However, summing (3)230

over i and noting the cancelling of the relabelling terms shows that231

∂

∂t
(ρ η∗) +∇ · Fη = 0, (19)

c© 2017 Royal Meteorological Society
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Properties of the conditionally filtered equations 8

where the total filter-scale specific entropy of the fluid η∗ is given by232

ρ η∗ =
∑

i

σiρiηi, (20)

and the total entropy flux is given by233

F
η =

∑

i

(
σiρiuiηi + F

ηi

SF

)
. (21)

Analogous results would hold for any function of entropy, for example potential temperature θ,234

and also for any materially conserved scalar such as specific humidity in the absence of precipitation235

or a chemical tracer mixing ratio.236

Note that the derivation of (3) neglects sources of entropy due to diabatic heating and also due237

to mixing and other irreversible processes. In realistic flows such sources are often not negligible238

(e.g. Pauluis and Held 2002; Raymond 2013) so a comprehensive model would need to take them239

into account.240

3.3. Momentum241

The geopotential gradient∇Φ provides an external force and hence an external source of momentum.242

Even if this term is ignored for the moment, (11) does not conserve the momentum of the ith fluid243

component because the σi∇p term is not in conservation form. However, the σi∇p term does244

represent a conservative exchange of momentum between different fluid components, as do the bi,245

dij , and relabelling terms. This can be seen by summing (4) over i and using (6) and (7) to obtain246

∂

∂t

(
ρu∗

)
+∇ · Fu + ρ∇Φ = 0, (22)

where ρu∗ is given by (16) and247

F
u = pI +

∑

i

(
σiρiuiui + F

ui

SF

)
(23)

is the total momentum flux tensor, with I the identity matrix. Thus, the total fluid momentum is248

conserved except for the effect of the external force.249

If the Coriolis terms are re-introduced for a rotating planet then the relevant conserved quantity250

is the axial angular momentum. The axial angular momentum of the ith fluid is not conserved, but251

it is straightforward to verify that the ∇p, bi, dij , and relabelling terms all describe conservative252

transfers between fluid components and the total axial angular momentum is conserved.253

3.4. Energy254

In this subsection we ignore the subfilter-scale flux terms and the relabelling terms; in general they255

do not conserve the energy of the filter-scale flow. For the moment the bi and dij terms are retained.256

Subtracting ui times (9) from (4) and neglecting F
ui

SF and Mij gives the advective form of the257

momentum equation258

σiρi
Diui

Dt
+ σi∇p+ σiρi∇Φ = −bi −

∑

j

dij . (24)

Taking the dot product of ui with (24) gives259

σiρi
Di

Dt

(
1

2
|ui|

2 +Φ
)
+ σiui · ∇p = −ui ·


bi +

∑

j

dij


 . (25)

c© 2017 Royal Meteorological Society

Prepared using qjrms4.cls



Properties of the conditionally filtered equations 9

Next, defining ei(ρi, ηi) to be the specific internal energy of fluid component i,260

Diei
Dt

=
∂ei
∂ρi

∣∣∣∣
ηi

Diρi
Dt

+
∂ei
∂ηi

∣∣∣∣
ρi

Diηi
Dt

. (26)

Noting that261

∂ei
∂ρi

=
p

ρ2i
, (27)

and using (9) to obtain the material derivative of ρi262

σi
Diρi
Dt

+ ρi
∂σi
∂t

+ ρi∇ · (σiui) = 0 (28)

and (18) for the material derivative of ηi, (26) becomes263

σiρi
Diei
Dt

= −p

(
∂σi
∂t

+∇ · (σiui)

)
. (29)

Adding this result to (25) gives264

σiρi
Di

Dt
εi +∇ · (σiuip) + p

∂σi
∂t

= −ui ·


bi +

∑

j

dij


 , (30)

where265

εi =
1

2
|ui|

2 +Φ+ ei (31)

is the total filter-scale energy per unit mass of the ith fluid component. Finally, adding εi times (9)266

to (30) gives267

∂

∂t
(σiρiεi) +∇ · (σiρiuiεi + σiuip) + p

∂σi
∂t

= −ui ·


bi +

∑

j

dij


 . (32)

The quantity σiρiεi is the contribution from the ith fluid component to the total filter-scale energy268

density. In general it is not conserved. The term p∂σi/∂t represents a conservative exchange of269

energy between fluid components, since
∑

i σi = 1 implies
∑

i p∂σi/∂t = 0. The terms bi +
∑

j dij270

will typically tend to reduce differences between the ui; they thus represent a sink of filter-scale271

energy and a transfer to subfilter scales. If the bi +
∑

j dij terms can be ignored then summing272

(32) over i shows that the total filter-scale energy is conserved:273

∂

∂t

(
∑

i

σiρiεi

)
+∇ ·

(
∑

i

(σiρiuiεi + σiuip)

)
= 0. (33)

3.5. Potential vorticity274

Using standard vector calculus identities, the advective form of the momentum equation (24) may275

be written in so-called vector invariant form276

∂ui

∂t
+ ζi × ui +

1

ρi
∇p+∇

(
Φ+

1

2
|ui|

2
)
= −

1

σiρi


bi +

∑

j

dij


 . (34)

For now suppose the right-hand side can be neglected. Taking the curl and using further vector277

calculus identities gives the vorticity equation for the ith fluid component278

Diζi
Dt

+ ζi∇ · ui − ζi · ∇ui +∇×

(
1

ρi
∇p

)
= 0. (35)
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Rewriting (9) in the form279

Di

Dt
(σiρi) + σiρi∇ · ui = 0 (36)

allows the velocity divergence term to be eliminated:280

σiρi
Di

Dt

(
ζi
σiρi

)
− ζi · ∇ui +∇×

(
1

ρi
∇p

)
= 0. (37)

Now consider a scalar λ that is materially conserved following the velocity field ui, i.e. Diλ/Dt =281

0. Taking the gradient, expanding, and rearranging gives282

Di

Dt
∇λ+ (∇ui) · ∇λ = 0. (38)

If we construct the quantity283

Πi =
ζi · ∇λ

σiρi
(39)

and use the product rule to evaluate its material derivative we obtain284

DiΠi

Dt
−

1

σiρ
3
i

∇ρi ×∇p · ∇λ = 0. (40)

If λ is chosen to be the specific entropy ηi, or any function of the specific entropy such as the285

potential temperature (Πi is then the potential vorticity of the ith fluid), then λ can be expressed286

as a function of ρi and p, ∇λ at every point is a linear combination of ∇ρi and ∇p, and so the287

scalar triple product term in (40) vanishes, leaving288

DiΠi

Dt
= 0. (41)

Thus the potential vorticity of the ith fluid component is materially conserved following ui. This289

derivation closely parallels the standard textbook derivation of potential vorticity conservation for290

a single component fluid (e.g. Vallis 2017). A notable difference is the appearance of σi as well as291

ρi in the denominator of (39).292

If the bi +
∑

j dij terms can not be neglected then they may be carried through the derivation293

to appear as source terms in (41). The potential vorticity of the ith fluid component is then no294

longer materially conserved.295

Haynes and McIntyre (1987) showed that potential vorticity satisfies a flux form conservation law296

even in the presence of diabatic heating and frictional forces. They also proved the impermeability297

theorem, that there is no net flux of potential vorticity across an isentropic surface. These results are298

purely kinematic (Bretherton and Schär 1993; Vallis 2017); they do not depend on the governing299

dynamical equations, only on the definition of potential vorticity and the fact that the vorticity is300

the curl of a vector and hence divergence free. It comes as no surprise, then, that the conservation301

law and impermeability theorem generalize straightforwardly to the conditionally filtered equations,302

as follows.303

The conservation law is obtained from (39), setting λ = ηi and using ∇ · ζi = 0,304

σiρiΠi = ∇ · (ηiζi). (42)

Taking the time derivative then gives305

∂

∂t
(σiρiΠi) +∇ · Fi = 0 (43)

where306

Fi = −
∂

∂t
(ηiζi) . (44)
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The time derivative in the expression for Fi can be removed using the prognostic equations for ηi307

and ζi (including diabatic heating and friction if present). Note also that the flux is not unique;308

any divergence free vector may be added to Fi leaving the conservation law intact.309

Next consider the integral of potential vorticity within a volume bounded by an isentropic surface,310

i.e. a surface of constant ηi. For example, this surface might envelope the Earth.311

∫
σiρiΠi dV =

∫
∇ · (ηiζi) dV =

∫

∂

ηiζi · dA, (45)

where the last integral is the area integral of the outward normal component of ηiζi over the312

boundary of the original volume. Since ηi is constant on this boundary it can be brought outside313

the integral:314 ∫
σiρiΠi dV = ηi

∫

∂

ζi · dA = ηi

∫
∇ · ζi dV = 0. (46)

Similarly, the integral of potential vorticity within a volume bounded by a pair of isentropic surfaces315

must also vanish.316

Finally, consider the integral of potential vorticity within a volume that is bounded in part by317

an isentropic surface A on which ηi = η
(A)
i = const and in part by a surface B, such as the ground,318

on which ηi = η
(B)
i may vary in space and time. The boundary integral in (45) may be split into319

two contributions:320

∫
σiρiΠi dV = η

(A)
i

∫

∂A

ζi · dA+

∫

∂B

η
(B)
i ζi · dA

= η
(A)
i

∫

∂A+∂B

ζi · dA+

∫

∂B

(
η
(B)
i − η

(A)
i

)
ζi · dA

=

∫

∂B

(
η
(B)
i − η

(A)
i

)
ζi · dA. (47)

Thus the integral of potential vorticity within the volume, and therefore its rate of change, depends321

only on contributions from surface B; there is no contribution from surface A.322

In summary, for the conditionally filtered equations, the potential vorticity of each fluid323

component i satisfies a flux form conservation law and the impermeability theorem.324

4. Normal modes325

In this section we focus mainly on the case of two fluid components. The case of more fluid326

components is discussed briefly at the end. To analyse the normal modes, all of the right-hand327

side terms in (2)-(5) are neglected, so the starting point is (8)-(12). For simplicity, planar geometry328

is assumed and the equations are written in Cartesian coordinates. However, Coriolis terms are329

re-introduced with a linear dependence of the Coriolis parameter on the northward coordinate y,330

i.e. we use a β-plane, because the Coriolis terms and β-effect are crucial to the dynamics of the331

normal modes.332

Small perturbations to a basic state are considered. The basic state (indicated by superscript (r))333

is at rest and in hydrostatic balance, and the basic state thermodynamic quantities ρ(r), η(r), p(r) are334

identical for the two fluid components, though their volume fractions σ
(r)
1 , σ

(r)
2 might be different.335

Basic state quantities are functions only of the vertical coordinate z.336

Equations (8)-(12) are linearized about the basic state and wavelike solutions proportional to337

exp{i(kx+ ly − ωt)} are sought, where k, l are the horizontal components of the wave vector and338

ω is the frequency. The β-effect is included, while still permitting such wavelike solutions, following339

the approximation made by Thuburn and Woollings (2005). Including the β-effect is useful for340

identifying the Rossby modes and distinguishing them from any zero-frequency modes.341

The resulting linearized equations are342

2∑

i=1

σi = 0, (48)

c© 2017 Royal Meteorological Society

Prepared using qjrms4.cls



Properties of the conditionally filtered equations 12

343

−iω
(
σ
(r)
i ρi + σiρ

(r)
)
+ σ

(r)
i ρ(r) (ikui + ilvi) +

(
σ
(r)
i ρ(r)wi

)

z
= 0, (49)

344

−iωηi + wiη
(r)
z = 0, (50)

345

−iω̃ui − fvi + ik
p

ρ(r)
= 0, (51)

346

−iω̃vi + fui + il
p

ρ(r)
= 0, (52)

347

−iωwi +
1

ρ(r)
pz + g

ρi

ρ(r)
= 0, (53)

348

1

c2
p

ρ(r)
=

ρi

ρ(r)
+Qηi. (54)

Here, σi, ρi, ηi, and p are now the perturbations to volume fraction, density, specific entropy, and349

pressure, respectively, and ui, vi, wi are the velocity perturbation components. f is a mean Coriolis350

parameter and β is the northward gradient of the Coriolis parameter, both taken as constant.351

The gravitational acceleration g is minus the vertical component of ∇Φ = (0, 0,−g). Subscript z352

indicates a vertical derivative. The modified frequency ω̃ is given by353

ω̃ = ω +
kβ

K2
(55)

where K2 = k2 + l2. The linearized equation of state (54) has been obtained by writing ρ = ρ(p, η)354

and considering small perturbations to the reference state; the quantity Q is given by355

Q = −
∂ ln ρ

∂η

∣∣∣∣
(r)

p

(56)

while356

c2 =
∂p

∂ρ

∣∣∣∣
(r)

η

(57)

is the sound speed squared in the reference state.357

An equation for a single unknown perturbation field, in this case p, is derived by systematically358

eliminating the other unknowns. First use (50) to eliminate ηi from (54):359

iω

(
1

c2
p

ρ(r)
−

ρi

ρ(r)

)
=

N2

g
wi, (58)

where the buoyancy frequency squared N2 for a general equation of state is given by360

N2

g
= −

ρ
(r)
z

ρ(r)
−

g

c2
= Qη

(r)
z (59)

(e.g. IOC et al. 2010; Thuburn 2017).361

Using (58) to eliminate ρi/ρ
(r) from (53) gives362

(
ω2 −N2

)
ρ(r)wi + iω

(
pz +

g

c2
p
)
= 0. (60)

Also, combining (51) and (52) gives363

ρ(r)ui =
kω̃ + ilf

ω̃2 − f2
p, (61)
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364

ρ(r)vi =
lω̃ − ikf

ω̃2 − f2
p. (62)

Summing (49) over i and using (48) to eliminate σi gives365

2∑

i=1

{
−iωσ

(r)
i ρi + σ

(r)
i ρ(r) (ikui + ilvi) +

(
σ
(r)
i ρ(r)wi

)

z

}
= 0. (63)

Using (58) to eliminate ρi gives366

2∑

i=1

{
−iωσ

(r)
i

p

c2
+ σ

(r)
i ρ(r) (ikui + ilvi)

+
(
σ
(r)
i ρ(r)wi

)

z
+

N2

g
σ
(r)
i ρ(r)wi

}
= 0, (64)

Now ui, vi and wi may be eliminated using (61), (62) and (60), giving an equation in the single367

unknown p:368

2∑

i=1

{
−iωσ

(r)
i

p

c2
+ σ

(r)
i

(
iK2ω̃

ω̃2 − f2

)
p

−

(
σ
(r)
i

iω

ω2 −N2

(
pz +

g

c2

))

z

− σ
(r)
i

N2

g

iω

ω2 −N2

(
pz +

g

c2

)}
= 0. (65)

This equation can be simplified by noting that
∑

i σ
(r)
i = 1, to obtain369

(
ω

c2
−

K2ω̃

ω̃2 − f2

)
p +

(
d

dz
+

N2

g

)(
ω

ω2 −N2

)(
d

dz
+

g

c2

)
p = 0. (66)

For a general equation of state and for arbitrary basic state profiles, (66) could be solved370

numerically. Normal modes can be obtained analytically if a perfect gas equation of state is assumed,371

the basic state is assumed to be isothermal, and g is taken to be constant. In that case c2 and N2
372

are constant, and so is the density scale height H, which is given by373

1

H
=

N2

g
+

g

c2
. (67)

Then (66) is a constant coefficient equation for p. The solutions have a simpler structure when374

expressed in terms of a rescaled variable375

q = p exp(z/2H); (68)

(66) then reduces to376

(
ω

c2
−

K2ω̃

ω̃2 − f2

)
q +

(
ω

ω2 −N2

)(
d2

dz2
− Γ2

)
q = 0, (69)

where the inverse length scale Γ is given by377

Γ =
1

2

(
g

c2
−

N2

g

)
. (70)
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4.1. Single-fluid-equivalent modes378

Equation (69) has solutions for q proportional to exp(imz) with real vertical wavenumber m. These379

are internal mode solutions. The allowed values of m are determined by the lower and upper380

boundary conditions, for example wi = 0 at z = 0 and at some domain height D, though we will not381

dwell on this detail here. Substituting such solutions into (69) and cancelling q gives the dispersion382

relation, relating ω to k, l and m:383

ω

c2
−

K2ω̃

ω̃2 − f2
− ω

m2 + Γ2

ω2 −N2
= 0. (71)

It is clear that (71) is a quintic equation for ω, and it is easily confirmed that it is identical to384

the dispersion relation obtained by Thuburn and Woollings (2005) for the single-fluid-component385

compressible Euler equations. The five roots for ω for any given (k, l,m) correspond to five branches386

of normal modes: eastward and westward propagating acoustic modes, eastward and westward387

propagating inertio-gravity modes, and westward propagating Rossby modes.388

To examine the structure of these normal modes, note that (60)-(62) imply (u1, v1, w1) =389

(u2, v2, w2). (It has been assumed here that ω2 6= N2 and ω̃2 6= f2, but it can be confirmed that390

such values of ω are not solutions of (71) except for very special and unrealistic parameter values.)391

It then follows from (50) and (54) that ρ1 = ρ2 and η1 = η2, while (49) implies that that σ1 and392

σ2 are determined simply by vertical advection of the background values σ
(r)
1 and σ

(r)
2 . Thus, these393

normal modes have identical perturbations in the two fluid components. Their structure, as well394

as their frequency, is exactly that of the normal modes for the single-fluid-component compressible395

Euler equations. In other words, the single-fluid normal modes are a subset of the two-fluid normal396

modes.397

The single-fluid compressible Euler equations also support external modes, with zero vertical398

velocity and entropy perturbation (assuming a rigid lid upper boundary condition) and exponential399

profiles of the other perturbation variables. Seeking such modes in the two-fluid case, only the400

first line is retained on the left-hand sides of (64), (65), (66), and (69), and the dispersion relation401

becomes402

ω

c2
−

K2ω̃

ω̃2 − f2
= 0. (72)

This is a cubic equation for ω, giving three branches of normal modes: eastward and westward403

external acoustic modes and westward external Rossby modes. Again, the frequencies are identical404

to those in the single-fluid case, and the mode structures are identical in the two fluid components,405

so again the single-fluid normal modes are a subset of the two-fluid normal modes.406

In order to obtain (71) from (69) it was assumed that q was non-zero in order to cancel q. Another407

way to satisfy (69) is for q to be identically zero. There are then three ways to obtain non-trivial408

solutions.409

4.2. Two-fluid gravity modes410

To have zero p but non-zero vertical velocity, (60) implies that ω2 = N2. Equations (61) and (62)411

then imply that ui = vi = 0; the motion is purely vertical. From (58) and (54), the entropy and412

density perturbations are related to the vertical velocity perturbation by413

±iNQηi = ∓iN
ρi

ρ(r)
=

N2

g
wi. (73)

Equation (64) reduces to414

(
d

dz
+

N2

g

)( 2∑

i=1

σ
(r)
i ρ(r)wi

)
= 0. (74)
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The bottom boundary condition implies
∑2

i=1 σ
(r)
i ρ(r)wi = 0 there, and then (74) implies415 ∑2

i=1 σ
(r)
i ρ(r)wi = 0 at all heights. Thus416

σ
(r)
1 w1 = −σ

(r)
2 w2; (75)

the vertical mass fluxes by the two fluid components are equal and opposite. Finally, substituting417

from (73) for ρi in (49) gives the volume fraction perturbations in terms of wi:418

±iNσi =
1

ρ(r)

(
σ
(r)
i ρ(r)wi

)

z
+

N2

g
wi. (76)

The essential dynamics of these motions involves the coupling of vertical velocity with buoyancy419

perturbations, and their structure and frequency are reminiscent of deep internal gravity waves.420

This justifies our classification of them as two-fluid gravity modes. At the same time, there are some421

important differences from fully-resolved gravity modes of the single-fluid equations. For example,422

because the pressure and horizontal velocity perturbations vanish there is no horizontal coupling.423

The frequency of these motions is independent of their vertical structure. Therefore, there424

is no unique way to define a set of vertical normal modes. A convenient choice is w1 ∝425

(σ
(r)
2 /σ

(r)
1 ρ(r))1/2 exp{imz}, etc. This choice ensures that the modes for different m are indeed426

mutually orthogonal (i.e. normal) with respect to the energy of the linearized equations427

Elin =
∑

i

{
σ
(r)
i ρ(r)

2

(
|ui|

2 +
g2Q2

N2
|ηi|

2 +
|p|2

ρ(r) 2c2

)}
, (77)

and it allows us to discuss the vertical wavenumber m. (The expression (77) reduces to that given428

by e.g. Phillips 1990; Thuburn et al. 2002, in the case of a single fluid component.)429

For any given (k, l,m) there are two possible frequencies, ω = ±N , giving two branches to the430

dispersion relation. Although the structures and frequencies of these modes resemble those of deep431

internal gravity modes in some respects, these features hold for all m, including large m, so the432

mode structures do not, in fact, have to be deep.433

Finally, since the frequency of these modes is independent of k, l and m their group velocity is434

identically zero. They propagate neither horizontally nor vertically.435

4.3. Two-fluid inertial modes436

To have zero p with non-zero horizontal velocity, (61) and (62) imply that ω̃2 = f2, i.e. ω =437

±f − kβ/K2. (60) then implies that wi = 0, and hence ρi = 0 and ηi = 0. Either (51) or (52)438

shows that439

vi = ∓iui, (78)

from which it follows that the horizontal divergence440

δi = ikui + ilvi = ikui ± lui (79)

is in quadrature with the vertical component of vorticity441

ζi = ikvi − ilui = ±kui − ilui = ∓iδi. (80)

Equation (49) implies that442 ∑

i

σiδi = 0, (81)

so the net mass flux convergence vanishes everywhere. Combining with (79) then shows that the443

net mass flux
∑

i σ
(r)
i ui vanishes everywhere. The essential dynamics of these motions involves the444

coupling between u and v via the Coriolis term, and they have structure and frequency resembling445
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inertial modes, but with compensating horizontal mass fluxes in the two fluid components rather446

than in layers at nearby heights. Hence we classify them as two-fluid inertial modes. As for the447

two-fluid gravity modes, the pressure perturbation vanishes, but now there is the possibility for448

horizontal coupling through horizontal advection.449

As for the two-fluid gravity modes, the frequency of these motions is independent of their vertical450

structure. Again there is no unique way to define a set of vertical normal mode structures, but a451

convenient choice is u1 ∝ (σ
(r)
2 /σ

(r)
1 ρ(r))1/2 exp{imz}, etc., so that the modes for different m are452

orthogonal with respect to (77).453

For any given (k, l,m) there are two branches of these normal modes, with frequencies ω =454

±f − βk/K2. The frequency is independent of m, so their vertical group velocity is zero. Their455

horizontal group velocity is small but non-zero, similar to that of barotropic Rossby waves.456

4.4. Relabelling modes457

One further branch of modes is possible, in which ui, vi, wi, ρi, ηi, and p all vanish. The frequency458

is zero, but the volume fraction perturbations are non-zero and satisfy459

σ1 = −σ2. (82)

These represent modes in which some fluid has been relabelled, but the physical state of the system460

is identical to the basic state. The energy perturbation (77) vanishes for these modes.461

4.5. Normal modes for n > 2 fluid components462

The normal modes for the two-fluid case discussed above generalize in a straightforward way to463

the case of any number n of fluid components. The derivation of (71) carries through exactly as464

before, so we have the same branches of single-fluid-equivalent modes: eastward and westward465

propagating acoustic modes, eastward and westward propagating inertio-gravity modes, and466

westward propagating Rossby modes. As before, ρi, ηi and ui are all indedependent of i.467

The two branches of two-fluid gravity modes become 2(n− 1) branches of multi-fluid gravity468

modes. They all have ui and vi identically zero, and satisfy
∑

i σ
(r)
i ρ(r)wi = 0. One way to confirm469

the number of branches is to note that, for ω = ±N (hence the factor 2), and for any vertical profile470

w1(z), there are n− 1 linearly independent modes with σ
(r)
1 w1 + σ

(r)
i wi = 0 and wj = 0 when j 6= i,471

for i = 2, . . . , n. If an orthogonal set of modes is needed then this can be obtained (non-uniquely)472

by writing the vertical velocity of the jth mode as473

σ
(r)
i ρ(r)

1/2
w
(j)
i = a

(j)
i f (m)(z) (83)

where474

f (m)(z) =

(
∑

i

1

σ
(r)
i

)−1/2

exp(imz) (84)

and475

a
(j)
i = exp

(
2πi

n
ij

)
. (85)

As before, all of these modes have zero group velocity.476

In an analogous way, the two branches of two-fluid inertial modes become 2(n− 1) branches of477

multi-fluid inertial modes. They all have ρi, ηi and wi identically zero, and satisfy
∑

i σ
(r)
i ui = 0.478

An orthogonal set of modes is obtained by defining the ui for the jth mode as479

σ
(r)
i ρ(r)

1/2
u
(j)
i = a

(j)
i f (m)(z), (86)

etc., with f (m)(z) and a
(j)
i as above. As before, all these modes have zero vertical group velocity.480

Finally the branch of two-fluid relabelling modes becomes n− 1 branches of multi-fluid relabelling481

modes.482
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4.6. Normal modes in the Boussinesq equations483

To interpret the normal modes it is helpful to consider the two-fluid Boussinesq equations. These

equations eliminate acoustic modes ab initio, and if we further restrict attention to the f -plane we

more transparently expose the physically new modes of the system. Allowing density to vary only

in terms associated with gravity, the Boussinesq versions of equations (8)-(12) are given by, now

including the Coriolis term,

n∑

i=1

σi = 1, Volume fractions must sum to unity (87)

∂σi
∂t

+∇ · (σiui) = 0, Mass or volume conservation (88)

∂ui

∂t
+ ui · ∇ui +∇φ+ fk× ui − kbi = 0, Momentum equation (89)

∂bi
∂t

+ ui · ∇bi = 0, Buoyancy conservation (90)

where k is the unit vector in the vertical, φ is the deviation of the kinematic filter-scale pressure484

(p/ρ0) from a hydrostatic reference state, and bi is the buoyancy of the i-th component.485

If we take f to be a constant and linearize these equations around a state of rest, of given

basic-state volume fractions σ
(r)
i , and constant stratification, N2, we obtain,

∑

i

σi = 0 perturbation volume fractions sum to zero, (91)

−iωσi + σ
(r)
i (ikui + ilvi + imwi) = 0 mass conservation, (92)

−iωui − fvi + ikφ = 0 u momentum, (93)

−iωvi + fvi + ilφ = 0 v momentum, (94)

−iωwi + imφ− bi = 0 w momentum, (95)

−iωbi +N2wi = 0 buoyancy. (96)

The variables σi, ui, vi, wi, bi, φ are now all perturbation quantities. Eliminating bi from the486

buoyancy and vertical momentum equations gives487

(ω2 −N2) = ωmφ. (97)

The two horizontal momentum equations may be written as488

ui =
kω + ilf

ω2 − f2
φ, vi =

lω − ikf

ω2 − f2
φ. (98)

If the pressure perturbation φ is non-zero then these equations reduce to489

ω2 =
m2f2 +N2(k2 + l2)

(k2 + l2 +m2)
. (99)

This is just the standard dispersion relation for an inertia-gravity wave (e.g., Vallis 2017, chapter490

7). If the pressure perturbation is zero then, using (97) and (98), we find the additional two-fluid491

modes,492

ω2 = N2, ui = vi = 0, (100)

and493

ω2 = f2, wi = 0. (101)

These modes are gravity wave modes and inertial modes respectively. They are similar to their one-494

fluid counterparts, but they obey an additional constraint that arises from (91) and (92), namely495
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496 ∑

i

σ
(r)
i (ikui + ilvi + imwi) = 0. (102)

The gravity and inertial waves must then obey, respectively,497

ω2 = N2, σ
(r)
1 w1 = −σ

(r)
2 w2, (103)

and498

ω2 = f2, σ
(r)
1 (ku1 + lv1) = −σ

(r)
2 (ku2 + lv2). (104)

The two-fluid gravity-wave mode, (103), is of particular note. Since σ
(r)
i is positive for all i, the mode499

represents ascending motion by one fluid and descending motion by the other fluid. (The mode is of500

course present in the fully compressible equations but in the Boussinesq derivation it is seen most501

plainly.) It is not an unphysical mode, since the conditionally filtered equations represent motion502

on a large scale. Rather, within that large-scale there is an oscillation consisting of ascent of one503

fluid component and descent of the other. It may be the most important new mode introduced by504

the conditional filtering, since subfilter-scale buoyancy-driven motions such as cumulus convection505

will project strongly onto this mode.506

4.7. Behaviour in the limit of short filter scale507

One of the motivations for the introduction of the conditionally filtered equations was the desire to508

formulate a mathematical framework that could represent cumulus convection both in the unresolved509

case, where the scale of convection is much smaller than the filter scale, and in the resolved case,510

where the scale of convection is greater than the filter scale, with the potential to be able to work511

also for intermediate cases in the so-called ‘grey zone’. Since the usual single-fluid equations are512

able to represent convection in the resolved case, a desirable property of the conditionally filtered513

equations is that their behaviour should smoothly reduce to that of the single-fluid equations as the514

filter scale is reduced. Among other things, this will require the parameterized relabelling terms and515

inter-fluid pressure forces to behave appropriately in the limit of short filter scale. Here we focus on516

the behaviour of the normal modes.517

In the limit of short filter scale it is desirable that the flow field u should be represented more518

and more completely by the mean filter-scale field u∗. That is, u should project more and more519

onto the single-fluid-equivalent normal modes, with the multi-fluid normal modes as well as the520

subfilter-scale contributions becoming less significant.521

Let us examine this behaviour in the simplest possible scenario. Consider a field w that is a522

function only of x, such as that illustrated in figure 1, and suppose that there are two Lagrangian523

labels I1 and I2, which pick out updrafts and environment, respectively. For simplicity take the524

density to be constant, so that it can be ignored in the rest of this subsection. Using the normal525

mode structures for gravity modes discussed above, at each point x the filter-scale vertical mass526

fluxes σ
(r)
1 w1 and σ

(r)
2 w2 can be projected onto the single-fluid-equivalent and two-fluid modes:527

(
σ
(r)
1 w1

σ
(r)
2 w2

)
= A1

(
σ
(r)
1

σ
(r)
2

)
+A2

(
−(σ

(r)
1 σ

(r)
2 )1/2

(σ
(r)
1 σ

(r)
2 )1/2

)
, (105)

where A1 is the amplitude of the single-fluid-equivalent mode and A2 is the amplitude of the528

two-fluid mode. Solving for A1 and A2 gives529

A1 = σ
(r)
1 w1 + σ

(r)
2 w2 (106)

and530

A2 = (σ
(r)
1 σ

(r)
2 )1/2(w2 − w1) = (σ

(r)
1 /σ

(r)
2 )1/2σ

(r)
2 w2 − (σ

(r)
2 /σ

(r)
1 )1/2σ

(r)
1 w1. (107)
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Table 1. Summary of the normal modes of the conditionally filtered equations with n fluid components.

Family Physical character Number of branches

Full equations Equal-vi variant Boussinesq

Single-fluid-equivalent Acoustic 2 2 0

Inertio-gravity 2 2 2

Rossby 1 1 1

Multi-fluid gravity Deep gravity waves 2(n− 1) 2(n− 1) 2(n− 1)

Multi-fluid inertial Inertial waves 2(n− 1) 0 2(n− 1)

Multi-fluid relabelling (n− 1) (n− 1) (n− 1)

Total number of branches 5n 3n+ 2 5n− 2

We consider the behaviour of this decomposition as the filter scale approaches zero, holding the531

field w(x) and the labels I1(x) and I2(x) fixed. The amplitude of the single-fluid-equivalent mode A1532

is just the total mass-weighted filter-scale velocity w∗. It will approach w in the limit of short filter533

scale, as it would in the usual unconditionally filtered equations. The amplitude of the two-fluid534

mode A2, on the other hand, depends on σ
(r)
1 and σ

(r)
2 . Since σ

(r)
i = Ii, σ

(r)
i will approach Ii as the535

filter scale diminishes. Thus, at almost every point in the domain either σ
(r)
1 or σ

(r)
2 will approach536

zero. (There will be a finite number of exceptions at those points where the Ii switch between zero537

and one.) If the filter kernel is non-zero only over a finite range, which shrinks with the filter scale,538

then σ
(r)
1 will become equal to zero when there are no points with I1 = 1 within range of the filter,539

and similarly for σ
(r)
2 . In this way, the amplitude A2 will approach zero, or actually become zero,540

at almost every point in the fluid as the filter scale tends to zero.541

Thus, as desired, the representation of the complete flow field by the conditionally filtered542

equations converges to its representation by the single-fluid or unconditionally filtered equations,543

and the contribution from multi-fluid modes tends to zero, as the filter scale tends to zero.544

4.8. Summary of normal modes545

Table 1 summarizes the normal modes of the conditionally filtered equations. It is notable that546

the only acoustic modes are the single-fluid-equivalent acoustic modes. This is expected since all547

fluid components have the same pressure, and, as mentioned in the Introduction, this is a desirable548

feature of the conditionally filtered equations. The table also shows that the effect of constraining549

the horizontal velocities of different fluid components to be equal is to remove the multi-fluid inertial550

modes; the other modes are unchanged. See Appendix B for a brief discussion.551

5. Variational formulation552

Hamilton’s principle expresses the equations of motion as the stationarity of the action553

δL = 0 (108)

under arbitrary small variations of some state variables X, where the action L is the integral of the554

Lagrangian density L(X) over space and time:555

L =

∫∫
dt dxL(X). (109)

The Lagrangian density is essentially the kinetic energy density minus the potential and internal556

energy density, but there are different flavours of the idea depending on whether an Eulerian557

or Lagrangian description of the fluid motion is of interest, and whether constraints such as558
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conservation of mass are imposed through restricting the allowed perturbations δX or through559

Lagrange multipliers in (108) (e.g. Salmon 1998).560

In this section we focus on an Eulerian description of the fluid motion, following Salmon (1998)561

(chapter 7, section 8). As we would for a single fluid, we impose conservation of mass, and562

also material conservation of entropy and material conservation of another Lagrangian label, via563

Lagrange multipliers, for each fluid component i. (See Salmon 1998, for a discussion of how the564

extra Lagrangian label relates to Lin’s constraint). Equality of the pressures in the different fluid565

components and the requirement for the volume fractions to sum to unity are also imposed through566

Lagrange multipliers. Hence the appropriate expression for L is567

L =
∫∫

dt dx
∑

i

{
σiρi

1

2
|ui|

2 − σiρiΦ

−σiρiei(ρi, ηi)− σiρi
Diφi

Dt

−σiρiAi
Diηi
Dt

− σiρiCi
Diλi
Dt

}

−
∑

i6=1

νi (p1 − pi)− µ

(
∑

i

σi − 1

)
. (110)

Here φi is the Lagrange multiplier associated with conservation of mass of the ith fluid, Ai is the568

Lagrange multiplier associated with material conservation of ηi, λi is a Lagrangian label for the569

ith fluid and Ci is the Lagrange multiplier associated with material conservation of λi, the νi are570

a set of Lagrange multipliers associated with the equality of the pressure in the different fluid571

components, and µ is the Lagrange multiplier associated with the volume fractions summing to572

unity. The pressure pi is related to the internal energy density ei by573

pi = ρ2i
∂ei
∂ρi

∣∣∣∣
ηi

. (111)

Hamilton’s principle now states that δL = 0 for arbitrary, independent, small variations of σi, ρi,574

ηi, ui, λi, φi, Ai, Ci, νi, and µ. Boundary conditions (in space and time) are assumed to be such575

that any boundary terms arising through integration by parts vanish.576

For variations in µ, δL = 0 implies577 ∑

i

σi − 1 = 0, (112)

in agreement with (8). For variations in νi, δL = 0 implies578

pi = p1; (113)

thus the pressures in all the fluid components take the same value, which we can call p for consistency579

with the earlier notation. For variations in Ai and Ci, δL = 0 implies580

Diηi
Dt

= 0, (114)

consistent with (18), and581

Diλi
Dt

= 0. (115)

For variations in φi, δL = 0 implies, after integration by parts582

∂

∂t
(σiρi) +∇ · (σiρiui) = 0, (116)

consistent with (9).583
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For variations in σi and in ρi, δL = 0 implies584

ρi

(
1

2
|ui|

2 − Φ− ei −
Diφi

Dt

)
− µ = 0 (117)

and585

1

2
|ui|

2 − Φ− ei −
p

ρi
−

Diφi

Dt
= 0, (118)

where (114) and (115) have been used to eliminate terms involving Diηi/Dt and Diλi/Dt, and586

(113) has been used to write pi = p1 = p.587

Taking (117) minus ρi times (118) shows that588

µ = p. (119)

Thus p is the Lagrange multiplier corresponding to the requirement for the volume fractions to589

sum to unity. This is reflected in the fact that the volume fractions summing to unity is crucial590

for determining p; see (140). This result is analogous to the well-known interpretation of pressure591

as the Lagrange multiplier corresponding to the incompressibility condition for an incompressible592

fluid.593

For variations in ηi and λi, δL = 0 implies, after integration by parts,594

−σiρiTi +
∂

∂t
(σiρiAi) +∇ · (σiρiAiui) = 0, (120)

and595

∂

∂t
(σiρiCi) +∇ · (σiρiCiui) = 0, (121)

where596

Ti =
∂ei
∂ηi

∣∣∣∣
ρi

(122)

is the temperature of the ith fluid. Finally, for variations in ui, δL = 0 implies597

ui −∇φi −Ai∇ηi − Ci∇λi = 0. (123)

To obtain the equations of motion we systematically eliminate the remaining Lagrange multipliers598

and the materially conserved scalars λi. Taking (120) minus Ai times (116) gives599

DiAi

Dt
= Ti, (124)

while (121) minus Ci times (116) gives600

DiCi

Dt
= 0. (125)

Taking ∂/∂t of (123) gives601

∂ui

∂t
−∇

∂φi

∂t
−

∂Ai

∂t
∇ηi −Ai∇

∂ηi
∂t

−
∂Ci

∂t
∇λi − Ci∇

∂λi
∂t

= 0. (126)

Taking ui·(123), subtracting (118), and using (114) and (115) gives602

1

2
|ui|

2 +Φ+ ei +
p

ρi
+

∂φi

∂t
+Ai

∂ηi
∂t

+ Ci
∂λi
∂t

= 0. (127)

Then taking (126) plus the gradient of (127) and using (114), (115), (124), and (125) gives603

∂ui

∂t
+∇

(
1

2
|ui|

2 +Φ+ ei +
p

ρi

)

= (ui · ∇ηi)∇Ai + (Ti − ui · ∇Ai)∇ηi

+ (ui · ∇λi)∇Ci − (ui · ∇Ci)∇λi. (128)
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Taking the curl of (123) gives604

ζi = ∇× ui = ∇Ai ×∇ηi +∇Ci ×∇λi, (129)

so that605

ζi × ui = (ui · ∇Ai)∇ηi − (ui · ∇ηi)∇Ai

+ (ui · ∇Ci)∇λi − (ui · ∇λi)∇Ci. (130)

Hence, (128) simplifies to606

∂ui

∂t
+ ζi × ui +∇

(
1

2
|ui|

2 +Φ+ ei +
p

ρi

)
= Ti∇ηi. (131)

Finally, noting that607

∇

(
ei +

p

ρi

)
= Ti∇ηi +

1

ρi
∇p, (132)

(131) reduces to608

∂ui

∂t
+ ζi × ui +

1

ρi
∇p+∇

(
1

2
|ui|

2 +Φ
)
= 0, (133)

which agrees with (34) in the absence of its right-hand side.609

Equations (112), (116), (114), and (133) derived from the variational method thus agree with the610

conditionally filtered equations (8), (9), (18), and (34).611

6. Summary and discussion612

We have documented the conservation properties, normal modes, and a variational formulation613

of the conditionally filtered equations. The results confirm that these equations have a natural614

mathematical structure, respecting key physical properties, lending them some credibility for their615

use in modelling atmospheric flows. In particular the normal mode results, with real frequency ω616

provided N2 > 0, imply that the equations are free from spurious unphysical instabilities, at least617

for small perturbations to a simple basic state. Furthermore, the modes themselves have a sensible618

physical interpretation. The usual Rossby, inertia-gravity and acoustic modes exist and have the619

same frequency and structure as in the single-fluid case. In addition, we have identified inertia and620

gravity modes with zero pressure perturbation in which the fluid components move separately, and621

in general in opposite vertical and horizontal directions. This is precisely a property one might wish622

for when modelling subgrid-scale convection, in which some of the subgrid-scale fluid ascends while623

some of it descends. Furthermore, the amplitude of these modes goes to zero as the filter scale624

diminishes, which is an attractive property when considering how the fluid system might behave as625

the model resolution increases.626

The availability of a variational formulation implies that a variety of standard approximations,627

such as hydrostatic or pseudo-incompressible, should be applicable to the conditionally averaged628

equations, leading to simpler equation sets that might be appropriate for some applications, both629

theoretical and numerical. We have already begun to experiment with hydrostatic and Boussinesq630

versions of the conditionally filtered equations. It is even possible to make different approximations631

in different fluid components, for example making one component hydrostatic (though some thought632

must then be given to the relabelling terms if strict energy consistency is required). However, one633

would of course normally wish for the fluid component that represents convecting fluid to be treated634

non-hydrostatically. The results may also be of use in developing and testing numerical methods for635

the solution of the conditionally filtered equations. For example, numerical methods should respect636

the conservation properties of the continuous equations, at least to within numerical truncation637

error. The normal modes derived here provide known, exact, stable, linear solutions that a numerical638

method should be able to reproduce.639
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Finally, the results also give some early indications of the suitability of the conditionally filtered640

equations for modelling cumulus convection, the application for which they were originally proposed.641

The multi-fluid gravity modes show that the conditionally filtered equations can capture the essential642

dynamics of vertical buoyancy-driven motion of one fluid component relative to another, which will643

be required in order to model convective updrafts and downdrafts. Of course the subfilter-scale644

terms, inter-fluid pressure terms, and relabelling terms, that is the right-hand sides of (2)–(4) that645

would need to parameterized, are also of leading order importance for such flows (e.g. Siebesma et al.646

2007; de Rooy et al. 2013; Romps and Charn 2015). On the other hand, the vanishing group velocity647

of the multi-fluid gravity modes suggests that the conditionally filtered equations would not help648

to capture convectively generated gravity waves (e.g. Lane and Moncrieff 2010) unless those waves649

project onto the single-fluid-equivalent gravity modes. It is also conceivable that, away from the650

region of convection, the two-fluid gravity modes and inertial modes might have undesirable651

behaviour. For example, their disperion properities might lead to behaviour analogous to that652

of some numerical computational modes. If this turns out to be the case then some measures to653

suppress them might be needed. The analysis presented here should, at least, help to identify such654

problems.655
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Appendix A. Prognostic equations for σi, ρi and p, and a diagnostic equation for p660

It is not immediately obvious how equations (8)-(12) imply the time evolution of all variables. As661

well as the fundamental question of whether the system of equations is closed, this is relevant to662

the design of numerical methods for the solution of the conditionally averaged equations.663

First note that (9) can be expanded as664

σi
∂ρi
∂t

+ ρi
∂σi
∂t

+∇ · (σiρiui) = 0. (134)

The time derivative of (12) can be written665

1

c2i ρi

∂p

∂t
=

1

ρi

∂ρi
∂t

+Qi
∂ηi
∂t

, (135)

where c2i = ∂P/∂ρi|ηi
is the sound speed squared in the ith fluid, and Qi = − ∂ ln ρi/∂ηi|P666

(compare (54)).667

Multiplying by σi and substituting from (134) and (18) gives668

σi
c2i ρi

∂p

∂t
= −

∂σi
∂t

−
1

ρi
∇ · (σiρiui)− σiQiui · ∇ηi. (136)

Summing over i and using (8) gives an equation for the rate of change of p in terms of known669

quantities:670 (
∑

i

σi
c2i ρi

)
∂p

∂t
= −

∑

i

1

ρi
∇ · (σiρiui)−

∑

i

σiQiui · ∇ηi. (137)

Having obtained ∂p/∂t, ∂ρi/∂t follows from (135), and ∂σi/∂t follows from (134).671

Alternatively, a diagnostic equation for p in terms of the predicted quantities σiρi and ηi can be672

derived as follows. The equation of state can be rearranged to make ρi the subject:673

ρi = R(p, ηi). (138)
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Then674

σi =
(σiρi)

R(p, ηi)
, (139)

and summing over i gives675 ∑

i

(σiρi)

R(p, ηi)
= 1. (140)

Thus we have a single equation for the single unknown p.676

In the special case of a perfect gas equation of state, and predicting potential temperature θi677

instead of entropy ηi, (140) simplifies to678

(
p

p0

)(1−Rd/cp)

=
Rd

p0

∑

i

σiρiθi, (141)

where p0 is a constant reference pressure, Rd is the gas constant, and cp is the specific heat capacity679

at constant pressure (Thuburn et al. 2018).680

Appendix B. Properties of the equal-vi variant681

This appendix briefly examines how the results discussed in the main body of the paper carry over,682

or are modified, for the variant of the conditionally filtered equations in which all fluid components683

have the same horizontal velocity.684

Conservation properties685

The equal-vi variant effectively assumes that the −bi −
∑

j dij terms on the right-hand side of686

(4) are exactly what is needed to maintain equality of the vi. Since (9), (10), and (18) do not687

involve −bi −
∑

j dij , the conservation laws for mass and entropy, and the material conservation of688

entropy, remain the same as for the full equations. Equation (14) for the evolution of v∗ is obtained689

by summing (4) over i (neglecting F
ui

SF and Mij) and using (6) and (7), and is entirely consistent690

with (22). Therefore, the equal-vi variant also conserves momentum.691

The derivation of the energy equation (32) does not depend on any assumption about the692

bi +
∑

j dij terms, so it holds for the equal-vi variant too. Because the bi +
∑

j dij terms can693

no longer be assumed zero, we can no longer make the step to (33). However, the contributions to694

the total energy change from the horizontal components of bi +
∑

j dij sum to zero, leaving695

∂

∂t

(
∑

i

σiρiεi

)
+∇ ·

(
∑

i

(σiρiuiεi + σiuip)

)

= −
∑

i

wi


b

(z)
i +

∑

j

d
(z)
ij


 ; (142)

only the vertical components (indicated by superscript (z)) contribute to the change in total energy.696

Material conservation of potential vorticity (41) does depend on the vanishing of the bi +
∑

j dij697

terms and therefore no longer holds for the equal-vi variant. The impermeability theorem, however,698

involves no assumptions about the forcing terms and continues to hold.699

Normal modes700

The single-fluid-equivalent modes, multi-fluid gravity modes, and the relabelling modes found in701

section 4 all have identical vi for all i. Therefore they continue to exist, with exactly the same702

frequency and structure, in the equal-vi variant. The multi-fluid inertial modes, on the other hand,703

must satisfy
∑

i σ
(r)
i vi = 0. This could only hold with equal vi if vi = 0 for all i, but then there704

would be no disturbance at all. Thus, the multi-fluid inertial modes do not exist in the equal-vi705

variant. These rather general arguments are confirmed by detailed calculation analogous to that in706

section 4.707
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Variational formulation708

We have not, so far, been able to discover a suitable variational formulation of the equal-vi variant of709

the conditionally filtered equations. There appear to be considerable technical subtleties associated710

with the equal-vi constraint.711
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