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Abstract 

The preconcentration or early rejection of gangue minerals in mineral processing operations is 

investigated using sorting, based on interpretation of near infrared sensor data collected from 

ore particles. The success of sorting depends on the distribution of minerals between particles, 

the arrangement or association of minerals within particles and the ability of near infrared to 

distinguish relevant minerals. This paper considers minerals association, using common 

alteration minerals found in a hydrothermally-formed copper ore, with sensitivity in the near 

infrared region. The selected NIR-active minerals were arranged along the view of NIR line 

scanner to stimulate adjacent natural minerals association. 

It was found that spectral dominance may depend on minerals near infrared sensitivity and or 

the position of a mineral along the NIR scanner line of view. Analysis also revealed that only 

free occurring waste mineral spectra can be targeted for discrimination. Where spectra 

appeared mixed, such material cannot be preconcentrated using near infrared sensors. 
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1. Introduction 

The early rejection of gangue minerals, by automated sensor-based sorting of coarse ore 

particles has been shown to be a viable option to many mineral processing application1,2,3,4. A 

technique which shows promise for enabling preconcentration is Near InfraRed (NIR) 

spectroscopy2,4 to measure the use of measured reflectance of constituent minerals4,5,6. 

Understanding the mineralogy and characteristic NIR spectra signature of minerals in the ore 

is central to developing a successful strategy for implementation of a NIR sensor-based sorting 

application to minerals preconcentration2,4,5,7.  

NIR sensing consists of measurement of the reflectance of particle surface areas illuminated 

with NIR light and interpreting this information in terms of mineralogical information7. The 

aptness of the use of NIR point and line scanners as a means of acquiring information on the 

mineralogy of an ore has been reported7. While the point scanner measures a single spectrum 
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of a small surface area of the particle surface, the line scanner measures NIR spectra on a 

succession of adjacent areas across the mineral surface. Hence, a line scanner could provide 

the required data flow to drive improvement in ore control and processing, leading to reduced 

processing cost and higher yields in mining operations. Characterisation of the mineralogical 

composition of ores of heterogeneous nature using NIR scanners can be somewhat challenging 

depending on the complexity of the minerals association within the ore5. To prove the concept 

of NIR sensor-based sorting for a typical hydrothermally-formed copper ore8,9, selected NIR-

active minerals were arranged to simulate adjacent natural minerals association and NIR 

spectra were generated by a line scanner 

2. Material and methods 

Samples of pure calcite, muscovite, hematite, chrysocolla, and malachite were analysed with 

X-Ray Diffraction (XRD, Siemens/Bruker D5000, www.bruker.com). XRD measurements 

were matched with known minerals marker using Bruker EVA software. Results of XRD 

indicated that the samples were of high purity.  

The NIR spectra were measured using a line scanner, which acquires spectral data at a pixel 

size of 2.9 by 9 mm. Details on the NIR background, procedure of data acquisition, 

instrumentation and data pre-treatment are described in Iyakwari et al. (2013) and Iyakwari 

and Glass (2015). 

Measured adjacent particle areas (pixels) which were aligned either ‘parallel’ or 

‘perpendicular’ to the direction of belt motion were prepared and investigated. The prepared 

particles were positioned for scanning in such a way that individual minerals in the field of 

view of the scanner were optically separated. All minerals had an average thickness of 0.7 cm. 

For the perpendicular alignment, analysis involved the use of both solid and powdered samples 

(Figures 1 and 2). Solid mineral samples were cut into size and shaped to fit in close contact 

with one another. Powdered samples were obtained by crushing individual mineral samples 

using a Retsch steel jaw crusher (to -3 mm), then milled to -45 µm using a tungsten-carbide 

mill. The powdered samples were carefully poured into a 3.3 cm container demarcated into 1.1 

cm each, in such a way that they made contact with each other at their boundaries. The 

powdered samples consisted of calcite-hematite-muscovite, arranged side-by-side (Figure 4), 

while the solid samples consisted of two minerals per analysis (Figure 2). The solid samples 

analysed included: hematite-chrysocolla (Figure 5), malachite-hematite (Figure 6) and calcite-

malachite (Figure 7). 

http://www.bruker.com/
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To investigate the influence of parallel minerals alignment when scanned by NIR line scanner, 

where minerals appear in contact side-by-side with parallel adjacent alignment to the motion 

of the NIR belt, only solid samples were prepared (Figures 3a and 3b) and scanned. Given a 

spectrum height of 0.9 cm, each mineral was cut to fit into half the spectrum height (i.e. 0.45 

cm). Analysis consisted of two minerals per scan. Individual minerals were arranged side-by-

side and then scanned with their position switched (transposed). Mixtures analysed included: 

hematite and chrysocolla (Figures 8a and 8b), malachite and hematite (Figures 9a and 9b) and 

calcite and chrysocolla (Figures 10a and 10b). 

Therefore, subsequent discussion of results is divided into two sections, based on scanning 

direction (i.e. perpendicular and parallel).  

All analyses (XRD and NIR) were performed at the Camborne School of Mines (CSM) 

laboratory, UK. 
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Figure 1. Perpendicular alignment  

                of powdered mixtures 

 

Figure 2. Perpendicular alignment  

                of solid mixtures                                                      
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3.  Discussion of results and implications to ore sorting 

3.1. Perpendicular alignment 
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Figure 4. NIR spectra of perpendicular alignment of powdered calcite-muscovite-hematite 
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Figure 3. Parallel alignment of mixture of solid minerals.  (A) Normal and (B)  

                Transposed. 
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Figure 5. NIR spectra of perpendicular    

             alignment of hematite-chrysocolla 

Figure 6. NIR spectra of perpendicular    

               alignment of malachite-hematite 
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Figure. 7. NIR spectra of perpendicular    

                alignment of calcite-malachite 

 

 

Given that each NIR spectrum related to a surface area of 2.9 by 9 mm, each mixture produced 

between 11 and 9 spectra. For the powdered samples (Figure 4), analysis revealed that hematite 

and calcite produced four spectra each, while three spectra were produced by muscovite. Two 

spectra, one each of calcite and muscovite were affected as a result of contact with hematite. 

The affected spectra showed a reduced reflectance or overall brightness relative to other spectra 

of the same original composition. This phenomenon is here referred to as a boundary effect. 

The unaffected spectra displayed diagnostic features corresponding to the constituent 

functional group(s) of each mineral, all appearing with maintained wavelength position(s).The 

boundary effect was also observed in spectra of solid mixtures that appeared along contact 

zones (Figures 5, 6 and 7). Hence, though the boundary spectrum can be said to have the 

composition of both minerals, the absorption features (centres) retained depicts the dominant 
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mineral. Therefore, mineral discrimination using NIR sensors will be better achieved by 

selecting absorption features locations of individual constituent minerals rather than their 

overall reflectance values.  

Figure 5 shows a boundary spectrum lacking absorption features. While the overall reflectance 

differs from that displayed by chrysocolla or hematite the spectrum confirmed the dominance 

of hematite over chrysocolla along the NIR region5. However, in the mixture involving calcite 

and malachite (Figure 7), the boundary spectrum showed features of both minerals. The 

features of malachite, though weak, were observed at longer wavelengths (2275 and 2360 nm), 

while calcite’s 2340 nm feature appeared broad lacking a well-defined centre. Calcite showed 

additional feature near 2000 nm. Consequently, the visibility of only muscovite/calcite and 

malachite in Figures 4 and 6 is due to the non-feature displaying characteristics of hematite. 

Hence, it can be concluded that when, two absorption features displaying NIR-active minerals 

occur alongside one another in vertical association, the resultant contact spectrum will or is 

likely to display absorption features corresponding to both minerals. 

Figure 7 also showed calcite spectra displaying features corresponding to the NIR line scanner 

belt. The penetration of NIR radiation beyond 0.7 cm reveals that the depth of NIR penetration 

of a mineral or sample depends on its opacity and can range up to several millimetres. Thus, 

confirming findings reported by Iyakwari et al. (2013).  

Hence, when processing ores consisting of large mineral grains, spectra are likely to display 

boundary effects. Therefore, further crushing will be required to liberate individual minerals. 

The degree of liberation will depend on the mineral particle size of the ore and NIR spectrum 

dimension. Consequently, for classification purposes, if the boundary spectrum reveals features 

of one mineral relative to the other, classification can be achieved. This is true for mixtures 

with hematite (Figures 4, 5, and 6), since the absorption features of the other minerals in the 

boundary spectrum are not visible. The boundary spectrum can be assigned to the minerals 

showing features or dominance in concentration (i.e. calcite and muscovite (Figure 4), hematite 

(Figure 5), and malachite (Figure 6) respectively). For mixtures of calcite and malachite (Figure 

7), a boundary spectrum only allows identification of the minerals in concentration, since both 

minerals show their features side-by-side (spectrally mixed). Therefore, classification or 

discrimination will not be achieved, unless the sample is further crushed to liberate the 

individual minerals. Where the degree of spectral mixing is high, across all spectra of a particle, 

liberation may not achieve better resolution, hence NIR may not be applicable for 

preconcentrating such ores as valuable materials are likely to be lost as waste.  
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Also, comparison of Figure 4 with Figures 5, 6 and 7 indicated that the powdered sample 

displayed higher reflectance than the solids. This confirms finding by Clark (1999), who stated 

that larger particles have a greater internal path where photons may be absorbed. Hence, due 

to multiple scattering in the NIR region, the powdered samples reflected more light, while the 

solids absorbed more. 

When making decisions relating to mineral identification and/or ore preconcentration, use of 

wavelengths close to feature(s) associated with the belt should be avoided. 

3.2. Parallel alignment 
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Figure 8. NIR spectra of chrysocolla and hematite parallel alignment (A) chrysocolla- 

               hematite and (B) hematite-chrysocolla. including  reference spectra 
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Figure 9. NIR spectra of Malachite and hematite parallel alignment (A) malachite-hematite  

               and (B) hematite-malachite, including  reference spectra 
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Figure 10. NIR spectra of chrysocolla and calcite parallel alignment (A) calcite- chrysocolla                      

                 and (B) chrysocolla-calcite, including reference spectra. 

 

Analysis revealed that for each mixture, spectra dominance was dependent on the constituent 

minerals. Spectral analysis of mixtures involving chrysocolla (Figures 8 and 10) revealed that 

the chrysocolla feature near 2270 nm appeared broad and lacking a defined absorption centre. 

Other chrysocolla features (1415 and 1915 nm) were visible in spectra when chrysocolla was 

positioned above the other mineral (Figures 8a and 10b). For mixtures involving hematite 

(Figures 8 and 9), hematite dominated spectra when first encountered by NIR. The same can 

also be said of malachite, which dominated spectra when first encountered. For mixtures of 

calcite and chrysocolla where calcite is positioned above chrysocolla, spectra appeared mixed 

displaying features of both minerals and also revealing features relating to the NIR belt (Figure 

10). 

With the exception of calcite-chrysocolla mixtures, minerals positioned above the other 

dominated spectra, with little or no trace of the second mineral’s absorption features in the 

resultant spectra. Therefore, though both minerals appeared along the same spectrum width, 

the first (top) mineral is more in contact and accessible to the NIR radiation, thereby dominating 

the spectra, while the mineral underneath it is more or less invisible. Hence, dominance in such 

situations is position or exposure dependent. With respect to above, the samples although 

optically separated do not experience boundary effect as was observed in the perpendicularly 

aligned sample. 

4. Conclusion 

Establishing the presence of diagnostic features at specific wavelengths positions of individual 

NIR-active minerals in an ore is essential in scoping efficient NIR application for ore 
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preconcentration. Depending on the NIR-active minerals in concentration and type of 

arrangement, spectral dominance may depend on: (a) individual mineral NIR sensitivity and or 

(b) mineral position (arrangement) or exposure along the line of view of the line scanner. NIR 

radiation penetration of calcite particle confirmed the depth of NIR penetration to be mineral 

opacity dependent. 
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