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Abstract: Fluorescence microscopy is widely used in biological imaging, however scattering 
from tissues strongly limits its applicability to a shallow depth. In this work we adapt a 
methodology inspired from stellar speckle interferometry, and exploit the optical memory 
effect to enable fluorescence microscopy through a turbid layer. We demonstrate efficient 
reconstruction of micrometer-size fluorescent objects behind a scattering medium in epi-
microscopy, and study the specificities of this imaging modality (magnification, field of view, 
resolution) as compared to traditional microscopy. Using a modified phase retrieval algorithm 
to reconstruct fluorescent objects from speckle images, we demonstrate robust reconstructions 
even in relatively low signal to noise conditions. This modality is particularly appropriate for 
imaging in biological media, which are known to exhibit relatively large optical memory 
ranges compatible with tens of micrometers size field of views, and large spectral bandwidths 
compatible with emission fluorescence spectra of tens of nanometers widths. 
© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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Scattering in heterogeneous disordered media scrambles light, blurring any image to the point 
of uselessness. One can recover a sharp image by rejecting the scattered light [1,2] but the 
amount of viable signal decreases exponentially with the optical density, making this 
approach only viable for thin or semitransparent systems. This is particularly problematic for 
epi-fluorescence imaging in biological tissues, where scattering often prevents imaging 
beyond a shallow depth [3]. A common approach to this problem is the use of adaptive optics, 
where a “guide star” close to the object to be imaged is used to fully characterize the point 
spread function (PSF) of the imaging process due to scattering, which is then corrected 
for [4]. But, as adaptive optics essentially corrects for ballistic light, it is unable to retrieve an 
image when the scattering is strong enough to generate a fully developed speckle pattern [5]. 
If the scattering medium can be fully characterized beforehand the light scrambling can be 
inverted and a sharp image recovered [6–8], however this requires accessing both sides of the 
medium, which is almost never met in fluorescence microscopy experiments with biological 
samples. 

It has been recently realized that even though a speckle pattern appears to be spatially 
random, it exhibits correlation properties with respect to the angle of illumination of the 
scattering medium. This optical memory effect has been exploited to retrieve the image of a 



fluorescent object behind a completely opaque scattering layer [9,10]. The object’s 
autocorrelation was obtained scanning the angle of incidence of an excitation beam and 
measuring the total fluorescence that managed to pass through the scattering layer. The 
autocorrelation was then inverted using an iterative algorithm [11] to yield an image of the 
object. Subsequently it has been realized that, provided that the light is temporally coherent 
and spatially incoherent, the lengthy pump scanning is unnecessary and the measurement can 
be done in a single shot [12]. Furthermore, other types of image reconstruction through a 
scattering medium have been developed based on coherent digital holography [13], and other 
forms of speckle correlation were described and exploited for imaging, including 
fluorescence [14,15]. All those demonstrations have however relied on high power lasers 
combined with narrow band detected spectral profiles to ensure high signal to noise (SNR) 
and temporal coherence conditions. In addition, a transmission geometry was used to ensure a 
better control of the object illumination homogeneity. These experimental conditions are 
however not compatible with epi-fluorescence microscopy, which is found in the majority of 
applications to biology and medical sciences. 

In this work we show that micrometer-scale fluorescent objects hidden behind a scattering 
layer can be imaged non-invasively in a regular inverted wide-field microscope with single 
shot acquisition. The use of a microscope objective allows for efficient detection of the 
scattered light up to hundreds of micrometers away from the scattering medium and 
guarantees sufficient sampling on the camera. The optical diffuser used as a scattering 
medium in this work exhibits spectral properties which resemble those of biological samples 
of thicknesses below a millimeter, as frequently used in fluorescence microscopy. In this 
regime, we show the possibility to enhance signal to noise conditions of fluorescence imaging 
by increasing the measured spectral bandwidth, benefiting from the large spectral bandwidth 
of the medium, which is defined as the spectral range over which the detected speckle doesn’t 
change significantly. Finally, we present a novel combination of Fienup-type algorithms that 
is computational efficient and stable at fairly low signal-to-noise ratios, which is critical to 
make this technique practical under common laboratory conditions. 

Materials and methods 

The experiments were conducted using a regular inverted microscope (Axio Observer.D1, 
Carl Zeiss AG) with a continuous wave diode-pumped solid state laser (532-DPSS, Viasho) 
as excitation light source that emits light at a wavelength of 532 nm (Fig. 1(a)). The laser 
beam was expanded to a diameter of 4 mm by a Galilean beam expander with a magnification 
of 2.5. Typically, excitation laser powers between 1 to 25mW were chosen at the ground glass 
diffuser, depending on the efficiency of the fluorescence object observed. A 565LP dichroic 
mirror served to separate excitation from emission light. A 10x/NA=0.25 objective (Olympus 
Plan N) was used to excite the fluorophores and to collect the fluorescence emission. 
Different fluorescent samples were used. In a first type, orange fluorescent beads 
(FluoSpheres™, 1.0 µm, Thermo Fisher Scientific Inc.) were deposited on a glass coverslip 
and imaged using a 590/10 bandpass emission filter. For controlled shapes of smaller sizes, 
regular micrometric scale structures were made by depositing and cross-linking quantum dots 
coated with an organic coating (Qdot™ 705 ITK™, Thermo Fisher Scientific Inc.), where 
ion-beam scanning assisted cross-linking was used to generate well-controlled patterns. QD 
emission was observed through a 700/10 bandpass filter, unless indicated otherwise. A 
600grit ground glass diffuser (Thorlabs) served as the scattering medium. The scattered 
fluorescence emission was detected by a scientific CMOS camera (Zyla 4.2 PLUS sCMOS, 
Andor Technology Ltd.) with a dynamic range of 16 bits. Integration times were adapted to 
make use of the full dynamic range of the camera. In some experiments a bandpass filter was 
used to control the spectral bandwidth (i.e the temporal coherence) of the light reaching the 
camera sensor. Both the distance from the object to the diffuser and from the diffuser to the 



objective focal plane were controlled by translation stages (Fig. 1(b)). The set-up used in this 
work allowed imaging the object in situ before insertion of the diffuser, permitting a direct 
comparison of the actual object fluorescence pattern with the reconstructed object 
fluorescence. An example of such an object, made of fluorescent beads, is shown in Fig. 1(c). 
The pattern exhibits fine details in the micrometer range and a spatial complexity not unlike 
the distributions observed in fluorescently stained biological cells and tissues. 

Principle of the image retrieval 

A scattering medium scrambles light, but does not completely inhibit light propagation. In the 
strongly scattering (diffusive) regime, the amount of light transmitted through a disordered 
layer decreases linearly with the optical density [16], but a fraction of the initial power is 
available to excite a fluorescent object. If the fluorescent light has sufficient temporal 
coherence, which degree can be controlled by reducing the spectral bandwidth of the emitted 
light, the fraction that crosses the scattering layer and the bandpass filter will form a speckle 
pattern [5]. However, as the fluorescent light is spatially incoherent, the speckle patterns 
originating from different points in the sample will sum incoherently. If the sample fits within 
the angular optical memory effect range [6,17] of the scattering layers, all the speckle patterns 
from different points are the same, and the intensity pattern I we can measure is the 
convolution (indicated with ∗ ) between the object O and the (speckle) point spread function 
S [12]: 

 ( ) ( )I O S O x S x x dxδ= ∗ = − . (1) 

By computing the autocorrelation (indicated with ⊗ ) of the measured intensity pattern we 
can separate the contribution of the speckle from the object [9]: 

 [ ] [ ]I I O O S S O O⊗ = ⊗ ∗ ⊗ ≅ ⊗ . (2) 

The autocorrelation of the object can be numerically inverted using an iterative algorithm [11] 
to yield a high resolution image [9,12]. 

Image processing 

The recorded raw images were normalized by a Gaussian low-pass filtered version of itself to 
flatten the intensity envelope which results from the scattering process (Fig. 1(d)). The low-
pass filter has to be adapted to the object’s dimensions that can be estimated by the size of the 
autocorrelation (Fig. 1(e)). Subsequently, the autocorrelation image was offset corrected by 
subtracting its minimum value. A cosine window was chosen to cut the outer parts of the 
autocorrelation that contain only information on the residual noise due to an incomplete 
averaging of the speckle (Fig. 1(e)). According to the Wiener-Khinchin theorem, the 
autocorrelation of a signal represents its power spectrum. Therefore, the Fourier transform of 
the autocorrelation gives the modulus of the object’s Fourier transform, 

 { } { }H F O F I I= = ⊗ . (3) 

Thus, the retrieval of the correct phase in the Fourier domain will lead to the reconstruction of 
the object which was hidden behind the scattering medium. 

In order to restore the phase in the Fourier domain, we implemented a combination of 
Fienup’s error reduction algorithm (ER) [11] and of a modified hybrid-input output algorithm 
(HIO), explained below. We refer to it in what follows as ping-pong algorithm, which in 
software development commonly refers to algorithms that alternate between two strategies. 
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minor distortions, due to the thin diffuser. This better fidelity to the object in the retrieved 
image is explained by the so-called shower curtain effect  [23,24]. When the object was 
positioned at 2 mm (Fig. 3(b)) from the diffuser surface, the speckle recorded showed about 5 
times lower intensity than for distances of 0.8 mm (Fig. 3(c)) and 0.4 mm (Fig. 3(d)). 
Increasing the input laser power or the camera acquisition times could be used to adapt the 
signal to noise ratio obtained, however an increase in input power was seen to generate visible 
auto-fluorescence from the scattering medium, which severely deteriorated the image contrast 
and made object reconstructions impossible. 

Fig. 3(d) shows that, when the object is too close to the scattering layer and thus does not 
fit completely within the memory effect range, the edges of the object are not reconstructed, 
showing the presence of a finite field of view [12,25].  

As the optical memory effect has a purely geometrical interpretation, for diffusive media 
its range depends only on the sample thickness. This is not true for optical diffusers, where 
light is on average only scattered once. We have estimated the angular memory effect of the 
ground glass diffuser used in this work by shifting the diffuser over a few hundred 
micrometers, fixing the object position (Appendix A.3). A minimum angle of 8.3˚ was 
obtained, meaning that a compromise of object size O and its distance from the diffuser z 
(here O/z <~ 0.15), determines whether or not the object can be reconstructed, which is 
consistent with the distances observed in Fig. 3. Note that the obtained value is not far from 
that obtained in biological samples, which exhibit anisotropic scattering [12,25]. In fact the 
presence of a significant amount of forward scattering, common in many biological tissues, 
increases the memory effect range compared with the purely isotropic scattering case, which 
allows the observation of biological objects such as cells. 

Another specificity of the epi-geometry studied here is that the object is itself illuminated 
by a speckle, which might lead to artificial granularity in the reconstruction. At large 
distances z, the average excitation speckle grain size is δexc = z·λ/D, where λ is the excitation 
wavelength and D is the diameter of the illuminated area on the diffuser. At distances z of a 
few hundreds of micrometers, the speckle is however not yet fully developed, which leads to 
a quite uniform illumination of the object. Breaking the coherence of the excitation light 
source would guarantee an even more uniform illumination of the object. Those results show 
that ultimately, the use of a thick scattering medium such as a biological tissue could be 
appropriate to image fluorescence labels buried inside at millimetric distances. 

Effect of the diffuser-objective distance on the imaging magnification 

In previously published experiments, the scattered light was detected at very large distances 
with a pinhole at the back of the scattering medium to ensure that the detected incoherent sum 
of speckles were correlated, placing the image plane in the far field to guarantee sufficient 
sampling and use the entire camera detection area [26,27]. Those geometries could only be 
used with high power laser sources, low numerical apertures and transmission objects. 

Imaging micrometric scale fluorescent objects requires efficient light collection and 
magnifying lenses. Setting the focal plane of the objective close to the diffuser ensures an 
efficient fluorescence light collection (Fig. 4). The imaging magnification is however not 
anymore that of the objective, but must account for the scattering medium, which can be 
regarded as a lens [6] with a magnification of Mscatt = z’/z. Thus multiplication with the 
objective magnification Mobj gives the total magnification of the system Msys = z’/z · Mobj 
which determines the size of the image on the camera. Fig. 4 shows a fluorescent object of 
about 100 μm size, made of 1 μm fluorescent beads placed 2 mm away from the diffuser. The 
reconstructed object size grows as predicted with distance z’, as a result of the magnification 
of the “scattering lens”. Interestingly, small diffuser-camera distances of z’=150 μm already 



allow proper 
Fraunhofer re
z’ can howev
z’=600 μm). 

Fig. 4
the di
fluore
image
μm. (d
scatte
sampl
pixels
The au

For distan
where parts o
plane is move
the formed s
integration tim

At last, t
resolution of 
size in the ob
numerical ape
leads to better

Effect of the

In an epi dete
simultaneousl
field of view
magnification
medium and t

For the de
camera detect
2(c),(d) where

Imaging cha

reconstruction
egime. This sit
er be of intere

4. Normalized scat
iffuser, z’ = 150

escent object. The
ed without diffuse
d), (f) and (h) sho
red light detectio
ling of the total o
s on the camera. E
utocorrelation bas

nces greater tha
of the object ar
ed away from 
peckle, leadin

mes are require

the combinatio
the optical ima

bject space, con
erture. Increasi
r sampling. 

e objective m

ction scheme, 
ly. Therefore, 

w (FOV) of the
n objectives dec
therefore the ex
etection FOV, 
tion area and 
e the scattered 

aracteristics

n, even though
tuation also en
st for a better 

ttered light image 
0, 300 and 600 μ
e dashed line repr
r. (c), (e) and (g) 

ow the reconstruct
on, using the sca
object size along t
Excitation power o
ed ping-pong algo

an 600 μm, the 
e already miss
the diffuser, th

ng to a loss of
ed to compensa

on of objectiv
aging method 
nvolved by the
ing the distanc

magnification

the objective a
the choice of

e collected sca
crease the beam
xcitation area o
choosing a hi
higher samplin
light recorded 

 

h the regime o
nsures high spe
sampling of th

with the focal pla
μm. (a) Scheme o
resents the focal 
show the normali

tion of the object. 
attering lens mag
the horizontal dire
on the diffuser wa
orithm is used for a

reconstruction
sing. This is du
he more the sc
f contrast. Mo
ate for the lowe

ve and scatte
used here. It is
e objective opt
ce z’ thus does

n 

always influenc
f magnification
attered light, b
m diameter of t
of fluorescence
gher magnifica
ng of the ima
with a 10x obj

of propagation
eckle contrast. 
he image (see f

ane at three differe
of excitation and
plane of the obje

ized scattered ligh
 Scale bars: 40 μm
gnification Mscat
ection is 34 (c), 6
as 1 mW, integrat
all recontructions.

n failed, as can
ue to the fact th
cattered object 
oreover at larg
er light flux. 

ering medium 
s primarily fix
tical resolution
s not modify th

ces light excita
n of the objec
but also the e
the illuminatio
e objects placed
ation leads to 

aged speckle, a
jective does no

n is not yet a 
Using longer 

for instance Fi

ent distances from
d emission of the
ective. (b) Object
ht. Scale bars: 100
m (in the plane of
tt, see text). The
69 (e) and 138 (g)
tion time was 1 s

n be seen for z’
hat the further 
replicas overla

ge z’ distance

ultimately dr
xed by the spec
n, which depen
he global resol

ation and light 
ctive will influ
excitation FOV
on area on the s
d close to the d
an extended u

as can be seen
ot fill the came

far field 
distances 

ig. 4(h) at 

 
m 
e 
t 
0 
f 
e 
) 
. 

’=600 μm 
the focal 

ap within 
es, longer 

rives the 
ckle grain 
nds on its 
lution but 

detection 
uence the 
V. Higher 
scattering 
diffuser. 
use of the 
n in Figs. 
era chip. 



 

The results ab
by the presenc
optics (object
spatial resolu
scattering me
scattering lay
assuming tha
necessary for 

Effect of the

In order for a 
degree of spa
coherence is d
to obtain Eqs
detected light
patterns, whic
The frequenc
bandwidth of
closely related

Fig. 5
image
bandp
a 60 n
in (a) 
times 
Appen

Fig. 5(c)-(
with large sp
emission band
spectral bandw
background o
from the diffu

bove show tha
ce of the scatte
tive and tube le
ution. Instead, 
edium, the mag
yer, and the re
at the detectio
a high quality 

e emission s

light source to
tial and tempo
determined by 
s. (1) and (2).
t. Wavelengths
ch will average
cy range that 
f the medium 
d to the long ra

5. Fluorescent obje
ed without diffuse
pass filter 632-1 nm
nm bandpass detec

and 40 μm in (c
from (c)-(d) of 3

ndix A1) and ping

(f) shows the r
ectral emission
dwidths. The r
widths up to 4

observed in the
user and not to 

at the character
ering medium d
ens) in particul

the field of 
gnification by 
esolution by t
on numerical 
reconstruction

spectral band

o produce a co
oral coherence.

the size and s
. Temporal co
s that are too f
e out reducing t

will produce
[5,28]. It infl

ange correlatio

ect reconstructions
er. (b) Emission 
m (c), 590-10 nm (
ction accounting fo
) to (f). Excitation
0 s, 1.5 s, 5 s and

g-pong algorithm w

reconstruction 
n (Fig. 5(b)), p
reconstructions
40 nm, with sli
e middle of the 

the bandwidth

ristics of the n
differs significa
ar no longer fi
view is gove
the distances b

the speckle gr
aperture is la

n.  

dwidth. 

ntrasted speck
 As we are wo

shape of the ob
oherence depen
far apart will g
the contrast an
e the same s
uences the m
ns of the mediu

 

s with different em
spectrum of oran
(d), 692-40 nm (e)
or the dichroic mir
n power on the d
d 0.2 s respectivel
were used for all re

of an object m
placed behind 
s were seen to
ight degradatio
object is attrib

hs used). 

new imaging co
antly from the 
ix the field of v
erned by the
between objec

rain size (whic
arge enough to

kle pattern, it n
orking with flu
bject itself. We
nds on the spe
generate comp
nd eventually w
speckle pattern

measured speck
um [30]. 

mission filter band
nge red beads. Re
) and a 550 long p
rror used) (f). Scal
diffuser was 1 mW
ly. Fourier Domai
econstructions. 

made of fluores
a diffuser, for

o be unaffected
on at 60 nm ba
buted to remai

onfiguration in
rules of ray op

view, magnific
memory effec

ct/image plane
ch lower limit
o resolve it, 

needs to have b
uorescent objec
e explicitly use
ectra bandwid

pletely differen
washing out any
n defines the

kle contrast [29

 
dwidths. (a) Object
econstruction with
pass filter (creating
le bars are 300 μm

W with integration
in Smoothing (see

scence beads (F
r different fluo
d by an increa
andwidth (note
ining backgrou

ntroduced 
ptics. The 
cation and 
ct of the 
s and the 
t is λ/2), 
which is 

both some 
cts spatial 
e this fact 
dth of the 
nt speckle 
y feature. 

e spectral 
9] and is 

t 
h 
g 

m 
n 
e 

Fig. 5(a)) 
orescence 
ase of the 
e that the 

und signal 



This result shows that large spectral bandwidths can be used in imaging behind a diffuser, 
ultimately enabling high photon flux to be recorded with optimal detection of the whole 
fluorescence spectrum of molecules. Note that spectral bandwidths of similar magnitudes 
have been observed in biological tissues [12]. This possibility is particularly important for 
future investigations using molecules of lower brightness or lower density than in the 
fluorescence beads demonstrated here. In the present work, auto-fluorescence background 
from the diffuser prevented to study such conditions, which can be reached by shifting the 
working wavelength more towards the red for instance. 

Conclusion 

We have shown how to reconstruct micrometer sized fluorescent objects through scattering 
media from a single intensity image of scattered light in a regular wide-field inverted 
microscope. First of all, collecting the scattered light close to the scattering medium, e.g. in 
the Fresnel zone, gives to the speckle images a high contrast that is appropriate for high 
quality reconstruction, in particular for the observation of complex objects. Interestingly in 
this regime, objects of various complexity could be satisfactorily reconstructed (Appendix 
A.4), including model objects similar to studied previously [12]. Second, both objective 
magnification and diffuser to objective distance govern the magnification of the 
reconstruction and efficient light harvesting. Third, we have shown that in the context of 
biological samples investigations, taking advantage of the full emission bandwidth of 
fluorophores enhances the signal to noise ratio, which is crucial for the detection of 
micrometer sized objects and low power excitations. Together with a new combination of 
classical Fienup type phase retrieval algorithms that is computationally less heavy and turns 
out to be more robust in low SNR conditions, it is a step towards fluorescence bio-imaging 
through scattering samples. Future combination of the presented approaches with a guide star 
in the object space [8,31] or with a phase diversity approach [32] could also allow for 
deconvolution, depth-resolved fluorescence imaging. 
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APPENDIX A 

A.1. Comparison of phase retrieval algorithms and image manipulation techniques in 
low signal-to-noise conditions 

Fluorescence imaging can lead to loss of signal-to-noise ratio in conditions where the emitter 
is of low efficiency, or when using highly scattering media, which reduce both excitation and 
emission fluencies. For a comparison of the performance of algorithms under increasing noise 
conditions, it is necessary to introduce a metric that represents the quality of the reconstructed 
object. The error of the modulus in the Fourier domain is not a reliable metric because there 
are multiple solutions in the object domain that match the single intensity pattern in the 
Fourier domain. In the case of a priori knowledge of the object, the object itself can serve as a 
comparison. Therefore, we introduce the normalized cross correlation between the 
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