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Abstract Habitat loss is one of the main threats to wildlife, particularly large mammals. 
Estimating the potential distribution of threatened species to guide surveys and 
conservation is crucial, primarily because such species tend to exist in small fragmented 
populations. The Endangered huemul deer Hippocamelus bisulcus is endemic to the 
southern Andes of Chile and Argentina. Although the species occurs in the Valdivian 
Ecoregion, a hotspot for biodiversity, we have no information on its occupancy and 
potential distribution in this region. We built and compared species distribution models for 
huemul using the maximum entropy approach, using 258 presence records and sets of 
bioclimatic and geographical variables as predictors, with the objective of assessing the 
potential distribution of the species in the Valdivian Ecoregion. Annual temperature range 
and summer precipitation were the predictive variables with the greatest influence in the 
best-fitting model. Approximately 12,360 km2 of the study area was identified as suitable 
habitat for the huemul, of which 30% is included in the national protected area systems of 
Chile and Argentina. The map of potential distribution produced by our model will 
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facilitate prioritization of future survey efforts in other remote and unexplored areas in 
which huemul have not been recorded since the 1980s, but where there is a high probability 
of their occurrence. 
Keywords Andes, Argentina, Chile, Hippocamelus bisulcus, huemul, MaxEnt, potential 
distribution, species distribution model 
 

Introduction 
Conservation planning and forecasting rely on detailed knowledge of the ecological and 
geographical distribution of species. Species distribution models provide detailed 
predictions about the potential distribution of species by relating presence records to 
relevant environmental factors (Elith et al., 2011; Phillips et al., 2006; Jetz et al., 2012). 
If implemented accurately species distribution models are a powerful and repeatable means 
of mapping the potential distribution of species (Wintle et al., 2005). Models based on 
bioclimatic variables at macro scales have proven successful in predicting known 
distributions, and refined algorithms perform well with presence-only data and a limited 
number of localities (Elith & Leathwick, 2009). A major goal of species distribution 
models is to predict which areas within a region meet the characteristics of a species’ 
ecological niche, which is part of the species’ potential distribution (Anderson & Martínez-
Meyer, 2004). In this context, MaxEnt, a machine-learning algorithm based on the 
maximum entropy theory, has been shown to outperform alternative presence-only models 
when sample sizes are small (Austin, 2007; Baldwin, 2009) and organisms have a restricted 
range (Elith et al., 2011). MaxEnt is particularly flexible in fitting complex responses: it 
estimates the target probability distribution of maximum entropy subject to a set of 
constraints, which imply the expected value for each feature matching their empirical 
means represented by real-value variables (Phillips et al., 2006). We used the MaxEnt 
algorithm to build a bioclimatic distribution model for the Endangered huemul 
Hippocamelus bisulcus (Jiménez et al., 2008), which is endemic to the southern Andes of 
Chile and Argentina, and the most threatened of South America’s 15 deer species (IUCN, 
2013). This medium-sized deer is the only large herbivore inhabiting Patagonian forests. 
Although it inhabits a variety of environments, from mountain ranges >░2 500 m (Povilitis, 
1986) to periglacial valleys at sea level in the Patagonian fjords (Frid, 2001), its primary 
habitat is montane forest dominated by Nothofagus spp. on Andean slopes. The huemul 
population has declined by 99%, and its distribution by 50%, since the arrival of European 
settlers during the 19th century (Redford & Eisenberg, 1992; Vila et al., 2006). 
Habitat loss through conversion of native forest into farmland, disease transmission (Corti 
et al., 2013), and competition with domestic livestock (Frid, 2001; Vila et al., 2009), 
poaching, the introduction of exotic species, and predation by roaming dogs (Corti et al., 
2010), are assumed to be the main causes of the huemul's population decline. Additionally, 
Wittmer et al. (2013) suggested that natural predators, such as pumas (Puma concolor) and 
culpeo foxes (Lycalopex culpaeus), in areas with abundant alternative prey might also, at 
least locally, be an important cause of huemul decline. Furthermore, the lack of 
connectivity among the remaining small populations is considered one of the main threats 
to the species, with the potential risk of inbreeding and possible potential local extinctions 
(Corti et al., 2011). 
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Although there has been research and conservation directed at the huemul since1970s 
reliable information on the species’ population status and trends is still limited. Chile and 
Argentina have national conservation plans for the species (Plan de Conservación y 
Recuperación del Huemul (Hippocamelus bisulcus) en Argentina, 2002; CONAF, SAG, 
CONAMA, 2009), which reflect both countries’ efforts to coordinate conservation 
measures and suggest areas for further research. Nevertheless, population-monitoring 
efforts often have had shortcomings in terms of funding, and lack of staff and methodology. 
This is primarily because intrinsic biological characteristics of the species and difficult 
access to its habitat make field surveys a complex enterprise, and so monitoring programs 
often fail (Wittmer et al., 2010). Post-glacial recolonisation of the huemul’s northern 
distribution range probably occurred from multiple refugia in the north-east Patagonian 
region, in what is now Los Alerces National Park in Argentina, and surrounding areas 
(Marín et al., 2013). The remnant population in Nevados de Chillán, the northernmost 
extant huemul population, may have been derived from those geographically closest refugia 
in the North Patagonia region. In this area, huemul inhabit the Valdivian Ecoregion (Vila et 
al., 2010), a Global 200 Ecoregion (Olson, 1998; Lara et al., 2009). Argentina’s National 
Park Administration has systematically recorded direct and indirect signs of huemul 
presence within and around protected areas since 1960 (H. Pastore, pers. obs.). However, 
for neighbouring districts in Chile there is little information about huemul presence, 
although the species is likely to occupy similar habitat types to those in Argentina. 
To build a species distribution model for the Valdivian Ecoregion we used data from areas 
where huemul are known to occur there (Marín et al., 2013), and projected the model 
predictions northwards to areas where huemul have not been recorded in recent decades. 
We were thus able to identify potential distribution areas between the known northern 
Patagonian populations and a small remnant population in the northernmost distribution 
range, 400 km apart. The results facilitate identification of existing and potential biological 
corridors between protected areas and areas prioritized for landscape conservation, through 
which huemul dispersal could occur. 
 
Study area 
The study was conducted in the central part of the current huemul distribution (×Fig. 1; 
between 37°S and 44°S[So the whole study area is not shown in Fig. 1?]), where the 
species’ historical habitat is characterized by the Valdivian Rainforest. The Valdivian 
Ecoregion covers c. 155,000 km2, overlapping part of the southern Andes of Argentina and 
Chile (WWF, 2012). Predominant forest types are evergreen, southern beech and cypress 
forests. The ecotones are dominated by grasses and shrubs, such as Embothrium sp., 
Maytenus sp., Chiliotrichum sp., Pernettya sp., Berberis spp., Escallonia sp. and Empetrum 
sp. The area is characterized by steep slopes, with elevations of 20−2,500 m. 
 
Methods 
Presence data and predictor variables 
The initial presence data set included 661 records. The National Park Administration in 
Argentina provided data from their database of huemul presence, which contained 600 
records collected during1960−2012 in four protected areas in Argentina: Los Alerces and 
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Lago Puelo National Parks and neighbouring provincial protected areas (Fig. 1). To these 
data, we added 32 presence records from outside the protected areas also from the National 
Park Administration (Fig. 1). Most of the presence records in the National Park 
Administration's database were from Los Alerces National Park (442 records), where the 
Park Administration has conducted a huemul monitoring programme since 2001. This 
programme is based on six established transects that are surveyed annually during the 
southern spring and autumn. The database includes both direct sightings and indirect signs, 
such as footprints and faeces, identified by experienced park rangers. Additionally, during 
the summer (January−March) of 2012 we made 29 new observations in the same National 
Parks in Argentina (Los Alerces, n = 8; Lago Puelo, n = 12), and in the Futaleufú National 
Reserve in Chile (n = 9; Fig. 1), mainly footprints and faeces but also observation of five 
huemul in Futaleufú.  
We used ArcGIS v. 9.3 (ESRI, Redlands, USA) to visualize the spatial distribution of 
huemul observations and their relation to landscape features (lakes, rivers, roads) and 
topography (elevation, slope). Presence data are more likely to be recorded near roads 
because these areas are more accessible to observers, and therefore we deleted from the 
database records that were linearly clustered along roads, to minimize sample bias in 
presence data and to maintain spatial independence among observation points. Thus our 
dataset was reduced from 661 to 396 records. To prevent spatial autocorrelation, MaxEnt 
retains only one presence record per 1 km2 cell (Tognelli et al., 2011). This further reduced 
the number of records to 258, of which 194 (75%) were used to build and train the models 
and 64 to validate them. 
We consider potential predictor variables to be all environmental variables that could 
potentially influence the species and therefore can be used to predict its potential 
distribution. The modelling is based on the assumption that the probability of huemul 
presence is related to the combination, and attempts to identify the most relevant predictor 
variables and generate the best possible predictive model. 
We used global datasets from open-access sources of bioclimatic, vegetation and 
topographical variables: (1) eighteen variables from the WorldClim database of interpolated 
climate surfaces at 1 km resolution, derived from monthly temperature and rainfall values 
(this database uses only climate databases with at least 10 years of data, and provides mean 
values for 1960–1990; Hijmans et al., 2005); (2) the vegetation variable from the Global 
Land Cover 2000 Project (GLC2000) at 1 km resolution, providing information about 
croplands, vegetation types, water bodies, artificial surfaces, bare areas and permanent 
snow and ice, using satellite images from 2009 (Bartholomé & Belward, 2005); and (3) 
slope and elevation variables from the Shuttle Radar Topography Mission at 90 m 
resolution (Farr et al., 2007). All layers were set to a common scale using ArcGIS, to 
ensure congruence of all input data (Hu & Jiang, 2010; Marino et al., 2011). 
Using ArcGIS we created a grid of 1 km2 cells (Elith et al., 2011). Using the packages 
psych and GPArotation in R v. 2.15 (R Development Core Team, 2012) we identified those 
variables most strongly associated with the first and second components in a principal 
component analysis that included the 21 predictor variables for the 258 grid cells in which 
huemul were recorded. These two components together accounted for 83% of the variation 
in the 21 predictor variables (×Table 1). 
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Modelling with MaxEnt 
Of the bioclimatic variables that were highly associated with huemul presence (Table 1), 
only those pairs that did not exceed a pairwise Pearson correlation value of 0.70 (results not 
shown; Marino et al., 2011) were retained. Four models were run, with five temperature 
variables, two precipitation variables, vegetation, elevation and slope. 
The four models were fitted with MaxEnt v. 3.3.3 (Phillips et al., 2006) using the following 
settings: regularization multiplier = 1; maximum number of iterations = 1,000; convergence 
threshold = 10–5; maximum number of background points = 10,000; and adjusted sample 
radius = −6. The models were run using auto-features, by which MaxEnt computes the 
default mathematical functions of the environmental features (i.e. linear, quadratic, product, 
threshold and hinge features). To construct a binary map from the MaxEnt outputs (i.e. 
differentiating only suitable from unsuitable cells) we used an equal training sensitivity and 
specificity threshold of P > 0.40 (Jiménez-Valverde & Lobo, 2007; Freeman & Moisen, 
2008). This is a conservative approach that increases the specificity of the model, making 
its predictions more precise. To facilitate interpretation of the model we selected the 
logistic output format, which provides a proxy of probability of presence (Peterson et al., 
2011). Jackknife analyses were carried out on the regularized gain of the training data to 
examine the relative importance of each predictor variable for model performance (Hu & 
Jiang, 2010). The remaining model training parameters were left at their default settings. 
We used the logistic outputs, given as probabilities representing degrees of habitat 
suitability, from 0 = unsuitable to 1 = most suitable habitat (Marino et al., 2011). 
The models were trained in the geographical area where the presence records were 
recorded, and then using the projection tool in MaxEnt their predictions were projected into 
a larger area: approximately 37−44°S and 70−74°W. Test and difference areas under the 
curve were used as performance indicators to select the best-fitt model (Marino et al., 2011; 
Warren & Seifert, 2011). We then used ArcGIS to calculate the potential distribution area 
of this model, and how much of it currently falls within the protected area system in each 
country. The shape files for protected areas were obtained from Protected Planet (Bertzky 
et al., 2012). 
 
Results 
Annual temperature range and precipitation were the predictor variables that contributed 
the most information about huemul distribution to the four models (×Table 2). Summer 
precipitation was second in importance for model 4 (M4) and mean diurnal range for model 
2 (M2). Other temperature variables (i.e. bio1, bio8 and bio10; Table 2) had only limited 
contributions in all models. We will on the predictions of M4 to describe the predicted 
potential distribution of huemul (×Fig. 1) because it had the best performance according to 
the test and various values of area under the curve (Marino et al., 2011; Warren & Seifert, 
2011). Of the potential distribution area in Argentina, c. 40% (2,759 km2) is within the 
protected area system, and in Chile < 25% (1,214 km2) of the potential distribution area is 
in the protected area system. 
The response curves describe the variation of the potential distribution prediction based on 
its dependence on one predictive variable and on the dependencies induced by correlations 
between one variable and the other variables. The predicted potential distribution shows a 



6 

   

 

  

peak at an annual temperature range of c. 22° (bio7; Table 2), decreasing rapidly for larger 
and smaller temperature ranges (×Fig. 2a); the empirical mean of the presence data for this 
variable was 22.19 ± SD 0.7°C (n = 258). In the case of precipitation during the summer 
season (bio 18; Table 2) there is a pronounced peak at c. 120 mm (empirical mean = 128.96 
± SD 23.17 mm; Fig. 2b). The model attributes little importance to vegetation cover 
(gcover: contribution 3.3%; Table 2). However, the model predicted zero probability of 
presence for almost all categories related to wetlands, artificial surfaces and most of the 
forest categories, 35% of the empirical data were located in the vegetation category ‘closed 
to open shrubland’, and the second most frequent category (c. 28%) was the vegetation 
category ‘closed to open broadleaved evergreen or semi-deciduous forest’. Other variables 
had lesser importance for model performance. 
 
Discussion 
Historically, huemul occurred in the Andean Cordillera from the Cachapoal River (c. 34°S) 
southwards to the northern shore of the Magellan Strait (54°S; Cabrera & Yepes, 1960). 
The current known distribution is in two areas separated by c. 400 km. The northern 
population is at Nevados de Chillán (Chile) and the southern is distributed among several 
fragmented areas extending southwards from Nahuel Huapi National Park (Argentina). 
Marín et al. (2013) suggested that the huemul at Nevados de Chillán are genetically derived 
from the Eastern Andes Refugium, in northern Patagonia, from where we collected our 
data. Our results show a wide range of potential distribution within the projection area, 
where there have been no records of huemul presence since the 1980s. The isolation of the 
northern population may imply that other factors are preventing the species from occupying 
the identified potential areas. These factors could include natural and artificial dispersal 
barriers, the distribution of native and exotic predators, and resource competition and 
interaction with domestic and exotic species (e.g. red deer Cervus elaphus; Corti et al., 
2010). Frid (2001) and Briceño et al. (2013) found evidence that huemul modify their 
habitat use when sharing habitat with exotic ungulates. Red deer are known to be present in 
the study area, and probably influence huemul presence (Jaksic, 1998). Nonetheless, we 
limited our analysis to abiotic predictors because of  the complexity of interpreting the 
relative importance of biotic and abiotic factors simultaneously (Guisan & Thuiller, 2005). 
Additionally, georeferenced information about such biotic factors is scarce for the area we 
studied. 
Excluding the presence records linearly clustered along roads improved the predictive 
power of the model. When the whole dataset was used, part of the predicted area of 
potential occupancy comprised water bodies. This is because of the location of the main 
transportation routes, which increases the likelihood of observing huemul, thus biasing the 
analysis. 
The area of potential distribution (P > 0.40) predicted by the best-fitting model (M4) is c. 
12,360 km2, of which 7,000 km2 (57%) is in Argentina and 5,360 km2 (43%) is in Chile. 
Based on our modelling results, potential areas of distribution were found to be restricted to 
the Andes range, as expected, markedly decreasing towards the west, probably because of 
an increase in annual precipitation and humidity, which promotes the growth of dense 
evergreen forest. Towards the east, precipitation decreases gradually, resulting in the arid 
conditions of the Argentinean pampas. In Argentina suitable conditions for huemul exist in 
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the southern part of Neuquén province and southwards. In Chile there is the opposite 
situation: there is little potential area for huemul distribution in the southernmost district 
but it increases towards the north as the administrative borderline between Chile and 
Argentina in this region shifts to the east (Fig. 1). 
The temperature suitability range predicted by our model seems narrow compared to the 
temperature gradients occupied by huemul across their whole range, but this is related to 
the elevation range used by the species in this part of its distribution. This particular 
combination of climatic variables has an indirect effect on huemul distribution, mediated 
through the type of vegetation that exists under these conditions. The dense forest type of 
the Valdivian Ecoregion permits only limited movement of medium to large ungulates, 
such as the huemul; it is the optimal habitat for pudu Pudu puda, a dwarf deer of southern 
South America (Jiménez, 2010). 
Some presence records are from areas categorized by the model as only moderately suitable 
(i.e. some records from Futaleufú National Reserve in Chile, where PQ recorded several 
signs of huemul and directly observed five huemul during this study). This apparent 
incongruence between model predictions and field observations may imply that some 
individuals have dispersed to less suitable areas from more suitable areas nearby.  
However, further research on the dispersal dynamics of huemul populations in these areas 
is needed to confirm this, and would help us to understand the role and importance of 
protecting such moderately suitable areas for huemul conservation. It would also help to 
identify natural corridors between existing protected areas (Gilbert-Norton et al., 2010). 
Temporal differences between field records and environmental variables (especially land 
cover) used in this type of modelling should be as small as possible. However, because 
environmental conditions generally do not change rapidly, several years of difference may 
be acceptable, and historical presence records from museum and species collections may be 
used for species distribution modelling (Elith & Leathwick, 2009). We used the complete 
huemul dataset provided by Argentina’s National Park Administration, because most of the 
presence records were post-1995 (92.9 %) and we assumed that the environmental 
conditions had not changed substantially since then.  
The low predictive performance of vegetation and topographical variables in the model 
may be attributable to the 1 km2 scale used; however, climatic and vegetation variables are 
usually highly correlated (Wintle et al., 2005). In addition, the maps of potential 
distribution predict suitable bioclimatic conditions but they cannot be used to infer causal 
effects of environmental variables on species’ distribution, for which other kinds of data, 
such as telemetry and presence−absence data, and other analytical tools would be needed. 
Parts of the study area located on the watersheds between Chile and Argentina include 
protected areas and potential ecological corridors but are threatened by hydropower 
development projects (Urrutia et al., 2005). We recommend that future surveys in these 
areas use the predicted potential distribution presented here to determine huemul presence; 
our projections will enhance the information available to decision makers when evaluating 
the conservation risks associated with the implementation of energy, infrastructure and 
tourism projects. Conservation planning at a landscape scale should pay special attention to 
potential natural corridors, which connect areas of potential distribution with areas where 
huemul populations are known to exist. A network of public and private protected areas 
interconnected by biological corridors would provide protection and enhance huemul 
dispersal (Corti et al., 2011), although huemul conservation on private properties also faces 
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significant challenges (Wittmer et al., 2014). 
Our best model suggests the potential presence of huemul in areas for which information on 
huemul presence is completely lacking since the 1980s. We recommend investigating 
potentially unrecorded populations and prioritizing survey efforts in these projected areas, 
which would provide an empirical validation of the model (Lobo et al., 2010). We need to 
be cautious, however, when interpreting the model's predictions. This is because of the 
potential for over-prediction, possibly associated with the choice of the projection area and 
with the use of a small part of the huemul’s habitat range for the model calibration (Marino 
et al., 2011). It is also important to train models under various climate change scenarios to 
predict how the potential huemul distribution will be affected by increasing temperatures 
(Rebelo et al., 2010). 
Vila et al. (2006) suggested a greater degree of fragmentation occurred in the Chilean 
portion of the huemul distribution in the Valdivian Ecoregion as a result of human 
disturbance. Accordingly, our results indicate that the proportion of the area potentially 
inhabited by huemul is larger in Argentina for this part of the original huemul distribution 
range. This suggests the need for a binational conservation strategy to coordinate the 
various stakeholders and to ensure that conservation measures will be implemented in both 
public and private protected areas throughout the entire range of the huemul's distribution. 
It is imperative that huemul monitoring in national protected areas continues to verify the 
model predicted distribution and also to plan surveys to check habitat conditions in that 
projected area. 
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TABLE 1 Results of principal component analysis applied to 21 predictor variables for the 
258 1 km2 grid cells in which huemul were recorded (see text for details), with the loading 
of each variable associated with the first three components, the proportion of the variance 
explained by each component, and the cumulative proportion. The highest loading scores 
(in bold) indicate the strongest relationship between variable and component (i.e. most of 
the temperature variables are strongly related to the first component, PC1, and the 
precipitation variables to the second component, PC2).  

Predictor variables 

Principal component 
analysis loadings 

PC1 PC2 PC3 

1. Annual mean temperature (bio1) 0.918 0.312 0.212 

2. Mean diurnal range (bio2) 0.113 −0.291 0.924 

3. Isothermality (bio3) −0.753 0.031 0.472 

4. Temperature seasonality (bio4) 0.270 −0.569 0.735 

5. Max. temperature of warmest month (bio5) 0.882 0.249 0.381 

6. Min. temperature of coldest month (bio6) 0.890 0.409 0.147 

7. Temperature annual range (bio7) 0.460 −0.335 0.797 

8. Mean temperature of winter (bio8) 0.931 0.316 0.129 

9. Mean temperature of summer (bio9) 0.913 0.307 0.214 

10. Mean temperature of summer (bio10) 0.918 0.278 0.256 

11. Mean temperature of winter (bio11) 0.909 0.360 0.170 

12. Annual precipitation (bio12) 0.410 0.892 -0.143 

13. Precipitation of wettest month (bio13) 0.324 0.928 0.015 
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Predictor variables 

Principal component 
analysis loadings 

PC1 PC2 PC3 

14. Precipitation of driest month (bio14) 0.616 0.602 -0.475 

15. Precipitation seasonality (bio15) 0.156 −0.024 0.952 

16. Precipitation of winter (bio16) 0.468 0.875 0.002 

17. Precipitation of summer (bio17) 0.441 0.785 −0.423 

18. Precipitation of summer (bio18) 0.416 0.781 −0.445 

19. Elevation −0.882 −0.305 −0.023 

21. Slope 0.156 −0.024 0.952 

20. Vegetation 0.044 0.137 −0.086 

Proportion of variance  0.54 0.29 0.07 

Cumulative proportion (PC1 + PC2 + PC3) 0.54 0.83 0.90 
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TABLE 2 Percentage contribution of predictor variables to models M1−M4, generated by the 
MaxEnt algorithm, and model performance. Variables that contributed more information, 
or with information not present in other variables, are highlighted in grey. 

 Percentage contribution 

Variables M1 M2 M3 M4 

Temperature 

 Annual mean temperature (bio1) 1.4    

 Mean diurnal range (bio2)  21.7   

 Temperature annual range (bio7) 45.4  43.6 44.6 

 Mean temperature of winter (bio8)  1.8  2.1 

 Mean summer temperature (bio10)   2.7  

Precipitation     

 Annual precipitation (bio12) 40.5 55.8 40  

 Summer precipitation (bio18)    39 

 Elevation (dem) 1.8 3.5 2.1 1.9 

 Slope 8.6 10.1 8.2 9 

 Vegetation (gcover) 3.5 7.2 3.4 3.3 

 

Model performance 

Training AUC 0.897 0.89 0.899 0.897 
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 Percentage contribution 

Variables M1 M2 M3 M4 

Test AUC 0.883 0.883 0.881 0.891 

ΔAUC (AUCtrain—AUCtest) 14 7 18 6 

 
 
FIG. 1 Projected potential distribution of huemul Hippocamelus bisulcus in the Valdivian 
Ecoregion of Chile and Argentina, predicted by species distribution modelling. Each cell 
represents 1 km2. 
Predicted potential distribution 

Highly suitable (60−90%) 

Suitable (40−60%) 

Moderately suitable (10−40%) 
 
 
FIG. 2 Variation in the predicted probability of presence of huemul with (a) temperature 
annual range and (b) summer precipitation.  
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