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Abstract

®

CrossMark

Understanding and harnessing the physics of the dynamic current distribution in parallel
superconducting strips holds the key to creating next generation sensors for single molecule and

single photon detection. Non-uniformity in the current distribution in parallel superconducting strips
leads to low detection efficiency and unstable operation, preventing the scale up to large area sensors.
Recent studies indicate that non-uniform current distributions occurring in parallel strips can be
understood and modeled in the framework of the generalized London model. Here we build on this
important physical insight, investigating an innovative design with integrated superconducting-to-
resistive Joule switches to break the superconducting loops between the strips and thus control the
current dynamics. Employing precision low temperature nano-optical techniques, we map the
uniformity of the current distribution before- and after the resistive strip switching event, confirming
the effectiveness of our design. These results provide important insights for the development of next

generation large area superconducting strip-based sensors.

Keywords: superconducting detectors, superconducting nano-strip, ion detectors, particle

detectors, TOF-MS

(Some figures may appear in colour only in the online journal)

1. Introduction

The interplay between the superconducting state and magnetic
fields is a subtle and challenging problem which has been stu-
died for more than a century. The magnetic penetration depth, A,
is the characteristic length scale over which a magnetic field
penetrates into a superconducting strip and governs the flow and
distribution of current [1]. For ultrathin films, with thickness
d < ) the Pearl effect becomes important and increases the
characteristic length scale to Ap = 2)\,/d [2]. If Ap is compar-
able or smaller than the strip width, the current density will be
strongly non-uniform and will decay towards zero from the edge
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to inner part of the strip, in accordance with the generalized
London model [1]. Recent studies show that non-uniform cur-
rent distribution, in a discrete form, is also observed in blocks of
N parallel connected strips when the total width of the block is
comparable to or greater than Ap [3, 4]. In particular, it has been
observed that a symmetric and non-uniform current distribution
is established stably among the parallel strips just after their
current biasing [3]. Also, temporary switching of individual
strips into the resistive state generates vorticity, that is trapped as
magnetic flux quanta in the superconducting loops of the parallel
strips, in turn changing the non-uniform current distribution [4].
The current non-uniformity strongly degrades the performance
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Figure 1. (a) Sketch of the proposed design for the single strip connected to the constrictions via a superconducting thermal buffer.

(b) Graph showing the I~V characteristic, measured at a temperature of 4.2 K, for the strips having thermal buffer area of 4 x 4 um? (black
triangles), 8 x 8 um2 (green circles) and 10 x 10 um2 (red squares). The inset illustrates the propagation of the normal resistive region in the
thermal buffer when a bias current is in the range Ic ¢ < Iy < Ics. (c) Graph showing the values of the measured /- g (magenta diamonds)
and of the resistances when the strips are biased in the range Icc < Iy < Ic s (blue stars) as the thermal buffer side width varies.

of superconducting strip-based detectors such as super-
conducting strip ion detectors (SSIDs) [5], or superconducting
nanowire single photon detectors (SNSPDs) [6, 7], that use the
parallel design to increase the sensitive area and retain at the
same time their characteristic ultrafast response time [8—10].
The detection efficiency of SSIDs and SNSPDs increases as the
current flowing in the strip rises [11, 12] and middle strips in the
parallel blocks could be not sufficiently biased for efficient
detection [3, 4], reducing the overall efficiency. Also, the non-
uniform current distribution, occurring in the strips after a
detection event [4], could trigger the cascade switch at a current
lower than the threshold with consequent latching [13, 14] and
instability in operation [15, 16]. This explains the poor
improvement observed in the counting efficiency of a 2 x 2
mm? area SSID [17] compared with that of the four-times
smaller sensitive area device of [18, 19]. Therefore, to scale up
the area of SSIDs to the required size of ~cm? and at the same
time retain an ultrafast response time and high counting effi-
ciency [10], it is necessary to understand and control the current
dynamics in the parallel strips. Attempts at implementation of
series resistors to the strips have been made using non super-
conducting elements which require impractical extra fabrication
steps or the use of off-chip components [9, 20].

In this letter, we build on recent insights into the
underlying device physics and propose an innovative design
for breaking the superconducting loops formed from the
parallel strips thus obtaining a uniform current distribution
across them.

2. Superconducting constriction as bi-stable Joule
switch

The main concept proposed here is to connect each super-
conducting strip in series with a superconducting constriction,
or Joule switch, which acts as a current-controlled bi-stable
resistor (figure 1(a)). The constriction has a critical current,

Ic ¢, lower than the critical current of the strip, Ics. In this
way, the resulting I/-V characteristic will show super-
conducting behavior when the bias current Iy < Icc and
above this point the constriction will switch to the normal
resistive state. The Joule heating will create a self-sustained
hotspot in the constriction having a resistance Rc [21] whe-
ther the strip is still superconducting if Icc < Iy < Ics,
mimicking a resistor connected in series with the single strip
[20, 21]. Although is part of the same superconducting thin
film layer, the constriction will interrupt the superconducting
path once biased above Ic . Therefore, identical resistances
will interrupt the superconducting loops formed by parallel
connected strips allowing for a uniform current distribution
according to Ohm’s law. The magnetic field can move
through the loops preventing the non-uniform current dis-
tribution observed in the previous experiments due to the
trapping of magnetic flux and vorticity [3, 4].

Since the constriction dissipates heat during operation we
must distance it thermally from the strip to avoid degrading
Ics. We accomplish this by placing superconducting thermal
buffers between the constriction and the strip (figure 1(a)). In
order to choose the appropriate size for the thermal buffers,
we fabricated several strips connected to a constriction via
superconducting thermal buffers with area varying from
4 x4 ,um2 to 10 x 10 Mmz and measured Ics (see
figure 1(b)). The strips have all width, W = 1 ym and length,
L = 500 pm and the constrictions have all width, w =250 nm
and a length, /=2 um, respectively. The structures were
fabricated by patterning the 40 nm thick superconducting
Nb film by a single electron beam lithography (EBL) and
reactive ion etching (RIE) step. As expected, the value of
Icc ~ 1.6 mA is almost identical whether the values of Ic g
increase with the size of the thermal buffers (figure 1(c)).
From a linear fit of the I-V curves, in the resistive region for
Icc < Iy <lIcgs, it can be also seen that the resistance
decreases when the size of the thermal buffer increases
(figure 1(c)). This means that the resistive region is expanding
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beyond the constriction edge in the thermal buffer, toward the
strips, increasing the local temperature and degrading its Ic s
(see inset figure 1(b)), according to the model of the self-
heating hotspot propagating in a superconducting short bridge
described in [21] for I/n~ 1 and w/n < 0.1-0.2. In the
formula, the thermal healing length is equal to  ~1 pym and it
was obtained by estimating the thermal conductivity of the Nb
thin film K ~ 0.0056 Wem ™' K™' from the Weidmann—
Franz law and using a value of the coefficient heat transfer per
unit are to the substrate o ~ 2 W cm 2 K™ [21, 22]. The
resistive region would extend outside the constriction over a
length of several thermal healing length 7 [21]. We concluded
from the measured relative increases in Ics between the
devices, that a thermal buffer of 20 x 20 um? area should be
sufficiently large to prevent the degradation of I g.

The return current of the strip, i.e. the minimum current
to sustain the resistive state before switching to super-
conducting state, is I s ~ 0.5mA (see figure 1(b)). This
value is larger than the return current of the constriction /e
~ 0.1 mA (not visible on the plot scale). This is in agreement
with the model of [21] which finds I s/lerc = 1 obtained
for //n~ 1 and w/n < 0.1-0.2 as in our case. Moreover, the
part of the I-V curve where the constriction is in the resistive
state is almost linear, i.e. the value of the resistance of the
constriction is not affected by the flowing current when
Icc < Ig. Both these aspects are very important to operate
the strips in the regime where the constriction remain resistive
all the time and the value of the resistance is only slightly
affected from the current dynamics in the strip. The con-
striction behaves as an ideal resistor.

We also note that, for the strip connected to the
10 x 10 umz thermal buffer, the ratio of Ics/Icc = 1.5 (see
inset figure 1(b)) is much lower than the value of the ratio
W/w = 4 as instead expected for a uniform current distribution
in the strip, like in our case where Ap is larger than both W and
w. The observed value of Ics/Icc = 1.5 indicated that the
critical current is not governed by the de-pairing mechanism
[23]. The fact that both the constriction and the strip are made
from the same material with the same thickness and both are
connected to the wider regions with rounded corners of about
50 nm radius (see figure 2(a)) excludes the current crowding
effect [24] from explaining the observed Ic s/Ic c. We note that
this reduced scaling of the critical currents in thin and narrow
Nb strips have been observed previously and attributed to the
phenomenon of vortex penetration [25].

3. Experimental results

Following the previous results, we fabricated a specially-
designed SSID test device and characterized it in terms of -V
characteristics and current distribution dynamics before and
after detection events. The device is based on the same 40 nm
thick Nb thin film used for the fabrication of the previous
devices. The whole structure is defined by single-step EBL
and RIE, and consists of 11 parallel strips. Every strip consists
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Figure 2. (a) Optical microscope image of the tested device (top) and
SEM images at high magnification of the thermal buffers (bottom
left) and nanowire (bottom right). (b) I-V characteristic of the
fabricated device measured in a closed-cycle cryostat at T = 3.7 K.

of a meander with nine segments, each having W = 1 um,
L =90 ym and a spacing of 1 um (figure 2(a)). The mean-
dered parallel strips are spaced by Ax = 3.8 um. On one side
the strips are directly connected to a superconducting bank.
On the other side each strip terminates with a superconducting
thermal buffer having a size of 20 x 20 um? at the end of
which a constriction having width w = 0.2 um and length
[ = 0.8 ym, connects the thermal buffer to another super-
conducting bank (figure 2(a)). In figure 2(b) we show the I-V
characteristic of the fabricated device.

The realized device has a critical current of ["'¢cc =
16.8 mA and I"'cs = 18.3mA at T = 3.7K (figure 2(b)).
The measured value of [''-g is much smaller than the
expected value of about 29 mA. This reduced current may be
due to an overheating effect between the resistive constric-
tions on the same side of the common superconducting bank
that has a width of only 15 yum or could also arise from a
non-uniformity of the strips. Nevertheless, the bias range
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"¢ < Iy < [ g is sufficient to operate the device stably
and to carry out investigations of current distribution.

In this study we employed an optical fiber-coupled
miniature confocal microscope integrated in a closed-cycle
pulse tube refrigerator [26]. The microscope optics are
mounted on X, Y and Z piezoelectric motors, enabling the
optical spot to be precisely aligned and brought into focus on
the device. A 1550 nm diode laser beam was focussed to a
spot size of 2.52 £ 0.02 um (full width at half maximum).
This small size of the spot allows us to interact individually
with each meandered line in the device. A fast electrical pulse
generator was used to gain switch the laser diode creating
short optical pulses sufficient to drive a region of the strip out
of equilibrium and generate a measurable electrical output
pulse [3, 4]. The output signal pulses were amplified using a
2 GHz bandwidth amplifier with a total gain of 30 dB and
recorded on an 8 GHz bandwidth oscilloscope.

For the measurements, we centered the laser spot in the
middle of each meandered strip in turn, referring to them as
strip i =1 to strip i = 11. As the ith strip generates a voltage
pulse with an amplitude, A;, that is proportional to the current
flowing in the strip I;, and j; = I;/Wd, we can write [3, 4]

Ay L
SA S S

ey

where the sum on the index i is intended on all the N = 11
strips in the device. This equivalence allows us to infer the
normalized current density in each strip by measuring the
pulse amplitude generated when a laser pulse strikes it [3, 4].

In figure 3(a), we show the normalized current distribu-
tion obtained from the measurements using equation (1) (red
squares) and the theoretical distribution obtained from the
model of [3] for the same device with no resistor connected in
series (black dots). The device is operated in the single strip
switch regime [17] where when one strip is driven normal due
to the laser pulse, the others remain in their superconducting
state. Also, the constrictions remained resistive all the time
during the detection events for the reasons mentioned before.

We see that the normalized current distribution is uni-
form (flat) and is completely different from the theoretical one
used to fit the data in our previous experiments [3]. This
means that the constrictions are acting as intended like
resistors connected in series to the strips and the current
effectively distributes uniformly in the parallel strips.

The observed small difference in the current distribution,
is consequence of a non-uniformity in the fabrication of the
constrictions, and thus of normal state resistances, that is
bigger than the statistical spread of the measurements. In fact
for a block of N current biased parallel strips, the variation of
the flowing current with the value of the constriction’s
resistance R¢; can be expressed as

Uy Se & @
I; Rci s

where s can be either the width or the thickness of the con-
striction; this equality is valid in the approximation of N >> 2.
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Figure 3. (a) Normalized measured (red squares) and calculated
(black circle) current density as a function of the strip number. The
calculated current density values are obtained by using the model of
[3, 4] and a value for the parameter a = 0.16. (b) Measured
normalized current pulse amplitudes as a function of the strip
number values obtained when the strip 1 (black square), strip 3 (red
circle) and strip 7 (green triangle) are struck.

Therefore, we can write:
di _ds L _ds A
Sk Sk s DA

By considering the largest difference in the distribution
of the normalized current values, between strip 2 and strip 10
in figure 3(a), we see that this implies a variation of only
about 6%, corresponding to a 2.5 nm change in thickness or in
a 12 nm change in the width of the constriction. Such varia-
tions are compatible with the obtainable resolution in the
patterning of the device, performed with an old Crestec
CABL9000 e-beam system with 30kV acceleration voltage,
and in the deposition of the thin films, done with a self
assembled Material Research Corporation—MRC sputtering
system. The value of strip 5 is clearly affected by a bigger
defect out of the average in the fabrication. The variation of
about 16%, corresponds to a 6.4 nm change in thickness or in
a 32 nm change in the width of the constriction. In practice, it
could be possible to observe this defect by carefully
inspecting the sample by scanning electron microscope or by
atomic force microscope, but the total length of the strip of
about 1 mm could make the inspection time consuming.

3
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To further investigate the effectiveness of this design, we
measured also the current distribution after a first switching
event using the strike and probe technique [4]. In our pre-
vious study, we showed that the occurring current re-
distribution is strongly non-uniform in agreement with the
generalized London model [4]. In figure 3(b) we show the
normalized currents flowing in all the strips after strip i =1, 3
and 7 have been struck with a laser pulse. The resulting
current distributions are uniform within the statistical error of
the measurements, irrespective of which strip was initially
struck. As expected, the results with our new device are
completely different from those observed in our previous
studies with a conventional SSID device architecture [3, 4],
where a strongly non-uniform current re-distribution with a
shape depending on the position of the strips i in the device
was seen.

4. Conclusions

We have realized and tested a device using an innovative
parallel strip design to control the current dynamics. The
design uses the bi-stable nature of a superconducting film,
resistive or superconducting depending if the flowing current
if bigger or smaller than the critical current, to form identical
resistors connected in series with each strip and to break the
superconducting loops avoiding magnetic flux trapping. This
results in a stable uniform current distribution across the
strips, governed by Ohm’s law.

This design addresses the pressing problem of non-uni-
form current distributions occurring in parallel configuration
SSIDs [3, 4] which is the main reason for the degradation of
the detection efficiency and instability of operation [20].
Therefore, it will be possible to realize high efficiency SSID
having the required area of about 1cm?® by increasing the
number of parallel strips at a suitable value to not slow down
the response time of the detector [10]. This can be accom-
plished by designing a larger conducting bank connecting the
parallel strips, to prevent the reducing of the critical current in
the strips observed in our experiment, and considering that
each constriction will dissipate a maximum power of only
about Pyiss = (I''¢.s)* X V = 23 uW for the 40 nm thick Nb
film. The standard power cooling of a cryostat at 4 K is about
0.2W and therefore also for 100 parallel constrictions the
dissipated power of Pgiss = 2.3 mW is only about 10% of the
power cooling and the operation temperature can be easily
maintained. Moreover, the value of power dissipation for each
individual constriction can be further reduced by either (1)
decreasing the length of constrictions, provided that he con-
striction will still operate in the resistive state all the time with
Lets < et OF (2) increasing the thickness of the film, that in
turn will also increase the detection efficiency as reported in
[18]. The value of the resistance of the constriction, R., will
have only a modest beneficial effect in reducing the char-

e L
acteristic time response e = — 8  and the fall
NRL + Rc + Rh

Ls of the output pulse [10, 19], where N

time Tfal =~ ————
7 NR. + R.

is the number of parallel wires in the device, Ry, = 502 of
the load impedance (oscilloscope, counter.) and R; is the
resistance of the hotspot generated in the fired strip. In our
experiments N R, = 550 Q > R, ~ 29 (.

This study has significant potential impact in accelerating
the development of next generation superconducting strip
sensors for time of flight mass spectrometry. We plan to
follow up this study with practical implementations of this
detector architecture in SSID devices. Moreover, the physical
insights from this study are of relevance to practical devel-
opments of superconducting technologies for single photon
counting [6, 7] and superconducting electronics applications
[27] as well.
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