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Abstract

Spectrum awareness is an important function in the context of cognitive radio systems. It determines the presence or
absence of free channels in the spectrum and identifies free channels for secondary users. Cyclostationary Feature Detection
is an example of a spectrum awareness technique which involves the detection of signals based on their features such as
cyclic frequencies, symbol rates, carrier frequencies and modulation types. It detects signals at very low signal-to-noise
ratios. However there are performance degrading constraints such as cyclic and sampling clock offsets that can occur at the
receiver end. These offsets result from local oscillator frequency offsets, Doppler effects and jitter. We propose an efficient
low complexity multi-slot cyclostationary feature detector that reduces the effects of these constraints through an offline
optimization approach that produces the number and size of slot and fast Fourier transform to be used. These slots and
fast Fourier transforms are used to show the reduction of these offsets and the detection performance compared for the
case of different signal to noise ratios in the presence or absence of the receiver offsets. Also, the complexity of the model
is compared with the complexity of the conventional implementation and it shows significant reductions in the number of
required computations.
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I. INTRODUCTION

Cognitive Radio (CR) can adapt to its surrounding communication environment and has emerged as a promising solution
to address the problem of spectrum scarcity [1] by exploring spectral opportunities and deliver a more efficient utilization
of the available spectral resources [2]. The CR concept can be divided into four main functional areas namely: (A)
“Spectrum sensing” which determines the spectrum availability and the presence or absence of licensed primary users. (B)
“Spectrum management” which predicts the duration that the spectrum holes (unused bandwidths) will be available for
the secondary users before it is released again to the primary users. (C) “Spectrum sharing” for allocating the spectrum
holes among the secondary users according to demand. (D) “Spectrum mobility” which maintains hitless or error free
(seamless) communication during frequency allocation between the primary and secondary users and thereby produces
better spectrum transition [3]. This research is on Spectrum sensing of the CR. Some researched spectrum awareness
systems such as Energy Detection and Matched Filters are not capable of detecting signals at low Signal to Noise Ratio
(SNR) in order to provide dynamic and accurate information to the secondary users in [3], [4]. The use of time-domain
coprime sampling was adopted in [5]. This relies on the sub-bin energy detection of power spectral density (PSD) obtained
from Fourier transform of estimated autocorrelation of the samples obtained from time-based coprime sampling. On the
other hand a Cyclostationary Feature Detector (CFD) detects signals at low level SNRs through features of modulated
signals such as spectrum and cyclic frequencies. It can also be implemented in a wideband scenario to reflect the real
world communications environment. This requires the sampling of received signals at very high rates usually exceeding
1 Giga symbols per second (GSps), which is difficult to realize by state of art analogue to digital converters (ADC)s as
discussed in [6].

Some authors have looked at wideband cyclostationary feature detector as in [4] where Welch Periodogram was set
to produce mean square output of the signal which is equivalent to its energy and [7] which considered cooperative CR
networks with prior knowledge of the primary user signal using generalized likelihood ratio detector. The strength in this
depends on the uncertain effectiveness cooperation among the users. Spectral Analysis of Random Sampling on Grid (RSG)
in wideband was investigated in [8] which utilizes sampling rate lower than the conventional Nyquist rate. This approach
is exposed to undersamplng which will impact the correct detection of all the signals in the band especially under receiver
constraints.

An approach discussed in [9] combined CFD with Compressive Signal Processing (CSP) without the need for signal
reconstruction. However, the complexity of this combination was not elaborated. Recent works as in [10], adopted Complex
valued Power Spectrum Density (CPSD) to detect the wideband signal using sub-Nyquist rate. It considers the signal as
a complex value rather than as a magnitude as in Energy Detection. It was not clear how this method will deal a with
noise-like Spread Spectrum signal or receiver offsets. Some studies were carried out on the reduction of the impacts of
CFO on the CFD using the Cyclic Autocorrelation Function (CAF) for analysis as discussed in [11]. The use of the spectral
correlation function (SCF) and fast Fourier transform (FFT) to reduce the effects of CFO and SCO has not been fully
explored. Analysis in the frequency domain with FFT is less complex and computationally efficient as compared with time
domain based analysis [12] and hence it is the adopted approach of this research to use SCF and FFT to reduce the effects
of CFO and SCO.

In this paper, we propose a multi-slot wideband cyclostationary feature detector statistical model that uses the spectral
correlation function (SCF) and multiple window-based short-time Fast Fourier Transforms (FFT)s to reduce the effects
of receiver constraints namely: sampling clock offset (SCO) and cyclic frequency offset (CFO). The rest of this paper is
divided into 3 sections as follows in section (II-A) where the conventional principles of SCF are formulated in terms of a
CFD which are included in simulations to demonstrate the effects of SCO and CFO on the received signal. In section (III),
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the proposed system model was introduced and analyzed highlighting the offsets. This was followed by more simulations
in section (IV) to arrive at the required slot and FFT sizes and numbers to reduce the effects of the offsets.

II. CYCLOSTATIONARY FEATURE DETECTION

The fundamental principles used for feature detection along with the receiver constraints that affect the performance of
the CFD will be discussed.

A. Spectral Correlation Function

The Autocorrelation Function (AF) of a signal x(t) as a function of time t with period T is the similarity of a function
with itself at time lag τ . A process is said to show cyclostationarity if its AF and mean are periodic. As discussed in [13],
[14], since the AF is periodic, it can be represented by Fourier series as:
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where α is the cyclic frequency at which the cyclostationary feature or second order periodicity of the modulated signal
occurs. Rαx (τ) are the Fourier series coefficients and give the generalized Cyclic Auto-correlation Function (CAF),
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This can be expressed as using the time based signal x(t) and its conjugate x∗(t) as,
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where T is the fundamental period and for a modulated signal it is a function of the symbol period and carrier frequency
as in [13]. When α is zero, (3) gives the conventional Cyclic Autocorrelation Function (CAF) whose Fourier transform
(FT) is the conventional Spectral Correlation Function (SCF) for the observation time T ′ and expressed as,
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where XT (t, f) is the complex envelope of the narrow-band spectral component or short-time Fourier Transform of x(t)
with centre frequency f , period T (FT length), bandwidth 1/T (of the FT) and cyclic frequency 1/T ′. Further expressed
as,
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Given N ′ number of samples, the SCF (4) can be represented discretely with,
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as discussed in [15], where N ′ is the fixed sensing time, XL (l, f) is the L-point fast Fourier transform (FFT) around the
nth sample with L as the discrete FFT length. We refer to (6) as the conventional discrete Spectral Correlation Function
(SCF). Typically, a Cyclostationary Feature Detector (CFD) uses either the CAF or SCF in the time or frequency domains
respectively to detect cyclic features of the received modulated signal such as cyclic and spectrum frequencies as discussed
in [15], [16].

B. Effect of Cyclic Frequency and Sampling Clock
Offsets on Spectral Correlation Function

Cyclic frequency α is dependent on both the symbol rate 1/T and the carrier frequency fc, where T is the symbol
period set by the clock at the transmitter [17]. Every clock produces some errors and in a local oscillator this results in
frequency offsets as discussed in [17]. Also some uncertainties in the cyclic frequency will be introduced by Doppler shift.
Cyclostationary Feature Detector (CFD) requires knowledge of the cyclic frequency and symbol rate to correctly detect the
signals. Therefore, sub-optimal knowledge of cyclic frequency, symbol rate and carrier frequency results in cyclic frequency
offset (CFO) at the receiver and this affects the detection performance of CFD and more significantly as the number of
samples are increased as discussed in [11], [17]. Let the CFO be represented by ∆α. Given that,

α′ = α× (1 + ∆α) (7)

where α′ and α are the actual and ideal cyclic frequencies (CF) at the Receiver and transmitter respectively. Some modulated
signals have cyclic frequencies at both symbol rate and carrier frequency. The effect of CFO can be determined by
substituting (7) for α in SCF (4).

Sampling Clock Offset (SCO) is another condition that affects feature detection. It occurs from the frequency offset
produced by oscillators and insufficient knowledge of the symbol rate at the Analogue to Digital (A/D) stage of the



Fig. 1: The Effects of Receiver Offsets on the location of the QPSK signal. (a) SCF of QPSK signal without CFO. (b)
SCF of QPSK signal with CFO.

receiver. Sampling frequencies are produced by these oscillators, with SCO δ, and results in a drift in sampling times and
this time-shift varies as the number of samples increases [11] producing phase shifts in the SCF estimate when the FFT
bins are correlated. Fig. 1(a) shows in a frequency domain, the SCF of QPSK signal without any CFO. Fig. 1(b) shows
how the cyclic frequency is being shifted in position as a result of the presence of CFO which will affect the possibility
of correctly sensing the primary user’s (PU) signal. SCO can be stated as in (8),

T ′s = (1 + δ)× Ts (8)

where T ′s is the actual sampling period used at the receiver, Ts is the ideal sampling period with good knowledge of the
symbol rate at the transmitter and δ is the SCO. In order to adequately represent a signal, the sampling rate fs should be
in multiples of the symbol rate 1/Tsymbol, where Tsymbol is the symbol period. The objective of the model is to be robust
to these effects so as to improve the possibility of detection through a statistical model using the SCF and FFT-based slot
in a wideband scenario.

III. SYSTEM MODEL

We propose a wideband multi-slot window-based FFT statistical Test based CFD model that detects signals x(t) by
correlating in the frequency domain with the spectral correlation function (SCF) defined in (4) and (6). It covers the
possibilities of reducing the effects of CFO and SCO. The received high frequency wideband signal is first down-converted
to an Intermediate Frequency (IF) to the range of Mega-Hertz (MHz) and sampled as a baseband signal before correlation
is computed. Given a wideband of NB samples divided into N -point slots the relationship can be stated as,

P =
NB
N

(9)

where P and N are the number of slots and samples per slot respectively. Each of the P slots is of length T = NTs
seconds, where Ts is the nominal sampling period. Since we are detecting across the entire wideband, Ts is applicable
to the wideband being detected rather than the individual signal bandwidth of interest. This is different from a wideband
approach where the Ts applies to the signals of interest because in real world scenarios, all the signals may not be known
and therefore makes implementation more complex. Our approach is also different from multi-channel wideband where each
channel is sampled with a different oscillator which is not cost effective. The use of a window in the FFT computation
reduces spectral leakage as the wideband is sampled. Applying a sliding window Fast Fourier Transform (FFT) to the
computation of the complex envelope in (5) for the pth slot gives,
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where w(r) is a data tapering window of length L of the narrow-band spectral component of the received signal xp(t)
for the pth slot. Considering a multi-slot wideband having the same slot size, the Test Statistic (TS) without the receiver
constraints can be expressed as,
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where Sαx (k, p) is discrete SCF for the pth slot of N samples. Further expressed as,
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where XL,p (n, k) is the L-point window-based FFT of the pth slot around the nth sample. Therefore, from the TS (11),
the constrained Test Statistic TS1 (Test Statistic with receiver offsets) can be written as,
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where α′ is the cyclic frequency affected by the CFO (7), while P is the number of slots of N size for the wideband over
which the SCF is averaged. The TS is used to detect the features at signal’s symbol rate 1/T and carrier frequency (fc) as
in Table I.

TABLE I: Cyclic features for some modulation types [9], [15], [18]

Modulation type Peaks at (α, f )
BPSK

(
1
T
, fc

)
, (2fc, 0) ,

(
2fc ± 1

T
, 0

)
QPSK
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)
,
(
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T
, 0

)
MSK

(
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T
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)
,
(
2fc ± 1

2T
, 0

)
QAM

(
1
T
, fc

)
Equation (13) show that the TS is the correlation of the FFT of the received signal with itself as discussed in [19] and

in this research across the wideband on a slot basis. It should be noted that the conventional discrete SCF (6) is a form of
the proposed model TS in (13) where P = 1 and N = N ′.

A. Threshold and Detection

A binary decision rule of two hypotheses will be adopted in order to detect the signals.
• Hypothesis 0, H0 for noise only,

H0 : s(t) = w(t) (14)

• Hypothesis 1, H1 for signal present,
H1 : s(t) = x(t) + w(t) (15)

where x(t) and w(t) are signal only and Additive White Gaussian Noise (AWGN) respectively. Fundamentally, Spectral
Correlation Function (SCF) or cyclic autocorrelation function (CAF) is expected to be flat in the presence of noise or
exhibits a non-zero mean since noise is a wide-sense stationary process and has no cyclic correlation of any order. Also,
noise will not be affected by the SCO or CFO due to its stationary property. From the Central limit theorem (CLT) as
in [20], the SCF distribution is Gaussian. The threshold that is approximately at the noise level and gives Constant False
Alarm Rate (CFAR) Td during the detection is selected. The Test Statistic TS1 can be compared against the detection
threshold Td to determine the presence or absence of the signal [21] as:
• TS1 < Td signal is absent, H0.
• TS1 ≥ Td signal is present, H1.

The mean of the Test Statistic [22] at H1 and H0 can be expressed as ,
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respectively. While the variance at H1 and H0 can be expressed as,
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Therefore, the probabilities of false alarm Pfa and detection Pd [11], [22], [23] can be expressed as in (17) and (18) below,

Pfa(Td) = Prob {TS1 > Td | H0} = Q
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where Q(.), σ2
w and µw are the generalized Marcum-Q function, noise variance and the mean of TS1 at H0,

Pd(Td) = Prob {TS1 > Td | H1} = Q
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)
, (21)

where µs and σ2
s are the mean and variance of TS1 at H1.



Fig. 2: Effects of different FFT sizes on the Second moment of the TS with N = 256 and P = 8.

B. Computational Complexity

Given the computational complexity FFTcx for 1 slot in the order of,

O1(M,L) = M(L log2 L) (22)

where L(Log2L) is a single FFT complexity [15] and M is the total number of FFTs in a slot. It is given that,

M =
N

L
(23)

From (9), (22) and (23), we derive the total computational complexity FFTtc for the wideband in the order of,

OT (M,L) = P ×M × L log2 L (24)

As N becomes smaller, more slots P will be generated resulting in more FFTs M .

C. Optimizing the FFT Size L and Number M

We will obtain the optimum L and M from the first optimization problem in (25) which will be used to further solve the
second optimization (26) within the limitations of computational complexity and the minimum samples Lmin required in
a slot to represent the information. FFT size should be chosen for maximum Pd, correct frequency resolution and reduced
complexity.

(L̄, M̄) = arg max
L,M

Pd

such that LM ≤ N and L ≥ Lmin
(25)

where L̄ and M̄ are the optimized L and M . From (9), (23) and (24) we can verify the effect of computational complexity.

D. Optimizing the Slot Size N and Number P

As stated earlier, from (9), the number of slots P is affected by the bandwidth NB or slot size N . Therefore, there is a
need to optimize N and P for maximum Pd for a given bandwidth. Also there is an additional limitation for N in order
to cover the minimum samples Nmin required for the information symbols within one slot. The optimization problem can
be formulated from (9) and (21) as,

(N̄ , P̄ ) = arg max
N,P

Pd

such that NP = NB and N ≤ Nmin
(26)

where N̄ and P̄ are the optimized N and P and Pd is the probability of detection. There will be an increase in P for small
N as in (9) which will subsequently produce an increase in the number of FFTs which could impact on the computational
complexity. In order to further solve the optimization problem in (26), consideration will be given to the overall complexity
from combining multiple FFTs which is given in (24). The choice of N and P should be made for maximum Pd and
reduced complexity. The optimization is applied in section (IV-C)

IV. RESULTS AND DISCUSSION

A. The effect of fast Fourier Transform size on the second moment of the Test Statistic

Let us examine the effect of the Hanning window-based fast Fourier Transform (FFT) size L on the second moment of
the constrained Test statistic TS1 (13) given as |TS1|2. For the purpose of correlation, the FFTs must be in the powers of
2 to benefit from the extra efficiency associated with FFT radix-2 routines. Given a bandwidth B MHz, sampling rate fs =
4×B and assuming fixed CFO = SCO at 1000 parts per million (ppm, 1× 10−3) and fixed sensing period T of 1× 10−4

seconds for the wideband. For a 2.5 MHz QPSK signal in a 5 MHz bandwidth in Fig. 2, the use of different sizes of FFT
produced correlation peaks specific to that FFT. It shows that the smaller the FFT, the higher the correlation envelopes. This
is expected since more small FFTs are contained in any slot (23). Therefore, the smaller the FFT size the less the number
of slots required to form the correlation peaks. The correlation magnitudes shown in all the plots for the magnitude of the
second moment of the Test Statistic (TS) represent the expected spectral peaks due to the QPSK modulated signal as in Fig.
1. When the bandwidth is increased to 10 MHz and the slot number P is increased as shown in Fig. 3, the magnitude of



Fig. 3: Effects of FFT size on the TS Second moment with N=256 and P = 16.

Fig. 4: Effects of FFT size on the TS Second moment with N=128 and P = 8.

Fig. 5: Effects of FFT size on the TS Second moment with N=64 and P = 16.

the second moment of TS1 increased significantly for some FFTs. This is due to the increased sample size NB (4096) for
the wideband (9). For instance, for FFT size L = 64 samples, the magnitude of second moment of Test Statistic increased
from 15 × 10−9 to 10 × 10−3 as in Fig. 3. It can be stated that because of the high peaks obtained with small FFTs,
detection based on them will be more efficient as small narrowband spectral components will be correlated over the entire
wideband. Furthermore, from Fig. 2 and Fig. 3, each FFT has a minimum number of slots for the correlation envelopes.
For instance, FFT sizes 4, 8, 16 and 32 require 3, 5, 7 and 11 slots respectively. This is because the smaller the FFT size
the smaller the narrowband spectral component that it can correlate which results in reduced samples. It can be stated that
each FFT shows constant performance across different bandwidths with the smaller FFTs having higher magnitude of TS.

B. The effect of slot size on the second moment of the Test Statistic

We can reduce the slot size N further to ascertain the effects on the constrained second moment of the TS. Consider
a 2.5 MHz frequency signal and 2.5 MHz bandwidth (1024 samples) at fixed sensing period T of 1× 10−4 seconds and
N reduced to 128 samples as in (4). It shows significant reductions in the magnitude of the TS second moment for each
FFT. The reduction in magnitude is increased when N is further reduced to 64 samples as in (5) using the same signal
parameters. Considering Fig. 4 and Fig. 5 for the same bandwidth (1024 samples) and as the slot size is reduced (from
128 to 64) and the slot number increased, the magnitude of the correlation peaks decreases while the number of correlation
peaks increases for each FFT size. This is due to the reduced number of FFTs in the slots (23). However, this decreasing
magnitude of the peaks may affect the detection of the signal depending on the selected reference detection threshold. On
the other hand, with the increased bandwidth (4096 samples) in Fig. 3 and compared with Fig. 4 for the same 16 slot
numbers, the result is increased magnitude of the spectral peaks due to the increased number of FFTs (23) following the
increase in N to 512 in Fig. 4 as against 256 samples in Fig. 3. We can conclude that the FFT size and number of FFTs
in a slot, L and M respectively determine the magnitude of the peaks. Although the combination of small slot and FFT
sizes produce more correlation peaks and more efficient detection, the correlation peak magnitude should not fall below
the selected reference threshold Td. This is necessary in order to correctly detect the signal.

C. Applying the Optimization

The product of correlating the FFTs according to (13) is L2 and gives the maximum computable slots P for L and the
maximum P for FFT lengths 4, 8 and 16 are 16, 64 and 256 respectively. According to the optimization requirements in
(25), we should minimize N which in turn creates more P . Therefore, the first concern in selecting an FFT is to consider
the total P that will cover the bandwidth to be sensed. Secondly, N shall be selected to cover the certain minimum samples
required by any L to effectively correlate in (13). For instance FFT length 64 requires minimum of 256 samples to properly
correlate. Given a bandwidth NB and N of 4096 and 256 samples respectively as in (6), P can be calculated from (9) as
4096/256 = 16 slots. From Fig. 6 FFT lengths 8 and 16 use the smallest sample sizes to reach the peak detection. Since
we were interested in optimization, N was further reduced to 64 and used with L of 8 and 16 samples. Comparing N



Fig. 6: Probability of detection for 10 MHz bandwidth at N = 256/128 samples

Fig. 7: Probability of detection for 10 MHz bandwidth at N = 64/128 samples

Fig. 8: Probability of detection with-without offsets, 10MHz BW at N = 64 and FFT = 16, CFO = SCO = 1× 10−3.

Fig. 9: Receiver Operating Characteristics at 10 MHz signal, N= 64 and FFT = 16, CFO = SCO = 1× 10−2

of 64 and 128 samples as in Fig. 7, the detection is better with N of 64 samples for both FFT lengths. Apart from the
maximum Pd requirement in (26) , the frequency resolution and the resultant P will also be considered in choosing an
FFT size. FFT size 8 shows more smearing of signal energy across a wider frequency range which reduces the frequency
resolution as shown by the closeness of the two peaks as in Fig. 7. Therefore, the optimized FFT size was selected to be
16. It should be noted that N will not be reduced further for FFT size 8 due to the maximum computable slots L2 already
explained in this section; or for FFT size 16 due to the minimum N required for acceptable correlation. With optimized
values of L and N as 16 and 64 respectively, the obvious fact is that the number of slots P have increased and the effect
of this was then investigated with respect to the complexity described shortly. In summary, considering the simulations and
calculations from (9) and (23), given a bandwidth (BW) of 4096 samples NB , the optimized values of L, N , P , M were
found to be 16, 64, 64 and 4 (per slot) respectively giving 256 total FFTs. Therefore, we can obtain optimized values of
M , N , P for a selected small L. These optimized values were then used in comparing the performance of the model with
and without receiver constraints at different values of SNR as in Fig. 8.

Observing the curves in Fig. 8, there is a closeness between a pair of curves for both with and without offsets obtained
for each SNR. This shows that the effects of receiver offsets have been reduced by adopting small FFT and slot sizes. It
also reduces the concern that large samples are needed for re-sampling for CFD under receiver impairments. Fig. (9) is
the receiver operating characteristic (ROC) with the slot/FFT size pair (64, 16) under receiver offsets at different values of
SNR. It shows the detection performance of the wideband cyclostationary feature detector with receiver constraints. In the
presence of receiver constraints, low signal levels down to -12 dB SNR were detectable by the constrained TS (13). The
model detects much lower level signals under receiver constraints as shown in Fig. 8 and Fig. 9 when compared against



Fig. 10: Comparison between the complexities of Multi-slot Model Test Statistic and Conventional SCF based approach.

a time-based model discussed in [16]. It offers lower complexity, speed and accuracy due to the small size FFTs. The
complexities of both the model Test Statistic (13) and the conventional SCF (6) were calculated according to (9), (22),
(23), (24) and compared as in Fig. 10 for N = 256 samples. It shows significant complexity gain.

V. CONCLUSION

In this paper, we have shown in the frequency domain that the effects of sampling clock and cyclic frequency offsets
can be reduced by using the optimized sizes and numbers of slot size and fast Fourier transform for the implementation
of wideband cyclostationary feature detector. It has been shown that the use of multi-slot and small FFTs do not increase
the computational complexity of the model rather results in low complexity efficient detection process that is applicable
to different bandwidths. This is in contrast to the approach of using large samples in terms of the cost and computational
complexity. This model serves as a guide to the hardware design and implementation of wideband cyclostationary feature
detectors under receiver constraints.
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