Downregulation of microRNA-29, -23, and -21 in urine of Duchenne muscular dystrophy patients

Francesco Catapano, Joana Domingos, Mark Perry, Valeria Ricotti, Lauren Phillips, Laurent Servais, Andreea Seferian, Imelda de Groot, Yvonne D. Krom, Erik H. Niks, Jan JGM Verschuuren, Volker Straub, Thomas Voit, Jennifer Morgan & Francesco Muntoni

All	\mathbf{n}
10	study the signature of 87 urinary miRNAs in Duchenne muscular dystrophy (DMD)
oat	ients, select the most dysregulated and determine statistically significant differences in
he	ir expression between controls, ambulant and non-ambulant DMD patients, and patients
on	different corticosteroid regimens.
Pat	tients/materials & methods
Uri	ne was collected from control ($n = 20$), ambulant ($n = 31$) and non-ambulant ($n = 23$) DMD
pati	ients. MiRNA expression was measured by RT-qPCR.
Re	sults
Mi	R-29c-3p was significantly downregulated in ambulant DMD patients while miR-23 -3p
and	miR-21-5p were significantly downregulated in non-ambulant DMD patients compared
08	age matched controls.
Co	nclusions
Mi	R-29c-3p, miR-23 -3p and miR-21-5p are promising novel non-invasive biomarkers for
DM	1D, and miR-29c-3p levels are differentially affected by different steroid regimens,
sup	porting the antifibrotic effect of steroid therapy.
Ke	ywords: Duchenne Muscular Dystrophy, microRNA, exosome, biomarker, deflazacort,
pre	dnisolone

Abstract

53 1. Introduction

Duchenne muscular dystrophy (DMD) is an X-linked and progressive neuromuscular 54 disorder affecting 1 in 5000 newborn males [1]. It is more commonly caused by out-of-frame 55 deletions or, more rarely, duplications, nonsense or other small mutations affecting the 56 dystrophin gene (DMD) [2]. DMD is the largest gene in the human genome. Its sequence, 57 spanning ~2.3 megabases, [3] encodes dystrophin, a 427 kDa protein principally expressed in 58 skeletal and cardiac muscle, connecting the sarcolemma to the actin cytoskeleton. Dystrophin 59 plays a significant structural role by giving plasticity and flexibility to the muscle fibers, 60 ensuring stability over the contraction-relaxation phase [4]. Affected children are typically 61 diagnosed between 3 and 5 years of age and the progressive skeletal muscle weakness and 62 wasting used to lead to loss of ambulation at a mean age of 9.5 years. Due to the 63 implementation of current standards of care and corticosteroid administration, the mean age 64 at which ambulation is lost has shifted to 12-14 years [5]. 65

66

Prednisolone and deflazacort are the most commonly used corticosteroids, administered on either a daily or intermittent regimens [6]. The mechanism underlying the pharmacological action of these corticosteroids is not completely understood, but is likely to involve both an anti-inflammatory action and anabolic effects in dystrophic muscle via the activation of a metabolic transcription factor [7-9]. Progressive weakness nevertheless continues leading to premature death between the second and fourth decade of life [10, 11].

73

DMD is currently an incurable disease, although encouraging results are emerging from
different clinical trials, and two personalised medicine drugs, eteplirsen and ataluren, have
received conditional approval in the US and Europe, respectively [10, 12-14]. A number of
other therapeutic approaches are being trialled [15].

The diagnosis of DMD is usually made by combining genetic, clinical and biochemical tests and, in selected cases, by muscle biopsy. Levels of creatine kinase (CK), an enzyme involved in energy production and utilisation [16], are generally elevated in serum from patients.

82 Serum CK is not however considered to be a reliable circulating biomarker because it is subject to fluctuations, mainly related to age and its modulation by physical activity [17, 18]. 83 In addition, the progressive loss of muscle mass in DMD leads to a secondary reduction of 84 85 CK levels, which therefore does not adequately capture the progressive nature of the condition. Serum matrix metalloproteinase-9 (MMP-9) is being studied as potential serum 86 biomarker for dystrophinopathies as it increases significantly with age in patients' serum. 87 Nevertheless, its efficacy in monitoring disease progression and therapeutic response remains 88 to be confirmed [19, 20]. Elevated levels of myomesin 3 (MYOM3) protein fragments have 89 been found in serum from DMD patients and are promising candidate for monitoring 90 91 experimental therapies [21]. Also, urinary levels of the amino terminal fragments of the sarcomeric protein titin (N-ter titin) represent a potential non-invasive biomarker useful for 92 the diagnosis and to monitor the response to therapies [22]. Despite these encouraging results 93 obtained from proteomic studies, there is still a pressing need for novel, non-invasive and 94 95 reliable biomarkers in DMD sensitive to disease progression and to assess their efficacy in response to therapeutic intervention. 96

97

MicroRNAs are small (~22 nucleotides) endogenous non-coding RNAs implicated in posttranscriptional regulation by binding the 3' untranslated region (UTR) of their messenger RNA (mRNA) targets [23]. Through this inhibitory mechanism, microRNAs modulate the expression of genes involved in pathways regulating skeletal muscle formation [24], differentiation [25] and homeostasis [26]. Moreover, miRNA dysregulation in serum has been associated with a few paediatric neuromuscular conditions including DMD and spinal
muscular atrophy (SMA) and in their respective murine animal models [27-29]. MiRNAs are
also present in urine where they are included in small microvesicles called exosomes (40-100
nm) that protect them from degradation by RNases [30].

107

Exosomes are secreted by different cell types, including myoblasts, allowing cell-to-cell signalling by transferring their cargo molecules (mainly composed of miRNA, mRNA, lipids and proteins) [31]. Urinary exosomes have been investigated in urinary tract related diseases [32, 33], breast cancer [34] and neurodegenerative conditions [35]. However, there is no information on the contribution (if any) of skeletal muscle cells to the exosome population in urine, nor has there been any study on the expression of urinary miRNA in patients with muscular dystrophies.

115

In order to investigate the potential of urinary miRNAs as a novel non-invasive biomarker in DMD, we profiled their pool isolated from urinary exosomes of ambulant and non-ambulant DMD patients and age matched controls and found >50 miRNAs downregulated in DMD patients. From these, 5 candidate miRNAs were selected for further validation, based on previous reports indicating their involvement in skeletal muscle related diseases [36-41]. Finally, to test if there was any association between miRNA levels in urine and corticosteroid

treatment, we studied the expression of the most dysregulated miRNAs in patients treated with prednisolone or deflazacort following a daily or intermittent regimens.

- 124
- 125
- 126 127

128 2. Materials & Methods

129 2.1. Subject selection and urine collection

The patients included in this cross-sectional study are part of a cohort of DMD boys taking 130 part in a multicenter natural history study registered in clinicaltrials.gov (NCT02780492). 131 Patients are assessed every six months according to a standardized protocol. Samples from 54 132 patients recruited in London, Paris, Newcastle and Leiden were analysed. This study was 133 134 approved by the London-Bromley Research Ethics Committee (REC 12/LO/0442) and all Ethical Committees in the countries involved. All patients and their families signed 135 the informed consent and assent for the Biobank for Neuromuscular Disorders (approved by The 136 Hammersmith and Queen Charlotte's and Chelsea Research Ethics Committee -137 138 06/Q0406/33).

139

Twenty healthy age-matched volunteers were recruited from patients' families and friends at
Great Ormond Street Hospital. Urine samples (~ 20 ml) were collected on the day of the study
visit (morning, not fasting) and immediately frozen at -80°C until analyses were performed.
The demographic, clinical data and corticosteroid therapy regimen administered are shown in
Supplementary Table 1.

145

146 2.2. Exosome isolation

Exosomes were extracted from urine using the miRCURYTM Exosome Isolation Kit – Cells, Urine & CSF (Exiqon) according to the manufacturer's instructions. Briefly, 1.6 mL of urine was centrifuged for 5 min at 10,000 x g to remove cell debris, and 1.5 mL of the resulting supernatant was incubated overnight at 4°C after the addition of 600 μ l of Precipitation Buffer B. In the last step, the supernatant was completely removed by centrifugation (30 minutes at 10,000 x g at 20°C), and the pellet was used for RNA isolation.

154 2.3. RNA isolation

To isolate microRNAs contained in exosomes, the miRCURY™ RNA Isolation Kit - Cell & 155 Plant (Exigon) was used according to the manufacturer's instructions. Briefly, the pellet 156 obtained from the exosome isolation was re-suspended in 350 µl lysis solution containing 157 1.25 µl MS2 RNA carriers (Roche) and 1 µl of synthetic UniSp2, UniSp4, UniSp5 RNA 158 spike-in mix (Exigon) required to monitor the isolation efficiency. After vortexing, 200 µl of 159 96 - 100% ethanol were added to the solution, then it was transferred onto a Mini Spin 160 Column and centrifuged for 1 minute at > 3500 x g. Subsequently, the column was subjected 161 to three washing cycles by adding 400 μ l of Wash Solution and centrifuged for 1 minute at 162 14000 x g. 163

Total RNA, including small RNAs from exosomes, was obtained by adding 100 µl of Elution
Buffer followed by two centrifugation steps (2 minutes at 200 x g and 1 minute at 14000 x g).

166

167 2.4. microRNA profiling

Profiling analysis were performed on urinary exosomes from 15 healthy controls, 15ambulant DMD and 17 non-ambulant DMD patients.

170 *RT:* cDNA was generated by reverse transcription using the Universal cDNA synthesis kit II 171 (Exiqon) according to the manufacturer's instructions. A fixed volume of 4 μ l of total RNA (5 172 ng/ μ l)/sample was used as the starting material. The quality of the samples was verified by 173 adding to the mix 1 μ l of synthetic UniSp6/cel-miR-39 spike-in mix (Exiqon).

174 qPCR: The reactions were performed using a miRCURY LNATM Pick-&-Mix microRNA

- 175 PCR SYBR green- ased panels (containing primers for 87 urinary miRNAs, Table S2) and a
- 176 StepOne Plus 96 well Real-time PCR System (ThermoFisher). A total volume of 10 µl of

177 cDNA/sample was added in the mix for the profiling analysis, according to the178 manufacturer's instructions (Exigon).

Normalization: Expression analysis was performed using the GeneX software (Exiqon).
Global mean value normalisation using the global mean of all miRNAs that had CT values
<34 for the microRNA profiling.

- 182 *Heatmaps:* Heatmaps and average linkage hierarchical clusters showing the miRNA signature
- pattern within the samples were designed on http://www1.heatmapper.ca/expression/ [42].

184

185 2.5. microRNA validation

186 In the validation step, we studied the expression of five selected candidates (miR-21-5p, miR-

187 22-3p, miR-23 -3p, miR-29c-3p, and miR-103a-3p) in urinary exosomes from 20 controls

(average age=9 years), 31 ambulant (average age=8 years) and 23 non-ambulant DMD
 patients (average age=14 years), including the samples used for miRNA profiling.

190 RT: cDNA was generated by reverse transcription using the TaqManTM Advanced miRNA

191 cDNA Synthesis Kit (ThermoFisher) according to the manufacturer's instructions. 2 µl of

total RNA (5 ng/μ)/sample was used as the starting material. The quality of the samples was

verified by adding to the mix $1 \mu l$ of synthetic UniSp6/cel-miR-39 spike-in mix (Exiqon).

194 qPCR: The reactions were performed using a qPCR TaqMan small RNA Assay (Life

195 Technology) and a StepOne Plus 96 well Real-time PCR System (ThermoFisher).

196 *Normalization:* Normalisation using the $\Delta\Delta$ Ct method to a stable reference gene (miR-16c-

197 5p) detected by NormFinder algorithm were performed at the validation stages [43, 44].

198

199 2.6. Negative controls

200 Before the exosomal miRNA isolation, we added three synthetic non-human spike in

201 controls, UniSp2, UniSp4 and UniSp5, in the lysis buffer in order to monitor the efficiency of

202	the process. As suggested in the manufacturer's protocol, UniSp2 should amplify at the level
203	of highly expressed microRNAs, whereas UniSp4 should amplify approximately 6.6 cycles
204	later and UniSp5 might not always be detectable.
205	
206	Our data confirm that the isolation process in all samples was successful. The detected
207	average cycle threshold (Ct) for UniSp2 was 21.46 and UniSp4 was amplified for an average
208	of 6.56 cycles later than UniSp2 (average Ct=28.02). Little or no expression of UniSp5 was
209	detected across the samples.
210	
211	Two additional synthetic controls, <i>cel-miR-39</i> and UniSp6, were added to the mix
212	immediately before the retro-transcription. These two controls were expressed in all samples,
213	indicating that the cDNA used for the profiling was of high quality (Fig S1).
214	
215	2.7. Statistical analysis
216	The Mann-Whitney test was used for statistical analysis of two groups of data, whereas One-
217	way analysis of variance was used to determine statistical significance between three and four
218	groups of subjects. The Bonferroni test for the correction of the p-value was performed for
219	multiple comparisons (profiling). Data are presented as mean \pm standard error of the mean
220	(Mean ± SEM). GraphPad Prism 7.0 software was used for statistical analysis and graph
221	design.
222	
223	3. Results
224	3.1. Exosomal microRNA profiling in urine of DMD patients and healthy controls
225	34 microRNAs were either undetected or weakly expressed and were excluded from the

study. 53 miRNAs were detected in at least 60% of the samples and included in subsequent

227	statistical comparisons. There was an overall trend of miRNA downregulation in DMD
228	patients (ambulant and non-ambulant) compared to healthy controls (Fig S2). No microRNAs
229	were upregulated in DMD compared to controls.
230	
231	3.1.1. miRNA profiling in urinary exosomes from <u>all DMD patients</u> compared to healthy
232	controls
233	After Bonferroni correction of the p-value, three miRNAs were significantly different
234	between DMD patients and controls. There was significant downregulation of miR-21-5p
235	(P<0.001, Fig 1A), miR-22-3p (P<0.001, Fig 1B) and miR-29c-3p (P<0.001, Fig 1C) when
236	the DMD patients group (ambulant and non-ambulant) was compared to controls.
237	
238	3.1.2. miRNA profiling in urinary exosomes from <u>ambulant DMD patients</u> compared to
239	healthy controls
240	To investigate the possibility that the levels of urinary miRNA might be influenced by the
241	ambulatory status of the DMD boys, further statistical analyses were carried out by stratifying
242	the DMD samples into 15 ambulant (A) and 17 non-ambulant (NA). Of three miRNAs that
243	were significantly downregulated in DMD compared to controls, only miR-29c-3p was
244	significantly downregulated (P<0.01, Fig 2A) in ambulant DMD patients compared to the
245	healthy controls. There was significant downregulation of two additional identified in the first
246	part of the study, miRNAs - miR-92a-3p (P<0.01, Fig 2B) and miR-103a-3p (P<0.01, Fig
247	2C) when ambulant patients were compared to healthy controls.
248	
249	3.1.3. Expression of miR-29c-3p, miR-92a-3p and miR-103a-3p correlates with preserved
250	ambulation in DMD

251	Receiving operating characteristic (ROC) curves were generated to test sensitivity and
252	specificity of miR-29c-3p, miR-92a-3p and miR-103a-3p. Regarding miR-29c-3p, when
253	comparison was made between the healthy controls and the group including all patients
254	(A+NA), the area under the curve (AUC) was 0.8086 (95% CI=0.6678-0.9494, Fig 3A).
255	When comparison was made between healthy controls and ambulant patients (A), the AUC
256	was 0.8267 (95% CI=0.6786-0.9748, Fig 3B). These results indicate that miR-29c-3p levels
257	better correlate with preserved ambulation in DMD patients. Similarly, for miR-103a-3p, the
258	areas under the curves (AUC) were 0.8244 (95%CI=0.6914-0.9575, Fig 3C) in patients
259	(A+NA) and 0.8533 (95%CI=0.6966-1.01, Fig 3D) in ambulant patients. In addition, AUC
260	values for miR-92a-3p, were 0.7126 (95%CI=0.5465-0.8788, Fig 3E) in patients (A+NA)
261	and 0.8178 (95%CI=0.6586-0.977, Fig 3F) in ambulant patients. All the AUC results indicate
262	that miR-29c-3p, miR-103a-3p and miR-92a-3p levels correlate best with preserved
263	ambulation in DMD patients.
264	
265	3.1.4. miRNA profiling in urinary exosomes from <u>non-ambulant DMD patients</u> compared to
266	healthy controls
267	There were no significant differences in the levels of urinary miRNAs between non-ambulant
268	DMD patients and healthy controls.
269	
270	3.1.5. miRNA profiling in urinary exosomes from <u>DMD ambulant compared to DMD non-</u>
271	ambulant patients
272	There were no significant differences in miRNA expression between ambulant and non-
273	ambulant DMD patients.
274	
275	3.2. Selection of microRNA candidates for further validation studies

- From the most dysregulated miRNA identified through profiling analysis, we selected 5
- 277 miRNAs for further validation studies (miR-21-5p, miR-22-3p, miR-23 -3p, miR-29c-3p) and
- 278 miR-103a-3p). Among these, miR-23 -3p was downregulated in all the statistical
- comparisons, although the significance was eventually lost when applying the Bonferroni
- corrections. Moreover, the dysregulation of miR-21, miR-22 and miR-29 in muscular
- 281 dystrophy has already been reported in literature (**Table 1**).

283 Table 1

284 Selected candidate involvement in skeletal muscle

microRNA	Previous findings	Model
miR-29	downregulated in <i>mdx</i> mouse model of DMD [36]	<i>mdx</i> muscles
	loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis[36]	<i>mdx</i> primary myoblasts
	myogenic factor[39]	C2C12 cells
	reduced in DMD patients[37]	DMD patient muscle and myoblasts
	downregulated in quiescent satellite cells during myogenesis <i>in vitro</i> [38]	Human satellite cells
miR-22	upregulated in Facio scapulo humeral muscular dystrophy (FSHD)[40]	FSHD patient myoblasts
	upregulated in Limb-girdle muscular dystrophy type 2D (LGMD2D)[41]	Sgca-null mouse serum
miR-21	increased in DMD[37]	DMD patient muscle and myoblasts

- 286 3.2.1. Bioinformatic prediction of the targets
- In order to predict the target genes of the 5 selected candidates, Pathway Analysis with the
- online tool DianaMirpath [45] was performed. The algorithm allows the identification not
- only of the potential target genes of a specific microRNA, but also to locate them to the
- related Kyobo Encyclopedia of Genes and Genomes (KEGG) pathway [46].
- As showed in Table S3, our miRNA affected pathways included the following: extracellular
- 292 matrix (ECM)-receptor interaction, focal adhesion, ErbB signaling pathway, TGF- eta
- signaling pathway, mTOR signaling pathway, apoptosis and MAPK signaling pathway.

295 Table S3

Predicted target genes of the candidate microRNAs

microRNA	Predicted target genes from DIANA miRPath	p-value	KEGG pathway
	ITGB8, THBS1, COL5A2, CD47	1.05E-11	ECM-receptor interaction
	ERBB2, ITGB8, THBS1, BCL2, EGFR, PTK2, PIK3R1, PDGFD, VEGFA, PTEN, COL5A2	2.12E-06	Focal adhesion
	ERBB2, EGFR, PTK2, MYC, PIK3R1	2.31E-06	ErbB signaling pathway
hsa-miR-21-5p	TGFBR1, ZFYVE16, MYC, TGFB2, TGFBR2, BMPR2	8.30355E-05	TGF-beta signaling pathway
	TSC1, PIK3R1, RPS6KA3, VEGFA, PTEN, RRAGC	0.000527381	mTOR signaling pathway
	BID, BCL2, APAFI, PIK3R1, FAS	0.007398499	Apoptosis
	TGFBR1, EGFR, MAP3K1, RASA1, RASGRP1, MYC, DUSP8, FAS, RPS6KA3, TGFB2, MAP3K2, RASGRP3, MKNK2, TGFBR2	0.0173412	MAPK signaling pathway
	SP1, BMP7	8.30355E-05	TGF-beta signaling pathway
hsa-miR-22-3p	PRKACA	0.007398499	Apoptosis
	PRKACA	0.0173412	MAPK signaling pathway
hsa-miR-23b-3p	STAT5B	2.31E-06	ErbB signaling pathway
	COL3A1, COL4A2, COL1A1, COL1A2, LAMC1, Col6a2, COL4A1	1.05E-11	ECM-receptor interaction
hsa-miR-29c-3p	BCL2, COL3A1, JUN, COL4A2, COL1A1, COL1A2, LAMC1, AKT3, Col6a2, VEGFA, COL4A1	2.12E-06	Focal adhesion
	AKT2, JUN,AKT3	2.31E-06	ErbB signaling pathway
	AK2, AKT3, VEGFA	0.000527381	mTOR signaling pathway
	BCL2, AK2, AK3	0.007398499	Apoptosis
	AKT2, JUN, AKT3	0.0173412	MAPK signaling pathway
	ITGA2	1.05E-11	ECM-receptor interaction
	BCL2, ZYX, ITGA2	2.12E-06	Focal adhesion
	ABL2, RPS6KB1	2.31E-06	ErbB signaling pathway
hsa-miR-103a-3p	ACVR2B, SMAD7, RPS6KB1	8.30355E-05	TGF-beta signaling pathway
	RPS6KB1	0.000527381	mTOR signaling pathway
	FGF2, MAP3K7	0.007398499	Apoptosis

		FGF2, MAP3K7	0.0173412	MAPK signaling pathway
297				
298	3.2.2. Validation of	the candidates		
299	The Normfinder [44	1] algorithm was used to discover	r the most suita	able reference gene (among
300	the 87 microRNAs	analysed at the profiling stage) w	hich was miR-	-16 -5p.
301				
302	3.2.3. miR-29 down	regulation in <u>ambulant DMD p</u>	<u>atients</u>	
303	The significant dys	regulation of miR-29c-3p detecte	d in the origina	al profiling step was
304	confirmed further, v	with 54 DMD patients (including	both ambulant	and non-ambulant)
305	having lower miR-2	29c-3p levels compared to the 20	healthy contro	ls (P<0.05, Fig 4A). This
306	miRNA remained s	ignificantly downregulated when	only ambulan	t DMD patients were
307	compared to the hea	althy controls (P<0.05, Fig 4B).		
308				
309	We also compared t	the non-ambulant DMD patients	to controls, and	d although we observed a
310	trend towards down	regulation, this was not statistica	lly significant	(Fig 4C). These results
311	indicate that the ext	ent of miR-29c-3p downregulation	on is more mar	ked in ambulant than in
312	non-ambulant DME	patients, but not sufficiently dif	ferent between	the 2 groups to be of
313	significance.			
314				
315	Moreover, to determ	nine if miR-29c-3p levels correla	tted with the ag	ge of DMD patients, we
316	performed linear reg	gression analyses. Although the l	levels of miR-2	9c-3p in urine of DMD
317	patients decrease w	ith age, there was no significant of	correlation betw	ween their expression and
318	the age of the patier	nts (Fig S3A).		
319				

320 3.2.4. miR-23b-3p and miR-21-5p downregulation in non-ambulant DMD patients

321	There was a significant downregulation of miR-23 -3p (P<0.01, Fig 4F) and miR-21-5p
322	(P<0.05, Fig 4I) in non-ambulant DMD patients compared with the controls but not in
323	controls vs all DMD patients (Fig 4D, 4G), nor in controls vs ambulant DMD patients (Fig
324	4E , 4H). There was no significant difference in the relative expression of the other selected
325	candidates (miR-22-3p and miR-103a-3p) in patients compared to the controls; hence, they
326	were excluded from further analysis. Finally, as for miR-29c-3p, linear regression analyses
327	did not show a significant correlation between miR-23 -3p and miR-21-5p expression and
328	age of patients (Fig S3B, S3C).
329	
330	In summary, validation analysis confirmed the significant downregulation of 3 urinary
331	exosomal microRNAs: - miR-29c-3p in DMD ambulant, miR-23 -3p and miR-21-5p in
332	DMD non-ambulant patients respectively.
333	
224	3.3 miDNA response to the corticostaroid thereany
554	3.3. mixing response to the controlsteroid therapy
335	In order to determine if there were differences in the selected candidate miRNA expression
335 336	In order to determine if there were differences in the selected candidate miRNA expression profiles between patients on different corticosteroid regimens, statistical comparisons were
335 336 337	In order to determine if there were differences in the selected candidate miRNA expression profiles between patients on different corticosteroid regimens, statistical comparisons were performed on patients receiving prednisolone vs deflazacort, and on daily versus intermittent
335 336 337 338	In order to determine if there were differences in the selected candidate miRNA expression profiles between patients on different corticosteroid regimens, statistical comparisons were performed on patients receiving prednisolone vs deflazacort, and on daily versus intermittent (10/10) steroid regimens.
335 336 337 338 339	In order to determine if there were differences in the selected candidate miRNA expression profiles between patients on different corticosteroid regimens, statistical comparisons were performed on patients receiving prednisolone vs deflazacort, and on daily versus intermittent (10/10) steroid regimens.
 334 335 336 337 338 339 340 	 In order to determine if there were differences in the selected candidate miRNA expression profiles between patients on different corticosteroid regimens, statistical comparisons were performed on patients receiving prednisolone vs deflazacort, and on daily versus intermittent (10/10) steroid regimens. <i>3.3.1. Deflazacort compared to Prednisolone</i>
335 336 337 338 339 340 341	In order to determine if there were differences in the selected candidate miRNA expression profiles between patients on different corticosteroid regimens, statistical comparisons were performed on patients receiving prednisolone vs deflazacort, and on daily versus intermittent (10/10) steroid regimens. 3.3.1. Deflazacort compared to Prednisolone When comparisons were made between the two different steroid regimens (deflazacort vs
335 336 337 338 339 340 341 342	In order to determine if there were differences in the selected candidate miRNA expression profiles between patients on different corticosteroid regimens, statistical comparisons were performed on patients receiving prednisolone vs deflazacort, and on daily versus intermittent (10/10) steroid regimens. 3.3.1. Deflazacort compared to Prednisolone When comparisons were made between the two different steroid regimens (deflazacort vs prednisolone), none of the selected candidates showed significant differences (S4 Fig).
335 336 337 338 339 340 341 342 343	In order to determine if there were differences in the selected candidate miRNA expression profiles between patients on different corticosteroid regimens, statistical comparisons were performed on patients receiving prednisolone vs deflazacort, and on daily versus intermittent (10/10) steroid regimens. <i>3.3.1. Deflazacort compared to Prednisolone</i> When comparisons were made between the two different steroid regimens (deflazacort vs prednisolone), none of the selected candidates showed significant differences (S4 Fig).

345	To test if there was any association between expression of selected candidates in urine and
346	corticosteroid regimen, statistical comparisons were made among three groups: healthy
347	controls, patients undergoing a daily treatment and those receiving the drugs intermittently
348	(regardless of the corticosteroid administered). Interestingly, miR-29c-3p was significantly
349	downregulated in patients undergoing intermittent corticosteroid treatment compared to
350	controls, but not in those receiving daily treatment (Fig 5D). There was no correlation
351	between the expression levels of the remaining miRNAs: miR-21-5p (Fig 5A), miR-22-3p
352	(Fig 5B), miR-23b-3p (Fig 5C) and miR-103a-3p (Fig 5E) and the corticosteroid regimen.
353	
354	
355	

4. Discussion

359	Our study is the first to investigate the expression of exosomal urinary miRNAs in DMD
360	patients or in any form of muscular dystrophy. In the last decade, several studies have
361	focused on differential miRNA expression in DMD, providing new insights into their role in
362	the modulation of pathological signalling pathways [47, 48], and also indicating their
363	potential role as non-invasive biomarkers to monitor disease progression [29, 49].
364	
365	We show that miR-29 was significantly downregulated in ambulant DMD patients and that
366	miR-23 and miR-21 were significantly downregulated in non-ambulant DMD patients
367	compared to age matched controls. Contrary to several studies focused on noncoding RNA
368	dysregulation in serum from DMD patients and <i>mdx</i> mice, in which a large number of
369	miRNAs were significantly upregulated compared to controls [27, 50-52], we found no
370	upregulated miRNAs in urine from DMD patients.
371	
372	The downregulation of mir-29c-3p, a member of the miR-29 family, which is composed of
373	five miRNAs having identical seed regions (thus sharing the same target genes) [53] has
374	been reported in muscles from DMD patients [37] and <i>mdx</i> mice [36]. This miRNA is a key
375	promoter of skeletal muscle regeneration in <i>mdx</i> mice, and myogenic differentiation of
376	primary <i>mdx</i> myoblasts <i>in vitro</i> [36]. Moreover, miR-29 agonists have potential therapeutic
377	application in a broad spectrum of fibrotic diseases [54], as shown by the demonstration that
378	systemic delivery of miR-29 significantly reduced diaphragm fibrosis in <i>mdx</i> mice [36].
379	
380	Fibrosis is a particular hallmark of DMD, and contributes to the skeletal and cardiac muscle
381	pathology by altering the functionality [55, 56]. In DMD, TGF β is considered to be one of the

382 strongest profibrogenic factors. It is stored in the extracellular matrix and when activated, as a 383 consequence of tissue damage, exerts its effects through binding to the TGF β Type I and 384 TGF β Type II receptors [57, 58]. In the *mdx* diaphragm, TGF- β 1 upregulation occurs at early 385 stages of fibrogenesis [36, 58, 59]. In DMD patients, TGF β -1 triggers the fibrotic process, 386 and reaches peak levels in muscles during the early stages of the disease (6 years) promoting 387 a massive connective tissue proliferation. After this phase, TGF- β 1 levels decline while the 388 proliferation process continues [60]. TGF β promotes fibrosis in *mdx* skeletal muscle by 389 inhibiting mir-29 expression [36] which is a key player in controlling ECM modifications 390 [61]. Other evidence implicating TGF- β 1 in promoting fibrosis by inhibiting miR-29 391 expression comes from studies on pulmonary fibrosis, which showed that miR-29 modulates 392 the fibrotic process by binding a large number of genes involved in ECM synthesis and 393 remodelling including COL1A1, MMP2 and MMP14 [62]. Moreover, previous studies 394 focused on renal fibrosis showed that this process was correlated with the loss of miR-29 395 mediated by a TGF β /SMAD3 dependent mechanism [63].

396

397 We speculate that reduced levels of miR-29 observed in the ambulant DMD boys are the 398 result of the progressive fibrosis, promoted by TGF- β 1 signalling, which characterises the 399 early stages of the disease. Interestingly, we found that miR-29 levels are affected by the regimen of corticosteroid therapy, drugs which are prescribed as part of the standards of care 400 401 in DMD patients [64, 65]. In particular, we found significant downregulation of miR-29 in 402 patients receiving the intermittent steroid regimen but not in those receiving a daily treatment, 403 indicating that a constant administration of corticosteroids might be more efficient in 404 maintaining miR-29 levels closer to those in healthy controls, and hence in slowing down the 405 fibrotic process. This hypothesis is supported by the recent report of the inhibitory action of 406 prednisolone on TGF-β1, a repressor of miR-29 [36], in *mdx* diaphragm [66]. Since miR-29

downregulation in muscle [37] was mirrored in urine from DMD patients and its levels in
urine were normalised by corticosteroid therapy, this microRNA represents to date, the most
promising urinary non-invasive biomarker for DMD.

410

411 In our validation studies, we found a significant downregulation of miR-23 -3p in nonambulant patients. This is the first time miR-23 has been reported to be implicated in DMD, 412 413 and consequently, its role in the disease is still unclear. However, a link between miR-23 and TGFβ have been reported in liver, where it downregulates *Smad* genes in mouse fetal 414 415 liver cells and consequently the TGF β signalling [67] and also in murine airway smooth muscle, where it controls the proliferation of the cells through inactivating TGF β signalling 416 [68]. Moreover, it has been shown that fibrosis in human fibroblasts is induced by TGF β via 417 418 the PAK2 pathway which in turn, stimulates matrix synthesis through the activation of the Smad1 protein [69]. As miR-23 targets a large number of genes in human, including *PAK2* 419 420 [70], we speculate that it might counteract the fibrotic process in DMD, through the $TGF\beta$ 421 signaling inhibition. However further studies aimed at investigating the association between miR-23 and fibrosis are needed to confirm this hypothesis and to address its involvement in 422 DMD pathogenesis. 423

424

We also found a significant downregulation of miR-21 in urine of non-ambulant DMD patients. Our results differ those from Zanotti et al, where miR-21 was upregulated in muscle biopsies (quadriceps) and fibroblasts from DMD patients aged 1-8 years [37]. MiR-21 promotes TGF β -1 related fibrosis by inducing the transdifferentiation of fibroblasts to myofibroblasts [37] in which collagen synthesis is augmented leading to fibrosis [71]. Further investigations aimed at clarifying the mechanisms underlying differential miR-21 expression observed in muscle [37] and urine will be beneficial to understand its contribution

432	in DMD. In particular studies aimed at determining the source of exosomes would clarify
433	whether they are synthesised by the renal epithelial cells as proposed by Pisiktun et al. [72],
434	or produced by other cells elsewhere in the body and merely transit the renal epithelium
435	before being released into urine. Whether urinary exosomes actually originate from cells
436	within skeletal muscle, or other organs [73-75] is not known.
437	
438	
439	4.1. Conclusions
440	Our findings indicate that exosomal urinary miR-29c-3p, miR-23 -3p and miR-21-5p are
441	promising novel non-invasive biomarkers for DMD, and that miR-29c-3p levels are
442	differentially affected by different steroid regimens, supporting the antifibrotic effect that
443	steroid therapy have, and indicating for the first time that the determination of urinary
444	miRNA levels allow to capture differences between different steroids regimens, which likely
445	reflect the differences in clinical benefit between daily vs intermittent steroids therapies [76,
446	77].
447	
448	4.2. Executive Summary
449	• Duchenne muscular dystrophy (DMD) is an X-linked and progressive neuromuscular
450	disorder affecting 1 in 5000 newborn males leading to progressive skeletal muscle
451	wasting and death.
452	
453	• Levels of creatine kinase (CK), are generally elevated in serum from patients,
454	however this enzyme is not considered to be a reliable circulating biomarker because

455		it is subject to fluctuations, mainly related to age and its modulation by physical
456		activity.
457		
458	•	There is still a pressing need for novel, non-invasive and reliable biomarkers in DMD
459		that are sensitive to disease progression and able to reliably monitor the efficacy of
460		any therapeutic intervention.
461		
462	•	MicroRNAs are small (~22 nucleotides) endogenous non-coding RNAs implicated in
463		post- transcriptional regulation of their messenger RNA (mRNA) targets, that
464		modulate the expression of genes involved in pathways regulating skeletal muscle
465		formation, differentiation and homeostasis.
466		
467	•	MiRNAs are present in urine where they are included in small microvesicles called
468		exosomes (40-100 nm) that protect them from degradation by RNases.
469 470		
471	•	We studied the signature of 87 urinary miRNAs from controls ($n = 20$), ambulant ($n =$
472		31) and non-ambulant ($n = 23$) DMD patients.
473		
474	•	MiR-29c-3p is significantly downregulated in ambulant DMD patients compared to
475		age matched controls and its levels are affected by different steroid regimens.
476		

477	• MiR-23b-3p and miR-21-5p are significantly downregulated in non-ambulant DMD
478	patients compared to age matched controls.
479	
480	4.3. Future perspective
481	
482	Changes in urinary miRNA levels are a potential non-invasive means of determining disease
483	progression and the efficacy of any therapeutic intervention in neuromuscular conditions such
484	as DMD.
105	
485	
486	Acknowledgements
487	
488	All research at Great Ormond Street Hospital NHS Foundation Trust and UCL Great Ormond
489	Street Institute of Child Health is made possible by the NIHR Great Ormond Street Hospital
490	Biomedical Research Centre. The views expressed are those of the author(s) and not
491	necessarily those of the NHS, the NIHR or the Department of Health.
492	This research was performed at the Dubowitz Neuromuscular Centre (London) with the
493	collaboration of the Institute of Myology (Paris), the Muscular Dystrophy Research Centre
494	(Newcastle), the Leiden University Medical Center (Leiden) and the UMC St Radboud
495	(Nijmegen), and supported by a grant from the Association Francaise Contre Les Myopathies
496	(AFM).
497	Funding
	This work was supported by the Association Franceico Contro Los Myonethias
498	This work was supported by the Association Francaise Contre Les Myopathies
499	

500 Disclosures

501	VR is currently an employee of S	olid Biosciences
JOI		

- 502 FM has received consulting fees from Biogen, Italfarmaco, Pfizer, PTC Therapeutics, Roche,
- 503 Sarepta Therapeutics, and Wave Therapeutics; and is supported by the National Institute of
- Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children
- 505 NHS Foundation Trust, and University College London. The support of the MRC
- 506 Neuromuscular Centre Biobank and of the Muscular Dystrophy UK is also gratefully
- 507 acknowledged.

5	52	4

527 References

528	1.	Mendell JR, Shilling C, Leslie ND et al. Evidence-based path to newborn screening for
529		Duchenne muscular dystrophy. Ann Neurol 71(3), 304-313 (2012).
530	2.	Ferlini A, Neri M, Gualandi F. The medical genetics of dystrophinopathies: molecular genetic
531		diagnosis and its impact on clinical practice. <i>Neuromuscul Disord</i> 23(1), 4-14 (2013).
532	3.	Den Dunnen JT, Grootscholten PM, Bakker E <i>et al</i> . Topography of the Duchenne muscular
533		dystrophy (DMD) gene: FIGE and cDNA analysis of 194 cases reveals 115 deletions and 13
534		duplications. Am J Hum Genet 45(6), 835-847 (1989).
535	4.	$Gumers on \ JD, \ Michele \ DE. \ The \ dystrophin-gly coprotein \ complex \ in \ the \ prevention \ of \ muscle$
536		damage. J Biomed Biotechnol 2011 210797 (2011).
537	5.	Ricotti V, Ridout DA, Scott E et al. Long-term benefits and adverse effects of intermittent
538		versus daily glucocorticoids in boys with Duchenne muscular dystrophy. J Neurol Neurosurg
539		Psychiatry 84(6), 698-705 (2013).
540	6.	Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY. Corticosteroids for the treatment
541		of Duchenne muscular dystrophy. Cochrane Database Syst Rev
542		doi:10.1002/14651858.CD003725.pub4(5), CD003725 (2016).
543	7.	Wehling-Henricks M, Lee JJ, Tidball JG. Prednisolone decreases cellular adhesion molecules
544		required for inflammatory cell infiltration in dystrophin-deficient skeletal muscle.
545		Neuromuscul Disord 14(8-9), 483-490 (2004).
546	8.	Wong BL, Christopher C. Corticosteroids in Duchenne muscular dystrophy: a reappraisal. J
547		Child Neurol 17(3), 183-190 (2002).
548	9.	Morrison-Nozik A, Anand P, Zhu H et al. Glucocorticoids enhance muscle endurance and
549		ameliorate Duchenne muscular dystrophy through a defined metabolic program. <i>Proc Natl</i>
550		Acad Sci U S A 112(49), E6780-6789 (2015).
551	10.	Fairclough RJ, Wood MJ, Davies KE. Therapy for Duchenne muscular dystrophy: renewed
552		optimism from genetic approaches. Nat Rev Genet 14(6), 373-378 (2013).
553	11.	Gonzalez-Bermejo J, Lofaso F, Falaize L et al. Resting energy expenditure in Duchenne
554		patients using home mechanical ventilation. <i>Eur Respir J</i> 25(4), 682-687 (2005).
555	12.	Bettica P, Petrini S, D'oria V et al. Histological effects of givinostat in boys with Duchenne
556		muscular dystrophy. Neuromuscul Disord 26(10), 643-649 (2016).
557	13.	Bushby K, Finkel R, Wong B et al. Ataluren treatment of patients with nonsense mutation
558		dystrophinopathy. <i>Muscle Nerve</i> 50(4), 477-487 (2014).
559	14.	Lim KR, Maruyama R, Yokota T. Eteplirsen in the treatment of Duchenne muscular
560		dystrophy. Drug Des Devel Ther 11 533-545 (2017).
561	15.	Guiraud S, Davies KE. Pharmacological advances for treatment in Duchenne muscular
562		dystrophy. Curr Opin Pharmacol 34 36-48 (2017).
563	16.	Ventura-Clapier R, Kuznetsov A, Veksler V, Boehm E, Anflous K. Functional coupling of
564		creatine kinases in muscles: species and tissue specificity. Mol Cell Biochem 184(1-2), 231-
565		247 (1998).
566	17.	Nicholson GA, Morgan GJ, Meerkin M, Strauss ER, Mcleod JG. The effect of aerobic exercise
567		on serum creatine kinase activities. <i>Muscle Nerve</i> 9(9), 820-824 (1986).

568 569	18.	Cherian AG, Hill JG. Age dependence of serum enzymatic activities (alkaline phosphatase, aspartate aminotransferase, and creatine kinase) in healthy children and adolescents. <i>Am J</i>
570		Clin Pathol 70(5), 783-789 (1978).
571	19.	Nadarajah VD, Van Putten M, Chaouch A <i>et al</i> . Serum matrix metalloproteinase-9 (MMP-9)
572		as a biomarker for monitoring disease progression in Duchenne muscular dystrophy (DMD).
573		Neuromuscul Disord 21(8), 569-578 (2011).
574	20.	Lourbakos A, Yau N, De Bruijn P <i>et al</i> . Evaluation of serum MMP-9 as predictive biomarker
575		for antisense therapy in Duchenne. Sci Rep 7(1), 17888 (2017).
576	21.	Rouillon J, Poupiot J, Zocevic A et al. Serum proteomic profiling reveals fragments of MYOM3
577		as potential biomarkers for monitoring the outcome of therapeutic interventions in
578		muscular dystrophies. <i>Hum Mol Genet</i> 24(17), 4916-4932 (2015).
579	22.	Rouillon J, Zocevic A, Leger T <i>et al</i> . Proteomics profiling of urine reveals specific titin
580		fragments as biomarkers of Duchenne muscular dystrophy. <i>Neuromuscul Disord</i> 24(7), 563-
581		573 (2014).
582	23.	Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8), 509-524
583		(2014).
584	24.	O'rourke JR, Georges SA, Seay HR et al. Essential role for Dicer during skeletal muscle
585		development. <i>Dev Biol</i> 311(2), 359-368 (2007).
586	25.	Dey BK, Gagan J, Dutta A. miR-206 and -486 induce myoblast differentiation by
587		downregulating Pax7. <i>Mol Cell Biol</i> 31(1), 203-214 (2011).
588	26.	Zhang Y, He W, Gao YF, Fan ZM, Gao CL, Xia ZK. MicroRNA106b regulates skeletal muscle
589		insulin sensitivity and glucose homeostasis by targeting mitofusion2. <i>Mol Med Rep</i> 16(5),
590		6858-6863 (2017).
591	27.	Zaharieva IT, Calissano M, Scoto M et al. Dystromirs as serum biomarkers for monitoring the
592		disease severity in Duchenne muscular Dystrophy. <i>PLoS One</i> 8(11), e80263 (2013).
593	28.	Catapano F, Zaharieva I, Scoto M <i>et al</i> . Altered Levels of MicroRNA-9, -206, and -132 in
594		Spinal Muscular Atrophy and Their Response to Antisense Oligonucleotide Therapy. Mol
595		Ther Nucleic Acids 5(7), e331 (2016).
596	29.	Perry MM, Muntoni F. Noncoding RNAs and Duchenne muscular dystrophy. <i>Epigenomics</i>
597		8(11), 1527-1537 (2016).
598	30.	Ichii O, Ohta H, Horino T <i>et al</i> . Urinary exosome-derived microRNAs reflecting the changes of
599		renal function and histopathology in dogs. <i>Sci Rep</i> 7 40340 (2017).
600	31.	Romancino DP, Paterniti G, Campos Y et al. Identification and characterization of the nano-
601		sized vesicles released by muscle cells. FEBS Lett 587(9), 1379-1384 (2013).
602	32.	Zhou H, Pisitkun T, Aponte A et al. Exosomal Fetuin-A identified by proteomics: a novel
603		urinary biomarker for detecting acute kidney injury. <i>Kidney Int</i> 70(10), 1847-1857 (2006).
604	33.	Nilsson J, Skog J, Nordstrand A et al. Prostate cancer-derived urine exosomes: a novel
605		approach to biomarkers for prostate cancer. Br J Cancer 100(10), 1603-1607 (2009).
606	34.	Erbes T, Hirschfeld M, Rucker G et al. Feasibility of urinary microRNA detection in breast
607		cancer patients and its potential as an innovative non-invasive biomarker. BMC Cancer 15
608		193 (2015).
609	35.	Fraser KB, Rawlins AB, Clark RG et al. Ser(P)-1292 LRRK2 in urinary exosomes is elevated in
610		idiopathic Parkinson's disease. Mov Disord 31(10), 1543-1550 (2016).
611	36.	Wang L, Zhou L, Jiang P et al. Loss of miR-29 in myoblasts contributes to dystrophic muscle
612		pathogenesis. <i>Mol Ther</i> 20(6), 1222-1233 (2012).
613	37.	Zanotti S, Gibertini S, Curcio M et al. Opposing roles of miR-21 and miR-29 in the progression
614		of fibrosis in Duchenne muscular dystrophy. <i>Biochim Biophys Acta</i> 1852(7), 1451-1464
615		(2015).
616	38.	Koning M, Werker PM, Van Luyn MJ, Krenning G, Harmsen MC. A global downregulation of
617		microRNAs occurs in human quiescent satellite cells during myogenesis. Differentiation
618		84(4), 314-321(2012).

619	39.	Zhou L, Wang L, Lu L, Jiang P, Sun H, Wang H. A novel target of microRNA-29, Ring1 and YY1-
620		binding protein (Rybp), negatively regulates skeletal myogenesis. J Biol Chem 287(30),
621		25255-25265 (2012).
622	40.	Dmitriev P, Stankevicins L, Ansseau E et al. Defective regulation of microRNA target genes in
623		myoblasts from facioscapulohumeral dystrophy patients. J Biol Chem 288(49), 34989-35002
624		(2013).
625	41.	Vignier N, Amor F, Fogel P et al. Distinctive serum miRNA profile in mouse models of striated
626		muscular pathologies. <i>PLoS One</i> 8(2), e55281 (2013).
627	42.	Babicki S, Arndt D, Marcu A et al. Heatmapper: web-enabled heat mapping for all. Nucleic
628		Acids Res 44(W1), W147-153 (2016).
629	43.	D'haene B, Mestdagh P, Hellemans J, Vandesompele J. miRNA expression profiling: from
630		reference genes to global mean normalization. Methods Mol Biol 822 261-272 (2012).
631	44.	Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse
632		transcription-PCR data: a model-based variance estimation approach to identify genes suited
633		for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15), 5245-
634		5250 (2004).
635	45.	Vlachos IS, Kostoulas N, Vergoulis T et al. DIANA miRPath v.2.0: investigating the
636		combinatorial effect of microRNAs in pathways. Nucleic Acids Res 40(Web Server issue),
637		W498-504 (2012).
638	46.	Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on
639		genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1), D353-D361 (2017).
640	47.	Alexander MS, Casar JC, Motohashi N et al. MicroRNA-486-dependent modulation of
641		DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy-associated symptoms. J
642		Clin Invest 124(6), 2651-2667 (2014).
643	48.	Alexander MS, Kawahara G, Motohashi N et al. MicroRNA-199a is induced in dystrophic
644		muscle and affects WNT signaling, cell proliferation, and myogenic differentiation. Cell Death
645		<i>Differ</i> 20(9), 1194-1208 (2013).
646	49.	Jeanson-Leh L, Lameth J, Krimi S et al. Serum profiling identifies novel muscle miRNA and
647		cardiomyopathy-related miRNA biomarkers in Golden Retriever muscular dystrophy dogs
648		and Duchenne muscular dystrophy patients. <i>Am J Pathol</i> 184(11), 2885-2898 (2014).
649	50.	Cacchiarelli D, Legnini I, Martone J <i>et al</i> . miRNAs as serum biomarkers for Duchenne
650		muscular dystrophy. <i>EMBO Mol Med</i> 3(5), 258-265 (2011).
651	51.	Roberts TC, Blomberg KE, Mcclorey G <i>et al</i> . Expression analysis in multiple muscle groups
652		and serum reveals complexity in the microRNA transcriptome of the mdx mouse with
653		implications for therapy. <i>Mol Ther Nucleic Acids</i> 1 e39 (2012).
654	52.	Hu J, Kong M, Ye Y, Hong S, Cheng L, Jiang L. Serum miR-206 and other muscle-specific
655		microRNAs as non-invasive biomarkers for Duchenne muscular dystrophy. J Neurochem
656		129(5),877-883 (2014).
657	53.	Kriegel AJ, Liu Y, Fang Y, Ding X, Liang M. The miR-29 family: genomics, cell biology, and
658		relevance to renal and cardiovascular injury. <i>Physiol Genomics</i> 44(4), 237-244 (2012).
659	54.	He Y, Huang C, Lin X, Li J. MicroRNA-29 family, a crucial therapeutic target for fibrosis
660		diseases. <i>Biochimie</i> 95(7), 1355-1359 (2013).
661	55.	Kharraz Y, Guerra J, Pessina P, Serrano AL, Munoz-Canoves P. Understanding the process of
662		fibrosis in Duchenne muscular dystrophy. <i>Biomed Res Int</i> 2014 965631 (2014).
663	56.	Serrano AL, Munoz-Canoves P. Regulation and dysregulation of fibrosis in skeletal muscle.
664		Exp Cell Res 316(18), 3050-3058 (2010).
665	57.	Horiguchi M, Ota M, Rifkin DB. Matrix control of transforming growth factor-beta function. J
666		Biochem 152(4), 321-329 (2012).
667	58.	Zhou L, Porter JD, Cheng G et al. Temporal and spatial mRNA expression patterns of TGF-
668		beta1, 2, 3 and TbetaRI, II, III in skeletal muscles of mdx mice. <i>Neuromuscul Disord</i> 16(1), 32-
669		38 (2006).

670	59.	Gosselin LE, Williams JE, Deering M, Brazeau D, Koury S, Martinez DA. Localization and early
671		time course of TGF-beta 1 mRNA expression in dystrophic muscle. Muscle Nerve 30(5), 645-
672		653 (2004).
673	60.	Bernasconi P, Torchiana E, Confalonieri P et al. Expression of transforming growth factor-
674		beta 1 in dystrophic patient muscles correlates with fibrosis. Pathogenetic role of a
675		fibrogenic cytokine. <i>J Clin Invest</i> 96(2), 1137-1144 (1995).
676	61.	Cacchiarelli D, Martone J, Girardi E et al. MicroRNAs involved in molecular circuitries
677		relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the
678		dystrophin/nNOS pathway. <i>Cell Metab</i> 12(4), 341-351 (2010).
679	62.	Cushing L, Kuang PP, Qian J et al. miR-29 is a major regulator of genes associated with
680		pulmonary fibrosis. Am J Respir Cell Mol Biol 45(2), 287-294 (2011).
681	63.	Qin W, Chung AC, Huang XR et al. TGF-beta/Smad3 signaling promotes renal fibrosis by
682		inhibiting miR-29. <i>J Am Soc Nephrol</i> 22(8), 1462-1474 (2011).
683	64.	Klingler W, Jurkat-Rott K, Lehmann-Horn F, Schleip R. The role of fibrosis in Duchenne
684		muscular dystrophy. <i>Acta Myol</i> 31(3), 184-195 (2012).
685	65.	Marques MJ, Oggiam DS, Barbin IC, Ferretti R, Santo Neto H. Long-term therapy with
686		deflazacort decreases myocardial fibrosis in mdx mice. <i>Muscle Nerve</i> 40(3), 466-468 (2009).
687	66.	Hartel JV, Granchelli JA, Hudecki MS, Pollina CM, Gosselin LE. Impact of prednisone on TGF-
688		beta1 and collagen in diaphragm muscle from mdx mice. <i>Muscle Nerve</i> 24(3), 428-432
689		(2001).
690	67.	Rogler CE, Levoci L, Ader T et al. MicroRNA-23b cluster microRNAs regulate transforming
691		growth factor-beta/bone morphogenetic protein signaling and liver stem cell differentiation
692		by targeting Smads. <i>Hepatology</i> 50(2), 575-584 (2009).
693	68.	Chen M, Huang L, Zhang W et al. MiR-23b controls TGF-beta1 induced airway smooth muscle
694		cell proliferation via TGFbetaR2/p-Smad3 signals. <i>Mol Immunol</i> 70 84-93 (2016).
695	69.	Wilkes MC, Leof EB. Transforming growth factor beta activation of c-Abl is independent of
696		receptor internalization and regulated by phosphatidylinositol 3-kinase and PAK2 in
697		mesenchymal cultures. <i>J Biol Chem</i> 281(38), 27846-27854 (2006).
698	70.	Pellegrino L, Stebbing J, Braga VM et al. miR-23b regulates cytoskeletal remodeling, motility
699		and metastasis by directly targeting multiple transcripts. <i>Nucleic Acids Res</i> 41(10), 5400-5412
700		(2013).
701	71.	Micallef L, Vedrenne N, Billet F, Coulomb B, Darby IA, Desmouliere A. The myofibroblast,
702		multiple origins for major roles in normal and pathological tissue repair. Fibrogenesis Tissue
703		Repair 5(Suppl 1), S5 (2012).
704	72.	Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in
705		human urine. Proc Natl Acad Sci U S A 101(36), 13368-13373 (2004).
706	73.	Gasparri ML, Casorelli A, Bardhi E <i>et al</i> . Beyond circulating microRNA biomarkers: Urinary
707		microRNAs in ovarian and breast cancer. <i>Tumour Biol</i> 39(5), 1010428317695525 (2017).
708	74.	Stuopelyte K, Daniunaite K, Bakavicius A, Lazutka JR, Jankevicius F, Jarmalaite S. The utility of
709		urine-circulating miRNAs for detection of prostate cancer. Br J Cancer 115(6), 707-715
710		(2016).
711	75.	Abdalla MA, Haj-Ahmad Y. Promising Candidate Urinary MicroRNA Biomarkers for the Early
712		Detection of Hepatocellular Carcinoma among High-Risk Hepatitis C Virus Egyptian Patients.
713		J Cancer 3 19-31 (2012).
714	76.	Ricotti V, Ridout DA, Pane M et al. The NorthStar Ambulatory Assessment in Duchenne
715		muscular dystrophy: considerations for the design of clinical trials. J Neurol Neurosurg
716		<i>Psychiatry</i> 87(2), 149-155 (2016).
717	77.	Mcdonald CM, Henricson EK, Abresch RT <i>et al</i> . Long-term effects of glucocorticoids on
718		function, quality of life, and survival in patients with Duchenne muscular dystrophy: a
719		prospective cohort study. <i>Lancet</i> doi:10.1016/S0140-6736(17)32160-8 (2017).
720		

722 723

Supplementary Fig. 2. Expression profiles of exosomal microRNAs in the urine of DMD 724 patients and healthy controls. Heat map and average linkage hierarchical clusters showing 725 the miRNA signature pattern within the samples (n=15 controls, n=15 ambulant DMD, n=17726 727 non-ambulant DMD). Upregulated miRNAs are depicted in green and downregulated in red. A prevalence of downregulated miRNAs is evident in the DMD population when compared 728 to controls. 729 730 Fig. 1. Expression of miR-21-5p, miR-22-3p and miR-29c-3p in urine samples from 731 732 **DMD** patients. 733 Expression of the three microRNA in urinary exosomes isolated from healthy controls (n=15) 734 ambulant DMD patients (n=15) and non-ambulant DMD patients (n=17). There was 735 significant downregulation of miR-21-5p (\mathbf{A}), miR-22-3p (\mathbf{B}) and miR-29c-3p (\mathbf{C}) in the 736 DMD patient group (ambulant and non-ambulant patients) compared to controls. Data are presented as Mean \pm SEM. ***p< 0.001. GMV= global mean value. 737 738 Fig. 2. Expression of miR-29c-3p, miR-92a-3p and miR-103a-3p in urine samples from 739 ambulant DMD patients. 740 741 Expression of the three microRNAs in urinary exosomes isolated from healthy controls 742 (n=15) and ambulant DMD patients (n=15). There was significant downregulation of miR-743 29c-3p (**3A**), miR-92a-3p (**3B**) and miR-103a-3p (**3C**) in the DMD patients (including both ambulant and non-ambulant patients) compared to controls. Data are presented as Mean \pm 744 SEM. **p< 0.01. GMV= global mean value. 745

747 Fig. 3. ROC curve analysis of urinary miR-29c-3p, miR-92a-3p and miR-103a-3p. 748 ROC curves based on miR-29c-3p urinary levels, for differentiating between the group including all the DMD (n=32) (A) and ambulant patients (n=15) (B). The same analysis was 749 750 performed for miR-103a-3p (\mathbf{C} , \mathbf{D}) and miR-92a-3p (\mathbf{E} , \mathbf{F}). 751 Fig. 4. Validated expression of miR-29c-3p, miR-23b-3p and miR-21-5p in urine 752 samples from DMD patients. 753 754 Expression of miR-29c-3p, miR-23 -3p and miR-21-5p in urinary exosomes isolated from 755 healthy controls (n=20) ambulant (n=31) and non-ambulant (n=23) DMD patients. There was significant downregulation of miR-29c-3p in patients compared to controls (A) and in 756 ambulant patients compared to controls (**B**). MiR-23 -3p was significantly downregulated in 757 758 non-ambulant patients compared to controls (F). MiR-21-5p was significantly downregulated in non-ambulant patients compared to controls (I) Data are presented as Mean \pm SEM. *p< 759 760 0.05; **p< 0.01. 761 Supplementary Fig. 3. Lack of correlation between miR-29c-3p, miR-23b-3p and miR-762 763 **21-5p expression** with age in DMD patients. 764 Linear regression analyses between the levels of and miR-29c-3p (\mathbf{A}), miR-23 -3p (\mathbf{B}) and 765 miR-21-5p (C), in urine and the Age of DMD patients (N=54). The regression line is 766 presented. 767 768 Fig. 5. Effects of different corticosteroid regimens on candidate miRNA expression. 769 Expression of miR-21-5p (\mathbf{A}), miR-22-3p (\mathbf{B}), miR-23 -3p (\mathbf{C}), miR-29c-3p (\mathbf{D}) and miR-770 103a-3p (E) in urinary exosomes isolated from healthy controls (n=20), DMD patients treated

771	with any daily	v corticosteroids	(n=25) and DMD	patients treated with any	intermittent
-----	----------------	-------------------	----------------	---------------------------	--------------

corticosteroids (n=18). Data are presented as Mean \pm SEM. *p< 0.05.

774	Supplementary Fig. 1 Expression of the synthetic controls. UniSp6 (orange) and	cel-miR-
-----	--	----------

- (light blue) expression in the samples (n=47) used for microRNA profiling. The x-axis
- represents the samples (both patients and controls) while the y-axis represents Ct values.

778 Supplementary Fig. 4. Validated microRNA expression in DMD patients receiving

779 different corticosteroids (prednisolone compared to deflazacort).

- 780 Expression of miR-21-5p (A), miR-22-3p (B), miR-23b-3p (C), miR-29c-3p (D) and miR-
- 781 103a-3p (E) in urinary exosomes isolated from healthy controls (n=20), Prednisolone treated
- 782 DMD patients (n=36) and Deflazacort treated DMD patients (n=7). Data are presented as
- 783 Mean \pm SEM.

Fig. 1. Expression of miR-21-5p, miR-22-3p and miR-29c-3p in urine samples from DMD patients. Expression of the three microRNA in urinary exosomes isolated from healthy controls (n=15) ambulant DMD patients (n=15) and non-ambulant DMD patients (n=17). There was significant downregulation of miR-21-5p (A), miR-22-3p (B) and miR-29c-3p (C) in the DMD patient group (ambulant and non-ambulant patients) compared to controls. Data are presented as Mean ± SEM. ***p< 0.001. GMV= global mean value.

555x177mm (96 x 96 DPI)

Fig. 2. Expression of miR-29c-3p, miR-92a-3p and miR-103a-3p in urine samples from ambulant DMD patients.

Expression of the three microRNAs in urinary exosomes isolated from healthy controls (n=15) and ambulant DMD patients (n=15). There was significant downregulation of miR-29c-3p (3A), miR-92a-3p (3B) and miR-103a-3p (3C) in the DMD patients (including both ambulant and non-ambulant patients) compared to controls. Data are presented as Mean ± SEM. **p< 0.01. GMV= global mean value.

555x184mm (96 x 96 DPI)

Fig. 3. ROC curve analysis of urinary miR-29c-3p, miR-92a-3p and miR-103a-3p. ROC curves based on miR-29c-3p urinary levels, for differentiating between the group including all the DMD (n=32) (A) and ambulant patients (n=15) (B). The same analysis was performed for miR-103a-3p (C, D) and miR-92a-3p (E, F).

555x356mm (96 x 96 DPI)

Fig. 4. Validated expression of miR-29c-3p, miR-23b-3p and miR-21-5p in urine samples from DMD patients. Expression of miR-29c-3p, miR-23b-3p and miR-21-5p in urinary exosomes isolated from healthy controls (n=20) ambulant (n=31) and non-ambulant (n=23) DMD patients. There was significant downregulation of miR-29c-3p in patients compared to controls (A) and in ambulant patients compared to controls (B). MiR-23b-3p was significantly downregulated in non-ambulant patients compared to controls (F). MiR-21-5p was significantly downregulated in non-ambulant patients compared to controls (I) Data are presented as Mean \pm SEM. *p< 0.05; **p< 0.01.

555x471mm (96 x 96 DPI)

Fig. 5. Effects of different corticosteroid regimens on candidate miRNA expression. Expression of miR-21-5p (A), miR-22-3p (B), miR-23b-3p (C), miR-29c-3p (D) and miR-103a-3p (E) in urinary exosomes isolated from healthy controls (n=20), DMD patients treated with any daily corticosteroids (n=25) and DMD patients treated with any intermittent corticosteroids (n=18). Data are presented as Mean ± SEM. *p< 0.05.

555x419mm (96 x 96 DPI)

Supplementary Fig. 1 Expression of the synthetic controls. UniSp6 (orange) and cel-miR-39 (light blue) expression in the samples (n=47) used for microRNA profiling. The x-axis represents the samples (both patients and controls) while the y-axis represents Ct values.

180x70mm (150 x 150 DPI)

Supplementary Fig. 2. Expression profiles of exosomal microRNAs in the urine of DMD patients and healthy controls. Heat map and average linkage hierarchical clusters showing the miRNA signature pattern within the samples (n=15 controls, n=15 ambulant DMD, n=17 non-ambulant DMD). Upregulated miRNAs are depicted in green and downregulated in red. A prevalence of downregulated miRNAs is evident in the DMD population when compared to controls.

189x107mm (150 x 150 DPI)

Supplementary Fig. 3. Lack of correlation between miR-29c-3p, miR-23b-3p and miR-21-5p expression with age in DMD patients. Linear regression analyses between the levels of and miR-29c-3p (A), miR-23b-3p (B) and miR-21-5p (C), in urine and the Age of DMD patients (N=54). The regression line is presented.

555x179mm (96 x 96 DPI)

Supplementary Fig. 4. Validated microRNA expression in DMD patients receiving different corticosteroids (prednisolone compared to deflazacort). Expression of miR-21-5p (A), miR-22-3p (B), miR-23b-3p (C), miR-29c-3p (D) and miR-103a-3p (E) in urinary exosomes isolated from healthy controls (n=20), Prednisolone treated DMD patients (n=36) and Deflazacort treated DMD patients (n=7). Data are presented as Mean ± SEM.

555x419mm (96 x 96 DPI)

Table 1. Selected candidate involvement in skeletal muscle.

microRNA	Previous findings	Model
miR-29	downregulated in <i>mdx</i> mouse model of DMD [36]	mdx muscles
	loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis[36]	<i>mdx</i> primary myoblasts
	myogenic factor[39]	C2C12 cells
	reduced in DMD patients[37]	DMD patient muscle and myoblasts
	downregulated in quiescent satellite cells during myogenesis <i>in vitro</i> [38]	Human satellite cells
miR-22	upregulated in Facio scapulo humeral muscular dystrophy (FSHD)[40]	FSHD patient myoblasts
	upregulated in Limb-girdle muscular dystrophy type 2D (LGMD2D)[41]	Sgca-null mouse serum
miR-21	increased in DMD[37]	DMD patient muscle and myoblasts

Sample	Amb	Age at sampling	Steroids	Steroids regime	Genetic mutation
CONTROL 1	Α	4	n/a	n/a	no
CONTROL 2	Α	4	n/a	n/a	no
CONTROL 3	А	5	n/a	n/a	no
CONTROL 4	А	5	n/a	n/a	no
CONTROL 5	А	6	n/a	n/a	no
CONTROL 6	Α	7	n/a	n/a	no
CONTROL 7	А	8	n/a	n/a	no
CONTROL 8	А	8	n/a	n/a	no
CONTROL 9	Α	8	n/a	n/a	no
CONTROL 10	Α	8	n/a	n/a	no
CONTROL 11	Α	8	n/a	n/a	no
CONTROL 12	Α	9	n/a	n/a	no
CONTROL 13	Α	9	n/a	n/a	no
CONTROL 14	Α	9	n/a	n/a	no
CONTROL 15	Α	9	n/a	n/a	no
CONTROL 16	Α	11	n/a	n/a	no
CONTROL 17	Α	12	n/a	n/a	no
CONTROL 18	А	13	n/a	n/a	no
CONTROL 19	Α	15	n/a	n/a	no
CONTROL 20	А	18	n/a	n/a	no
DMD1	Α	5	Prednisolone	Intermittent	Deletion exons 49-52
DMD2	Α	5	Prednisolone	Daily	Deletion exon 51
DMD3	Α	5	No	n/a	Deletion exons 46-48
DMD4	Α	5	Prednisolone	Intermittent	Deletion exons 48-50
DMD5	Α	5	Prednisolone	Every other day	Deletion exons 48-52
DMD6	Α	6	Prednisolone	Every other day	Deletion exons 45-52
DMD7	Α	6	Prednisolone	Intermittent	Deletion exons 49-50
DMD8	A	6	Prednisolone	Daily	Deletion exons 52-54
DMD9	A	6	Prednisolone	Intermittent	Deletion exons 14-43
DMD10	A	7	Prednisolone	Intermittent	Deletion exon 45
DMD11	A	7	Prednisolone	Daily	Deletion exons 48-50
DMD12	A	7	Deflazacort	Daily	Deletion exons 45-52
DMD13	Α	7	Prednisolone	Daily	Deletion exons 46,47,48,49
DMD14	А	8	Prednisolone	Intermittent	Deletion exons 45-54
DMD15	А	8	Prednisolone	Intermittent	Deletion exons 49-50
DMD16	Α	8	Prednisolone	Intermittent	Deletion exons 42-43
DMD17	Α	8	Prednisolone	Daily	Deletion exon 51

S1 Table. Demographic and clinical characteristics of the samples used for profiling and validations.

DMD18	А	8	Prednisolone	Daily	Deletion exon 45
DMD19	Α	8	Prednisolone	Daily	Deletion exons 53-54
DMD20	Α	8	Prednisolone	Daily	Deletion exons 45-52
DMD21	Α	8	Prednisolone	Daily	Deletion exon 43
DMD22	Α	9	Prednisolone	Intermittent	Deletion exons 54-52
DMD23*	Α	9	Prednisolone	Daily	Deletion exons 51-54
DMD24	Α	9	Prednisolone	Daily	Deletion exon 51
DMD25	Α	10	Deflazacort	Daily	Deletion exons 45-52
DMD26	Α	10	Deflazacort	Daily	Deletion exons 45-52
DMD27	Α	10	Prednisolone	Intermittent	Deletion exons 42-43
DMD28	Α	11	Prednisolone	Daily	Deletion exons 49-50
DMD29	Α	11	Prednisolone	Intermittent	Stop mutation exon 19
DMD30	Α	12	Prednisolone	Intermittent	Deletion exon 44
DMD31	A 🧹	14	Prednisolone	Intermittent	Duplication exons 49-50
DMD32	А	14	Prednisolone	Daily	Deletion exons 48-54
DMD33	NA	10	Prednisone	Daily	Deletion exons 45-50
DMD34	NA	11	Prednisone	Daily	Deletion exons 45-50
DMD35	NA	11	Prednisolone	Every other day	Deletion exon 50
DMD36	NA	12	Prednisone	Daily	Deletion of exons 30-50
DMD37	NA	12	No	n/a	Deletion exons 46-48
DMD38	NA	12	No	n/a	Deletion exon 46
DMD39	NA	12	No	n/a	Deletion exons 46-52
DMD40	NA	12	Deflazacort	Intermittent	Deletion exons 46-49
DMD41	NA	13	Prednisolone	Intermittent	Deletion exons 48-50
DMD42	NA	13	Deflazacort	Intermittent	Deletion exon 53
DMD43	NA	13	Deflazacort	Intermittent	Point mutation exon 44
DMD44*	NA	13	Deflazacort	Daily	Deletion exons 48-50
DMD45	NA	14	Prednisolone	Intermittent	Deletion exon 45
DMD46	NA	15	Prednisolone	Intermittent	Deletion exon 44
DMD47	NA	15	Prednisolone	Intermittent	Deletion exons 46-51
DMD48	NA	15	No	n/a	Deletion exons 46-55
DMD49	NA	15	Prednisone	Daily	Deletion exons 45
DMD50	NA	15	Prednisolone	Intermittent	Deletion exons 48-52
DMD51	NA	16	Prednisolone	Intermittent	Deletion exon 51
DMD52	NA	16	No	n/a	Deletion exon 52
DMD53	NA	17	Deflazacort	Daily	Deletion exons 49-52
DMD54	NA	18	Prednisone	Daily	Deletion exons 45-52
DMD55	NA	18	No	n/a	Deletion exons 48-52
DMD56	NA	19	Prednisone	Daily	Deletion exon 53

A=ambulant patients, NA= non-ambulant patients, Intermittent =administered every 10 days, n/a= not applicable, * samples used only for profiling

S2 Table. Exosomal microRNAs tested.

miRNA	Target sequence	miRNA	Target sequence
hsa-let-7a-5p	UGAGGUAGUAGGUUGUAUAGUU	hsa-miR-106a-5p	AAAAGUGCUUACAGUGCAGGUAG
hsa-let-7b-5p	UGAGGUAGUAGGUUGUGUGGUU	hsa-miR-106b-5p	UAAAGUGCUGACAGUGCAGAU
hsa-let-7d-3p	CUAUACGACCUGCUGCCUUUCU	hsa-miR-107	AGCAGCAUUGUACAGGGCUAUCA
hsa-let-7d-5p	AGAGGUAGUAGGUUGCAUAGUU	hsa-miR-125b-5p	UCCCUGAGACCCUAACUUGUGA
hsa-let-7e-5p	UGAGGUAGGAGGUUGUAUAGUU	hsa-miR-126-3p	UCGUACCGUGAGUAAUAAUGCG
hsa-let-7f-5p	UGAGGUAGUAGAUUGUAUAGUU	hsa-miR-128-3p	UCACAGUGAACCGGUCUCUUU
hsa-let-7g-5p	UGAGGUAGUAGUUUGUACAGUU	hsa-miR-133a-3p	UUUGGUCCCCUUCAACCAGCUG
hsa-let-7i-5n	UGAGGUAGUAGUUUGUGCUGUU	hsa-miR-135h-5n	
hsa-miR-10a-5n	UACCCUGUAGAUCCGAAUUUGUG	hsa-miR-141-3n	
haa miD 10h 5n	TIA CONTRACA A COCA A TITUCHO	hee miD 145 5n	CHCCACHINICCCACCAANCCCH
hsa-miR-15a-5p	UAGCAGCACAUAAUGGUUUGUG	hsa-miR-148a-3p	UCAGUGCACUACAGAACUUUGU
hsa-miR-15b-5p	UAGCAGCACAUCAUGGUUUACA	hsa-miR-148b-3p	UCAGUGCAUCACAGAACUUUGU
hsa-miR-16-5p	UAGCAGCACGUAAAUAUUGGCG	hsa-miR-149-5p	UCUGGCUCCGUGUCUUCACUCCC
hsa-miR-17-5p	CAAAGUGCUUACAGUGCAGGUAG	hsa-miR-151a-5p	UCGAGGAGCUCACAGUCUAGU
hsa-miR-20a-5p	UAAAGUGCUUAUAGUGCAGGUAG	hsa-miR-181a-5p	AACAUUCAACGCUGUCGGUGAGU
hsa-miR-21-5p*	UAGCUUAUCAGACUGAUGUUGA	hsa-miR-187-3p	UCGUGUCUUGUGUUGCAGCCGG
hsa-miR-22-3p*	AAGCUGCCAGUUGAAGAACUGU	hsa-miR-191-5p	CAACGGAAUCCCAAAAGCAGCUG
hsa-miR-22-5p	AGUUCUUCAGUGGCAAGCUUUA	hsa-miR-193b-3p	AACUGGCCCUCAAAGUCCCGCU
hsa-miR-23a-3p	AUCACAUUGCCAGGGAUUUCC	hsa-miR-195-5p	UAGCAGCACAGAAAUAUUGGC
hsa-miR-23b-3p*	AUCACAUUGCCAGGGAUUACC	hsa-miR-197-3p	UUCACCACCUUCUCCACCCAGC
hsa-miR-24-3p	UGGCUCAGUUCAGCAGGAACAG	hsa-miR-200a-3p	UAACACUGUCUGGUAACGAUGU
hsa-miR-25-3p	CAUUGCACUUGUCUCGGUCUGA	hsa-miR-200b-3p	UAAUACUGCCUGGUAAUGAUGA
hsa-miR-26a-5p	UUCAAGUAAUCCAGGAUAGGCU	hsa-miR-200c-3p	UAAUACUGCCGGGUAAUGAUGGA
hsa-miR-26b-5p	UUCAAGUAAUUCAGGAUAGGU	hsa-miR-203a	GUGAAAUGUUUAGGACCACUAG
hsa-miR-27a-3p	UUCACAGUGGCUAAGUUCCGC	hsa-miR-204-5p	UUCCCUUUGUCAUCCUAUGCCU
hsa-miR-27b-3p	UUCACAGUGGCUAAGUUCUGC	hsa-miR-210-3p	CUGUGCGUGUGACAGCGGCUGA
hsa-miR-29a-3p	UAGCACCAUCUGAAAUCGGUUA	hsa-miR-221-3p	AGCUACAUUGUCUGCUGGGUUUC
hsa-miR-29b-3p	UAGCACCAUUUGAAAUCAGUGUU	hsa-miR-222-3p	AGCUACAUCUGGCUACUGGGU
hsa-miR-29c-3p*	UAGCACCAUUUGAAAUCGGUUA	hsa-miR-301a-3p	CAGUGCAAUAGUAUUGUCAAAGC
hsa-miR-30a-5p	UGUAAACAUCCUCGACUGGAAG	hsa-miR-342-3p	UCUCACACAGAAAUCGCACCCGU
hsa-miR-30b-5p	UGUAAACAUCCUACACUCAGCU	hsa-miR-365a-3p	UAAUGCCCCUAAAAAUCCUUAU
hsa-miR-30c-5p	UGUAAACAUCCUACACUCUCAGC	hsa-miR-375	UUUGUUCGUUCGGCUCGCGUGA
hsa-miR-30d-5p	UGUAAACAUCCCCGACUGGAAG	hsa-miR-378a-3p	ACUGGACUUGGAGUCAGAAGGC
hsa-miR-30e-3p	CUUUCAGUCGGAUGUUUACAGC	hsa-miR-423-3p	AGCUCGGUCUGAGGCCCCUCAGU
hsa-miR-30e-5p	UGUAAACAUCCUUGACUGGAAG	hsa-miR-423-5p	UGAGGGGCAGAGAGCGAGACUUU
hsa-miR-31-3p	UGCUAUGCCAACAUAUUGCCAU	hsa-miR-425-5p	AAUGACACGAUCACUCCCGUUGA
hsa-miR-31-5p	AGGCAAGAUGCUGGCAUAGCU	hsa-miR-429	UAAUACUGUCUGGUAAAACCGU
hsa-miR-34a-5p	UGGCAGUGUCUUAGCUGGUUGU	hsa-miR-500a-5p	UAAUCCUUGCUACCUGGGUGAGA
hsa-miR-92a-3p	UAUUGCACUUGUCCCGGCCUGU	hsa-miR-532-5p	CAUGCCUUGAGUGUAGGACCGU

hsa-miR-93-5p	CAAAGUGCUGUUCGUGCAGGUAG		
hsa-miR-99a-5p	AACCCGUAGAUCCGAUCUUGUG		
hsa-miR-99b-5p	CACCCGUAGAACCGACCUUGCG		
hsa-miR-101-3p	UACAGUACUGUGAUAACUGAA		
hsa-miR-103a-3p*	AGCAGCAUUGUACAGGGCUAUGA		

hsa-miR-574-3p	CACGCUCAUGCACACACCCACA		
hsa-miR-582-5p	UUACAGUUGUUCAACCAGUUACU		
hsa-miR-598-3p	UACGUCAUCGUUGUCAUCGUCA		
hsa-miR-660-5p	UACCCAUUGCAUAUCGGAGUUG		
* Validated miRNAs			

* Validated miRNAs

microRNA Predicted target genes from DIANA miRPath		p-value	KEGG pathway
	ITGB8, THBS1, COL5A2, CD47	1.05E-11	ECM-receptor interaction
	ERBB2, ITGB8, THBS1, BCL2, EGFR, PTK2, PIK3R1, PDGFD, VEGFA, PTEN, COL5A2	2.12E-06	Focal adhesion
	ERBB2, EGFR, PTK2, MYC, PIK3R1	2.31E-06	ErbB signaling pathway
hsa-miR-21-5n	TGFBR1, ZFYVE16, MYC, TGFB2, TGFBR2, BMPR2	8.30355E-05	TGF-beta signaling pathway
пза-шік-21-эр	TSC1, PIK3R1, RPS6KA3, VEGFA, PTEN, RRAGC	0.000527381	mTOR signaling pathway
	BID, BCL2, APAFI, PIK3R1, FAS	0.007398499	Apoptosis
	TGFBR1, EGFR, MAP3K1, RASA1, RASGRP1, MYC, DUSP8, FAS, RPS6KA3, TGFB2, MAP3K2, RASGRP3, MKNK2, TGFBR2	0.0173412	MAPK signaling pathway
	SP1, BMP7	8.30355E-05	TGF-beta signaling pathway
hsa-miR-22-3p	PRKACA	0.007398499	Apoptosis
	PRKACA	0.0173412	MAPK signaling pathway
hsa-miR-23b-3p	STAT5B	2.31E-06	ErbB signaling pathway
	COL3A1, COL4A2, COL1A1, COL1A2, LAMC1, Col6a2, COL4A1	1.05E-11	ECM-receptor interaction
hsa-miR-29c-3p	COLIAI, COLIAI, JUN, COLIAZ, COLIAI, COLIA2, LAMCI, AKT3, Col6a2, VEGFA, COL4A1	2.12E-06	Focal adhesion
	AKT2, JUN,AKT3	2.31E-06	ErbB signaling pathway
	AK2, AKT3, VEGFA	0.000527381	mTOR signaling pathway
	BCL2, AK2, AK3	0.007398499	Apoptosis
	AKT2, JUN, AKT3	0.0173412	MAPK signaling pathway
	ITGA2	1.05E-11	ECM-receptor interaction
	BCL2, ZYX, ITGA2	2.12E-06	Focal adhesion
	ABL2, RPS6KB1	2.31E-06	ErbB signaling pathway
hsa-miR-103a-3p	ACVR2B, SMAD7, RPS6KB1	8.30355E-05	TGF-beta signaling pathway
	RPS6KB1	0.000527381	mTOR signaling pathway
	FGF2, MAP3K7	0.007398499	Apoptosis
	FGF2, MAP3K7	0.0173412	MAPK signaling pathway

S3 Table. Predicted target genes of the candidate microRNAs.