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Co-regulation of IP3 receptors (IP3Rs) by IP3 and cytosolic Ca
2+

 allows them to mediate 

regenerative signals, amongst which are Ca
2+

 puffs. These reflect the near-simultaneous 

opening of a few IP3Rs within a small cluster. A long-standing conundrum is the 

observation that while most IP3Rs appear to be mobile, Ca
2+

 puffs repeatedly initiate 

from a limited number of fixed sites. Using gene-editing to attach GFP to endogenous 

IP3Rs in HeLa cells has allowed the distribution of IP3Rs and the Ca
2+

 signals they 

evoke to be imaged simultaneously. This approach shows that most endogenous IP3Rs 

are loosely assembled into small clusters, most of which are mobile. However, the Ca
2+

 

puffs evoked by histamine or photolysis of caged IP3 invariably initiated at immobile 

IP3R clusters adjacent to the plasma membrane (PM). Hence, only a small fraction of 

cellular IP3Rs are ‘licensed’ to respond. The licensed IP3R clusters sit alongside the sites 

where store-operated Ca
2+

 entry (SOCE) occurs, suggesting that the IP3Rs may allow 

local regulation of SOCE. 
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INTRODUCTION 

Inositol 1,4,5-trisphosphate receptors (IP3Rs) and their cousins, the ryanodine receptors 

(RyRs), are the largest of all ion channels. Each forms a large-conductance Ca
2+

 channel with 

relatively weak selectivity for Ca
2+

 over K
+
 (Van Petegem 2014, Foskett et al. 2007). Both of 

these major families of intracellular Ca
2+

 channels are expressed predominantly within the 

endoplasmic or sarcoplasmic reticulum (ER or SR), where the functional channel is 

assembled from four closely related subunits. For IP3Rs, the channel can comprise four 

identical subunits or a mixture drawn from the products of the three IP3R genes and their 

splice variants (Joseph et al. 2000). RyRs are invariably homomeric. The IP3R subtypes differ 

in their expression between cell types, in their subcellular distributions, their association with 

accessory proteins and in their affinities for IP3 and modulation by additional intracellular 

signals (Prole & Taylor 2016). The subtypes may also fulfil different biological roles. 

However, the similarities between IP3R subtypes are more striking than the differences. The 

most important of the shared features is the co-regulation of all IP3Rs by IP3 and cytosolic 

Ca
2+

: both ligands are required for the IP3R channel to open. The simplest scheme envisages 

that binding of IP3 primes IP3Rs to bind Ca
2+

, with Ca
2+

 binding then triggering channel 

gating (Fig. 1A). This interplay is important because it endows IP3Rs with a capacity to 

amplify, through Ca
2+

-induced Ca
2+

 release (CICR), the Ca
2+

 signals evoked by IP3Rs or 

other Ca
2+ 

channels. Higher concentrations of cytosolic Ca
2+

 inhibit IP3Rs. There is, 

therefore, a biphasic dependence of IP3R gating on cytosolic Ca
2+

 concentration: low Ca
2+ 

concentrations are stimulatory, while higher concentrations inhibit. RyRs are also 

biphasically regulated by cytosolic Ca
2+

 (Van Petegem 2016). It is worth noting, since the 

observations are still cited, that it had been suggested that IP3R2 and IP3R3 were not 

biphasically regulated by cytosolic Ca
2+

 (Hagar et al. 1998, Ramos-Franco et al. 1998). 

However, subsequent work established that all IP3Rs are biphasically regulated by cytosolic 

Ca
2+

 (Foskett et al. 2007, Taylor & Tovey 2012), although there are subtle differences 

between IP3R subtypes in the interplay between IP3 and Ca
2+

.  

 The structural basis of IP3R activation has been most explored for IP3R1, but the 

considerable amino acid sequence similarity between IP3R subtypes suggests that the 

mechanisms of activation are likely to be similar for all subtypes. Indeed, the basic 

architecture of the activation mechanisms is probably similar for IP3Rs and RyRs (Seo et al. 

2012, Van Petegem 2016). For IP3Rs, activation begins when IP3 binds to the clam-like IP3-

binding core (IBC), which lies towards the N-terminal of the primary sequence of each 

subunit (Fig. 1B). The IBCs of all four subunits must bind IP3 before the channel can open 
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(Alzayady et al. 2016). The 4- and 5-phosphate groups of IP3, which are essential features of 

all IP3R ligands, interact with basic residues lining opposite sides of the inner surface of the 

clam (Bosanac et al. 2002). This allows IP3 binding to partially close the clam. Since one side 

of the clam, the α-domain, adheres tightly to the N-terminal domain of the IP3R (the so-called 

suppressor domain, SD), clam closure causes movement of the SD. We suggest that this 

movement weakens interactions between IP3R subunits, leading ultimately to channel gating 

(Seo et al. 2012). However, details of the structural links between the initial conformational 

changes around the IBC and SD, Ca
2+

 binding, and dilation of the pore that allows Ca
2+

 to 

pass from the ER into the cytosol, are not yet resolved. A major step towards revealing these 

details is the cryo-EM structure of IP3R1 in a closed state (Fan et al. 2015). A notable feature 

of this structure, which may point the way towards a gating mechanism, is the rod-like α-

helical C-terminal domain, which extends directly from TMD6, through a perpendicular 

linking domain, to make contact with the SD of an adjacent subunit (Fan et al. 2015). 

 The most pertinent points for subsequent discussion are the obligate co-regulation of IP3Rs 

by IP3 and cytosolic Ca
2+

; the large Ca
2+

 conductance of IP3Rs (Foskett et al. 2007); the large 

size of an IP3R (11,000 residues, ~1.2 MDa) with its mushroom-like cytosolic region 

extending some 20 nm from the ER membrane (Fan et al. 2015); and the observation that 

neither RyRs nor IP3Rs are randomly distributed within intracellular membranes (Franzini-

Armstrong 2018, Thillaiappan et al. 2017, Jayasinghe et al. 2018). 

 

RECRUITMENT OF CA
2+

 SIGNALS BY IP3-REGULATED CICR 

High-resolution optical imaging, first with confocal microscopy and then with total internal 

reflection fluorescence microscopy (TIRFM), has revealed the subcellular organization of 

IP3-evoked Ca
2+

 signals in cells loaded with a fluorescent Ca
2+

 indicator and EGTA to 

restrain the regenerative propagation of Ca
2+

 signals by CICR (Bootman et al. 1997, Wiltgen 

et al. 2010, Parker & Smith 2010). These ‘optical patch-clamp’ methods resolve the brief 

openings of individual IP3Rs (as ‘Ca
2+

 blips’); the co-ordinated opening of several (typically 

fewer than 10) IP3Rs within small clusters (‘Ca
2+

 puffs’); and the regenerative propagation of 

intracellular Ca
2+ 

waves, which initiate more frequently as the IP3 concentration increases 

(Smith & Parker 2009, Thurley et al. 2014). This hierarchy of Ca
2+

 release events is assumed 

to arise from CICR as higher concentrations of IP3 progressively prime more IP3Rs to 

respond to Ca
2+

 diffusing to them from nearby active IP3Rs (Fig. 1C). The functional 

significance of the hierarchy comes from the changing nature of the Ca
2+

 signals as the 

stimulus intensity increases, and the opportunities that provides for encoding Ca
2+

 signals in 
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both spatial and temporal domains. Hence, the Ca
2+

 signal evolves from large focal increases 

in cytosolic [Ca
2+

] delivered to targets adjacent to IP3Rs, to a global signal that can activate 

more remote targets, and these global signals can encode stimulus intensity in the frequency 

of the resulting Ca
2+

 spikes (Thurley et al. 2014). The extent to which IP3-evoked Ca
2+

 

signals are amplified by this CICR mechanism, and so progress through the hierarchical 

pathway, depends on both the concentration of IP3 and the separation of IP3Rs. 

 Where Ca
2+

 blips have been resolved, they arise from sites that appear either immobile or 

to move with diffusion coefficients (D = 0.003 µm
2
s

-1
) (Wiltgen et al. 2010) at least ten-times 

slower than those of IP3Rs determined from fluorescence recovery after photobleaching 

(FRAP) or single-particle tracking of tagged IP3Rs (Smith et al. 2014, Thillaiappan et al. 

2017). It is not yet clear whether Ca
2+

 blips arise from lone IP3Rs or from IP3Rs within 

clusters that fail to ignite the activity of their neighbours. Ca
2+

 puffs also initiate at sites that 

remain immobile for many minutes (Wiltgen et al. 2010, Bootman et al. 1997, Keebler & 

Taylor 2017, Thillaiappan et al. 2017). The pioneering studies of IP3R puffs suggested there 

were no more than a handful of initiation sites per cell (Bootman et al. 1997, Smith et al. 

2014, see Smith & Parker 2009), but recent work suggests they may be more abundant with 

perhaps a hundred sites per cell (Keebler & Taylor 2017). Nevertheless, it is clear that Ca
2+

 

puffs repeatedly initiate at sites that remain immobile for many minutes, and which include 

only a small fraction of the total complement of IP3Rs. There is, therefore, a conundrum in 

that most IP3Rs (typically ~70%) appear to be mobile, yet IP3-evoked Ca
2+

 signals initiate at 

fixed sites, leading Parker and his colleagues to speculate that anchoring of immobile IP3Rs 

into clusters may prime them to respond to IP3 (Parker & Smith 2010, Smith et al. 2014). To 

gain further insight into this problem, we used gene-editing to attach enhanced green 

fluorescent protein (GFP) to the endogenous IP3R1 of HeLa cells (Thillaiappan et al. 2017). 

We demonstrated that all IP3R1s, the major subtype in HeLa cells, were tagged with GFP, the 

tagged IP3R1s were functional and assembled with other IP3R subtypes, and they were 

expressed in clusters within ER membranes. Subsequent sections of this short review focus 

on our analyses of these tagged endogenous IP3Rs insofar as they illuminate our 

understanding of the relationship between the geography of IP3Rs and the Ca
2+

 signals they 

elicit. 

 

WHAT IS AN IP3 RECEPTOR CLUSTER? 

Functional analyses of Ca
2+

 puffs (Dickinson et al. 2012), single-particle tracking of over-

expressed mEos2-IP3R1 (Smith et al. 2014) and patch-clamp recordings from the outer 
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nuclear envelope (Rahman et al. 2009, Vais et al. 2011, Rahman et al. 2011) suggest that 

typical puff sites are likely to include 2-9 functional IP3Rs. There is, however, considerable 

heterogeneity in the number of active IP3Rs, both between sites and between successive Ca
2+

 

puffs at the same site (Smith & Parker 2009). This suggests that not all IP3Rs within a cluster 

are recruited during each Ca
2+

 puff.  

 Our single-step photobleaching analyses of endogenous GFP-IP3R1 in HeLa cells suggest 

that most IP3Rs form clusters, with up to ~40 IP3Rs in each, and a mean of ~8 IP3Rs per 

cluster (Thillaiappan et al., 2017) (Fig. 2A). The dimensions of a cluster, typically several 

100 nm across, are similar to the dimensions estimated from a single-particle tracking 

analysis (~400 nm) (Smith et al. 2014). These small IP3R clusters, which we suggest may be 

the elementary structural units of IP3R signalling, are expressed throughout the cell. A 

surprising observation is the apparent independence of each cluster. There is no evident 

mixing of IP3Rs between mobile and immobile clusters, and we observe clusters apparently 

moving past each other without losing their identities. Hence, once IP3Rs are assembled into 

a cluster, it seems to be a long-lasting relationship. Super-resolution analyses of the 

distribution of IP3Rs within clusters suggests that many of the component IP3Rs are too far 

apart to interact with each other directly (Fig. 2A). We suggest, therefore, that IP3R clusters 

are loose confederations held together by scaffolding complexes that might involve cytosolic 

or ER proteins, lipid microdomains, or contacts between ER and other organelles (Fig. 2A). 

The notion that IP3Rs might be relatively loosely distributed within their stable clusters sits 

comfortably with several features of Ca
2+

 puffs. Firstly, although the rising phase of Ca
2+

 

puffs is usually very brisk, consistent with rapid recruitment of closely spaced IP3Rs, it is 

sometimes possible to discern steps in the rising phase, suggestive of a looser coupling 

(Smith & Parker 2009). Secondly, and notwithstanding the blurring of signals as Ca
2+ 

diffuses 

away from IP3Rs, the dimensions of Ca
2+

 puffs (~500 nm) are much larger than needed to 

accommodate ten or fewer IP3Rs (each ~20 nm across). Thirdly, although puff sites are 

immobile, the peak of the Ca
2+

 signal wanders by up to 300 nm within the site during a puff 

(Wiltgen et al. 2010), suggesting that active IP3Rs may be as much as 300 nm apart. Finally, 

even the most mobile of Ca
2+

 blips (D = 0.003 µm
2
s

-1
) (Wiltgen et al. 2010), which may 

represent IP3Rs within clusters that fail to ignite a Ca
2+

 puff, would be expected to move only 

about 35 nm during the typical duration of a Ca
2+

 puff (i.e. well within the confines of the 

loose cluster). Hence, we suggest that most IP3Rs, whether mobile or immobile, are corralled 

into loose confederations by scaffolding complexes that typically hold ~8 IP3Rs in a long-

lasting relationship. 
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 We concluded from our previous patch-clamp analyses of IP3Rs in the outer nuclear 

envelope, which is continuous with the ER, that low concentrations of IP3 cause IP3Rs to 

assemble into small clusters (Rahman et al. 2009, Rahman et al. 2011). Others have 

challenged this conclusion by suggesting that IP3R clusters assemble without the need to 

increase the intracellular IP3 concentration (Vais et al. 2011, Smith et al. 2009b), and our 

results from HeLa cells also show that stable IP3R clusters are present in unstimulated cells 

(Thillaiappan et al. 2017). How might these observations be reconciled? It may be that the 

nuclear envelope is not an appropriate model for the ER, or basal levels of IP3 may be 

sufficient to ensure assembly of IP3R clusters in unstimulated cells (Smith et al. 2009b). 

However, a more attractive possibility, which we have yet to address experimentally, is that 

most IP3Rs are already assembled into loose corrals in unstimulated cells, and IP3 then 

promotes tighter clustering within the corral. Although preliminary analyses failed to provide 

support for this scheme (Smith et al. 2014), it deserves closer attention since such local 

‘huddling’ would not increase the size of each pre-formed cluster, but it would be expected to 

improve the CICR-mediated recruitment of IP3Rs within a cluster. Hence, IP3 might initiate 

Ca
2+

 puffs by stimulating gating of IP3Rs and by enhancing CICR by causing loosely pre-

clustered IP3Rs to huddle. 

 

CA
2+

 PUFFS OCCUR AT IMMOBILE IP3 RECEPTOR CLUSTERS NEAR THE 

PLASMA MEMBRANE 

Both direct measurements, using FRAP (Fukatsu et al. 2004, Pantazaka & Taylor 2011, 

Ferreri-Jacobia et al. 2005) or single-particle tracking (Smith et al. 2014, Thillaiappan et al. 

2017), and evidence that stimuli can regulate IP3R clustering (Wilson et al. 1998, Tateishi et 

al. 2005, Iwai et al. 2005, Chalmers et al. 2006, Tojyo et al. 2008, Rahman et al. 2009, Geyer 

et al. 2015) attest to the mobility of IP3Rs within ER membranes. Typically, these studies 

suggest that most IP3Rs are mobile (mobile fractions, Mf, typically ~70%) and that most 

movement is by diffusion. A caveat remains that most such studies have observed over-

expressed IP3Rs, with the attendant risk that they may not faithfully report behaviours of 

endogenous IP3Rs. Using single-particle tracking of endogenous GFP-IP3Rs in HeLa cells to 

record the movement of IP3R clusters, we observed that most clusters (~70%) were mobile, 

while the remainder remained immobile for periods of many minutes. Within the population 

of mobile clusters, most clusters moved by diffusion (D ~0.03 µm
2
.s

-1
), but a small fraction 

of the mobile clusters (~10%) moved directionally along microtubules, driven by kinesin and 

dynein motors (Thillaiappan et al. 2017). Our results are similar to those obtained using 
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single-particle tracking of over-expressed mEos2-IP3R1, in suggesting that ~70% of IP3Rs 

are mobile, but they differ in that only we observed directional movement along 

microtubules. The difference may be due to the different cell types used or to over-expression 

of mEos2-IP3R1 masking the small number of actively moving IP3R clusters. The key points 

are that most native IP3Rs are clustered, and most of these clusters are mobile. 

 In HeLa cells, almost all Ca
2+

 puffs initiate close to the plasma membrane (PM) 

(Thillaiappan et al. 2017), consistent with similar observations in SH-SY5Y cells (Smith et 

al. 2009a). Furthermore, the pattern was similar whether the Ca
2+

 signals were evoked by 

histamine to stimulate endogenous signalling pathways, or by photolysis of caged-IP3 to 

allow uniform release of IP3 throughout the cytosol. Indeed, both we (Keebler & Taylor 

2017) and others (Lock et al. 2017) have shown that endogenous signalling pathways and 

photo-released IP3 activate the same Ca
2+

 puff sites. By simultaneously recording the Ca
2+

 

puffs evoked by IP3 and the underlying distribution of endogenous GFP-IP3Rs in HeLa cells, 

we showed that Ca
2+

 puffs initiate only at immobile clusters of IP3Rs (Thillaiappan et al. 

2017). The observation is important, because IP3R clusters are expressed throughout the cell, 

not just near the PM, and most IP3R clusters are mobile. Hence, only a small subset of the 

few thousand IP3Rs in a cell, namely those within immobile clusters adjacent to the PM, is 

‘licensed’ to respond to IP3 (Fig. 2B). There must, therefore, be an additional level of 

regulation of IP3Rs that endows them with the competence to respond to IP3. The nature of 

that regulation has yet to be resolved. 

 In addition to causing an increase in cytosolic [Ca
2+

], activation of IP3Rs also causes a 

decrease in [Ca
2+

] within the ER, and that leads to activation of store-operated Ca
2+

 entry 

(SOCE) (Hogan 2015). The core features of SOCE are now clear: they involve direct 

interactions between the ER Ca
2+

 sensor, stromal interaction molecule 1 (STIM1), and the 

PM Ca
2+

 channel, Orai1. Loss of Ca
2+

 from the luminal EF-hands of STIM1 causes STIM1 to 

cluster and expose cytosolic domains that bind to phosphatidylinositol 4,5-bisphosphate 

(PIP2) and Orai1. Binding of STIM1 to Orai opens its channel, allowing Ca
2+

 to flow into the 

cell. Hence, loss of ER Ca
2+

 causes STIM1 to be captured, through its interaction with PIP2 

and Orai, within narrow junctions where the ER and PM are no more than ~20 nm apart 

(Hogan 2015, Prakriya & Lewis 2015). Our results from HeLa cells show that the sites to 

which STIM1 translocates after loss of Ca
2+

 from the ER are immediately adjacent to (but not 

perfectly coincident with) the immobile near-PM IP3R clusters that we know to be the sites 

where Ca
2+

 puffs occur (Thillaiappan et al. 2017). Because IP3Rs project about 20 nm from 

the ER membrane (Fan et al. 2015), they may be too large to enter the narrow ER-PM 
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junctions wherein STIM and Orai interact. This physical exclusion may account for the lack 

of perfect colocalization of STIM1 with immobile IP3R clusters, but it leaves unexplained our 

observation that immobile near-PM IP3R clusters are preferentially juxtaposed to the ER-PM 

SOCE junctions (Thillaiappan et al. 2017). Future work will need to identify the tether that 

positions the licensed IP3R clusters adjacent to SOCE junctions. We can, however, speculate 

on the possible physiological significance of the juxtaposition. 

 We suggest that immobile near-PM IP3R clusters sit alongside SOCE junctions and face 

the PM (Fig. 2B). Since PIP2 recruits STIM to ER-PM junctions, we suggest that the licensed 

IP3R clusters are located immediately alongside the substrate (PIP2) from which endogenous 

signalling pathways will generate IP3. Activation of SOCE requires substantial loss of Ca
2+

 

from the ER (Brandman et al. 2007, Prakriya & Lewis 2015), yet while regulating SOCE the 

ER must also fulfil numerous additional functions, many of which require luminal Ca
2+

 

(Berridge 2002). We speculate that the positioning of licensed IP3R clusters alongside SOCE 

junctions might allow IP3R activation to locally deplete the ER and activate SOCE without 

trespassing into the other Ca
2+

-requiring functions of the ER. Finally, SOCE is acutely 

regulated by Ca
2+

 passing through the low-conductance Orai1 channel (Prakriya & Lewis 

2015). If IP3Rs, with their very large Ca
2+

 conductance, were too close to SOCE junctions, 

they might disrupt this local feedback regulation. Hence, having the licensed IP3Rs that will 

respond to IP3 alongside, rather than within, SOCE junctions may provide the best 

compromise between local regulation of SOCE by local depletion of ER Ca
2+

 stores, while 

retaining acute auto-regulation of SOCE by Ca
2+

 passing through Orai channels (Fig. 2B). 

 

CONCLUSIONS 

IP3Rs are co-regulated by IP3 and cytosolic Ca
2+

. This allows them to mediate regenerative 

intracellular Ca
2+

 signals as IP3 primes IP3Rs to respond to Ca
2+

 (Fig. 1C). Ca
2+

 puffs, which 

report the near-simultaneous opening of a small number of IP3Rs within a cluster, are the 

smallest units of these regenerative Ca
2+

 signals. Each cluster is a loose, but stable, 

confederation of a small number of IP3Rs that must be held together by an as yet unidentified 

scaffold. Most IP3R clusters are mobile, but only immobile clusters immediately adjacent to 

the PM initiate Ca
2+

 puffs. The additional signal that provides these licensed IP3Rs with 

competence to respond to IP3 is unknown. Nor is it resolved whether the large population of 

mobile IP3R clusters contributes to Ca
2+

 signals evoked by more intense stimulation. Since 

the licensed IP3R clusters sit alongside the ER-PM junctions where SOCE occurs, we 

speculate that they may contribute to local regulation of SOCE. 
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Figure 1. Hierarchical recruitment of IP3-evoked Ca
2+

 release. (A) Many receptors in the 

plasma membrane (PM) stimulate phospholipase C ( PLC), with concomitant formation of 

IP3. Binding of IP3 to each of the four subunits of a tetrameric IP3R primes the IP3R to bind 

Ca
2+

, and that Ca
2+

 binding then triggers channel gating. Co-regulation of IP3Rs by IP3 and 

Ca
2+

 endows them with the capacity to mediate IP3-regulated Ca
2+

-induced Ca
2+

 release 

(CICR). (B) IP3 binds within the clam-like cleft formed by the α- and β-domains of the IP3-

binding core (IBC), causing partial closure of the clam. This clam closure causes re-

orientation of the suppressor domain (SD) and thereby initiates channel gating. The pore of 

the channel is formed by transmembrane domains (TMD) towards the C-terminal of the 

primary sequence. Structure from Seo et al. (2012). (C) By tuning the gain on CICR by 

IP3Rs, IP3 allows hierarchical recruitment of intracellular Ca
2+

 release events. 

 

Figure 2. Immobile IP3R clusters at the PM are licensed to respond to IP3. (A) TIRFM image 

shows a portion of a HeLa cell in which endogenous IP3R1s are tagged with GFP; the ER is 

shown in red. STORM image of a single mobile IP3R cluster shows the localization of GFP-

IP3R1 in red, and the underlying TIRFM image in green. The yellow box beneath the scale 

bar shows the approximate dimensions of a single IP3R tetramer. The image shows that IP3Rs 

are often relatively loosely associated within clusters, even though individual clusters retain 

their individuality for prolonged periods. Single-step photobleaching analyses suggest that 

IP3R clusters contain variable numbers of tetrameric IP3Rs, but with a mean of ~8 

IP3Rs/cluster. Results from Thillaiappan et al. (2017). (B) We suggest that most IP3R clusters 

are mobile and inactive (red), but licensed IP3R clusters (green) are immobilized alongside 

the ER-PM junctions where SOCE occurs. This, we suggest, may allow local regulation of 

SOCE through local depletion of the ER by licensed IP3Rs, while retaining acute feedback 

regulation of SOCE activity by Ca
2+

 passing through Orai channels. See text for further 

details. 
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