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Summary  

 

 

The present thesis investigates the role of the prefrontal cortex and cholinergic modulation in 

attentional performance, and to a lesser extent, inhibitory response control, in rats. A greater 

understanding of these functions is important for the effective treatment of attentional and impulsive 

control deficits, present in a range of neuropsychiatric disorders. For this field to progress, the 

assessment of attentional performance in a similar manner across humans and animals is crucial. In 

the present thesis, attentional performance was assessed on the novel, touchscreen-based rodent 

continuous performance task (rCPT), which assesses sustained, focused attention in essentially an 

identical manner to CPTs commonly used in the clinic.  Findings were compared to performance on 

the well-characterised 5-choice serial reaction time task (5-CSRTT), which assesses sustained, 

spatial divided attention and shares some, but not all characteristics of CPTs. The series of 

experiments described in this thesis contributes to the understanding of the role of the prefrontal 

cortex and cholinergic modulation in attentional performance; they also highlight differences between 

the two tasks in behaviour, brain functions and networks. Excitotoxic lesions of the medial prefrontal 

cortex (mPFC) and a range of cholinergic systemic pharmacology validated the role of the prefrontal 

cortex and cholinergic modulation in rCPT performance. A chemogenetic study also validated the role 

of the ascending cholinergic basal forebrain system in 5-CSRTT performance. These findings support 

1. the idea of the relationship between cholinergic system activation and attentional performance to 

resemble an ‘inverted-U’ shaped function; 2. a double dissociation of mPFC sub-regions on 

attentional performance, in which the prelimbic cortex (PL) appears to play a role in rCPT 

performance, compared with a role of the anterior cingulate cortex (ACC) in 5-CSRTT performance; 

and 3. a role of ascending cholinergic projections from the basal forebrain to the ACC in 5-CSRTT 

performance. These findings also establish the development of a successful flanker distractor probe 

in rodents on the rCPT. This thesis concludes with an important comparison of the attentional and 

impulsivity measures in the rCPT compared to the 5-CSRTT, to help provide guidelines as to which 

task is most appropriate to use for particular research questions. 
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Chapter 1: General Introduction 

 

 

Attention is a complex cognitive process, disturbances of which are manifest in a range of 

neuropsychiatric and neurodegenerative disorders. The experimental assessment of attentional 

performance in humans and animals is essential to understand the mechanisms underlying normal 

and abnormal attentional, as well as the development of pro-cognitive enhancing drugs. This chapter 

will initially provide an overview of continuous performance tasks (CPTs) commonly used to assess 

attentional performance in humans. It will compare and contrast CPTs in humans with methods 

commonly used to assess attentional performance in rodents: the five-choice serial reaction time task 

(5-CSRTT), five choice-continuous performance task (5C-CPT), and the sustained attention task 

(SAT). Next, this chapter will introduce a recently developed touchscreen-based operant platform of 

cognitive assessment in rodents, which provides an opportunity for enhanced translational value of 

preclinical laboratory findings to the clinic compared to traditional methods. Specifically, it will 

introduce the novel, touchscreen-based rodent continuous performance task (rCPT), which is a direct 

analogue to human CPTs. Finally, this chapter will provide an overview of the anatomical and 

neurochemical mechanisms which have been shown to influence attentional performance, focussing 

on the role of the prefrontal cortex and cholinergic modulation and to a lesser extent, the mechanisms 

underlying impulsivity. 

 

1.1 Attentional performance and when it goes wrong 

 

Attentional performance requires a set of processes which enable organisms to detect, discriminate 

and select environmentally relevant stimuli, for higher level processing. Attention can be sub-divided 

into four interconnected types: 1) selective attention - involves focussing on a particular stimulus while 

blocking out potentially competing less relevant stimuli; 2) sustained attention - involves attending 

over a period of time; 3) divided attention - involves simultaneous attention towards two or more 

different stimuli; 4) orienting attention - involves directional or spatial orientation to a particular 

stimulus (Posner & Petersen 1990; Robertson et al. 1996). Successful attentional performance has 

been linked to executive functioning (which facilitates the planning and execution of complex 

sequences of behaviour), the capacity to perform other cognitive functions (including learning, 

memory and perception), and intellectual function (see Callahan & Terry 2015). Impairments of 

attentional performance are present in a range of neuropsychiatric and neurodegenerative disorders, 

including Alzheimer’s disease (AD) (Sahakian et al. 1993), schizophrenia (Laurent et al. 1999), 

attention deficit hyperactivity disorder (ADHD) (Biederman 2005) and depression (Brown et al. 1994). 

Such impairments reduce independence and quality of life, and place an economic burden on society. 

Therefore, there is a strong clinical and economic incentive to better understand the role of brain 

function and neural networks that underlie attentional performance, as well as for the development of 

effective pro-cognitive enhancer drugs.  
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1.2 Measuring attentional performance in humans: continuous performance tasks (CPTs) 

 

To achieve a better understanding of the role of brain function and neural networks in attentional 

performance, as well as for the development of effective pro-cognitive enhancer drugs, the accurate 

and consistent assessment of attentional performance in humans and animals is crucial. It requires 

the clinic and preclinical laboratory to work together in a tight and analogous manner, to bridge the 

translational gap. An important component of this translation is the way cognition is assessed in 

rodents, which must be done in a way that ensures findings are as relevant to the clinic as possible. 

An example where this synergy is particularly important is in the forward- and back-translation of 

findings during the process of drug development. Such successful translation is essential for the 

prevention of costly unsuccessful clinical trials. 

 

In the clinic sustained attention or ‘vigilance’ is often the key measure assessed and reported to be 

impaired in a range of neuropsychiatric and neurodegenerative disorders. It is proposed that the 

accurate assessment of sustained attention requires the successive presentation of signal and non-

signal events at a high event rate, with the inability for subjects to time events (Parasuraman et al. 

1987). Based on this, attention is most commonly assessed in humans using CPTs (Beck et al. 1956), 

which measures selective and sustained attention, and to a lesser extent inhibitory response control. 

CPTs require subjects to monitor a single location over a period of time for the detection and 

discrimination of a brief, infrequently presented, designated target stimulus (signal trial: response 

required), presented in sequence with irrelevant non-target stimuli (non-signal trial: withholding of a 

response required). The traditional version of the CPT is the X-CPT (Beck et al. 1956), originally 

developed to test for severe brain damage. The X-CPT requires subjects to detect and discriminate 

the infrequent presentation of the letter ‘X’ (signal trial) in sequence with a string of irrelevant letters 

(non-signal trial) (see figure 1.1 A).  

 

Many variants of the original X-CPT exist to challenge discriminability and cognitive load. Variants 

include: 1) manipulation of the target visual stimulus types, for example objects, people (e.g. 

Anderson et al. 1969) or words (e.g. Earle-Boyer et al. 1991); 2) manipulation of the target stimulus 

load, for example the AX-CPT, in which the target is a sequence of ‘A’ followed immediately by ‘X’, 

which increases task difficult and incorporates a working memory component (Beck et al. 1956; 

Fitzpatrick et al. 1992); 3) manipulation of the rule, for example Conners’ reverse CPT, in which ‘X’ is 

a designated non-target stimulus and a response is required to be withheld during its presentation, 

while a response is required during the presentation of any other letter (Conners et al. 1996; Conners 

et al. 2003). In addition to these variants, basic CPT parameters can also be manipulated to tax 

attentional performance further. For example, reducing the stimulus duration (e.g. Chee et al. 1989) 

and contrast (e.g. Hazlett et al. 1993), or increasing or decreasing stimulus presentation rate to 

induce a high or low event rate respectively (e.g. Beale et al. 1987).  
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CPTs provide measures of response selection in the form of hits and misses during signal trials, and 

response inhibition in the form of false alarms and correct rejections during non-signal trials. These 

measures are used to produce a key discrimination sensitivity measure (d’), as well as a response 

criterion (C parameter) by applying signal detection theory (SDT) (Nestor et al. 1990; Dudchenko et 

al. 1992; Marston et al. 1994; Steckler 2001). SDT postulates that discrimination sensitivity depends 

on the sensitivity of the subject and reflects the subject’s ability to discriminate stimuli. In contrast, the 

response criterion (the decision to respond) depends on a subject setting a criterion for responding 

that relates to the subject's response style, motivation or the strategy used in making the decision to 

respond. SDT measures are believed to be more sensitive to differences in performance on CPTs 

compared to errors of omission and commission (Lam & Beale 1991). In the clinic, CPTs have been 

shown to successfully detect attentional impairments in a range of patient populations, including 

schizophrenia (e.g. Cornblatt et al. 1989; Cornblatt & Malhotra 2001; Nieuwenstein et al. 2001; Lee & 

Park 2006), ADHD (e.g. DuPaul et al. 1992; Riccio et al. 2002; Loo et al. 2004) and AD (e.g. Perry & 

Hodges 1999; Levinoff et al. 2005; Stopford et al. 2012). 

 

1.3 Measuring attentional performance in animals  

 

1.3.1 Five-choice serial reaction time task (5-CSRTT)  

 

Attentional paradigms for rodents, developed to be translational to human CPTs, have been 

established, which comprise some features of human CPTs, however there are differences. In 

rodents, attention is most commonly assessed using the well-validated 5-choice serial reaction time 

tasks (5-CSRTT), mostly in rats (Carli et al. 1983; Robbins 2002), but also in mice (Humby et al. 1999; 

Sanchez-Roige et al. 2012) and non-human primates (Weed et al. 1999; Spinelli et al. 2004). The 5-

CSRTT is a direct analogue of the human version (Leonard 1959; Wilkinson 1963). The 5-CSRTT 

measures sustained attention, with a spatial divided element, as well as inhibitory response control, in 

the form of response inhibition during a ‘waiting period’; it also provides measures of speed of 

processing and motivation. It requires subjects to continuously monitor an array of five spatial 

apertures for the pseudorandom presentation of a brief, undifferentiated visual stimulus, and to report 

the occurrence by responding in the corresponding location as quickly as possible, to gain a reward. 

At the beginning of each trial is an inter trial interval (ITI) period, in which subjects are required to not 

respond prior to stimulus onset; if they do respond, a premature response is recorded and punished 

with 5s of darkness and no food reward is obtained. Basic 5-CSRTT parameters can be manipulated 

to tax attentional performance further by reducing the stimulus duration or brightness, manipulating 

the ITI to be shorter, longer or varied, extending the session duration, or adding white noise 

distraction during the ITI (e.g., Carli et al. 1983; Robbins 2002).  

 

The key attentional measure on the 5-CSRTT, which assess the ability to sustain spatial divided 

attention over a period of time, is choice accuracy: which is calculated by the proportion of correct 

stimulus detections divided by the total of correct and incorrect detections, expressed as a 
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percentage. Other measures include errors of omission: failing to respond to stimulus presentation in 

a restricted time period, premature responses: a response made prior to stimulus onset, considered a 

measure of impulsive responding and perseverative responses: any further responses made in an 

aperture following a response, considered a measure of compulsive responding. The 5-CSRTT was 

developed to gain a better insight into deficits shown in children with ADHD (e.g. Bizarro et al. 2004; 

Dommett 2014), but has also shown sensitivity to animal models for schizophrenia (e.g. Chudasama 

& Robbins 2004), depression (e.g. van Gaalen et al. 2003) and AD (e.g. Romberg et al. 2011); as well 

a range of pharmacological manipulations (see Robbins 2002).  

 

A key difference between the 5-CSRTT in rodents and CPTs in the clinic in terms of attentional 

performance, is that the 5-CSRTT comprises only signal trials, in which a response is required on 

each trial. In contrast, the discrimination of temporally unpredictable signals amongst and non-signal 

events (in which response inhibition is required) is a key characteristic of human CPTs and has been 

demonstrated as key for observing impairments of sustained attention in the clinic (Parasuraman 

1979). This may be due to the greater cognitive resources required by the discrimination of temporally 

unpredictable signals and/or the additional learning and execution of the go/no-go rule (Sarter et al. 

2009), in which the requirement to withhold responding during no-go trials is thought to be particularly 

relevant for studying disorders including ADHD and Tourette’s syndrome (Mackworth 1968; Eagle et 

al. 2008). The lack of non-signal trials, and resultant lack of straightforward application of SDT, may 

limit the ability of the 5-CSRTT to assess sustained attention in a manner that resembles sufficiently 

the way attention is normally measured in the clinic (Robbins 1998).   

 

A key difference between the 5-CSRTT in rodents and CPTs in the clinic in terms of impulsivity 

performance, is difference in nature of premature responses and false alarms. Impulsivity is a 

multifaceted behaviour in which broadly there are two types: response impulsivity, which is the 

inability to control or inhibit responding, and choice impulsivity, one example of this being the choice 

for small, but immediate rewards over large, but delayed rewards (Evenden 1999). On the 5-CSRTT, 

premature responses measure the ability to inhibit a pre-potent response during the ITI period, and 

has been demonstrated to operationally reflect increased response impulsivity (Muir et al. 1996; 

Harrison et al. 1997). In contrast, false alarms on CPTs measure the ability to inhibit responding 

during the presentation of a stimulus, and have also been demonstrated to operationally reflect 

increased response impulsivity (Halperin et al. 1991). Further support for CPTs to measure response 

impulsivity is derived from its characteristic of a go/no-go style paradigm (Harrison et al. 1999), which 

are well-known to measure increased impulsivity (see Eagle et al. 2008). As with CPTs, go/no-go 

paradigms require subjects to respond in the presence of a ‘go’ signal and to explicitly inhibit a 

response in the presence of a ‘no/go’ signal; this is different to premature responding, which occurs in 

the absence of a signal. However, a considerable asymmetry is the conditional discrimination 

component of go/no-go style paradigms, in which the withholding of a response during a ‘no-go’ signal 

is also rewarded, alongside responses during ‘go’ signals. It is possible that premature responses on 

the 5-CSRTT and false alarms on the rCPT may tap into a different forms of response inhibition and 
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recruit different brain functions. This is not elucidated in the present thesis, however, it is of interest 

for future experiments. 

 

1.3.2 Five–choice continuous performance task (5C-CPT)  

 

As a result of the apparent limitations in translational value of attentional aspects of the 5-CSRTT, the 

basic task was modified to include non-signal trials, and named the 5C-CPT. The 5C-CPT was 

developed initially in mice (Young et al. 2009) and rats (Barnes et al. 2012), and was later forward-

translated to humans (Young et al. 2013; McKenna et al. 2013). The 5C-CPT takes the basic 5-

CSRTT and on a smaller number of trials (non-signal trials) all five locations are illuminated and 

subjects are required to inhibit a response to receive a reward. During basic task signal trials, hits and 

misses are generated and during non-signal trials false alarms (response) and correct rejections 

(inhibition of a response) are generated. The false alarm measure allows for the assessment of 

discrimination sensitivity and response criterion by applying SDT, in a similar manner to CPTs (Riccio 

et al. 2002). The 5C-CPT has been demonstrated to be sensitive to performance deficits in 

schizophrenics (Young et al. 2013), sleep deprived subjects (van Enkhuizen et al. 2014) and an 

animal model for schizophrenia (Barnes et al. 2012). 

 

On a side note, a practical limitation of using the 5C-CPT compared to the 5-CSRTT, is the extensive 

and variable training time (for review see Bhandari et al. 2016). The 5C-CPT requires a huge five-six 

months to train (Barnes et al. 2012) requiring a great amount of experimenter time and money, 

reducing throughput. On the other hand, the 5-CSRTT is reported to take between one (Granon et al. 

2000; Bari et al. 2008) and three months to acquire (Barnes et al. 2014), depending on the rodent 

strain/model and competence of the experimenter. 

 

Although the 5C-CPT addresses the lack of non-signal trials on the 5-CSRTT, the extent to which 

signal and non-signal trials on the 5C-CPT are equivalent to signal and non-signal conditions in CPTs 

is questionable. Particularly unusual is the use in 5C-CPT of 5 lights to signal a ‘non-signal’ trial. 

Additionally, both the 5C-CPT and 5-CSRTT have other task characteristics that differ from human 

CPTs, which may limit their translational value (see table 1.1). For example, the form of attention 

assessed: the 5-CSRTT and 5C-CPT measure spatial divided attention, in which simple spatial signal 

detection of an undifferentiated visual stimulus is required; in comparison, human CPTs measure 

focused attention on stimulus 'objects', in which more complex visual discrimination of a differentiated 

visual stimulus is required. It has been speculated that the more complex demands of discrimination 

of temporally unpredictable, differentiated signals amongst and non-signal events on discrimination 

sensitivity, response criterion and processing capacity, recruit distinct cognitive/perceptual processes 

and neural pathways, including the parietal cortex and primary visual cortex (Lashley 1931; Schneider 

1969; Muir et al. 1996; Riccio et al. 2002; Ogg et al. 2008; Petruno et al. 2013). Additionally, the less 

demanding conditions of simple detection/spatial localisation requirement of the 5-CSRTT/5C-CPT 

has been reported to be less sensitive to some age and drug-related effects (Moore et al. 1992). 
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However, the 5-CSRTT has been shown to be sensitive to many other disorders, including ADHD, 

schizophrenia and AD, as well as a range of pharmacological manipulations (see Robbins 2002).  

Other differences between the 5C-CPT/5-CSRTT and human CPTs are the characteristics of the 

event rate and trial presentation nature: The 5-CSRTT/5C-CPT has a relatively long and constant ITI 

(5s), compared to CPTs, and therefore induces a lower event rate. In addition, the constant ITI, 

results in predictable stimulus presentation which has been shown to be capable of inducing 

temporally mediated strategy in rats (Cope et al. 2016; also discussed in Young et al. 2013). 

However, an advantage of the longer ITI period and lower event rate is the ability to tax and assess 

inhibitory response control in the form of premature responses. In contrast, CPTs have a more rapid 

and varied inter-stimulus interval (ISI) (e.g., 0.5-1s), which induces a higher event rate. The varied 

element also means that stimulus presentation is unpredictable and cannot be timed. Additionally, on 

the 5-CSRTT/5C-CPT, trials are often self-initiated compared to continuous, non-self-initiated trial on 

CPTs; continuous trial presentation also speeds up the task and does not allow for subjects to self-

pace. 

 

1.3.3 Sustained attention task (SAT) 

 

As with the 5C-CPT, the sustained attention task (SAT) was also developed in rats to more readily 

measure sustained attention in a similar manner to human CPTs, based on the speculated apparent 

limitation of translational value of the 5-CSRTT (McGaughy & Sarter 1995). The SAT eliminated the 

spatial divided element and included a non-signal component. It requires rats to detect and 

discriminate the pseudorandom presentation of a brief undifferentiated signal (light on) or non-signal 

(light-off) and respond at an appropriate signal-associated or non-signal-associated lever to receive a 

food reward. The basic SAT parameters can be manipulated to tax attentional performance further by 

reducing the signal duration, the addition of distraction (by flashing the house light) and increasing the 

event rate. Like human CPTs, the SAT measures false alarms, allowing for the application of SDT to 

produce measures of discrimination sensitivity and response criterion. The SAT has been shown to 

be sensitive to performance deficits in aged rats, as well as a range of pharmacological manipulations 

(Bushnell 1995; McGaughy & Sarter 1995a; McGaughy & Sarter 1995b; Rezvani et al. 2002). 

Limitations of the SAT, which may reduce the translational value of this task to the clinic, include the 

difference in nature of the non-signal trials to human CPTs; SATs require a response in the presence 

of a non-signal trial (correct rejection), whereas human CPTs require the withholding of a response. 

Additionally, the SAT lacks a complex visual discrimination element by using a simple undifferentiated 

light signal compared to more complex letters or images used in CPTs, largely based on the task 

being non-touchscreen based which restricts the ability to use differentiated stimuli.  

 

1.4 Touchscreen-based methods of cognitive assessment in rodents 

 

In the clinic CANTAB is a gold-standard digital cognitive assessment battery, originally developed at 

the University of Cambridge. It provides precise and objective measures of a range of cognitive 
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functions (Sahakian et al. 1988), and has been shown to be sensitive to detecting changes in 

neuropsychological performance following pharmacological, genetic and environmental 

manipulations, in patient and healthy populations. The cognitive processes that CANTAB assesses 

include attention, reaction time and information processing; response control and decision making; 

working, visual, verbal and episodic memory; learning and executive functioning and social and 

emotional recognition. Tests are administered on computer- and touchscreen-based apparatus in 

which subjects are presented with a range of stimuli and are required to respond at the screen. 

CANTAB includes tests analogous to the CPT and 5-CSRTT: the Rapid Visual Information 

Processing task is analogous to the CPT and has been shown to be sensitive to patient populations 

including AD and ADHD, and to pharmacological manipulations (Sahakian et al. 1989; Gau & Shang 

2010; Ni et al. 2013; Gau & Huang 2014); the Reaction Time task is analogous to the 5-CSRTT and 

has been shown to be sensitive to normal and pathological ageing, including AD (Sahakian & Coull 

1993; Robbins et al. 1994). 

 

In recent years in an attempt to enhance translation of rodent studies to the clinic and bridge the gap 

between the clinic and the preclinical laboratory, a touchscreen-based operant cognitive testing 

battery similar to CANTAB has been developed and validated in rats and mice (for review see Bussey 

et al. 2012). Tests are available for measuring executive functions (Mar et al. 2013), working memory 

and pattern separation (Oomen et al. 2013), learning and memory (Horner et al. 2013) and motivation 

and reward-related decision making (Heath et al. 2016). Similar to CANTAB, the touchscreen platform 

is automated which increases the reliability of testing and allows for objective and accurate 

behavioural output. It is non-aversive and low-stress by using appetitive reinforcers and an 

environment where stress is less likely (Joels and Baram 2009), as well as reducing interference with 

animals (and experimenter labour) (Wahlsten et al 2003a), to prevent such factors confounding 

behavioural outputs. Finally, it allows for the assessment and comparison across tasks measuring a 

range of cognitive domains in a battery-style approach, under the same experimental conditions, to 

allow investigation of the cognitive profile of an animal model. 
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Interim summary: So far this chapter has described CPTs in humans, in which sustained attention in 

assessed in the form of discrimination of temporally unpredictable signals, amongst non-signals (in 

which a response is required to be withheld). It has also described rodent assessments of sustained 

attention, based on human CPTs, and the way in which they differ to humans CPTs, which may limit 

their translational value to the clinic. For example, the well-characterised 5-CSRTT, which lacks the 

incorporation of discrimination and non-signal trials. While the 5C-CPT was developed to address the 

lack of non-signal trials on the 5-CSRTT, the extent to which signal and non-signal trials on the 5C-

CPT are equivalent to signal and non-signal trials in CPTs is questionable. Additionally, it has 

highlighted other key differences between the 5-CSRTT/5C-CPT and human CPTs. For example the 

spatial divided element of the 5-CSRTT/5C-CPT versus the focussed object element of CPTs, the 

temporal predictability of stimulus presentation on the 5-CSRTT/5-C-CPT versus temporally 

unpredictable signals on the CPT as well as differences in the characteristics of the event rate and 

trial presentation (see table 1.1). Additionally, while the SAT eliminates the spatial divided element by 

utilising a focused element and includes both signal and non-signal trials, the lack of response 

inhibition required following non-signal trials, as well as the use of a simple undifferentiated light 

stimulus on non-touchscreen based apparatus reduces the translational value of this task to the clinic. 

Taken together, it appears there is room for the development of a paradigm of attentional 

performance in rodents which incorporates more of the key characteristics of human CPTs. 

 

1.5 Rodent continuous performance task (rCPT) 

 

The recently developed touchscreen-based operant platform has provided the opportunity to develop 

a direct analogue of the human X-CPT: the rodent continuous performance task (rCPT), for rats (Mar 

et al. 2017) and mice (Kim et al. 2015). The rCPT comprises the key characteristics for measuring 

sustained attention used in humans CPTs (Parasuraman et al. 1987) (see figure 1.1B). As with 

human CPTs, the rCPT measures sustained, focused attention on stimulus 'objects'. It requires 

rodents to monitor a single response window on a touchscreen over a period of time for the detection 

and discrimination of an unpredictable, infrequently presented designated black and white patterned 

target stimulus (signal; 30% probability). On other trials, one of four non-signal stimuli are presented. 

All stimuli are of the same type and equiluminant; whether a signal or non-signal stimulus is presented 

on a given trial is determined pseudorandomly (30% signal probability). A response at the target 

stimulus is required on a signal trials to receive a food reward (response = hit, no response = miss). 

On non-signal trials, rats are required to withhold responding (no response = correct rejection, 

response = false alarm). As with human CPTs, response selection (hits and misses) and response 

inhibition (correct rejections and false alarms) measures are used to calculate the key discrimination 

sensitivity and response criterion measures by applying SDT. To date, the rCPT has been 

demonstrated in two studies to be sensitive to a range of behavioural manipulations and donepezil 

treatment in mice (Kim et al. 2015); and impairments in methylazoxymethanol (MAM) treated rats (an 

animal 'model' for schizophrenia) and a range of pharmacological manipulations including sulpiride 

and modafinil (Mar et al. 2017). An AX-CPT style task was avoided, as this requires additional 
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cognitive processes, including working memory and conditionality which can confound interpretation 

of attentional performance. 

 

 

 

 

 

Figure 1.1. Representation of the X-CPT in humans (A) and the rCPT in rodents (B). The blue circle 

represents the target stimulus: in this example the ‘X’ (A: human version) and horizontal patterned 

stimulus (B: rodent version) are target stimuli. The blue arrow represents the direction of continuous 

trial presentation. The blue cross on the screen (A: human version) and white response window 

outline (B: rodent version) represents the inter-stimulus interval. 

 

Task 

characteristic 

Human CPTs Rodent CPT 5-CSRTT 5C-CPT 

Discrimination 

type 

Visual focussed  Visual focussed  Spatial divided  Spatial divided 

Signal : non-

signal ratio 

30: 70 / 50 : 50 30: 70 100 : 0 80 : 20 

Inter-stimulus 

interval/ Inter-trial 

interval 

Varied and short 

(0.5-1s) 

Varied and short 

(2-3s) 

Constant and 

relatively long 

(5s)  

Constant and 

relatively long 

(5s) 

Trial presentation Continuous Continuous Self-initiation 

trials  

Self-initiation 

trials  

Application of 

signal detection 

theory to data 

Yes Yes No Yes 

C

L

U

F

L

U

X
L

U

L

A B 
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Table 1.1 Comparison of task characteristic between CPTs in humans and the 5-CSRTT and 5C-CPT 

in rodents. 

 

1.6 Neurochemistry and neuropsychology of attention performance 

 

This section will discuss the role of the prefrontal cortex and cholinergic modulation in attentional 

performance. Specifically, the basal forebrain cortical cholinergic system has been most strongly 

linked to the modulation of attentional performance and will be the focus of this thesis. Although the 5-

CSRTT and SAT are thought to lack some aspects of face validity to human CPTs, they have allowed 

for a wide understanding of the role of brain function and networks in attentional performance. 

 

1.6.1 The prefrontal cortex and attentional performance  

 

In primates, the dorsolateral PFC and internal granular layer, has been implicated in a range of 

cognitive and executive processes, including attentional performance (Funahashi & Kubota 1994; 

Fuster 1997; Seamans et al. 2008). The existence of the dorsolateral PFC in non-primates and the 

extent to which it is homologous to that in primates is controversial (see figure 1.2). The work of Rose, 

Woosley and Akert, determined probable homology of primate granular frontal cortex in non-primates 

based on the single anatomical criterion of dense cortical innervation from the mediodorsal thalamic 

nucleus (Rose & Woolsey 1948). However, further studies revealed that such characteristics were not 

unique to the dorsolateral PFC in primates, and in fact are widespread in the frontal lobe. As a result, 

with further studies, it was suggested that rats have a functionally divided PFC that includes 

anatomical and functional characteristics of the medial, orbital and dorsolateral PFC in primates, 

including: receiving corresponding afferents from the basal forebrain, hippocampus, amygdala and 

the mediodorsal, as well as corresponding efferents to the nucleus accumbens and caudate-putamen 

(for review see Uylings et al. 2003; see Preuss 1995 for a counter argument). These findings to some 

extent suggest cross species translation of findings, although one must keep in mind the clear 

anatomical, cytoarchitectonic, and connectivity differences between the species (see Preuss 1995; 

and Uylings et al. 2003). 

 

In the rodent mPFC the anterior cingulate cortex (ACC) has been identified dorsally, and the prelimbic 

(PL), infralimbic (IL) and medial orbital ventrally (Kolb et al. 1974; Larsen & Divac 1978; Preuss 1995; 

Uylings et al. 2003). Empirical evidence in rodents using lesions (Olton et al. 1988; Muir et al. 1996; 

Bussey et al. 1997; Birrell & Brown 2000; Delatour & Gisquet-Verrier 2000; Chudasama & Muir 2001; 

Passetti et al. 2002; Chudasama et al. 2003; Chudasama et al. 2005) and pharmacology (Granon et 

al. 2000) supports the role of the rat mPFC in attentional performance. More selective mPFC lesion 

studies in rodents have revealed that executive functions are likely executed by anatomically distinct 

and functionally interacting sub-regions of the mPFC (chapter 4 provides a more in-depth literature 

review of the functional dissociable aspects of the mPFC). Briefly, findings have predominantly 

reported a role of the dorsal mPFC (pre-genual ACC) in attentional performance and the ventral 
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mPFC (IL) in inhibitory response control on the 5-CSRTT (Muir et al. 1996; Chudasama & Muir 2001; 

Passetti et al. 2002; Chudasama et al. 2003; Chudasama et al. 2005). The PL cortex has been 

implicated in attentional performance when greater attentional resources are required (Granon et al. 

1998; Chudasama & Muir 2001); while the orbitofrontal cortex has been implicated in reversal 

learning (Chudasama & Robbins 2003).  

 

 

 

 

 

 

Figure 1.2 Schematic representation of the homology between the dorsolateral PFC in the human (A) 

and the mPFC in the rodent (B) (the black line represents the approximate section taken in image C). 

Image C displays the sub-regions of the medial PFC in the rat: the anterior cingulate cortex (aCg) 

located dorsally and the prelimbic (PL), infralimbic (IL) and orbitofrontal cortex (OFC) cortex located 

ventrally (C) (coronal view). Image taken and adapted from Bizon et al. (2012).  

 

1.6.2 The basal forebrain cortical cholinergic system and attentional performance 

 

The basal forebrain is a complex of subcortical nuclei including the medial septal nucleus, the vertical 

and horizontal diagonal band nuclei, the substantia innominata (SI) and the nucleus basalis 

magnocellularis (nbM) (Mesulam, Mufson, Levey, et al. 1983; Mesulam, Mufson, Wainer, et al. 1983; 

Zaborszky et al. 2012). The basal forebrain is one of the major hubs in the cerebral cortex in which 

cholinergic neurons reside and innervate a range of neocortical and limbic structures in both humans 

and rats (see figure 1.3) (for review see Wenk 1997). The basal forebrain cholinergic system has 

been implicated in the modulation of a range of cognitive functions, particularly learning and memory 

and attention (for reviews see Everitt & Robbins 1997; Baxter & Chiba 1999). Specifically, cholinergic 

projections from the medial septum/diagonal band to the hippocampus, known as the septo-

hippocampal pathway, have been shown to modulate aspects of learning and memory and is 

associated with memory loss and dementia (Liu et al. 1998; Stancampiano et al. 1999; Giovannini et 

al. 2001; Zarrindast et al. 2006; Roland & Savage 2009; Mayes 1995). On the other hand, cholinergic 

projections from the nbM/SI to the mPFC, known as the nbM/SI-neocortical pathway, have been 

A: Dorsolateral 

PFC in the human 

brain      

B: Medial PFC in 

the rat  

C: Components of 

medial PFC in the rat  
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shown to modulate attentional performance. This pathway will be focussed on in this thesis (chapter 5 

provides a more in depth literature review of this pathway in attentional performance).  

 

Briefly, early studies in rodents supported the basal forebrain cortical cholinergic system in the 

modulation of attentional performance by excitotoxic lesions of the basal forebrain (Robbins et al. 

1989; Muir et al. 1992; Muir et al. 1994; Muir et al. 1995). This was followed later by more 

sophisticated lesions, selectively targeting cortically projecting cholinergic neurons (via the neurotoxin 

192-IgG-saporin) of the basal forebrain and mPFC (Dalley et al. 2004), which impaired attentional 

performance on the 5-CSRTT (McGaughy et al. 2002; Risbrough et al. 2002; Lehmann et al. 2003) 

and SAT (McGaughy et al. 1996; McGaughy & Sarter 1998; Newman & McGaughy 2008). Such 

lesions have also been shown to correlate with a reduction of cortical acetylcholine (ACh) efflux on 

the 5-CSRTT (McGaughy et al. 2002). Further, it has also recently been demonstrated anatomically 

that medial and lateral portions of the nbM/SI project preferentially to the dorsal and ventral mPFC, 

respectively, suggesting that discrete projections from the nbM/SI may project to discrete regions of 

the mPFC, to influence attentional performance (see Bloem et al. 2014).   

 

Tonic and phasic cortical cholinergic system activity mediates cue detection and attentional control. 

Specifically, transient increases in ACh in the PFC mediate cue detection and the processing of task-

related cues (‘bottom-up’ processes), via a ‘sub-second phasic component’, which may also depend 

on prefrontal glutamatergic activity. In contrast, ACh mediates attentional control for the selection of 

relevant inputs and filtering of competing irrelevant inputs overtime (‘top-down’ processes), via a ‘tonic 

minute-based component’ (for review see Demeter & Sarter 2013).  
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Figure 1.3 Schematic representation of the basal forebrain cholinergic system in the human brain (A; 

image taken from Perry et al, 1999) and rat brain (B; image taken from George et al, 2006). In image 

A the human basal forebrain cholinergic neurons are displayed in red (nb = nucleus basalis, ms = 

medial septal) and pendunculopontine-lateral dorsal tegmental neurons are displayed in blue. Also 

shown are cholinergic striatal interneurons (orange), vestibular nuclei (purple), cranial-nerve nuclei 

(green circles), spinal cord preganglionic and motoneurons (yellow). In image B the rat basal forebrain 

cholinergic system (BFCS) and brainstem cholinergic system, as well as cholinergic striatal 

interneurons are displayed.  

A 

B 
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1.6.3 The cholinergic hypothesis of Alzheimer’s disease (AD) 

 

AD is the most common form of dementia and one of the largest health problems in the UK and world. 

A cholinergic hypothesis of AD was based on early studies, which found significant reductions in the 

biomarker for cholinergic neurons (choline acetyltransferase: ChAT) in dementia brains following post-

mortem analysis (Bowen et al. 1976; Davies & Maloney 1976; Perry et al. 1977); as well as a 

reduction in cortically projecting basal forebrain cholinergic neurons in the nucleus basalis of meynert 

in AD patients (homologous to the nbM in rats) (Whitehouse et al. 1981; Whitehouse et al. 1982). The 

cholinergic deficit in AD patients is strongly associated with prominent memory dysfunctions 

(Whitehouse et al. 1981; Whitehouse et al. 1982), as well as deficits of attentional performance, 

particular sustained attention, which are a core feature of AD (for reviews see Lawrence & Sahakian 

1995; Hodges 2006). As a result of the cholinergic hypothesis of AD, one of the current primary 

symptomatic treatments for mild-to-moderately severe dementia in AD are cholinesterase inhibitors, 

which act to increase the level and duration of ACh in the brain (Schneider et al. 2014; Birks 2006; 

Birks et al. 2009; Loy & Schneider 2006). Attentional deficits are particularly sensitive to improvement 

with cholinesterase inhibitors in AD patients (Sahakian et al. 1993; Foldi et al. 2005; Bentley et al. 

2008; Perry & Hodges 1999). 

 

1.6.4 Cholinergic pharmacological manipulations on attentional performance 

 

Chapter 3 and 4 provide an in depth literature review of nicotinic and muscarinic pharmacology in 

humans and animals. Briefly, the cholinergic system contains nicotinic (nAChRs) and muscarinic 

(mAChRs) acetylcholine receptors (Dale 1914), which are expressed widely within the central nervous 

system (CNS). The disruption of cholinergic signalling at these receptors in the brain has been 

suggested to modulate some of the attentional impairments present in AD and schizophrenia (Davies 

& Maloney 1976; Whitehouse et al. 1982; Guan et al. 1999; Severance & Yolken 2008; Scarr et al. 

2009; Sarter et al. 2012). An extensive range of nicotinic and muscarinic pharmacology studies in 

humans and animals support the cholinergic system in attentional performance, in a relatively 

consistent manner between species.  

 

Cholinesterase inhibitors 

 

Increasing acetylcholine in the system by the administration of cholinesterase inhibitors has reliably 

been shown to enhance attentional performance in humans with AD and mild cognitive impairment 

(MCI) (Sahakian et al. 1993; Foldi et al. 2005; Bentley et al. 2008; Perry & Hodges 1999) and in a 

range of animal models (Muir et al. 1992; Muir et al. 1994; Muir et al. 1995; Kirkby et al. 1996; 

Balducci et al. 2003; Romberg et al. 2011). Evidence for the effects of cholinesterase inhibitors on 

attentional performance in healthy humans is mixed, with some research reporting impairments 

(Bentley et al. 2008), suggesting the relationship between cholinergic system activation and 
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attentional performance may resemble an ‘inverted-U’ shaped function (see Bentley et al. 2011, also 

see chapters 3, 5 and 6 for further discussion on this).  

 

nAChRs and mAChRs agonists and antagonists 

 

The stimulation and blockade of nAChRs and mAChRs has been extensively demonstrated to 

manipulate attentional performance. Stimulation of nAChRs by the general agonist nicotine has been 

shown to improve attentional performance in humans (for reviews see: Levin 2002; Kassel 1997; 

Bentley et al. 2011) and in a range of animal models (Muir et al. 1995; Grottick & Higgins 2002; 

Grottick et al. 2003; Rezvani & Levin 2003a; Rezvani & Levin 2003b; Rezvani & Levin 2004; Rezvani 

et al. 2008). However, replication of these findings has proven difficult, and parallel increases in 

impulsivity are often reported (see chapter 3 for further discussion on this). Stimulation at selective 

nicotinic α4β2 (e.g. McGaughy et al. 1999; Grottick & Higgins 2000; Mohler et al. 2010) and α7 (e.g. 

Hayward et al. 2017), and muscarinic M1 (e.g. Uslaner et al. 2013; Vardigan et al. 2015; Lange et al. 

2015) and M4 (e.g. Brady et al. 2008; Bubser et al. 2014) has also been shown to improve attentional 

performance.  

 

On the other hand, blockade with the nAChR general antagonist mecamylamine has been shown to 

impair attentional performance in healthy and compromised humans (Gitelman & Prohovnik 1992; 

Newhouse et al. 1992; Pickworth et al. 1997; Little et al. 1998) and rats (Jones et al. 1995; Grottick & 

Higgins 2000; Stolerman et al. 2000; Rezvani et al. 2002; Hahn et al. 2016). Blockade of mAChR 

receptors by scopolamine has also been shown to impair attentional performance in healthy and 

compromised humans (Ghoneim & Mewaldt 1975; Ghoneim & Mewaldt 1977; Wesnes & Revell 1984; 

Wesnes & Warburton 1984; Sunderland et al. 1987; Sunderland et al. 1988; Molchan et al. 1992) and 

rats (Jones et al. 1995; Jones & Higgins 1995; McGaughy et al. 1996; Turchi & Sarter 1997; 

McGaughy & Sarter 1998; Mirza & Stolerman 2000; McGaughy et al. 2002; Dalley et al. 2004).  

 

1.6.5 Monoamines/catecholamines and attentional performance 

 

Although the cholinergic system is mostly widely implicated in the modulation of attentional 

performance and is thus being studied in the present thesis, the ascending monoaminergic (serotonin: 

5-HT) and catecholamine systems (noradrenaline: NA, dopamine: DA) have also been implicated in 

5-CSRTT performance. The ascending coeruleo-cortical noradrenergic system has been shown to 

influence attention. Lesions of this system impaired attentional performance on the 5-CSRTT under 

conditions of variable ITI and distraction (Carli et al. 1983; Cole & Robbins 1992). However, significant 

increases in NA efflux in the mPFC (which have been reported with ACh) has not been reported 

during basic 5-CSRTT performance (Passetti et al. 2000; Dalley et al. 2001), but were reported when 

the contingency of instrumental action was uncoupled from receiving a food reward. This suggests a 

role for the cortically projecting noradrenergic neurons from the locus coeruleus in detecting novel 

task contingencies (Dalley et al. 2001), and that the ACh and NA system likely work in a functionally 
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dissociable, but complementary manner to optimise attentional performance on the 5-CSRTT. The 

role of the ascending dopamine system in attentional function is less well established; however 

lesions of the mPFC which reduced DA and NA has been shown to impair attentional performance 

during conditions of variable and short ITIs on the 5-CSRTT (Robbins 1998). Finally, the ascending 

serotonergic system has been strongly implicated in impulsive responding in the 5-CSRTT rather than 

attention (discussed below) (Harrison et al. 1997).  

 

1.7 Neurochemistry and neuropsychology of inhibitory response control 

 

As the focus of this thesis is attentional performance, it will only touch upon the likely neural 

substrates of inhibitory response control. Lesion studies have implicated a role of the postgenual 

portion of the ACC (Muir et al. 1996), the IL cortex (Chudasama et al. 2003), the nucleus accumbens 

core (Christakou et al. 2004; Pothuizen et al. 2005), as well as connections of the medial prefrontal 

cortical-dorsal striatal system (Christakou et al. 2001) in premature responding on the 5-CSRTT (for 

review see Dalley et al. 2008). Functional imaging and lesion studies in humans have also implicated 

a role of the PFC and the frontal-striatal system in response inhibition in go/no-go paradigms (Rubia 

et al. 2001; Wager et al. 2005; Aron et al. 2007; Leimkuhler & Mesulam 1985; Aron et al. 2004; Picton 

et al. 2007; Swick et al. 2008; Vaidya et al. 1998).  

 

In terms of neuromodulation of response inhibition, ascending monoaminergic and catecholamine 

systems have been implicated, including serotonin (5-HT), dopamine (DA) and noradrenaline (NA) 

(for review see Dalley & Robbins 2017). 5-HT projections from the dorsal and median raphѐ nuclei 

has been implicated in impulse control (Soubrié 1986; for review see Winstanley et al. 2006). Further 

support for the 5-HT system in impulsive responding comes from studies reporting global reduction of 

forebrain 5-HT to increase premature responding on the 5-CSRTT (Harrison et al. 1997), and 

increase ‘no-go’ responding on a go/no-go paradigm (Harrison et al. 1999). It is likely that the 5-HT 

system may also play a role in false alarms on the rCPT, based on human studies demonstrating the 

depletion of 5-HT by tryptophan to increase impulsive responding in human CPTs and go/no-go tasks 

(LeMarquand et al. 1998; LeMarquand et al. 1999; Crean et al. 2002; Walderhaug et al. 2002). In the 

human 4-CSRTT, tryptophan depletion also significantly increased impulsive responding (Worbe et al. 

2014). However, only particular 5-HT receptors are suggested to be involved in the modulation of 

impulsive behaviour (see Evenden & Ryan 1999). Further, it has been suggested that 5-HT may 

modulate the effects of DA and that the level and balance of these two neurotransmitter systems are 

likely both involved in the manifestation of impulsive behaviour (Oades 2002). The mesolimbic 

dopamine system has also been implicated, for example, amphetamine has been demonstrated to 

increase premature responding (Cole & Robbins 1987; Cole & Robbins 1989); which was blocked 

when antagonised locally in the nucleus accumbens (Pattij et al. 2007). Additionally, rats 

characterised as ‘highly’ impulsive on the 5-CSRTT, have been observed to have lower dopamine 

D2/3 receptor availability (Dalley et al. 2007). Finally, noradrenergic projections have been implicated. 

For example, atomoxetine, a selective norepinephrine-reuptake inhibitor has also been reported to 
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increase premature responses (Robinson et al. 2008). Research into the neural substrates of false 

alarms in the rCPT is required, but beyond the scope of this thesis.  

 

1.8 Thesis outline 

 

The present thesis will investigate the role of the prefrontal cortex and cholinergic modulation in 

attentional performance, and to a lesser extent, inhibitory response control, in rats. Attentional 

performance will be assessed on the novel, touchscreen-based rCPT -- which assesses sustained, 

focused attention on stimulus 'objects', in essentially an identical manner to CPTs commonly used in 

the clinic -- to contribute to the validation of this task as a translational preclinical paradigm. Findings 

will be compared to performance on the gold standard 5-CSRTT, which assesses sustained, spatial 

divided attention to brief undifferentiated visual targets. The comparison of findings on the rCPT 

versus the 5-CSRTT will enable insight into whether there are differences manifested in behaviour, 

brain function and networks between the two tasks, to help determine if and when it may be more 

appropriate to use one over the other. 

 

This thesis will investigate the role of the prefrontal cortex and cholinergic modulation in rCPT and 5-

CSRTT performance in a number of ways: 

 

1) Targeting the cholinergic system: the cholinergic system has been extensively shown to 

modulate attentional performance in humans and animals. Chapter 3 will initially investigate a range 

of systemic pharmacological manipulations, targeting largely the  nicotinic system, but also the 

muscarinic system -- including the cholinesterase inhibitor donepezil (alone and following 

mecamylamine pretreatment; the latter to investigate the cholinergic mechanisms which may mediate 

the effects of donepezil), the nAChR agonist nicotine and the nicotinic α4β2 receptor selective agonist 

(ABT-594) -- in healthy rats, on the rCPT, compared to the 5-CSRTT. It was hypothesised that 

donepezil may improve attentional performance if the cholinergic system can be potentiated in non-

compromised subjects, or may impair, consistent with the relationship between cholinergic system 

activation and attentional performance to resemble an ‘inverted-U’ shaped function, reported in the 

human literature (see Bentley et al. 2011). It was further hypothesised that findings would be more 

pronounced on the more complex rCPT compared to the 5-CSRTT; and that mecamylamine 

pretreatment would antagonise any effects of donepezil. It was hypothesised that nicotine and ABT-

594 would impair impulsive responding on both the rCPT (false alarms) and 5-CSRTT (premature 

responses). 

 

2) Targeting the prefrontal cortex: evidence in rats has demonstrated functionally dissociable and 

interacting sub-regions of the mPFC on cognitive performance. Chapter 4 will demonstrate findings 

investigating the effects of discrete excitotoxic lesions to sub-regions of the rat mPFC -- anterior 

cingulate (ACC), prelimbic (PL) and infralimbic (IL) cortices -- in rCPT performance, compared to 

findings reported in the 5-CSRTT. It was hypothesised that lesions of the PL cortex, and to a lesser 



 

18 
 

extent the ACC, would be sensitive to attentional impairments in the rCPT, due to previous evidence 

demonstrating the role of the PL cortex on tasks requiring more complex elements of discrimination 

and temporally unpredictable signal presentation (Chudasama & Muir 2001; Granon et al. 1998); 

suggesting a double dissociation of sub-regions of the mPFC on attentional performance on the rCPT 

and 5-CSRTT. It was also hypothesised that lesions of the IL cortex would impair inhibitory response 

control (false alarms), based on a role of the IL cortex in premature responses on the 5-CSRTT 

(Chudasama et al. 2003). Lesion-induced impairments will be attempted to be remediated with a 

novel M4 PAM (VU0467154). 

 

3) Targeting the cortical basal forebrain cholinergic system: Chapter 5 will demonstrate findings 

using a novel chemogenetic technique, also known as Designer Receptors Exclusively Activated by 

Designer Drugs (DREADDs), to investigate DREADD-mediated inhibition and excitation of the cortical 

basal forebrain cholinergic system in attentional performance. This analysis aimed to provide a more 

sophisticated understanding of this system, which has previously been shown to be important, with a 

range of lesion studies, which lack the refinement and specificity of the novel DREADDs technique. I 

used the 5-CSRTT in initial studies of the DREADDs, as this has been the most investigated of all the 

rodent attentional tasks. It was hypothesised that DREADD-mediated inhibition of cortically projecting 

cholinergic neurons from the basal forebrain would impair attentional performance, particularly when 

activated directly in the ACC by microinfusion of clozapine-N-oxide (CNO), based on evidence 

reporting a predominant role of the dorsal portion of the mPFC in attentional performance on the 5-

CSRTT (Chudasama et al. 2003). For DREADD-mediated excitation it was hypothesised that if it is 

possible for the basal forebrain cholinergic system in a non-cholinergically compromised rat to be 

potentiated, attentional performance may be improved, however if it is not, such potentiation may in 

fact impair attentional performance; based on clinical evidence which has demonstrated the 

relationship between cholinergic system activation and attentional performance to resemble an 

‘inverted-U’ shaped function (see Bentley et al. 2011).  

 

 

 

 

 

 

 

 

 

 

 



 

19 
 

Chapter 2 

General methods 

 

2.1 Subjects 

 

In the following experiments 144 (Harlan, UK) and 48 (Bred in house, University of Cambridge) rats 

were used. Rats were group-housed in fours whenever possible to avoid isolation-induced stress (see 

Holson et al. 1991). Rats were singly-housed only following cannulation surgery, in order to protect 

cannulae sites in Chapter 5. Rats were housed in cages (length: 56cm x width: 38cm x depth: 22cm; 

North Kent Plastics, Leicestershire, UK) which contained a GLP cardboard ‘fun tunnel’ for enrichment 

purposes (length: 15cm x width: 8cm; LBS Biotech, Surrey, UK). Rats were held in a temperature and 

humidity-controlled room under a 12-hour alternating light/dark cycle (white lights off and red lights on 

from 07:00 – 19:00). Ad libitum access to water was available throughout all experiments. Food was 

restricted following a one week laboratory habituation period; rats were maintained at approximately 

90%, and no more than 85%, of their free-feeding body weights. Food restriction has been reported to 

induce stress and behavioural changes in rodents which can influence experimental findings 

(Heiderstadt et al, 2000). However, food restriction has also been demonstrated to be important and 

advantageous in experimental animals, and also models the human diet which is also 

healthy/restricted (see Martin et al, 2010). All experiments were regulated under the Animals 

(Scientific Procedures) Act 1986 Amendment Regulations 2012, following ethical review by the 

University of Cambridge Animal Welfare and Ethical Review Body. 

 

2.2 Rodent Continuous performance task (rCPT) 

 

2.2.1 Behavioural apparatus  

 

Experiments using the rCPT were carried out in touchscreen-based operant chambers, described 

previously (Horner et al. 2013). The rCPT was typically implemented in Campden Instruments 

chambers (figure 2.1) (Loughborough, UK). 12 chambers were controlled by ABET II (Lafayette 

Instruments Ltd, USA) and Whisker software (Cambridge Cognition, UK; Cardinal & Aitken 2010). In 

brief, chambers held a trapezoid shape (height: 30cm, width (wide end): 25cm, width (narrow end): 

13cm, depth: 35cm), had a touch-sensitive LCD computer flat screen (height: 30cm, width: 23cm) at 

the front, wider portion and a food magazine at the opposite, narrower portion, in which 45mg food 

pellets (Sandown Scientific, Middlesex, UK) were delivered from an external pellet dispenser. Infrared 

photocell beams located horizontally on the magazine entrance recorded entries to and exits from the 

magazine. The chambers featured a close-meshed metal grid floor with black Perspex walls and 

contained a house light and tone generator. Chambers were enclosed within fan-ventilated, light and 
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sound attenuating boxes. The other configuration of touchscreen-based chambers were Med 

Associates chambers (Georgia, VT, USA). 8 chambers were controlled by custom written visual 

basics software (Visual Basics 2010, written by Dr Adam Mar). These chambers had a square-like 

shape (chamber: height: 28cm, width: 25cm, depth: 28cm, touchscreen: height: 18cm, width: 25cm), a 

clear Perspex side wall and door, an aluminium back wall where the magazine was located and a 

barred grid floor. 

 

 

 

Figure 2.1 Schematic diagram of a Campden Instruments touchscreen-based chamber running the 

rCPT (image provided by Campden Instruments). 

 

2.2.2 Behavioural training 

 

Rats were trained over a series of 6 stages to sustain visual focussed attention on a single response 

window and detect, discriminate and report the brief presentation of an infrequent patterned target 

stimulus, presented in sequence with a range of non-target stimuli (figure 2.2 and table 2.1). Note that 

the rCPT was implemented with the house light off, which is consistent with the battery of other 

touchscreen-based paradigms. The training protocol has been described previously (Mar et al. 2017). 

Rats were initially habituated to the chambers for one 20 minute session in which chambers were 

powered on, with no programme running, and ten food pellets available in the magazine. Following 

habituation rats began training on stage one; rats were trained to focus on a single response window 

outlined in white (7.5 x 7.5cm), positioned central on the screen, 3.5cm above the floor grid. The 

response window was present on screen for the entire duration of sessions throughout training. Trials 

began with a varied inter-stimulus interval (ISI = 2/3s) which remained constant throughout training. 

Rats were required to detect and report the presentation of a white square stimulus (stimulus duration 
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(SD) = 10s) within a limited hold period (LH = 10.5s), which began at stimulus onset, to receive a food 

pellet (‘hit’). A hit made before the end of the SD resulted in the immediate removal of the stimulus 

from the response window, while a hit made after the SD was up, but within the LH, was carried out 

when the stimulus was no longer on screen. Following a hit, a food pellet was delivered in conjunction 

with a 1s tone and the illumination of the magazine. Trials were continuous in nature and only paused 

following a ‘hit’, in which a nose-poke to the magazine to collect the food pellet initiated the next trial. 

The entry of the rat’s nose to the magazine to collect the food pellet terminated the magazine light 

and initiated a 2s after reward pause for pellet consumption, before initiating the next trial. If a 

response was not made during the LH (‘miss’) a new trial began automatically. Any responses at the 

blank response window during the ISI re-set the ISI timer, delaying the next stimulus onset, to 

discourage inappropriate responding at the response window. The criterion for stage one was 100 hits 

within a 45 minute session. The session terminated either when 100 hits were achieved or after 45 

minutes. In stage two, the white square stimulus was replaced with the rat’s designated target 

stimulus (vertical or horizontal patterned stimulus, counterbalanced across rats) and presented for a 

shorter SD of 5s with a 5.5s LH; the same criterion as stage one applied. 

 

In stage three, rats were trained to detect, discriminate and report target stimulus presentation in 

sequence with a novel non-target stimulus (snowflake; 50/50 probability); presented for a shorter SD 

of 3s with a 3.5s LH. Rats were required to respond at the target stimulus within the LH to receive a 

food pellet (‘hit’) and to withhold responding during non-target stimulus presentation (‘correct 

rejection’). If a response was made at the non-target stimulus during the LH (‘false alarm’), the 

stimulus was immediately removed from the response window (if the SD timer was not up) and a 

correction trial loop was initiated in which a series of non-target stimuli were presented until a correct 

rejection was made. The correct trial loop delayed subsequent target stimulus presentation, to 

discourage inappropriate responding. From stage three onwards trials were uncapped and rats could 

earn up to 150 pellets within a 45 minute session -- it was not possible to earn this amount of pellets 

before 45 minutes was up -- meaning all rats tested for the full session and could not finish early. The 

criterion for stages three to six were a hit rate of ≥0.5 and d’ ≥1 (see 2.2.4 variable measurements). In 

stage four, four novel non-target patterned stimuli replaced the snowflake stimulus and were 

presented randomly and in sequence with the target stimulus (30% probability); stimuli were 

presented for 2s with a 2.5s LH and the same criterion as stage three applied. In stages five and six 

the SD and LH were reduced to 1.5s (SD) with a 2s LH and 1s (SD) with a 1.5s LH, respectively. 

When stage six criterion was achieved, rats were rested and given refresher sessions twice weekly 

until the entire cohort completed training. Most rats completed training within ~21 sessions. Once all 

rats had acquired the task they were tested for at least 3 consecutive sessions to ensure a stable 

baseline performance before any behavioural, pharmacological or surgical manipulations.  
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Figure 2.2 Flowchart of the rodent continuous performance task (rCPT). Trials began with a varied 

inter-stimulus interval (ISI). Rats were required to sustain visual, focussed attention on a single 

response window and report the brief presentation of an infrequent patterned target stimulus 

(horizontal/vertical patterned stimulus, counterbalanced), presented randomly and in sequence with a 

range of non-target stimuli (30% probability). During target stimulus presentation a response (‘hit’) or 

no response (‘miss’) occurred, the former resulting in a food pellet. During non-target stimulus 

presentation a response (‘false alarm’) or no response (‘correction rejection’) occurred. A false alarm 

resulted in a correction trial loop in which a string of non-target stimuli were presented until a correct 

rejection was achieved, delaying target stimulus presentation. A response to the response window 

during the ISI period (‘premature/perseverative response’) reset the ISI timer, to discourage 

inappropriate responding. Trials were continuous in nature and only paused following a ‘hit’, in which 
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a nose-poke to the magazine to collect the food pellet initiated the next trial. Sessions were 45 

minutes in duration, with no trial cap. 

 

Stage Stimuli SD (s) LH (s) ISI (s) Target 

probability 

Max no. 

food 

pellets 

Criterion 

(days to 

criterion) 

1  

 

 

 

10 10.5 2/3 n/a 100 Hits = 100 

(~3) 

2  

 

 

5 5.5 2/3 n/a 100 Hits = 100 

(~1) 

3  

 

 

3 3.5 2/3 50% 150 Hit rate ≥ 0.5 

d’ ≥ 1 

(~4) 

 

 

4  

 

 

 

 

 

 

 

 
  
 

2 2.5 2/3 30% 150 Hit rate ≥ 0.5 

d’ ≥ 1 

(~6) 

5 1.5 2 2/3 30% 150 Hit rate: >0.5 

d’ >1 

(~4) 

6 1 1.5 2/3 30% 150 Hit rate ≥ 0.5 

d’ ≥ 1 

(~3) 

 

Table 2.1 rCPT six stage training protocol. Rats initially learned to detect and then discriminate a 

target stimulus presented randomly and in sequence with 4 other non-target stimuli. Stimulus duration 

(SD) and limited hold (LH) reduced over training sessions whilst the varied inter-stimulus interval (ISI) 

remained the same. Rats acquired the task in ~21 sessions. In this example the horizontal patterned 

stimulus is the target stimulus. 

 

2.2.3 Probes 

 

Successful attentional function requires the ability to detect information rapidly, as well as inhibiting 

potentially distracting information. Therefore, manipulations were often implemented under 

Target 

Target 

Target 
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challenging conditions of reduced SD and/or distraction; of which have been commonly reported to 

increase attentional load and tax attentional function in humans. The rCPT reduced SD probe was 

often variable and involved sessions of 1s (stage 6 ‘baseline’ SD) intermixed with reduced SDs of 0.6 

and 0.2s.  

 

The rCPT distractor probe (figure 2.3) is a variant of the Eriksen Flanker task (Eriksen & Eriksen 

1974). Sessions involved the presentation of response-congruent and response-incongruent flanker 

distractors. Distractors were positioned on the left and right of the central response window and were 

the same size (7.5 x 7.5cm). The response windows for the distractors remained on screen 

throughout the entire session. Responses at the distractors were recorded but had no consequences; 

they were present only to guide performance. During distractor trials the stimulus duration was fixed. 

The distractors were initially positioned directly either side of the central response window and in 

matching contrast to the central response window stimuli. This was later altered so that they were 

positioned either side of the central response window, raised by half of the height of the stimulus 

(50%) and contrasted to 25%. This was found to tax attention (reduce discrimination of the target and 

non-target: d’), whilst also reducing direct contact with the distractors in the form of distractor 

responses (see appendix 1). Congruent-distractor trials involved the presentation of the same target 

or non-target stimuli as that presented in the central response window; this trial type could be easier 

as rats receive three times the signal of ‘target’ or ‘non-target’. Incongruent-distractor trials involved 

the presentation of non-target stimuli distractors on target trials (which may impair performance in the 

form of reduced hit rate and d’) and target stimuli distractors on non-target trials (which may impair 

performance in the form of increased false alarm rate and reduced d’). Within a session, congruent- 

and Incongruent-distractor trials were often intermixed with no-distractor trials, in which the distractor 

response windows remained present but with no stimuli presented. Note that correction trials following 

a false alarm, were always no-distractor trials. 
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Figure 2.3 Diagram of the distractor trial types. Two response windows were positioned either side of 

the central response window and raised by half of the height of the stimulus (50%). All response 

windows remained on screen throughout the entire session. Congruent- and incongruent-distractor 

trial types were often intermixed with no-distractor trials. Distractors were contrasted to 25% and 

responses at them had no consequences. 

 

2.2.4 Variable measurements 

 

From the number of hits and misses during target presentation a hit rate was generated; a higher hit 

rate indicating good performance (see table 2.2). From the number of false alarms and correct 

rejections during non-target presentation a false alarm rate was generated; a lower false alarm rate 

indicating good performance. Hit rate and false alarm rate alone do not provide a full representation of 

performance. For example, a high hit rate in combination with a high false alarm rate is not 

necessarily good performance and instead may indicate a general increase in responding which is 

non-selective to the target stimulus; while a lower hit rate in combination with a lower false alarm rate 

is not necessarily bad performance, and may indicate a general decrease in responding which is non-

selective to the target stimulus. To overcome this, two further variable measures were generated 

which take into account both hit rate and false alarm rate scores by applying signal detection theory 

(Frey & Colliver 1973). One of these, d’, provides a measure of discrimination sensitivity by assessing 

the ability of rats to visually discriminate between the target and non-target; a higher value indicating 

good discrimination. The other is C, which provides a measure of response bias by assessing the 

willingness of an animal to make a response in general (at both the target and non-target); a higher 

value indicating more liberal responding, a lower value indicating more conservative responding. 

 

Other measures recorded for analysis were the number of premature/perseverative responses during 

the ISI. Due to the continuous nature of the task the premature and perseverative aspects are unable 

to be pulled apart; therefore this measure was not split by SD/distraction condition for analysis. 

Measures of response speed were assessed by mean hit response latencies following hits and false 

alarm response latencies. A gross measure of motivation was provided by mean reward retrieval 

latencies. 

 

 

Table 2.2 Key variable and other measures used for statistical analysis on the rCPT. 

Key variable measures Other measures 

𝐻𝑖𝑡 𝑟𝑎𝑡𝑒 =
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠 + 𝑀𝑖𝑠𝑠𝑒𝑠
 

Premature/perseverative responses 

𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 =
𝑀𝑖𝑠𝑡𝑎𝑘𝑒𝑠

𝑀𝑖𝑠𝑡𝑎𝑘𝑒𝑠 + 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 

Hit response latency 

𝑑′ = 𝑧(𝐻𝑖𝑡 𝑟𝑎𝑡𝑒) − 𝑧(𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒) False alarm response latency 

𝐶 =
𝑧(𝐻𝑖𝑡 𝑟𝑎𝑡𝑒) + 𝑧(𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒)

2
 

Reward retrieval latency 
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2.3 5-Choice Serial Reaction Time Task (5-CSRTT) 

 

2.3.1 Behavioural apparatus  

 

Experiments using the 5-CSRTT were carried out in both touchscreen and non-touchscreen, five-hole 

operant chambers (figure 2.4), both described previously (Horner et al. 2013; Bari et al. 2008). The 

touchscreen-based operant chambers were the same Campden Instruments chambers as the ones 

described for the rCPT. A black Perspex mask was positioned in front of the screen with five holes cut 

out creating distinct response windows. Each window was 2.5cm², 0.8cm away from the screen and 

1.5cm above the grid floor. The illumination of a response window in white represented the visual 

stimulus. The five-hole operant chambers, of which there were 12, were Med Associates (Georgia, 

VT, USA), controlled by whisker software (Cambridge Cognition, UK; Cardinal & Aitken 2010). The 

chambers (height: 28cm, width: 25cm, depth: 28cm) were made of aluminium with a clear Perspex 

side wall and door. The front wall was curved in a concave manner in which 5 response apertures 

were located. Each aperture was 2.5cm², 2cm deep and 2cm above the grid floor. At the rear of the 

apertures were yellow LEDs which acted as the visual stimuli; at the aperture entrance, positioned 

horizontally, were infrared photocell beams which recorded entries. The rear wall featured the food 

magazine, in which 45mg food pellets were delivered (Sandown Scientific, Middlesex, UK). Infrared 

photocell beams located horizontally on the magazine entrance recorded entries to and exits from the 

magazine. The chambers also contained a house light and barred grid floor and were enclosed within 

fan-ventilated, light and sound attenuating boxes. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Schematic diagram of the (a) five-hole and (b) touchscreen-based 5-CSRTT chambers 

(images taken from Bari et al, (2008) and provided by Campden Instruments, respectively). 

 

2.3.2 Behavioural training 

 

Rats were trained over a series of 12 stages to sustain visual spatial, divided attention on a horizontal 

array of five apertures and detect and report the pseudo-random presentation of a brief visual 

stimulus (figure 2.5 and table 2.3). The program was implemented with the house light on in the five-

(a) (b) 
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hole and off in the touchscreen-based chambers (to be consistent with the battery of touchscreen-

based paradigms). The training protocol has been described previously (Carli et al. 1983; Bari et al. 

2008). In brief, rats were initially habituated to the chambers for one 20-minute session, in which 

chambers were powered on, with no programme running, and ten food pellets available in the 

magazine. In the five-hole chambers, two pellets were also available in each aperture; this was not 

feasible in the touchscreen-based chambers. Following habituation rats began training. Sessions 

began with the illumination of the house light (five-hole chambers only) and food magazine and the 

delivery of a food pellet. The entry of the rat’s nose to the magazine to collect the pellet terminated the 

magazine light and initiated the first trial, which began with a fixed ITI. Rats were required to detect 

the pseudo-random presentation of a visual stimulus in one of five spatial apertures and respond in 

the corresponding aperture within a fixed LH period, which begins at stimulus onset, to earn a food 

pellet (‘correct response’). Food pellets were delivered in conjunction with the illumination of the 

magazine light. Trials were continuous, and so following a correct response the entry of the rat’s nose 

to the magazine to collect a pellet terminated the magazine light and initiated the next trial. A 

response made during the ITI (‘premature response’), in a non-corresponding aperture (‘incorrect 

response’) or no response (‘omission’) resulted in a 5 second timeout (TO) period in which the house 

light was terminated (five-hole) or switched on (touchscreen-based) and no food pellet delivered, to 

discourage inappropriate responding. Following the TO period, the magazine illuminated for rats to 

nose-poke which initiated the next trial. Each training session consisted of a maximum of 100 trials, 

with each trial representing an opportunity to earn a food pellet, within a maximum of 30 minutes. 

Premature responses were deemed an incomplete trial and did not count towards the 100 trials. 

Perseverative responses were responses made in an aperture following a correct or incorrect 

response and were recorded but not punished. Over the 12 training stages the SD, LH and ITI 

reduced. In the final stage of training, stage 12 (SD: 0.5s, LH: 5s, ITI: 5s), a criterion of ≥70 percent 

accuracy and ≤20 percent omissions was required. The accuracy criterion is slightly lower than that 

reported in Bari et al. and was used due to this being the performance level most rats could acquire to 

a stable level. Most rats completed training within 50-60 sessions. Towards the end of training rats 

often completed sessions in ~20 minutes. When stage 12 was achieved rats were rested and given 

refresher sessions twice weekly until the entire cohort completed training. Once all rats had acquired 

stage 12 they were tested for at least three consecutive days to ensure a stable baseline performance 

before any behavioural, pharmacological or surgical manipulations.  
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Figure 2.5 Flowchart of the rodent touchscreen-based/five-hole 5-CSRTT. The first trial is initiated via 

a nose-poke to the magazine and begins with a fixed ITI (5s). Rats were required to sustain visual 

spatial, divided attention on a horizontal array of five spatial apertures and detect and report the 

presence of a brief visual stimulus presented pseudo-randomly. A response in the corresponding 

aperture within the LH period resulted in a food pellet delivery (‘correct response’). A response made 

prior to stimulus onset (‘premature response’), in a non-corresponding response aperture (‘incorrect 

response’) or no response (‘omission’) resulted in a TO period in which the house light was 

terminated (five-hole) or illuminated (touchscreen-based) for 5s and a food pellet was not obtained. 

Reward collection (on correct trials) initiated a new trial, while a nose-poke to the illuminated 

magazine initiated a new trial after a TO. Sessions were 30 minutes in duration, with a maximum of 

100 trials. 

 

 

 

  Stimulus (0.5s) and LH (5s) onset  

Fixed ITI (5s) 

Magazine entry initiates 

new trial, location 

pseudo-randomly 

selected   

Start 

‘Correct’ 

Food pellet 

delivered 

Collect pellet 

Time out (5s) 

‘Incorrect’ 

 

‘Omission’ 

‘Premature’ 

Stimulus offset and LH continues 
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Stage SD(s) LH(s) ITI(s) Criterion 

1 30 30 2 ≥ 30 correct 

2 20 20 2 ≥ 30 correct 

3 10 10 5 ≥ 50 correct 

4 5 5 5 ≥ 50 correct 

5 2.5 5 5 ≥ 70 percent accuracy 

≥ 50 correct 

6 1.25 5 5 ≥ 70 percent accuracy 

≥ 20 percent omissions 

≥ 50 correct 

7 1 5 5 ≥ 70 percent accuracy 

≥ 20 percent omissions 

≥ 50 correct 

8 0.9 5 5 ≥ 70 percent accuracy 

≥ 20 percent omissions 

≥ 50 correct 

9 0.8 5 5 ≥ 70 percent accuracy 

≥ 20 percent omissions 

≥ 50 correct 

10 0.7 5 5 ≥ 70 percent accuracy 

≥ 20 percent omissions 

≥ 50 correct 

11 0.6 5 5 ≥ 70 percent accuracy 

≥ 20 percent omissions 

≥ 50 correct 

12 0.5 5 5 ≥ 70 percent accuracy 

≥ 20 percent omissions 

 

Table 2.3 5-CSRTT 12 stage training protocol (adapted from Bari et al. 2008). Rats were trained over 

12 stages to detect and report the presence of a brief visual signal in one of five apertures. The 

stimulus duration (SD), limited hold (LH) and inter-trial-interval (ITI) reduced over stages.  

 

2.3.3 Probes 

 

Manipulations were often implemented under challenging conditions of reduced SD. The reduced SD 

probe involved sessions of 0.5s (stage 12 ‘baseline’ SD) intermixed with reduced SDs of 0.25 and 

0.125s. 
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2.3.4 Variable measurements 

 

The number of correct, incorrect, omission and premature responses were used to generate four 

variable percent measures (table 2.4). Percent accuracy is the key attentional sensitivity measure 

which assesses signal detection; percent correct and omissions can also to some extent be 

considered measures of attentional performance. On the other hand, percent premature responses 

provides a measure of impulsivity. Percent accuracy measures the number of correct responses 

divided by correct and incorrect while percent correct also takes omissions into account. Percent 

omissions measures the number of omissions divided by correct, incorrect and omissions. Percent 

premature responses measures the number of premature responses divided by all other responses; 

as percent premature responses occur prior to stimulus onset they were not split by SD for analysis. 

The number of additional responses made in response apertures following a correct or incorrect 

response were recorded as perseverative responses, which are often interpreted as a measure of 

compulsivity. The mean correct and incorrect response latencies, as well mean reward retrieval 

latency were also recorded.  

 

 

Table 2.4 Key variable and other measures used for statistical analysis on the 5-CSRTT. 

 

2.3.5 Non-touchscreen verses touchscreen 5-CSRTT 

 

The non-touchscreen-based 5-CSRTT was utilised during the first cholinergic pharmacology study 

undertaken in chapter 3 using donepezil and mecamylamine, whilst programming was undertaken for 

the touchscreen-based version in collaboration with Campden Instruments Ltd. The non-touchscreen 

version was also utilised for the DREADDs experiment in chapter 5, as this version has been the most 

investigated compared to the touchscreen version which is relatively new. The DREADD approach is 

also relatively new, and therefore we wanted to use the tried and true method of running the 5-

CSRTT. The touchscreen-based version was utilised once in chapter 3 for the testing of the α4β2 

agonist ABT-594.  

 

Table 2.5 shows the numerical performance levels, averaged over two days at the end of training for 

rats trained on the non-touchscreen- (n=16; rats used for the donepezil and mecamylamine 

Key variable measures Other measures 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡
∗ 100 

Perseverative responses 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑜𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
∗ 100 

Correct response latency 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑜𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑜𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑜𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠
∗ 100 

Incorrect response latency 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑝𝑟𝑒𝑚𝑎𝑡𝑢𝑟𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

=
𝑜𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 + 𝑜𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 + 𝑝𝑟𝑒𝑚𝑎𝑡𝑢𝑟𝑒
∗ 100 

Reward retrieval latency 
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experiment) and touchscreen-based (n=22; rats used for the ABT-594 experiment) 5-CSRTT. Both 

versions of the task required ~50 days of acquisition. Rats had a higher percent accuracy by 5.6% 

and a higher percent correct by 3% in the Med Associates chambers, while having a lower percent 

omissions by 3% in the Campden Instruments chambers. As more cohorts of rats are trained on the 

touchscreen-based 5-CSRTT, this will importantly allow for a thorough investigation as to whether 

performance levels are similar or differ across the two versions of the task.  

 

5-CSRTT 

version 

Sample size Strain Percent 

accuracy 

Percent 

Correct 

Percent 

Omission 

Non-

touchscreen 

16 Lister M 72.61, 

SEM: 1.57 

M 66.64, 

SEM: 1.65 

M 8.30,  

SEM: 0.99 

Touchscreen 22 Lister M 67.00, 

SEM: 1.30 

M 63.30, 

SEM: 1.21 

M 5.30,  

SEM: 0.65 

 

Table 2.5 Performance levels at the end of training (averaged over two days) on the non-touchscreen- 

and touchscreen-based 5-CSRTT. 
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Chapter 3 

Effects of pharmacological 

manipulations of the cholinergic 

system on attentional performance 

 

This chapter describes the effects of a range of pharmacological manipulations of the cholinergic 

system -- the cholinesterase inhibitor donepezil (administered alone and after pre-treatment with the 

non-selective nicotinic receptor antagonist mecamylamine), the general nicotinic agonist nicotine and 

a nicotinic receptor-selective α4β2 agonist ABT-594 -- in attentional performance in young, healthy 

rats. Attention was assessed on the novel touchscreen-based rodent continuous performance task 

(rCPT) and the well-characterised 5-choice serial reaction time task (5-CSRTT). Donepezil influenced 

performance dependent on the stimulus duration (SD) challenge presented (d’ and hit rate); rats 

performed better during a longer SD compared to worse when attentional load was taxed under 

reduced SDs on the rCPT, and to a lesser extent on the 5-CSRTT. Mecamylamine pretreatment -- 

administered in an attempt to antagonise the effects of donepezil -- impaired 5-CSRTT performance, 

under this impairment, donepezil remediated performance (percent accuracy and premature); no 

effects of mecamylamine were revealed on the rCPT. These findings support human evidence, for a 

relationship between cholinergic system level and attentional performance to resemble an ‘inverted-U’ 

shaped function. Under conditions of reduced SD and flanker distraction on the rCPT, nicotine 

induced a general increase in responding at both target and non-target stimuli (hit rate and false 

alarm rate); suggesting that even if nicotine can improve attentional performance, its effects are 

confounded by increases in impulsive responding. The nicotinic receptor-selective α4β2 agonist (ABT-

594) increased impulsive responding on both the rCPT (false alarm rate) and 5-CSRTT (premature 

responses); which supports evidence demonstrating the α4β2 subtype to mediate the impulsive 

effects of nicotine. The effects of these cholinergic manipulations will be discussed in terms of the 

similarities and differences across the two tasks. This chapter contributes to the validation of the novel 

rCPT as sensitive to attentional load in the form of reduced SD and flanker distraction; and sensitive 

to important cholinergic manipulations of increased acetylcholine (ACh) in the synapse and 

stimulation of nAChRs. 
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3.1 Introduction 

 

 

3.1.1 Nicotinic (nAChRs) and muscarinic (mAChRs) acetylcholine receptors 

 

The cholinergic system contains nicotinic and muscarinic AChRs (Dale 1914), which are expressed 

widely within the central nervous system (CNS) and have been implicated in the mediation of 

cognitive functions by ACh. The disruption of cholinergic signalling at these receptors in the brain, has 

been proposed to underlie some of the cognitive deficits presented in a range of neuropsychiatric and 

neurodegenerative disorders, including schizophrenia and Alzheimer’s Disease (AD) (Davies & 

Maloney 1976; Whitehouse et al. 1982; Guan et al. 1999; Severance & Yolken 2008; Scarr et al. 

2009; Sarter et al. 2012). Nicotinic AChRs are excitatory, ligand-gated ion channels, situated both 

pre-synaptically and post-synaptically, the former being implicated in the modulation of 

neurotransmitter release in several brain regions (Vizi & Lendvai 1999; Gotti et al. 2006; Mansvelder 

et al. 2006; Livingstone & Wonnacott 2009). There are 9 α- (α2 – α10) and 3 β- (β2 - β4) type 

subunits which form a range of nAChR combinations. The most abundant and widely expressed 

nAChRs are the heteromeric α4β2 and homomeric α7, which are of interest for cognitive 

enhancement. Nicotinic α4β2 receptors are largely located in the cerebral cortex, thalamus and 

hippocampus, and α7 nAChRs in the cortex and hippocampus (Gotti et al. 2006; Taly et al. 2009; 

Millar & Gotti 2009). In contrast, mAChRs are G-protein-coupled receptors, in which there are 5 

subtypes: M1-M5 (Wess 1996; Caulfield & Birdsall 1998). Muscarinic AChRs have a slower time 

course and broader spatial effect (volume transmission) than nAChRs, and are subdivided into two 

groups based on their signalling pathways. Muscarinic M1, M3 and M5 couple preferentially to Gq G 

proteins, resulting in postsynaptic excitation, while M2 and M4 couple preferentially to Gi/Go, resulting 

in presynaptic inhibition (Hassall et al. 1993; Brown 2010). The M1 and M4 subtypes are the most 

abundant in the brain, located prominently in the cortex, hippocampus and striatum, and are of 

interest for cognitive enhancement (Bodick, Offen, Levey, et al. 1997; Bodick, Offen, Shannon, et al. 

1997; Volpicelli & Levey 2004). This chapter will review current literature on the behavioural effects of 

manipulations at nAChRs (see chapter 4 for a review of the literature for manipulations at mAChRs). 

 

3.1.2 Effects of cholinesterase inhibitors on attentional performance 

 

Cholinesterase inhibitors inactivate the enzyme acetylcholinesterase (AChE), which is involved in the 

termination of impulse transmission in cholinergic pathways, via the rapid hydrolysis of ACh. This 

results in a diminished rate at which ACh is broken down, an accumulation of ACh and 

hyperstimulation of nicotinic and muscarinic AChRs. Cholinesterase inhibitors are one of the key 

symptomatic treatments for mild-to-moderately severe dementia in AD patients, which is associated 

with a cholinergic deficit. In AD patients, cholinesterase inhibitors increase ACh and subsequently 

attenuate the associated cognitive and neuropsychiatric impairments. Specifically, donepezil, 

rivastigmine and galantamine are the currently approved cholinesterase inhibitors (Schneider et al. 
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2014; Birks 2006; Birks et al. 2009; Loy & Schneider 2006), and have been reported to be efficient in 

the improvement of cognitive and functional outcomes (Burns et al. 1999; Bond et al. 2012; Hyde et 

al. 2013; Rogers et al. 1998; Courtney et al. 2004; Kmietowicz 2005; Rockwood et al. 2004; Bentley 

et al. 2011; Raskind et al. 2000; Rogers & Friedhoff 1996). However, the magnitude and cost-

effectiveness of cholinesterase inhibitors on cognitive and functional outcomes is debatable (see 

Kmietowicz 2005; Bond et al. 2012; Hyde et al. 2013; Schneider et al. 2014; Courtney et al. 2004). Of 

particular interest, is the finding that cholinesterase inhibitors are predominantly effective in improving 

attention in AD and mild cognitive impairment (MCI) patients (Sahakian et al. 1993; Foldi et al. 2005; 

Bentley et al. 2008; Perry & Hodges 1999). For example, Sahakian and colleagues showed the 

cholinesterase inhibitor tacrine -- which was one of the first approved treatments for AD, but due to its 

significant side effects is not used anymore clinically -- to improve attentional performance in AD 

patients on an analogous human version of the 5-CSRTT.  

 

The assessment of pro-cholinergic drugs, such as cholinesterase inhibitors, in healthy humans is also 

of interest, to understand how drugs works and how the systems they target function; as well as the 

extent to which they could not only be considered useful for neuropsychiatric disorders, but also as 

‘smart drugs’ for lifestyle purposes in healthy individuals (Sahakian et al. 2015; Sahakian & Morein-

Zamir 2015). In healthy humans -- in which the cholinergic systems baseline ACh levels have not 

been altered and are thus within a normal range -- evidence for the ability of cholinesterase inhibitors 

to boost cholinergic function and improve cognition is mixed. The cholinesterase inhibitor 

physostigmine -- which is not used clinically due to limited evidence for its ability to reduce symptoms 

in AD patients, its short half-life and adverse side effects -- has been shown to improve the 

processing benefits of voluntary visual-spatial attention (Rokem et al. 2010) and the selectivity of 

perceptual processing during working memory (Furey et al. 2000). In contrast, others have reported 

physostigmine in healthy humans to impair visual attentional processing, compared with improved 

processing in AD patients; suggesting that the effects of cholinesterase inhibitors to improve cognitive 

performance may be dependent on an impaired ACh baseline system (discussed in more detail in the 

discussion) (Beglinger et al. 2005; Bentley et al. 2008; for review see Bentley et al. 2011). 

 

Consistent with the effect of cholinesterase inhibitors in AD and MCI patients, cholinesterase 

inhibitors have been demonstrated to remediate impairments of attentional performance in 

cholinergically compromised animal models -- induced by lesions, pharmacology and disease 

pathology -- on the 5-CSRTT. In basal forebrain lesion impairment models (α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid: AMPA), deficits in choice accuracy and correct response latency, 

under conditions of baseline and reduced SD, have been shown to be remediated by donepezil 

(Balducci et al. 2003) and physostigmine (Muir et al. 1994; Muir et al. 1995). Note that AMPA lesions 

of the basal forebrain have been shown to correspond with marked reductions in ChAT in medial 

frontal and cingulate cortex regions. Moreover, deficits of choice accuracy are strongly linked with 

deficits of cholinergic system functioning, and have been reported following the selective loss of 

cholinergic neurons in the nucleus basalis magnocellularis (nbM) (McGaughy et al. 2002) and medial 
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prefrontal cortex (mPFC) (Dalley et al. 2004). In pharmacological impairment models, induced by 

intraventricular administration of the high affinity choline uptake blocker hemicholinium-3 (which acts 

as an indirect ACh antagonist) (Muir et al. 1992) and the non-selective muscarinic antagonist 

scopolamine (Kirkby et al. 1996), deficits in choice accuracy and correct response latency, have been 

shown to be remediated by physostigmine, donepezil and tacrine. Finally, in disease pathology 

impairment models, donepezil has been shown to remediate impairments in choice accuracy, under 

conditions of reduced SD and extended session, on the touchscreen-based 5-CSRTT in an AD 

mouse model (3xTgAD) (Romberg et al. 2011). Donepezil has also been shown to remediate 

impairments in discrimination sensitivity on the rCPT in methylazoxymethanol (MAM) treated rats (an 

animal 'model' for schizophrenia) (Mar et al. 2017). 

 

Experimental evidence for the ability of cholinesterase inhibitors to improve attentional performance in 

non-cholinergically compromised animals is mostly available from control subjects in the above 

cholinergically compromised studies on the 5-CSRTT; in which improvements were shown selectively 

in cholinergically-compromised subjects and not in controls. However, a recent study from our lab in 

non-compromised mice showed donepezil to enhance attention on the mouse version of the rCPT, 

dependent on stimulus duration (SD) and strain; in DBA mice donepezil improved performance under 

taxing conditions of reduced SD, whereas in C57 mice donepezil impaired performance at reduced 

SDs (Kim et al. 2015). 

 

Interim summary for the effects of cholinesterase inhibitors on attentional performance 

 

Cholinesterase inhibitors have reliably been shown to improve attentional performance in humans and 

animal models with a cholinergic deficit. In contrast, in healthy humans and animals, without a 

cholinergic deficit, the ability of cholinesterase inhibitors to enhance attentional performance is mixed. 

The impairing effects of cholinesterase inhibitors reported in healthy subjects, suggests the ability of 

cholinesterase inhibitors to improve attentional performance may depend on reduced baseline 

cholinergic system functioning; supporting the relationship between cholinergic system activation and 

attentional performance to resemble an ‘inverted-U’ shaped function. 

 

3.1.3 Effects of non-selective agonism and antagonism of nAChRs on attentional performance  

 

Nicotine is the primary psychoactive agent of tobacco smoking. Traditionally it is thought that nicotine 

influences behaviour via agonist properties (Rowell et al. 1987; Beani et al. 1989; Wonnacott et al. 

1989). However, nAChRs desensitise rapidly, i.e they become temporarily inactive following 

continuous exposure to nicotine and other nAChR agonists. Therefore, it is now recognised that 

nicotine and other nAChR agonists have potent desensitizing actions at nAChRs and can act as an 

agonist and/or net antagonist (increasing and/or decreasing nAChR tone) (Katz & Thesleff 1957; 

Ochoa et al. 1989; Quick & Lester 2002; Paradiso & Steinbach 2003). In addition with desensitisation, 

nAChRs are up-regulated following extended (hours/days) exposure to nAChR agonists, which 
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produces sustained changes in receptor sensitivity, occurring particularly at α4β2 and α7 receptor 

subtypes (Buisson & Bertrand 2002). This has resulted in nAChR agonists, antagonists and 

desensitizing agents being of interest for drug discovery and development (Picciotto et al. 2008; 

Buccafusco et al. 2009). 

 

Nicotine-based treatments became of interest for the remediation of cognitive deficits associated with 

a range of neuropsychiatric and neurodegenerative disorders -- including schizophrenia, attention 

deficit hyperactivity disorder (ADHD), AD and Parkinson’s disease (Newhouse et al. 1997; Levin & 

Rezvani 2000) -- following the reports of nicotine to improve cognitive performance in smokers 

(Heishma et al. 1994). Within the human literature, nicotine has been extensively studied in terms of 

its ability to improve attentional performance in patients and healthy smokers and non-smokers. 

Overall, in patient populations nicotine has been shown to remediate impairments in basic attentional 

functions. However, replicating these findings has proven challenging, and the findings tend to be less 

robust than those of nAChR-selective agonists (for reviews see: Levin 2002; Kassel 1997; Bentley et 

al. 2011).  

 

In healthy, non-smoking adults, with no pre-existing symptoms of cognitive impairments, evidence 

with nicotine is particularly mixed. Nicotine has been shown to enhance attentiveness and response 

consistency, and reduced errors of omission on the human CPT (Levin et al. 1996; Levin et al. 1998). 

However, others have reported no effects, or only subtle and baseline-dependent ones (Giessing et 

al. 2006; Giessing et al. 2007). The weak and contrasting effects of nicotine on attention in healthy 

humans, has been attributed to individual differences in baseline levels of neural activity prior to 

nicotine exposure. Specifically, individuals with reduced neural activity in fronto-parietal regions were 

more sensitive to the improving effects of nicotine; suggesting that, as with cholinesterase inhibitors, 

the ability of nicotine to improve performance may depend on reduced baseline neural activity 

(Giessing et al. 2007). Additionally, the mixed improving effects with nicotine have also been 

attributed to its well-known negative effects on impulsivity, which have been documented on go/no-go 

style paradigms (Spinella 2002; Dinn et al. 2004; Yakir et al. 2007) and delay discounting paradigms 

(Bickel et al. 1999; Reynolds et al. 2004; Baker et al. 2003; Fields et al. 2009).  

 

Consistent with the effects of nicotine in the human literature, within the animal literature the ability of 

nicotine to improve attentional performance is also mixed and lacks the ability to be replicated. The 

pro-cognitive effects of nicotine appear to be most reliable in compromised rats, which is consistent 

with the human literature. Deficits induced by AMPA lesions of the nbM (Muir et al. 1995) and age 

(Grottick et al. 2003; Grottick & Higgins 2002), on choice accuracy and omissions on the 5-CSRTT 

under conditions of reduced SD and prolonged sessions, have been shown to be remediated by 

nicotine. Deficits induced by the N-methyl-D aspartate (NMDA) glutamatergic receptor antagonist 

dizocilpine (Rezvani & Levin 2003; Rezvani et al. 2008), typical antipsychotic haloperidol (Rezvani & 

Levin 2004) and alcohol (Rezvani & Levin 2003), on percent hits, omissions and correct rejections on 
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the sustained attention task (SAT) under conditions of reduced signal intensity, have also been shown 

to be remediated by nicotine. 

 

In non-compromised rats, the ability for nicotine to improve attentional performance under a range of 

task conditions is particularly mixed with improvements of attentional performance and no effects 

reported on the 5-CSRTT and SAT (see table 3.1) (for review see Levin et al. 2006). On the 5-CSRTT 

under conditions of baseline, reduced SD, noise distraction and event rate, nicotine-induced 

improvements in accuracy (Grottick & Higgins 2000; Stolerman et al. 2000; Mirza & Bright 2001; Hahn 

et al. 2002; Hahn et al. 2003) and no effects (Mirza & Stolerman 1998; Blondel et al. 2000; Stolerman 

et al. 2000; Hahn et al. 2002; Bizarro & Stolerman 2003; Amitai & Markou 2009) have been reported. 

It is important to note that improvements with nicotine in accuracy on the 5-CSRTT in non-

compromised rats, have largely been reported when the time out for impulsive responding has been 

abolished, meaning rats can respond quickly and generally within the duration of the visual target 

(Mirza & Stolerman 1998; Stolerman et al. 2000; Hahn et al. 2002; Bizarro & Stolerman 2003). In 

addition to effects, or no effects, with nicotine on accuracy, almost all experiments report increased 

impulsive responding (premature responses) and reduced correct response latencies; which reflects 

nicotine’s stimulant properties and effects on dopamine (Clarke & Kumar 1983; Nisell et al. 1994). On 

the SAT, which measures a different form of attention compared to the 5-CSRTT, the effects of 

nicotine appear even less convincing: under conditions of reduced SD, reduced signal intensity and 

varied event rate, subtle, time-dependent effects (Bushnell et al. 1997; Rezvani et al. 2002), as well 

as no effects (Turchi et al. 1995), on perceptual discriminability have been reported. 

 

Likely explanations for the particularly mixed and unreliable findings reported with nicotine in non-

compromised rats, includes the lack of significant cholinergic system impairment for nicotine to 

remediate. This is supported by more consistent pro-attentional effects of nicotine reported in 

compromised animals (Muir et al. 1995; Grottick & Higgins 2002; Grottick et al. 2003; Rezvani & Levin 

2004; Rezvani et al. 2008). Another possible explanation for the mixed findings, is the precise task 

demands by which the effects of nicotine on attention are assessed in experimental animals. The 

effects of nicotine have been assessed mostly on the 5-CSRTT, which was originally developed as an 

analogue to the human CPT (Carli et al. 1983; Robbins 2002), but there are key differences (see 

chapter 1). These including a lack of discrimination and non-signal trials, differentiated visual stimuli 

and high and variable event rate on the basic 5-CSRTT. Such characteristics have been recognised 

as important for assessing sustained attention (Parasuraman et al. 1987); as well as understanding 

how the cortical cholinergic system functions and the mechanisms by which nAChR agonists 

influence attention (Sarter et al. 2009). The mixed findings on the 5-CSRTT, as well as the lack of pro-

attentional effects of nicotine reported on the SAT -- which incorporates the discrimination aspect of 

human CPTs -- suggests that nicotine may in fact not be a useful candidate for the improvement of 

attentional performance. Greater pro-attentional efficacy is speculated following administration of 

nAChR-selective compounds compared with the general properties of nicotine (discussed below). 
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In contrast to reports of ‘improved attentional performance’ with nicotine under particular task 

conditions, opposing effects have been reported with the non-competitive and non-selective nAChR 

antagonist mecamylamine (Varanda et al. 1985); which supports the role of the nicotinic system in 

normal attentional performance. Within the human literature mecamylamine has been demonstrated 

to impair attentional performance in aged (Gitelman & Prohovnik 1992; Little et al. 1998) and healthy 

humans (Newhouse et al. 1992; Pickworth et al. 1997). However, at very low doses, mecamylamine 

has been reported to improve attention in a dose- and condition-specific manner in adults with ADHD 

(Potter et al. 2009), likely due to subtle decreases in nAChR tone, which may mimic nAChR 

desensitisation; no effects were revealed in  healthy non-smokers (Yuille et al. 2017).  

 

In the animal literature, consistent with human studies, higher dose ranges of mecamylamine (2-

4mg/kg) have been reported to impair attentional performance. Impaired performance on the 5-

CSRTT (reduced accuracy and premature responses, increased omissions and correct response 

latencies) has been demonstrated in healthy and middle aged rats on the 5-CSRTT (Jones et al. 

1995; Grottick & Higgins 2000; Stolerman et al. 2000; Hahn et al. 2016) and SAT (Rezvani et al. 

2002). Finally, mecamylamine, at very low doses, has been shown to improve working memory (Levin 

et al. 1993; Levin & Caldwell 2006; Jonnala et al. 2002). 

 

Summary for the effects of non-selective agonism and antagonism of nAChRs on attentional 

performance 

 

Evidence for the ability of nicotine to improve attentional performance is mixed and proves difficult to 

replicate in humans and animals, particularly in non-compromised subjects. Likely explanations for 

this include the lack of cholinergic system deficit (in the case of non-compromised subjects), the 

negative effects of nicotine on impulsivity and the possibility that the task demands on the 5-CSRTT 

may not challenge attentional performance to the extent of CPTs in humans. It is speculated that 

more selective nAChR compounds may be more effective than nicotine to improve attentional 

performance. Finally, impairments of attentional performance following mecamylamine administration 

supports the role of the nicotinic system in attentional performance.  
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5-choice serial reaction time task (5-CSRTT) 

Task 

condition 

Author Accuracy  Omissions Premature 

responses 

Correct 

response 

latency 

Dose 

(dosing 

regimen) 

Route of 

administ

ration 

Sex Strain 

Baseline (Hahn et al. 2003) ↑ ↔ ↓ ↔ 0.05-

0.2mg/kg 

(acute) 

s.c  Male Lister 

(Amitai & Markou 2009) ↔ ↓ ↔ ↓ 3.16mg/kg 

(sub-

chronic) 

s.c 

(osmotic 

minipum

p) 

Male Wistar 

(Grottick & Higgins 2000) ↑ ↓ ↑ ↓ 0.2mg/kg 

(sub-

chronic) 

s.c Male Lister 

Reduced SD (Mirza & Stolerman 1998) ↔ ↔ ↑ (bin 3/4) ↓ (bin 4/4)  0.05-

0.15mg/kg 

(acute) 

s.c Male Lister 

(Stolerman et al. 2000) ↑ ↓ ↑  ↓  0.05-

0.2mg/kg 

(acute) 

s.c Male Lister 

(Blondel et al. 2000) ↔ ↔ ↔ ↓  0.03-

0.3mg/kg 

(acute) 

i.p Male Sprague 

Dawley 

(Blondel et al. 2000) ↔ ↔ ↑ ↓  0.1-

0.3mg/kg 

i.p Male Sprague 

Dawley 
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(sub-

chronic) 

(Hahn et al. 2002) ↑   ↓  ↑  ↓  0.05-

0.2mg/kg 

(acute) 

s.c Male Lister 

Distraction (Hahn et al. 2002) ↑ ↓ - ↓ 0.05-

0.2mg/kg 

(acute) 

s.c Male Lister 

Event rate 

(low) 

(Mirza & Stolerman 1998) ↑ ↓ ↑ ↔ 0.05-

0.15mg/kg 

(acute) 

s.c Male Lister 

(Stolerman et al. 2000) ↔ ↔ ↔ ↔ 0.05-

0.2mg/kg 

(acute) 

s.c Male Lister 

(Bizarro & Stolerman 

2003) 

↑ ↔ ↓ ↔ 0.025-

0.2mg/kg 

(acute) 

s.c Male Lister 

Event rate 

(high) 

(Mirza & Stolerman 1998) ↔ ↔ ↔ ↔ 0.05-

0.15mg/kg 

(acute) 

s.c Male Lister 

(Stolerman et al. 2000) ↑  ↓ ↑  ↔ 0.05-

0.2mg/kg 

(acute) 

s.c Male Lister 
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Event rate 

(Varied) 

(Stolerman et al. 2000) ↑/↓  ↓ ↑   ↓  0.05-

0.2mg/kg 

(acute) 

s.c Male Lister 

(Mirza & Bright 2001) ↑/↔  ↔ ↔ ↔ 0.001-

0.2mg/kg 

s.c Male Sprague 

Dawley/ 

Lister  

(Hahn et al. 2002)  ↔ ↓ ↑  ↓  0.05-

0.2mg/kg 

(acute) 

s.c Male Lister 

Sustained attention task (SAT) 

Task 

condition 

Author  

 

Hits  Omissions False 

alarms 

Correct 

response 

latency 

Dose 

(dosing 

regimen) 

Route of 

administ

ration 

Sex Strain 

Reduced SD  (Turchi et al. 1995) ↔ ↔ - ↔ 0.09-

0.287mg/kg 

(acute) 

i.p Male Long 

Evans 

Varied event 

rate 

(Rezvani et al. 2002) 

 

↓ (bin 1/3)  

↑ (bin 3/3) 

↑ ↔ - 0.25mg/kg 

(acute) 

s.c Female Sprague 

Dawley 

Reduced 

signal intensity  

(Bushnell et al. 1997) ↓ (bin 1/3)  

↑ (bin 2/3)  

↔ 

 

↔ 

 

↔ 0.08-

0.25mg/kg 

(acute) 

s.c Male Long 

Evans 

 

Table 3.1. Summary of the current animal literature investigating the effects of nicotine on attentional performance in non-compromised rats on 

the 5-CSRTT and SAT, under a range of task conditions (↑ = increase, ↓ = decrease, ↔ = no effect, - = not reported, s.c = sub-cutaneous, i.p =  

intraperitoneal). 
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3.1.4 Effects of selective agonism and antagonism at α4β2 and α7 nAChRs on attentional 

performance 

 

The investigation of selective nAChR ligands provides insight into the relative roles of individual 

nAChR subtypes on cognitive functions, as well as what mediates the behavioural effects of general 

agonists such as nicotine. Of the nAChR subtypes in the brain, α4β2 and α7 are the most 

predominant, located prominently in the PFC (Gotti et al. 2006; Taly et al. 2009). The α4β2 subtype, 

and not the α7, has been shown to mediate the stimulant-like effect of nicotine. For example, the 

selective α4β2 antagonist dihydro-β-erythroidine (DHβE), and not the selective α7 antagonist 

methyllycaconitine (MLA), has been shown to antagonise nicotine-induced increases in premature 

responses and decreases in correct response latencies in non-compromised rats on the 5-CSRTT 

(Grottick & Higgins 2000; Blondel et al. 2000); but to not antagonise effects on choice accuracy (Hahn 

et al. 2011; Grottick & Higgins 2000).  

 

Despite evidence that the α4β2 subtype may mediate the stimulant effects of nicotine; in rats 

compromised by age, DhβE antagonised the effects of nicotine on accuracy (Grottick et al. 2003). 

This finding alongside electrochemical recordings, support the α4β2 subtype as a target for the 

enhancement of attentional performance (Howe et al. 2010).  A range of experimental evidence has 

reported improved attentional performance when targeting the α4β2 subtype in compromised 

subjects. In the human literature, an α4β2 agonist and a partial agonist (which produces partial 

efficacy compared to full antagonism at the receptor) have been shown to improve attentional 

performance in populations compromised by age (Dunbar et al. 2007) and ADHD (Wilens et al. 2006; 

Apostol et al. 2012). Similarly, in the compromised animal literature, improvements have also been 

reported with α4β2 agonists/partial agonists. Under prolonged sessions on the 5-CSRTT in rats 

compromised by age, the α4β2 agonist SIB 1765F has been reported to increase choice accuracy, 

reduce correct response latencies and omissions and increase premature responses (Grottick et al. 

2003). In pharmacological impairment models, a nAChR agonist with β4 subunit specificity SIB-1553A 

has been reported to ameliorate systemic dizocilpine-induced impairments in choice accuracy on the 

5-CSRTT, but had no effect in non-compromised subjects (Terry et al. 2002). Pharmacological 

impairment models of systemic dizocilpine-induced and scopolamine-induced (general muscarinic 

antagonist) have also been reported to remediate impairments in choice accuracy on the SAT with a 

low dose of the α4β2 antagonists DhβE and the α4β2 desensitising agent sazetidine-A (Rezvani et al. 

2011; Rezvani et al. 2013; Levin 2013). 

 

In non-compromised rats, targeting the α4β2 subtype for improved attentional performance, as with 

nicotine, is mixed; alongside consistent impairments in impulsivity. On the 5-CSRTT, the most 

prominent pro-cognitive effects have been shown in ‘poor’ performing rats. Sub-chronic treatment with 

the α4β2 agonist SIB 1765F has been shown to improve attention (accuracy, omissions, correct 

response latencies) and increase impulsivity (premature responses), on the 5-CSRTT under 

conditions of a reduced SD, in ‘poor’ performing rats (percent accuracy <80, percent omissions > 20) 
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(Grottick & Higgins 2000). Additionally, the α4β2 agonist ABT-594 -- which will be tested as part of 

this thesis -- has proved difficult to reliably obtain improvements in attention, with findings dependent 

on baseline performance, task condition and dosing regimen: the most prominent improvements on 

choice accuracy were revealed in ‘poor’ performing rats (<70% accuracy) under sub-chronic 

treatment, alongside persistent reductions in omissions and correct response latencies and increased 

impulsive responding in all rats (Mohler et al. 2010). Recently in our lab, ABT-594 was reported in 

MAM treated rats to increase responding in general on the rCPT (increased hit rate, false alarm rate); 

suggesting that improvements with ABT-594 are hard to interpret due to the confounding effects on 

impulsive responding (Mar et al. 2017). Additionally, on the 5-CSRTT, the α4β2 agonist ABT-418 has 

been shown under a continuous, prolonged session version of the 5-CSRTT in heathy rats, to 

improve choice accuracy briefly (bin 1 of 3) (Hahn et al. 2003). 

 

In contrast to the difficult to obtain effects with α4β2 compounds in healthy rats on the 5-CSRTT, the 

effects on the SAT appear more promising, possibly due to the more complex assessment of 

discrimination on this task. Under conditions of reduced signal duration, ABT-418 improved 

performance in the form of hits (McGaughy et al. 1999). On the distractor version of the SAT, in which 

the house light was flashed to induce distraction, the α4β2 agonist S 38232, and not nicotine, was 

shown to improve signal detection. The different effects reported with the selective verses general 

agonist in this experiment, is likely explained by S 38232 treatment to corresponded with sharp 

increases in prefrontal cholinergic activity, compared to nicotine-induced less abrupt and long-lasting 

increases (~1 minute and over) (Parikh et al. 2008; Howe et al. 2010). This suggests that the ability of 

selective agonists to more robustly enhance signal detection is likely mediated by sharp increases in 

cholinergic transients; the less abrupt, long-lasting transients evoked by nicotine, likely limit its ability 

to improve performance on a fast-paced cholinergically-mediated task (Sarter et al. 2009).  

 

Targeting the α7 nAChR subtype for improved attentional performance, appears to be more mixed 

than that of the α4β2 subtype in its ability to improve attentional performance. The majority of 

preclinical experiments using the 5-CSRTT have reported no improving effects following α7 nAChR 

stimulation. For example, the α7 agonist AR-R 17779 has been reported to have no effects in ‘poor’ 

performing rats (percent accuracy <80, percent omission >20) (Grottick & Higgins 2000), in aged rats 

under a prolonged session (Grottick et al. 2003) and in healthy rats under conditions of low event rate 

(Hahn et al. 2003). Evidence from our lab has also recently shown the partial α7 agonist EVP-6124 to 

exert no effects on the rCPT in MAM treated rats (Mar et al. 2017). However, nicotinic α7 knockout 

mice have been reported to be slower to acquire, and show impaired performance in the form of 

increased omissions and premature responses; although no effect were reported on accuracy (Young 

et al. 2004; Hoyle et al. 2006). The most promising study to date for the α7 subtype is from a very 

recent study using the 5C-CPT under conditions of variable SD, which reported the nicotinic α7 partial 

agonist encenicline to improve attentional performance, in the form of increased vigilance (d’) and 

reduced impulsive action (false alarms), in low attentive rats; and not high attentive rats, who actually 

showed the opposite effect on d’) (Hayward et al. 2017).  
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Summary for the effects of non-selective agonism and antagonism of nAChRs on attentional 

performance 

 

Similar to the effects of nicotine, targeting the α4β2 subtype for improved attentional performance is 

mixed and proves difficult to replicate in both humans and animals, particularly in non-compromised 

subjects. This suggests that a reduced cholinergic baseline system may be required. However, the 

reports of this subtype to mediate the impulsive aspect of nicotine have to be considered in terms of 

the utility of α4β2 compounds for the clinic. On the other hand, targeting the α7 subtype for improved 

attentional performance was mostly unsuccessful until a recent study using the 5C-CPT. Interestingly, 

the α7 subtype appears not to increase impulsive responding, suggesting that this subtype may in fact 

be a useful target for the clinic.   

 

3.1.5 Summary and hypotheses  

 

The present experiments investigated the effects of a range of pharmacological manipulations of the 

cholinergic system in young, healthy rats, on attentional performance on the novel rCPT and well-

characterised 5-CSRTT.  

 

Effects of donepezil alone and following mecamylamine pre-treatment on the rCPT and 5-

CSRTT under conditions of reduced SD  

 

Current evidence for the ability of cholinesterase inhibitors to improve attentional performance in 

subjects without a cholinergic deficit is mixed. Human studies suggest the ability for cholinesterase 

inhibitors to improve attentional performance depends on a reduced cholinergic system baseline 

(‘inverted-U’ shaped function between cholinergic system level and attentional performance). The 

present experiment investigated the effects of the clinically approved cholinesterase inhibitor 

donepezil, to influence attentional performance in young, healthy rats on the rCPT, compared to the 

5-CSRTT. This experiment aimed to further understand the cognitive enhancing potential of donepezil 

in non-cholinergically compromised subjects on two different forms of attentional performance; as well 

as mechanisms which underlie its effects. This experiment will also provide insight into whether the 

cholinergic system resembles an ‘inverted-U’ shaped function between cholinergic system activation 

and attentional performance. It was hypothesised that donepezil alone would influence attentional 

performance dependent on SD, in healthy rats – possibly by impairing performance. It was also 

hypothesised that any effects would be more pronounced on the rCPT, compared to the 5-CSRTT, 

due to the more complex visual discrimination element and high event rate. Donepezil was next 

administered after pre-treatment with the non-selective nicotinic antagonist mecamylamine, in an 

attempt to identify the mechanism mediating the effects of donepezil. It was hypothesized that 

mecamylamine pre-treatment would antagonise donepezil’s effects on attentional performance. 
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Effects of nicotine on the rCPT under conditions of SD and distraction 

 

Current evidence for the ability of nicotine to improve attentional performance is mixed and has 

proven difficult to replicate in humans and animals, particularly in non-compromised subjects.  

The mixed effects on attentional performance in non-compromised rats on the 5-CSRTT and 

particularly on the SAT (e.g. Turchi et al. 1995; Bushnell et al. 1997; Rezvani et al. 2002); as well as 

consistent increases in impulsive-like responding, questions its utility as a cognitive enhancer in the 

clinic. The present experiment investigated the ability of nicotine to influence performance in young, 

healthy rats on the rCPT under conditions of reduced SD and distraction. It aimed to further 

understand the cognitive enhancing potential of nicotine, and whether its impairing effects on 

inhibitory response control confound any improvements on attentional performance when tested on 

the rCPT; which incorporates response inhibition during no-go trials (false alarms) into the key 

measure of sustained attention and punishes these responses by delaying signal presentation. This, 

to my knowledge, is the first time nicotine will be tested on a translational, touchscreen-based assay 

in which differentiated, salient flanker distraction is probed. It was hypothesised that incongruent 

distraction, as well as reduced SD, would impair attentional performance, which may provide a 

platform for nicotine to improve performance. However, it was further hypothesised that increases in 

attentional performance would be confounded by increases in impulsive like responding (false 

alarms), which have consistently been demonstrated in the form of premature responses on the 5-

CSRTT. As a result, the key discrimination sensitivity measure (d’) would not improve with nicotine 

treatment. Findings will be compared to the literature which has investigated the effects of nicotine on 

the well-validated 5-CSRTT and SAT. 

 

Effects of acute and sub-chronic ABT-594 on the rCPT and touchscreen-based 5-CSRTT under 

conditions of reduced SD 

 

Current evidence targeting the α4β2 subtype for improved attentional performance is mixed and 

proves difficult to reliably find in humans and animals, particularly in non-compromised subjects. 

Improvements of attentional performance with selective α4β2 agonists in non-compromised subjects 

have been reported on the SAT and 5-CSRTT (McGaughy et al. 1999; Howe et al. 2010; Mohler et al. 

2010). However, consistent increases in premature responses are also reported, with some evidence 

suggesting that the α4β2 subtype may mediate the impulsive effects of nicotine (Grottick & Higgins 

2000; Hahn et al. 2011). The present experiment investigated the ability of the nAChR-selective α4β2 

agonist ABT-594 to influence attentional performance in young, healthy rats on the rCPT and 

touchscreen-based 5-CSRTT. ABT-594 was administered acutely initially, and then sub-chronically 

without the highest dose; this dosing regime was recommended by our collaborators due to the acute 

effects of ABT-594 on reward retrieval latency, indicating potential sickness side effects (also reported 

in Mohler et al, 2010). This experiment aimed to further understand the cognitive enhancing potential 

of targeting the α4β2 subtype on attentional performance and inhibitory response control. It was 

hypothesised that ABT-594 may improve accuracy when challenged under a reduced SD, in 
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combination with increased premature responding on the 5-CSRTT; consistent with reports in the 

current literature. On the rCPT, it was hypothesized that ABT-594 would increase responding at target 

and non-targets, and as a result no improvements would be observed on discrimination sensitivity 

measure, as with nicotine. A full α4β2 agonist was used in the present experiment, as opposed to a 

positive allosteric modulator (PAM). Consistent with full agonists previously used and shown to 

improve performance in the literature on the 5-CSRTT (Grottick & Higgins 2000; Terry et al. 2002; 

Grottick et al. 2003; Hahn et al. 2003; Mohler et al. 2010) and SAT (McGaughy et al. 1999; Parikh et 

al. 2008; Howe et al. 2010). Additionally, an α7 compound was not tested in the present experiment; 

as the partial agonist EVP-6124 has been tested twice in our lab on the rCPT, and produced no 

effects on performance in healthy and MAM treated rats (Mar et al, unpublished; Mar et al. 2017). 

These findings are consistent with other studies also reporting no improvements with α7 

agonists/partial agonists on the 5-CSRTT (Grottick & Higgins 2000; Grottick et al. 2003; Hahn et al. 

2003). 

 

3.2 Effects of donepezil alone and following mecamylamine pre-treatment on the rCPT and 5-

CSRTT under conditions of reduced SD 

 

 

3.2.1 Methods  

 

3.2.1.1 Subjects 

 

Thirty-two experimentally naïve male Lister Hooded rats (Harlan, UK) served as subjects (295g ±25). 

Rats were divided into two groups of 16 and assigned to training on either the rCPT or 5-CSRTT (see 

table 3.3 for experimental outline). 

 

3.2.1.2 Apparatus 

 

The rCPT was carried out in touchscreen-based operant chambers (Med Associates) and the 5-

CSRTT in five-hole operant chambers. Drugs were administered on the tasks under conditions of 

reduced SD. On the rCPT, rats were presented with the baseline trained SD (1s) intermixed with 

reduced SDs of 0.6 and 0.2s; and on 5-CSRTT, the baseline trained SD (0.5s) intermixed with 

reduced SDs of 0.25 and 0.125s. 

 

3.2.1.3 Drugs 

 

Donepezil hydrochloride (Sigma Aldrich) was dissolved in 0.9% sterile saline and administered at 

doses of 0, 0.1, 0.3, and 1mg/kg, in a volume of 1ml/kg (i.p), 30 minutes prior to testing. Donepezil 

(1mg/kg) was next administered after mecamylamine pre-treatment. Mecamylamine hydrochloride 

(Sigma Aldrich) was dissolved in 0.9% sterile saline and administered at a dose of 1mg/kg, in a 
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volume of 1ml/kg (i.p), 10 minutes prior to donepezil or vehicle post-treatment. Rats began testing 30 

minutes after the final injection. All drugs were administered in a Latin square design. Following each 

drug day rats received a baseline day, in which they were tested on stage 6 (rCPT, SD = 1s) or stage 

12 (5-CSRTT, SD = 0.5s) and did not receive drug, to ensure a stable performance throughout 

experiments. A one week washout period occurred between the experiments. Dosing protocols were 

based on Balducci et al. 2003, Rezvani et al. 2012 and work in our lab carried out by Mar et al, 2017. 

 

1. Rats were trained on the rCPT (one rat was excluded due to repeated seizures, final n= 15,) or 

the 5-CSRTT (n= 16). 

 

    

 

2. Rats received donepezil (0, 0.1, 0.3 and 1mg/kg, i.p, 30 minutes prior to testing) under conditions 

of reduced SD (rCPT: 1, 0.6, 0.2s, 5-CSRTT: 0.5, 0.25, 0.125s). 

 

 

3. Rats received a one week wash out period. 

4. Rats received mecamylamine pretreatment (vehicle or mecamylamine 1mg/kg, i.p) followed by 

donepezil posttreatment (vehicle or donepezil 1mg/kg, i.p) 30 minutes later), under conditions of 

reduced SD. 

 

 

 

Table 3.3 Outline of experiments in which donepezil was administered alone and after mecamylamine 

pre-treatment on the rCPT and 5-CSRTT. Also included is the sample size for each experiment with 

any exclusions explained. Note, rats trained on either the rCPT or 5-CSRTT underwent both 

donepezil treatment alone and following mecamylamine pre-treatment. 

 

3.2.1.4 Statistical analysis 

 

When donepezil was administered alone, data were subjected to repeated-measures ANOVA with 

‘dose’ (4 levels) and ‘SD’ (3 levels) as within-subject factors (p<0.05). Planned comparisons 

examining within-subject contrasts for linear dose-response effects are also reported; significant 

interactions were further analysed via two-way ANOVA with ‘dose’ (4 levels) and ‘SD’ (2 levels - 

dropping one SD at a time). When donepezil or vehicle was administered following mecamylamine or 
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vehicle, ‘pre-treatment’ (2 levels), ‘post-treatment’ (2 levels) and ‘SD’ (3 levels) were within-subject 

factors (p<0.05). Significant main effects and interactions were followed up using Sidak’s correction.  

 

3.2.2 Results 

 

N.b. table 3.2 displays a summary of all findings across in the present chapter. 

 

3.2.2.1 Effects of donepezil alone and following mecamylamine pre-treatment on the rCPT, with 

conditions of reduced SD 

 

Reducing SD impaired rCPT performance, irrespective of donepezil treatment. As figure 3.1 shows, 

as SD decreased, hit rate [SD: F(1.43,20.07) = 25.105, p<.001], d’ [SD: F(2,28) = 23.683, p<.001] and 

C [SD: F(2,28) = 13.247, p<.001] significantly decreased (all p<.040) and false alarm rate [SD: F(2,28) 

= 5.666, p=.009] significantly increased (all p<.046). Latency measures were not available for this 

experiment due to programming problems. 

 

Donepezil treatment (0-1mg/kg) influenced rCPT performance, dependent on SD. As figure 3.2 

shows, donepezil impaired rCPT performance (HR, d’ and C) when challenged at reduced SDs, 

compared to better performance during longer SDs, revealed by significant linear trends. Specifically, 

within-subject contrasts for significant linear trends revealed donepezil to decrease hit rate [dose X 

SD: F(1,14) = 16.151, p=.001] and d’ [dose X SD: F(1,14) = 5.516, p=.034] during the reduced SDs of 

0.6 and 0.2s, compared to better performance during the baseline trained SD (1s). C parameter also 

reduced at 0.2s compared to 1s [dose X SD: F(1,14) = 22.777, p<.001]. Within-subject effects also 

revealed a strong but non-significant trend for donepezil treatment (0-1mg/kg) to influence hit rate 

dependent on SD [dose X SD F(6,84) = 1.991, p=.076]. No effects on false alarm rate or 

premature/perseverative responses were detected.  

 

Following mecamylamine pre-treatment (1mg/kg), which itself had no effects on rCPT performance, a 

strong but non-significant trend for donepezil (1mg/kg) to reduce false alarm rate dependent on SD 

was revealed [post-treatment X SD: F(2,28) = 3.065, p=.063]. No effects on hit rate, d’, C or 

premature/perseverative responses were detected.  

 

3.2.2.2 Effects of donepezil alone and following mecamylamine pre-treatment on the 5-CSRTT, 

with conditions of reduced SD 

 

Reducing SD impaired 5-CSRTT performance, irrespective of donepezil treatment. As figure 3.1 

shows, as SD decreased, percent accuracy [SD: F(2,30) = 79.870, p<.001] and percent correct [SD: 

F(1.46,21.93) = 74.639, p<.001] significantly decreased (all p<.010) and percent omissions [SD: 

F(2,30) = 96.902, p=.009] significantly increased (all p<.043). Latencies were unable to be split by SD 

in this instance due to programming problems. 
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Donepezil treatment (0-1mg/kg) influenced 5-CSRTT performance, dependent on SD. As figure 3.3 

shows, donepezil influenced percent accuracy (which does not include omissions) [dose X SD 

F(6,90)=1.976, p=.077], with a strong, but non-significant trend revealed; it also influenced percent 

correct (which does not include omissions) [dose X SD F(6,90) = 2.274, p=.043] significantly, in a 

dose- and SD-dependent manner. For percent correct, donepezil at the low and high doses (0.1 and 

1mg/kg) decreased performance during the most reduced SD (0.125s) compared with better 

performance at a longer SD (0.25s) (p=.002). Within-subject contrasts for significant linear trends for 

improved/reduced performance following donepezil treatment, which were significant on the rCPT, 

failed to reach significance on the 5-CSRTT. No effects were revealed on omissions, perseverative 

responses and response and reward retrieval latencies.  

 

Mecamylamine pre-treatment (1mg/kg) significantly impaired 5-CSRTT performance which was 

remediated by donepezil post treatment (1mk/kg). Mecamylamine pre-treatment (1mg/kg) significantly 

reduced percent accuracy [pre-treatment: F(1,15) = 9.853, p=.007] and percent correct [pre-

treatment: F(1,15) = 4.641, p=.048], irrespective of SD. A decrease in percent premature responses 

was also revealed [pre-treatment: F(1,15) = 8.401, p=.011]. Donepezil post-treatment significantly 

remediated the mecamylamine-induced decrease in percent accuracy [post-treatment: F(1,15) = 

4.968, p=.042], irrespective of SD, and percent premature responses [post-treatment: F(1,15) = 

4.638, p=.048]. No effects were revealed on omissions, perseverative responses and response and 

reward retrieval latencies.  

 

Summary for the effects of donepezil alone and following mecamylamine pre-treatment on the rCPT 

and 5-CSRTT, under conditions of reduced SD  

 

As hypothesised, donepezil alone influenced attentional performance, dependent on SD in non-

compromised rats; this was more pronounced on the more complex rCPT compared to the 5-CSRTT. 

Linear trends revealed reduced rCPT performance (HR, d’ and C) when challenged at reduced SDs, 

compared to better performance at longer SDs. In contrast, donepezil improved performance on the 

5-CSRTT (percent accuracy and premature responses) when administered following mecamylamine-

induced impaired performance. The low-to-mid dose of mecamylamine did not impair rCPT 

performance and so no improving effects of donepezil on attentional performance were revealed. 

These findings support cholinergic system baseline-dependent effects of cholinesterase inhibitors on 

cognitive performance reported in the human literature.  
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Effects of reducing SD on the rCPT, irrespective of donepezil treatment 

    

    

Effects of reducing SD on the 5-CSRTT, irrespective of donepezil treatment  

     

  

 

 

Figure 3.1 Effects of reducing SD on the rCPT (a-d) and 5-CSRTT (e-g), irrespective of donepezil 

treatment. The x axis represents reduced SDs of 1, 0.6 and 0.2s on the rCPT and 0.5, 0.25 and 

0.125s on the 5-CSRTT. Also displayed is a table showing correct (CRL) and incorrect (IRL) response 

and reward retrieval (RRL) latencies averaged over the three SDs for the 5-CSRTT (h). The graphs 

and table display significant post hoc comparisons from the longest, baseline trained SD (rCPT: 1s, 5-

CSRTT: 0.5s). Data are presented as mean ± SEM (*, **, *** p<0.05, p<0.01, p<0.001 with Sidak’s 

correction).   
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Effects of donepezil on the rCPT, with reduced SD 

    

    

Effects of donepezil following mecamylamine pre-treatment on the rCPT, with reduced SD 

    

      

 

Dose Prem/Pers responses  Prem/Pers responses 

0 M= 582.7; SEM= 80.36 Pre-treatment (veh) M= 464.0; SEM= 41.10 

0.1 M= 587.9; SEM= 83.83 Pre-treatment (mec) M= 449.3; SEM= 36.73 

0.3 M= 608.1; SEM= 94.23 Post-treatment (veh) M= 477.5; SEM= 42.20 

1 M= 510.3; SEM= 53.21 Post-treatment (don) M= 435.8; SEM= 35.09 

 

Figure 3.2 Effects of donepezil (don, mg/kg) alone (a-d), and after mecamylamine (mec, mg/kg) or 

vehicle (veh) pre-treatment (e-h) on the rCPT, under conditions of reduced SD (1, 0.6, 0.2s). The x 

axis represents the dose of donepezil (a-d) and pre- and post-treatments (e-h). Red arrows represent 

linear trends (on graphs a, c and d). Graph f is split by SD to display the trend towards an effect of 

donepezil on false alarm rate, dependent on SD. Also displayed is a table showing the number of 

premature/ perseverative responses (prem/pers responses) (i). The graphs display significant linear 
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trends. Data are presented as mean ± SEM (*, **, *** p<0.05, p<0.01, p<0.001 with Sidak’s 

correction).   

 

[N.b. Vehicle pre-treatment is the average of ‘vehicle (pre)/vehicle (post)’ and ‘vehicle (pre)/donepezil 

(post)’. Mecamylamine pre-treatment is the average of ‘mecamylamine (pre)/vehicle (post)’ and 

‘mecamylamine (pre)/donepezil (post)’. Vehicle post treatment is the average of ‘vehicle (pre)/vehicle 

(post)’ and ‘mecamylamine (pre)/vehicle (post)’. Donepezil post-treatment is the average of ‘vehicle 

(pre)/donepezil (post)’ and ‘mecamylamine (pre)/donepezil (post)’]. 

 

Effects of donepezil on 5-CSRTT, with reduced SD 

    

    

Effects of donepezil following mecamylamine pre-treatment, on the 5-CSRTT, with reduced SD 
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Figure 3.3 Effects of donepezil (don, mg/kg) alone (a-d) and after mecamylamine (mec, mg/kg) or 

vehicle (veh) pre-treatment (e-h) on the 5-CSRTT, under conditions of reduced SD (0.5, 0.25, 

0.125s). The x axis represents the dose of donepezil (a-d) and pre and post treatments (e-h). Also 

displayed is a table showing correct (CRL) and incorrect (IRL) response and reward retrieval (RRL) 

latencies, and perseverative responses (i). Graphs a-d display significant post hoc comparisons and 

graphs e-h display main effects. Data are presented as mean ± SEM (*, **, *** p<0.05, p<0.01, 

p<0.001 with Sidak’s correction).   

 

3.3 Effects of nicotine on the rCPT under conditions of SD and distraction  

 

 

3.3.1 Methods 

 

3.3.1.1 Subjects 

 

Twenty-four experimentally naïve male Lister Hooded rats (Harlan, UK) served as subjects (300g 

±25). Rats underwent training on the rCPT (see table 3.4 for experimental outline). 

 

 

 

i CRL IRL RRL Perseverative 

Donepezil alone with reduced SD 

0 M=0.672; 

SEM=0.049 

M=1.644; 

SEM=0.097 

M=1.247; 

SEM=0.059 

M=12.13; 

SEM=1.643 

0.1 M=0.725; 

SEM=0.041 

M=1.667; 

SEM=0.094 

M=1.239; 

SEM=0.069 

M=13.00; 

SEM=1.435 

0.3 M=0.677; 

SEM=0.037 

M=1.627; 

SEM=0.086 

M=1.267; 

SEM=0.072 

M=12.44; 

SEM=1.114 

1 M=0.710; 

SEM=0.056 

M=1.599; 

SEM=0.087 

M=1.243; 

SEM=0.053 

M=12.94; 

SEM=1.473 

Donepezil following mecamylamine pre-treatment with reduced SD 

Pre (veh) M=0.691; 

SEM=0.034 

M=1.621; 

SEM=0.079 

M=1.254; 

SEM=0.056 

M=14.75; 

SEM=1.496 

Pre (mec) M=0.746; 

SEM=0.047 

M=1.700; 

SEM=0.084 

M=1.330; 

SEM=0.119 

M=13.25; 

SEM=2.430 

Post (veh) M=0.726; 

SEM=0.039 

M=1.667; 

SEM=0.079 

M=1.289; 

SEM=0.089 

M=12.63; 

SEM=1.830 

Post (don) M=0.711; 

SEM=0.040 

M=1.654; 

SEM=0.069 

M=1.294; 

SEM=0.086 

M=12.24; 

SEM=1.515 
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3.3.1.2 Apparatus 

 

The rCPT was carried out in touchscreen-based, operant chambers (Campden Instruments). Nicotine 

was administered under conditions of reduced SD initially, in which rats were presented with the 

baseline trained SD (1s) intermixed with reduced SDs of 0.6 and 0.2s. Next, nicotine was 

administered with conditions of distraction, in which no-distractor trials were intermixed with 

congruent- and incongruent-distractor trials (SD = 1s). Note that the original distractor probe was 

utilised in the current experiment, in which distractors were positioned directly both sides of the target 

stimulus and presented in full contrast (see chapter 2 and appendix). 

 

3.3.1.3 Drug 

 

Nicotine ditartrate (Sigma Aldrich) was dissolved in 0.9% sterile saline, and made to a pH of 7 using 

NaOH tablets (Sigma Aldrich). Doses of 0, 0.03, 0.06, 0.1, 0.3mg/kg (as the weight of salt) in a 

volume of 1ml/kg where administered 10 minutes prior to testing (s.c), in a Latin square design. 

Following each drug day rats received a day off testing, followed by a baseline day, in which they 

were tested on stage 6 (SD=1s) and did not receive any drug, to ensure a stable performance through 

the experiment. A two week washout period occurred between each Latin square. The dosing 

protocol for nicotine is well characterised in the literature due to the volume of experiments using this 

compound. In the current literature doses of 0.05-0.3mg/kg are most commonly used and reported to 

improve performance in non-compromised subjects (e.g. Stolerman et al. 2000; Mirza & Bright 2001; 

Hahn et al. 2002; Hahn et al. 2003). 

 

3.3.1.4 Statistical analysis 

 

Data were subjected to repeated-measures ANOVA with ‘dose’ (5 levels) and ‘SD’ (3 levels) or 

‘distractor’ (3 levels) as within-subject factors (p<0.05). Significant main effects and interactions were 

followed up using Sidak’s correction.  
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1. Rats were trained on the rCPT (n= 24). 

 

 

 

 

 

 

    

 

2. Rats received nicotine (0, 0.03, 0.06, 0.1, 0.3mg/kg, s.c, 10 minutes prior to testing) under 

conditions of reduced SD (1, 0.6, 0.2s). 

 

 

3. Rats received a two week wash out period. 

4. Rats received nicotine (0, 0.03, 0.06, 0.1, 0.3mg/kg, s.c, 10 minutes prior to testing) under 

conditions of distraction (no distraction, congruent and incongruent). 

[n.b one rat was excluded due to on longer performing the task, final n= 23]. 

 

 

Table 3.4 Outline of experiments in which nicotine was administered under conditions of reduced SD 

and distraction, on the rCPT. Also included is the final sample size for each probe with any exclusions 

explained. Note, the same rats were used in both experiments. 

 

3.3.2 Results 

 

3.3.2.1 Effects of nicotine on the rCPT, under conditions of reduced SD  

 

Reducing SD impaired rCPT performance, irrespective of nicotine treatment. As figure 3.4 shows, as 

SD decreased, hit rate [SD: F(2,46) = 457.98, p<.001], false alarm rate [SD: F(1.430, 32.891) = 

47.177, p<.001], d’ [SD: F(2,46) = 156.915, p<.001] and C [SD: F(2,46) = 508.991, p<.001] 

significantly decreased (all p<.002). Hit [SD: F(1.296,29.807) = 299.789, p<.001] and false alarm [SD: 

F(2,46) = 95.084, p<.001] response latencies and reward retrieval latencies [SD: F(1.151,26.466) = 

6.824, p=.012]  also significantly decreased (all p<.001). 

 

Nicotine (0-0.3mg/kg) increased responding generally on the rCPT, irrespective of SD. As figure 3.5 

shows, nicotine significantly increased hit rate [dose: F(4,92) = 10.273, p<.001] at 0.1 and 0.3mg/kg 

compared with vehicle (all p<.005), and at 0.3 compared with 0.03mg/kg (p=.008). Nicotine also 

significantly increased false alarm rate [dose: F(2.944,67.714) = 6.802, p<.001] at 0.06, 0.1 and 

0.3mg/kg compared with vehicle (all p<.015), and at 0.1 and 0.3 compared to 0.03mg/kg (all p<.044). 

As a result, C significantly increased [dose: F(4,92) = 10.782, p<.001] at 0.06, 0.1 and 0.3mg/kg 
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compared with vehicle (all p<.004), and at 0.1 and 0.3 compared with 0.03mg/kg (all p<.046); and no 

significant effects were detected on d’. Nicotine significantly increased premature/perseverative 

responses [dose: F(3,66) = 5.277, p=.003] at 0.06 and 0.1 mg/kg compared to vehicle (all p<.021). 

Nicotine significantly reduced hit response latencies [F(4,92) = 5.047, p<.001] at 0.06, 0.1 and 

0.3mg/kg compared with vehicle (all p<.040), whilst having no significant effects on false alarm 

response or reward retrieval latencies.  

 

3.3.2.2 Effects of nicotine on the rCPT, with conditions of distraction 

 

Distraction influenced rCPT performance, irrespective of nicotine (figure 3.4). Compared with no 

distraction, incongruent distraction impaired rCPT performance in the form of reduced discrimination 

sensitivity [distraction: F(1.259,27.708) = 9.078, p<.001], hit rate [distraction: F(1.584,34.841) = 

28.233, p<.001]  and C [distraction: F(1.271,27.969) = 19.746, p<.001] (all p<0.01). Congruent 

distraction also impaired rCPT performance in the form of reduced hit rate and C (all p<0.01); it also 

improved rCPT performance in the form of reduced false alarm rate [distraction: F(2,44) = 14.101, 

p<.001] (all p<.003). Incongruent distraction also increased hit [distraction: F(2,44) = 4.144, p=.022] 

and false alarm [distraction: F(1.551,34.126) = 33.654, p<.001] response latencies whereas 

congruent distraction decreased false alarm latencies [distraction: F(1.551,34.126) = 33.654, p<.001] 

(all p<.033). No significant effects were detected on reward retrieval latencies. 

 

Under conditions of distraction, nicotine induced the same general increase in responding on the 

rCPT, as it did under conditions of reduced SD. As figure 3.5 shows, nicotine treatment significantly 

increased hit rate [dose: F(4,88) = 17.421, p<.001] at 0.06, 0.1 and 0.3mg/kg compared with vehicle 

(all p<.035), and at 0.3mg/kg compared with 0.03, 0.06 and 0.1mg/kg (all p<.004). Nicotine also 

significantly increased false alarm rate [dose: F(2.530, 55.649) = 14.921, p<.001] at 0.3mg/kg 

compared with vehicle (p<.000), 0.03, 0.06 and 0.1mg/kg (all p<.002). As a result, C significantly 

increased [dose: F(4,88) = 22.767, p<.001] at 0.06, 0.1 and 0.3mg/kg compared with vehicle (all 

p<.035), and at 0.3mg.kg compared with 0.03, 0.06 and 0.1mg/kg (all p<.001); and no significant 

effects were detected on d’. Nicotine significantly increased premature/perseverative responses 

[F(2.898,63.747) = 9.050, p<.001] at 0.3mg/kg compared with vehicle (p=.001), 0.03, 0.06 and 

0.1mg/kg (all p<.039). Nicotine significantly reduced hit response latencies [F(4,88) = 4.029, p=.005] 

at 0.3mg/kg nicotine compared with vehicle (p<.011) and 0.03 (p<.017). There were no significant 

effects detected on false alarm response or reward retrieval latencies. All significant effects were 

irrespective of distraction.  
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Summary for the effects of nicotine on the rCPT under conditions of SD and distraction. 

 

As hypothesised, due to nicotine’s impairing effects on impulsivity, nicotine increased responding non-

selectively at both target (hit rate) and non-target stimuli (false alarm rate), as a result no 

improvements in discrimination sensitivity were observed. Nicotine also increased other impulsivity 

related measures, including increased premature/perseverative responses and reduced hit response 

latencies. These findings are consistent with the impairing effects of nicotine reported on premature 

responses on the 5-CSRTT. 

 

Effects of reducing SD on the rCPT, irrespective of nicotine 

    

    

 

Effects of distraction on the rCPT, irrespective of nicotine 
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Figure 3.4 Effects of reducing SD (a-d) and distraction (e-h) on the rCPT, irrespective of nicotine. The 

x axis represents reduced SDs of 1, 0.6 and 0.2s (a-d), and no- congruent- and incongruent-

distractors (e-h). Also displayed is a table showing hit (HRL) and false alarm (FARL) response and 

reward retrieval (RRL) latencies (i). The graphs and table display significant post hoc comparisons 

from the longest, baseline trained SD (1s) and from the no-distraction condition. Data are presented 

as mean ± SEM (*, **, *** p<0.05, p<0.01, p<0.001 with Sidak’s correction).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i HRL FARL RRL 

Reduced SD 

1s M=0.726; SEM=0.008 M=0.567; SEM=0.012 M=1.353; SEM=0.028 

0.6s M=0.635; SEM=0.007*** M=0.453; SEM=0.011*** M=1.348; SEM=0.035 

0.2s M=0.476; SEM=0.004*** M=0.356; SEM=0.007*** M=1.300; SEM=0.026*** 

Distraction 

No M=0.746; SEM=0.009 M=0.581; SEM=0.012 M=1.432; SEM=0.025 

Congruent M=0.770; SEM=0.009 M=0.520; SEM=0.017 * M=1.440; SEM=0.024 

Incongrue

nt 

M=0.774; SEM=0.009 *** M=0.752; SEM=0.020 *** M=1.473; SEM=0.028 
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Effects of nicotine treatment on the rCPT, with reduced SD 

   

    

Effects of nicotine treatment on the rCPT, with distraction 
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Figure 3.5 Effects of nicotine on the rCPT under conditions of reduced SD (1, 0.6, 0.2s: a-d) and 

distraction (no-, congruent- and incongruent-distractors: e-h). The x axis represents the dose (mg/kg). 

Also displayed is a table showing hit (HRL) and false alarm (FARL) response and reward retrieval 

(RRL) latencies and premature/perseverative responses (prem/pers) (i). The graphs and table are 

shown irrespective of condition (reduced SD/ distraction) and display significant post hoc comparisons 

from vehicle. Data are presented as mean ± SEM (*, **, *** p<0.05, p<0.01, p<0.001 with Sidak’s 

correction).   

 

 

 

 

 

 

 

 

i HRL FARL RRL Prem/pers 

Nicotine with reduced SD 

0 M=0.633; 

SEM=0.015 

M=0.466; SEM=0.019 M=1.321; 

SEM=0.044 

M=129.0; SEM=13.98 

0.03 M=0.622; 

SEM=0.015 

M=0.448; SEM=0.016 M=1.332; 

SEM=0.041 

M=138.7; SEM=13.17 

0.06 M=0.604; 

SEM=0.014* 

M=0.479; SEM=0.016 M=1.295; 

SEM=0.039 

M=191.4; 

SEM=21.41* 

0.1 M=0.603; 

SEM=0.014* 

M=0.467; SEM=0.014 M=1.303; 

SEM=0.029 

M=183.8; 

SEM=19.30** 

0.3 M=0.599; 

SEM=0.013* 

M=0.432; SEM=0.015 M=1.419; 

SEM=0.036 

M=169.0; SEM=13.33 

Nicotine with distraction 

0 M=0.787; 

SEM=0.011 

M=0.636; SEM=0.019 M=1.490; 

SEM=0.038 

M=141.6; SEM=14.21 

0.03 M=0.776; 

SEM=0.011 

M=0.614; SEM=0.016 M=1.446; 

SEM=0.034 

M=140.4; SEM=14.29 

0.06 M=0.761; 

SEM=0.011 

M=0.628; SEM=0.019 M=1.436; 

SEM=0.035 

M=163.9; SEM=18.17 

0.1 M=0.761; 

SEM=0.012 

M=0.630; SEM=0.015 M=1.461; 

SEM=0.033 

M=152.5; SEM=14.43 

0.3 M=0.732; 

SEM=0.011* 

M=0.580; SEM=0.015 M=1.409; 

SEM=0.027 

M=221.2; 

SEM=20.30** 
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3.4 Effects of acute and sub-chronic ABT-594 on the rCPT and touchscreen-based 5-CSRTT 

under conditions of reduced SD 

 

 

3.4.1 Methods 

 

3.4.1.1 Subjects 

 

Forty-eight experimentally naïve male Lister Hooded rats (Harlan, UK) served as subjects (280g ±30). 

Rats were divided into two groups of 24 and underwent training on the rCPT or touchscreen-based 5-

CSRTT (see table 3.5 for experiment outline). 

 

3.4.1.2 Apparatus 

 

The rCPT and 5-CSRTT were carried out in touchscreen-based, operant chambers (Campden 

Instruments). A five-hole mask was positioned in front of the screen to create five response windows 

for the 5-CSRTT. Drugs were administered on the tasks with conditions of reduced SD, in which the 

baseline trained SD (1s) was intermixed with reduced SDs of 0.6 and 0.2s on the rCPT; and the 

baseline trained SD (0.5s) was intermixed with reduced SDs of 0.25 and 0.125s on the 5-CSRTT. 

 

3.4.1.3 Drug 

 

ABT-594 was provided by Eric Mohler and the same dosing protocol to that used in Mohler et al, 2010 

was used, in which ABT-594 was initially administered acutely initially. ABT-594 (Holladay et al. 1998) 

in the form of a p-Toluenesulfonic acid salt (synthesized at Abbott Laboratories and provided by 

AbbVie) was dissolved in 0.9% sterile saline. In the acute experiment, doses of 0, 0.0023, 0.007, 

0.023mg/kg (as the weight of salt) in a volume of 1ml/kg were administered (i.p) 30 minutes prior to 

testing, and in a Latin square design. Rats were pre-treated with the highest dose (0.023mg/kg) prior 

to the first Latin square, in an attempt to prevent any potential sickness-induced effects of ABT-594 

interfering with the behavioural data. Following each drug day, rats received a baseline day in which 

they were tested on stage 6 (rCPT, SD =1s) or stage 12 (5-CSRTT, SD =0.5s) and did not receive 

any drug, to ensure a stable performance throughout experiments. Due to signs of reduced 

motivation/sickness (reduced reward retrieval latencies) at the highest dose, a sub-chronic regimen 

was next carried out without the highest dose and a two day pre-treatment period. As a result, the 

possible negative effects on motivation were eliminated. In the sub-chronic experiment, doses of 0, 

0.0023, 0.007mg/kg in a volume of 1ml/kg were administered (i.p) 30 minutes prior to testing, for 

seven consecutive days, in a Latin square design. All rats received all doses of 0, 0.0023, 0.007mg/kg 

sub-chronically in a counterbalanced manner. Rats were injected but not tested on days one and two 

of the seven sub-chronic dosing days. A two week washout period occurred between each Latin 
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square. There were four Latin squares in total, one acute and three sub-chronic. ABT-594 dosing 

protocol based on (Mohler et al. 2010). 

 

1. Rats were trained on the rCPT (n= 24) or touchscreen-based 5-CSRTT (n=24). 

 

 

 

 

 

 

    

 

2. Rats received ABT-594 acutely (0, 0.0023, 0.007, 0.023mg/kg, i.p, 30 minutes prior to testing) 

under conditions of reduced SD (rCPT: 1, 0.6, 0.2s, 5-CSRTT: 0.5, 0.25, 0.125s). 

[n.b rCPT: two rats were excluded for not acquiring the task, final n=22.   

5-CSRTT: one rat was excluded due to repeated seizures and three rats did  

<50% trials on one or more drug days and were excluded, final n=20]. 

 

3. Rats received a two week wash out period. 

4. Rats received ABT-549 sub-chronically for seven consecutive days (0, 0.0023, 0.007mg/kg, i.p) 

under conditions of reduced SD (rCPT: 1, 0.6, 0.2s, 5-CSRTT: 0.5, 0.25, 0.125s). Rats received a 

two week washout period in between each sub-chronic dosing. 

 

 

 

 

[n.b rCPT: one rat died, and four rats' data were lost due to technical problems, final  n=16.    

5-CSRTT: one rat had a faulty pellet dispenser, two rats did <50% trials on one or more drug days 

and were excluded, final n=20]. 

 

Table 3.5 Outline of experiments in which ABT-594 was administered acutely and sub-chronically on 

the rCPT and 5-CSRTT. Also included is the final sample size of each experiment with any exclusions 

explained. Note, the same rats were administered ABT-594 acutely and sub-chronically. 

 

3.4.1.4 Statistical analysis 

 

Data were subjected to repeated-measures ANOVA with ‘dose’ (4 levels) and ‘SD’ (3 levels) as 

within-subject factors (p<0.05) in the acute experiments; and ‘dose’ (3 levels), ‘SD’ (3 levels) and ‘day’ 

(5 levels) in the sub-chronic experiments. Significant main effects and interactions were followed up 

using Sidak’s correction.  

Day 1 and 2:  
Injection only 

Day 3-7:  
Injection followed by testing 
10 minutes later 
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3.4.2 Results 

  

3.4.2.1 Effects of acute and sub-chronic ABT-594 on the rCPT, under conditions of reduced SD 

 

Reducing SD impaired rCPT performance, irrespective of ABT-594 treatment. As figure 3.6 shows, as 

SD decreased, hit rate [SD: F(1.460, 30.658)=57.333, p<.001], d’ [SD: F(1.576, 33.087)=42.922, 

p<.001] and C [SD: F(2, 42)=35.526, p<.001] significantly decreased (all p<.008). A strong trend was 

revealed for increased false alarm rate as SD decreased [SD: F(2, 42)=2.992, p=.061]. Hit response 

latencies [SD: F(2, 42)=7.828, p<.001] significantly decreased (all p<.006) and false alarm response 

latencies [SD: F(2, 42)=19.452, p<.001] increased as SD decreased. 

 

Acute ABT-594 (0-0.023mg/kg) impaired rCPT performance and increased impulsive responding; 

reduced reward retrieval latencies were also observed. Acute ABT-594 treatment significantly 

reduced d’ [dose: F(3, 63)=10.122, p<.001], at 0.023mg/kg compared with vehicle (p<.001), 0.0023 

and 0.007mg/kg (all p<.038), irrespective of SD. A close to significant effect was revealed for reduced 

hit rate [dose: F(3, 63)=2.675, p=.055], irrespective of SD. ABT-594 increased false alarm rate [dose: 

F(3, 63)=5.917, p=.001] at 0.023mg/kg compared with vehicle (p=.016) and 0.0023mg/kg (p=.046). 

The effects of false alarm rate were dependent on SD [dose X SD: F(6, 126)=3.472, p=.003], rats had 

a significantly higher false alarm rate during the longest SD (1s) at 0.023mg/kg compared with vehicle 

(p<.001), 0.0023 and 0.007mg/kg (all p<.006). No significant effects were detected for C parameter. 

ABT-594 significantly increased reward retrieval latencies [F(1.636, 34.347)=8.002, p=.003] at 

0.023mg/kg compared with vehicle (p=.019). No significant effects were revealed on hit and false 

alarm response latencies. 

 

Sub-chronic ABT-594 (0-0.007mg/kg) increased impulsive responding, as did acute administration; 

however, the impairing effects demonstrated on d’ and reward retrieval latencies during acute 

administration were not revealed during sub-chronic administration. As figure 3.7 shows, sub-chronic 

ABT-594 treatment significantly increased false alarm rate [dose: F(2, 30)=5.763, p=.008], at 

0.007mg/kg compared with vehicle (p=.016). A close to significant effect was also revealed for 

increased C [dose: F(2, 30)=2.920, p=.069]. No significant effects were detected on hit rate or d’.  

Sub-chronic ABT-594 significantly reduced hit response latencies [F(2, 30)=4.788, p=.016] at 

0.007mg/kg compared with vehicle (p=.005); no significant effects were detected for false alarm 

response and reward retrieval latencies. All significant effects were irrespective of day and SD. 

 

3.4.2.2 Effects of acute and sub-chronic ABT-594 on the 5-CSRTT, under conditions of reduced 

SD 

 

Reducing SD impaired 5-CSRTT performance, irrespective of ABT-594 treatment. As figure 3.6 

shows, as SD decreased percent accuracy [SD: F(2, 38)=31.661, p<.001] and percent correct [SD: 
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F(2, 38)=31.294, p<.001] significantly decreased (all p<.001). No significant effects were detected on 

omissions and latencies.  

 

As with the effects of acute ABT-594 on the rCPT, acute ABT-594 (0-0.023mg/kg) also impaired 5-

CSRTT performance and increased impulsive responding; reduced reward retrieval latencies were 

also observed. As figure 3.8 shows, acute ABT-594 decreased percent accuracy [dose: F(3, 

57)=3.935, p=.013] at 0.023mg/kg compared with vehicle (p=.041). A strong trend was also revealed 

for decreased percent correct [dose: F(3, 57)=3.411, p=.053]; no significant effect was detected for 

percent omissions. Acute ABT-594 also significantly increased percent premature responses [dose: 

F(3, 57)=6.847, p=.001] at 0.023mg/kg compared with vehicle (p=.026) and 0.0023mg/kg (p=.007). 

ABT-594 significantly increased reward retrieval latencies [F(3, 57)=12.028, p<.001] at 0.023mg/kg 

compared with vehicle (p<.001), 0.0023 and 0.007mg/kg (all p<.007). No significant effects were 

detected for response latencies and perseverative responses. All significant effects were irrespective 

of SD.   

 

Consistent with the effects observed on the rCPT, sub-chronic ABT-594 (0-0.007mg/kg) increased 

impulsive responding, as did acute administration; however, the impairing effects demonstrated on 

accuracy and reward retrieval latencies during acute administration were not revealed during sub-

chronic administration. Sub-chronic ABT-594 treatment significantly increased percent premature 

responses [dose: F(2, 38)=36.335, p<.001], at 0.007mg/kg compared with vehicle (p<.001) and 

0.0023mg/kg (p<.001). No significant effects were detected for percent accuracy, percent correct and 

percent omissions. ABT-594 significantly reduced correct [dose: F(2, 38)=10.361, p<.001] and 

incorrect [dose: F(2, 38)=15.412, p<.001] response latencies at 0.007mg/kg compared with vehicle 

(all p=.001) and 0.0023mg/kg (p<.030). No effects were detected for reward retrieval latencies and 

perseverative responses. All effects were irrespective of day and SD. 

 

Summary for the effects of acute and sub-chronic ABT-594 on the rCPT and touchscreen-based 5-

CSRTT, with conditions of reduced SD 

  

As hypothesised, ABT-594 administered acutely and sub-chronically impaired inhibitory response 

control on the rCPT (false alarm rate) and 5-CSRTT (percent premature responses). ABT-594 

administered acutely, also impaired attentional performance on the rCPT (d’) and 5-CSRTT 

(accuracy), however these findings are confounded by reduced reward retrieval latencies. The 

selective effects of sub-chronic ABT-594 on inhibitory response control – alongside no effects 

observed on attentional measures in the rCPT (hit rate) and 5-CSRTT (accuracy), which were 

reported under nicotine treatment -- supports the literature suggesting that the α4β2 subtype may 

mediate the impulsive aspects of nicotine. The parallel effect of ABT-594 on false alarm rate on the 

rCPT and percent premature responses on the 5-CSRTT suggests that these measures may to some 

extent reflect similar underlying changes in response inhibition.  
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Effects of reducing SD on the rCPT, irrespective of ABT-594 

     

      

Effects of reducing SD on the 5-CSRTT, irrespective of ABT-594 
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Figure 3.6 Effects of reducing SD on the rCPT (a-d) and 5-CSRTT (e-h), irrespective of ABT-594. The 

x axis represents reduced SDs of 1, 0.6 and 0.2s for the rCPT, and 0.5, 0.25 and 0.125s for the 5-

CSRTT. Also displayed is a table showing hit/correct (HRL/CRL) and false alarm/incorrect (FARL/IRL) 

response latencies for the rCPT/5-CSRTT and reward retrieval (RRL) latencies (h). The graphs and 

table display significant post hoc comparisons from the longest, baseline trained SD (rCPT: 1s, 5-

CSRTT: 0.5s). Data are presented as mean ± SEM (*, **, *** p<0.05, p<0.01, p<0.001 with Sidak’s 

correction).   

 

Effects of acute ABT-594 treatment on the rCPT, with reduced SD 

    

  

    

Effects of sub-chronic ABT-594 treatment on the rCPT, with reduced SD 
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Figure 3.7 Effects of acute (a-d) and sub-chronic (e-h) ABT-594 on the rCPT with conditions of 

reduced SD. The x axis represents the dose (mg/kg). Also displayed is a table showing hit (HRL) and 

false alarm (FARL) response and reward retrieval (RRL) latencies and premature/perseverative 

responses (prem/pers) (i). The graphs and table display significant post hoc comparisons from 

vehicle. Data are presented as mean ± SEM (*, **, *** p<0.05, p<0.01, p<0.001 with Sidak’s 

correction).   
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Effects of acute ABT-594 treatment on the 5-CSRTT, with reduced SD 

a  b  

c  d  

Effects of sub-chronic ABT-594 treatment on the 5-CSRTT, with reduced SD 

e  f  

g  h  
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Figure 3.8 Effects of acute (a-d) and sub-chronic (e-h) ABT-594 on the touchscreen-based 5-CSRTT 

with conditions of reduced SD. The x axis represents the dose (mg/kg). Also displayed is a table 

showing correct (CRL) and incorrect (IRL) response and reward retrieval (RRL) latencies, and 

perseverative responses (pers) (i). The graphs and table display significant post hoc comparisons 

from vehicle. Data are presented as mean ± SEM (*, **, *** p<0.05, p<0.01, p<0.001 with Sidak’s 

correction).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i CRL IRL RRL Pers 

Acute ABT-594 

0 M=1.156; 

SEM=0.051 

M=1.321; SEM=0.082 M=1.212; SEM=0.057 M=10.121; 

SEM=1.887 

0.002

3 

M=1.176; 

SEM=0.066 

M=1.309; SEM=0.088 M=1.257; SEM=0.065 M=12.016; 

SEM=2.035 

0.007 M=1.092; 

SEM=0.043 

M=1.285; SEM=0.089 M=1.251; SEM=0.058 M=8.984; 

SEM=1.276 

0.023 M=1.157; 

SEM=0.056 

M=1.339; SEM=0.110 M=1.429; 

SEM=0.081*** 

M=10.750; 

SEM=1.816 

Sub-chronic ABT-594 

0 M=1.230; 

SEM=0.039 

M=1.657; SEM=0.079 M=2.191; SEM=0.970 M=8.576; 

SEM=1.556 

0.002

3 

M=1.199; 

SEM=0.034 

M=1.575; SEM=0.069 M=1.573; SEM=0.270 M=8.036; 

SEM=1.328 

0.007 M=1.105; 

SEM=0.044** 

M=1.259;  

SEM=0.071** 

M=1.272; SEM=0.088 M=7.466; 

SEM=1.167 
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 rCPT 

Drug Condition Hit rate False 

alarm 

rate 

d’ C Prem/ 

Pers 

Lat 

Donepezil  Reduced SD ↑ (lt) Long 

SD 

↓ (lt) Short 

SD  

↔ ↑ (lt) 

Long SD 

↓ (lt) 

Short SD 

↑ (lt) 

Long SD 

↓ (lt) 

Short SD 

↔ - 

Mecamylamine 

Pre-treatment 

Reduced SD ↔ ↔ ↔ ↔ ↔ - 

Donepezil post-

treatment 
Reduced SD 

↔ ↔ ↔ ↔ ↔ - 

Nicotine Reduced SD ↑ ↑ ↔ ↑ ↑ ↓ HL 

Distractor ↑ ↑ ↔ ↑ ↑ ↓ HL 

ABT-594 (acute) Reduced SD ↔ ↑ ↓ ↔ ↔ ↑ 

RRL 

ABT-594 (sub-

chronic) 
Reduced SD 

↔ ↑ ↔ ↔ ↔ ↓HL 

 5-CSRTT 

Drug Condition % acc % corr % 

omit 

% prem Pers Lat 

Donepezil  Reduced SD ↔ ↑ ↔ ↔ ↔ ↔ 

Mecamylamine 

pre-treatment 

Reduced SD ↓ ↓ ↔ ↓ ↔ ↔ 

Donepezil post-

treatment 
Reduced SD 

↑ ↔ ↔ ↑ ↔ ↔ 

ABT-594 (acute) Reduced SD ↓ ↔ ↔ ↑ ↔ ↑ 

RRL 

ABT-594 (sub-

chronic) Reduced SD 

↔ ↔ ↔ ↑ ↔ ↓ 

CRL 

↓ IRL 

 

Table 3.2 Summary of cholinergic pharmacological manipulations carried out on the rCPT and 5-

CSRTT (abbreviations: prem/pers = premature/ perseverative responses, Lat = latencies, % acc = 

percent accuracy, % corr = percent correct, % omit = percent omissions, % prem = percent 

premature, pers = perseverative responses, ↑ = increase (p<.05), ↓ (p<.05) = decrease, ↔ = no effect 

(p>.05), - = data not available, lt = linear trend, CRL = correct response latency, HL = hit response 

latency, IRL = incorrect response latency, RRL = reward retrieval latency).  
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3.5 Discussion 

 

 

3.5.1 Effects of behavioural manipulations on the rCPT and 5-CSRTT 

 

Both the rCPT and the five-hole/touchscreen-based 5-CSRTT were sensitive to behavioural 

manipulations. On the rCPT, reducing SD (0.6 and 0.2s) from the baseline trained SD (1s) reliably 

impaired attentional performance (reduced hit rate, d’ and C). The effects of reducing SD on inhibitory 

response control (false alarm rate) were mixed; increases, no effects and decreases were reported. 

Likely due to the increased event rate under reduced SDs, which taxes inhibitory response control 

less so. On the 5-CSRTT, reducing SD (0.25 and 0.15s) from the baseline trained SD (0.5s) also 

reliably impaired attentional performance (reduced percent accuracy and correct). Increases as well 

as no effects were observed for percent omissions, likely due to floor effects. For the first time, flanker 

distraction, using salient differentiated distractors, reliably impaired attentional performance on the 

rCPT as hypothesised. Incongruent distraction predominantly impaired rCPT performance (reduced 

hit rate, d’ and C). Congruent distraction also impaired some aspects of performance (reduced hit rate 

and C), while also reducing impulsive responding (reduced false alarm rate). 

 

3.5.2 Effects of donepezil on the rCPT and 5-CSRTT under reduced SD 

 

As hypothesised, on the rCPT, donepezil influenced attentional performance differentially dependent 

on the SD challenge presented in non-compromised rats (revealed by significant linear trends). As 

donepezil dose increased, donepezil impaired attentional performance (hit rate, d’ and C), during the 

intermediate (0.6s) and/or short (0.2s) reduced SDs, compared with better performance during the 

baseline trained SD (1s). The same SD- and baseline-dependent effects of donepezil have been 

reported in C57 mice on the mouse rCPT; in which mice were reported to perform better at longer 

SDs and worse when challenged at the shorter SDs under donepezil treatment (Kim et al. 2015). The 

findings in the present experiment and those of Kim and colleagues are likely due to excessive 

increases in ACh following donepezil treatment in young, healthy animals, in which the cholinergic 

systems baseline activity is within a normal range. This is consistent with the human literature, which 

has consistently shown cholinesterase inhibitors to improve attentional performance, dependent on 

cholinergic system baseline activity, supporting a relationship between cholinergic system level and 

attentional performance to resemble an ‘inverted-U’ shaped function (see figure 3.9) (Hasselmo & 

Sarter 2011; Bentley et al. 2011; Demeter & Sarter 2013). One of the key experiments in the human 

literature which supports this pattern is that of Bentley and colleagues (2008), in which the 

cholinesterase inhibitor physostigmine was reported to improve stimulus- and attention-dependent 

responses in AD patients by increasing relative ACh level. In contrast, the opposite effects 

(impairments) were reported in age-matched healthy controls. These performance effects were 

supported by fMRI evidence showing the normalisation of cortical activation in AD patients, 

particularly during high demand conditions, while perturbing such activations in the same regions in 

healthy controls. Further support for cholinergic system baseline-dependent effects of cholinesterase 
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inhibitors comes from studies carried out in schizophrenia subjects. Cholinesterase inhibitors have 

been shown to be less effective in improving attentional performance in schizophrenia patients 

(Kohler et al. 2007; Buchanan et al. 2008; Keefe et al. 2008) and animal models (Mar et al. 2017). 

Likely due to reports of elevated cholinergic system activity in schizophrenic patients (Tandon & 

Greden 1989). Finally, in healthy subjects, high baseline levels of activation during more challenging 

conditions, are more prone to impairment with pro-cholinergic drugs (Kumari et al. 2003; Bentley et al. 

2004; Thiel et al. 2005; Hahn et al. 2007); which likely explains the impairing effects of donepezil in 

the present experiment when the SD is reduced.  

 

Consistent with the human literature, the impairing effects of donepezil in non-compromised rats in 

the present experiment, alongside improving effects reported in compromised rats in the literature 

provides preclinical evidence for a relationship between cholinergic system level and attentional 

performance to resemble an ‘inverted-U’ shaped function (Muir et al. 1992; Muir et al. 1994; Muir et al. 

1995; Kirkby et al. 1996; McGaughy et al. 2002; Balducci et al. 2003; Dalley et al. 2004). In the 

present experiment, even though attentional performance was reduced, by the means of reducing SD, 

it is likely that this impairment did not mimic that of a cholinergically-compromised animal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. An example of an inverted ‘U’ model for cholinergic regulation of attentional performance. 

The y axis represents attentional performance (which can be manipulated by increasing attentional 

load) and the x axis represents the baseline level of acetylcholine (ACh). The top, centre of the curve 

represents an optimum level of ACh, in which cognitive performance is maximal. Cholinergically 

compromised subjects, for example an AD patient, would be placed at the lower, left of the curve, due 
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to the cholinergic deficit and cognitive impairments; in contrast, a non-cholinergically compromised 

subject, such as a healthy control would be at the top, centre of the curve (optimal ACh and 

performance). The increase in ACh induced by cholinesterase inhibitors in cholinergically 

compromised subjects, normalises the cholinergic deficit and puts the subject into a more optimal 

ACh range, in which attentional performance would be improved as a result. On the other hand, 

cholinesterase inhibitor-induced increases in ACh to an already normally functioning cholinergic 

system, results in excessive ACh and can impair attentional performance.  

 

In the 5-CSRTT, donepezil also influenced performance differentially dependent on dose and SD 

challenge. Under donepezil treatment (0.1 and 1mg/kg) rats performed worse (percent correct and 

almost percent accuracy) during the most reduced SD (0.125s), compared with better performance 

during a less reduced SD (0.25s). Although linear trends for the differential effects of donepezil on 

attentional performance, dependent on SD were not significant on the 5-CSRTT (which were 

significant on the rCPT); this pattern of data seems to follow the direction of the findings in the rCPT, 

in which performance is impaired when challenged in non-compromised rats. 

 

Taken together, these findings demonstrate the behavioural effects of donepezil on attentional 

performance in non-compromised subjects to be more sensitive on the rCPT, likely due to the 

increased attentional requirements of discrimination and a high event rate compared with more simple 

signal detection on the 5-CSRTT. They support the role of ACh on attentional performance in the 

novel rCPT, and suggest that normal cholinergic system functioning is required for optimal task 

performance. They demonstrate baseline-dependent effects of cholinesterase inhibitors on attentional 

performance in a consistent manner with the human literature. To explore this finding further, it would 

be interesting for future work to examine the ability of donepezil to remediate attentional impairments 

in a cholinergically compromised animal model on the rCPT. It would be hypothesised that donepezil 

would improve performance in a cholinergically compromised animal. 

 

3.5.3 Effects of donepezil following mecamylamine pre-treatment on the rCPT under reduced 

SD 

 

Donepezil administration following mecamylamine pretreatment, was tested in an attempt to 

antagonise the effect of donepezil, to investigate the extent to which nAChRs mediate its effects. 

A low-to-mid range dose of mecamylamine was used to try to achieve this (1mg/kg), which hasn’t 

been shown to impair attentional performance in the current literature. However, in the present 

experiment on the 5-CSRTT, mecamylamine pre-treatment significantly impaired attentional 

performance (reduced percent accuracy and correct) and reduced impulsive responding (reduced 

percent premature responses). Under this cholinergic system impairment, donepezil posttreatment 

significantly remediated the deficits (increased percent accuracy and percent premature responses). 

The impairing effects of mecamylamine on attentional performance and reduced impulsive responding 

on the 5-CSRTT, are consistent with what has previously been reported in the animal literature, with 
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slightly higher doses (2-4mg/kg) (Grottick & Higgins 2000; Stolerman et al. 2000; Ruotsalainen et al. 

2000; Hahn et al. 2016). 

 

In contrast, mecamylamine pre-treatment had no effects on rCPT performance and therefore 

donepezil posttreatment did not improve attentional performance. The lack of mecamylamine 

impairment on the rCPT, compared with impairment  on the 5-CSRTT, is likely due to the low-to-mid 

range dose of mecamylamine used in the current experiment (1 mg/kg), compared with higher doses 

(2-4mg/kg) which have previously been reported to impair 5-CSRTT performance. Additionally, 

mecamylamine has not consistently being reported to impair the accuracy measure in non-

compromised rats on the 5-CSRTT. Often only increases in omissions and response latencies and 

reductions in premature responses are reported in rats without a deficit (Stolerman et al. 2000; 

Ruotsalainen et al. 2000; Hahn et al. 2016). Cholinergic system baseline-dependent effects have also 

been reported with mecamylamine. For example, impairments in accuracy have been reported more 

reliably in middle aged rats (15 months) and not in young (3 months) rats (Jones et al. 1995), 

probably due to aged-related degeneration of the basal forebrain cholinergic system (Flood & 

Coleman 1988; Fischer et al. 1992; Smith et al. 1993). A wider range of mecamylamine doses is 

required to be tested on the rCPT, followed by donepezil post treatment when an impairment has 

been achieved. 

 

Taken together, these findings demonstrated the 5-CSRTT to be more sensitive to impairments 

following nAChR blockade with mecamylamine (1mg/kg) compared to the rCPT. This nicely produced 

a cholinergic deficit, which impaired 5-CSRTT performance and was remediated by donepezil; 

compared with a lack of effect/subtle impairing effects when donepezil was administered alone, in the 

absence of mecamylamine-induced impairments. The present findings support the cholinergic system 

baseline-dependent effects of cholinesterase inhibitors on attentional performance, in a consistent 

manner to the human literature. 

 

3.5.4 Effects of nicotine on the rCPT under reduced SD and distraction 

 

As hypothesised, nicotine induced a general increase in responding on the rCPT under conditions of 

reduced SD and distraction. Nicotine increased responding (hit rate) and the speed of responding (hit 

response latency) at the target stimulus, which on its own could indicate increased attentional 

performance. However, this occurred in combination with increased responding at non-target stimuli 

(increased false alarm rate). Nicotine also increased impulsive responding during the ISI period 

(premature/perseverative responses). As a result, nicotine did not improve discrimination sensitivity 

and increased the willingness to respond (C parameter).  

 

Nicotine has previously been shown, although variably, to improve simple signal detection on the 5-

CSRTT in non-compromised rats during a range of task conditions -- largely when the time out for 

impulsive responding has been abolished -- alongside consistent increases in impulsive responding 
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(premature responses) (Mirza & Stolerman 1998; Stolerman et al. 2000; Grottick & Higgins 2000; 

Mirza & Bright 2001; Hahn et al. 2002; Bizarro & Stolerman 2003; Amitai & Markou 2009). The lack of 

improving effects of nicotine in rCPT performance, compared with some reports of improved 5-CSRTT 

performance, may be due to two factors. The first being that nicotine is possibly less able to improve 

attentional performance which requires greater attentional resources of discriminability. This is 

consistent with the lack of effects of nicotine reported on the SAT, in which there is also a 

discrimination element alongside signal detection (Turchi et al. 1995; Bushnell et al. 1997; Rezvani et 

al. 2002); as well as the subtle or lack of effects of nicotine reported on the human CPT (Levin et al. 

1996; Levin et al. 1998; Giessing et al. 2006; Giessing et al. 2007). Secondly, the lack of effect of 

nicotine on the rCPT could be a result of the punished response inhibition element required on the 

rCPT, which delays signal presentation, in the face of a drug known to increase impulsive responding. 

Although, there is an inhibitory response component of the 5-CSRTT, in the form of withholding a 

response during the ITI period (premature responses), nicotine-induced improvements in accuracy 

have often been reported when the punishment of impulsive responding with a time out has been 

abolished. It is likely that if false alarms on the rCPT did not delay signal presentation, increases in 

‘attentional performance’ would be reported. Taken together, it seems that even if nicotine is capable 

of improving attentional performance, it is confounded by nicotine-induced increased impulsive 

responding, which prevents improved discriminability on a go/no-go style rCPT task, which 

importantly incorporates response inhibition during no-go trials into measures of sustained attention, 

and punishes this responding (see Parasuraman 1979; Mackworth 1968; Eagle et al. 2008; Sarter et 

al. 2009).  

 

Nicotine-induced increases in impulsive responding, in the form of increased false alarms and 

responses during the ISI period (premature/perseverative responses) on the rCPT are consistent with 

increased premature responses on the 5-CSRTT. They are also consist with nicotine’s impairing 

effects reported on go/no-go and delayed reward tasks in humans and rats (Bickel et al. 1999; 

Spinella 2002; Baker et al. 2003; Dinn et al. 2004; Reynolds et al. 2004; Yakir et al. 2007; Fields et al. 

2009; Diergaarde et al. 2008; Kolokotroni et al. 2011; Eagle et al. 2008). Nicotine has well-known 

stimulant properties due to the presence of nAChRs in brain regions associated with the modulation 

of impulsivity, for example the ventral tegmental area, striatum, nucleus accumbens NAc), PFC and 

amygdala (Cardinal et al. 2001; Aron et al. 2004; Winstanley et al. 2004; Christakou et al. 2004; Hariri 

et al. 2006; Eagle et al. 2008; Churchwell et al. 2009; Koob & Volkow 2010). Nicotine-induced deficits 

in inhibitory response control have been suggested to be mediated by dopamine (DA) release in the 

NAc. Nicotine, as with other psychostimulant drugs, increases striatal dopaminergic 

neurotransmission (Di Chiara and Imperato. 1988). More precisely, nAChRs situated within the VTA, 

when stimulated, increase DA in the NAc shell and the PFC (Benwell and Balfour, 1992; Nisell et al, 

1996). The β2 (Picciotto et al, 1998) and α7 (Schilstrom et al, 1998; Hoyle et al, 2006) nAChR 

subtypes have specifically been shown to mediate the effects of nicotine on dopamine release in the 

NAc and so may underlie the effects on inhibitory response control. Additionally, the blockade of 

dopamine D1 and D2 receptors has been demonstrated to block nicotine-, amphetamine- and 
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cocaine-induced impulsive responding on the 2- and 5-CSRTT (Pattij et al. 2007; Van Gaalen et al, 

2006; Van Gaalen et al, 2009). 

 

Taken together, the present experiment suggests that even if nicotine is able to improve attention, it is 

hard to tell as performance is confounded by nicotine induced impulsive responding. This suggests 

that nicotine may not be a suitable treatment in the clinic. Additionally, the parallel effects of nicotine 

on false alarm rate and premature/perseverative responses on the rCPT and the effects reported on 

premature responses on the 5-CSRTT, may suggest that these measures to some extent reflect 

similar underlying changes in response inhibition. 

 

3.5.5 Effects of the α4β2 nAChR-selective agonist ABT-594 on the rCPT and touchscreen-

based 5-CSRTT under reduced SD 

 

ABT-594 administered acutely increased impulsive responding and impaired attentional performance 

on both the rCPT and 5-CSRTT. Specifically, on the rCPT, ABT-594 increased impulsivity (increased 

false alarm rate) and impaired discrimination sensitivity (reduced d’), whilst having no effects on hit 

rate. Similarly on the touchscreen-based 5-CSRTT, ABT-594 increased impulsivity (increased percent 

premature responses) and impaired attention (reduced percent accuracy). However, the findings with 

acute ABT-594 are confounded by an increase in reward retrieval latencies, which may reflect a 

reduction in food motivation, possibly due to ABT-594 inducing feelings of sickness, despite the rats 

being exposed to the high dose prior to the experiment, which have previously been reported (Mohler 

et al. 2010).  

 

Due to the possible confound of sickness, next ABT-594 was administered sub-chronically without the 

highest dose and with two pretreatment doses given prior to each 5 days of sub-chronic treatment; 

this resulted in reduction of reward retrieval latencies. Sub-chronic ABT-594 increased impulsive 

responding, while having no effects on key attentional performance measures on both the rCPT and 

5-CSRTT. Specifically, on the rCPT, sub-chronic ABT-594 increased impulsivity (increased false 

alarm rate). The impairment on d’ which was present during acute administration was no longer 

observed, in fact subtle improvements in attentional performance were observed in the form of rats 

detected the target stimuli more quickly (reduced hit response latencies, with no effects observed on 

false alarm response latencies). However, the dominant impairing effects of ABT-594 on impulsivity, 

over attentional performance, supports evidence that the α4β2 nAChR subtype likely mediates 

nicotine-induced deficits on impulsivity (Grottick & Higgins 2000; Hahn et al. 2011). On the 5-CSRTT, 

sub-chronic ABT-594 also increased impulsivity (increased percent premature responses), consistent 

with its impulsive effects on the rCPT and increases in premature responses previously reported on 

the 5-CSRTT (e.g. Mohler et al. 2010). The impairment on accuracy which was present during acute 

administration was no longer observed. On the 5-CSRTT ABT-594 reduced correct and incorrect 

response latencies, compared with a specific increase in responding at target stimuli on the rCPT. 

Suggesting that subtle improvements in attentional performance were more sensitive on the rCPT.  
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The lack of strong pro-attentional effects of ABT-594 in the present experiment are likely due to the 

use of non-compromised animals and/or the prominent and punished increases in impulsivity. 

Improved attentional performance following ABT-594 treatment has previously been shown to be 

difficult to obtain reliably in normal, healthy rats, with improvements more robustly demonstrated in 

compromised rats (Terry et al. 2002; Grottick et al. 2003) and ‘poorly’ performing rats on the 5-CSRTT 

(Grottick & Higgins 2000; Mohler et al. 2010). In the current experiments, a bi-modal distribution of 

attentional performance was not evident and so rats were not split into high and low performers. 

 

Taken together the present findings demonstrate that selectively targeting the α4β2 subtype most 

prominently increases impulsive responding, rather than influencing attentional performance, on the 

rCPT and 5-CSRTT in young, healthy rats. This finding in combination with a recent study which 

suggests that the α7 subtype is important for improvements in attentional performance (Hayward et al. 

2017), suggests that the α4β2 subtype may mediate the impulsive effects of nicotine, while the α7 

subtype may mediate the attentional effects of nicotine. To explore this further, experiments are 

required with ABT-594 in cholinergically compromised animal to investigate if under a reduced 

cholinergic baseline system improvements in attentional performance can be demonstrated. 

Additionally, experiments are required with α7 ligands on the rCPT in cholinergically compromised 

and non-cholinergically compromised rats to further assess its cognitive enhancing potential. 

 

3.5.6 Conclusion 

 

In conclusion, the present experiments demonstrate the novel rCPT to be sensitive to increased 

attentional load in the form of reducing SD and flanker distraction. To my knowledge, this is the first 

successful demonstration of impaired attentional performance during conditions of visually salient 

flanker distraction in the rat on an attentional paradigm. The present experiment also demonstrated 

the novel rCPT to be sensitive to a range of cholinergic pharmacological manipulations. Differences 

were observed between the tasks, mainly by a more prominent impairment observed with donepezil 

on the rCPT, possibly due to the greater attentional resources required on this task.  The impairing 

effects of the cholinesterase inhibitor donepezil on attentional performance in non-compromised rats 

on the rCPT (as revealed by linear trends) and less so on the 5-CSRTT, as well as the ability of 

donepezil to remediate mecamylamine-induced impairments on the 5-CSRTT, provides preclinical 

support for the cholinergic system baseline-dependent effects of cholinesterase inhibitors, 

consistently reported in the human literature. This supports a relationship between cholinergic system 

activation and attentional performance to resemble an ‘inverted-U’ shaped function. The lack of 

improved attentional performance and increased impulsive responding with nicotine on the rCPT in 

healthy subjects, is consistent with the effects reported on the 5-CSRTT. The prominent effects 

observed in increased impulsive responding when targeting the α4β2 nAChR subtype with ABT-594 

on the rCPT and 5-CSRTT, supports evidence suggesting the α4β2 subtype to mediate the impulsive 

effects of nicotine. This suggests that nicotine and α4β2 compounds may not be useful in the clinic. 
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Finally, the parallel effects observed in false alarms on the rCPT and premature responses on the 5-

CSRTT with nicotine and ABT-594 suggests that these measures may to some extent reflect similar 

changes in response inhibition.  
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Chapter 4 

Functional dissociations between sub-

regions of the medial prefrontal cortex on 

the rodent continuous performance task 

(rCPT) and effects of cholinergic 

remediation 

 

 

This chapter investigated the effects of discrete excitotoxic lesions to sub-regions of the rat medal 

prefrontal cortex (mPFC) -- anterior cingulate (ACC: dorsal), prelimbic (PL: medial) and infralimbic (IL: 

ventral) cortices – on attentional performance on the novel, rCPT. The effects of mPFC lesions were 

tested on a range of behavioural manipulations to challenge attentional performance, and to a lesser 

extent, inhibitory response control, including conditions of reduced stimulus duration (SD), distraction 

and high/low event rate - presented in a variable and non-variable manner, to assess the effects of 

unpredictability. Under conditions of increased attentional load, the present experiment revealed 

functional dissociations between sub-regions of the mPFC. Rats with lesions of the PL cortex 

exhibited the most persistent attentional impairment (reduced d’) under conditions of reducing SDs 

and high event rate, and under conditions of distraction (reduced hit rate). On the other hand, rats 

with lesions of the ACC exhibited only a transient attentional impairment (reduced d’ and hit rate) in 

the early stages of behaviour testing, which ameliorated with behavioural testing. Rats with lesions of 

the IL cortex also displaying a transient attentional impairment (reduced hit rate) during the variable 

SD condition, while also demonstrating a transient conservative response bias (reduced C) during 

non-variable reduced SDs. Interestingly, rats with lesions of the IL cortex exhibited no effects on 

inhibitory response control measures. Next, rats received treatment with the cholinesterase inhibitor, 

donepezil, followed by a novel muscarinic receptor selective M4-positive allosteric modulator (M4 

PAM: VU0467154), to test whether it was possible to remediate the lesion-induced performance 

deficits. Donepezil had no effects on performance, but VU0467154 improved discrimination 

sensitivity, irrespective of lesion group. This chapter provides a validation for the role of the prefrontal 

cortex in rCPT performance. Additionally, it contributes to the understanding of different roles for sub-

regions of the mPFC in attention performance. Findings will be discussed in the context of a double 

dissociation of attentional performance on the rCPT and the well-characterised 5-CSRTT. 
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4.1 Introduction 

 

 

4.1.1 Functionally dissociable aspects of the mPFC in rodents  

 

It is well documented that the prefrontal cortex and its associated neural circuitry plays a role in the 

mediation of a range of executive functions. Executive functions include attention, response inhibition, 

decision making and cognitive flexibility, and are often impaired in neuropsychiatric and 

neurodegenerative disorders (Baddeley 1996; Miner et al. 1997; Fuster 2000; Passetti et al. 2000; 

Robbins 2000; Brown & Bowman 2002). Specifically, imaging studies in humans (Pardo et al. 1990; 

Corbetta et al. 1991; Rossi et al. 2009; Ramos-Quiroga et al. 2013; Suzuki & Gottlieb 2013) and 

physiological studies in non-human primates (Desimone & Duncan 1995; Schafer & Moore 2011) 

have demonstrated the prefrontal and cingulate cortices to be at the centre of the functional network 

underlying attention and related functioning. The rodent mPFC, although less anatomically complex, 

may to some extent be considered to comprise homologous aspects of the dorsolateral PFC in 

humans and non-human primates (see chapter 1 and 6) (Kolb et al. 1974; Larsen & Divac 1978; 

Uylings et al. 2003; although for a counterargument see Preuss 1995). Within the rat mPFC, the ACC 

has been identified dorsally, and the PL, IL and medial orbital ventrally. Empirical evidence using 

lesions (Olton et al. 1988; Muir et al. 1996; Bussey et al. 1997; Birrell & Brown 2000; Delatour & 

Gisquet-Verrier 2000; Chudasama & Muir 2001; Passetti et al. 2002; Chudasama et al. 2003; 

Chudasama et al. 2005) and pharmacology (Granon et al. 2000) supports the role of the rat mPFC in 

attentional performance; in which impairments appear consistent with those observed in humans with 

pathology of the frontal lobe (Shallice 1982).  

 

It has become increasingly apparent that executive functions are executed by anatomically distinct 

and functionally interacting sub-regions on the mPFC (Muir et al. 1996; Chudasama & Muir 2001; 

Passetti et al. 2002; Chudasama et al. 2003; Chudasama et al. 2005; Seamans et al. 1995; Passetti 

et al. 2003; Kesner 2000; Walton et al. 2003; Dias et al. 1997; Dias et al. 1996; Chudasama & 

Robbins 2003; Bussey, Muir, et al. 1997; Bussey, Everitt, et al. 1997). Such functional dissociations 

have been demonstrated mostly on the 5-CSRTT using excitotoxic lesions, with findings 

predominantly reporting the role of the dorsal mPFC in attentional performance and the ventral mPFC 

in inhibitory response control (see table 4.1 for summary of experiment findings in the current 

literature). Large lesions of the mPFC (encompassing the ACC, PL and IL cortices) have been 

demonstrated to exhibit impaired attentional performance on the 5-CSRTT, in the form of reduced 

accuracy and increased correct response latencies, and to increase compulsivity, in the form of 

increased perseverative responding (Passetti et al. 2002). In contrast, more discrete lesions of the 

dorsal sub-region of the mPFC (pre-genual ACC and dorsal portion of the PL cortex) have 

predominantly been demonstrated to exhibit deficits in attentional performance, in the form of reduced 

accuracy on the 5-CSRTT (Passetti et al. 2002; Chudasama et al. 2003) and a combined attention-

memory task (Chudasama et al. 2005). However, increases in omissions and perseverative 
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responding have also been reported. A recent sophisticated experiment using chemogenetics also 

supports the role of the dorsal mPFC in attentional performance in rats, in which the inhibition of 

excitatory neurons in the pre-genual ACC reduced choice accuracy and increased omissions on the 

5-CSRTT (Koike et al. 2016). In contrast, lesion of the post-genual ACC -- also considered mPFC due 

to thalamic projections -- has been reported to exhibit no effects on attentional performance and to 

impair response inhibition, in the form of increased premature responses on the 5-CSRTT (Muir et al. 

1996); supporting the role of the post-genual ACC in response selection, particularly the inhibition of 

prepotent, inappropriate responding (Posner & Petersen 1990).  

 

On the other hand, discrete lesions of the PL cortex have been demonstrated to exhibit impairments 

in attentional performance in more complex attentional tasks, which require greater attentional 

resources than serial reaction time tasks, in the form of discrimination of signal and non-signal events 

alongside simple signal detection, as well as unpredictable stimulus presentation. Lesions of the PL 

cortex have been reported to have no effects on attentional performance on the 5-CSRTT, in which 

signals are presented frequently and in a predictable manner, whereas on a more complex vigilance 

task, which required the detection of an infrequent and unpredictable house light flash, impairments in 

attentional performance (d’) were revealed (Muir and Bussey, 1994, unpublished data; Chudasama & 

Muir 2001). Similarly, lesions of the PL cortex have been reported to have no effects on attentional 

performance on a two choice serial reaction time task, whereas on a task which required the 

continuous monitoring of a house light and the discrimination of its brightness, impairments in 

attentional performance (d’) were revealed (Granon et al. 1998).  

 

Finally, discrete lesions of the ventral sub-region of the mPFC (IL cortex), have been demonstrated to 

predominantly influence inhibitory response control on the 5-CSRTT. Lesions of the IL cortex 

(including the ventral portion of the PL cortex) have been reported to increase impulsive responding, 

in the form of increased premature responses, on the 5-CSRTT; increases in omissions and reduced 

correct response latencies were also reported (Chudasama et al. 2003). Taken together, these 

findings predominantly support the role of the ACC in attentional performance characterised by 

predictable, frequently presented stimuli on the 5-CSRTT; and the role of the PL cortex in attentional 

performance characterised by more complex attentional processes, including the discrimination of an 

unpredictable presented signal amongst non-signal events. On the other hand, the role of the IL 

cortex is predominantly supported in inhibitory response control on the 5-CSRTT. However, functional 

overlap between sub-regions is evident. For example, following discrete IL cortex lesions and 

combined lesions of the PL and IL cortices, alongside effects reported on premature responses, 

transient reductions in accuracy have also been reported (Passetti et al. 2002). Similarly, overlap has 

been demonstrated following discrete ACC and IL lesions in the form of increased omissions (Passetti 

et al. 2002; Chudasama et al. 2003), and following discrete lesions of the ACC, PL and IL cortices in 

the form of increased perseverative responding (Chudasama & Muir 2001; Passetti et al. 2002; 

Chudasama et al. 2003). 
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mPFC 

sub-

region/s 

lesioned 

Task condition Author Acc  Omit Prem Persev  CRL Dose Strain Sex 

General mPFC     

ACC, PL 

and IL 

Baseline Passetti et al. 

(2002) 

↓ ↑ ↔ ↑ ↑ 0.2-0.3μl of 

0.09M 

quinolinic 

acid 

Lister Male 

Reduced SD ↔ ↔ ↔ ↔ ↔ 

Variable Long ITI ↑ ↔ ↔ ↔ ↔ 

Variable Short ITI ↔ ↔ ↔ ↔ ↔ 

Dorsal mPFC    

ACC and 

PL 

Baseline Muir et al. (1996) ↓ ↔ ↑ ↑ ↑ 0.5-1.0μl of 

0.09M 

quinolinic 

acid 

Lister Male 

Reduced SD ↔ ↔ ↔ ↔ ↑ 

Short variable ITI 

(variable) 

↔ ↔ ↔ ↔ ↑ 

Short variable ITI 

(non-variable) 

↔ ↔ ↔ ↔ ↔ 

Long variable ITI ↔ ↔ ↔ ↔ ↑ 

Noise distraction ↓ (trend) ↔ ↔ ↔ ↑ 

Varied brightness ↔ ↔ ↔ ↔  

ACC Baseline Muir et al. (1996) ↔ ↓ ↑ ↔ ↔ 0.5-1.0μl of 

0.09M 

quinolinic 

acid 

Lister Male 

Reduced SD ↔ ↓ ↑ ↔ ↔ 

Short variable ITI 

(variable) 

↔ ↓ ↑ ↔ ↔ 

Short variable ITI 

(non-variable) 

↔ ↔ ↔ ↔ ↔ 
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Long variable ITI ↔ ↔ ↑ ↔ ↔ 

Noise distraction ↔ ↔ ↑ ↑ ↔ 

Varied brightness ↔ ↔ ↑ ↔ ↔ 

ACC and 

dorsal PL 

Baseline  Chudasama et al. 

(2003) 

↓ ↑ ↔ ↔ ↔ 0.2-0.4μl of 

0.09M 

quinolinic 

acid 

Lister Male 

Variable Long ITI ↓ ↔ ↔ ↔ ↔ 

Variable Short ITI ↔ ↔ ↔ ↑ ↔ 

ACC and 

dorsal PL 

Baseline Passetti et al. 

(2002) 

↓ ↑ - ↔ ↑ 0.2-0.3μl of 

0.09M 

quinolinic 

acid 

Lister Male 

Reduced SD ↔ ↔ ↔ ↔ ↔ 

Variable Long ITI ↑ ↔ ↔ ↔ ↔ 

Variable Short ITI ↔ ↔ ↔ ↔ ↔ 

ACC and 

dorsal PL  

Baseline Chudasama et al. 

(2005) 

↓ ↑ ↔ ↔ ↑ 0.5-0.9μl of 

0.09M 

quinolinic 

acid 

Lister Male 

Medial mPFC    

PL Baseline Chudasama and 

Muir. (2001) 

↔ ↑ ↔ ↑ ↔ 0.33μl of 

0.09M NMDA 

Lister Male 

Reduced SD 

(non-variable) 

↔ ↔ ↔ ↔ ↔ 

Reduced SD 

(variable) 

↔ ↔ ↔ ↑ ↔ 

Variable short ITI ↔ ↔ ↔ ↔ ↔ 

Variable long ITI ↔ ↔ ↔ ↔ ↔ 

Noise distraction ↔ ↔ ↔ ↔ ↔ 
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Variable 

brightness 

↔ ↔ ↔ ↔ ↔ 

Ventral mPFC    

IL and 

ventral PL 

Baseline (SD = 

0.5s) 

Chudasama et al. 

(2003) 

↓ 

(transient

) 

↑ ↑ ↔ ↓ 0.2-0.4μl of 

0.09M 

quinolinic 

acid 

Lister Male 

Long ITI ↔ ↑ ↑ ↔ ↔ 

Short ITI ↑ ↓ ↔ ↔ ↔ 

PL and IL Baseline Passetti et al. 

(2002) 

↓ ↔  ↑ ↔ 0.2-0.3μl of 

0.09M 

quinolinic 

acid 

Lister Male 

Reduced SD ↓ (trend) ↔ ↔ ↔ ↔ 

Variable Long ITI ↔ ↔ ↔ ↔ ↔ 

Variable Short ITI ↔ ↔ ↔ ↔ ↔ 

 

 

Table 4.1 Summary of findings from the literature investigating the effects of excitotoxic lesions of sub-regions of the mPFC on the 5-CSRTT (abbreviations: 

acc = percent choice accuracy, omit = percent omissions, prem = percent premature responses, persev = percent perseverative responses, CRL = correct 

response latency, ↑ = increase, ↓ = decrease, ↔ = no effect). 
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4.1.2 Neuromodulation of the mPFC  

 

In addition to evidence suggesting that executive functions are executed by anatomically distinct and 

functionally interacting sub-regions on the mPFC, it is also speculated that they are modulated by 

distinct and interacting neurotransmitter systems. Within the mPFC in rats, cholinergic, 

monoaminergic and catecholamine neurotransmitter systems modulate cortical networks and 

cognitive functions; which resembles aspects of the primate dorsolateral PFC (Hasselmo 1995; 

Arnsten 1997; Robbins 2000; Arnsten 2011; for review see Uylings et al. 2003). Attentional 

impairments induced by lesions of the mPFC, described above, are largely believed to be modulated 

by cholinergic denervation of the mPFC from the basal forebrain (see chapters 1 and 5 for more on 

this). On the other hand, impairments of inhibitory response control are believed to be modulated by 

serotonergic denervation of the mPFC from the dorsal raphѐ nucleus (for review see Robbins 2002).  

Briefly, evidence to support the role of cortically projecting basal forebrain cholinergic neurons in the 

modulation of attentional impairments comes from a similar pattern of attentional impairments, to 

those reported following lesions of the mPFC, being reported following excitotoxic lesions (Robbins et 

al. 1989; Muir et al. 1992; Muir et al. 1994; Muir et al. 1995) and more sophisticated cholinergic-

selective lesions (192 IgG-saporin) (McGaughy et al. 1996; Turchi & Sarter 1997; McGaughy & Sarter 

1998; McGaughy et al. 2002; Botly & De Rosa 2012; Dalley et al. 2004) of the basal forebrain and 

mPFC, on the 5-CSRTT, sustained attention task (SAT) and visual search task. In contrast, serotonin 

(5-HT) networks in the mPFC have been implicated in the modulation of impulsive behaviour (Soubrié 

1986; for review see Winstanley et al. 2006). Lesions targeting selectively cortically projecting 

serotonergic neurons in the dorsal raphé nucleus, via the serotonergic neurotoxin 5,7-

dihydroxytryptamine, have been reported to induce long-lasting increases in premature responses on 

the 5-CSRTT (Harrison et al. 1997).  

 

4.1.3 Effects of non-selective and selective mAChR ligands on attentional performance 

 

As previously described in chapter 3, mAChRs are G-protein-coupled receptors, of which there are 5 

subtypes (M1-M5) (Wess 1996; Caulfield & Birdsall 1998). The M1 and M4 subtypes are the most 

abundant in the brain, located predominantly in the cortex, hippocampus and striatum, and are of 

interest for cognitive enhancement (Bodick, Offen, Levey, et al. 1997; Bodick, Offen, Shannon, et al. 

1997; Volpicelli & Levey 2004). The role of the muscarinic system in the modulation of attentional 

performance is supported by research in humans and animals using the non-selective muscarinic 

receptor antagonist scopolamine and reporting impaired attentional performance. For example, in AD 

patients and healthy aged individuals scopolamine has been reported to exacerbate attentional 

deficits (Sunderland et al. 1987; Sunderland et al. 1988; Molchan et al. 1992) and to impair attentional 

performance in healthy humans (Ghoneim & Mewaldt 1975; Ghoneim & Mewaldt 1977; Wesnes & 

Warburton 1984; Wesnes & Revell 1984). In rats, scopolamine has been demonstrated to impair 

attentional performance on the 5-CSRTT, in a consistent manner to the effects of selective cholinergic 

lesions of the basal forebrain (McGaughy et al. 1996; Turchi & Sarter 1997; McGaughy & Sarter 1998; 
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McGaughy et al. 2002). However, due to the peripheral effect of scopolamine, it has often proven 

difficult to obtain effects of scopolamine purely on accuracy, without concurrent increases in 

omissions. Specifically, scopolamine has been shown to exacerbate impairments in accuracy in aged 

rats (Jones et al, 1995) and in rats with 192-IgG-saporin lesions of the ventromedial PFC (Dalley et al. 

2004). In non-impaired rats, scopolamine has largely been shown to impair accuracy and increase 

omissions under baseline conditions (Mirza & Stolerman 2000) and to impair accuracy during 

distractor conditions (Jones & Higgins 1995). Finally, microinfusions of scopolamine directly in the 

mPFC have been reported to impair accuracy (Robbins et al. 1998). 

 

Investigation of the role of selective mAChR subtypes on cognitive function is of interest to gain a 

better understanding of underlying mechanisms, as well as for the purposes of drug discovery, 

particularly for AD and schizophrenia (for review see Foster et al. 2014). However, the investigation of 

mAChR subtypes is limited, principally due to a lack of subtype-selective compounds available, due to 

the high sequence homology within the ACh-binding site amongst mAChRs. However, in recent years 

a small number of M1 and M4 positive allosteric modulators (PAMs) have been developed that target 

the allosteric binding sites, which are topographically distinct from the ACh-binding site, and 

potentiate the response of the selective receptor subtypes to ACh (for review see Conn et al. 2009). A 

novel M1 PAM, PQCA (1-((4-cyano-4-(pyridine-2-yl)piperidin-1-yl)methyl-4-oxo-4 H-quinolizine-3-

carboxylic acid) (Ma et al. 2009), and novel M4 PAMs, VU0152100 (Brady et al. 2008) and 

VU0467154 (Bubser et al. 2014), have recently been developed. These compounds have been 

shown to ameliorate a range of cognitive and behavioural deficits in rodents and non-human primates, 

providing evidence for their therapeutic utility in the clinic. For example, the M1 PAM (PQCA) has 

been shown to remediate scopolamine-induced deficits in attention, visuospatial memory, spatial 

working memory and executive function in non-human primates, and in recognition memory in rats 

(Uslaner et al. 2013; Vardigan et al. 2015; Lange et al. 2015). The M4 PAM (VU0152100) has been 

shown to remediate amphetamine-induced hyperlocomotion in rats and mice (but not in M4 knock out 

mice) and amphetamine-induced impairments in the acquisition of contextual fear conditioning and 

prepulse inhibition of the acoustic startle reflex (Byun et al. 2014; Brady et al. 2008). The M4 PAM 

(VU0467154) -- which is used in the present experiment -- has also recently been shown to 

ameliorate impairments induced by the non-competitive N-methyl-D-asparate (NMDA) receptor 

antagonist MK-801 on the touchscreen-based pairwise discrimination task in healthy rats (Bubser et 

al. 2014). 

 

4.1.4 Aims and hypotheses 

 

The present experiment investigated the effects of discrete excitotoxic lesions of the dorsal (ACC), 

medial (PL) and ventral (IL) mPFC on the novel, rCPT, under a range of behavioural manipulations, to 

tax attentional performance, and to a lesser extent, inhibitory response control. The aim of the present 

experiment was to expand on evidence obtained with the 5-CSRTT, which suggests a likely functional 

dissociation of anatomically distinct sub-regions of the dorsal and ventral mPFC, in attention and 
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inhibitory response control, respectively. The present experiment utilised a more cognitively complex 

attentional paradigm, the rCPT, compared with the 5-CSRTT. The rCPT assesses sustained, focused 

attention and requires the detection and discrimination of an infrequently and unpredictably presented 

differentiated visual stimulus (signal) amongst other irrelevant visual stimuli (non-signal). Previous 

studies have reported impaired attentional performance following PL lesions when assessed on 

attentional paradigms which require discrimination and unpredictable stimulus presentation, alongside 

signal detection (Chudasama & Muir 2001; Granon et al. 2000). Therefore, it was hypothesised that 

lesions of the PL cortex would impair attentional performance on the rCPT, in the form of reduced 

discrimination sensitivity. To my knowledge, lesions of the ACC and IL cortices have not previously 

been assessed on assays requiring higher processes of discrimination. Therefore, hypotheses for 

these sub-regions could not be as well specified. It was speculated that following lesions of the ACC 

an attentional impairment would be demonstrated, but likely not as strongly as rats with lesions of the 

PL cortex - (perhaps the ACC is more important for spatial divided signal detection attention and the 

PL for focussed object discriminative attention?). In contrast, it was speculated that lesion of the IL 

cortex would result in impaired inhibitory response control, in the form of increased false alarm rate, 

based on increases in premature responses previously reported on the 5-CSRTT. Next, rats received 

treatment with the cholinesterase inhibitor, donepezil, followed by a novel muscarinic receptor 

selective M4-positive allosteric modulator (M4 PAM: VU0467154), to test whether it was possible to 

remediate the lesion-induced performance deficits. Due to the time restraint in the current experiment, 

and a delay with compound synthesis with my collaborators at Boehringer Ingelheim, an M1 PAM was 

not able to be tested alongside the M4 PAM. 

 

 

4.2 Methods 

 

 

4.2.1 Subjects 

 

Forty experimentally naïve male Lister Hooded rats (Harlan, UK) served as subjects (225g ±20). For 

other details, see Chapter 2. Rats were trained and tested on the rCPT as described below. 

 

4.2.2 Apparatus and behavioural testing 

 

The rCPT was carried out in touchscreen-based operant chambers (Campden Instruments, see 

chapter 2). Following excitotoxic lesion surgery rats were tested on a range of behavioural 

manipulations, over a period of around 40 testing sessions. Behavioural manipulations included 

conditions of reduced SD, congruent and incongruent distraction and high and low event rate (see 

table 4.2 for experimental outline). Manipulations of SD and distraction were tested under variable 

and non-variable conditions. Variable conditions involved a range of SDs or distraction types tested 

randomly and intermixed within a single session, which produces unpredictability. On the other hand, 
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non-variable conditions involved a single SD or distraction type tested individually within a single 

session. During non-variable distraction and high and low event rate manipulations the order of 

testing was counterbalanced across rats; for example, half of the rats received congruent distraction 

and the other half incongruent distraction first, to prevent order effects. Note that the novel distraction 

probe was used in the present experiment, in which flanker distraction stimuli were presented either 

side of the target, raised by 50% and contrasted to 25% (see chapter 2 and appendix). 

 

4.2.3 Surgery 

 

Rats were divided into four lesion groups: ACC, PL, IL or mixed shams (n=10 in each group). 

Statistical analysis confirmed no significant differences between lesion groups on key measures of hit 

rate, false alarm rate, d’ and C pre-surgery. Rats were anaesthetised with isoflurane gas in oxygen 

(inducted at 5%, maintained at 2-2.5%) and held in a stereotaxic frame, which was fitted with 

atraumatic ear bars and had a digital display console, enabling 10 micron resolution accuracy (David 

Kopf Instruments; Tujunga, CA, USA). Rats received a pre-surgery analgesic of Metacam (s.c, 

1mg/kg, 5mg/ml; Boehringer Ingelheim, Berkshire, UK). A midline incision was made along the scalp 

to expose the skull, a flat skull measurement was ensured, followed by a craniotomy directly above 

the infusion sites. Quinolinic acid (0.09M; Sigma Aldrich, UK) dissolved in 0.1M PBS (pH = 7-7.2) was 

infused bilaterally in the mPFC target sub-region for lesion rats, while for sham rats 0.1M PBS was 

infused. Table 4.3 displays the stereotaxic coordinates (Paxinos & Watson 1998) and volumes used, 

which were based on previous studies by Passetti et al. (2002) and Chudasama et al. (2003). Post-

infusion the injector was left in place for 2 minutes to ensure infusate dispersion before being slowly 

retracted. Infusions were made using a 10μl Hamilton precision syringe placed in a Harvard infusion 

pump (Harvard Apparatus Ltd, Kent, UK), connected to fine bore polythene tubing (0.28mm ID, 

0.61mm OD; Portex, Kent, UK) attached to a 31-gauge, stainless steel, bevelled (30⁰) injection 

needle. Once all infusions were completed the skin was sutured and rats recovered in a heated and 

ventilated chamber until alert and active. Rats spent one night singly housed and returned to their 

home cage the next day. Rats were monitored for at least five days post-surgery, in which they 

received metacam for at least three days (p.o, 1mg/kg, 1.5mg/ml; Boehringer Ingelheim, Berkshire, 

UK). Seven days post-surgery rats returned to behavioural testing. 

 

mPFC 

sub-region 

Coordinates (mm) Volume of quinolinic 

acid (0.1μl/min) 

ACC AP: +3.2, ML: ±0.7, DV: -1.9 0.3 

AP: +2.7, ML: ±0.7, DV: -1.9 0.3 

AP: +2.2, ML: ±0.7, DV: -1.9 0.2 

PL AP: +3.8, ML: ±0.7, DV: -3 0.4 

AP: +2.8, ML: ±0.7, DV: -3.3 0.4 

IL AP: +3.0, ML: ±0.7, DV: -4.5 0.4 

AP: +2.5, ML: ±0.7, DV: -4.5 0.4 
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Table 4.3 Stereotaxic coordinates and volumes of quinolinic acid or sham infused into the ACC, PL or 

IL cortex (AP = anteroposterior, ML = medial lateral, DV dorsoventral). AP and ML measurements 

were taken from bregma on the skull surface, and DV taken from dura, directly above the infusion 

site. 

 

4.2.4 Drugs 

 

Following testing on behavioural manipulations donepezil, followed by the M4 PAM (VU0467154), 

was administered under a reduced SD (0.25s). Donepezil hydrochloride (Sigma Aldrich, UK) was 

dissolved in 0.9% sterile saline and administered in a cross over design at doses of 0 and 1mg/kg, in 

a volume of 1ml/kg (i.p), 30 minutes prior to testing. VU0467154 (synthesised and provided by 

Boehringer Ingelheim) was dissolved in 1M hydrochloric acid, 40% (2-hydroxypropyl)-β-cyclodextrin, 

1M Sodium hydrochloride and double distilled water. VU0467154 was administered in a cross over 

design at doses of 0 and 3mg/kg, in a volume of 10ml/kg (p.o: gavage technique), 90 minutes prior to 

testing. Following each drug day rats were tested with a longer SD (0.5s) and did not receive drug, to 

ensure a stable performance. A two week washout period occurred following donepezil and before 

VU0467154 treatment. For dosing protocols for donepezil see chapter 3. The Dosing protocol for 

VU0467154 were based on the work of Bubser et al (2014) who investigated the pharmacokinetic 

properties of this new compound, which they have showed to have  enhanced in vitro potency and 

pharmacokinetic properties in rodents, compared to other M4 PAMs.  

 

4.2.5 Statistical analysis 

 

Data were subjected to repeated-measures ANOVA using SPSS version 21 (SPSS Inc, Chicago, IL, 

USA), with a statistical significance criterion of probability level p<.05. Table 4.2 displays the statistics 

performed for all behavioural and pharmacological manipulations. Statistical analysis of the three 

sham groups (ACC sham, PL sham, IL sham) during post-surgery baseline revealed no significant 

group differences on key measures, and so were combined into one sham lesion group. Lesion 

‘group’ always served as a between-subjects factor (4 levels), while the number of ‘days’ the rats 

were tested for on a particular manipulation always served as a within-subject factor. ‘SD’, ‘distraction’ 

or ‘event rate’ also served as within-subject factors when appropriate. Significant main effects and 

interactions were followed up using Sidak’s correction. Due to the different route of administration 

required for donepezil (i.p) and VU0467154 (p.o), separate vehicle conditions were carried out and 

therefore data were analysed separately. 

 

4.2.6 Histology 

 

At the conclusion of behavioural testing, animals were administered a lethal dose of sodium 

pentobarbitone (Euthatal, 200mg/ml, Merial, UK) and perfused transcardinally with 0.01M PBS (PBS 

tablets, Gibco, Thermo Fisher Scientific, Loughborough, UK), followed by 4% paraformaldehyde for 
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two minutes each. Rats were next decapitated, the brain removed and post-fixed overnight in 4% 

paraformaldehyde, before being cryoprotected in 30% sucrose in 0.01M PBS. Once dehydrated, 

brains were frozen and sectioned on a cryostat at 60μl thickness. One in every six sections were 

mounted onto superfrost plus microscope glass slides (Thermo Scientific, UK) and stained with Cresyl 

Violet for lesion assessment. 

 

1. Rats underwent training on the rCPT (n=40). 

 

 

 

 

 

 

 

 

 

2. Rats underwent lesion surgery in which quinolinic acid was infused into the ACC (n=10), PL 

(n=10) or IL (n=10) cortex, and vehicle into shams (n=10). 

3. Rats then underwent a series of behavioural and paramacological manipulations in the following 

order: 

Manipulation Parameters Sample size Repeated measures 

ANOVA factors 

Post-surgery 

baseline 

SD = 1s ACC = 10 

PL = 10 

IL = 10 

Sham = 10 

w/s: day (4) 

b/s: group (4) 

SD  

Variable SD = 2, 1, 0.5s 

 

ACC = 10 

PL = 10 

IL = 10 

Sham = 10 

w/s: SD (3) 

w/s: day (2) 

b/s: group (4) 

SD = 4, 1, 0.5s w/s: SD (3) 

w/s: day (3) 

b/s: group (4) 

Non-variable   SD = 4, 2, 1, 0.5, 0.25s w/s: SD (5) 

w/s: day (3) 

b/s: group (4) 

Distraction  

Variable No, congruent and incongruent 

(SD = 4s) 

ACC = 10 

PL = 9 

w/s: distraction (3) 

w/s: day (3) 
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IL = 10 

Sham = 10 

b/s: group (4) 

No, congruent and incongruent 

(SD = 0.5s)  

w/s: distraction (3) 

w/s: day (3) 

b/s: group (4) 

Non-variable   Congruent and incongruent  

(SD = 0.5s) 

w/s: distraction (2) 

w/s: day (2) 

b/s: group (4) 

Event rate  

Non-variable   Low (ITI 5/6s) and high (ITI = 

0.5/1s) (SD = 0.5s) 

 

ACC = 9 

PL = 10 

IL = 10 

Sham = 9 

w/s: event rate (2) 

w/s: day (3) 

b/s: group (4) 

Pharmacology 

Donepezil (0, 

1mg/kg) 

SD = 0.25s ACC = 10 

PL = 10 

IL = 10 

Sham = 10 

w/s: dose (2) 

b/s: group (4) 

VU0467154 (0, 

3mg/kg) 

SD = 0.25s w/s: dose (2) 

b/s: group (4) 

 

Table 4.2 Outline of the behavioural and pharmacological manipulations tested in mPFC lesion 

groups on the rCPT. The order of manipulations in the table represents the order in which they were 

administered. Following surgery recovery, rats were tested on the final stage of rCPT training 

(‘baseline’: stage 6, SD = 1s). Next, rats were tested under a series of behavioural manipulations 

including conditions of reduced SD, distraction and event rate. Note, SD and distraction manipulations 

were tested in variable and non-variable conditions, to assess the effects of unpredictability. All 

manipulations were carried out for three consecutive days (± one day). Following behavioural 

manipulations, rats received pharmacology, in which donepezil, followed by the M4 PAM 

(VU0467154) were administered under a reduced SD (0.25s). The table also displays the sample size 

for each behavioural manipulation (any exclusions were due to apparatus related problems). Also 

displayed are the repeated measures ANOVA factors (w/s within-subjects factor, b/s = between-

subjects factor). 
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4.3 Results 

 

 

4.3.1 Histological analysis 

 

Representations of lesion placement and extent are depicted in Figure 4.1 for the ACC (A), PL (B) 

and IL (C) cortex. Damage common to all rats is shaded in black, while the black thin line surrounding 

this shows the maximum extent of lesion damage. In the majority of rats, lesions of the ACC started at 

+3.7 and extended to +2.2; lesions of the PL cortex started at the most anterior portion of +4.2 and 

extended to +2.2; while lesions of the IL cortex started at the most posterior portion of +3.2 and 

extended to +2.2 (AP from bregma). Unsurprisingly, lesions encroached by a small amount into the 

dorsal and/or ventral adjacent sub-regions. Lesions of the ACC encroached into the ventral portion of 

the secondary motor cortex and dorsal portion of the PL; lesions of the PL encroached into the ventral 

portion of the ACC and dorsal portion of the IL; and lesions of the IL encroached into the ventral 

portion of the PL and dorsal portion of the dorsal peduncular cortex. Lesions of the PL cortex also 

encroached into the dorsal portion of the medial orbital at +4.2. An example of cresyl violet-stained 

tissue is shown in figure 4.2 for ACC (A, Ai), PL (B, Ci), IL (C, Ci) and sham (D) lesions. Vacuolation 

was evident in all lesioned areas, indicating the extent of quinolinic acid-induced neuronal loss; similar 

vacuolation were reported in Muir et al. (1996). All rats displayed bilateral lesions in the appropriate 

mPFC area and therefore no rats were excluded from data analysis.  
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      A        B        C 

 

 

 

Figure 4.1 Representation of lesion placement and extent in the ACC (A), PL (B) and IL (C) cortex. 

Images are coronal section taken from Paxinos and Watson. (1998). The numbering on the right hand 

side specifies the anterior-posterior level (anterior to bregma). 
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Figure 4.2 Example of Cresyl Violet-stained tissue for rats with discrete lesions of the ACC (A, Ai), PL 

(B, Ci), IL (C, Ci) and sham (D). The ‘i’ images are a close up of the lesion damage. The sections 

displayed are between +3.7 and +2.7 (AP from bregma). 

  

 

D 

A 

B 

C 

Ai 

Bi 

Ci 



 

95 
 

4.3.2 Behavioural manipulations (for a table summary of all findings see table 4.5) 

 

4.3.2.1 Post-surgery baseline 

 

During post-surgery baseline, rats with lesions of the ACC exhibited impaired attentional performance 

(reduced d’ and hit rate); whilst rats with lesions of PL cortex displayed signs of impaired inhibitory 

response control (increased premature/perseverative responses). As figure 4.3 (A) and table 4.4 

show, rats with lesions of the ACC exhibited a significantly reduced d’ [group: F(3,36) = 6.049, 

p=.002] and hit rate [group: F(3,36) = 5.298, p=.004], alongside increased reward collection latencies 

[group: F(3,36) = 4.061, p=.014], compared to rats with sham lesions (d’: p=.001, hit rate: p=.003, 

reward collection latencies: p=.021). Rats with lesions of the ACC also displayed a reduced hit rate 

compared to rats with lesions of the PL cortex (p=.033). They also exhibited a reduced C parameter 

on day 1 [day X group: F(9,108) = 2.321, p=.02] and slower false alarm response latencies [group: 

F(3,36) = 3.39, p=.028] on day 1 [day X group: F(9,108) = 2.25, p=.024], compared to rats with 

lesions of the PL cortex (all p<.023). Rats with lesions of the ACC also had a reduced C parameter on 

day 4, and slower false alarm response latencies, on day 1, compared to IL lesioned rats (all p<.024). 

In contrast with the predominantly impaired attentional performance in rats with ACC lesions, rats with 

lesions of the PL cortex made more premature/perseverative responses [group: F(3,36) = 7.206, 

p=.001] compared to rats with sham lesions (p<.001) and rats with lesions of the ACC (p=.019). A 

strong, but non-significant trend was also revealed for lesion group on false alarm rate [group: F(3,36) 

= 2.357, p=.088] and hit response latencies [group: F(3,36) = 2.3, p=.094].  

 

Interim summary: During the post-surgery baseline, rats with lesions of the ACC exhibited an 

attentional impairment in the form of reduced d’ and hit rate. On the other hand, rats with lesions of 

the PL cortex displayed signs of increased impulsivity in the form of increased premature/ 

perseverative responses during the inter stimulus interval (ISI). 

 

4.3.2.2 Stimulus Duration manipulation 

 

Under variable and non-variable reducing SD conditions, rats with lesions of the PL cortex displayed a 

persistent attentional impairment (reduced d’ and hit rate). On the other hand, rats with lesions of the 

ACC continued to exhibit the attentional impairment shown during post-surgery baseline (reduced d’ 

and hit rate) under conditions of variable SD, which were tested first, but not under later tested non-

variable SD conditions. This suggests a relatively transient attentional impairment which recovered as 

behavioural testing continued. Rats with lesions of the IL cortex also exhibited a transient attentional 

impairment (reduced hit rate) under conditions of variable SD and displayed a conservative response 

bias (reduced C parameter) under non-variable SD conditions. 

 

Variable SD presentation: As figure 4.3 (B and C) and table 4.4 shows, under variable reduced SD 

conditions (2, 1 and 0.5s or 4, 1 and 0.5s), as SD reduced key performance measures were 
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significantly impaired, irrespective of lesion group, in the form of decreased hit rate, d’ and C 

parameter, and increased false alarm rate. Hit response latencies also became slower and false 

alarm latencies quicker as SD reduced. Irrespective of SD, during the 2, 1 and 0.5s variable SD 

condition, all lesioned rats showed signs of impaired performance: rats with lesions of the ACC 

exhibited a reduced d’ [group: F(3,36) = 3.295, p=.031] and hit rate [group: F(3,36) = 4.926, p=.006] 

compared to shams (d’: p=.029, hit rate: p=.017); rats with lesions of the IL cortex exhibited a reduced 

hit rate compared to shams (p=.010); while a strong, but non-significant trend for a reduced hit rate 

was also revealed in rats with lesions of the PL cortex compared to shams (p=.066). During the 4, 1 

and 0.5s variable SD condition rats with lesions of the PL cortex exhibited a reduced d’ [group: 

F(3,36) = 4.407, p=.010] and hit rate [group: F(3,36) = 3.334, p=.030] compared to rats with sham 

lesions (d’: p=.038, hit rate: p=.024). A strong, but non-significant trend was also revealed for a 

reduced d’ in rats with lesions of the ACC (p=.078).  

 

Non-variable SD presentation: As figure 4.3 (D) and table 4.4 shows, during non-variable reducing SD 

conditions (4, 2, 1, 0.5 and 0.25s), as SD reduced key performance measures were significantly 

impaired, irrespective of lesion group, in the form of decreased hit rate, d’ and C parameter. False 

alarm rate, hit and false alarm response latencies also decreased as SD reduced and 

premature/perseverative responses increased during the most reduced SD (0.25s). Under non-

variable reducing SD conditions, only rats with lesions of the PL cortex displayed a persistent 

attentional impairment, no effects were revealed in attentional performance in ACC and IL lesions 

rats. Irrespective of SD, rats with lesions of the PL cortex performed significantly worse in the form of 

reduced d’ [group: F(3,36) = 2.925, p=.047] and hit rate [group: F(3,36) = 4.284, p=.011] compared to 

rats with sham lesions (d’: p=.047, hit rate: p=.009). A within-subject effects interaction of SD and 

lesion group failed to reach significance for d’ or hit rate, to demonstrate that rats were not impaired, 

at least, during the longest SD (4s). The lack of interaction is likely due to this effect being diluted out 

by the number of reduced SDs in the ANOVA, which also fails to take account of the linearity of the 

SDs. However, visual inspection indicates the impairment is more prominent during the short, not 

long, SDs (figure 4.3 D). A within-subject effects interaction of lesion group and SD was revealed for 

hit response latencies [group X SD: F(5.222,62.664) =3.773, p=.004]. Post hoc analysis revealed that 

rats with lesions of the PL cortex made hit responses more slowly during the 4s SD compared to rats 

with sham lesions (p=.013). While rats with IL lesions were not impaired on attentional measures, they 

exhibited a conservative response bias (C parameter) [group: F(3,36) =3.314, p=.031] compared to 

rats with sham lesions (p=.024), irrespective of SD. Again, a within-subject effects interaction of SD 

and lesion group failed to reach significance, to demonstrate that rats did not have a lower response 

criterion, at least, during the longest SD (4s). However, visual inspection suggests that the impairment 

is more prominent during the short, not long, SDs (figure 4.3 D). 
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Interim summary: During challenging conditions of variable and non-variable reducing SDs, as 

hypothesised, rats with lesions of the PL exhibited a persistent attentional impairment (reduced d’ and 

hit rate), compared with rats with lesions of the ACC who exhibited only a transient attentional 

impairment (reduced d’ and hit rate) under conditions of variable SD, which recovered as behavioural 

testing continued, under later tested non-variable SD conditions. In contrast, rats with lesions of the IL 

cortex exhibited the least impairing effects on attentional performance, whilst also displaying a 

conservative response bias; no effect were revealed on false alarm rate in these rats.  

 

4.3.2.3 Distraction manipulation  

 

Under variable distraction conditions with a 4s or 0.5s SD, no differences between lesion groups were 

revealed. However, rats with lesions of the ACC displayed a deficit in inhibitory response control 

(increased false alarm rate) compared to rats with lesions of the IL cortex during the 4s SD. On the 

other hand, under non-variable distraction conditions (SD = 0.5s), rats with lesions of the PL cortex 

exhibited an attentional impairment (reduced hit rate) during congruent and incongruent distraction.   

 

Variable distraction (no, congruent and incongruent): As figure 4.3 (E and F) and table 4.4 shows, 

irrespective of lesion group, variable distraction with a 4s and 0.5s SD influenced performance. 

Incongruent distraction impaired performance, in the form of increased false alarm rate and reduced 

d’, and C parameter (0.5 and 4s SD); it also reduced hit rate (0.5s SD) and increased hit and false 

alarm response latencies (0.5 and 4s SD). On the other hand, congruent distraction had the opposite 

effect, improving some of the same key performance measures, in the form of reduced false alarm 

rate (0.5 and 4s SD) and increased d’ (4s SD) and C (0.5 and 4s SD). Congruent distraction also 

impaired performance, in the form of reduced hit rate and increased hit response latencies (0.5s SD). 

Irrespective of distraction type, under variable distraction with a 4s SD -- which slows down the task, 

and likely taxes inhibitory response control -- rats with lesions of the ACC exhibited a significantly 

increased false alarm rate [group: F(3,35) = 3.099, p=.039] compared to rats with lesions of the IL 

cortex (p=.030); a strong but non-significant trend was also revealed for a reduced d’ [group: F(3,35) 

= 3.006, p=.043] (p=.071). Under variable distraction with a 0.5s SD, rats with lesions of the IL cortex 

exhibited a strong but non-significant trend for a reduced C parameter [group: F(3,35) = 2.906, 

p=.048] compared to rats with sham lesions (p=.094), irrespective of distraction type. A strong, but 

non-significant trend was also revealed for lesion group on hit rate [group: F(3,35) = 2.395, p=.085].  

 

Non-variable distraction (congruent and incongruent): As figure 4.3 (G) and table 4.4 shows, under 

non-variable distraction, irrespective of group, rats performed worse during incongruent and better 

during congruent trials, in the form of d’ and almost false alarm rate. False alarm response latencies 

were also slower during incongruent compared to congruent trials. Irrespective of distraction type, rats 

with lesions of the PL cortex displayed a reduced hit rate [group: F(3,35) = 3.417, p=.028] compared 

to rats with sham lesions (p= .031). 
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Interim summary: During challenging conditions of variable distraction, rats with lesions of the ACC 

demonstrated increased impulsivity (increased false alarm rate) compared to rats with IL lesions. In 

contrast, during non-variable distraction, as hypothesised, rats with lesions of the PL continued to 

exhibit an attentional impairment (reduced hit rate), while ACC and IL lesioned rats remained 

unimpaired in attentional performance. 

 

4.3.2.4 Event rate manipulation 

 

Rats with lesions of the PL cortex exhibited an attentional impairment (reduced d’) under conditions of 

high, and not low, event rate, compared to rats with sham lesions. As figure 4.3 (H) and table 4.4 

shows, irrespective of lesion group, under conditions of low event rate rats made more impulsive-like 

responses in the form of increased premature/perseverative responses; rats also collected their 

reward more quickly. Event rate influenced performance dependent on group for d’ [event rate X 

group: F(3,34) = 3.659, p=.022], and false alarm rate [event rate X group: F(3,34) = 3.397, p=.029]. 

Rats with lesions of the PL cortex displayed a lower d’ during high event rate, compared to rats with 

sham lesions (p=.028); they also displayed a higher false alarm rate during high verses low event rate 

(p= .048), compared with rats with sham lesions, who displayed a higher false alarm rate during low 

verses high event rate (p= .028). No main effects of lesion group were revealed. 

 

Interim summary: During challenging conditions of high event rate, as hypothesised, rats with lesions 

of the PL cortex continued to exhibit an attentional impairment (reduced d’), while ACC and IL 

lesioned rats remained unimpaired in attentional performance. 

 

4.3.3 Pharmacological manipulations 

 

4.3.3.1 Donepezil under 0.25s SD 

 

Donepezil exhibited no effects on rCPT performance. As figure 4.3 (i) and table 4.4 shows, whilst 

donepezil had no effects on performance measures, under the reduced SD (0.25s) rats with lesions of 

the PL cortex exhibited an attentional impairment in the form of reduced d’ and hit rate; while rats with 

lesions of the IL cortex displayed a reduced hit rate and trend towards reduced C. 

 

4.3.3.2 VU0467154 (M4 PAM) under 0.25s SD 

 

VU0467154 improved attentional performance (increased d’) irrespective of lesion group. As figure 

4.3 (J) and table 4.4 shows, VU0467154 significantly increased discrimination sensitivity (d’) [dose: 

F(1,36) = 32.958, p>.001]. This was driven by a significant reduction in false alarm rate [dose: F(1,36) 

= 61.821, p<.001]. Although hit rate also reduced [dose: F(1,36) = 7.444, p=.010], d’ still improved 

due to the magnitude of the reduced false alarm rate -- if hit rate and false alarm rate reduced to the 

same extent no effects would be revealed on d’ -- partial ETA squared also supports this, in the form 
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of a larger effect size for the effect of VU0467154 on false alarm rate (0.632) compared to hit rate 

(0.171). VU0467154 induced a conservative response bias, in the form of reduced C parameter 

[dose: F(1,36) = 52.065, p>.001]. VU0467154 also slowed hit response latencies [dose: F(1,36) = 

36.862, p<.001] and reduced premature/perseverative responding [dose: F(1,36) = 61.001, p<.001]. 

Additionally, a strong, but non-significant trend was revealed for VU0467154 to influence false alarm 

response latencies [dose: F(3,35) = 2.395, p=.085], in which the trend is in the direction of a speeding 

up of this response latency. No effects were revealed on reward retrieval latencies. All effects were 

irrespective of lesion group and no effects of lesion group during the 0.25s SD were revealed. 

 

Interim summary: During a reduced SD (0.25s) donepezil administration had no effects on rCPT 

performance, whereas VU0467154 improved performance (increased d’) irrespective of lesion group.  
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Behavioural 

manipulation 

Parameters Hit rate  False 

alarm 

rate 

d’ C Hit 

latency 

False 

alarm 

latency 

Reward 

retrieval 

latency 

Premature/ 

perseverative 

responses 

Post-surgery 

baseline 

SD = 1s ↓ ACC** ↔ ↓ ACC** 

 

↔ ↔ ↔ ↑ ACC* ↑ PL*** 

SD probe 

Variable SD = 2, 1, 0.5s 

 

↓ ACC* 

↓ PL(t) 

↓ IL* 

↔ ↓ ACC* 

 

↔ ↔ ↔ ↔ ↔ 

SD = 4, 1, 0.5s ↓ PL* ↔ ↓ PL* 

↓ ACC (t) 

↔ ↔ ↔ ↔ ↔ 

Non-variable   SD = 4, 2, 1, 0.5, 0.25s ↓ PL* ↔ ↓ PL* 

 

↓ IL* 4s : ↑ 

PL*  

↔ ↔ ↔ 

Distraction probe 

Variable No, congruent and incongruent 

(SD = 4s) 

↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ 

No-, congruent and 

incongruent (SD = 0.5s) 

↔ ↔ ↔ ↓ IL(t) 

 

↔ ↔ ↔ ↔ 

Non-variable   Congruent, incongruent (SD = 

0.5s) 

↓ PL* 

 

↔ ↔ ↔ ↔ ↔ ↔ ↔ 

Event rate probe 

Non-variable   Low (ITI 5/6s), high (ITI = 

0.5/1s) (SD = 0.5s) 

 

↔ ↔ ↓ PL* 

(high 

event 

rate) 

↔ ↔ ↔ ↔ ↔ 



 

101 
 

Pharmacology 

Donepezil (0, 

1mg/kg) 

SD = 0.25s ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ 

VU0467154 

(0, 3mg/kg) 

SD = 0.25s ↓ * 

 

↓ *** 

 

↑ *** 

 

↓ *** 

 

↓ *** 

 

↔ ↔ ↓ *** 

 

 

Table 4.5 Summary of the effects of discrete excitotoxic lesions of the ACC, PL and IL on the rCPT. The table displays significant post hoc comparisons from 

sham/vehicle (↑ = increase, ↓ = decrease, ↔ = no effect, * = p<0.05, ** = p<0.01, *** p<0.001, (t) = trend, p>0.05 and <0.1).  

 

A: Post-surgery baseline (x axis: Lesion group) 

 

 

B: Variable SD: 2, 1 and 0.5s (x axis: SD) 
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C: Variable SD: 4, 1 and 0.5s (x axis: SD) 

 

 

D: Non-variable SD: 4, 2, 1, 0.5 and 0.25s (x axis: SD) 

 

 

E: Variable distraction: no, congruent and incongruent, SD = 4s (x axis: Distraction type)  
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F: Variable distraction: no, congruent and incongruent, SD = 0.5s (x axis: Distraction type)  

 

 

G: Non-variable distraction = congruent and incongruent (SD = 0.5s) (x axis: Distraction type)  

 

 

H: Non-variable event rate = low and high (SD = 0.5s) (x axis: Event rate)  
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I: Donepezil (1mg/kg), SD = 0.25s (x axis: Lesion group) 

 

 

J: M4 PAM (VU0467154, 3mg/kg), SD = 0.25s (x axis: Lesion group) 

 

 

Figure 4.3 Graphs displaying the effects of discrete excitotoxic lesions of the ACC, PL and IL on a range of behavioural manipulations on the rCPT (A-H) 

(AVE = displays the average of all lesion group across a condition to represent a main effect of lesion group in ANOVA, none = no distraction, cong = 

congruent distraction, incong = incongruent distraction). Also displayed are graphs showing the effects of donepezil and M4 PAM (VUO467154) under 

conditions of reduced SD (0.25s) (I-J) (AVE = displays the average of all lesion groups to represent a main effect of dose in ANOVA) (* = p<0.05, ** = p<0.01, 

*** p<0.001). All graphs display significant post hoc comparisons from sham/vehicle.  
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 Hit response latency False alarm 

response latency 

Reward retrieval 

latency 

Premature/ 

perseverative 

responses 

Behavioural manipulations 

Post-surgery baseline 

Sham M=0.71; SEM=0.02 M=0.60; SEM=0.01 M=1.30; SEM=0.08 M=200; SEM=29.5 

ACC M=0.76; SEM=0.02 M=0.62; SEM=0.02 M=1.65; SEM=0.09* M=260; SEM=28.8 

PL M=0.69; SEM=0.02 M=0.54; SEM=0.03 M=1.41; SEM=0.09 M=369; SEM=23.2*** 

IL M=0.71; SEM=0.02 M=0.59; SEM=0.03 M=1.33; SEM=0.05 M=315; SEM=30.1 

Variable SD 

SD = 2, 1, 0.5s 

Sham M=0.75; SEM=0.02 M=1.00; SEM=0.02 M=1.25; SEM=0.06 M=250; SEM=31.0 

ACC M=0.85; SEM=0.04 M=0.96; SEM=0.04 M=1.55; SEM=0.07 M=275; SEM=51.2 

PL M=0.78; SEM=0.03 M=0.91; SEM=0.03 M=1.58; SEM=0.18 M=325; SEM=19.8 

IL M=0.80; SEM=0.03 M=0.93; SEM=0.05 M=1.32; SEM=0.06 M=229; SEM=43.6 

SD = 4, 1, 0.5s 

Sham M=1.00; SEM=0.03 M=2.02; SEM=0.03 M=1.24; SEM=0.04 M=200; SEM=17.8 

ACC M=1.12; SEM=0.04 M=2.01; SEM=0.03 M=1.46; SEM=0.04 M=198; SEM=15.2 

PL M=1.20; SEM=0.06 M=2.12; SEM=0.04 M=1.58; SEM=0.17 M=238; SEM=12.7 

IL M=1.07; SEM=0.03 M=2.05; SEM=0.04 M=1.36; SEM=0.04 M=157; SEM=18.7 

Non-variable SD 

SD = 4s 

Sham M=1.00; SEM=0.02 M=1.59; SEM=0.05 M=1.29; SEM=0.05 M=203; SEM=26.4 

ACC M=1.16 SEM=0.07 M=1.66; SEM=0.04 M=1.48; SEM=0.07 M=182; SEM=28.0 

PL M=1.26; SEM=0.08* M=1.73; SEM=0.06 M=1.58; SEM=0.22 M=254; SEM=22.2 

IL M=1.20 SEM=0.05 M=1.63; SEM=0.03 M=1.37; SEM=0.05 M=176; SEM=37.2 

SD = 2s 

Sham M=0.85; SEM=0.03 M=0.94; SEM=0.03 M=2.82; SEM=1.4 M=162; SEM=26.7 

ACC M=0.91; SEM=0.02 M=0.95; SEM=0.04 M=1.45; SEM=0.07 M=194; SEM=31.39 

PL M=0.95; SEM=0.06 M=0.92; SEM=0.04 M=1.56; SEM=0.19 M=248; SEM=28.0 

IL M=0.95; SEM=0.02 M=0.96; SEM=0.03 M=1.39; SEM=0.07 M=131; SEM=23.3 

SD = 1s 

Sham M=0.71; SEM=0.01 M=0.58; SEM=0.02 M=1.48; SEM=0.24 M=182; SEM=18.3 

ACC M=0.72; SEM=0.01 M=0.59; SEM=0.02 M=1.40; SEM=0.05 M=198; SEM=18.9 

PL M=0.72; SEM=0.01 M=0.57; SEM=0.02 M=1.42; SEM=0.06 M=266; SEM=15.5 

IL M=0.74; SEM=0.01 M=0.58; SEM=0.01 M=1.35; SEM=0.04 M=165; SEM=17.3 

SD = 0.5s 

Sham M=0.66; SEM=0.01 M=0.62; SEM=0.02 M=2.62; SEM=1.43 M=199; SEM=17.5 

ACC M=0.68; SEM=0.01 M=0.64; SEM=0.02 M=1.52; SEM=0.21 M=223; SEM=18.7 
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PL M=0.65; SEM=0.01 M=0.60; SEM=0.02 M=1.41; SEM=0.08 M=310; SEM=16.0* 

IL M=0.70; SEM=0.01 M=0.65; SEM=0.01 M=1.38; SEM=0.05 M=173; SEM=15.9 

SD = 0.25s 

Sham M=0.64; SEM=0.01 M=0.67; SEM=0.01 M=1.32; SEM=0.04 M=301; SEM=24.9 

ACC M=0.64; SEM=0.01 M=0.68; SEM=0.02 M=1.41; SEM=0.06 M=259; SEM=21.2 

PL M=0.60; SEM=0.01 M=0.68; SEM=0.01 M=1.36; SEM=0.07 M=372; SEM=24.4 

IL M=0.65; SEM=0.01 M=0.67; SEM=0.02 M=1.38; SEM=0.06 M=234; SEM=20.8 

Variable distraction probe 

SD = 4s 

Sham M=1.24; SEM=0.03 M=1.73; SEM=0.06 M=1.82; SEM=0.47 M=150; SEM=20.6 

ACC M=1.25; SEM=0.03 M=1.74; SEM=0.05 M=1.48; SEM=0.05 M=145; SEM=10.3 

PL M=1.27; SEM=0.03 M=1.84; SEM=0.06 M=1.38; SEM=0.05 M=169; SEM=13.5 

IL M=1.28; SEM=0.06 M=1.67; SEM=0.05 M=1.39; SEM=0.04 M=100; SEM=10.4 

SD = 0.5s 

Sham M=0.74; SEM=0.01 M=0.64; SEM=0.02 M=1.31; SEM=0.04 M=241; SEM=26.7 

ACC M=0.75; SEM=0.01 M=0.68; SEM=0.02 M=1.39; SEM=0.04 M=248; SEM=22.0 

PL M=0.75; SEM=0.02 M=0.68; SEM=0.01 M=1.41; SEM=0.05 M=235; SEM=20.5 

IL M=0.79; SEM=0.02 M=0.64; SEM=0.02 M=1.36; SEM=0.04 M=173; SEM=17.7 

Non-variable distraction probe (SD = 0.5s) 

Distractor = congruent  

Sham M=0.76; SEM=0.02 M=0.60; SEM=0.02 M=1.48; SEM=0.07 M=229; SEM=34.4 

ACC M=0.77; SEM=0.02 M=0.64; SEM=0.04 M=1.54; SEM=0.07 M=248; SEM=33.1 

PL M=0.75; SEM=0.02 M=0.68; SEM=0.02 M=1.41; SEM=0.05 M=260; SEM=22.9 

IL M=0.81; SEM=0.02 M=0.63; SEM=0.02 M=1.46; SEM=0.05 M=150; SEM=18.1 

Distractor = incongruent 

Sham M=0.75; SEM=0.02 M=0.66; SEM=0.02 M=1.40; SEM=0.04 M=234; SEM=34.8 

ACC M=0.76; SEM=0.02 M=0.68; SEM=0.02 M=1.86; SEM=0.35 M=251; SEM=29.7 

PL M=0.76; SEM=0.02 M=0.70; SEM=0.02 M=1.46; SEM=0.06 M=250; SEM=28.0 

IL M=0.82; SEM=0.02 M=0.71; SEM=0.03 M=1.49; SEM=0.05 M=175; SEM=20.9 

Non-variable event rate (SD = 0.5s) 

Event rate = low 

Sham M=0.68; SEM=0.01 M=0.59; SEM=0.02 M=1.25; SEM=0.04 M=286; SEM=30.5 

ACC M=0.69; SEM=0.01 M=0.66; SEM=0.02 M=1.36; SEM=0.05 M=242; SEM=18.7 

PL M=0.68; SEM=0.01 M=0.65; SEM=0.02 M=1.44; SEM=0.07 M=273; SEM=23.0 

IL M=0.71; SEM=0.01 M=0.58; SEM=0.02 M=1.32; SEM=0.06 M=222; SEM=20.0 

Event rate = high 

Sham M=0.70; SEM=0.01 M=0.62; SEM=0.02 M=1.44; SEM=0.04 M=106; SEM=10.5 

ACC M=0.69; SEM=0.02 M=0.69; SEM=0.01 M=1.57; SEM=0.04 M=124; SEM=14.0 

PL M=0.64; SEM=0.01 M=0.62; SEM=0.01 M=1.57; SEM=0.06 M=154; SEM=14.7 
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IL M=0.70; SEM=0.01 M=0.68; SEM=0.02 M=1.55; SEM=0.05 M=98.9; SEM=11.0 

Pharmacological  manipulations 

Donepezil, 1mg/kg (SD = 0.25s) 

Vehicle 

Sham M=0.65; SEM=0.03 M=0.62; SEM=0.02 M=1.23; SEM=0.07 M=258; SEM=55.2 

ACC M=0.66; SEM=0.03 M=0.68; SEM=0.02 M=1.46; SEM=0.06 M=270; SEM=32.3 

PL M=0.63; SEM=0.02 M=0.65; SEM=0.03 M=1.37; SEM=0.09 M=259; SEM=24.4 

IL M=0.66; SEM=0.02 M=0.66; SEM=0.03 M=1.28; SEM=0.07 M=196; SEM=30.3 

AVE M=0.65; SEM=0.01 M=0.65; SEM=0.01 M=1.33; SEM=0.04 M=246; SEM=18.6 

Donepezil  

Sham M=0.64; SEM=0.03 M=0.65; SEM=0.02 M=1.22; SEM=0.07 M=224; SEM=54.8 

ACC M=0.67; SEM=0.02 M=0.69; SEM=0.02 M=1.40; SEM=0.06 M=260; SEM=47.2 

PL M=0.63; SEM=0.03 M=0.66 SEM=0.03 M=1.46; SEM=0.09 M=197; SEM=22.3 

IL M=0.68; SEM=0.03 M=0.68; SEM=0.03 M=1.34; SEM=0.08 M=204; SEM=36.5 

AVE M=0.65; SEM=0.01 M=0.67; SEM=0.01 M=1.35; SEM=0.04 M=221; SEM=20.6 

VU0467154, 3mg/kg (SD = 0.25s) 

Vehicle 

Sham M=0.66; SEM=0.03 M=0.64; SEM=0.04 M=5.20; SEM=3.96 M=240; SEM=41.2 

ACC M=0.65; SEM=0.02 M=0.66; SEM=0.03 M=1.51; SEM=0.15 M=238; SEM=35.5 

PL M=0.63; SEM=0.02 M=0.65; SEM=0.02 M=2.39; SEM=1.08 M=297; SEM=54.8 

IL M=0.69; SEM=0.02 M=0.67; SEM=0.03 M=2.83; SEM=1.35 M=172; SEM=27.1 

AVE M=0.66; SEM=0.01 M=0.66; SEM=0.02 M=2.98; SEM=1.06 M=237; SEM=20.9 

VU0467154 

Sham M=0.73; SEM=0.03 M=0.62; SEM=0.04 M=1.35; SEM=0.17 M=112; SEM=21.3 

ACC M=0.73; SEM=0.02 M=0.63; SEM=0.03 M=1.31; SEM=0.05 M=92.1; SEM=13.1 

PL M=0.68; SEM=0.03     M=0.59; SEM=0.04 M=3.53; SEM=2.24 M=123; SEM=21.8 

IL M=0.73; SEM=0.02 M=0.61; SEM=0.04 M=1.28; SEM=0.11 M=80.4; SEM=10.0 

AVE M=0.72; SEM=0.01*** M=0.61; SEM=0.02 M=1.87; SEM=0.56 M=102; SEM=8.72*** 

 

Table 4.4. Table summary of the effects of discrete excitotoxic lesions of the ACC, PL and IL on hit 

and false alarm response latencies, reward retrieval latencies, and premature/perseverative 

responses, under a range of behavioural and pharmacological manipulations. Significant post hoc 

comparisons are highlighted in bold and by a black ring outline and are compared to rats with sham 

lesions for behavioural manipulation and compared to vehicle for pharmacological manipulations. For 

the variable SD and distraction probes, means are averaged across SD or distraction condition. Data 

are presented as mean ± SEM (*, *** p<0.05, p<0.001 with Sidak’s correction).   
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4.4 Discussion 

 

 

The present experiments revealed functional dissociations between sub-regions of the mPFC on 

attentional performance on the rCPT; which requires more complex cognitive processes, particularly 

of discrimination. To my knowledge, this is the first demonstration of functional dissociations between 

dorsal (ACC), medial (PL) and ventral (IL) sub-regions of the mPFC on attentional performance. As 

hypothesised, rats with lesions of the PL cortex exhibited the most persistent attentional impairment 

on the rCPT, demonstrated under conditions of variable and non-variable reducing SDs and high 

event rate (reduced d’ and hit rate), and under conditions of distraction (reduced hit rate). In contrast, 

rats with lesions of the ACC exhibited only a transient attentional impairment (reduced d’ and hit rate) 

in the early stages of behavioural testing (for around one week), which ameliorated with behavioural 

testing. Rats with lesions of the IL cortex had a transient attentional impairment (reduced hit rate) 

under variable SD conditions, whilst demonstrating a transient conservative response bias (C 

parameter) under non-variable SD presentation and almost under variable distraction conditions. IL-

lesioned rats showed no effects on inhibitory response control measure (false alarm rate). Treatment 

with the acetylcholinesterase inhibitor donepezil had no effects on performance, whereas perhaps 

remarkably, despite the presence of mPFC lesions, the M4 PAM VU0467154 improved discrimination 

(d’), irrespective of lesion group. 

 

4.4.1 Effects of discrete lesions of the mPFC on the rCPT  

 

4.4.1.1 ACC 

 

Lesions of the dorsal sub-region of the mPFC (ACC) induced a transient attentional deficit early in 

behavioural testing (~1 week), that recovered with further testing on the rCPT. Specifically, rats with 

lesions of the ACC exhibited reduced discrimination sensitivity (d’) and hit rate during the post-surgery 

baseline and the first behavioural manipulation of variable SD presentation (2, 1 and 0.5s and almost 

4, 1 and 0.5s). Impairments were not demonstrated during later tested non-variable SD presentation 

(4, 2, 1, 0.5 and 0.25s), flanker distraction (congruent and incongruent) and event rate (high and low). 

In contrast to the present findings, lesions of the ACC have previously been reported to impair 

attentional performance, in the form of choice accuracy, on signal detection on the 5-CSRTT, during 

the basic task and under unpredictable stimulus presentation (long variable ITI) (Chudasama et al. 

2003). Interestingly, in the work of Chudasama and colleagues, ACC-lesioned rats performed worse 

during the basic task, were trials can be paced due to the constant ITI, and not when stimulus 

presentation was unpredictable during a varied ITI, were trials cannot be paced. This suggests that 

the nature of the ACC lesion-induced attentional impairment on the 5-CSRTT was with regards to 

response selection and the temporal organisation of behaviour under variable task demands. This is 

supported by another study, which demonstrated that impaired accuracy exhibited in rats with ACC 

lesions was due to rats being unable to use temporal cues to guide basic 5-CSRTT performance 
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(Passetti et al. 2002). This supports the role of dorsal ACC neural system in attentional performance 

on the 5-CSRTT, with respect to the integration of temporally sequenced behaviour, leading to 

preparatory readiness. This likely explains the lack of significant impairment of ACC-lesioned rats in 

rCPT performance, in which stimulus presentation is unpredictable and therefore behaviour cannot be 

temporally organised. 

 

4.4.1.2 PL cortex 

 

As hypothesised, lesions of the PL cortex induced the most persistent attentional impairment of all 

lesion groups, with impairments demonstrated under manipulations of reducing SDs, distraction and 

event rate for rCPT performance. During baseline performance, PL lesioned rats demonstrated an 

increase in impulsive-like responding only. However, when later tested during conditions of both 

variable and non-variable SD presentation, a broad attentional impairment (reduced d’ and hit rate) 

was revealed. This was likely driven by the reduced SDs rather than the longer SDs, suggesting that 

the impairment was attentional in nature. Attentional impairments were also exhibited under 

conditions of event rate and distraction. Rats with lesions of the PL cortex exhibited an attentional 

impairment (reduced d’) during conditions of high, and not low, event rate, compared to rats with 

sham lesions. Conditions of high and low event rates can both be considered to be forms of increased 

attentional load, however a high event rate is considered to tax attentional resources at a greater level 

due to the requirement of maintaining attention on a continuous basis (Parasuraman & Giambra 

1991). Rats with lesions of the PL cortex also exhibited an attentional impairment (reduced hit rate) 

during congruent and incongruent distractor conditions, compared to rats with sham lesions. As 

previously observed with nicotine systemic pharmacology on the distractor probe in chapter 3, both 

congruent and incongruent distractor conditions have been shown to reduce hit rate, regardless of the 

congruence, and this effect was exacerbated in rats with lesions of the PL cortex. Taken together, 

these findings demonstrate that the attentional impairments exhibited in PL-lesioned rats may also be 

with respect to maintaining attention continuously and blocking out irrelevant and competing stimuli, 

when stimulus presentation is unpredictable and requires discrimination. This finding, alongside the 

role of the ACC in the integration of temporally sequenced behaviour, leading to preparatory 

readiness in attentional performance on the 5-CSRTT, provides evidence for a double dissociation.  

 

The attentional impairments exhibited in rats with lesions of the PL cortex in the present experiment 

are consistent with the impairments reported on other attentional paradigms, which require the 

discrimination of unpredictable targets, and a lack of impairments reported on more predictable signal 

detection on the 5-CSRTT (Chudasama & Muir 2001; Granon et al. 1998). However, one cannot be 

certain of the exact characteristic/s of the rCPT which results in differential roles of the mPFC sub-

regions compared to the 5-CSRTT. Although it seems likely the double dissociation is a result of 

discrimination of unpredictable targets on the rCPT, there are a number of task differences on the 

rCPT which could underlie this characteristic, compared with the 5-CSRTT. For example, 1) response 

inhibition during non-signal trials on the rCPT, compared to signal only trials on the 5-CSRTT. 2) The 
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use of differentiated visual stimuli on the rCPT, compared to simple visual stimuli on the 5-CSRTT. 3) 

The use of a higher, more variable event rate (ISI = 2/3s), compared to a constant, longer ITI on the 

basic 5-CSRTT, which means signals can be timed; temporally mediated strategies have been 

demonstrated in rats performing the 5-CSTTT (Cope et al. 2016; also discussed in Young et al. 2013). 

4) Longer session time of 45 minutes on the rCPT, compared to the 5-CSRTT where animals tend to 

complete 100 trials in around 20 minutes, with a 30 minutes maximum session time implemented. It 

would be interesting for future studies to discretely manipulate these task features one by one to 

determine what particular feature/s underlie the double dissociations of the mPFC sub-regions on the 

rCPT versus the 5-CSRTT (see chapter 6). 

 

4.4.1.3 IL cortex 

 

Lesions of the ventral sub-region of the mPFC (IL) resulted in the least persistent attentional 

impairment, while a conservative response bias was also exhibited. During post-surgery baseline rats 

with lesions of the IL cortex displayed no performance impairments. However, they demonstrated a 

transient attentional impairment (reduced hit rate), during the first behavioural manipulation in which 

SD presentation was unpredictable, no further attentional impairments were exhibited. Similar 

transient attentional impairments have previously been reported in rats with IL (Chudasama et al. 

2003) and PL and IL (Passetti et al. 2002) lesions on the 5-CSRTT. In the present experiment, rats 

with lesions of the IL cortex demonstrated a conservative response bias (reduced C parameter), 

under non-variable reducing SD conditions and almost under variable distraction conditions with a 

0.5s SD, suggesting that the IL cortex may play a role in setting a decision criterion for responding, 

however this requires further testing. The criterion to respond (C parameter) provides insight into a 

subjects rate of responding in general, at both target and non-target stimuli, based on a decision 

criterion. This measure could to some extent be considered to reflect the same underlying construct of 

omissions of the 5-CSRTT, which can also be considered to provide insight into the rate of 

responding in general. Based on this, rats with lesions of the IL cortex on the 5-CSRTT have 

previously been shown to exhibit increased omissions during baseline and variable long ITI conditions 

(Chudasama et al. 2003).  

 

In the present experiment, it was hypothesised that rats with lesions of the IL cortex may exhibit a 

deficit in inhibitory response control (increased false alarm rate), based on increased premature 

responses reported in rats with lesions of the IL cortex on the 5-CSRTT (Chudasama et al. 2003). 

Premature responses on the 5-CSRTT involve the inhibition of a response during a 5s waiting period, 

before stimulus presentation, in order for the opportunity to later gain a food reward. On the other 

hand, false alarms on the rCPT involve the inhibition of responding during the presentation of a 

stimulus (presented for 1s during the basic rCPT) in order for the opportunity to later gain a food 

reward. The extent to which these measures may to some extent be considered to reflect similar 

underlying changes in response inhibition is interesting and complex. A possible explanation for the 

lack of IL lesion effect on false alarm rate in the present experiment could be due to false alarms not 
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being a pure measure of inhibitory response control, like premature responses are; false alarms are 

confounded by discrimination, which is difficult to tease apart. Another confound of false alarm rate is 

the difficulty to untangle a volitional bias to report ‘no target’ on the rCPT, and therefore not respond, 

compared with when an animal is not paying attention and just miss the stimulus. Additionally, 

withholding a response during a waiting period (premature responses) compared to withholding a 

response during a stimulus (false alarm), likely tap into different forms of response inhibition and 

recruit different brain functions, which requires further investigation (see chapter 6). 

 

Additionally, on the rCPT there is a premature/perseverative response measure, which indexes the 

sum of responses made in the stimulus location when a stimulus is not presented during the ISI 

period. This measure could be interpreted to provide insight into impulsive or compulsive responding, 

which cannot be teased apart due to the continuous nature of the task. This measure also requires 

comparison to premature responses on the 5-CSRTT due to the extent to which these measures 

could be considered to reflect similar underlying changes in response inhibition. No effects were 

revealed in IL lesioned rats in this measure in the present experiment. However, this is not surprising 

since premature/ perseverative responses on the rCPT have not always been shown to correspond 

with premature responses on the 5-CSRTT. This was demonstrated in chapter 3, in which the α4β2 

agonist ABT-594 increased percentage premature responses on the 5-CSRTT, whilst having no effect 

on premature/ perseverative responses on the rCPT. The lack of IL lesions on premature/ 

perseverative responses is most likely due to the high event rate of the rCPT induced by a short ISI 

period, which may not tax inhibitory response control to the same extent as the 5-CSRTT. Support for 

the requirement of a longer ITI period, in order to tax inhibitory response control comes from studies 

finding IL lesion-induced increases in premature responses on the 5-CSRTT only during baseline 

conditions (ITI = 5s) and long ITI sessions (ITI = 4.5 - 9s) and not when the ITI is shortened (ITI = 0.5 

- 4.5s) (Passetti et al. 2002; Chudasama et al. 2003). This suggests that responses during the ISI on 

the rCPT likely do not tax inhibitory response control to the same extent as premature responses on 

the 5-CSRTT, and explains the lack of effect on this measure in rats with IL lesions on the rCPT. 

 

4.4.2 Effects of pharmacological manipulations on rats with discrete lesions of the mPFC  

 

The cholinesterase inhibitor donepezil had no effects on rCPT performance under a reduced SD 

(0.25s). In contrast, the M4 PAM (VU0467154) increased discrimination sensitivity (d’), irrespective of 

lesion group. The lack of effect with the generally acting compound donepezil may be due to 

necessary mPFC architecture required for the effects of donepezil to work being absent due to 

lesions. Previous attempts for cholinesterase inhibitors to remediate attentional impairments following 

AMPA (Muir et al. 1995) and 192 IgG-saporin (McGaughy et al. 1996; McGaughy & Sarter 1998) 

lesions of the basal forebrain have produced mixed results, suggesting a limited usefulness of 

cholinesterase inhibitors to remediate attentional impairments when there is loss of cholinergic 

neuronal signalling. Another possible explanation is the lack of specificity of action at a particular 

receptor subtype important for improving cognitive function. Improvements in attentional performance 
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by targeting a receptor subtype known to be important for cognition function, rather than targeting a 

broad range of subtypes with a non-selective receptor agonist, has previously been demonstrated in 

the nicotinic literature. Targeting of the selective α4β2 subtype produced a robust improvement in 

attention compared to a lack of effect with the general agonist nicotine (Parikh et al. 2008; Sarter et al. 

2009; Howe et al. 2010). 

 

When muscarinic M4 receptor subtypes were potentiated in their response to ACh by VU0467154, 

discrimination sensitivity (d’) was improved. This supports previous reports with VU0467154 to 

improve touchscreen-based pairwise discrimination task in healthy rats (Bubser et al. 2014). In the 

present experiment, VU0467154 reduced responding at non-target stimuli (reduced false alarm rate) 

which can be interpreted as a reduction in inhibitory response control. VU0467154 also reduced 

responding at target stimuli (reduced hit rate); analysis of the raw number of hits and misses revealed 

that VU0467154 significantly increased the number of misses only, no significant differences were 

revealed on the number of hits. The increased d’ is driven by the reduction in false alarm rate, 

because if the reduction in false alarm rate and hit rate were at a similar level there would be no 

effects on d’; additionally if the reduction in hit rate was more prominent, then a reduction in d’ would 

be observed. VU0467154 induced a conservative response bias (C parameter). The slowing down of 

responding at the target stimulus (increased hit response latency) is also consistent with a 

conservative response bias; rats took longer to respond at a target stimulus as they wanted to ensure 

they were correct in their responding. Importantly there were no effects of VU0467154 on reward 

retrieval latencies, while there was also a trend for quicker false alarm response latencies, showing 

that there were no overall reductions in response latencies, which may rule out deficits of behavioural 

output. However, visual inspection of the reward retrieval latencies shows these to be longer than 

usual in vehicle and drug conditions, suggesting that some form of effect (possibly post-gavage stress 

or sickness induced by the vehicle) may have occurred. Additionally, rats made fewer inappropriate 

responses in the form of reduced premature/perseverative responses. 

 

In the present experiment, one cannot be certain of the precise locus of action of VU0467154 in the 

modulation of improved discriminative sensitivity. Likely possibilities are that as most rats only had 

discrete lesions of the mPFC, VU0467154 may have modulated performance in the spared mPFC 

sub-regions. VU0467154 may have also exhibited its effects via the primary visual cortex based on 

evidence for the presence of M4 receptors in the primary visual cortex (Groleau et al. 2015) and the 

role of the primary visual cortex in the image, orientation and motor discrimination task (Petruno et al. 

2013). Additionally, VU0467154 may have exhibited its effects at M4 receptors in the posterior 

parietal cortex, which is known to play a role in the selection of relevant stimuli and blocking out 

competing, less relevant stimuli, by integrating several sensory modalities to direct the division of 

resources in order to optimize gains (Davidson et al. 1999; for review see Broussard 2012).  
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4.4.3 Conclusion 

 

In conclusion, the present experiment demonstrated functional dissociations of attentional 

performance following discrete excitotoxic lesions of the dorsal (ACC), medial (PL) and ventral (IL) 

mPFC, with little overlap, on the novel, rCPT. Consistent with previous literature, rats with lesions of 

the PL cortex were impaired when greater cognitive resources of discrimination of unpredictable 

targets were required on the rCPT. PL lesioned rats demonstrated an attentional impairment under 

conditions of reducing SDs, high event rate and distraction. This suggests a role of the PL cortex in 

continuously maintaining attention and the ability to block out irrelevant and competing stimuli during 

attentional performance which requires the discrimination of unpredictable targets. In contrast, rats 

with lesions of the ACC exhibited only a transient attentional impairment early in behavioural testing. 

This is likely explained by evidence suggesting a possible role of the ACC in signal detection on the 5-

CSRTT, with respect to the integration of temporally sequenced behaviour leading to preparatory 

readiness, which is unlikely implicated in the rCPT due to unpredictable signal presentation. This 

suggests a double dissociation of sub-regions of the mPFC on the rCPT and 5-CSRTT. Rats with 

lesions of the IL cortex demonstrated no effects on inhibitory response control measures in the form 

of false alarm rate/ premature/perseverative responses, compared with increases reported in 

premature responses on the 5-CSRTT. This is likely due to the possibility that false alarms and 

premature responses tap into different forms of response inhibition and may recruit different brain 

functions; additionally the lack of effects on premature/perseverative responses is likely due to the 

high and variable event rate of the rCPT, which does not tax inhibitory response control to the same 

extent as premature responses on the 5-CSRTT. Finally, following treatment with the cholinesterase 

inhibitor donepezil and the M4 PAM (VU0467154), donepezil had no effects, while targeting the M4 

receptor subtype selectively improved discrimination sensitivity, supporting the possible utility of novel 

muscarinic selective PAMs in the clinic following further testing. Overall, these findings contribute to 

the validation of the role of the prefrontal cortex in the novel rCPT, as well as providing evidence for a 

double dissociation of sub-regions of the mPFC on the rCPT and 5-CSRTT. 
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Chapter 5 

Effects of chemogenetic manipulation of 

the basal forebrain cortical cholinergic 

system in attentional performance 

 

  

The experiments described in this chapter used a chemogenetic approach -- Designer Receptors 

Exclusively Activated by Designer Drugs (DREADDs) -- to test for putative functional dissociations 

between ascending cholinergic projections from the nucleus basalis magnocellularis/substantia 

innominata (nbM/SI) to discrete sub-regions of the medial prefrontal cortex (mPFC) -- anterior 

cingulate (ACC), prelimbic (PL) and infralimbic (IL) cortices -- in rats on the 5-CSRTT. Inhibitory (Gi) 

and excitatory (Gq) DREADD receptors were expressed in the nbM/SI of transgenic choline 

acetyltransferase (ChAT)::Cre+ and Cre- rats. Neither DREADD-mediated inhibition nor excitation of 

these projections affected performance when the ‘designer ligand’ clozapine-N-oxide (CNO) was 

administered systemically. However, when DREADD receptors on these ascending cholinergic 

projections were locally inhibited or excited on axon terminals in the ACC (but not the PL or IL cortex), 

attentional performance was impaired; as revealed by a main effect of CNO in ANOVA. These 

findings suggest that ascending cholinergic projections from the nbM/SI to the dorsal portion of the 

mPFC, and not the ventral portion, may modulate attentional performance. The similarity of effects of 

inhibition and excitation suggests that the relationship between cholinergic system activation and 

attentional function may resemble an ‘inverted-U’ shaped pattern. However, although ANOVA 

revealed a main effect of CNO, leading to conclusions in terms of effects of both Gq and Gi activation, 

more detailed analysis of the individual DREADD effects revealed that the effects neither of Gq, nor 

Gi activation were significant. Thus I conclude that these findings should be treated as preliminary. 

Future experiments with larger Ns and greater statistical power will be required to test the robustness 

of this preliminary finding. A further caveat is the potential confound of off-target effects of the CNO 

metabolite clozapine at endogenous binding sites; control conditions including administration of low-

dose clozapine would be required to test this possibility. To conclude, this study provides a potentially 

important discovery, which will require further work to verify. 
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5.1 Introduction 

 

 

5.1.1 The basal forebrain cortical cholinergic system and attentional performance 

 

As described in chapter 1, the basal forebrain is a complex of subcortical nuclei -- the medial septal 

nucleus, the vertical and horizontal diagonal band nuclei, the SI and the nbM (Mesulam, Mufson, 

Levey, et al. 1983; Mesulam, Mufson, Wainer, et al. 1983; Zaborszky et al. 2012) – in which 

cholinergic neurons reside in and innervate a range of neocortical and limbic structures for the 

modulation of a variety of cognitive functions including learning, memory and attention, in primates 

and rodents (for reviews see Everitt & Robbins 1997; Wenk 1997; Baxter & Chiba 1999). A reduction 

of basal forebrain cholinergic neurons is associated with cognitive impairments presented in normal 

and pathological aging. In particular, in Alzheimer’s disease (AD) patients, the magnitude of cognitive 

decline has been shown to correlate with the extent of cholinergic neuronal loss in the nucleus basalis 

of Meynert (homologous to the nbM in rats) (Perry et al. 1978; Whitehouse et al. 1981; Whitehouse et 

al. 1982; Bierer et al. 1995). In addition to deficits in mnemonic and memory processes, deficits in 

sustained attention are a core feature of AD (for reviews see Lawrence & Sahakian 1995; Hodges 

2006) and are particularly sensitive to improvements with cholinesterase inhibitors (Sahakian et al. 

1993; Foldi et al. 2005; Bentley et al. 2008; Perry & Hodges 1999; Romberg et al. 2011). 

 

Cholinergic projections from the nbM/SI to the mPFC forming the nbM/SI-neocortical pathway have 

been implicated in the modulation of attentional performance. For example, lesions of the basal 

forebrain using excitotoxins in rodents have reported attentional deficits as measured by the 5-

CSRTT, in the form of reduced choice accuracy and correct response latencies (Robbins et al. 1989; 

Muir et al. 1992; Muir et al. 1994; Muir et al. 1995). However, the effectiveness of excitotoxic lesions 

to deplete cortically-projecting cholinergic neurons varies across neurotoxins, as do the reported 

effects on learning, memory and attentional functions (Robbins et al. 1989; Dunnett et al. 1991; 

Marston et al. 1994). Following the development of a selective cholinergic immunotoxin, 192 IgG-

saporin (Wiley et al. 1991; Book et al. 1992), more sophisticated studies demonstrated how 

selectively lesioning cortically-projecting cholinergic neurons of the nbM/SI impaired attentional 

performance. Such lesions have been shown to reduce choice accuracy and correct response 

latencies and increase omissions on the 5-CSRTT (McGaughy et al. 2002; Risbrough et al. 2002; 

Lehmann et al. 2003), whilst reducing signal detection, with no effects on correct rejections, on the 

sustained attention task (SAT) (McGaughy et al. 1996; McGaughy & Sarter 1998; Newman & 

McGaughy 2008). In vivo microdialysis studies have demonstrated a functional relationship between 

cortical cholinergic system transmission and attentional performance. Real-time recordings using 

microdialysis demonstrated an efflux of ACh within the mPFC in rats performing the 5-CSRTT 

(Passetti et al. 2000; Dalley et al. 2001) and within the fronto-parietal cortex in rats performing the 

SAT. ACh efflux in this latter study correlated with reduced performance under conditions of 

distraction (Himmelheber et al. 2000). Importantly, 192 IgG-saporin lesions of cortically-projecting 
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cholinergic neurons of the nbM/SI have been demonstrated not only to impair attentional performance 

but also reduce cortical ACh efflux (McGaughy et al. 2002). Finally, 192 IgG-saporin lesions of the 

mPFC demonstrated a similar pattern of attentional impairments to those reported following lesions of 

the nbM/SI, in the form of reduced choice accuracy, when attentional load was taxed during 

conditions of high event rate on a modified ‘force-choice’ version of the 5-CSRTT (Dalley et al. 2004).  

 

It has become increasingly apparent that executive functions are likely mediated by anatomically 

distinct and functionally interacting sub-regions of the mPFC. Studies using excitotoxic lesions on the 

5-CSRTT have predominantly reported the role of the dorsal mPFC (ACC) in attentional performance 

and the ventral mPFC (IL cortex) in inhibitory response control (see the introduction to chapter 4 for 

more in detail on this) (Muir et al. 1996; Chudasama & Muir 2001; Passetti et al. 2002; Chudasama et 

al. 2003; Chudasama et al. 2005). This suggests that basal forebrain cholinergic projections to 

discrete sub-regions of the mPFC may influence attentional performance differentially. This idea is 

also supported by recent anatomical evidence demonstrating that medial and lateral portions of the 

nbM/SI project preferentially to the dorsal and ventral mPFC, respectively (Bloem et al. 2014).   

 

5.1.2 Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) 

 

As described above, evidence for the role of the basal forebrain cortical cholinergic system in the 

modulation of attentional performance has largely been investigated using a conventional lesion 

approach, which has limitations. Lesions are permanent but allow for the possibility of compensatory 

changes in other brain regions which can confound the interpretation of behavioural outputs. Lesions 

are 'one-dimensional,' providing a loss of function measure only; they also lack selectivity as they may 

not allow for the silencing of specific pathways. In contrast to the lesion approach, a more recently 

established chemogenetic approach, also known as DREADDs, provides a more refined and 

sophisticated method for selective modulation of signal-transduction pathways (Farrell & Roth 2013; 

Smith et al. 2016). DREADDs are ‘designer’ G-protein coupled receptors (GPCRs), based on 

modified cholinergic muscarinic M3 and M4 receptor subtypes, and are ‘designer’ ligand-dependent. 

DREADD receptors were reported to be activated solely and potently by the supposedly 

pharmacologically inert ‘designer’ ligand clozapine-N-oxide (CNO), and unresponsive to any 

endogenous ligand (Armbruster et al. 2007). A very recent study, however, questions the utility of 

CNO, which after being transformed into clozapine might interact with endogenous non-DREADD 

receptors; see discussion below and Gomez et al. (2017). DREADD receptors are expressed in 

neural tissue in target brain regions using gene transfer strategies and once present in the cell 

membrane allow for precise spatiotemporal control over GPCR signalling, which is both transient and 

reproducible.  

 

DREADD receptors can mediate the inhibition (Gi-coupled) and excitation (Gq-coupled) of neural 

activity. To inhibit neuronal activity the hM4Di derivative is commonly used; the mechanism by which 

hM4Di inhibits presynaptic neurotransmitter release is unknown, although it is suggested that, 
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following CNO activation, membrane hyperpolarisation is achieved via the inhibition of cAMP-

mediated signalling and excitation of inward rectifying potassium channels (Zhu & Roth 2014; Hilfiker 

et al. 2001). On the other hand, to excite neuronal activity, the hM3Dq derivative is commonly used; in 

which CNO activation results in membrane depolarisation via activation of the phospholipase C 

cascade which changes intracellular calcium and causes neurons to fire in a burst-like manner 

(Armbruster et al. 2007; Rogan & Roth 2011). DREADD receptors can be introduced selectively to a 

particular subclass of cells and pathways (Ferguson & Neumaier 2012; Sternson & Roth 2014). One 

route to facilitate this, which is used in the present experiment, is the use of a Cre-dependent virus 

and transgenic animals that express Cre-recombinase in the cell type of interest, restricting DREADD 

receptor expression to the specific cell type (Atasoy et al. 2008). Additionally, DREADDs express not 

only in cell bodies of the target site, but also along axons and on axon terminals (Tye & Deisseroth 

2012; Stuber et al. 2012). Therefore, DREADD receptors can be activated not only at a general level 

by systemic CNO administration, but at a local level by CNO microinfusion directly in projection 

regions, to activate DREADD receptors on axon terminals, for the investigation of selective projection 

pathways (Stachniak et al. 2014; Mahler et al. 2014). 

 

5.1.3 Aims and hypotheses  

 

The present experiments used a chemogenetic approach to investigate DREADD-mediated inhibition 

and excitation of cortically-projecting cholinergic neurons in the nbM/SI to discrete sub-regions of the 

mPFC -- dorsal (ACC), medial (PL cortex) and ventral (IL cortex) -- to test for putative functional 

dissociations on attentional performance on the 5-CSRTT (see figure 5.1 for an outline of the 

experimental design). In the present experiment, Cre-dependent adenoassociated viral vectors (AVV) 

for Gi-coupled (rAAV8/hSyn-DIO-hM4D(Gi)-mCherry) or Gq-coupled (rAAV8/hSyn-DIO-hM3D(Gq)-

mCherry) DREADD receptors were stereotaxically infused into the nbM/SI (Armbruster et al. 2007; 

Alexander et al. 2009; Krashes et al. 2011; Koike et al. 2016) of transgenic choline acetyltransferase 

(ChAT)::Cre+ and Cre- rats; in which cholinergic neurons express, or do not express (as a control), 

Cre-recombinase, respectively, restricting DREADD receptor expression to cholinergic neurons 

(Witten et al. 2011). The viral vectors contained the floxed muscarinic M4 (Gi) or M3 (Gq) GPCR, 

fused with a fluorescent mCherry tag, under the control of human synapsin promotor (hsyn). The 

double-floxed inverted open reading frame system (DIO) facilitated cholinergic neuronal selectivity: in 

neurons which express Cre-recombinase linked to a particular gene, LoxP sites are cleaved and the 

inverted gene is flipped into a functional position, which allows transcription of the DREADD gene with 

minimal overflow in the absence of Cre (Atasoy et al. 2008). DREADD receptors were expressed over 

a 5-week period and were then activated by CNO to inhibit (Gi) or excite (Gq) basal forebrain 

cholinergic neuronal signalling. DREADD receptors were initially activated at a peripheral level by 

administration of systemic CNO; this route of administration revealed no effects on attentional 

performance (data not shown). Therefore, DREADD receptors were next activated at a local level 

following cannulation surgery of the mPFC. CNO was microinfused directly into discrete mPFC 

projection sub-regions -- ACC, PL and IL cortices (in that order) -- to locally activate DREADD 
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receptors on axon terminals. ChAT::Cre+ rats also received microinfusion of a combination of the 

GABA-A agonist, muscimol, and the GABA-B agonist, baclofen, to generally inactivate each mPFC 

sub-region, as a positive control.  

 

To my knowledge, this is the first study to have used a chemogenetic approach to mediate both 

inhibition and excitation of the basal forebrain cortical cholinergic system on attentional performance; 

as well as the first to activate DREADD receptors locally on axon terminals in discrete mPFC 

projection sub-regions. As far as I am aware, only one other DREADDs study has been carried out in 

this field, in which inhibitory DREADD receptors were expressed in the ACC in mice, and when 

activated with CNO systemically impaired attentional performance, in the form of reduced choice 

accuracy and increased omissions, on the touchscreen-based 5-CSRTT (Koike et al. 2016), 

supporting a role of the ACC in 5-CSRTT performance. In the present experiment, it was 

hypothesised that DREADD-mediated inhibition of cortically-projecting cholinergic neurons from the 

nbM/SI would impair attentional performance, particularly when activated directly in the ACC, based 

on evidence reporting a predominant role of the dorsal portion of the mPFC in attentional performance 

(Chudasama et al. 2003). It was less clear what to predict for DREADD-mediated excitation of 

cortically-projecting cholinergic neurons from the nbM/SI. If it is possible for the basal forebrain 

cholinergic system in a non-cholinergically compromised rat to be potentiated, attentional 

performance might be improved. However, based on an array of human evidence which suggests that 

the relationship between cholinergic system activation and attentional performance may resemble an 

‘inverted-U’ shaped function, it was also hypothesised that potentiation may in fact impair attentional 

performance (for review see Bentley et al. 2011). 
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1. Transgenic ChAT::Cre+ and Cre- rats received training on the 5-CSRTT to stage 10 (SD = 0.7s, 

accuracy = >70%, omissions = <20%) (n=48). 

 

                              Image taken from Bari et al. (2008) 

 

2. Next, all rats received stereotaxic surgery for the infusion of Gi- or Gq-coupled DREADD receptors 

into the nbM/SI. DREADD receptors were expressed over a 5-week period, in which time rats were 

trained to stage 12 on the 5-CSRTT (SD = 0.5s, accuracy = >70%, omissions = <20%). 

 

 

 

3. DREADD receptors were activated with CNO for neuronal inhibition or excitation of cortically-

projecting cholinergic neurons from the nbM/SI at a systemic level initially in all rats (0, 1, 3mg/kg) 

under conditions of baseline (stage 12), followed by a reduced SD (SD = 0.25s) (ChAT::Cre+ Gi-

coupled = 10, ChAT::Cre+ Gq-coupled = 9, ChAT::Cre- Gi-coupled = 11, ChAT::Cre- Gq-coupled = 

11).  
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4. Next, rats received cannulation surgery above the ACC. Subsequently, DREADD receptors were 

activated with CNO and muscimol baclofen (the latter in ChAT::Cre+ rats only as a control) at a local 

level into discrete sub-regions of the mPFC (ChAT::Cre+ Gi-coupled = 8, ChAT::Cre+ Gq-coupled = 

7, ChAT::Cre- Gi-coupled = 5, ChAT::Cre- Gq-coupled = 5). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Outline of the experimental design implemented in the present experiment, in which 

cortically-projecting cholinergic neurons from the nbM/SI were inhibited or excited at a systemic and 

local level into sub-regions of the mPFC. 

 

 

5.2 Methods 

 

 

5.2.1 Subjects 

 

Forty-eight experimentally naïve, male, Long Evans, transgenic ChAT::Cre+ (n=23) and Cre– (n=25) 

rats served as subjects (370g ±70, bred in house, University of Cambridge, UK). Rats were trained on 

the 5-CSRTT. Six rats failed to acquire the task and one rat failed to re-baseline post DREADDs 

infusion surgery: final sample size for systemic CNO administration was 41 (ChAT::Cre+ Gi-coupled = 

10, ChAT::Cre+ Gq-coupled = 9, ChAT::Cre- Gi-coupled = 11, ChAT::Cre- Gq-coupled = 11). 

Following systemic administration, 18 ChAT::Cre+ rats received cannulation surgery, three rats failed 

to re-baseline post-surgery: final sample size for microinfusion of CNO/muscimol-baclofen was 15 

(ChAT::Cre+ Gi-coupled = 8, ChAT::Cre+ Gq-coupled = 7). Eleven ChAT::Cre- rats received 

cannulation surgery, one rat failed to re-baseline post-surgery: final sample size for microinfusion of 

CNO was 10 (ChAT::Cre- Gi-coupled = 5, ChAT::Cre- Gq-coupled = 5). A small number of rats were 

further excluded if they did not perform >50% of trials on an infusion day. The final sample size for 

each Latin square which takes these further exclusions into account is displayed in table 5.1. 

 

 

ACC 

PL 

IL 
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5.2.2 Apparatus 

 

The 5-CSRTT was carried out in five-hole operant chambers (Med Associates). CNO was initially 

administered systemically under conditions of baseline (stage 12, SD = 0.5s), followed by conditions 

of reduced SD (SD = 0.25s). Microinfusions of CNO into discrete sub-regions of the mPFC were 

tested on baseline conditions (stage 12, SD = 0.5s), due to the rats performing at a level close to 

chance when tested on a reduced SD of 0.25s (see table 5.1 for experimental design). 

 

5.2.3 Surgery 

 

The following procedures applied to DREADD infusion and mPFC cannulation surgeries. Rats were 

anaesthetised with isoflurane gas in oxygen (inducted at 5%, maintained at 2-2.5%) and held in a 

stereotaxic frame, fitted with a-traumatic earbars and a digital display console, enabling 10 micron 

resolution accuracy (David Kopf Instruments, Tujunga, CA, USA). Rats received a pre-surgery 

analgesic of metacam (subcutaneous administration, 1mg/kg, 5mg/ml; Boehringer Ingelheim, 

Berkshire, UK). A midline incision was made along the scalp to expose the skull, a flat skull 

measurement was ensured, followed by a craniotomy directly above the infusion/cannulation site. 

Post-surgery all rats were monitored for at least five days, in which they received metacam (oral 

administration, 1mg/kg, 1.5mg/ml; Boehringer Ingelheim, Berkshire, UK) for at least three days. 

Seven days post-surgery rats returned to behavioural testing. 

 

DREADD infusion surgery: ChAT::Cre+ and Cre– rats were divided into two groups, with each 

group receiving either Gi- or Gq-coupled DREADDs. Statistical analysis confirmed no significant 

differences existed between all groups on key percent measures of accuracy, correct, omissions and 

premature responses pre-surgery. Cre-dependent adenoassociated viral vectors for Gi-coupled 

(rAAV8/hSyn-DIO-hM4D(Gi)-mCherry) or Gq-coupled (rAAV8/hSyn-DIO-hM3D(Gq)-mCherry) 

DREADD receptors were used (University of North Carolina Gene Therapy Centre Vector Core, US) 

(Krashes et al. 2011). Viral vectors were dissolved in filtered PBS to attain a concentration of 1 X 

10e12 (viral particles per ml) and infused bilaterally at stereotaxic coordinates, based on Paxinos and 

Watson. (1998): AP = +0.72, +1.32, ML = ±2.5, DV = -7.6 (mm), at a volume of 1μl and rate of 0.1 

μl/min. AP and ML measurements were taken from bregma and DV from dura. Coordinates were 

based on McGaughy et al. (2002) and virus titre/volume were based on pilot studies. Following each 

infusion the injector was left in place for 7.5 minutes to ensure virus dispersion before being slowly 

retracted. Infusions were made using a 10μl Hamilton precision syringe placed in a Harvard infusion 

pump (Harvard Apparatus Ltd, Kent, UK), connected to fine bore polythene tubing (0.28mm ID, 

0.61mm OD; Portex, Kent, UK) attached to a 31-gauge stainless steel bevelled (30 degrees) injection 

needle. Once infusions were completed the skin was sutured and rats recovered in a recovery 

chamber until alert and active. Rats spent one night singly housed and were returned to their home 

cage the next day.  
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mPFC cannulation surgery: Rats were fitted with a 22-gauge double guide cannulae cut to 3mm 

(Plastics One; Roanoke, VA, USA) at stereotaxic coordinates, based on Paxinos and Watson. (1998): 

AP = +2.7, ML = ±0.5, DV = -1 (mm). AP and ML measurements were taken from bregma and DV 

from dura. Cannulae were secured to the skull with three stainless steel mounting screws (1.6mm) 

and dental cement (Kemdent simplex rapid; Swindon, UK). Double dummy cannulae cut to fit the 

guide cannulae (with no projection) were inserted and protected with a small dust cap. Once cannulae 

were secured the skin was sutured and rats recovered in a recovery chamber until alert and active. 

Following surgery rats were singly housed to protect the cannulation site.  

 

5.2.4 Drugs 

 

DREADD receptors were activated initially by systemically administered CNO (Sigma, UK) dissolved 

in 0.5% DMSO and PBS and administered at doses of 0, 1 and 3mg/kg, in a volume of 1ml/kg, 30 

minutes prior to testing, in a Latin square design. Next, DREADD receptors were activated by 

microinfusion of CNO into discrete sub-regions of the mPFC. CNO (Sequoia Research Products Ltd; 

Pangbourne, UK) was dissolved in saline and microinfused at a dose of 0.5mM in a volume of 0.4 μl. 

The GABA-A agonist, muscimol, and GABA-B agonist, baclofen, (Sigma Aldrich, UK) were dissolved 

in saline and microinfused at 100ng each per side. Rats were tested 10 minutes following the start of 

drug infusion. Following each drug day rats received a drug-free day in which they were tested on 

stage 12 (SD = 0.5s) and did not receive drug, to ensure a stable performance throughout 

experiments. A one week washout period occurred between each Latin square. Dosing protocols for 

systemic CNO were based on Armbruster et al. (2007) and for microinfusions based on Stachniak et 

al. (2014). Dosing protocols for muscimol-baclofen were based on Dalton et al. (2016). 

 

5.2.5 Infusion procedure 

 

Rats received microinfusions into discrete sub-regions of the mPFC with double injectors which 

projected beyond the guide cannulae by 1, 2.5 and 3.5cm to target the ACC, PL and IL cortices 

respectively. All rats received infusions into the most dorsal mPFC sub-region first (ACC), followed by 

the medial (PL) and then ventral (IL) sub-region. The infusion procedure involved the removal of 

dummies from the guide cannulae and the insertion of the appropriate injector. CNO, muscimol 

baclofen or vehicle were infused bilaterally in a volume of 0.4 μl over two minutes. The injectors were 

left in place for a further two minutes post-infusion to allow substance dispersion. Following this, the 

injectors were slowly retracted, the dummies and dust cap replaced, and the rats returned to their 

home cage. Ten minutes from the start of the infusion rats began behavioural testing. Rats were 

initially habituated to the infusion procedure. On the first habituation session for each mPFC sub-

region the dummies were removed and returned to the cannulae prior to testing. The second 

habituation session involved a mock infusion, in which vehicle was infused prior to testing. 
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5.2.6 Histology 

 

At the conclusion of behavioural testing, animals were administered a lethal dose of sodium 

pentobarbitone (Euthatal, 200mg/ml, Merial, UK) and perfused transcardinally with 0.01M PBS (made 

from PBS tablets, Gibco, Thermo Fisher Scientific, Loughborough, UK), followed by 4% 

paraformaldehyde for two minutes each. Rats were then decapitated and the brain removed and post-

fixed overnight in 4% paraformaldehyde, before being cryoprotected in 30% sucrose in 0.01M PBS. 

Once dehydrated, brains were frozen and sectioned on a cryostat at 60μl thickness. Approximately 

one in every six and seventh section were stained for mCherry using fluorescence or 

diaminobenzidine (DAB), respectively, for DREADDs assessment in the basal forebrain and mPFC. 

 

Staining for mCherry using fluorescence: Sections were initially washed in PBS. Non-specific 

binding was blocked by incubating sections in BSA-TX-PBS (1% BSA + 0.3% triton-X + PBS) for one 

hour at room temperature. Anti m-Cherry primary (1°) antibody (ab167453; Abcam, Cambridge, UK; 

1° + BSA-TX-PBS) at a concentration of 1:1000 was applied overnight at room temperature. The 

following day sections were washed in PBS and incubated in Donkey anti-Rabbit IgG H&L secondary 

(2°) antibody (Alexa Fluor, 594, ab150076; Abcam Cambridge, UK; 2° + BSA-TX-PBS) at a 

concentration of 1:1000 for two hours at room temperature. Finally, sections were washed and then 

mounted onto double-subbed glass slides and coverslip applied using FluorSave reagent (Millipore, 

UK).  

 

Staining for mCherry using DAB: Sections were initially washed using PBS. Endogenous 

peroxidase was blocked by incubating sections in 1% hydrogen peroxide in PBS for 10 minutes. Next, 

non-specific binding was blocked by incubating sections in normal donkey serum (ab7475; Abcam, 

Cambridge, UK) in BSA-TX-PBS (1% BSA + 0.1% Triton-X + PBS) for one hour at room temperature. 

Anti m-Cherry primary antibody (ab167453; Abcam, Cambridge, UK; 1° + BSA-TX-PBS) at a 

concentration of 1:1000 was applied overnight at room temperature. The following day sections were 

washed in PBS and incubated in Biotin-SP-conjugated AffiniPure F(ab’)2 Fragment Donkey Anti-

Rabbit IgG (H+L) secondary antibody (Jackson Immuno research laboratories, Suffolk, UK: 2° + BSA-

TX-PBS) at a concentration of 1:1000 for one hour at room temperature. Next, sections were washed 

in TX-PBS before being incubated in Avidin:Biotin:Peroxidase Complex (Vector laboratories, Inc., 

Peterborough, UK) in TX-PBS for one hour. Sections were then washed in TX-PBS followed by PBS 

before being developed in a DAB solution (Sigma Aldrich, UK; 0.1%DAB + 0.03% hydrogen peroxide 

in PBS) for ten minutes. Finally, sections were washed in PBS and mounted onto double-subbed 

glass slides and coverslip applied using histamount (National Diagnostics, UK). 

 

A co-stain for mCherry (using the fluorescent and DAB protocols) and cholinergic neurons was 

attempted to show co-localisation of mCherry in ChAT neurons. A range of ChAT and vesicular ACh 

transporter antibodies were used to try to achieve this co-stain, but this was unfortunately 
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unsuccessful after many attempts. In the case of co-staining using ChAT this seemed largely due to 

the antigen retrieval stage required for ChAT staining, which resulted in a lack of mCherry signal.  

 

5.2.7 Statistical analysis 

 

Data were subjected to repeated-measures ANOVA using SPSS version 21 (SPSS Inc, Chicago, IL, 

USA), with a statistical significance criterion of probability level p<.05. Systemic CNO data were 

analysed with DREADD type (4 levels) as a between subjects factor and CNO (3 levels) as a within 

subjects factor. Microinfusion CNO data for ChAT::Cre+ rats data were analysed per sub-region, due 

to the requirement to pilot in an attempt to find an optimal muscimol-baclofen dose in the first mPFC 

infusion sub-region (ACC). For each sub-region, DREADD receptor type (2 levels) served as a 

between subjects factor and CNO (3 levels) as a within subjects factor. In the case of a main effect of 

CNO, in the absence of a CNO X DREADD receptor type interaction -- suggesting that when ANOVA 

considers Gi- and Gq-coupled DREADD receptor activation data together, the data moves in the 

same direction -- pre-planned t-tests were carried out to analyse the effects of CNO in DREADD type 

separately. This was to determine if the same statistical significance occurred when the DREADD 

receptor types were considered alone. ChAT::Cre- rats were also analysed per sub-region with 

DREADD type (2 levels) as a between subjects factor and CNO (2 levels) as a within subjects factor. 

Significant main effects and interactions were followed up using Sidak’s tests with correction.  

 

Sub-region Drug Sample size 

ChAT::Cre+ 

ACC 

 

Vehicle, CNO and muscimol-baclofen (100ng)  

N.b muscimol-baclofen 100ng was excluded from the analysis as 

this dose led animals to becoming inactive 

Cre+ (Gq) = 6 

Cre+ (Gi) = 6 

ACC Vehicle, muscimol-baclofen (10ng) and muscimol-baclofen (5ng)  Cre+ (Gq) = 6 

Cre+ (Gi) = 7 

PL Vehicle, CNO and muscimol-baclofen (10ng)  Cre+ (Gq) = 7 

Cre+ (Gi) = 7 

IL Vehicle, CNO and muscimol-baclofen (10ng)  Cre+ (Gq) = 6 

Cre+ (Gi) = 4 

ChAT::Cre- 

ACC Vehicle and CNO Cre- (Gq) = 4 

Cre- (Gi) = 5 

PL Vehicle and CNO  Cre- (Gq) = 3 

Cre- (Gi) = 5 

IL Vehicle and CNO Cre- (Gq) = 3 

Cre- (Gi) = 5 
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Table 5.1 Microinfusion experimental design. ChAT::Cre+ rats with Gi- or Gq-coupled DREADD 

receptors underwent 4 Latin squares of microinfusions. Rats initially received vehicle, CNO and 

muscimol-baclofen at 100ng into the ACC; muscimol-baclofen at 100ng was excluded from the 

analysis as this dose led animals to becoming inactive. Next, rats received infusions of vehicle and 

muscimol-baclofen at a lower dose of 50ng (data not shown, also led animals to becoming inactive) 

and then 10ng and 5ng into the ACC, to determine a more suitable dose range. Following this, rats 

received vehicle, CNO and muscimol-baclofen at 10ng into the PL and then into the IL cortex. 

ChAT::Cre- rats with Gi- and Gq-coupled DREADD receptors received vehicle and CNO into the ACC, 

PL and IL cortex as a control for any effects of CNO revealed in ChAT::Cre+ rats (abbreviations: Cre+ 

(Gq) represents ChAT::Cre+ with Gq -coupled DREADD receptors, Cre+ (Gi) represents ChAT::Cre+ 

with Gi-coupled DREADD receptors and Cre- represents ChAT::Cre- with Gq- or Gi-coupled DREADD 

receptors. 

 

5.3 Results 

 

 

5.3.1 Histological analysis 

 

A representation of DREADD receptor placement and extent is depicted in Figure 5.2. DREADD 

receptor expression occurred in the nbM, SI and the horizontal diagonal band of the basal forebrain 

and (in the majority of rats) began at +0.20 and extended to -1.30 (AP from bregma). An example of 

basal forebrain tissue stained using fluorescence and DAB for mCherry, showing DREADD receptor 

expression in a ChAT::Cre+ rat, with no expression in a Cre- rat, is shown in figure 5.3. DREADD 

receptors were also expressed along fibres and on axon terminals in discrete mPFC sub-regions and 

the basolateral amygdala, which basal forebrain cholinergic neurons are known to strongly innervate 

(see figure 5.4). Due to the unsuccessful attempt to co-stain mCherry and ChAT in the same neurons 

it cannot be affirmed that DREADD receptor expression was restricted to cholinergic neurons; 

however, this is very likely based on the use of a genetically restricted ChAT::Cre rat line (Witten et al. 

2011), which has previously been shown to restrict hM3Dq DREADD receptor expression to 

cholinergic neurons (Pienaar et al. 2015). Additionally, the morphology of neurons expressing 

mCherry in the nbM/SI in the present experiment appear consistent in structure to cholinergic neurons 

presented in previous studies (Wu et al. 2014; Pienaar et al. 2015; Ballinger et al. 2016).  

 

A representation of mPFC cannulae injection tract placement in the IL cortex for ChAT::Cre+ rats is 

shown in figure 5.5. Tracts are shown for the IL cortex as this was the final and most ventral sub-

region infused. Based on the accuracy of the IL placements (which used a 3.5cm projection injector), 

it is strongly predicted that infusions into the ACC (1cm projection) and PL cortex (2.5cm projection) 

were also in the appropriate sub-regions. All rats displayed bilateral DREADD receptor expression in 

the nbM/SI sub-region as well as accurate mPFC cannulae placement and therefore no rats were 

excluded from data analysis due to histology.  
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Figure 5.2 Representation of DREADD receptor placement and extent in the basal forebrain. 

DREADD receptor expression common to all rats is stained in black, the black thin line surrounding 

this shows the maximum extent of expression. Images are coronal sections taken from Paxinos and 

Watson. (1998). The numbering on the right hand side represents the AP level, anterior to bregma. 
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Figure 5.3 Examples of mCherry-stained basal forebrain tissue (images are coronal sections). 

Column A and B display examples of tissue stained using fluorescence for mCherry in a ChAT::Cre- 

and Cre+ rat, respectively. Importantly, no DREADD receptors were expressed in Cre- rats. Column C 

displays an example of tissue stained using DAB for mCherry in a ChAT::Cre+ rat. Image B4i displays 

a zoomed image of basal forebrain tissue stained using fluorescence for mCherry taken from the left 

hemisphere in tissue section B4 (the white box depicts approximately the area zoomed in on), while 

B4ii displays a zoomed image of B4i to display the morphology of neurons expressing DREADD 

receptors. The numbering on the right hand side specifies the AP level, anterior to bregma. 
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Figure 5.4 Example of mPFC (A) and basolateral amygdala (B) tissue stained using fluorescence for 

mCherry to visualise DREADD receptor expression in fibres and on axon terminals in a ChAT::Cre+ 

rat (images are coronal sections). In the mPFC (A) zoomed images are shown of the anterior 

cingulate cortex (Ai), prelimbic cortex (Aii) and infralimbic cortex (Aiii) taken from the right hemisphere. 

In the basolateral amygdala (B) a zoomed image is taken from the left hemisphere. The white boxes 

depict approximately the area zoomed in on. 

 

 

 

Figure 5.5 Representation of mPFC cannulae injection tract placement in the IL cortex for ChAT::Cre+ 

rats. Images are coronal section taken from Paxinos and Watson. (1998). The numbering on the right 

hand side specifies the anterior-posterior level, anterior to bregma. 

 

5.3.2 Systemic CNO administration on the 5-CSRTT 

 

Systemic administration of CNO (0-3mg/kg) had no effects on attentional performance on the 5-

CSRTT under conditions of baseline (SD=0.5s) and reduced SD (SD=0.25s) (data not shown).  

 

5.3.3 Local CNO (and muscimol-baclofen) administration into discrete sub-regions of the 

mPFC on the 5-CSRTT (see table 5.3 for summary) 

 

DREADD-mediated inhibition and excitation of cortically-projecting cholinergic neurons from the 

nbM/SI to the ACC, and not the PL or IL cortex, impaired attentional performance on the 5-CSRTT in 

ChAT::Cre+ rats. As shown in figure 5.6 (A), microinfusion of CNO into the ACC significantly reduced 

percent accuracy [CNO: F(1,10) = 6.501, p=.029] and percent correct [CNO: F(1,10) = 8.719, p=.014], 
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and almost increased percent omissions [CNO: F(1,10) = 4.795, p=.053], compared to vehicle, in 

ChAT::Cre+ rats; as revealed by a main effect of CNO on two-way repeated measures ANOVA. The 

effect of CNO did not interact with DREADD receptor type, suggesting that CNO affected rats with Gi- 

and Gq-coupled DREADD receptors, in the same direction. This is a potentially important result, 

suggesting that both too much, and too little ACh release can affect attention in the same way 

(supporting that the relationship between cholinergic system activation and attentional performance 

may resemble an ‘inverted-U’ shaped function). Thus, to test the robustness of this finding, I followed 

this up by analysing the effects of CNO in ChAT::Cre+ Gi- and Gq-coupled DREADD rats separately, 

to determine if the same statistical differences occurred when the DREADD receptor types were 

considered alone in t-tests. T-tests revealed a strong, but non-significant trend for CNO to reduce 

percent accuracy in ChAT::Cre+ Gi-coupled DREADD rats (t(5) = 2.175, p=.082) and to reduce 

percent correct in ChAT::Cre+ Gi- (t(5) = 2.031, p=.098) and Gq-coupled DREADD rats (t(5) = 2.152, 

p=.084). Therefore, conclusions suggesting that both too much, and too little ACh release can affect 

attention in the same way should be made with caution. CNO also significantly increased the latency 

to respond correctly [CNO: F(1,10) = 7.676, p=.020], which was influenced by DREADD receptor type 

[CNO*DREADD type: F(1,10) = 5.256, p=.045]; post hoc comparisons revealed this effect to be driven 

by ChAT::Cre+ rats with Gq-coupled DREADD receptors (p=.005). No effects of CNO were revealed 

on incorrect response or reward retrieval latencies.  

 

Importantly, in ChAT::Cre- rats, microinfusions of CNO into the ACC had no effects on percent 

accuracy and percent correct, as they did in Cre+ rats. CNO did however have a subtle effect on 

ChAT::Cre- rats performance. CNO reduced correct response latencies [CNO: F(1,7) = 6.187, p=.042] 

-- opposite direction to the effects in ChAT::Cre+ rats -- and reduced perseverative responding [CNO: 

F(1,7) = 18.374, p=.004], irrespective of DREADD receptor type, in ChAT::Cre- rats. No significant 

effects of CNO were revealed for any other performance measures in ChAT::Cre- rats.  

 

As shown in figure 5.6 (B), microinfusions of muscimol-baclofen into the ACC reduced impulsive 

responding in the form of reduced percent premature responses [muscimol-baclofen: F(2,22) = 3.820, 

p=.038], with a strong, but non-significant trend revealed at the highest dose of 10ng compared to 

vehicle (p=.068). A strong, but non-significant trend was also revealed for the effect of muscimol-

baclofen on percent omissions [muscimol-baclofen: F(2,22) = 3.043, p=.068]. Muscimol-baclofen had 

no other effects on performance in the ACC. 

 

As shown in figure 5.6 (C), microinfusion of CNO into the PL cortex had no effects on performance 

compared to vehicle in ChAT::Cre+ and Cre- rats. On the other hand, muscimol-baclofen reduced 

percent accuracy, in ChAT::Cre+ rats with Gi-coupled DREADD receptors only [CNO/muscimol-

baclofen X DREADD type: F(2,24) = 4.132, p=.029] compared to CNO (p=.013), and not vehicle. A 

strong, but non-significant trend in the same direction was also revealed for percent correct, 

irrespective of DREADD type [CNO/muscimol-baclofen: F(2,24) = 3.328, p=.053]. No significant 

effects of muscimol-baclofen in the PL cortex were revealed on any other performance measures. As 
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shown in figure 5.6 (D), microinfusion of CNO and muscimol-baclofen into the IL cortex had no effects 

on performance compared to vehicle in ChAT::Cre+ rats; CNO also had no effects on performance 

compared to vehicle in ChAT::Cre- rats.  

 

Drug Measure Anterior cingulate 

cortex 

Prelimbic cortex Infralimbic cortex 

Cre+ Cre- Cre+ Cre- Cre+ Cre- 

CNO % Accuracy ↓* ↔ ↔ ↔ ↔ ↔ 

% Correct ↓* ↔ ↔ ↔ ↔ ↔ 

% Omissions ↑ (t) ↔ ↔ ↔ ↔ ↔ 

% Premature ↔ ↔ ↔ ↔ ↔ ↔ 

Perseverative ↔ ↓** ↔ ↔ ↔ ↔ 

CRL ↑* ↓* ↔ ↔ ↔ ↔ 

M-B % Accuracy ↔ - ↔ - ↔ - 

% Correct ↔ - ↔ - ↔ - 

% Omissions ↑ (t) - ↔ - ↔ - 

% Premature ↓ (t) - ↔ - ↔ - 

Perseverative ↔ - ↔ - ↔ - 

CRL ↔ - ↔ - ↔ - 

 

Table 5.3 Summary of the effects of CNO/muscimol baclofen (M-B) into discrete regions of the 

anterior cingulate cortex (ACC), prelimbic (PL) and infralimbic cortex (IL) in ChAT::Cre +/- rats, on the 

5-CSRTT. The table displays significant main effects of CNO (across Gi- and Gq-coupled DREADD 

rats) compared to vehicle (CRL = correct response latency, ↑ = increase, ↓ = decrease, ↔ = no effect, 

- = not tested, * = p<0.05, ** = p<0.01, (t) = trend, p>0.05 and <0.1). 
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A: Effect of CNO in the anterior cingulate cortex [x axis: Genotype (DREADD receptor type)] 

  

  

 

B: Effect of muscimol-baclofen in the anterior cingulate cortex [x axis: Muscimol-baclofen 

(ng)] 
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C: Effect of CNO and muscimol-baclofen in the prelimbic cortex [x axis: Genotype (DREADD 

receptor type)] 

 

  

 

D: Effect of CNO and muscimol-baclofen in the infralimbic cortex [x axis: Genotype (DREADD 

receptor type)] 

  

  

 

Figure 5.6 Graphs displaying the effects of CNO and muscimol-baclofen microinfused into the anterior 

cingulate cortex (A and B), prelimbic cortex (C) and infralimbic cortex (D) in ChAT::Cre+ and Cre- rats 
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on the 5-CSRTT, under baseline conditions (SD = 0.5s). The significance displayed for CNO into the 

ACC (A) represents a main effect of CNO (across Gi- and Gq-coupled DREADD rats) reported from 

repeated measures ANOVA; pre-planned post hoc tests failed to reach significance. The graphs 

displaying muscimol-baclofen in the ACC (B) display post hoc comparisons and are averaged over 

ChAT::Cre+ Gi- and Gq-coupled rats as no main effect or interaction of DREADD receptor type were 

revealed. ChAT::Cre- Gi- and Gq-coupled rats are also averaged for the same reason [abbreviations: 

Cre+ (Gq) represents ChAT::Cre+ with Gq-coupled DREADDs, Cre+ (Gi) represents ChAT::Cre+ with 

Gi-coupled DREADD receptors and Cre- represents ChAT::Cre- with Gq or Gi coupled DREADD 

receptors]. Data are presented as mean ± SEM (* = p<0.05, (t) = p>0.05 and <0.1). 

 

 Correct response 

latency 

Incorrect 

response latency 

Reward retrieval 

latency 

Perseverative 

responses 

ACC  

Vehicle 

Cre+ Gq M=0.64; SEM=0.07 M=1.50; SEM=0.26 M=2.13; SEM=0.35 M=37.8; SEM=10.3 

Cre+ Gi M=0.76; SEM=0.07 M=1.72; SEM=0.17 M=2.35; SEM=0.31 M=44.0; SEM=4.09 

Cre - M=0.77; SEM=0.07 M=1.49; SEM=0.12 M=2.03; SEM=0.25 M=51.8; SEM=5.16 

CNO 

Cre+ Gq M=0.75; SEM=0.09** M=1.52; SEM=0.24 M=2.08; SEM=0.36 M=49.7; SEM=8.33 

Cre+ Gi M=0.77; SEM=0.05 M=1.82; SEM=0.20 M=2.81; SEM=0.42 M=47.0; SEM=7.28 

Cre - M=0.64; SEM=0.03* M=1.46; SEM=0.09 M=1.82; SEM=0.10 M=34.4; SEM=4.41** 

Vehicle 

Cre+ Gq M=0.59; SEM=0.05 M=1.12; SEM=0.10 M=2.00; SEM=0.29 M=35.0; SEM=4.94 

Cre+ Gi M=0.80; SEM=0.06 M=1.88; SEM=0.24 M=2.51; SEM=0.50 M=52.1; SEM=10.7 

Muscimol-baclofen (5ng) 

Cre+ Gq M=0.72; SEM=0.02 M=1.58; SEM=0.32 M=2.08; SEM=0.31 M=28.5; SEM=5.21 

Cre+ Gi M=0.75; SEM=0.06 M=1.65; SEM=0.16 M=2.58; SEM=0.34 M=49.4; SEM=9.52 

Muscimol-baclofen (10ng) 

Cre+ Gq M=0.68; SEM=0.06 M=1.78; SEM=0.30 M=1.79; SEM=0.17 M=36.0; SEM=5.40 

Cre+ Gi M=0.80; SEM=0.04 M=1.79; SEM=0.28 M=2.80; SEM=0.70 M=43.9; SEM=7.49 

PL 

Vehicle 

Cre+ Gq M=0.68; SEM=0.09 M=1.51; SEM=0.23 M=2.05; SEM=0.25 M=31.1; SEM=4.98 

Cre+ Gi M=0.69; SEM=0.04 M=1.71; SEM=0.20 M=2.10; SEM=0.34 M=36.6; SEM=6.24 

Cre - M=0.69; SEM=0.07 M=1.50; SEM=0.15 M=1.88; SEM=0.14 M=56.6; SEM=9.81 

CNO 

Cre+ Gq M=0.66; SEM=0.07 M=1.39; SEM=0.18 M=1.69; SEM=0.12 M=41.00; SEM=3.68 

Cre+ Gi M=0.64; SEM=0.05 M=1.66; SEM=0.28 M=1.89; SEM=0.15 M=40.4; SEM=4.79 

Cre - M=0.70; SEM=0.05 M=1.58; SEM=0.14 M=2.14; SEM=0.18 M=48.1; SEM=8.92 
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Muscimol-baclofen (10ng) 

Cre+ Gq M=0.74; SEM=0.08 M=1.83; SEM=0.20 M=2.18; SEM=0.39 M=37.9; SEM=3.25 

Cre+ Gi M=0.70; SEM=0.05 M=1.77; SEM=0.17 M=2.99; SEM=0.79 M=48.9; SEM=9.59 

IL 

Vehicle 

Cre+ Gq M=0.73; SEM=0.06 M=1.84; SEM=0.22 M=1.84; SEM=0.15 M=39.7; SEM=6.96 

Cre+ Gi M=0.69; SEM=0.09 M=1.34; SEM=0.18 M=1.72; SEM=0.10 M=50.8; SEM=8.63 

Cre - M=0.76; SEM=0.05 M=1.46; SEM=0.14 M=1.88; SEM=0.10 M=40.0; SEM=6.85 

CNO 

Cre+ Gq M=0.68; SEM=0.08 M=1.62; SEM=0.25 M=1.91; SEM=0.27 M=41.2; SEM=7.04 

Cre+ Gi M=0.63; SEM=0.04 M=1.43; SEM=0.11 M=1.66; SEM=0.08 M=53.8; SEM=12.9 

Cre - M=0.67; SEM=0.10 M=1.62; SEM=0.26 M=1.81; SEM=0.09 M=42.0; SEM=7.03 

Muscimol-baclofen (10ng) 

Cre+ Gq M=0.69; SEM=0.07 M=1.58; SEM=0.25 M=1.80; SEM=0.14 M=43.2; SEM=5.35 

Cre+ Gi M=0.78; SEM=0.15 M=1.71; SEM=0.25 M=1.71; SEM=0.06 M=30.5; SEM=3.62 

 

Table 5.2 Table summary of the effects of CNO and muscimol-baclofen microinfused into the anterior 

cingulate cortex (ACC), prelimbic cortex (PL) and infralimbic (IL) cortices on correct and incorrect 

response latencies, reward retrieval latencies and perseverative responses on the 5-CSRTT. The 

table displays significant post hoc comparisons from vehicle and are represented in bold and circled. 

For muscimol-baclofen into the ACC in ChAT::Cre+ rats, and all ChAT Cre- rats, data are averaged 

across Gi- and Gq-coupled DREADD receptors, due to no main effect or interaction of DREADD 

receptor type revealed. Data are presented as mean ± SEM (*, ** p<0.05, p<0.01 with Sidak’s 

correction).   

 

5.4 Discussion 

 

 

The present experiment used a chemogenetic approach for DREADD-mediated inhibition and 

excitation of ascending cholinergic projections from the nbM/SI to discrete sub-regions of the mPFC, 

to test for putative functional dissociations, on attentional performance on the 5-CSRTT. While no 

effects were revealed following systemic CNO administration, following microinfusion of CNO onto 

DREADD receptors on axon terminals in discrete mPFC sub-regions, a functional dissociation of 

attentional performance was revealed. ANOVA revealed a main effect of CNO to impair attentional 

performance, in the form of reduced percent accuracy and percent correct, when microinfused directly 

into the ACC, and not the PL or IL cortex, irrespective of DREADD receptor type. This suggests that 

both too much, and too little ACh release can affect attention in the same way in this region. Follow-

up analysis of this finding, which considered ChAT::Cre+ Gi- and Gq-coupled DREADD rats 

separately did not show statistically significant differences, suggesting a larger N and greater 
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statistical power is required to test the robustness of this preliminary finding. Importantly, when CNO 

was microinfused into ChAT::Cre- rats, in which DREADD receptors are not expressed, no effects of 

CNO were revealed on the key performance measures reported in ChAT::Cre+ rats. However, CNO 

did influence other performance measures in ChAT::Cre- rats, in the form of reduced correct response 

latencies and perseverative responding. A speculative interpretation of these preliminary findings is 

that cortically-projecting cholinergic neurons of the nbM/SI to the dorsal portion of the mPFC modulate 

attentional performance and that the relationship between cholinergic system activation and 

attentional performance may resemble an ‘inverted-U’ shaped function. Both of these conclusions are 

strengthened by consideration of the previous literature which have reported a role of the ACC, rather 

than the IL cortex, in attentional performance in rodents (Muir et al. 1996; Chudasama & Muir 2001; 

Passetti et al. 2002; Chudasama et al. 2003; Chudasama et al. 2005; Koike et al. 2016). Also, human 

evidence, which taken as a whole has demonstrated that the relationship between cholinergic system 

activation and attentional performance may resemble an ‘inverted-U’ shaped function (Ernst et al. 

2001; Newhouse et al. 2004; Thiel et al. 2005; Beglinger et al. 2005; Bentley et al. 2008; Kumari et al. 

2003; Bentley et al. 2004; Giessing et al. 2007; Furey et al. 2008). 

 

5.4.1 Lack of effect following systemic CNO administration 

 

CNO was initially administered systemically to activate Gi- and Gq-coupled DREADD receptors; 

however, no effects on attentional performance were revealed. The lack of effect following systemic 

CNO is likely explained by a very recent and significant study which for the first time investigated the 

pharmacological mechanism of action of the ‘designer’ ligand CNO at DREADD receptors. It has 

previously been believed that CNO is pharmacologically inert and that DREADD receptors are 

activated solely and potently by CNO only and are unresponsive to ACh and other endogenous 

neurotransmitters (Armbruster et al. 2007). However, recently it was demonstrated that following 

systemic CNO administration there is in fact very little CNO present in the central nervous system, 

and that CNO has low affinity for DREADD receptors (Gomez et al. 2017; Pardridge 2016). This is 

likely because CNO rapidly converts to its metabolite clozapine, which freely enters the brain, and has 

a high affinity to DREADD receptors; as well as having off-target agonist effects at endogenous 

binding sites which may confound interpretation of results (Gomez et al. 2017). 

 

5.4.2 Non-specific effects of CNO 

 

Following the lack of effect found when CNO was administrated systemically, the decision was made 

to administer CNO via microinfusion directly onto DREADD receptors on axon terminals in discrete 

mPFC sub-regions. This route of CNO administration revealed that both DREADD-mediated inhibition 

and excitation of cortically-projecting cholinergic neurons of the nbM/SI to the dorsal portion of the 

mPFC (ACC) impaired attentional performance (however this is only a preliminary finding due to a 

lack of significance when Gi- and Gq-coupled DREADDs were considered alone in t-tests). 
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Recent evidence has revealed that, as with systemic CNO administration, following local 

administration CNO rapidly converts to its metabolite clozapine (Gomez et al. 2017). A caveat, 

therefore, is that the apparent effects of CNO on DREADDs may have instead been due to off-target 

effects of the CNO metabolite clozapine at endogenous binding sites. Indeed, this may explain why 

CNO appeared to have the same effects irrespective of DREADD receptor type. However, there are 

indications that off-target effects of clozapine may not explain the findings in the present experiment. 

For example, CNO microinfusion in ChAT::Cre+ rats resulted in impaired performance on key 

attentional measures of reduced percent accuracy and reduced percent correct (which is similar to 

percent accuracy, but also includes the number of omissions into its calculation) and increased 

correct response latencies; whereas CNO microinfusion in ChAT::Cre- rats had no effect on these 

measures, instead reduced correct response latencies and perseverative responding were observed. 

If the effects on attention in the ChAT::Cre+ rats were due to off-target effects of clozapine, then one 

would expect to see similar effects in the ChAT::Cre- rats, but this was not observed. Also, DREADD 

receptor expression was visualised in fibres and on axon terminals locally in discrete mPFC sub-

regions where CNO was infused. Furthermore, clozapine has previously been shown to have no 

effects on attentional performance on the 5-CSRTT in non-compromised subjects (Amitai et al. 2007). 

However, clozapine has been shown on a small number of occasions to impair attentional 

performance, in the form of percent hits, on the SAT in non-compromised subjects (Rezvani & Levin 

2004; Rezvani et al. 2006). Indeed, clozapine and the antipsychotic sulpiride have been shown to 

improve attentional performance on the 5CSRTT, in the form of increased choice accuracy and 

reduced premature responding, in subjects compromised by sub-chronic PCP (Amitai et al. 2007) or 

lesions of the mPFC (Passetti et al. 2003). Taken together, this evidence suggests that in the current 

experiment the impairments observed in ChAT::Cre+ rats are a likely result of CNO/clozapine at 

DREADDS and not off-target effects of clozapine. To validate this conclusion more convincingly would 

require a control condition of low-dose clozapine, as well as in vivo microdialysis to measure ACh 

release following CNO microinfusion. 

 

5.4.3 Speculative interpretations of the preliminary findings that cortically-projecting 

cholinergic neurons from the nbM/SI to the dorsal mPFC modulate attentional performance on 

the 5-CSRTT 

 

The selective effects of DREADD-mediated inhibition and excitation of cortically-projecting cholinergic 

neurons from the nbM/SI to the dorsal mPFC, supports excitotoxic lesion inactivation studies which 

have reported functional dissociations on the mPFC. Particularly, a role of the dorsal mPFC (ACC), 

rather than the ventral mPFC (IL), has been implicated in attentional performance on the 5-CSRTT 

(Muir et al. 1996; Chudasama & Muir 2001; Passetti et al. 2002; Chudasama et al. 2003; Chudasama 

et al. 2005). In addition to this evidence, anatomical dissociations of the basal forebrain have also 

been reported. Although basal forebrain cholinergic neurons have been reported to innervate many 

mPFC sub-regions (Bigl et al. 1982; Price & Stern 1983; Záborszky et al. 1986; Zaborszky et al. 1999; 

Gritti et al. 2003). A recent study, which used anterograde tracing to map the axonal density of 
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ascending cholinergic fibres from the basal forebrain to sub-regions of the mPFC in mice, reported 

differential densities of cholinergic innervation of mPFC sub-regions based on the location of 

cholinergic neurons in the basal forebrain. Specifically, dorsal mPFC sub-regions receive cholinergic 

projections preferentially from medially positioned nbM/SI and diagonal band neurons; whereas 

ventral mPFC sub-regions receive cholinergic projections preferentially from laterally positioned 

nbM/SI and diagonal band neurons (Bloem et al. 2014). This projection pattern suggests there is a 

probable functional dissociation in which the dorsal mPFC cholinergic innervation from medially 

positioned nbM/SI mediates attentional performance, although further experiments are required to 

confirm this. 

 

The impairments caused by both DREADD-mediated inhibition and excitation of cortically-projecting 

cholinergic neurons from the nbM/SI to the ACC may be understood in terms of the relationship 

between cholinergic system activation and attentional performance to resemble an ‘inverted-U’ 

shaped function. It was not a complete surprise that the findings followed this pattern. Whilst it was 

hypothesised that DREADD-mediated inhibition of basal forebrain cholinergic neuronal signalling 

would impair attentional performance, it was more difficult to predict the effects of excitation of such 

neuronal signalling. If it were possible to potentiate the cortically-projecting basal forebrain cholinergic 

system in non-cholinergically comprised subjects improved attentional performance may possibly 

have resulted. However, based on studies in the human literature (for review see Bentley et al. 2011), 

it was also speculated that the potentiation of this system in a cholinergically intact subject may in fact 

impair attentional performance. Human studies, for example, have reported that pro-cholinergic drugs 

such as cholinesterase inhibitors and nicotine can increase relative ACh level, increasing neuronal 

activity and improving attentional performance (Kumari et al. 2003; Bentley et al. 2004; Thiel et al. 

2005; Hahn et al. 2007; Bentley et al. 2008) and working memory (Kumari et al. 2003; Furey et al. 

2008) in patients in which baseline ACh level/functional brain activation is low at baseline. However, 

the opposite effects have been reported in healthy subjects in which ACh level/neuronal activation is 

optimal at baseline. Additionally, the lack of procognitive effects demonstrated with 

acetylcholinesterase inhibitors in schizophrenia patients (Kohler et al. 2007; Buchanan et al. 2008; 

Keefe et al. 2008), in which baseline cholinergic activity is reported to be high (Tandon & Greden 

1989), also supports an inverted ‘U’-shaped function. Furthermore, research in this thesis described in 

chapter 3 also supports such a function; the acetylcholinesterase inhibitor donepezil in non-

cholinergically compromised subjects revealed a linear trend towards impaired attentional 

performance on the rCPT, while ameliorating mecamylamine-induced attentional impairments on the 

5-CSRTT. Taken together, these findings may explain the impairing effects resulting from the 

potentiation of ACh in intact rats in the present experiment. Further research is required to investigate 

the ‘inverted-U’ shaped function, by investigating the effects of stimulating cortically-projecting 

cholinergic neurons in both cholinergically-compromised and non-cholinergically compromised rats: it 

is predicted that excitation would improve and impair attentional performance in cholinergically-

compromised and non-cholinergically compromised rats respectively. 
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Another speculative account of the attentional impairments reported by both DREADD-mediated 

inhibition and excitation of cortically-projecting cholinergic neurons from the nbM/SI to the ACC, would 

be that Gi- and Gq-coupled DREADD receptors may in fact be working in a similar manner, by 

reducing ACh, through the actions of acetylcholinesterase (AChE). AChE is an enzyme involved in 

the termination of impulse transmission in cholinergic pathways, via the rapid hydrolysis of ACh. This 

results in an increased rate at which ACh is broken down, and a reduction in stimulation of nicotinic 

and muscarinic acetylcholine receptors. AChE is reported to be the most efficient and rapid enzyme of 

all enzymes, which is particularly sensitive in the event of over-release of ACh: ACh molecules which 

do not bind instantly with a receptor, or those released following binding to a receptor are hydrolysed 

almost immediately (less than 1 millisecond), also, approximately 25,000 molecules of ACh are 

degraded by a single molecule of AChE per second, a reaction approaching the rate of diffusion-

controlled (Quinn 1987; Taylor & Radić 1994). Therefore, the potentiation of ACh caused by the 

excitation of ascending cholinergic signalling at Gq-coupled DREADD receptors could conceivably be 

short-lived following rapid removal from the synapse, resulting in a reduction of ACh, similar to Gi-

coupled DREADD receptors. 

 

5.4.4 Lack of effects after muscimol-baclofen inactivation 

 

The lack of attentional impairment demonstrated following muscimol-baclofen inactivation into 

discrete sub-regions of the mPFC, particularly into the ACC based on previous lesion inactivation 

studies (Muir et al. 1996; Chudasama & Muir 2001; Passetti et al. 2002; Chudasama et al. 2003; 

Chudasama et al. 2005), is likely due to the use of too low a dose. In the present experiment, 

muscimol-baclofen (10ng) infused into the ACC produced only a strong, though non-significant, trend 

for increased omissions and reduced percent premature responding. The trend towards an increase 

in omissions could be considered to reflect a subtle attentional impairment, as no effects were evident 

for response and reward retrieval latencies, suggesting that muscimol-baclofen had no negative 

effects on motor or motivational functions. In the present experiment, I struggled to find an optimal 

dose of muscimol-baclofen to produce effects on task performance. I initially infused 100ng, based on 

a previous study which infused this volume into discrete mPFC sub-regions on a probabilistic reversal 

learning task (Dalton et al. 2016). This dose proved too high and resulted in rats being inactive and 

not performing. I then tried 50ng which also prevented task performance. Based on these findings, I 

then tested 5 and 10ng - using the latter as an optimal dose that did not prevent task performance. 

Due to the limitations in the number of infusions employed, to avoid unnecessary damage to the 

mPFC, I was unable to test a broader range of muscimol-baclofen doses to find a yet more optimal 

dose.  

 

5.4.5 Conclusion 

 

In conclusion, the present experiment, using for the first time a chemogenetic approach, revealed 

functional dissociations in attentional performance between ascending cholinergic projections from 
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the nbM/SI to discrete sub-regions of the mPFC in non-compromised rats. DREADD-mediated 

inhibition and excitation of these projections specifically to the ACC impaired attentional performance. 

This suggests that cholinergic innervation from the nbM/SI to the dorsal mPFC, rather than medial 

(PL) or ventral (IL) portions, modulates such performance The present findings are unlikely to result 

from off-target effects of converted clozapine at endogenous binding sites, as DREADD receptor 

expression was visualised in fibres and on axon terminals locally in discrete mPFC sub-regions where 

CNO was infused. Additionally, there was also a lack of effect of CNO on parallel key attentional 

measures in ChAT::Cre- rats. The lack of significance of individual Cre+ Gi and Gq DREADDs 

manipulations (when considered alone) suggests that a larger N and greater statistical power may be 

required to test the robustness of this preliminary finding. However, taken at face value, the finding 

that both too much, and too little ACh release can affect attention in the same way is consistent with 

human studies reporting the relationship between cholinergic system activation and attentional 

performance to resemble an ‘inverted-U’ shaped function (see Bentley et al. 2011). Finally, further 

research is required to determine the utility of the DREADDs technique in the wake of recent evidence 

regarding the effects of converted clozapine. 
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Chapter 6: General discussion 

 

 

The present thesis aimed to investigate the role of the prefrontal cortex and cholinergic modulation in 

attentional performance, and to a lesser, extent inhibitory response control, in rats. Attentional 

performance was assessed on the novel, touchscreen-based rCPT, which was developed to assess 

sustained attention in essentially an identical manner to CPTs commonly used in the clinic; and 

therefore, may present an opportunity to enhance the translational value of research in the preclinical 

laboratory to the clinic. Findings were compared to attentional performance on the well-characterised 

5-CSRTT. The work in the present thesis provides evidence for a role of the prefrontal cortex and 

cholinergic modulation in rCPT and 5-CSRTT performance; it also highlights differences and 

similarities manifested in behaviour and brain functions between these tasks. This chapter will initially 

summarise findings which validate the role of cholinergic modulation (6.1) and the prefrontal cortex 

(6.2) in rCPT performance, and compare these to findings on the 5-CSRTT. It will also summarise 

findings which demonstrate a role of the basal forebrain cortical cholinergic system in 5-CSRTT 

performance (6.3). Next, this chapter will discuss the extent to which findings in the present thesis 

support the relationship between cholinergic system activation and attentional performance to 

resemble an ‘inverted-U’ shaped function. It will then compare and contrast the equivalence of 

attentional (6.5i) and impulsivity (6.5ii) measures on the rCPT and 5-CSRTT. Finally, this chapter will 

discuss the development of a successful flanker distractor probe in rodents on the rCPT (6.6), 

followed by a conclusion (6.7). 

 

6.1 Validation of the role of cholinergic modulation in rCPT performance compared to findings 

with the 5-CSRTT 

 

Chapter 3 described the effects of a range of cholinergic pharmacological manipulations on the novel 

rCPT and traditional 5-CSRTT in young, healthy rats. This chapter provides evidence for the role of 

cholinergic modulation in rCPT performance; consistent with its well-known role in 5-CSRTT 

performance. When challenged under reduced stimulus durations (SDs) in non-compromised rats, the 

cholinesterase inhibitor donepezil impaired rCPT performance (reduced d’ and hit rate), and to a 

lesser extent 5-CSRTT performance (reduced percent correct). This finding supports a role for 

cholinergic modulation in rCPT performance. The stronger impairment revealed on the rCPT, may be 

due to greater attentional resources of the discrimination of unpredictable signals, compared to more 

simple signal detection on the 5-CSRTT. This is consistent with the human literature, in which 

impaired performance with pro-cholinergic drugs in healthy subjects has largely been demonstrated 

under more challenging tasks/conditions, in which brain activation levels are high (Kumari et al. 2003; 

Bentley et al. 2004; Thiel et al. 2005; Hahn et al. 2007). The impairing effects of donepezil in rCPT 

performance, and to a lesser extent 5-CSRTT performance, in non-compromised rats, alongside 

donepezil to remediate mecamylamine-induced impairments on the 5-CSRTT, is consistent with 
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‘baseline-dependent’ effects of cholinesterase inhibitors commonly reported in the human literature 

(see Bentley et al. 2011). This suggests the relationship between cholinergic system activation and 

attentional performance may resemble an ‘inverted-U’ shaped function (Kumari et al. 2003; Bentley et 

al. 2004; Thiel et al. 2005; Hahn et al. 2007; Kumari et al. 2003; Furey et al. 2008) (discussed in more 

detail below in section 6.4).  

 

Nicotine increased responding in general at both target (increased hit rate) and non-target stimuli 

(increased false alarm rate) on the rCPT, therefore no improvements were observed on the key 

discrimination sensitivity measure (d’). This finding suggests that even if nicotine is capable of 

improving attentional performance, it is confounded by nicotine-induced increased impulsive 

responding, in particular on a go/no-go style rCPT task, which importantly incorporates response 

inhibition during no-go trials (false alarms) into the key measure of sustained attention and punishes 

these responses by delaying signal presentation (see Parasuraman 1979; Mackworth 1968; Eagle et 

al. 2008). This finding is consistent with reported improvements with nicotine in choice accuracy, in 

parallel with increased premature responses, on the 5-CSRTT in non-compromised rats, when the 

time out for impulsive responding has been abolished (so they can respond quickly and generally 

within the duration of the visual target) (Mirza & Stolerman 1998; Stolerman et al. 2000; Hahn et al. 

2002; Bizarro & Stolerman 2003). However, more robust effects of nicotine to improve performance in 

accuracy have been demonstrated in compromised rats, associated with a cholinergic deficit, for 

example, rats with lesions of the nbM (Muir et al. 1995), aged rats (Grottick et al. 2003), and poor 

performing rats (Grottick & Higgins 2002); although parallel with increased premature responses, 

which were punished. Taken together, evidence from both the 5-CSRTT and rCPT, suggests that 

nicotine’s dominant increases in impulsive responding means it is likely not a suitable candidate for 

cognitive enhancement in the clinic. 

 

The α4β2 nAChR-selective agonist ABT-594, administered sub-chronically, increased impulsive 

responding on the rCPT (increased false alarm rate) and 5-CSRTT (increased premature responses), 

in the absence of any effects on attentional measures. This finding is consistent with the literature 

suggesting the α4β2 subtype may mediate the impulsive effects reported with nicotine (Blondel et al. 

2000; Grottick & Higgins 2000; Hahn et al. 2011), and that instead the α7 subtype may mediate the 

pro-attentional effects (Young et al. 2004; Hoyle et al. 2006; Hayward et al. 2017). This finding is also 

consistent with difficult to obtain improvements in accuracy, in parallel with increased premature 

responses, in non-compromised and ‘poor’ performing rats on the 5-CSRTT; likely due to the time out 

for impulsive responding being in place in these experiments (Grottick & Higgins 2000; Mohler et al. 

2010). Additionally, this finding is consistent with the lack of increased attentional performance, and 

instead a general increase in responding, reported in MAM treated rats on the rCPT (Mar et al. 2017). 

Taken together, evidence from both the 5-CSRTT and rCPT suggests that targeting of the α4β2 

subtype is likely not a suitable candidate for cognitive enhancement in the clinic due to its effects in 

increasing impulsive responding. 
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Future experiments are required to assess a broader range of cholinergic manipulations to gain a 

wider profile of cholinergic modulation in rCPT performance and the selective receptor subtypes 

which modulate performance. For example, a wider dose range of mecamylamine should be tested to 

examine if this impairs rCPT performance; the effects of nAChR-selective α7 agonists/partial agonists 

should be tested to examine if these improve rCPT performance; as well as targeting the muscarinic 

system with general and selective agonists and antagonists. Pharmacological experiments are 

required in cholinergically-compromised and non-compromised rats, to assess the utility of 

compounds for cognitive enhancement in the clinic, as well as for further investigation of the 

relationship between cholinergic system activation and attentional performance to resemble an 

‘inverted-U’ shaped function at a preclinical level. 

 

6.2 Validation of the role of prefrontal cortex in rCPT performance compared to findings with 

the 5-CSRTT  

 

Chapter 4 described the effects of discrete excitotoxic lesions to sub-regions of the rat medial 

prefrontal cortex (mPFC) on the rCPT. It demonstrated functional dissociations of sub-regions of the 

mPFC on attentional performance, supporting the role of the prefrontal cortex in rCPT performance. It 

was observed that rats with lesions of the PL cortex demonstrated persistent attentional impairments 

under conditions of reduced SDs, high event rate and distraction. This suggests a role of the PL 

cortex in continuously maintaining focussed attention and blocking out irrelevant and competing 

stimuli, during attentional performance that requires the discrimination of temporally unpredictably 

presented signals. This finding is consistent with current evidence which suggests a central role of the 

PL cortex in a range of cognitive functions required for demanding problem solving, including 

attention, working memory and response selection processes. For example, the PL cortex has been 

shown to be important for working memory (the short-term storage of a small amount of information 

for internal manipulation), predominantly with respect to attentional requirement and response 

selection mechanisms that underlie successful performance on working memory tasks (Granon et al. 

1994; Ragozzino et al. 1999). Additionally, studies have reported a role of the PL cortex when 

attentional tasks require greater perceptual ability and not during more conditions of simple signal 

detection (e.g., on the 5-CSRTT) (Granon et al. 1998; Chudasama & Muir 2001).  

 

In terms of homology of the PL cortex in rodents and the dorsolateral PFC in humans, while one can 

only speculate in animals due to focal damage compared to more widespread damage in human 

disorders, anatomical evidence demonstrates some functional similarities. For example, as with the 

PL cortex in rats, the dorsolateral PFC in humans participates in a range of cognitive processes; one 

of the most well-established findings being its role in working memory performance, particularly with 

respect to attentional performance (directing and focusing attention to task-relevant objects and 

blocking out competing task-irrelevant information), rather than ‘memory’ (Funahashi & Kubota 1994; 

Fuster 1997; Seamans et al. 2008). Additionally, one study demonstrated humans with lesions of the 

dorsolateral PFC to be impaired on the X-CPT; which is consistent with the findings of impairments on 
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the rCPT in PL-lesioned rats (Rueckert & Grafman 1996). These findings suggest, to some extent, a 

possibility for cross-species homology between the PL cortex in rats and the dorsolateral PFC in 

humans. However, this is not to say that the PL cortex does not interact with other mPFC sub-regions 

and networks, as well as subcortical regions to mediate cognitive processes (see Floresco et al. 1997; 

Granon & Poucet 2013). 

 

This mPFC lesion experiment also suggests there may be a double dissociation within the mPFC on 

attentional performance on the rCPT (role of the PL cortex, as described above) compared to the 5-

CSRTT (role of the ACC). In the present experiment, only transient attentional impairments early in 

behavioural testing were observed in rats with lesions of the ACC on the rCPT; suggesting less of a 

role of this region in rCPT performance. In contrast, on the 5-CSRTT, the ACC has been 

demonstrated to play a role in choice accuracy; particularly with respect to the integration of 

temporally sequenced behaviour, leading to preparatory readiness (Passetti et al. 2002; Chudasama 

et al. 2003). This double dissociation is likely based on predictable and paced stimulus presentation 

which can be timed in the 5-CSRTT (Young et al. 2013; Cope et al. 2016), compared with the 

discrimination of unpredictable stimulus presentation which cannot be timed in the rCPT. 

 

Moving onto the role of the IL cortex and impulsivity, in the present experiment, rats with IL-lesions 

exhibited no effects on impulsivity measures on the rCPT (false alarm rate or premature/ 

perseverative responses). This suggests less of a role of the IL cortex on these particular forms of 

response inhibition in the rCPT. In contrast, in the 5-CSRTT, the IL cortex has been demonstrated to 

play a role in impulsive responding in the form of premature responses (Chudasama et al. 2003). The 

lack of parallel increases in impulsive responding on the rCPT and 5-CSRTT, is likely due to the high 

and variable event rate on the rCPT (ISI = 2/3s) which may not tax inhibitory response control to the 

same extent as the longer waiting period on the 5-CSRTT (ITI = 5s). This highlights the disparities in 

the form of impulsive responding tapped into by false alarms on the rCPT compared to premature 

responses on the 5-CSRTT (discussed more below in section 5ii). 

 

Taken together, these findings suggest that the rCPT may be a more appropriate paradigm for the 

assessment of sustained attentional performance, with respect to focused attention, the discrimination 

of temporally unpredictable signals and blocking out competing stimuli. In contrast, the 5-CSRTT may 

be a more appropriate paradigm for the assessment of sustained attentional performance, with 

respect to the integration of temporally sequenced behaviour, leading to preparatory readiness. 

Additionally, these findings highlight that there may also be a double dissociation of sub-regions of the 

mPFC on the different forms of impulsive responding on the rCPT and 5-CSRTT; which has not been 

elucidated in the present thesis and is of interest for future experiments.  

 

Finally, the selective M4 PAM (VU0467154), and not the more generally acting donepezil, improved 

discrimination sensitivity in rats with a loss of neurons and signalling in the mPFC. This suggests an 

increased utility of this selective muscarinic compound to improve attentional performance in patients 
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with a loss of such neurons and signalling, compared to limited efficacy reported with cholinesterase 

inhibitors in compromised rats (Muir et al. 1995; McGaughy et al. 1996; McGaughy & Sarter 1998). 

The locus of action of VU0467154 in the face of discrete mPFC lesions, was likely the primary visual 

cortex and posterior parietal cortex; which have been implicated in more complex task demands of 

detection and discrimination, response criterion and processing capacity (Lashley 1931; Schneider 

1969; Muir et al. 1996; Riccio et al. 2002; Ogg et al. 2008; Petruno et al. 2013). 

 

6.3 Validation of the basal forebrain cortical cholinergic system in 5-CSRTT performance 

 

Chapter 5 described the first use of a chemogenetic approach, to investigate the effects of DREADD-

mediated inhibition and excitation of ascending cholinergic projections from the nucleus basalis 

magnocellularis/ substantia innominata (nbM/SI) to discrete sub-regions of the mPFC on the 5-

CSRTT. This experiment revealed a functional dissociation of sub-regions of the mPFC on attentional 

performance. DREADD-mediated inhibition and excitation of ascending cholinergic projections from 

the nbM/SI to the ACC, and not the PL or IL cortex, in non-compromised rats, impaired attentional 

performance. This suggests a role of cholinergic innervation to the dorsal portion of the mPFC, rather 

than the ventral portion, in the modulation of attentional performance on the 5-CSRTT. To my 

knowledge, this is the first to use a refined chemogenetic technique to functionally link two forms of 

current literature. Firstly, evidence that has demonstrated functional dissociations of the mPFC using 

excitotoxic lesions, in which a predominant role of the dorsal mPFC in attentional performance and 

the ventral mPFC in impulsivity has been reported on the 5-CSRTT (Muir et al. 1996; Chudasama & 

Muir 2001; Passetti et al. 2002; Chudasama et al. 2003; Chudasama et al. 2005). Secondly, evidence 

that has demonstrated the role of cortically projection basal forebrain cholinergic neurons in 

attentional performance (McGaughy et al. 1996; McGaughy & Sarter 1998; McGaughy et al. 2002; 

Lehmann et al. 2003; Dalley et al. 2004; Newman & McGaughy 2008).  

 

This finding also supports the relationship between cholinergic system activation and attentional 

performance to resemble an ‘inverted-U’ shaped function, commonly reported in the human literature 

(see Bentley et al. 2011), and also reported in the present thesis with donepezil in chapter 3 

(discussed in more detail in section 6.4). However, when interpreting the findings in the present 

experiment, one cannot completely rule out the possibility of off-target effects of converted clozapine 

from CNO at endogenous binding sites. However, this seems unlikely in the present experiment due 

to a lack of effect of CNO on parallel attentional measures in ChAT::Cre- rats, as well as DREADD 

receptor expression in fibres and on axon terminals locally in discrete mPFC sub-regions, where CNO 

was infused. Additionally, these findings are only preliminary, due to a lack of significance when 

DREADD types were considered alone statistically; as a result future experiments with larger Ns and 

greater statistical power are required to test the robustness of this intriguing finding. 

 

A future experiment to validate the DREADDs approach would be to investigate amperometric 

recordings of cholinergic transmission (choline) in the mPFC in animals with DREADDs virus in the 



 

146 
 

basal forebrain, while animals are performing the rCPT/5-CSRTT, in a similar manner to the work of 

Parikh et al, 2004; 2007; Parikh & Sarter 2006. In terms of taking the next step, an optogenetic 

approach would also be useful, to allow for a more time-point specific investigation of the different 

phases of each trial i.e the preparatory period, cue detection and response period. Viral infusion into 

the basal forebrain and light delivered into the mPFC, while animals are performing the rCPT/5-

CSRTT; in a similar manner to the work of Luchicchi et al, 2016, who used optogenetics to investigate 

the role of sub-regions of the mPFC on the 5-CSRTT. It is predicted that inhibition/excitation of the 

dorsal sub-region of the mPFC would influence preparatory processing, whereas inhibition/excitation 

of the ventral sub-region of the mPFC would influence cue detection and inhibitory response control. 

 

6.4 The relationship between cholinergic system activation and attentional performance may 

resemble an ‘inverted-U’ shaped function 

 

In the present thesis, two lines of evidence support that the relationship between cholinergic system 

activation and attentional performance may resemble an ‘inverted-U’ shaped function (see chapter 3’s 

discussion for diagram). Firstly, the impairing effects of donepezil on attentional performance in non-

compromised rats on the rCPT (and to a lesser extent, on the 5-CSRTT), and the improving effects in 

rat compromised by mecamylamine pretreatment on the 5-CSRTT (demonstrated in chapter 3). 

Secondly, the impairing effects of DREADD-mediated inhibition and excitation of ascending 

cholinergic projections from the basal forebrain in non-compromised rats (demonstrated in chapter 5). 

Human evidence that the relationship between cholinergic system activation and attentional 

performance may resemble an ‘inverted-U’ shaped function has been commonly reported in the 

human literature. For example, physostigmine and nicotine have been shown to increase relative ACh 

level and improve performance and fronto-parietal brain activity when this was low at baseline in AD 

(Beglinger et al. 2005; Bentley et al. 2008) and schizophrenic patients (Jacobsen et al. 2004) during 

taxing task conditions. In contrast, physostigmine perturbed the same activity in healthy controls who 

had a high pattern of activation at baseline (Ernst et al. 2001; Newhouse et al. 2004; Thiel et al. 2005; 

Beglinger et al. 2005; Bentley et al. 2008; Kumari et al. 2003; Bentley et al. 2004; Giessing et al. 

2007; Furey et al. 2008). This suggests that the performance-enhancing effects of pro-cholinergic 

drugs are inversely correlated with baseline performance. Further support for the relationship between 

cholinergic system activation and attentional performance to resemble an ‘inverted-U’ shaped function 

is derived from differential effects of nicotine on performance dependent on smoking status of 

subjects: in abstinent smokers experiencing performance and emotional disturbances, nicotine has 

been shown remediate impaired performance, while having the opposite effects in unimpaired non-

smokers (Ernst et al. 2001; Rose et al. 2010; Azizian et al. 2010).   

 

A neurobiological explanation to account for the relationship between cholinergic system activation 

and attentional performance to resemble an ‘inverted-U’ shaped function, consistent with current 

computational models of cholinergic function (Hasselmo & McGaughy 2004), comes from the 

‘attentional effort hypothesis’ (Sarter et al. 2006). This hypothesis suggests that during challenges of 
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attentional performance the endogenous increases in cholinergic stimulation cause diffuse modulatory 

increases within the fronto-parietal cortex. Consequently, exogenous increases in cholinergic 

stimulation, via pro-cholinergic drugs, likely imitates this cholinergic modulation effect and therefore 

can only improve performance when neocortical activations are low at baseline. The relationship 

between cholinergic system activation and attentional performance to resemble an ‘inverted-U’ 

shaped function may be general to a number, or perhaps all, neurotransmitter systems, including 

dopamine (Williams & Castner 2006) and noradrenaline (Introini-Collison & McGaughy 1986); 

suggesting the ability of neuromodulators to optimise cognitive functions occurs within narrow 

windows.   

 

However, limitations of applying a putative inverted-U shaped function must be considered.  In theory, 

inverted-U functions are suggestive of a product of competition between two processes: an up-

process and a down-process. One potential caveat, is the regression of the mean phenomenon, in 

which low activations can only increase (up-process), and high activations can only decrease (down-

process). Another potential caveat, is that the down-process may be a result of neurotoxicity, for 

example hallucinations, panic or palpitations, and as a result is not very informative. Whether the 

inverted-U shaped function is a result of the same set of receptors which change their function at 

higher levels of occupancy, or whether it is another set of receptors, elsewhere in the brain that have 

unfortunate neurotoxic side-effects associated with them, which is detrimental to the main effect and 

therefore causes an inverted-U function, requires further elucidation. One possibility is that these 

processes could be related to tonic versus phasic activity in the cholinergic system.  A key study by 

Aston-Jones et al. (1999) investigated the role of the locus coeruleus and phasic and tonic 

noradrenaline activity in sustained attention in monkeys. The general hypothesis was that phasic 

activity is optimal and tonic activity produces the downward process: enhanced selective attention is 

associated with locus coeruleus phasic activity, whereas reduced selective attention (enhanced 

distractibility) is associated with high tonic activity. To verify the inverted-U function in the context of 

the cholinergic system requires electrophysiological recording of neuronal activity in the basal 

forebrain/mPFC of rats, during performance on the rCPT/5-CSRTT under challenging conditions of 

reduced SD/distraction.  

 

6.5(i) Equivalence of attentional measures of the rCPT and 5-CSRTT 

 

The extent to which the key attentional measures of the rCPT (d’ and less so hit rate) and the 5-

CSRTT (percent accuracy and less so percent correct) correspond to one another is complex and 

debatable (see chapter 2 for key measures formulae). Table 6.1 displays the findings from cholinergic 

pharmacological manipulations observed in chapter 3 and mPFC lesion manipulations observed in 

chapter 4, in an attempt to compare and contrast across the key measures of the tasks. Overall, there 

appears to be no direct 1-to-1 correspondence of attentional performance measures, likely due to 

these tasks being different, with different priorities, measuring different kinds of attention (also 

discussed in chapter 1).  On the rCPT, the key attentional measure of d’ does not appear to overlap 
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much with the key attentional measure of percent accuracy on the 5-CSRTT. Examples of this in the 

present thesis are the findings of:  

 

1) Donepezil to impair attentional performance on the rCPT (reduced d’) in non-compromised rats, but 

to have no effects on percent accuracy on the 5-CSRTT, likely due to the greater attentional 

resources required on the rCPT compared to the 5-CSRTT. This finding is consistent with greater 

attentional resources required for pro-cholinergic drugs to impair attentional performance in healthy 

humans (Kumari et al. 2003; Bentley et al. 2004; Thiel et al. 2005; Hahn et al. 2007). However, 

accuracy on the 5-CSRTT was more sensitive to a low-to-mid range dose of mecamylamine (1mg/kg), 

which has not previously been shown to impair performance on the 5-CSRTT in the current literature, 

compared to d’ on the rCPT which was more robust (Jones et al. 1995; Grottick & Higgins 2000; 

Stolerman et al. 2000; Hahn et al. 2016).  

 

2) A double dissociation for sub-regions of the mPFC and attentional performance on the rCPT and 5-

CSRTT. The PL cortex was demonstrated to play a role in attentional performance on the rCPT (d’ 

and hit rate), compared with a role of the ACC, which has previously been demonstrated in attentional 

performance on 5-CSRTT (percent accuracy) (Chudasama et al. 2003). This is likely due to the 

temporal aspect of the 5-CSRTT which recruits the ACC, compared to the rCPT, were animal are 

required to discriminate temporally unpredictable signal, which recruits the PL cortex. 

 

3) A lack of effect of nicotine to improve d’ on the rCPT which features a punished ‘no-go’ element, 

resulting in delayed signal presentation, is consistent with previous reports of improved accuracy on 

the 5-CSRTT, when the time out for impulsive responding has been abolished (Mirza & Stolerman 

1998; Stolerman et al. 2000; Hahn et al. 2002; Bizarro & Stolerman 2003). As discussed above, the 

reported improvements on the 5-CSRTT when impulsive responding is not punished is based on rats 

being able to respond quickly and generally within the duration of the visual target. It is likely that if 

false alarms did not delay signal presentation, increases in d’ would also be reported. Findings from 

both the rCPT and 5-CSRTT highlight the importance for attentional paradigms to consider and 

punish response inhibition, to help assess the utility of compounds for the clinic.  

 

It will be important in future research to investigate which specific task characteristics between the 

rCPT and 5-CSRTT determine the different forms of sustained attention tapped into by the tasks. As 

previously discussed in chapter 1, the rCPT differs from the 5-CSRTT in a number of ways. These 

could be investigated on the rCPT, to tease apart the elements of the tasks which tax difference 

aspects of attentional performance and would likely recruit different sub-regions of the mPFC or be 

more sensitive to cholinergic modulation. Table 6.2 displays three key task differences, how they 

could be investigated in future experiments and the expected outcomes.  
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Manipulation rCPT 5-CSRTT 

Donepezil  d’ 

 

↓ (lt) Percent accuracy ↔ 

HR ↓ (lt) Percent correct ↔ 

FAR ↔ Premature responses ↔ 

Prem/persev responses ↔ 

C ↓ (lt) Omissions ↔ 

Mecamylamine 

+ Donepezil 

d’ 

 

Mec ↔ 

Don ↔ 

Percent accuracy Mec ↓ 

Don ↑ 

HR Mec ↔ 

Don ↔ 

Percent correct Mec ↓ 

Don ↔ 

FAR Mec ↔ 

Don ↔ 

Premature responses Mec ↓ 

Don ↑ 

Prem/persev responses Mec ↔ 

Don ↔ 

C Mec ↔ 

Don ↔ 

Omissions Mec ↔ 

Don ↔ 

Nicotine d’ 

 

↔ Percent accuracy ↑/↔ 

HR ↑ Percent correct ↑/↔ 

FAR ↑ Premature responses ↑ 

Premature/ perseverative 

responses 

↑ 

C ↑ Omissions ↓ 

ABT-594 (sub-

chronic) 

d’ 

 

↔ Percent accuracy ↔ 

HR ↔ Percent correct ↔ 

FAR ↑ Premature responses ↑ 

Prem/persev responses ↔ 

C ↔ Omissions ↔ 

mPFC lesions d’ 

 

ACC ↓ 

PL ↓ 

IL ↔ 

Percent accuracy ACC ↓ 

PL ↔ 

IL ↓ 

HR ACC ↓ 

PL ↓ 

IL ↓ 

Percent correct ACC ↓ 

PL ↔ 

IL ↓ 

FAR ACC ↔ 

PL ↔ 

IL ↔ 

Premature responses ACC ↔ 

PL ↔ 

IL ↑ 
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Prem/persev responses ACC ↔ 

PL ↑ 

IL ↔ 

C ACC ↔ 

PL ↔ 

IL ↓ 

Omissions ACC ↑ 

PL ↔ 

IL ↑ 

 

Table 6.1 Summary of the effects of cholinergic pharmacological manipulations and mPFC lesions on 

key measures of the rCPT and 5-CSRTT. Grey shading indicates findings from other studies and not 

the present thesis (abbreviations: Prem/persev responses = premature/perseverative responses, HR 

= hit rate, FAR = false alarm rate, d’ = discrimination sensitivity, C = response bias, Mec = 

mecamylamine, Don = donepezil ↑ = increase, ↑ = transient increase, ↓ = decrease, ↓ = transient 

decrease, ↔ = no effect). 

 

1. Task 

difference 

Focused object attention on the rCPT versus/plus spatial divided attention on 

the 5-CSRTT. 

Experiment to 

investigate 

Probe the rCPT to incorporate a spatial, divided element, in which 3 response 

windows could be presented on screen and the target and non-target stimuli 

are presented in one of three locations, to investigate if this worsens 

performance (a). Additionally, this could be manipulated further and made 

more difficult, by all three response windows displaying either all non-target 

stimuli (non-target trials), or one response window presenting a target stimulus 

and the other response windows presenting non-target stimuli (target trials) (b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expected 

outcomes 

It is predicted the increased attentional load of spatial, divided attention on top 

of focussed object attention would tax discrimination sensitivity more so, 

particularly (b), and be sensitive to cholinergic manipulation and the role PL 

cortex. 

b) a) 

Target trial 

Non-target trial 

Non-target trial 
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2. Task 

difference 

Temporally unpredictable signal presentation on the rCPT verses temporally 

predictable signal presentation on the 5-CSRTT. 

Experiment to 

investigate 

Probe the rCPT by presenting only signal trials, with a long and fixed ISI (e.g. 

5s). 

 

 

 

 

 

 

 

 

 

Expected 

outcomes 

It is predicted that under signal only trials, with a fixed ISI, there would be less 

of a role of the PL cortex, which has been demonstrated in this thesis to be 

important during the discrimination of temporally unpredictable signals. In 

contrast, it is predicted there would be more of a role of the ACC, which has 

been demonstrated to be involved in the integration of temporally sequenced 

behaviour on the 5-CSRTT. This experiment would nicely support the double 

dissociation revealed in the present thesis. 

3. Task 

difference 

Differentiated visual stimuli on the rCPT versus undifferentiated visual stimuli 

on the 5-CSRTT. 

Experiment to 

investigate 

Train a cohort of rats using more simple stimuli (e.g., different levels of 

brightness). 

Expected 

outcomes 

It is predicted this would not tax discrimination sensitivity to the same extent as 

when more complex patterned differentiated stimuli are used e.g., in the 

normal version of the rCPT, and therefore may be less sensitive to cholinergic 

manipulation and the role of the PL cortex. 

 

Table 6.2 Key task differences between the rCPT and the 5-CSRTT and how they could be 

investigated, as well as the anticipated outcomes. 

 

6.5(ii) Equivalence of impulsivity measures of the rCPT and 5-CSRTT 

 

The extent to which key impulsivity measures on the rCPT (false alarm rate and less so 

premature/perseverative responses) and the 5-CSRTT (percent premature responses) correspond to 

one another is also complex and debatable (see chapter 2 for key measures formulae). In the current 

literature, premature responses on the 5-CSRTT in rodents (Robbins 2002) and on the 4-CSRTT in 

humans (Worbe et al. 2014) are largely used to assess motor impulsivity (for review see Voon & 

Dalley 2016; Dalley & Robbins 2017). 

Target trial 

Fixed ISI (5s) 

Target trial 
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As table 6.1 displays, there appear to be some manipulations which revealed parallel effects on 

impulsivity measures on the rCPT and 5-CSRTT. For example, parallel effects on false alarms and 

premature responses under cholinergic pharmacological manipulations with nicotine and ABT-594. 

This suggests that these measures may to some extent reflect similar underlying changes in response 

control. However, there is a lack of parallel effects on impulsivity measures in rats with IL lesions; IL 

lesions had no effects on false alarm rate or premature/perseverative responses on the rCPT, but has 

been shown to increase premature responses on the 5-CSRTT. This highlights that even though 

these measures may to some extent reflect similar underlying changes in response control, there are 

differences (also discussed in chapter 1). The lack of effect of IL lesions on false alarm rate or 

premature/perseverative responses on the rCPT, is likely due to a number of task and measure 

differences: 

 

1) The high and variable event rate on the rCPT (ISI = 2/3s) may not tax inhibitory response control to 

the same extent as the premature response window on 5-CSRTT (ITI = 5s). Further support for this 

come from studies demonstrating increased premature responses in IL-lesioned rats on the 5-CSRTT 

when the ITI is at baseline (5s) or long (5-9s), and not when it is reduced (0.5-4.5s), suggesting the 

importance of a lower event rate to tax motor impulsivity (Passetti et al. 2002; Chudasama et al. 

2003).  

 

2) The rCPT does not provide a clean measure of motor inhibition like the 5-CSRTT, and so reduces 

detecting pure effects on impulsivity. The premature/perseverative response measure incorporates 

perseverative responses which has been shown to involve the role of the orbitofrontal cortex 

(Chudasama et al. 2003). Whilst, the false alarm rate measure is confounded by the ability of rats to 

discriminate, false alarms may be the result of a failure to discriminate correctly and so may not 

always represent impulsivity.  

 

3) Premature responses and false alarms are different in nature. The failure to wait/withhold a 

response to no stimulus on the 5-CSRTT (premature response), compared to the failure to withhold a 

response to a stimulus (false alarm) likely recruits different systems. Premature responses have been 

demonstrated to largely recruit the IL cortex (Chudasama et al. 2003). On the other hand, the failure 

to withhold a response to a stimulus, which incorporates the integration of stimulus contingencies, has 

not been demonstrated to recruit the IL cortex in the present thesis. False alarms on the rCPT may 

instead recruit the posterior portion of the ACC. Future experiments could lesion the more posterior 

portion of the ACC, targeting the postgenual ACC, like the work of Muir et al. (1996), which 

demonstrated a role of this sub-region in response inhibition; based on evidence for a role of this sub-

region in the inhibition of prepotent, inappropriate responding (Posner & Petersen 1990). Additionally, 

testing such postgenual ACC lesions under a probe on the rCPT which may tax inhibitory response 

control more so is of interest. For example, implementing a rodent version of the not-X CPT or 

reverse CPT used in humans (e.g. Conners et al. 1996; Conners et al. 2003). Not-X CPTs require 

subjects to respond during the presentation of any letter apart from ‘X’ (non-target trials) and to 
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withhold responding during the infrequent presentation of the letter ‘X’ (target trials). This subset of 

CPTs requires the frequent execution of motor responses and as a result, the most common errors 

reported are false alarms during infrequent target trials; suggesting this probe as an important one to 

investigate the mechanisms underlying impulsive responding on the rCPT (Helton et al. 2009).  

 

6.6 Development of a successful flanker distractor probe on the rCPT in rodents   

 

The inhibition of behaviourally-irrelevant distraction when performing a goal-directed task is a key 

component for successful attentional performance, and requires greater attentional resources and 

activation of top-down control mechanisms to maintain or improve attentional performance (Gill et al. 

2000). In the present thesis, in chapters 3 and 4, the rCPT was manipulated to produce a flanker 

distraction probe (see chapter 2 and appendix), and was found to impair attentional performance, 

particularly during incongruent trials (reduced hit rate and d’) but also during congruent trials (reduced 

hit rate); the latter being more impaired in rats with PL lesions. These findings suggest that rats are 

taking the congruence into account. For example, the key attention measure (d’) is reduced 

selectively during incongruent trials, also, false alarms are reduced selectively during congruent trials. 

To my knowledge, this is the first successful demonstration of impaired attentional performance 

during conditions of visually salient flanker distraction in the rat. This is consistent with vigilance 

decrements reported in distraction conditions in a human version of the CPT, called the gradual-onset 

CPT; in which subjects were required to respond during male and not female faces, with urban and 

rural scenes presented around the faces during distraction trials (Rosenberg et al. 2013).  

 

Distraction has previously been successfully demonstrated on the distractor condition of the SAT, in 

the form of a flashing house light (Gill et al. 2000; Himmelheber et al. 2000; McGaughy et al. 1996). 

This has also been shown to correlate with increased ACh efflux in the PFC (Gill et al. 2000; Sarter et 

al. 2006; Kozak et al. 2006). Distraction has also been attempted on the 5-CSRTT, mostly in the form 

of white noise immediately prior to stimulus presentation; however, impairments in choice accuracy 

have only been reported sometimes (Carli et al. 1983; Cole & Robbins 1992; Amitai & Markou 2011), 

with some studies reporting only increased correct response latencies and premature responses 

(likely due to rats habituating to the white noise) (Muir et al. 1996; Pezze et al. 2007). Although 

distraction has nicely been demonstrated in rodents on the SAT and 5-CSRTT (sometimes), the more 

complex visual discrimination, as well as complex forms of task relevant and irrelevant distraction 

used in the rCPT provides the opportunity for a more realistic measure of distraction in the context of 

human attention.   

 

6.7 Conclusion 

 

The present thesis has contributed to the understanding of the role of the prefrontal cortex and 

cholinergic modulation in two forms of attentional performance in rats. It has provided evidence for: 1) 

the relationship between cholinergic system activation and attentional performance to resemble an 
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‘inverted-U’ shaped function in rCPT and 5-CSRTT performance; with respect to the ability of pro-

cholinergic drugs to improve performance in cholinergically compromised subjects and to impair in 

non-cholinergically compromised subjects; 2) a double dissociation of mPFC sub-regions on 

attentional performance in the rCPT (role of the PL cortex) and 5-CSRTT (role of the ACC); with 

respect to the discrimination of temporally unpredictable targets compared with temporally predictable 

targets, respectively; 3) the role of ascending cholinergic projections from the nbM/SI to the dorsal 

mPFC, rather than the ventral mPFC, in 5-CSRTT performance. These findings contribute to the 

validation of the novel rCPT, and suggests this task as a useful and translational paradigm for the 

assessment of sustained attentional function, and to a lesser extent inhibitory response control, in an 

almost identical manner to CPTs in the clinic. Taken together, the findings highlight how the rCPT and 

5-CSRTT measure different forms of attention and response control and recruit different brain 

functions. They suggest that the rCPT may be a more appropriate paradigm for assessing focused or 

selective sustained attentional performance in a consistent manner with measuring attention in 

humans; and the 5-CSRTT a more appropriate paradigm for assessing inhibitory response control in 

a consistent manner with measuring motor impulsivity in humans. However, the different measures 

that can be obtained from the rCPT and 5-CSRTT likely complement one another, and therefore 

disorders in which deficits of attention and inhibitory response control are present, are likely to be 

better understood by using both tasks to highlight the differences and similarities in symptoms, and 

the mechanisms underlying these. 
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Appendix 1: 

Investigation of flanker distractor position on the rCPT 

 

 

Introduction and methods 

 

When distractors were presented directly either side of the central response window (0%) and in 

matching contrast (100%) it was noticed that rats interacted significantly with the distractors. 

Distractor responses were particularly high on incongruent-distractor trials when a non-target stimulus 

was presented in the central response window and target stimuli were presented in the distractor 

windows. The aim of the distractor probe is to distract the animal’s attention, reflected in errors and 

omissions made at the central location; if the distraction results in responses to the distractor, we lose 

these measures of interest.  

 

This pilot study investigated the ability to reduce distractor interaction, whilst maintaining their ability 

to distract. Distractor stimuli were reduced to 25% contrast and raised by no (0%), half (50%) and full 

(100%) of the height of the stimulus (see appendix figure 1). The stimulus duration was fixed to 2s. 

Based on the distance of the distractors from the response window, it was hypothesised that 

distractors would impair rCPT performance when raised by 0 and 50% of the height of the stimulus, 

but not at 100%; it was also hypothesised that distractor responses would be significantly reduced 

when raised by 50 and 100% of the height of the stimulus compared to 0%. The subjects were Lister 

Hooded rats (n=24) who had previously been exposed to nicotine and the distractor probe at level 

position in full contrast. A between-subjects design was implemented in which 8 rats were in each 

group (0, 50 and 100%). Rats were tested on the designated distractor probe for 10 consecutive days. 

Data were averaged over days and analysed using repeated measures ANOVA with distractor trial 

type (3 levels) as the within-subjects variable and distractor position (3 levels) as the between-

subjects variable. For analysis of distractor responses, distractor trial type was split to investigate the 

effects of congruent and incongruent-distractors on both target and non-target trials (4 levels). 

 

        a)                             b)                            c)                             d) 

                                              

 

 

 

 

 

Appendix figure 1. Distractor pilot experiment conditions. Diagram shows the previous distractor 

probe, in which distractors were directly either side and matching in contrast to the central response 

window stimulus – not tested in the pilot experiment (a); and an example of distractors raised by none 

Previous distractor probe                              0%                             50%                          100% 
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(0%, b), half (50%, c) and full (100%, d) of the height of the stimulus, contrasted to 25%. This 

example shows an incongruent-distractor trial, with a horizontal target stimulus. 

 

Findings and conclusion 

 

Key measures: As expected, rats performed worse during incongruent- compared to congruent- and 

no-distractor trials. A main effect of distractor was revealed for hit rate [F(2,4) = 4.513, p=.017], false 

alarm rate [F(2,4) = 7.557, p=.002] and d’ [F(2,4) = 11.598, p<.001] (see appendix figure 2); rats had 

a significantly lower hit rate during incongruent- compared to congruent-distractor trials (p=.008) and a 

significantly higher false alarm rate and lower d’ during incongruent- and no- compared to congruent-

distractor trials (all p<.014). The effect of distractors on performance were influenced by distractor 

position for false alarm rate [F(4,42) = 7.120, p<.001] and d’ [F(4,42) = 6.933, p<.001]; a close-to-

significant effect was also revealed for hit rate (p=.064). As expected, when the distractors were 

raised by 50% above the central response window rats demonstrated impaired performance, in the 

form of a higher false alarm rate during incongruent- and no- compared to congruent-distractor trials; 

d’ was also lower during incongruent- compared to congruent-distractor trials. At the 0% position rats 

were also impaired, in the form of a higher false alarm rate during incongruent- compared to 

congruent-distractor trials, d’ was also lower during incongruent- and no- compared to congruent-

distractor trials. On the other hand, when the distractors were raised by 100% no differences between 

distractor trial types were revealed.  

 

Latencies: Analysis of response latencies showed that rats were significantly slower to respond 

correctly during congruent- and incongruent- compared to no-distractor trials; and slower to respond 

incorrectly during incongruent- compared to congruent-distractor trials (see appendix table 1). 

Response latencies were not influenced by distractor position. 

 

Distractor responses: A main effect of distractor was revealed for distractor responses [F(2.200, 

46.208) = 21.747, p<.001]; rats made significantly more distractor responses on incongruent-

distractor trials when a non-target stimulus was presented in the central response window and target 

stimuli were presented in the distractor windows compared to all other trial types (all p<.003). A main 

effect of group [F(2,21) = 26.501, p<.001] was revealed; as expected, rats made the most distractor 

responses when distractors were presented at 0%, and fewer at 50% and then 100% (all p<.015). The 

effect of distractors on distractor responses were influenced by distractor position. As expected, rats 

made more distractor responses at 0% compared to 100% for all trial types and more compared to 

50% during non-target incongruent-distractor trials (target distractors) and non-target congruent-

distractor trials (non-target distractors); 50% also resulted in more distractor responses than 100% in 

these trial types (all p<.024). 

 

Conclusion: It was observed that distractors positioned at 100% above the central response window 

were not distracting the rats, while both 0% and 50% appeared to be distracting in a similar manner. 
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This in combination with reduced distractor responses, particular on incongruent-distractor trials with 

a non-target stimulus and target distractors, seen at 50% compared to 0%, led to the decision to run 

the distractor probe using 25% contrasted stimuli raised by half of the height of the stimulus (50%). 

 

a)      b)       c)    d) 
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Appendix figure 2. Graphs showing the effects of distractors on performance when raised by no (0%, 

b), half (50%, c) and full (100%, d) of the height of the stimulus and contrasted to 25%.  

 

 No Congruent Incongruent 

Hit 

response 

latency 

False alarm 

response 

latency 

Hit 

response 

latency 

False alarm 

response 

latency 

Hit response 

latency 

False alarm 

response 

latency 

0% M=0.961; 

SEM=0.035 

M=0.836; 

SEM=0.036 

M=1.030; 

SEM=0.038 

M=0.742; 

SEM=0.063 

M=1.042; 

SEM=0.037 

M=0.908; 

SEM=0.046 

50%  M=0.944; 

SEM=0.038 

M=0.860; 

SEM=0.043 

M=1.004; 

SEM=0.038 

M=0.762; 

SEM=0.074 

M=1.003;  

SEM=0.040 

M=0.863; 

SEM=0.082 

100% M=0.993; 

SEM=0.034 

M=0.789; 

SEM=0.050 

M=1.023; 

SEM=0.034 

M=0.817; 

SEM=0.073 

M=1.032;  

SEM=0.037 

M=0.841; 

SEM=0.058 

 

Appendix table 1. Hit and false alarm response latency during 0, 50 and 100% positioned distractors. 

Response latencies did not interact with distractor position. 
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