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Highlights 

• Neurodegeneration and clinical signs are dissociated in HD mice with superlong (>550) 

CAG repeats  

• HD mice with superlong CAG repeats have normal lifespans (~2 years) 

• Neurodegeneration is seen in HD mice with superlong CAG repeats by 20 weeks 

• Extranuclear aggregates condense with age   
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Abstract 

The threshold of CAG repeat expansion in the HTT gene that causes HD is 36 CAG repeats, 

although ‘superlong’ expansions are found in individual neurons in post mortem brains. 

Previously, we showed that, compared to mice with <250 CAG repeats, onset of disease in R6/2 

mice carrying superlong (>440) CAG repeat expansions was delayed, and disease progression 

was slower. Inclusion pathology also differed from 250 CAG repeat mice, being dominated by a 

novel kind of extranuclear neuronal inclusion (nENNI) that resembles a class of aggregate seen in 

patients with the adult onset form of HD. Here, we characterised neuropathology in R6/2 mice 

with >400 CAG repeats using light and electron microscopy. nENNIs were found with increased 

frequency and wider distribution with age. Some nENNIs appear to ‘mature’ as the disease 

develops, developing a multi-layered cored structure. Mice with superlong CAG repeats do not 

develop clinical signs until they are around 30-40 weeks of age, and they attain a normal life span 

(>2 years). Nevertheless, they show brain atrophy and unequivocal neuron loss from the striatum 

and cortex by 22 weeks of age, an age at which similar pathology is seen in 250 CAG repeat 

mice. Since this time-point is ‘end stage’ for a 250 CAG mouse, but very far (at least 18 months) 

from end stage for a >440 CAG repeat mouse, our data confirm that the appearance of clinical 

signs, the formation of inclusions, and neurodegeneration are processes that progress 

independently. A better understanding of the relationship between CAG repeat length, 

neurodegenerative pathways, and clinical behavioural signs is essential, if we are to find 

strategies to delay or reverse the course of this disease. 

 

Keywords: nENNI, NII, extranuclear inclusions, aggregation, huntingtin, ubiquitin, 

neurodegeneration, electron microscopy  
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Introduction 

Huntington’s disease (HD) is a dominant genetic disorder caused by an unstable expansion of 

CAG repeats within the coding region of the HTT gene that encodes the protein huntingtin (Htt) 

[1]. HD patients display a complex spectrum of symptoms that typically include hyperkinetic 

involuntary movements, progressive dementia and personality changes that may include 

aggressiveness and paranoid psychosis [2,3]. 

The neuropathology of HD is characterised by early striatal neurodegeneration and the 

appearance of both neuronal intranuclear (NIIs) and extranuclear inclusions (ENNIs) [4,5]. The 

gradual atrophy of the caudate nucleus and putamen cortex [6] generally precedes the 

degeneration of other brain structures such as the cerebral cortex, globus pallidus, thalamus, 

subthalamic nucleus, substantia nigra, white matter and cerebellum (for review see [7]). In both 

patients and mice, normal Htt has a predominantly cytoplasmic distribution, whereas mutant Htt 

gradually aggregates into inclusions that likely appear before the onset of neurological symptoms 

[7-9]. Although it has been described in humans and animal models [6,9,10] the relationship 

between neurodegeneration and aggregate pathology in humans is not well understood. 

The role of inclusions in HD pathology remains unclear and somewhat controversial. 

Although inclusions have classically been considered neurotoxic [11-14] it is now clear that 

aggregates may also have a neuroprotective effect [15-22]. In our previous work, we suggested a 

consensus view, with aggregates being both neurotoxic and neuroprotective depending on when 

and where they form [8,20]. Irrespectively of the actual role of inclusions, it is clear that multiple 

factors modulate the effect of expanded polyglutamine in cells [23,24]. 

Although most studies of inclusions refer exclusively to NIIs, it is clear that NIIs are not the 

only aggregates that form in HD. We have previously described different morphologies of 
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aggregates in a PC12 cell line [25] and a recent study shows that in vitro mutant huntingtin 

fragments can form two morphologically and conformationally distinct inclusion types that form 

differentially depending upon phosphorylation states of the protein [26]. It has not yet been 

shown if these different forms are present in vivo or in HD brains, but it seems increasingly likely 

that this will be the case. Aggregates of different morphologies have been shown in HD post 

mortem brains [4,10,27,28] and we have previously described a novel form of extranuclear 

aggregates that exists in the brains of R6/2 mice with very long CAG repeats [9]. In contrast to 

classic ENNIs, which are similar in morphology to NIIs (being electron-lucent, variable in both 

size and shape, and without definite structure) the novel neuropil ENNIs (nENNIs) are large, 

abundant, electron-dense and have a characteristic shape in mouse brain. In the present study, we 

characterized these inclusions and the surrounding brain at an electron magnetic (EM) level. We 

mapped the onset of appearance of nENNIs within the cortex, striatum and hippocampus of pre- 

and post- symptomatic R6/2 mice with two different CAG repeat lengths (250 and >550). We 

then quantified neurodegeneration in these regions. We show for the first time that while the size 

of the CAG repeat expansion dictates the morphological form of the inclusions, the entry of 

neurons into neurodegenerative pathways occurs at around the same time (by 20 weeks of age) in 

mice with markedly different repeat lengths. 

Materials and methods 

Animals 

We used lines of R6/2 mice that were derived from founder mice carrying the first exon of the 

human HTT gene with a pathologically expanded repeat that was originally around 140–150 

CAG [29]. We have generated an allelic series of mice with different CAG repeat lengths, by 

exploiting the inherent instability of the CAG repeat [9]. Here we used a total of 64 male R6/2 
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mice carrying a repeat of either 250 ± 1 CAG repeats (n=24) or 550 ± 3, n=40) CAGs. These 

lines of mice differ markedly in their clinical progression (for detailed description and relevant 

references, see [9]). Briefly, all mice from both lines are born and develop normally. Mice 

carrying a CAG repeat of 250 begin to show overt signs of disease at around 10-12 weeks of age, 

by which time their body weight has plateaued. After 14-16 weeks of age, they begin to lose 

weight, and concomitantly their symptoms worsen. Mice with a CAG repeat of 250 typically die 

at around 20-24 weeks. At end stage, they show marked muscle atrophy, hypoactivity, ptosis, 

lordokyphosis and ataxia. Mice with 550 CAG repeats are indistinguishable from normal mice 

until around 30 weeks of age, when their growth stops. From around 40 weeks on, they begin to 

lose weight. They do not, however, show any overt signs of disease for at least a year. Their 

survival is similar to that of WT mice (>400 d).  

For histology, we used mice at 4 different ages between 8, 20, 22 for Q250 and Q550 

mice and 8, 20, 52 and 104 weeks for Q550 mice respectively (n=4 for each age and CAG 

repeat). All sections were stained with ubiquitin or MW8 antibodies.  

For ultrastructural characterisation we used 250 CAG repeat mice at 18 weeks of age or 

400-550 CAG repeat mice aged 60 and 104 weeks (n=4 for each age and CAG repeat).  

To map the distribution of inclusions, we used mice with 250 CAG repeats aged 12 and 

25 weeks, and mice with 550 CAG repeats aged 12, 25, 55 and 80 weeks (n=4). 

For quantification of neurodegeneration and volume measurements, we used mice with 

250 CAG repeats aged 12 weeks, 20 weeks and endstage (22 weeks; n=4 for each age), and 550 

CAG repeats at 12, 22, 52 and 104 weeks (n=4 for each age).  
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Genotyping was performed by PCR from tail snips taken at 3 weeks of age and CAG 

repeat lengths were measured by Laragen (USA) as described previously [9]. After genotyping, 

mice were sorted by genotype and sex into experimental cages. Lighting was controlled on a 12 h 

light: 12 h dark. The housing facility temperature was maintained at 21–23 °C and the relative 

humidity was controlled (55 ± 10%). Mice had ad libitum access to water (via lowered 

waterspouts) and standard dry laboratory food. In addition, mice were given a supplementary 

feed each morning of a mash prepared by soaking 100 g dry food in 230 ml of tap water until the 

pellets were soft and fully expanded. All experiments were conducted in accordance with the 

United Kingdom 1986 Animals (Scientific Procedures) Act.  

Electron microscopy  

Animals were fixed by perfusion with 4% glutaraldehyde containing 2 mM CaCl2 in 0.1 M 

PIPES buffer at pH 7.4. The animals were killed by a lethal overdose of pentobarbital and then 

intracardially perfused with buffered saline containing 10 mmol/l PIPES buffer, pH 7.4, 139 

mmol/l sodium chloride, 2.7 mmol/l potassium chloride, 2 mmol/l calcium chloride, 5 mmol/l 

sodium nitrite, 19.4 mmol/l glucose and 2.5% polyvinylpyrrolidone (FW 40000) at room 

temperature. This was followed by perfusion with 300ml of cold (4°C) fixative for 15 minutes 

containing 4% glutaraldehyde, 0.5% formaldehyde, 2mmol/l calcium chloride and 2.5% 

polyvinylpyrrolidone (FW 40000) in 100 mmol/l PIPES buffer, pH 6.0. The brains were then 

removed and cut into 0.5 mm slices and trimmed to a 1x1mm area containing the regions of 

interest. These samples were then post-fixed over night at 4°C. They were washed twice in 0.1 M 

PIPES buffer (pH 6.0). Then post-fixed in 2% osmium tetroxide containing 2% osmium 

ferricyanide containing 2 mmol/l calcium chloride for 2 hours at 4˚C, rinsed 3 times in deionised 

distilled water and bulk stained in 2% uranyl acetate for 1 h. Subsequently rinsed in deionised 
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distilled water and dehydrated in an ascending series of ethanol solutions to 100% ethanol, rinsed 

twice in acetonitrile and embedded in Quetol epoxy resin. Fifty nm sections were cut on a Leica 

Ultracut UCT, stained with saturated uranyl acetate in 50% ethanol and lead citrate and viewed in 

a FEI Philips CM100 operated at 80kV.  

Histology 

Immunohistochemistry  

Mice were killed by asphyxiation with rising levels of CO2. The brains were removed and 

immediately frozen in dry ice. Coronal cryosections (30µm) were cut serially through the whole 

brain of each mouse onto 10 gelatinised slides and processed for histochemical and 

immunohistochemical staining. One slide from each mouse was stained with haematoxylin and 

eosin (H & E) or cresyl violet to aid identification of anatomical regions. Primary antibodies used 

were a rabbit anti-ubiquitin antibody (1:2000 dilution, DAKO), and an anti-Htt mouse 

monoclonal antibody (MW8) raised against the N-terminal portion of Htt with an expanded 

repeat (1:2000 dilution, raised by Dr. Paul Patterson and obtained from the Developmental 

Studies Hybridoma Bank, University of Iowa, Iowa City, USA). A horseradish peroxidase-

conjugated second antibody (1:2000 dilution, DAKO, USA) was used, and immunoreactive 

elements were visualised using diaminobenzidine.  

Nissl staining 

Mice were perfused transcardially with 4% paraformaldehyde and immersion fixed for at least 

1 week in 4% paraformaldehyde in 0.1 M phosphate-buffered saline (PBS) and subsequently 

cryoprotected in a solution of 30% sucrose in PBS. Sections (50 µm) were cut serially through 

the whole brain of each mouse, making coronal sections. The sections were then mounted onto 
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gelatinised slides in order to be processed for Nissl staining. 

Slides were stained with Cresyl violet (Sigma Chemical Company, Dorset, UK) to enable 

brain regions to be identified. Slides were defatted in Histoclear (Cellpath, Powys, Mid Wales, 

UK) for 3 min, followed by dehydration for 2 min each in absolute ethanol and 95% ethanol, and 

1 min in 70% ethanol. The sections were then washed with clean tap water for 30-60 s. After 

soaking in 1% Cresyl violet for 15 min, slides were again washed with tap water for 30-60 s until 

the water ran clear. They were then differentiated for 10 s in 1% acetic acid/alcohol and washed 

in distilled water. After 1 min in 70% ethanol, slides were placed for 2 min in each of 95% then 

absolute ethanol twice. Samples were placed in three successive pots of Histoclear for 1, 3 and 3 

min, respectively, and coverslipped with DPX mounting medium (BDH, Lutterworth, 

Leicestershire, UK). After mounting the slides were dried in an oven at 37ºC for at least 24 hours. 

Measurements of brain region volumes  

Unbiased Cavalieri estimates of the volume [30] caudate putamen (CPu), primary somatosensory 

cortex (S1BF) and primary motor cortex (M1) were made on Nissl or immunohistochemically 

stained sections, measuring every sixth section, using a Nikon Eclipse 80i microscope and 

StereoInvestigator software (MBF Bioscience, Williston, VT, USA), with the investigator blind 

to genotype. An appropriately spaced sampling grid (200 µm for CPu and S1BF, 150µm for M1) 

was superimposed over the sections and the number of points covering the relevant areas counted 

using an x2 objective. Regional volumes expressed in µm3 were collected for each animal and the 

mean volume of each region obtained for R6/2 and WT mice. The delineation of each region was 

consistently performed by referring to the Paxinos and Franklin Mouse Brain Atlas. 

Counts of neuronal number 
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To examine neuronal survival within the areas of interest we used StereoInvestigator 

software to obtain unbiased optical fractionator estimates of neuronal number in Nissl stained 

sections1. These estimates were obtained for CPu, and cortical layers IV, V and VI in S1BF and 

M1. These measures were performed with a random starting section, followed by every sixth 

Nissl stained section thereafter. For CPu, the counting frame size was 30µm x 30µm and the grid 

size used was 280µm x 350µm. For all layers in S1BF, the counting frame size was 25µm x 

25µm and the grid size used was 200µm x 180µm. For all layers in M1, the counting frame size 

was 30µm x 30µm and the grid size used was 200µm x 80µm. 

Statistical Analysis 

 An ANOVA was used to analyse all volume and quantification data. In both cases, post-hoc 

Bonferroni tests were performed and P < 0.05 was considered as statistically significant. For all 

optical fractionator estimates, the mean coefficient of error (CE) of individual estimates was 

calculated according to the method of Gundersen and Jensen [30] and was less than 0.05 in all 

these analyses. 

Results 

Ultrastructure of novel ENNIs 

In contrast to classic ENNIs, which are ultrastructurally similar to NIIs (electronluscent, and 

                                                
1 Stereology is a systematic sampling method that consists of sampling a region at a random 
starting position, utilizing a defined periodicity in which all portions in the region have an equal 
probability of being sampled [31]. A random sampling start between sections of interest within 
the area is used reduce the variance of the end result, without exhaustive counting [32]. The 
optical fractionator method is where an optical disector in a strictly random and systematic 
sampling scheme covers a known fraction of the region being analysed [33]. As such, the exact 
thickness or area of the section is not needed for calculations. This provides an unbiased count 
independent on shrinkage, expansion of the tissue and dimensional changes in the tissue [34,35].  
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without a definite structure; Fig. 1A), nENNIs are large, abundant and electron dense and 

therefore very easy to identify without immunogold labelling (Fig. 1B-D). Our ultrastructural 

data show that nENNIs are typically round or oval and located in both non-myelinated (Fig. 1B) 

and myelinated (Fig. 1D) processes. They are unbounded by a membrane and frequently fill the 

axon or neurite. When they do so, they push organelles such as mitochondria to the periphery of 

the process (arrows, Fig. 1C and D).  

Interestingly, novel ENNIs appear to ‘mature’ with age (Fig. 2). Both their density and size 

increased with age, and some of them display a core that is more electrondense than the 

surrounding inclusion material (Fig. 2). Some nENNIs in older animals appear to be multilayered 

(Fig. 2B, C and D), suggesting that nENNIs with cores are more ‘mature’ than those without.  

Progressive appearance of nENNIs is age- and CAG repeat length dependent 

NNIs and nENNIs are detected with the same antibodies, thus for definitive characterisation, the 

nucleus needs to be visualised to allow the distinction between both types. Because ENNIs are 

present in axons and neurites, appear in different regions at different times, and vary markedly in 

size, it is difficult to quantify them in a meaningful way. To illustrate their progressive 

appearance, we have therefore presented a series of micrographs at low and high magnification 

showing typical morphological appearance of nENNIs in the lacunosum molecular, a region of 

the hippocampus that was chosen because it has few cell bodies and is composed mainly of 

neuropil where these inclusions are formed (Fig. 3). Note that there are both NNIs and ENNIs in 

these photomicrographs.  

We mapped the distribution of nENNIs stained with ubiquitin or MW8 in the R6/2 mouse brain 

manually, by excluding inclusions that were present in nuclei. We have illustrated them as a 

cartoon heat map at 4 different ages (Fig. 4). The distribution of nENNIs is markedly different 
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from that of NIIs that has been described previously [8, 36]. nENNI distribution also varies 

depending upon the age of the mice and the CAG repeat length. In Q250 mice aged 12 weeks, we 

found a few scattered nENNIs in the cortex, CPu, thalamus and hippocampus, although there 

were numerous NIIs, as previously described [8]. By 20 weeks of age the density of nENNIs had 

increased and by end-stage (22 weeks of age) nENNIs were more numerous and larger than they 

had been at younger ages (see Fig. 3C and C' for detail from Hf). In Q550 mouse brains, no 

nENNIs were visible at 12 weeks of age. However, by 20 weeks of age numerous small nENNIs 

were present in the cortex, CPu, and hippocampus. At 104 weeks of age (end-stage), large sized 

nENNIs were abundantly present in the cortex, CPu, and hippocampus (Fig. 3F and F’). 

Interestingly, MW8 staining shows a decreased intensity at the later stage in Q550 repeat mouse 

brains. We suggest that this is due to the fact that ubiquitination takes place after aggregate 

formation [37] and that in mature ubiqutinated aggregates the epitope for MW8 binding is 

masked. 

Neurodegenerative profiles are present in brains of super-long CAG repeat mice from 20 

weeks of age 

Despite the fact that the aggregate load was low, using electron microscopy we revealed 

pronounced morphological abnormalities in the brain tissue of R6/2 mice with 550 CAG repeats 

at 20 weeks of age (Fig. 5). This is interesting, because at this age, 550 CAG repeat mice have 

few inclusions, and are many months from the age at which they would be expected to show 

overt symptoms. We found nENNIs that filled neural processes in all brain regions, where the 

large aggregates have pushed inner organelles, such as mitochondria, to the periphery of the 

processes (Fig. 5A). In addition numerous damaged mitochondria were present (Fig. 5B). 

Furthermore, vacuoles were common (Fig. 5C-E), particularly in processes. Abnormalities in 
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axonal myelin sheaths were readily observed (Fig. 5C). Importantly, degenerating neurons were 

found in all brain regions studied. Degenerating neurons showing characteristics of multiple 

different types of cell death such as dark cell death (Fig. 5D), apoptosis and necrosis (Fig. 5E and 

F respectively) were seen in the cortex (Fig. 5) as well as in the CPu and hippocampus (data not 

shown).  

Different volume loss profiles in R6/2 mice with different CAG repeat length 

Because we could observe neurodegeneration in the brain tissue of R6/2 mice with expanded 

CAG repeats and regional brain atrophy correlated directly with cell loss, we decided to measure 

the volume of brain regions of interest using the Cavalieri estimator. We measured the volume of 

CPu, S1BF and M1 in R6/2 Q250, R6/2 Q550 mice and age-matched controls. As expected from 

previous analysis [38], we found that significant volume loss occurred in all the regions in R6/2 

Q250 mice (Fig. 6A, C and E). The volume loss occurred by 20 weeks of age in the cortex and by 

22 weeks of age in the CPu. This is late/end stage in those mice that typically die at around 25 

weeks of age.  

In Q550 mice, the volume loss was also apparent early and was progressive. Atrophy was 

apparent from a much younger age in the CPu of Q550 mice than it was in Q250 mice despite the 

fact that the latter mice had a very severe phenotype. Atrophy was significant by 12 weeks of age 

in the CPu (p<0.05, Fig. 6B) and 22 weeks of age in S1BF (p<0.05, Fig. 6D). In M1, there was a 

trend to decreased volume at 22 weeks of age, but it did not reach significance (p=0.056). 

However, volume loss in M1 was statistically significant by 52 weeks of age (p<0.05) (Fig. 6F). 

Volume loss is mirrored by neuronal loss  



 13 

The presence of neurodegenerative profiles as well as atrophy suggested that the 

neurodegeneration occurring at end stage in the brains of R6/2 Q550 mice is extensive. Thus, we 

decided to quantify neuronal loss directly using unbiased stereology. We compared the extent of 

neuronal loss in R6/2 Q250 and R6/2 Q550 with their age-matched controls. In R6/2 Q550 mice, 

neuron loss was apparent from a much younger age than it was in the more severely affected 

Q250 mice. In the CPu of R6/2 Q250 mice, we found that significant neuron loss occurred by 22 

weeks of age (Fig. 7A), and although volume loss was already apparent at 12 weeks of age, 

neuronal loss was consistent with volume loss. In R6/2 Q550 mice, neuron loss was also 

significant at 22 weeks of age (Fig. 7B). 

In S1BF (Fig. 8), neuron loss was observed in lamina V in both R6/2 Q250 and Q550 mice, 

but not from any other layer. Significant neuron loss occurred by 22 weeks of age (Fig. 8C), and 

mirrored volume loss. Interestingly, given that the mice were asymptomatic, in R6/2 Q550 mice, 

neuron loss was also significant at 22 weeks of age (Fig. 8D). No neuron loss was seen in lamina 

IV or VI (Lam IV, Lam VI, Fig. 8A, B, E and F) in either R6/2 Q250 or R6/2 Q550 mice. 

In motor cortex (M1; Fig. 9), in the R6/2 Q250 mice neuronal loss was seen in lamina IV at 

20 and 22 weeks of age (Fig. 9A). By contrast, in R6/2 Q550 mice, neuronal loss was not seen 

until 104 weeks of age, at which age it was present in all laminae (Fig. 9B, D and F). 

DISCUSSION 

In this study we characterised the distribution and morphology of nENNIs in the R6/2 mouse 

brain. We show that nENNIs are present in both Q250 and Q550 R6/2 mice at 20-22 weeks of 

age, but they are considerably more numerous in Q550 R6/2 mice. Despite the marked difference 

in aggregate load, both Q250 and Q550 mice show similar, albeit mild, brain volume and neuron 

loss in the striatum and the cortex by 20-22 weeks of age. This was interesting, given at that age 
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Q250 mice were severely symptomatic (end stage), whereas Q550 mice had as yet no overt 

behavioural or physiological abnormal phenotype.  

Characterisation of a novel form of neuropil ENNIs 

The main form of inclusion described so far in HD mice and patients, has been the NII [4,10,39]. 

These were first discovered in R6/2 mice and their presence was consequently confirmed in HD 

patients [4,10] and other HD mouse models [4,16,40-43]. There are, however, major differences 

between distribution of NIIs mouse models and human post mortem brains, with NIIs being 

markedly more abundant in mice. Despite this difference, NIIs inclusions have remained the main 

focus of attention when brain aggregates have been considered. As well as NIIs, ENNIs have also 

been reported in brains of HD patients [4,5,17,28,44,45]. However, the extranuclear aggregates 

described thus far in R6/2 mice by us and other groups are structurally similar to NIIs [8,46]. 

In contrast to the report by Dragatsis et al. [47] that cytoplasmic inclusions were found in the 

cell body, the nENNIs we report are found predominantly in processes in the neuroplil. Although 

we have searched persistently, we have never seen an ENNI with either classical or novel 

morphology in the cytoplasm of medium spiny neurons in our EM sections. This suggests that the 

ENNIs found by Dragatsis and colleagues (in a line of mice that arose independently) are a 

different type of aggregates to the nENNIs that we report here. Furthermore, nENNIs are 

ustrastructurally different from the ENNIs described previously. The nENNIs we observe are 

large, ovoid and electron dense, and both increase in size and change morphologically (‘mature’) 

with age. The age-related changes in morphology of these inclusions is interesting given a recent 

studies by Caron et al. [48] in which they showed that mutant Htt can aggregated differently 

depending on its phosphorylation state. These authors suggested that since the protein exists in 

different configuration that this might change packing density of the protein, so that the fibrilar 
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protein is more densely packed than the globular protein. It would be interesting to see if the 

phosphorylation state of proteins that make up the two kinds of aggregates we see in mouse brain 

in vivo is differentially phosphorylated, or if the protein composition changes as an aggregate 

‘matures’. It is not clear if the nENNIs described in our study are the same as those described in 

HD patients. Although nENNIs closely resemble the neuropil inclusions present in dystrophic 

neurites in human tissue described by DiFiglia et al. [4], no comprehensive EM study of 

inclusion morphology has been conducted on human brain aggregates. 

Despite a considerably higher burden of nENNIs and unequivocal neurodegeneration seen at 

a presymptomatic age, mice with longer CAG repeats have a considerably longer life span and 

delayed onset of symptoms than Q250 mice [9, 47]. In fact some mice with very long repeats 

reach a normal life span despite the presence of high total aggregate load and clinical signs [9]. 

This suggests that nENNIs are not as toxic as NIIs. It is possible that the formation of nENNIs 

reduces the activation of toxicity by-products or pathways by mutant Htt. This mechanism was 

suggested by Dragatsis et al. [47] who found an expanded lifespan in mice with >350 CAG 

repeats and suggested that nuclear accumulation of mutant protein in R6/2 mice may contribute 

to the more aggressive phenotype in R6/2 mice with shorter repeats. Alternatively, a recent in 

vitro study also revealed that DNA with super-long repeats contains unusual structures, which 

could contribute to decreased transcriptional regulation of the Htt gene [49]. It is also possible 

that the expanded polyQ reduces the translocation of the Htt fragments into the nucleus and that 

this contributes to the delay in the phenotype of the mutant mice. Such a mechanism has been 

observed in the caspase-6 resistant YAC mice [50] as well as in the short-stop YAC mice [51] 

where both lines exhibit a heavy aggregate load, but lack a behavioural phenotype. Finally, it is 

possible that nENNIs are acting as modifiers of poly-Q induced toxicity. In a recent study on 
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R6/1 mice [52], the authors suggested that mutant Htt could induce the aggregation of other 

misfolding-prone proteins, such as α-synuclein, via a cross-seeding mechanism leading to the 

disruption of the ubiquitin-proteasome system. This seems very plausible to us. Indeed, 

aggregates containing α-synuclein have been reported in HD patients [53]. Interestingly, it 

appears that α-synuclein acts as a modifier of polyQ-induced toxicity in mice, and knocking-out 

α-synuclein resulted in the attenuation of the HD motor phenotype, weight loss and load of 

inclusion [52]. Finally, a recent finding shows that Htt can alter tau phosphorylation and 

subcellular distribution [54]. Such alterations in protein conformation due to the HD mutation 

might contribute to the time course of disease progression.  

Neurodegeneration in R6/2 mice 

R6/2 mice with low CAG repeats exhibit only moderate neuron degeneration in the late stage 

[29,39,40,42,43,55-59]. The reason for the disparity between brain pathology and phenotype are 

likely to be complex. For example, there is considerable peripheral pathology in these mice [60-

65], so the rapid deterioration in phenotype is unlikely to be due solely to brain dysfunction. 

Neuron loss in Q550 mice could be triggered by trafficking impairment due to the physical 

presence of nENNIs in the processes. Indeed, in many processes we found inclusions pushing 

organelles, particularly mitochondria, to the periphery. To our knowledge, this has not been 

observed previously, in either mice or HD patients. It might be expected, however, that dislocated 

organelles may not function normally. Many studies have shown that trafficking defects can 

impair neurotransmission due to disrupted delivery of proteins at the synapse [66-68] and lead to 

neuron loss. In this study, as well as displaced mitochondria, we have also observed abnormal 

mitochondria. This is consistent with the mitochondrial abnormalities seen in HD. Structural 

mitochondrial defects have been linked to damaged mtDNA [69,70] which is an early biomarker 
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for HD-associated neurodegeneration and supports the hypothesis that mtDNA lesions may 

contribute to the pathogenesis observed in HD [71]. Recently, mitochondrial abnormalities have 

been found in post mortem brains and peripheral tissues of HD patients [72-74] as well as in in 

vitro models of HD [74,75].  

It is striking that brains of R6/2 mice with super long CAG repeats exhibit profound neuron 

loss in the striatum and in some regions in the cortex, despite their normal lifespan. Thus 

neuronal loss per se does not cause the symptoms in the mouse. In HD patients also, neuronal 

degeneration occurs first in the striatum [6], then in other areas of the brain [28,76,77]. It is 

notable that significant loss of basal ganglia volume [78-83] and neuron loss [84] have been 

reported in asymptomatic HD patients. The appearance of inclusions in HD patients also precedes 

the onset of symptoms and neurodegeneration [4,5,16,85].  

CONCLUSION 

Our study confirms a late-onset slowly progressing phenotype in mice with >550CAG repeats, 

despite the presence of neurodegeneration from as early as 22 weeks of age. It remains a 

challenge to establish a direct link between repeat size in mice, the presence of aggregates and 

neuronal loss. R6/2 mice with >550 CAG repeats display a pathology that correlates with the 

presence of nENNIs, but not NIIs. Our study highlights the need to understand the relative 

contribution of different kinds of inclusions to different aspects of pathology in HD and also to 

determine the mechanisms underlying neurodegeneration. R6/2 mice with long CAG repeats that 

show early neurodegeneration in the absence of clinical signs will be useful tools for such 

studies. 
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Figure 1 Electronmicroscopy shows morphology of novel ENNIs 

The electronmicrographs show the classic electron luscent NNIs (A, black asterisk) that are 

located in the nucleus (N). The electron dense nENNIs (white asterisks) are found in both non-

myelinated (B) and myelinated processes (C, D). Novel ENNIs are round or oval and fill the axon 

or dendrite, pushing organelles (in this case mitochondria) to the periphery of the process (C, D, 

arows). Scale bar: 1 µm. 

 

Figure 2 Electronmicroscopy shows Progressive ‘maturation’ of novel ENNIs 

The electronmicrographs show that the density of nENNIs increases with age. The image in A is 

taken from an animal aged 22 weeks, and those in B-D from an animal aged 104 weeks. Novel 

ENNIs in the older animals display a core that is more electron-dense than the surrounding 

inclusion material, exhibiting a multi-layered appearance (white asterisks in B-D). 

 

Figure 3 Progressive appearance and different localisation of inclusions in Q250 and Q550 

mice 

Immunohistochemical staining for MW8 (that recognises aggregated Htt) reveals the progressive 

accumulation of inclusions with increased age (8, 20, 22 weeks of age for Q250 mice, and 8, 20 

and 104 weeks of age for Q550 mice) in the hippocampus of Q250 (A-C) and Q550 R6/2 mice 

(D-F). Both NIIs and ENNIs are seen in progressively greater abundance. NIIs are intranuclear 

and located in the pyramidal cell layer of CA1 of the hippocampus (Py) in Q250 6/2 mice at 8 

weeks of age (A'). Their abundance increases with age (B' and C'). Extracellular inclusions 

appear in regions in which there are few cell bodies, such as the lacunosum moleculare (LMol) 

and stratum radiatum (Rad). They are present at 8 weeks and commonly seen by 20 weeks of age 

(B, B', C and C', arrowheads). By contrast, the Q550 mice have no intranuclear inclusions within 
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Py (D-F) but extranuclear inclusions can be seen in the LMol and Rad as early as 8 weeks of age 

(D', arrowheads). Extranuclear inclusions increase in size and number with age in the Q550 R6/2 

mice (E, E', F and F', arrowheads).  

 
Figure 4 Progressive appearance of ubiquitin- and MW8- positive (Htt) ENNIs is age and 

stage dependent.  

The cartoons show R6/2 brains colour coded for ubiquitin or MW8 staining. Intensity of shading 

is proportional to the intensity of inclusion staining. This revealed a progressive and region-

dependent increase in nENNIs with age. The ontogenic pattern was similar in both lines of mice, 

but was delayed in mice with longer CAG repeats. There was a major difference in the intensity 

of staining in the oldest mice with ubiquitin and MW8 that was not present at 52 weeks of age, 

when nEENIs stained with similar intensity with both antibodies.  

 

Figure 5: Neurodegenerative profiles in mice with super long CAG repeats seen with 

electronmicroscopy  

Electron mictrographs show abnormal and neurodegenerative profiles from brains of super-long 

CAG repeat mice (104 weeks of age). Electron microscopy revealed abnormalities in the brain 

tissue of R6/2 mice with super-long CAG repeats. An inclusion completely filling a process 

(white asterisk) pushes organelles to the periphery (A, arrows). Abnormal mitochondria (B, 

arrowheads), vacuoles in processes (C, black asterisks) and anomalies in the myelin sheath (C, 

arrows) were seen in all sections. Degenerating neurons are also clearly evident (D, E and F; 

arrows). Scale bar: 1 µm. 
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Figure 6: Different profiles of atrophy are seen different brain regions of Q250 and Q550 
R6/2 mice 
Volume measurements reveal atrophy at end stage in Q250 mice in CPu (A). Progressive atrophy 

was measured in Q550 mice (B), starting as early as 12 weeks of age. Cortical volume 

measurements reveal atrophy in S1BF by 20 weeks of age in Q250 mice (C). Progressive atrophy 

was observed in Q550 mice, starting as early as 22 weeks of age in S1BF (D). Cortical volume 

measurements reveal atrophy in M1 by 20 weeks of age in Q250 mice (E). Progressive atrophy 

was observed in Q550 mice by 52 weeks of age (F). (open bars; WT; closed bars: R6/2 mice; * 

p<0.05; ** p<0.01; *** p<0.001, ANOVA with post-hoc Bonferroni analysis). 

CPu caudate putamen 

S1BF = somatosensory cortex  

M1= primary motor cortex 

 

Figure 7: Different profiles of cell loss in the caudate-putamen of Q250 and Q550 R6/2 

mice. 

Histograms of unbiased optical fractionator estimates of the number of Nissl stained neurons in 

the caudate putamen of R6/2 (closed bars) and age-matched WT mice (open bars) at different 

stages of disease progression. The number of neurons in caudate putamen declined in Q250 R6/2 

mice (A) at end stage only. By contrast, neuron loss in Q550 mice (B), first became evident at 22 

weeks of age and declined progressively until end stage 

* p<0.05; ** p<0.01; *** p<0.001 (ANOVA with post-hoc Bonferroni analysis) 
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Figure 8: Different profiles of cell loss in the somatosensory cortex of Q250 mice and Q550 

R6/2 mice 

Unbiased optical fractionator estimates of the number of neurons in somatosensory cortex (S1BF) 

of R6/2 mice and age-matched WT mice revealed a progressive neuron loss in Q550 R6/2 mice, 

whereas in Q250 R6/2 mice neuron loss occurred only at end stage (A-F). Notably, both lines of 

R6/2 mice displayed neuron loss in lamina V only (C and D). Lamina IV and VI did not display 

neuron loss at end stage so we did not quantify the earlier stages (ND). (open bars; WT; closed 

bars: R6/2 mice; * p<0.05; ** p<0.01; *** p<0.001, ANOVA with post-hoc Bonferroni analysis). 

Figure 9: Different profiles of cell loss in the motor cortex of Q250 mice and Q550 R6/2 

mice 

Unbiased optical fractionator estimates of the number of neurons in motor cortex (M1) occurred 

at end stage for both sets of R6/2 mice. However, in the Q250 cell loss was only observed in 

lamina IV (A) whereas in the Q550, cell loss was observed in laminae IV, V and VI (B, D, F). 

Lamina V and VI did not display neuron loss at end stage in the Q250 so we did not quantify 

neuron loss at the earlier stages in these mice (C and F; ND). (open bars; WT; closed bars: R6/2 

mice; * p<0.05; ** p<0.01; *** p<0.001, ANOVA with post-hoc Bonferroni analysis). 
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