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Feedforward neural networks provide the dominant model of how the brain performs

visual object recognition. However, these networks lack the lateral and feedback

connections, and the resulting recurrent neuronal dynamics, of the ventral visual pathway

in the human and non-human primate brain. Here we investigate recurrent convolutional

neural networks with bottom-up (B), lateral (L), and top-down (T) connections. Combining

these types of connections yields four architectures (B, BT, BL, and BLT), which

we systematically test and compare. We hypothesized that recurrent dynamics might

improve recognition performance in the challenging scenario of partial occlusion. We

introduce two novel occluded object recognition tasks to test the efficacy of the

models, digit clutter (where multiple target digits occlude one another) and digit debris

(where target digits are occluded by digit fragments). We find that recurrent neural

networks outperform feedforward control models (approximately matched in parametric

complexity) at recognizing objects, both in the absence of occlusion and in all occlusion

conditions. Recurrent networks were also found to be more robust to the inclusion of

additive Gaussian noise. Recurrent neural networks are better in two respects: (1) they

are more neurobiologically realistic than their feedforward counterparts; (2) they are better

in terms of their ability to recognize objects, especially under challenging conditions.

This work shows that computer vision can benefit from using recurrent convolutional

architectures and suggests that the ubiquitous recurrent connections in biological brains

are essential for task performance.

Keywords: object recognition, occlusion, top-down processing, convolutional neural network, recurrent neural

network

1. INTRODUCTION

The primate visual system is highly efficient at object recognition, requiring only brief presentations
of the stimulus to perform the task (Potter, 1976; Thorpe et al., 1996; Keysers et al., 2001). Within
150ms of stimulus onset, neurons in inferior temporal cortex (IT) encode object information in a
form that is robust to transformations in scale and position (Hung et al., 2005; Isik et al., 2014), and
is predictive of human behavioral responses (Majaj et al., 2015).

This rapid processing lends support to the idea that invariant object recognition can be explained
through a feedforward process (DiCarlo et al., 2012), a claim that has been supported by the recent
successes of feedforward neural networks in computer vision (e.g., Krizhevsky et al., 2012) and
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the usefulness of these networks as models of primate visual
processing (Wallis and Rolls, 1997; Riesenhuber and Poggio,
1999; Serre et al., 2007; Yamins et al., 2013, 2014; Khaligh-Razavi
and Kriegeskorte, 2014; Güçlü and van Gerven, 2015).

The success of feedforwardmodels of visual object recognition
has resulted in feedback processing being underexplored in
this domain. However, both anatomical and functional evidence
seems to suggest that feedback connections play a role in object
recognition. For instance, it is well known that the ventral visual
pathway contains similar densities of feedforward and feedback
connections (Felleman and Van Essen, 1991; Sporns and Zwi,
2004; Markov et al., 2014), and functional evidence from primate
and human electrophysiology experiments show that processing
of object information unfolds over time, beyond what would
be interpreted as feedforward processing (Sugase et al., 1999;
Brincat and Connor, 2006; Freiwald and Tsao, 2010; Carlson
et al., 2013; Cichy et al., 2014; Clarke et al., 2015). Some reports of
robust object representations, normally attributed to feedforward
processing (Isik et al., 2014; Majaj et al., 2015), occur within
temporal delays that are consistent with fast local recurrent
processing (Wyatte et al., 2014). This suggests that we need to
move beyond the standard feedforward model if we are to gain
a complete understanding of visual object recognition within the
brain.

Fast local recurrent processing is temporally dissociable from
attentional effects in frontal and parietal areas, and is thought
to be particularly important in recognition of the degraded
objects (for a review see Wyatte et al., 2014). In particular,
object recognition in the presence of occlusion is thought to
engage recurrent processing. This is supported by the finding that
recognition under these conditions produces delayed behavioral
and neural responses, and recognition can be disrupted by
masking, which is thought to interfere with recurrent processing
(Johnson and Olshausen, 2005; Wyatte et al., 2012; Tang et al.,
2014). Furthermore, competitive processing, which is thought
to be supported by lateral recurrent connectivity (Adesnik and
Scanziani, 2010), aids recognition of occluded objects (Kolankeh
et al., 2015). Scene information can also be decoded from areas
of early visual cortex that correspond to occluded regions of
the visual field (Smith and Muckli, 2010) further supporting the
claim that feedback processing is engaged when there is occlusion
in the visual input.

Occluded object recognition has been investigated using
neural network models in previous work, which found an
important role for feedback connections when stimuli were
partially occluded (O’Reilly et al., 2013). However, the type of
occlusion used in these simulations, and previous experimental
work, has involved fading out or deleting parts of images (Smith
and Muckli, 2010; Wyatte et al., 2012; Tang et al., 2014). This
does not correspond well to vision in natural environments
where occlusion is generated by objects occluding one another.
Moreover, deleting parts of objects, as opposed to occluding
them, leads to poorer accuracies and differences in early event-
related potentials (ERPs) that could indicate different effects
on local recurrent processing (Johnson and Olshausen, 2005).
Therefore, it is important to investigate the effects of actual

object occlusion in neural networks to complement prior work
on deletion.

In scenes where objects occlude one another it is important
to correctly assign border ownership for successful recognition.
Border ownership can be thought of as indicating which
object is the occluder and which object is being occluded.
Border ownership cells require information from outside their
classical receptive field and border ownership signals are delayed
relative to the initial feedforward input, which both suggest
the involvement of recurrent processing (Craft et al., 2007).
A number of computational models have been developed to
explain border ownership cells. What is common amongst these
models is the presence of lateral or top-down connections
(Zhaoping, 2005; Sakai and Nishimura, 2006; Craft et al., 2007).
The importance of recurrent processing for developing selectivity
to border ownership further suggests that recurrence has an
important role for recognizing occluded objects.

To test the effects of occlusion, we developed a new
generative model for occlusion stimuli. The images contain
parameterized, computer-generated digits in randomly jittered
positions (optionally, the size and orientation can also be
randomly varied). The code for generating these images is made
available at https://github.com/cjspoerer/digitclutter. The task is
to correctly identify these digits. Different forms of occlusion
are added to these images, including occlusion from non-targets
and other targets present in the image, we refer to these as digit
debris and digit clutter, respectively. The first form of occlusion,
digit debris, simulates situations where targets are occluded by
other objects that are task irrelevant. The second case, digit
clutter, simulates occlusion where the objective is to account for
the occlusion without suppressing the occluder, which is itself
a target. This stimulus set has a number of benefits. Firstly, the
underlying task is relatively simple to solve, which allows us to
study the effects of occlusion and recurrence with small-scale
neural networks. Therefore, any challenges to the network will
only result from the introduction of occlusion. Additionally, as
the stimuli are procedurally generated, they can be produced in
large quantities, which enables the training of the networks.

Recurrent processing is sometimes thought of as cleaning
up noise, where occlusion is a special case of noise. A simple
case of noise is additive Gaussian noise, but we hypothesize
that recurrence is unlikely to show benefits in these conditions.
Consider the case of detecting simple visual features that show
no variation, e.g., edges of different orientations. An optimal
linear filter can be learnt for detecting these features. This
linear filter would remain optimal under independent, additive
Gaussian noise, as the expected value of the input and output
will remain the same under repeated presentations. Whilst this
result does not exactly hold for the case of non-linear filters
that are normally used in neural networks, we might expect
similar results. Therefore, we would expect no specific benefit of
recurrence in the presence of additive Gaussian noise. If this is
true, we can infer that the role of recurrence is not for performing
object recognition in noisy conditions, generally. Otherwise, it
would support the conclusion that reccurence is useful across a
wider range of challenging conditions.
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In this work, we investigate object recognition using
convolutional neural networks. We extend the idea of the
convolutional architecture to networks with bottom-up (B),
lateral (L), and top-down (T) connections in a similar
fashion to previous work (Liang and Hu, 2015; Liao and
Poggio, 2016). These connections roughly correspond to
processing information from lower and higher regions in the
ventral visual hierarchy (bottom-up and top-down connections),
and processing information from within a region (lateral
connections). We choose to use the convolutional architecture
as it is a parameter efficient method for building large neural
networks that can perform real-world tasks (LeCun et al., 2015).
It is directly inspired by biology, with restricted receptive fields
and feature detectors that replicate across the visual field (Hubel
and Wiesel, 1968) and advances based on this architecture have
produced useful models for visual neuroscience (Kriegeskorte,
2015). The interchange between biology and engineering is
important for the progress of both fields (Hassabis et al., 2017). By
using convolutional neural networks as the basis of our models,
we aim to maximize the transfer of knowledge from these more
biologically motivated experiments to applications in computer
vision, and by using recurrent connections, we hope that our
models will contribute to a better understanding of recurrent
connections in biological vision whilst maintaining the benefits
of scalability from convolutional architectures.

To test whether recurrent neural networks perform better
than feedforward networks at occluded object recognition, we
trained and tested a range of networks to perform a digit
recognition task under varying levels of occlusion. Any difference
in performance reflects the degree to which networks learn the
underlying task of recognizing the target digits, and handle the
occlusion when recognizing the digit. To differentiate between
these two cases we also look at how well networks trained
on occluded object recognition generalize to object recognition
without occlusion. We also test whether recurrence shows an
advantage for standard object recognition and when dealing with
noisy inputs, more generally, by measuring object recognition
performance with and without the presence of additive Gaussian
noise. Finally, we study whether any benefit of recurrence extends
to occluded object recognition where the occluder is also a target,
the networks are tested on multiple digit recognition tasks where
the targets overlap.

2. MATERIALS AND METHODS

2.1. Generative Model for Stimuli
To investigate the effect of occlusion in object recognition, we opt
to use a task that could be solved trivially without the presence
of occlusion, computer generated digit recognition. Each digit
uses the same font, color, and size. The only variable is the
position of the digit, which is drawn from a uniform random
distribution. This means, the only invariance problem that needs
to be solved is translation invariance, which is effectively built
into the convolutional networks we use. Therefore, we restrict
ourselves to only altering the level of occlusion to increase task
difficulty. This means we need to use some challenging occlusion
scenarios to differentiate between the models. However, this

allows us to isolate the effects of occlusion and, by keeping the
overall task relatively simple, we can use small networks, allowing
us to train them across a wide range of conditions.

We generate occlusion using two methods, by scattering
debris across the image, digit debris, and by presenting
overlapping digits within a scene, which the network has to
simultaneously recognize, digit clutter.

For digit debris, we obtain debris from fragments of each of
the possible targets, taking random crops from randomly selected
digits. Each of these fragments are then added to a mask that
is overlaid on the target digit (Figure 1). As a result, the visual
features of non-target objects, that the network has to ignore,
are present in the scene. These conditions mean that summing
the overall visual features present for each digit becomes a less
reliable strategy for inferring the target digit. This is in contrast
to deletion where there is only a removal of features that belong
to the target.

However, within natural visual scenes, occlusion is generated
by other whole objects. These objects might also be of interest
to the observer. In this scenario, simply ignoring the occluding
objects would not make sense. In digit clutter, these cases are
simulated by generating images with multiple digits that are
sequentially placed in an image, where their positions are also
drawn from a uniform random distribution. This generates a
series of digits that overlap, producing a relative depth order. The
task of the network is then to recognize all digits that are present.

Design of these images was performed at high resolution (512
× 512 pixels) and, for computational simplicity, the images were
resized to a low resolution (32× 32 pixels) when presented to the
network.

In these experiments we use stimulus sets, that vary in either
the number of digits in a scene—three digits, four digits, or five
digits—or the number of fragments that make up the debris—
10 fragments (light debris), 30 fragments (moderate debris),
or 50 fragments (heavy debris). Examples from these stimulus
sets are shown in Figure 2. This allows us to measure how the
performance of the networks differ across these task types and
levels of occlusion.

For each of these image sets, we randomly generated a training
set of 100,000 images and a validation set of 10,000 images, which
were used for the determining the hyperparameters and learning
regime. All analyses where performed on an independent test set
of 10,000 images.

All images underwent pixel-wise normalization prior to being
passed to the network. For an input pixel x in position i, j, this is
defined as:

x̂i,j =
xi,j − x̄i,j

sxi,j
(1)

where xi,j is the raw pixel value, x̄i,j is the mean pixel value
and sxi,j is the standard deviation of pixel values. The mean and
standard deviation are computed for each specific position across
the whole of the training data.

To test the hypothesis that the benefit of recurrence is not
simply for cleaning up noise, we also test the network on object
recognition where the input has additive Gaussian noise. To
prevent ceiling performance, we use the MNIST handwritten
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Generate the digit Get random crops

for the debris

Overlay the debris 

on the digit

FIGURE 1 | The process for generating stimuli for digit debris. First the target digit is generated. Random crops of all possible targets are taken to create a mask of

debris, which is applied to the target as an occluder.

digit recognition data set (LeCun et al., 1998). The MNIST data
set contains 60,000 images in total that are divided into a training
set of 50,000 images, a validation set of 5,000 images, and a testing
set of 10,000 images.

We add Gaussian noise to these images after normalization,
which allows an easy interpretation in terms of signal to noise
ratio. In this case, we use Gaussian noise with a standard
deviation of 1 and 2, which produces images with a signal-to-
noise ratio (SNR) of 1 and 0.5, respectively.

2.2. Models
In these experiments we use a range of convolutional
neural networks (for an introduction to this architecture, see
Goodfellow et al., 2016). These networks can be categorized
by the particular combination of bottom-up, lateral, and top-
down connections that are present. As it does not make sense
to construct the networks without bottom-up connections (as
information from the input cannot reach higher layers), we
are left with four possible architectures with the following
connections, bottom-up only (B), bottom-up and top-down
(BT), bottom-up and lateral (BL), and bottom-up, lateral and
top-down (BLT). Each of these architectures are illustrated
schematically in Figure 3.

Adding top-down or lateral connections to feedforward
models introduces cycles into the graphical structure of the
network. The presence of cycles in these networks allow recurrent
computations to take place, introducing internally generated
temporal dynamics to the models. In comparison, temporal
dynamics of feedforward networks can only be driven by changes
in the input. The effect of recurrent connections can be seen
through the unrolling of the computational graph across time
steps. In these experiments, we run ourmodels for four time steps
and the resulting graph for BLT is illustrated in Figure 4.

As the recurrent networks (BT, BL, and BLT) have additional
connections compared to purely feedforward networks (B), they
also have a larger number of free parameters (Table 1). To control
for this difference, we test two variants of B that have a more
similar number parameters to the recurrent networks. The first
control increases the number of features that can be learned by
the bottom-up connections and the second control increases the
size of individual features (known as the kernel size). These are
referred to as B-F and B-K, respectively. Conceptually, B-K is

a more appropriate control compared to B-F, as it effectively
increases the number of connections that each unit has, holding
everything else constant. In comparison, B-F increases the
number of units within a layer, altering the layers representational
power, in addition to changing the number of parameters.
However, B-F is more closely parameter matched to some of the
recurrent models, which motivates the inclusion of B-F in our
experiments.

2.2.1. Architecture Overview
All of the models tested consist of two hidden recurrent
convolutional layers (described in Section 2.2.2) followed by
a readout layer (described in Section 2.2.3). Bottom-up and
lateral connections are implemented as standard convolutional
layers with a 1×1 stride. The feedforward inputs between the
hidden layers go through a max pooling operation, with a 2×2
stride and a 2×2 kernel. This has the effect of reducing the
height and width of a layer by a factor of two. As a result, we
cannot use standard convolutions for top-down connections,
as the size of the top-down input from the second hidden
layer would not match the size of the first hidden layer. To
increase the size of the top-down input, we use transposed
convolution (also known as deconvolution Zeiler et al., 2010)
with an output stride of 2×2. This deconvolution increases
the size of the top-down input so that it matches the size of
the first hidden layer. The connectivity of this layer can be
understood as a normal convolutional layer with 2×2 stride
where the input and output sides of the layer have been
switched.

As feedforward networks do not have any internal dynamics
and the stimuli are static, feedforward networks only run for
one time step. Each of the recurrent networks are run for
four time steps. This is implemented as a computational graph
unrolled over time (Figure 4), where the weights for particular
connections are shared across each time step. The input is also
replicated at each time point.

To train the network, error is backpropagated through time
for each time point (Section 2.2.4), which means that the network
is trained to converge as soon as possible, rather than at the final
time step. However, when measuring the accuracy, we use the
predictions at the final time step as this generally produces the
highest accuracy.
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FIGURE 2 | High resolution examples from the stimulus sets used in these experiments. The top row shows digit debris stimuli for each of the three conditions tested

here, with 10, 30, and 50 fragments. The bottom row shows digit clutter stimuli with 3, 4, and 5 digits.

B

Readout

Input

BT BLT

L
a

y
e

rs

BL

Readout Readout

Input Input Input

Readout

Bottom-up (B) Lateral (L) Top-down (T)

FIGURE 3 | Schematic diagrams for each of the architectures used. Arrows indicate bottom-up (blue), lateral (green), and top-down (red) convolutions.

2.2.2. Recurrent Convolutional Layers
The key component of these models is the recurrent
convolutional layer (RCL). The inputs to these layers are
denoted by h(τ ,m,i,j), which represents the vectorized input from
a patch centered on location i, j, in layer m, computed at time

step τ , across all features maps (indexed by k). We define h(τ ,0,i,j)
as the input image to the network.

For B, the lack of recurrent connections reduces RCLs to a
standard convolutional layer where the pre-activation at time
step τ for a unit in layer m, in feature map k, in position i, j is
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Readout
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FIGURE 4 | The computational graph of BLT unrolled over four time steps. The shaded boxes indicate hidden layers that receive purely feedforward input (blue) and

those that receive both feedforward and recurrent input (purple).

TABLE 1 | Brief descriptions of the models used in these experiments including

the number of learnable parameters and the number of units in each model.

Model Kernel size No. Features No. parameters No. units

B 3 × 3 32 9,920 40,970

B-F 3 × 3 64 38,272 81,930

B-K 5 × 5 32 26,816 40,970

BT 3 × 3 32 19,168 40,970

BL 3 × 3 32 28,416 40,970

BLT 3 × 3 32 37,568 40,970

defined as:

zτ ,m,i,j,k = (wb
m,k)

T h(τ ,m−1,i,j) + bm,k (2)

where τ = 0 (as B only runs for a single time step) the
convolutional kernel for bottom-up connections is given in
vectorized format by wb

m,k
and the bias for feature map k in layer

m is given by bm,k.
In BL, lateral inputs are added to the pre-activation, giving:

zτ ,m,i,j,k = (wb
m,k)

T h(τ ,m−1,i,j) + (wl
m,k)

T h(τ−1,m,i,j) + bm,k (3)

The term for lateral inputs (wl
m,k

)T h(τ−1,m,i,j) uses the same
indexing conventions as the bottom-up inputs in Equation (2),
where wl

m,k
is the lateral convolutional kernel in vectorized

format. As the lateral input is dependent on outputs computed
on the timestep τ − 1, they are undefined for the first time step,
when τ = 0. Therefore, when τ = 0 we set recurrent inputs

to be a vector of zeros. This rule applies for all recurrent input,
including top-down inputs.

In BT, we add top-down inputs to the pre-activation instead of
lateral inputs. This gives:

zτ ,m,i,j,k = (wb
m,k)

T h(τ ,m−1,i,j)+ (wt
m,k)

T h(τ−1,m+1,i,j)+ bm,k (4)

Where the top-down term is (wt
m,k

)T h(τ−1,m+1,i,j), and wt
m,k

is
the top-down convolutional kernel in vectorized format. In our
models, top-down connections can only be received from other
hidden layers. As a result, top-down inputs are only given when
m = 1 and otherwise they are set to a vector of zeros. The rule for
top-down inputs also applies to top-down inputs in BLT.

Finally, we can add both lateral and top-down inputs to the
pre-activation, which generates the layers we use in BLT:

zτ ,m,i,j,k = (wb
m,k)

T h(τ ,m−1,i,j) + (wl
m,k)

Th(τ−1,m,i,j)

+(wt
m,k)

Th(τ−1,m+1,i,j) + bm,k (5)

The output, hτ ,m,i,j,k, is calculated using the same operations for
all layers. The pre-activation zτ ,m,i,j,k is passed through a layer of
rectified linear units (ReLUs), and local response normalization
(Krizhevsky et al., 2012).

ReLUs are defined as:

σz(zτ ,m,i,j,k) = max({0, zτ ,m,i,j,k}) (6)

and local response normalization is defined for input xτ ,m,i,j,k as:

ω(xτ ,m,i,j,k) = xτ ,m,i,j,k


c+ α

min(n−1,k+n/2)∑

k′=max(0,k−n/2)

x2τ ,m,i,j,k′




−β

(7)
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For local response normalization, we use n = 5, c = 1, α =

10−4, and β = 0.5 throughout. This has the effect of inducing
competition across the n closest features within a spatial location.
The features are ordered arbitrarily and this ordering is held
constant.

The output of layer l at time step t is then given by:

hτ ,m,i,j,k = ω(σz(zτ ,m,i,j,k)) (8)

2.2.3. Readout Layer
In the final layer of each time step, a readout is calculated for each
class. This is performed in three steps. The first stage is a global
max pooling layer, which returns the maximum output value for
each feature map. The output of the global max pooling layer is
then used as input to a fully connected layer with 10 output units.
These outputs are passed through a sigmoid non-linearity, σy(x),
defined as:

σy(x) =
1

1+ e−x
(9)

This has the effect of bounding the output between 0 and 1.
The response of each of these outputs can be interpreted as the
probability that each target is present or not.

2.2.4. Learning
At each time step, the networks give an output from the readout
layer, which we denote ŷt , where we interpret each output as the
probability that a particular target is present or not.

In training, the objective is to match this output to a ground
truth y, which uses binary encoding such that its elements yi are
defined as:

yi =

{
1 if i ∈ y’

0 otherwise
(10)

Where y’ is the list of target digits present.
We used cross-entropy to calculate the error between ŷt and y,

which is summed across all time steps:

E(̂y, y) = −

T∑

t= 0

N∑

i= 0

yi · log ŷt,i + (1− yi) · log(1− ŷt,i) (11)

L2-regularization is included, with a coefficient of λ = 0.0005,
making the overall loss function:

L(̂y, y) = E(̂y, y)+ λ||w||2 (12)

Where w the vector of all trainable parameters in the model.
This loss function was then used to train the networks by

changing the parameters at the end of each mini-batch of 100
images according to the momentum update rule:

vn+1 = µvn − ε
∂L(̂y, y)

∂w
(13)

wn+1 = wn + vn+1 (14)

Where n is the iteration index, µ is the momentum coefficient,
and ε is the learning rate. We use µ = 0.9 for all models and set
ε by the following weight decay rule:

εn = ηδ
e
d (15)

Where η is the initial learning rate, δ is the decay rate, e is the
epoch (a whole iteration through all training images), and d is
the decay step. In our experiments we use η = 0.1, δ = 0.1,
and d = 40. All networks were trained for 100 epochs. The
parameters for the training regime where optimized manually
using the validation set.

2.3. Analyzing Model Performance
2.3.1. Comparing Model Accuracy
Wemeasured the performance of the networks by calculating the
accuracy across the test set. For digit clutter tasks with multiple
labels, we took the top-n class outputs as the network predictions,
where n is the number of digits present in that task.

Accuracy was compared within image sets by performing
pairwise McNemar’s tests between all of the trained models
(McNemar, 1947). McNemar’s test is used here, which uses
the variability in performance across stimuli as the basis for
statistical inference (Dietterich, 1998). This does not require
repeated training from different random seeds, which is both
computationally expensive, and redundant, as networks converge
on highly similar performance levels. By avoiding the need to
retrain networks from different random initializations we are able
to explore a variety of qualitatively different architectures and
infer differences between them.

Tomitigate the increased risk of false positives due to multiple
comparisons, we control the false discovery rate (the expected
proportion of false positives among the positive outcomes) at 0.05
for each group of pairwise tests using the Benjamini-Hochberg
procedure (Benjamini and Hochberg, 1995).

2.3.2. Comparing Model Robustness
To understand whether networks have varying levels of
robustness to increased task difficulty (i.e., increased levels of
debris, clutter, and Gaussian noise), we test for differences in the
increase in error between all networks as task difficulty increases.

To achieve this, we fit a linear model to the error rates for
each network separately, with the difficulty levels as predictors
(e.g., light debris = 1, moderate debris = 2, heavy debris = 3). We
extract the slope parameters from the linear models for a pair
of networks and test if the difference in these slope parameters
significantly differs from zero, by using a permutation test.

To construct a null distribution for the permutation test, we
randomly shuffle predictions for a single image between a pair
of networks. Error rates are then calculated for these shuffled
predictions. A linear model is fit to these sampled error rates,
for each model separately, and the difference between the slope
parameters is entered into the null distribution. This procedure
is run 10,000 times to approximate the null distribution. The p-
value for this test is obtained by making a two-tailed comparison
between the observed value for the difference in slope parameters
and the null distribution. Based on the uncorrected p-values, a
threshold is chosen to control the FDR at 0.05.
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3. RESULTS

3.1. Recognition of Sights under Debris
3.1.1. Learning to Recognize Digits Occluded by

Debris
Networks were trained and tested to recognize digits under
debris to test for a particular benefit of recurrence when
recognizing objects under structured occlusion. We used three
image sets containing different levels of debris, 10 fragments
(light debris), 30 fragments (moderate debris), and 50 fragments
(heavy debris). For every model, the error rate was found
to increase as the level of debris in the image increased
(Figure 5).

Under light and moderate debris, all but one of the pairwise
differences were found to be significant (FDR = 0.05) with no
significant difference between BL or BLT for light (χ2(1,N =

10, 000) = 0.04, p = 0.835) and moderate debris (χ2(1,N =

10, 000) = 0.00, p = 0.960). Of the feedforward models, B-K was
the best performing. The error rates for each of the models are
shown in Table 2.

Under heavy debris all pairwise differences were significant
(FDR = 0.05) including the difference between BL and BLT,
which was not significant under light and moderate debris,
with BLT outperforming BL. This suggests that at lower levels
of occlusion, feedforward and lateral connections are sufficient
for good performance. However, top-down connections become
beneficial when the task involves recognizing digits under heavier
levels of debris.

3.1.2. Learning to Recognize Unoccluded Digits

When Trained with Occlusion
To test if the networks learn a good model of the digit
when trained to recognize the digit under debris, we test the
performance of networks when recognizing unoccluded digits.

When networks were trained to recognize digits under heavy
debris, and tested to recognize unoccluded digits, we found all
pairwise differences to be significant (FDR = 0.05, Figure 6).
The best performing network was B-K, followed by recurrent
networks. B and B-F performed much worse than all of the other
networks (Table 3).

These results show that feedforward networks (specifically
B-K) can perform very well at recognizing the digit without
occlusion, when trained to recognize digits under occlusion. This
suggests that they have learnt a good model of the underlying
task of digit recognition. However, B-K performs worse than the
recurrent models when recognizing the target under occlusion.
This indicates that B-K has difficulty recognizing the digit under

TABLE 2 | Classification error for all of the models on single digit detection with

varying levels of debris.

Image set B (%) B-F (%) B-K (%) BT (%) BL (%) BLT (%)

Light debris 6.24 4.23 1.73 1.30 0.77 0.80

Moderate debris 40.73 31.16 11.68 7.31 3.72 3.70

Heavy debris 75.63 68.49 29.58 17.01 11.13 9.32

FIGURE 5 | Classification error for all models on single digit detection under varying levels of debris. Examples of the images used to train and test the networks are

also shown. Matrices to the right indicate significant results of pairwise McNemar tests. Comparisons are across models and within image sets. Black boxes indicate

significant differences at p < 0.05 when controlling the expected false discovery rate at 0.05.
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FIGURE 6 | Classification error for all models trained under heavy debris conditions and tested with or without debris. Examples of the images used to train and test

the networks are also shown. Matrices to the right indicate significant results of pairwise McNemar tests. Comparisons are across models and within image sets.

Black boxes indicate significant differences at p < 0.05 when controlling the expected false discovery rate at 0.05.

TABLE 3 | Classification error for all of the models on single digit detection when

trained on heavy debris and tested without debris.

Image set B (%) B-F (%) B-K (%) BT (%) BL (%) BLT (%)

Tested on debris 75.63 68.49 29.58 17.01 11.13 9.32

Tested without debris 79.37 69.88 0.34 3.10 2.11 0.55

occlusion rather than a problem learning to perform the task
of digit recognition given the occluded training images. In
comparison, recurrent networks show much lower error rates
when recognizing the target under occlusion.

3.2. Recognition of Multiple Digits
To examine the ability of the networks to handle occlusion when
the occluder is not a distractor, the networks were trained and
tested on their ability to recognize multiple overlapping digits.

When recognizing three digits simultaneously, recurrent
networks generally outperformed feedforward networks
(Figure 7), with the exception of BT and B-K where no
significant difference was found [χ2(1,N = 30, 000) = 3.53,
p = 0.06]. All other differences were found to be significant
(FDR = 0.05). The error rates for all models are shown in Table 4.
A similar pattern is found when recognizing both four and
five digits simultaneously. However, in both four and five digit
tasks, all pairwise differences were found to be significant, with
B-K outperforming BT (Figure 7). This suggests that, whilst
recurrent networks generally perform better at this task, they do
not exclusively outperform feedforward models.

3.3. MNIST with Gaussian Noise
To test the hypothesis that the benefit of recurrence does not
extend to dealing with noise in general, we test the performance
of the networks on MNIST with unstructured additive Gaussian
noise.

The error rates for all models were found to grow as
the amount of noise increased (Table 5). Recurrent networks
performed significantly better than the feedforward models on
MNIST (FDR = 0.05). This supports the idea that recurrent
networks are not only better at recognition under challenging
conditions, but also in more standard object recognition tasks.

All pairwise differences were found to be significant
between feedforward models. Recurrent networks continued to
outperform feedforward networks with the addition of Gaussian
noise (Figure 8).

At the highest noise levels (SNR = 0.5), BL was found to
perform significantly worse than both BT [χ2(1,N = 10, 000) =
61.69, p < 0.01] and BLT [χ2(1,N = 10, 000) = 55.12, p <

0.01]. This means that top-down connections might be more
useful for than lateral connections recognizing digits under high
levels of additive Gaussian noise.

3.4. Robustness under Challenging
Conditions
When testing for robustness to increasing levels of debris and
Gaussian noise, we found that recurrent networks were always
more robust than the feedforward networks. This relationship
was not found in the case of clutter. Only one network, BT, was
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FIGURE 7 | Classification error for all models on multiple digit detection with varying numbers of digits. Examples of the images used to train and test the networks

are also shown. Matrices to the right indicate significant results of pairwise McNemar tests. Comparisons are across models and within image sets. Black boxes

indicate significant differences at p < 0.05 when controlling the expected false discovery rate at 0.05.

TABLE 4 | Classification error for all of the models on multiple digit recognition

with varying numbers of targets.

Image set B (%) B-F (%) B-K (%) BT (%) BL (%) BLT (%)

3 digits 9.35 6.30 3.74 3.97 2.45 1.85

4 digits 15.95 12.37 9.43 10.88 6.69 5.94

5 digits 19.57 16.50 13.97 15.80 12.31 11.50

found to be significantly less robust to increases in clutter, and
all other networks were found to have similar levels of robustness
(Figure 9).

Within feedforward networks, B-Kwas always themost robust
to debris and noise, and B-F was always more robust than B.
Within recurrent networks, BLT was the most robust to debris
and BL was more robust to debris than BT. However, BLT and
BT were more robust than BL to Gaussian noise.

These results suggest that, when debris or Gaussian noise
are added, recurrent models take smaller hits to the error rate
than feedforward networks. However, when clutter is added,
recurrent networks (though still better in absolute performance)
take similar hits to the error rate.

More specifically, in the scenarios tested here, lateral
recurrence seem to have greater benefit when handling debris and
top-down connections improve robustness to Gaussian noise. By
utilizing both lateral and top-down connections, BLT is more
robust to both increasing levels of debris and increasing levels
of Gaussian noise.

TABLE 5 | Classification error for all of the models on MNIST with varying levels of

Gaussian noise.

Image set B (%) B-F (%) B-K (%) BT (%) BL (%) BLT (%)

No Noise 2.99 2.42 1.43 0.95 0.95 0.95

SNR = 1 13.01 10.59 4.04 1.82 2.01 1.96

SNR = 0.5 39.04 35.15 17.44 8.69 11.51 8.85

4. DISCUSSION

We found support for the hypothesis that recurrence helps
when recognizing objects in a range of challenging conditions,
as well as aiding recognition in more standard scenarios. The
benefit of recurrence for object recognition in challenging
conditions appears to be particularly strong in the case of
occlusion generated by a non-target and the addition of Gaussian
noise, with recurrent networks appearing more robust. In
the multiple digit recognition tasks, where the occlusion is
generated by other targets, the best performing networks are still
recurrent. However, recurrent networks are not more robust,
than feedforward networks, to an increased number of digits.

Of the feedforward models, B-K is always the best performing
and can outperform recurrent models in some tasks, in the case
of multiple digit recognition. One potential explanation is that
B-K incorporates some of the benefits of recurrence by having
a larger receptive field. This is because recurrence increases
the effective receptive field of a unit by receiving input from
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FIGURE 8 | Classification error for all models on recognition in MNIST with and without Gaussian noise. Examples of the images used to train and test the networks

are also shown. Matrices to the right indicate significant results of pairwise McNemar tests. Comparisons are across models and within image sets. Black boxes

indicate significant differences at p < 0.05 when controlling the expected false discovery rate at 0.05.

model in column is more robustmodel in row is more robust

FIGURE 9 | Pairwise differences in model robustness to increased task difficulty. Arrows indicate the more robust model out of the pair tested.

neighboring units. This may also explain why BT tends to be
the worst performing recurrent model (and outperformed by
B-K) in some tasks. BT does not have lateral connections that
more directly integrate information from neighboring units, but
information has to go through a higher layer first in order to
achieve this. The difference in performance between BT and
BL may also tell us about what tasks benefit more directly

from incorporating information from outside the classical
receptive field (where BL shows an advantage) as opposed to
specifically utilizing information from more abstract features
(where BT shows an advantage). In these experiments, BLT
is the best performing network across all tasks, showing that
it is able to utilize the benefits of both lateral and top-down
connections.
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We find evidence to suggest that feedforward networks
have particular difficulty recognizing objects under occlusion
generated by debris, and not just learning the task of recognizing
digits when trained with heavily occluded objects (Section 3.1.2).
This gives specific support to the hypothesis that recurrent
processing helps in occluded object recognition.

Recurrent networks also outperformed the parameter
matched controls on object recognition tasks where no occlusion
was present (Section 3.3). This is consistent with previous work
that has shown that recurrent networks, similar in architecture
to the BL networks used here, perform strongly compared to
other feedforward models with larger numbers of parameters
(Liang and Hu, 2015). Therefore, some level of recurrence may
be beneficial in standard object recognition, an idea that is
supported by neural evidence that shows object information
unfolding over time, even without the presence of occlusion
(Sugase et al., 1999; Brincat and Connor, 2006; Freiwald and
Tsao, 2010; Carlson et al., 2013; Cichy et al., 2014; Clarke et al.,
2015).

This work suggests that networks with recurrent connections
generally show performance gains relative to feedforward models
when performing a broad spectrum of object recognition tasks.
However, it does not indicate which of these models best describe
human object recognition. Future comparisons to neural or
behavioral data will be needed to test the efficacy of these models.
For example, as these models are recurrent and unfold over time,
they can be used to predict human recognition dynamics for
the same stimuli, such as reaction time distributions and the
order that digits are reported, in the multiple digit recognition
tasks.

Furthermore, we can study whether the activation patterns of
these networks predict neural dynamics of object recognition.
This is similar to previous work that has attempted to explain
neural dynamics of representations using individual layers of
deep feedforward networks (Cichy et al., 2016), but by using the
recurrent models we can directly relate temporal dynamics in the
model to temporal dynamics in the brain. For instance, in tasks
with multiple targets (such as those in Section 3.2) we can look
at the target representations over recurrent iterations and layers
in the model, and compare this to the spatiotemporal dynamics
of multiple object representations in neural data. Testing these
models against this experimental data will allow us to better
understand the importance of lateral and top-down connections,
in these models, for explaining neural data.

In addition, whilst we know that adding recurrent connections
leads to performance gains in these models, we do not know the
exact function of these recurrent connections. For instance, in
the case of occlusion, the recurrent connections might complete
some of the missing information from occluded regions of
the input image, which would be consistent with experimental
evidence in cases where parts of the image have been deleted
(Smith and Muckli, 2010; O’Reilly et al., 2013). Alternatively, as
our occluders contain visual features that could be potentially
misleading, recurrent connections may have more of an effect
of suppressing the network’s representation of the occluders
through competitive processing (Adesnik and Scanziani, 2010;
Kolankeh et al., 2015). Recurrent connectivity could also learn

to produce border ownership cells that would help in identifying
occluders in the image (Zhaoping, 2005; Sakai and Nishimura,
2006; Craft et al., 2007), which would help suppress occluders
in tasks where occluders are non-targets. If these networks are
to be useful models of visual processing, then it is important
that future work attempts to understand the underlying processes
taking place.

It could be argued that BLT performs the best due to the
larger number of parameters it can learn. However, we know that
the performance of these networks is not only explained by the
number of learnable parameters, as B-F has the largest number
of parameters of the models tested (Table 1) and performs
poorly in all tasks relative to the recurrent models. Finding
exactly parameter matched controls for these models that are
conceptually sound is difficult. As discussed earlier (Section 2.2),
altering the kernel size of the feedforward models is the best
control, but this provides a relatively coarse-grainedway tomatch
the number of parameters. Altering the number of learnt features
allows more fine-tuned controls for the number of parameters,
but this also changes the number of units in the network, which
is undesirable. We believe that the models used here represent
a good compromise between exact parameter matching and the
number of units in each model.

This research suggests that recurrent convolutional neural
networks can outperform their feedforward counterparts across
a diverse set of object recognition tasks and that they show
greater robustness in a range of challenging scenarios, including
occlusion. This builds on previous work showing a benefit of
recurrent connections in non-convolutional networks where
parts of target objects are deleted (O’Reilly et al., 2013). This
work represents initial steps for using recurrent convolutional
neural networks as models of visual object recognition. Scaling
up these networks and training them on large sets of natural
images (e.g., Russakovsky et al., 2015) will also be important for
developing models that mirror processing in the visual system
more closely. Future work with these networks will allow us to
capture temporal aspects of visual object recognition that are
currently neglected in most models, whilst incorporating the
important spatial aspects that have been established by prior
work (DiCarlo et al., 2012). Modeling these temporal properties
will lead to a more complete understanding of visual object
recognition in the brain.
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