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Abstract— The cleaning of a collection-based sensor extends its lifetime and reduces its effective cost. Existing cleaning 

regimes for silicon-based devices typically require access to large laboratory equipment. A simple cleaning method 

based on solvent rinses is presented here for the application of microresonator atmospheric particulate mass sensors. 

The suggested approach is intended for scenarios with limited access to laboratory equipment. Two piezoelectric 

resonator topologies (in-plane bulk mode and out-of-plane flexural) collected particles via impaction for an hour before 

rinsing. The solvent rinses reset the resonant frequency and quality factor of each resonator to within 0.4% and 10% of 

their original values, respectively. Subsequent mass collections were largely repeatable despite fluctuations in particle 

concentration and deposition location. The presented method provides a straightforward but effective cleaning method 

for soluble particulate removal. A physical cleaning method is required after substantial insoluble particle adsorption. 

 
Index Terms—flexural, LBAR, mass sensing, particulate matter.  

 

I. INTRODUCTION 

A wide range of sensing applications have emerged for 

microelectromechanical system (MEMS) resonators including 

temperature [1], pressure [2], and particulate mass sensing [3]–[5]. 

Some applications, such as mass sensing, require the adsorption of 

material onto the resonator surface which inherently limits the 

lifetime of the sensor. In principle if such a device is mass produced 

at a low cost then it can simply be replaced but practically this is rarely 

the case. Resonators may be fully integrated into the instrument 

making replacement difficult and new resonators, even of the same 

design, may require initial characterization. The other approach is to 

remove the adsorbed material with a cleaning protocol. The cleaning 

of silicon surfaces can be performed using a range of methods 

including CO2 snow jet [6]; ultraviolet radiation and ozone [7]; 

plasma cleaning [8]; and solvent soaks [7], [9], [10]. Traditional 

cleaning methods, such as ultrasonic baths [5], have also been applied 

to MEMS particulate mass sensors. These methods, although 

effective, are limited in their out-of-laboratory applicability where 

constraints exist on equipment size and materials. In the push from 

laboratory to widespread use, resonant MEMS sensors require a 

straightforward cleaning approach.  

By extending microfluidic solvent applications outside of a flow 

cell [9], [10], a new rinsing technique is applied to resonant mass 

sensors whereby small volumes of common solvents are used to 

remove adsorbed particles without damaging wire bond connections. 

The technique is fast (less than five minutes) and can be applied in 
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non-laboratory settings as it only requires hand-held equipment. The 

approach is inherently limited by the presence of insoluble 

particulates but is still relevant given that a significant portion of 

atmospheric particles are soluble in either water or methanol (with the 

exact percentage depending on the specific time and location) [11]. 

The simple solvent method therefore extends the lifetime until a 

traditional physical removal method is required. 

This work investigates the effectiveness of the rinsing technique in 

terms of the reusability of an in-plane bulk acoustic wave resonator 

and a plate resonator operating in a flexural mode. The cleaning 

procedure was tested with two atmospherically relevant particle types 

and repeated three times for the same resonator. In all cases the 

resonant frequency returned to within 0.4% of the original value. 

II. METHODS 

For each resonator-particle combination, particles were collected 

for one hour followed by the cleaning of the resonator surface. This 

process was repeated three times for each combination. Optical 

images of the resonator surfaces were acquired with a digital 

microscope (VHX-500F, Keyence) before and after each cleaning 

step to qualitatively assess the cleaning. Throughout particle 

collection the resonant frequency of the resonator was tracked as it 

shifted negatively following the standard mass loading relationship 

[12]. The production and collection of particles onto the resonator 

follows the experimental procedure described earlier using the 

MEMS Impactor Stage (MIS) [13]. The arrangement allows for a 

correlation between the measured frequency shift of the resonator and 
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the particle concentration of the incoming flow to be obtained. The 

following subsections highlight experimental details. 

A. Description of resonators and signal processing 

Both resonators, shown in Fig. 1, are fabricated using a commercial 

foundry process [14] starting from silicon-on-insulator wafers with 

aluminum nitride as the piezoelectric film. The in-plane bulk acoustic 

wave resonator, previously described in detail by Prasad et. al [12], is 

a suspended 1400 μm  1400 μm plate with four triangular electrodes. 

Its ~3.15 MHz square-extensional mode was tracked for the purpose 

of this study. The nearby wine-glass (~2.84 MHz) and butterfly 

(~3.20 MHz) modes were electrically suppressed. The flexural mode 

plate resonator, previously described in detail by Weckman and 

Seshia [15], is an 880 μm  860 μm plate with two rectangular 

electrodes. Its ~350 kHz (1,2) square plate flexural mode was tracked 

for this study. Resonators were transduced in a two-port configuration 

with actuation and sensing from two separate sets of electrodes. 

The frequency response of each resonator was measured in an 

open-loop arrangement using a network analyzer (N9915A, Agilent) 

each minute with discrete frequency resolutions of ±25 Hz and 

±12.5 Hz for secondary organic aerosol and salt collection, 

respectively. The in-plane resonator was driven at a -10 dBm while 

the flexural mode was driven at 0 dBm.  

  
Fig. 1.  Optical images of front resonator surfaces at 100x magnification. 

The in-plane (left) and flexural mode (right) resonators have lateral 

dimensions of 1400 μm  1400 μm and 880 μm  860 μm, respectively. 

Particles collected on back surface. 

B. Particle production and collection 

The two particles used were secondary organic aerosol (SOA) from 

the ozonolysis of α-pinene and ammonium sulfate, (NH4)2SO4, salt 

particles produced through nebulization. SOA and ammonium sulfate 

significantly contribute to atmospheric particle compositions from 

both anthropogenic and natural sources [16]. Ozonolysis of α-pinene 

(98%, Sigma-Aldrich) involves flowing synthetic air (Zero grade, 

BOC) through an ozone generating lamp (3SC-9, UVP) with a 

primary emission wavelength of 184.9 nm. The resulting flow of 

ozone was mixed with a flow of volatile α-pinene in a 5 L flow tube 

at flow rates of 0.2 LPM and 1.0 LPM, respectively. Ozonolysis 

reaction products subsequently condense to form organic particles 

mimicking atmospheric particle formation processes. Any remaining 

volatile compounds were removed by a charcoal denuder before size 

selection. The salt particles (≥99.0% Ammonium sulfate, Sigma-

Aldrich) are nebulized with dry nitrogen gas (oxygen-free, BOC) 

from a 15 mM solution in water (Optima LC/MS, Fisher Chemical) 

and dried through a diffusion dryer before size selection.  

Once particles are produced they are electrostatically size selected 

at ~300 nm using a differential mobility analyzer (DMA, Model 3081, 

TSI). Particles are then collected onto the resonator by inertial 

impaction using the MIS through a nozzle with 3  0.25 mm circular 

jets. The cut-off diameter (the diameter at which 50% of particles are 

collected) is estimated to be <200 nm based on empirical pressure 

drops and established analytical relationships for the given flow rate 

[17], [18]. Reference particle concentrations are measured with two 

condensation particle counters (CPCs) upstream and downstream of 

the MIS (Models 3775 and 3776, TSI). Flow through the setup was 

driven by a vacuum pump which kept the flow through the MIS at 

~0.7 LPM producing a pressure drop on the order of ~35 kPa. 

Particles were collected for an hour during each experimental run. 

Prior to collection, particle production was allowed to stabilize for up 

to 40 minutes (e.g. to allow the ozone generating lamp to warm up) 

before flushing the system and pressurizing the MIS with clean flow. 

C. Cleaning procedure 

The removal of adsorbed particulate matter from the resonator 

surface was accomplished using 10 μL solvent rinses deposited via a 

micropipette onto resonators held at angles of 45-60° from horizontal 

to aid liquid drainage. Rinses were performed in ten second intervals 

before using a drying flow of nitrogen (4 LPM across the sensor) to 

expedite solvent evaporation. Resonators, which were cleaned prior 

to the initial collection, remained bonded to their chip carriers 

throughout. Cleaning conducted at room temperature (20 °C) and 

resonators inserted into MIS within 15 minutes of removal. 

For the removal of SOA, three rinses with methanol (HPLC grade, 

Fisher Chemical) were applied before drying. For the removal of salt, 

the primary solvent was water (Optima LC/MS, Fisher Chemical) in 

conjunction with methanol (a more volatile solvent). The procedure 

alternated between methanol and water with five methanol rinses and 

three water rinses before drying with nitrogen. Methanol rinses began 

and concluded the procedure to improve resonator wetting and to limit 

the formation of “coffee-ring” stains [19] on the surface, respectively. 

The method for removing salt is also applicable for a mixture of salt 

and SOA, although such a mixture was not studied here. 

In situations where significant soluble contaminants visibly 

persisted, probably due to ineffective solvent removal, the procedure 

was repeated. Insoluble contaminants from the solvents were always 

present during cleaning and accumulated after each rinse. Although 

assumed to be negligible, they can be removed after significant 

build-up using the physical processes described in the introduction. 

III. RESULTS AND DISCUSSION 

The reusability of each resonator is a combination of how well they 

can be restored to their original state and how well they can replicate 

the same measurement after cleaning. The restoration of a resonator 

is primarily a measure of the cleaning effectiveness while the ability 

to replicate measurements is also influenced by the flow setup. 

Representative images of the in-plane resonator before and after 

cleaning are shown in Fig. 2 for each particle type. They show a clear 

removal of most particles where the remaining contaminants are 

insoluble in water and/or methanol. The cleaning effectiveness is 

corroborated by the recovery of both the resonant frequency and 
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quality factor after each run as summarized in Table 1. The clean (i.e. 

‘before’) resonant frequency of the in-plane resonator fell within a 

275 Hz (equivalent to 87 ppm) and 412 Hz (131 ppm) span for SOA 

and salt collection, respectively. The total span of the six in-plane runs, 

performed with the same resonator, is 537 Hz (170 ppm) despite 

minor contamination (as seen in Fig. 2) between tests. Similarly, the 

quality factor remained within 10% of the original value after each 

cleaning across the six runs. The flexural resonator had a clean 

frequency span of 1387 Hz (equivalent to 0.39%) with the frequency 

lowering with each run, but quality factors were more reliable 

returning to within 5% of the original value. Although the cleaning is 

less effective than the nearly full regeneration of ultrasonic cleaning 

[5], the resonant frequencies are still largely reset. 

   

   
Fig. 2.  Collection surface of in-plane resonator before (top) and after 

(bottom) cleaning of SOA (left) and salt (right). Images taken between 

first and second runs. Some particles remain (due to being insoluble in 

given solvents) but cleaning is predominantly effective. Contaminants 

in cleaned salt image (bottom right) were present at start of salt tests. 

For reference, the resonator side length is 1400 μm. 

 

The frequency variation can be explained in part by the 

accumulation of contaminants (insoluble in methanol) on the 

resonator surface with each subsequent collection. The other major 

source of frequency variation is temperature as values in Table 1 are 

not corrected for temperature differences. Temperatures were 

relatively stable (within 1 °C) for the in-plane resonator between runs 

of the same particle type, but the temperature between particle types 

varied by approximately 6 °C. Using the temperature correction factor 

of -102 Hz/°C [12], the overall in-plane frequency span increases to  

1150 Hz (365 ppm). In contrast, the flexural resonator experienced a 

temperature range of 5 °C between the three runs and has a higher 

temperature sensitivity of -161 Hz/°C (determined over a range of 

22 °C to 57 °C). Accounting for temperature, the flexural frequency 

span reduces to 645 Hz (0.18%) which is 47% of the original variation. 

Another minor issue for both resonators is the short time between 

cleaning and collection which may influence the measured clean 

frequency as the solvent(s) may not have fully evaporated. Typically, 

once the MIS is pressurized with clean air the resonant frequencies 

converge (e.g. the flexural span reduces to roughly 1000 Hz without 

temperature correction). There was not a significant performance 

difference between cleaning procedures, although in practice the 

inclusion of water rinses for salt removal increases the cleaning time 

for both application and evaporation. A potential improvement to the 

system would be to use higher grade solvents to avoid contamination 

during cleaning which was especially evident with methanol rinses. 

This would minimise contamination of other devices on the same chip 

which experience the “coffee-ring” effect when not dried effectively. 

 

Table 1. Summary of changes in resonant frequency and quality factor 

before and after particle collection. Frequencies taken with MIS 

depressurized. Final clean results not included in table. 

  Resonant frequency (Hz) Quality factor 

 
Particle 

(Run No.) 
Before After Before After 

In
-p

la
n
e 

re
so

n
at

o
r SOA (1) 3,156,500 2,978,850 1,403 518 

SOA (2) 3,156,225 2,983,925 1,403 485 

SOA (3) 3,156,284 2,971,759 1,503 517 

Salt (1) 3,155,963 3,153,988 1,365 1,342 

Salt (2) 3,156,300 3,152,913 1,256 1,162 

Salt (3) 3,156,375 3,153,613 1,343 1,261 

F
le

x
u

ra
l 

re
so

n
at

o
r 

SOA (1) 353,125 348,275 115 69 

SOA (2) 352,800 344,313 111 74 

SOA (3) 351,738 341,963 120 70 

 

The magnitude of the frequency response before (darker line) and 

after (lighter) particle collection of each resonator is shown in Fig. 3. 

Gray lines denote SOA collection while orange lines denote salt 

collection for the in-plane resonator. The in-plane resonator had a 

linear response with time as expected for a roughly constant particle 

concentration [3]. The flexural mode resonator began with a linear 

response which plateaued as the resonator approached saturation. Salt 

collection with the flexural mode resonator is not included due to the 

resonator’s low mass sensitivity (on the order of 10 times lower than 

the in-plane resonator based on SOA collection).  

Each resonator-particle pairing had similar particle collections, but 

some variation is evident. The cause is likely a combination of particle 

production instability and resonator spatial sensitivity. 

Particle production of SOA is influenced by the volume of α-pinene 

and the temperature of the ozone lamp. Additionally, the flow rate 

through the MIS can vary due to the nozzle clogging and vacuum 

pump fluctuations. These fluctuations are typically minor as 

compared to the total concentration of particles passing through the 

DMA which are on the order of 80,000 particles/cm3. Minor 

fluctuations for salt production via nebulization are more significant 

due to the lower concentration of particles (2,000 particles/cm3). 

The spatial sensitivity of a resonator is based on the observed mode 

shape. If mass is collected near an anti-node the frequency response 

is maximized whereas collection near a node yields a negligible 

response [19]. The deposition pattern on the resonator will therefore 

influence the resonator response. Between runs the deposition 

location varied due to the slight variations (up to ~200 μm) when 

replacing both the chip carrier and the lid of the MIS. As such the 

sensitivities of the resonator response are also expected to vary.  

It is difficult to make substantial frequency comparisons between 

particle types due to markedly different concentrations. As a system, 



Article #                                                                                                                                                                               Volume 2(3) (2017)  

————————————————————————————————————– 

Page 4 of 4 

however, the MIS collection efficiency (i.e. the percentage of 

particles collected by the MIS as a whole) is consistent with previous 

studies [20] where α-pinene SOA showed lower collection 

efficiencies than ammonium sulfate (~30% vs ~60%) at low humidity. 

 

 

 
Fig. 3.  Frequency response shifts due to one-hour particle collections 

on the in-plane (top) and flexural (bottom) sensors where the right-most, 

darker colored peaks are the cleaned frequency responses. SOA 

collection runs and salt (in-plane only) collection runs are depicted by 

grey and orange lines, respectively. Each row represents one 

experimental run where resonators were cleaned between runs. Data 

does not account for differences in particle concentrations. Magnitude 

values are relative as each run is offset in the y-axis by 25 dB. 

IV. CONCLUSIONS 

A novel simple cleaning approach of MEMS resonators based on 

solvent rinses was introduced and studied using atmospherically 

relevant particles. Particles were collected by impaction onto the back 

face of both in-plane and flexural mode resonators. Solvent rinses 

were then used to reset the resonant frequency and quality factor of 

both resonators, returning them to within 0.4% and 10% of their 

original values over three repeats, respectively. Chips remained 

bonded to their chip-carriers throughout thus relinquishing the need 

for bulky, expensive equipment for resonator cleaning or re-bonding. 

Although the method leaves a small amount of insoluble residue it 

provides sufficient cleaning to substantially extend the lifetime of 

resonator-based particle sensors before requiring more rigorous 

physical cleaning methods. The rinsing approach could therefore be 

included in an automated system to partially reset a particulate sensor 

on a regular interval extending the time between maintenance visits. 
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