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Abstract 

Parallel Distributed Processing (PDP) models in psychology are the precursors of deep 

networks used in computer science. However, only PDP models are associated with two core 

psychological claims, namely, that all knowledge is coded in a distributed format, and 

cognition is mediated by non-symbolic computations.  These claims have long been debated 

within cognitive science, and recent work with deep networks speaks to this debate.  

Specifically, single-unit recordings show that deep networks learn units that respond 

selectively to meaningful categories, and researchers are finding that deep networks need to 

be supplemented with symbolic systems in order to perform some tasks.  Given the close 

links between PDP and deep networks, it is surprising that research with deep networks is 

challenging PDP theory. 
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PDP and Deep Neural Networks 

Parallel Distributed Processing or PDP (see glossary) theories of cognition [1,2] 

have had a profound influence in psychology, and recently, in computer science.  With 

regards to psychology, PDP theories are associated with a host of fundamental claims, but 

here I focus on two, namely, that knowledge is coded in a distributed rather than a localist 

format, and that computations are performed in a non-symbolic rather than symbolic manner 

(see Box 1).  As detailed below, these claims are currently the prominent view in both 

psychology and neuroscience, and challenge many classic theories in psychology, linguistics, 

and artificial intelligence. 

With regards to computer science, PDP models are the precursor to recent deep 

networks that have achieved state-of-the-art performance across a range of tasks, including 

speech [3,4] and object [5,6] recognition.  This in turn has led to billions of dollars in 

investment in developing deep networks by Google, Facebook, Baidu, amongst other 

technology companies.  Strikingly, these networks are in many ways similar to PDP models. 

Indeed, the most common way to train deep networks is through the back-propagation 

algorithm developed for PDP models in the 1980s.  Perhaps the two most important 

differences between the models of the past and current models is that today we have more 

powerful computers and graphical processing units (GPUs) that have sped up simulations 

by orders of magnitudes, and we have vastly larger datasets of labelled data for training 

networks. This, along with the introduction of more efficient activation functions has made 

it possible to train networks with many layers, millions of units and billions of connections (a 

recent model included over 1000 hidden layers; [7]).  Note that it is the many layers of these 

models that led to the term ‘deep’ networks, whereas earlier PDP networks tended to include 

only a few layers of units.  

Given the similarities between PDP and deep networks, it might be expected that the 

successes of deep networks would lend general support to PDP theories of cognition.  Indeed, 

the most common criticism of PDP models is that they are not powerful enough to explain 

human intelligence given their commitment to distributed representations [8] and non-

symbolic computations [9–11].  Accordingly, the ability of deep networks to solve some 

complex tasks, sometimes at super-human levels, might appear to undermine this critique.  
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Here I argue just the opposite, and highlight how current work with deep networks is 

providing the most compelling demonstration to date that PDP theories of human cognition 

are fundamentally flawed.  Two findings in particular pose a challenge for PDP theory, 

namely, deep networks learn highly selective representations under a range of conditions 

[12], and deep networks fail in solving those very tasks that proponents of symbolic systems 

predicted all along [13].  Similar findings have been found with PDP networks, both with 

regards to their learned representations [8,14,15] and their computational limitations [10,11].  

But given the level of attention directed to deep networks, the deep learning results may have 

more traction in changing minds in psychology and neuroscience. 

Localist versus Distributed Coding 

One of the common arguments put forward in support of PDP theories in psychology 

is that distributed representations are more biologically plausible than localist ones.  Indeed, 

localist models in psychology are often rejected on the basis that grandmother cells are 

untenable [16].  On the grandmother cell hypothesis, high-level categories (e.g. familiar 

words, objects, or faces) are identified when a single neuron fires beyond some threshold.  

However, grandmother cells in the neuroscience literature and localist representations in 

the psychology literature are often defined differently [17], and accordingly, rejecting 

grandmother cells has little or no bearing on the biological plausibility of localist models. In 

fact, there is now compelling evidence that some single neurons in the hippocampus and the 

cortex respond to familiar high-level information in a highly selective manner [18], and 

single-unit recordings in localist models in psychology are consistent with a range of single-

cell recording studies carried out on brains [19,20].  When grandmother cells are defined as 

localist representations (in order to make the grandmother cell hypothesis a well specified 

and serious hypothesis rather than the straw-man hypothesis that it often is), then 

grandmother cells are biologically plausible [17,18]. 

However, what is less well known, and the point I want to emphasize here, is that 

both PDP models and deep networks often learn localist representations.   

Localist representations in PDP models. Within psychology, Berkeley et al. [14] were 

the first to carry out single-unit recordings on PDP networks in order to explore the 

conditions under which networks learn localist versus distributed representations for high-

level information.  After training their models on various complex input-output mappings, 
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they recorded the response of each hidden unit to a range of inputs. They then displayed the 

results using a scatter plot for each unit. Each unit’s response to a specific input was coded 

with a point along the x-axis (ranging from 0-1), with values on the y-axis arbitrary (in order 

to prevent overlapping responses from different inputs; for illustration see Figure 1a).  The 

key finding was that the networks learned some localist representations when they included 

gaussian units (what the authors called “value units”).  By contrast, they failed to observe 

localist codes when their models included sigmoidal units that are typically used in PDP 

networks.  This highlights that distributed representations are not an intrinsic property of PDP 

networks, but rather, associated with specific implementations of PDP networks. 

More recently, we adapted these scatter plots to explore the conditions in which 

recurrent PDP models of short-term memory (STM) learn localist codes [8,15].  The models 

used sigmodal activation functions and were highly similar those developed by Botvinick and 

Plaut [21].  We found that the networks learned distributed representations when they were 

trained to recall single items, but learned localist representations when trained to recall 

sequences of items.  That is, we found that PDP networks learned distributed codes when the 

models were trained to activate one item at a time in STM and localist codes when trained to 

co-activate multiple items in STM (see Figure 1b).  We argued that learned distributed 

representations were unable to overcome the superposition catastrophe [22] in the later 

condition, and that the models were therefore forced to learn localist codes in order to 

succeed.  

  This computational explanation for the emergence of localist coding in our 

simulations complements an earlier analysis of Marr [23].  Just as Marr argued that long-term 

memory is coded in a highly selective manner in the hippocampus in order to encode new 

memories quickly without forgetting pre-existing memories (solving the so-called stability-

plasticity dilemma, [24]; otherwise known as catastrophic interference [25]), we argued that 

long-term knowledge in the cortex is coded in a selective manner in order to support STM 

(solving the superposition catastrophe).  More generally, Plaut and McClelland [26] argue 

that PDP networks “discover representations that are effective in solving tasks…” and this 

“provides more insight into why cognitive and neural systems are organized the way they 

are” (p. 489).  Adopting this logic, the conclusion must be that there are computational 

advantages of localist codes in some conditions, and the findings may help explain why some 

neurons in cortex respond in such a highly selective manner.  
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Localist representations in deep networks.  In contrast with the handful of single-unit 

recording studies carried out on PDP models over the past 30 years, there has been an 

explosion of single-unit studies carried out on deep networks.  The striking finding across 

dozens of studies is that the networks learn highly selective representations for familiar 

categories across a range of network architectures and tasks (for a short review of single-unit 

recording studies in PDP and deep networks see [17]).  Importantly, localist codes have been 

found in deep recurrent networks trained to co-activate multiple items at the same time [27] 

as well as deep networks trained on items one-at-a-time [28], highlighting that local codes are 

learned under a variety of network architectures and training conditions.  See Figure 1c for 

an example of using single-unit recordings to reveal localist coding in a deep network.  

In addition to the single-unit recording methods, selective units have been found in 

deep networks using a process called activation maximisation. In this method, rather than 

presenting a set of meaningful images to a network and recording how individual units 

respond (as in the scatter plot method), the experimenter generates (through various 

algorithms) images that best activate specific target units. At the start of the process a random 

input pattern (noise) is presented to a network that only weakly activates the target unit, and, 

through an iterative process, images are synthesized that more strongly activate the unit.  At 

the end of the process an image is generated that drives that unit more strongly than any other 

sampled image, and the question is what sort of image is generated.  If an interpretable image 

is synthesized it suggests that the unit has learned to code for meaningful high-level visual 

information, consistent with localist coding.   

In fact, many reports of interpretable images have been documented [17], most often 

based on recordings from output units, but also from recordings of hidden units, as illustrated 

in Figure 1d.  In a few cases, the selective units found in deep networks have been called 

“grandmother cells” [28], but for the most part, researchers do not make any psychological or 

neuroscientific claims.  Rather, the authors are trying to understand how these networks work 

with the hope that this knowledge will inspire the creation of future models with better 

performance on applied tasks.  But a better understanding of these conditions may also 

provide some insight into why some neurons selectively respond to meaningful inputs in 

hippocampus and cortex, and a growing number of single-unit recording studies have been 

carried out in deep networks with the goal of addressing psychological and neuroscience 

questions [29, 30, 31]. 
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Symbolic vs. non-symbolic computations: 

 A key distinction between network types is whether or not they implement symbols.  

On one view, sometimes called “implementational connectionism” [32] or “symbolic 

connectionism” [33], networks are endowed with special mechanisms in order to support 

symbolic computations.  By contrast, on the PDP approach, neural networks may appear to 

support the computational capacities of symbolic systems under some conditions, but the 

underlying algorithms that mediate performance are simpler and non-symbolic [2,33].   

In order to implement a symbolic neural network, words, objects, concepts, etc. need 

to be represented in long-term memory in a format that supports “compositionality” such that 

complex representations are composed from simpler parts in a regular fashion [9].  A key 

requirement of compositionality is that the parts maintain their identity in different contexts. 

This is achieved through a process of dynamically assigning the parts a role (or equivalently, 

assigning values to variables) to construct more complex representations, as described in Box 

1. 

The main motivation for symbolic theories is the claim that context-independent 

representations are necessary for human-like generalization that occurs “outside the training 

space” [11].  That is, symbolic systems can support generalization for new inputs that contain 

features that have not been trained on a given task.  Marcus [11] gives the example of the 

identity function, f(x) = x, where it is necessary to assign a value (e.g., a number, word, 

object, etc.) to the variable x.  If a person learns the identity function from a few examples, he 

or she can respond appropriately to an infinity of different inputs, including inputs that are 

highly dissimilar to the trained examples.  For instance, after learning to respond “one” to the 

spoken word “one”, and “two” to the spoken word “two”, we have no difficulty generalizing 

to untrained numbers, or even untrained non-numbers presented in a different modality: 

Given a picture of a duck, we can respond “duck”, or draw a duck.  Critically, the spoken 

words “one” and “two” share no input features with a picture of a duck, and nevertheless, 

generalization is trivial, reflecting the human ability to generalize outside the training space.  

Generalization outside the training space is required for many high-level cognitive tasks 

[9,10], but as detailed below, is also required for some memory and perceptual tasks.  

Generalisation outside the training space is analogous to extrapolation, where predictions are 

made beyond the original observation range. 
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A role for symbolic processes in PDP networks. Despite the claim that symbols are 

needed for human-like generalization, non-symbolic models continue to be the overwhelming 

approach to studying human cognition in psychology and neuroscience.  One reason for this 

is that PDP models often appear good at generalizing because they are typically tested 

“within their training space”.  That is, models are only tested on novel items that share all the 

relevant input features with trained items.  For example, Botvinick and Plaut [21] emphasized 

that their recurrent PDP model of STM successfully recalled sequences of 6 letters despite the 

fact that the sequences were almost always novel (over 99.9% of the time; Simulation 1).  

However, although the specific sequences of 6 letters were almost always novel, the model 

had been trained many times with all letters in all list positions (e.g., although the sequence 

A-K-E-B-F-S may have been novel, the model was trained on many lists that contained A in 

the first position, K in the second position, etc.).  When specific letters were excluded from 

specific list positions during training (e.g., the letter A was trained in all positions apart from 

position 1), the model did poorly when tested on sequences that included these letters in these 

positions [34, 35]. That is, the model failed to generalize outside the training space, just as 

critics of non-symbolic models would predict (for related finding see [36]). 

Similarly, O’Reilly [37] developed a PDP model that identified horizontal and vertical 

bars presented in various positions and orientations on an input layer.  The model was able to 

generalize to many unseen patterns based on limited training, and this was taken as a 

response to critics of non-symbolic connectionist theories.  The authors wrote: “Such results 

should help to counter the persistent claims that neural networks are incapable of producing 

systematic behaviour based on statistical learning of the environment” (p. 1230-1231).  But 

as noted by Doumas and Hummel [38], the training set in the simulations was “judiciously 

chosen to span the space of all possible input and output vectors” (p 79), and as such, the 

model was not tested outside the training space.  So again, the success of the model does not 

address the persistent criticisms raised by critics of non-symbolic models.  

 Perhaps the best-known example of PDP models generalizing comes from models of 

single-word reading that not only successfully name trained words, but also many novel 

words (e.g., [39, 40, 41]; but see [42]).  This was taken to undermine the dual route model of 

naming that includes a symbolic grapheme-phoneme conversion system for the sake of 

generalizing to novel words  (as well as localist codes for the sake of naming irregular words) 
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[43].  However, once again, the PDP models were only tested within their training space (the 

models were only tested on novel words that included letters in trained positions).   

The limitation of non-symbolic models of word processing was highlighted in a 

recurrent PDP model that was trained to learn the orthographic forms of words [44].  The 

model was claimed to solve the challenge of identifying familiar words (e.g., COW) in novel 

contexts (e.g., PINKCOW), what Davis [45] called the ‘alignment problem’.  To illustrate the 

problem, a PDP model that learns to identify the word COW on the basis of position-specific 

letter codes (e.g., C-in-position-1, O-in-position-2, and W-in-position-3) cannot identify the 

COW in BROWNCOW on the basis of the untrained C-in-position-4, O-in-position-5, and 

W-in-position-6 letter units (a case of testing outside the model’s training space).  Thus, 

Sibley et al.’s claim that their recurrent PDP model solved the alignment problem and could 

“capture the commonalities between wordforms like CAT, SCAT, CATS, and SCATS” (p. 

742) was notable.  However, the model was never actually tested on the alignment problem, 

and it was later shown that the model had no capacity to solve it [46].  Indeed, in a response 

article, Sibley et al. [47] wrote “We concede that according to their definition, the sequence 

encoder does not solve the alignment problem” (p. 1189).  So again, a non-symbolic model 

failed to generalize outside the training space.  In order to solve the alignment problem, Davis 

[45,48] developed symbolic models of visual word identification that includes context 

independent letter codes in order to identify familiar words in novel contexts. See Figure 2 

for an illustration of how context independent letter codes can be used to solve this problem.  

A role for symbolic processes in deep networks:  Of course, the limited generalization 

capacities of small-scale PDP models does not guarantee that more powerful non-symbolic 

models will also fail.  Thus, it is important to emphasize that more powerful deep networks 

show the same limitations. 

For instance, Graves et al. [13] trained networks to perform a set of calculations on 

one graph (e.g., leaning the shortest distance between two nodes) and then assessed whether 

the model could apply this knowledge to another graph (a graph of the London underground).  

The authors found that standard non-symbolic deep networks failed to generalize, and that it 

was necessary to add an external memory that implements a symbolic system to support 

generalization.  This is how they motivate their hybrid network/symbolic system: 
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Modern computers separate computation and memory. Computation is 

performed by a processor, which can use an addressable memory to bring 

operands in and out of play. This confers two important benefits: the use of 

extensible storage to write new information and the ability to treat the 

contents of memory as variables. Variables are critical to algorithm 

generality: to perform the same procedure on one datum or another, an 

algorithm merely has to change the address it reads from. In contrast to 

computers, the computational and memory resources of artificial neural 

networks are mixed together in the network weights and neuron activity. This 

is a major liability: as the memory demands of a task increase, these networks 

cannot allocate new storage dynamically, nor easily learn algorithms that act 

independently of the values realized by the task variables…. (p. 471) 

This passage could have been written by Jerry Fodor 30 years ago.   

In fact, there are a growing number of “memory networks” [49] that implement 

symbolic computations with specially designed memory systems that store items in a context 

independent manner.  The reason why the generalization limitations of non-symbolic models 

is becoming more widely appreciated is that computer scientists are trying to solve real world 

problems that require more robust forms of generalization.  The repeated successes of PDP 

networks within the training space cannot mask the limitations of this approach any longer.  

Interestingly, a number of theorists traditionally associated with the non-symbolic PDP 

approach have recently been exploring ways to implement symbols in neural networks to 

improve generalization as well (e.g., [38,50]).   

Furthermore, the reliance on non-symbolic representations is part of the reason why 

PDP and deep networks need to be trained so extensively. For example, deep networks of 

object identification, including deep convolutional networks, do not support robust 

translation invariance.  That is, learning to identify an object in one retinal location does not 

immediately allow the model to generalize to distal retinal locations.  As a consequence, it is 

necessary to train each trained object at many different locations [51,52], or add special 

modules that spatially manipulate the input patterns [53]. Apart from increasing the amount 

of training, this is not how human vision works [54].  A nice example of the advantages of 

learning using context independent representations was recently reported by Lake et al. [55] 



11 
 

who showed how models with symbolic capacities can support one-shot learning of letters 

whereas deep networks need many training trials. And of course, in many cases, it is not 

feasible to adequately sample the test space during training, and in these cases, symbolic 

neural networks may be required.   

How can symbolic processes be implemented in neural networks? No doubt one of the 

reasons why there are still so few examples of symbolic theories in psychology and 

neuroscience is that it is much easier to build non-symbolic networks.  Indeed, it is not 

immediately obvious how to implement symbolic processes in an artificial neural network, let 

alone in neural tissue.  As Gallistel and Balsam [56] write: 

Perhaps the biggest obstacle to neurobiologists’ acceptance of the view 

that the brain stores information in symbolic form, just as does a 

computer, is our inability to imagine what this story might look like at 

the cellular and molecular level. (p. 142). 

In fact, there have been different proposals over the years regarding how to 

implement symbolic computations in neural networks, and all proposals entail fundamental 

challenges to the PDP approach to theorizing (above and beyond implementing symbols).  

On one approach, all learning and computation takes place in the connection weights 

between units, and specialized modules and circuits are introduced to networks in order to 

encode and operate on context independent representations [57].  This is a departure from 

the PDP approach according to which human cognition emerges from general learning 

algorithms operating on systems with minimal innate structure; the so-called “emergentist 

view” [58]. 

The more radical approach to implementing symbolic computation is to reject the core 

PDP claim that all learning and computation takes place at the level of the connections 

between units [59].  For example, Gallistel and colleagues argue that symbolic computations 

is mediated by memories stored at the level of molecules within neurons [56], Hummel and 

colleagues [10,60] argue that neural synchrony is used for variable binding, and Davis [48] 

argues that delay lines that alter the conduction times of neurons can be used to support 

symbolic computations.  In fact, there is good evidence that learning and computation do take 

place outside the synapse [56], and as detailed in Box 2, recent evidence that myelin plasticity 

provides a biologically plausible mechanism for implementing delay-lines that have been used 
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to support symbolic computations.  In all symbolic theories, networks are endowed with 

additional resources in order to build the compositional representations and variable binding 

needed for symbolic computation.  

Concluding Remarks and Future Perspectives:  

PDP models developed in the 1980s continue to have profound impact on theories of 

mind and brain, and indeed, the rejection of localist codes and symbolic computations are the 

predominant views in psychology and neuroscience today.  Given that PDP models are the 

precursor of deep networks, it is somewhat ironic that research with deep networks is 

providing some of the strongest arguments to date that localist representations and symbolic 

computations play an essential role in human cognition.  

In the future, it will be important to explore in more detail the conditions in which 

artificial neural networks learn localist and distributed coding schemes and see whether these 

findings relate to how the brain codes for information.  In addition, the computational 

limitations of PDP and non-symbolic deep networks should motivate researchers to explore 

how symbolic representations and computations might be implemented in cognitive models 

and neural tissue. This may not only provide new insights into how the brain implements 

cognition, but may lead to more powerful artificial neural networks for solving more difficult 

artificial intelligence problems. See Outstanding Questions Box. 
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Box 1.  Two core theoretical debates 

It is important to distinguish between the localist/distributed and the symbolic/non-symbolic 

debates.  The localist/distributed debate is concerned with the interpretability of individual 

units in an artificial or real neural network.  Units in an artificial network are analogous to 

neurons in brains in that they both respond to inputs (e.g., firing rate of a neuron), and they 

connect to other units (neurons). The key feature of a localist unit it that it is most active to 

one meaningful category.  For instance, in the Interactive Activation model [61], each word 

unit responds most strongly to a specific word, and as a consequence, it is possible to 

interpret the output of single units (if unit X is active beyond some threshold, the model has 

identified the word DOG).  By contrast, a representation is distributed if each unit responds to 

multiple categories to the same degree, and as a consequence, the pattern of activation over a 

collection of units is needed in order uniquely categorize an input.  With this view, it is not 

possible to determine what the model has identified by observing the state of single units.  

The symbolic/non-symbolic debate is concerned with how neural systems compute, and this 

entails a different claim about how knowledge is coded.  A key feature of symbolic systems 

is that words, objects, concepts, etc. are represented in long-term memory in a format that 

support “compositionality” such that complex representations are composed from simpler 

parts that are context independent [9].  For example, in a symbolic model of word 

identification, words are coded from letters that maintain their identity in different context 

(e.g., the words DOG and GOD share the same set of letter representations despite the fact 

that the letters D and G occur in different positions).  Critically, symbolic networks need 

methods to compute with context independent representations in order to dynamically assign 

items a role (in this case, assign letters a position), a process also called variable binding.  

This insures that DOG and GOD are similar to one another given that they share the same set 

of letter units, but different by virtue of the way the letters are assigned a position.  This 

dynamic binding requires additional circuits [57] or additional computational mechanisms 

[10] compared to non-symbolic models that compute on context dependent representations 

where the binding are coded in long-term memory (e.g., D-in-position-1 and D-in-position-

3).  Importantly, the use of context dependent representations obscures the similarity of items 

(DOG and GOD only share the O-in-position-2 letter code).  It is often claimed that symbolic 

models support more widespread generalization, specifically, generalization “outside the 

training set” [11].  
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Box 2.  Learning and computation outside the synapse with myelin plasticity 

A fundamental claim of PDP theories is that all learning and computation is mediated by the 

connection weights between units [59].  This characterizes almost all deep networks as well.  

However, recent studies have demonstrated another locus of learning and computation, 

namely, the adaptive modification of myelin along axons that alters the neural conduction 

times of neurons; so-called myelin-plasticity.  For example, learning is associated with 

changes in myelin in brain regions relevant for performing a task [62], adaptive changes in 

myelin are used to insure the coincident arrival times of spikes on postsynaptic cells [63], and 

blocking myelin production impairs new learning in some tasks [64].   For recent review of 

myelin plasticity see [65]. 

The potential significance of identifying a second locus for learning and computation is hard 

to overstate. First, the assumption that all learning and computation occurs at synapse has 

motivated artificial networks that compute with idealized units that are identical apart from 

the connections they make with other units. Consequently, models include units that take a 

fixed amount of time to pass information from input to output, and this in turn ensures that 

the relative timing of inputs on a postsynaptic unit are irrelevant. By contrast, actual neurons 

vary dramatically in their morphology, such that conduction times of communicating 

information between neurons vary dramatically. This is functionally relevant because the 

timing with which a postsynaptic neuron receives inputs (spikes) from multiple sources not 

only has a profound impact on the activation of the postsynaptic neurons due to temporal 

summation, but the timing impacts on learning due to spike-time-dependent learning [66].  

Myelin plasticity provides a possible mechanism to adaptively modify the timing of neural 

signals in order to maximize the activation of post-synaptic neurons.   

Second, myelin plasticity provides a possible implementation of delay lines that have been to 

support symbolic computations.  Specifically, the symbolic Spatial Coding Model of visual 

word identification [48] uses the connection weights between units to code for the identity of 

letters within words (in a context independent manner) and uses delay-lines to dynamically 

code for the order of letters within words.  Indeed, this model predicted a learning mechanism 

that adaptively alters the time it takes neurons to communicate information via delay-lines, 

precisely what myelin plasticity achieves. This model accounts for a large set of experimental 

results on visual word identification, and critically, solves the alignment problem.     
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Glossary: 

Activation Function:  The activation function of a unit determines the output of that unit 

given its inputs. Various activation functions have been employed across different networks, 

including sigmoidal, gaussian, and rectifier functions.  

Back-propagation algorithm:  A method for training PDP and deep neural networks.  It is a 

‘supervised’ form of learning as the model is provided the correct output for each input.  The 

algorithm adjusts the weights between units across all layers of a network so an input does a 

better job producing the correct output on later trials. 

Convolutional Networks: A deep network in which units in a convolutional layer are 

connected to a subset of spatially contiguous units in the preceding layer. Convolutional 

networks are faster to train than standard networks as they include fewer connections.   

Deep Neural Networks: Any network that includes multiple hidden layers. 

Grandmother Cell: A hypothetical neuron that codes for one meaningful category (e.g., an 

image of a specific person).  It is a pejorative term intended to ridicule this hypothesis, and as 

a consequence, there have been few attempts to provide a formal definition.  On one view, 

grandmother cells only fire to one specific stimulus, with separate neurons devoted to each 

possible perceptual experience.  On another view, grandmother cells are the equivalent of 

localist representations in psychological models.  The former hypothesis is clearly false, the 

later view is more plausible.  

Gaussian Units:  Units that use a non-linear ‘bell-curved’ gaussian activation function in 

which the output of unit changes non-monotonically with increasing inputs.  Value units 

employ a specific form of the gaussian function. 
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Graphics Processing Unit (GPU): An electronic circuit that is well-suited for the 

matrix/vector math involved in training deep neural networks.  The use of GPUs started in 

2009 was estimated to speed up training of networks by approximately 100 times. 

Localist Representation:  A localist representation responds most strongly to one familiar 

meaningful category, such as a word, object, or person.  Although localist representations 

encode one and only one thing, they do respond to other related items.  For example, a 

localist representation of the word DOG fires most strongly to the word DOG, but also will 

fire (below some threshold) to related words such as LOG or FOG. 

Parallel Distributed Processing (PDP): A form of artificial neural network developed in the 

1980s that was associated with a host of psychological and neuroscience claims.  Two central 

claims are that information is coded in a distributed format, and computations are symbolic. 

Sigmoidal Units: Units that use a non-linear ‘s-shaped’ sigmoidal activation function in 

which the output of a unit increases monotonically from 0 to 1 with increasing inputs.  Most 

commonly used in PDP models. 

Superposition Catastrophe: A hypothesis regarding a computational limitation of 

distributed representations.  On this view, a network using distributed representations can 

unambiguously represent one item at a time, but superimposing two or more patterns over the 

same units can result in a blend pattern that is ambiguous in that there is no way to 

reconstruct the patterns from the blend.  Localist representations do not suffer from this 

constraint.   
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Figure Captions: 

Figure 1.  Different methods of displaying selectivity.  Different methods for depicting the 

selectivity of single units across a range of networks trained on a range of tasks.  (A).  An 

example ‘scatter plot’ developed by Berkeley et al [14].  On this approach, a separate 

scatterplot is created for each hidden unit, and each point in a scatterplot corresponds to a 

unit’s activation in response to a specific input.  Level of unit activation is coded along the x-

axis, and distinct values are assigned to each point along the y-axis.  Berkeley et al. observed 

banding patterns after training, with inputs within a band sharing a meaningful feature. The 

scatter plot above depicts a single hidden unit in a model trained to categorize a set of logical 

problems as valid or invalid, and the points in highly active band were all associated with the 

input feature ‘OR’.  That is, this hidden unit is an ‘OR’ detector.  (B) Scatter plot from [8] in 

which the points were labelled.  This hidden unit responded selectively to words that contain 

the letter ‘g’. (C) Activation of a single hidden unit in a deep recurrent network trained to 

generate text after being trained with Leo Tolstoy’s War and Peace and the source code of the 

Linux Kernel [27].  The unit was highly active (indicated in lighter grey) after it generated an 

opening quote character and remained active until the closing quote was output, at which 

point it turned off (indicated in darker grey).  (D) Activation maximization method of 

depicting selectivity of single units in a deep convolutional network [12].  On this method 

images are synthesized that maximumly activate a specific unit.  The five images are the 

product of five different simulations of synthesizing images that maximally activate a single 

hidden unit.  The fact that most of the images are interpretable (as a lighthouse in this case) 

suggests that the unit was tuned to code for a specific meaningful thing.  

Figure 2 Coding letters in a context independent manner.  (A) The same set of letters S, A, L, 

T are involved in coding for the words SALT, SLAT, LAST, and the order of the letters is 

coded through the level of letter activation, with earlier letters more active. (B) The use of 

context independent codes provides a potential solution the alignment problem.  The pattern 

of letter of activation associated with the inputs CAT, HOLE, and CATHOLE is displayed.  

The critical point to note is that the inputs HOLE and CATHOLE not only activate the same 

H, O, L, E letter codes, but in addition, the pattern of activation over these units is the same, 

with H most active, followed by the reduced activation of O, L, and E.    Accordingly, if the 

model has learned to identify the word HOLE in isolation, then the model will be able to 

identify HOLE when presented in the novel context CATHOLE, solving the alignment 
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problem [45].  This is not possible in PDP models in which letters are coded by position (e.g., 

there is H-in-position-1 in CATHOLE).  This coding scheme, sometimes called a ‘primacy 

gradient’, was first developed by Grossberg [68] in the context of STM, and was similarly 

used by Page and Norris [69] in their symbolic model of STM.  Delay  
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