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Abstract 

Background: Meningococcal disease (MD) is a major cause of meningitis and sepsis 

worldwide, with a high case fatality rate and frequent sequelae. Neisseria meningitidis 

serogroups A, B, C, W, X and Y are responsible for most of these life-threatening 

infections, and its unpredictable epidemiology can cause outbreaks in communities, with 

significant health, social and economic impact.  Currently, serogroup B is the main cause of 

MD in Europe and North America and one of the most prevalent serogroups in Latin 

America. Mass vaccination strategies using polysaccharide vaccines have been deployed 

since the 1970s and the use of conjugate vaccines has controlled endemic and epidemic 

disease caused by serogroups A, C, W and Y and more recently serogroup B using 

geographically-specific outer membrane vesicle based vaccines.  Two novel protein-based 

vaccines are a significant addition to our armamentarium against N. meningitidis as they 

provide broad coverage against highly diverse strains in serogroup B and other groups. 

Early safety, effectiveness and impact data of these vaccines are encouraging.  These novel 

serogroup B vaccines should be actively considered for individuals at increased risk of 

disease and to control serogroup B outbreaks occurring in institutions or specific regions, as 

they are likely to save lives and prevent severe sequelae. Incorporation into national 

programs will require thorough country-specific analysis. 

Key words: Neisseria meningitidis, epidemiology, meningococcal serogroup B, 

meningococcal vaccines, outbreaks  
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Brief overview of meningococcal infection/disease  

Meningococcal disease (MD) is a major public health problem and remains a leading cause 

of meningitis and sepsis in many countries1,2  Case fatality rates (CFR) reach 10-20% 

despite aggressive treatment, 10-20% of survivors will develop major long-term sequelae, 

including deafness, neurological deficit, seizures, limb amputation, and up to 36% of 

survivors may have one or more deficits in physical, cognitive, and psychological 

functioning1–3.  MD occurs in all age groups, although incidence rates are highest in young 

children and teenagers.  MD is mostly sporadic with seasonal variations, with occasional 

epidemics in large regions or smaller outbreaks in specific settings, which occur at rather 

unpredictable intervals.  During these epidemics an increased number of cases usually 

occurs among adolescents and young adults 4,5.  

Neisseria meningitidis (N. meningitidis) is a Gram-negative, aerobic, encapsulated, non-

mobile diplococcus, belonging to the Neisseriaceae family.  The antigenic composition of 

the polysaccharide capsule defines 12 serogroups: A, B, C, H, I, K, L, W, X, Y, Z and E6.  

Currently, six serogroups, A, B, C, Y, W and X, are responsible for virtually all cases of 

disease reported worldwide1,2,4,5.  Meningococci are also classified into serotypes and 

serosubtypes according to the antigenic composition of the outer membrane proteins 

(OMP) PorB and PorA, respectively.  Meningococci can exchange genetic material 

encoding for capsule synthesis, modifying the capsular antigenic composition of a specific 

strain.  Antigenically distinct strains due to allelic replacement of the siaD gene can lead to 

outbreaks7–10.  Genetic multilocus sequence typing targeting polymorphisms within 

multiple genes, polymerase chain reaction, and whole-genome sequencing are currently the 

most widely used methods to detect and characterize meningococcal strains5,6.  
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Meningococci infect only humans and are transmitted from person to person by aerosolized 

or direct contact with respiratory secretions or saliva.  Acquisition of meningococci can 

lead to transient carriage, persistent colonization, or result in invasive disease.  Most 

carriers will remain asymptomatic with the microorganism in their nasopharynx throughout 

their lifetime; invasive MD is a rare outcome of meningococcal infection.  For most 

individuals, carriage is an immunizing process eliciting protective antibodies11,12. 

Asymptomatic nasopharyngeal carriage of N. meningitidis is common, with a population 

prevalence of approximately 5-10% in non-epidemic settings.  Carriage prevalence varies 

with age, being low during the first years of life, increasing in teenagers and young adults 

when rates of up to 20-50% are reported, followed by a decline during adulthood11–13.  

Major differences in meningococci phenotypic and genotypic distribution between invasive 

and carriage strains are usually observed, with only a small proportion of carriage strains 

representing hyper invasive lineages.  Carriage rates of meningococci can be considerably 

higher in outbreak situations, household contacts of people with MD and in closed 

institutional settings, particularly in military personnel11,12.  Most carriers have relatively 

few organisms detectable with a minority having much larger numbers at any one time14. 

Several host-, organism- and environmental-factors have been associated with an increased 

risk for MD.  Deficiencies in the common complement pathway (e.g., C3, properdin, Factor 

D, Factor H, or C5–C9), eculizumab therapy, functional or anatomic asplenia (including 

sickle cell disease), chronic underlying illness, infection with the human immunodeficiency 

virus12, preceding viral infections (particularly influenza), household crowding, men who 

have sex with men, microbiology profession, active and passive smoking, and bar 

attendance, are all risk factors for meningococcal disease12,15.  
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Criteria used for case definition of MD vary from one place to another, limiting the 

reliability of comparisons of incidence rates among different regions.  The European Centre 

for Disease Prevention and Control (ECDC) surveillance network considers a case of 

invasive meningococcal disease confirmed when at least one of the following criteria is 

met: isolation of/or detection of N meningitidis nucleic acid in a normally sterile site; N 

meningitidis detection in cerebrospinal fluid (CSF) by antigen detection test; or 

visualization of a Gram negative diplococci in CSF16.  In the United States of America 

(USA), as well as in South Africa, a case is confirmed if the bacteria is isolated from a 

specimen obtained from a normally sterile site17,18.  In Australia and Canada the criteria 

includes nucleic acid amplification from a usually sterile site19,20.  In Latin America, despite 

the lack of uniform criteria across countries, the Pan American Health Organization 

includes confirmed cases (either detection of bacterial antigen(s) in CSF or positive culture 

laboratory proven), probable (suspected case plus turbid CSF or link to a confirmed case), 

and suspected cases (sudden onset of fever plus meningeal sign or petechial or purpuric 

rash)21.   

MD occurs worldwide, but there are marked geographical differences in incidence and 

serogroup distribution22.  In North America, serogroups B (MenB), C (MenC) and more 

recently Y (MenY) have been the main serogroups causing MD, whereas in Africa, 

serogroup A was the main cause of epidemics until 15 years ago when serogroups C, W 

and X emerged22,23.  In Europe, serogroups B and Y, and more recently W (MenW) in some 

areas have predominated, although serogroup C remains prevalent in some countries 

lacking meningococcal C conjugate (MCC) vaccination programs22,24.  In Latin America 

MenB, MenC and, during the past decade, MenW are currently responsible for the majority 
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of reported MD cases21.  Serogroups A, B, C, Y, and W have all been present, without 

apparent particular predominance in Asia.  In Australia and New Zealand MenB has 

predominated during the last decades. However, in 2016, MenW became the predominant 

meningococcal serogroup in Australia25–27.  

Despite the availability of safe and effective meningococcal conjugate vaccines against 

serogroups A, C, W and Y for several years, only recently two serogroup B recombinant 

protein meningococcal vaccines were licensed and recommended for prevention of 

serogroup B meningococcal disease (B-MD) across different age groups	   in several 

countries.  The aim of this article is to describe the global burden of B-MD, briefly review 

the data on vaccines development, and “real world” experience with these vaccines, 

including the first estimates of effectiveness, safety and impact data based on the as to yet 

rather limited use of these vaccines in routine immunization programs and for outbreak 

control. 

 

Serogroup B meningococcal disease, an ever changing, unpredictable epidemiology 

Incidence rates (IR) of B-MD have declined during the past years, in the absence of any 

vaccine intervention.  A recently published systematic review reports an average rate 

ranging from 0.01 to 4.26 per 100,000 population, with a decreasing overall trend, 

particularly in countries where data collection is more consistently collected data (figure 

1)28.  From 2000 to 2015, only two countries, New Zealand and Ireland, reported mean 

annual IR of B-MD disease above 2/100,000 habitants per year.  Australia, Iceland, 

Netherlands and UK report IR from 1-2/100,000, while the remaining countries report rates 
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< 1/100,000.  Case -fatality ratios ranged from 3% to 10% in most countries.  Three major 

hyper-invasive genotypes (clonal complex (cc) 32, cc41/44, and cc269) were responsible 

for most endemic B-MD cases globally28.  In 2014, 2,760 confirmed cases of invasive MD 

were reported in Europe, with highest IR in infants (10.1 cases per 100,000).  Serogroup B 

was responsible for most reported cases (64%), while MenC was more prominent in 

countries that had not implemented MCC vaccination22,24.  In the USA, 375 cases of MD 

(IR 0.12/100,000) and 60 deaths (CFR 16%) were reported in 2015, with serogroup B 

responsible for approximately 60% of the cases among children younger than 5 years of 

age29.  In Canada, serogroup B remains as the predominant serogroup, particularly at 

younger ages.  However, increased incidence of serogroup W has been reported recently30.  

In Latin America, incidence rates of MD have varied widely during past years, from < 0.1 

cases per 100,000 in Mexico, Peru, Paraguay and Bolivia, to 2/100,000 in Brazil, with the 

highest incidence rates observed in infants.  Misnotification and poor surveillance in some 

countries of the region, especially in those with low IR, are issues that introduce some bias 

in the analysis of these data.  Regarding serogroup distribution, serogroups B and C are 

responsible for the majority of cases reported in the region, with an increased number of 

serogroup W cases associated with the cc ST-11, reported in Argentina and Chile.  The 

highest incidence rates of B-MD disease in the region are reported in Argentina, Brazil, 

Chile, Colombia and Uruguay31.  In New Zealand, during the 2000s a serogroup B 

epidemic occurred with incidence rates reaching 17.4 per 100,000 total inhabitants in 2003.  

A tailor-made, strain-specific serogroup B vaccine using outer membrane vesicles (OMV) 

from cc ST-41/44 (MeNZB®, Norwegian Institute of Public Health and Novartis Vaccines) 

was introduced in 2004.  A significant decrease in incidence rates of the B-MD epidemic 
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strain during the first years after program implementation was observed, leading to 

discontinuation of vaccination32.   

In Asia, although the true burden of MD is unknown, reported IR are low in all countries 

although B-MD has been reported causing sporadic cases in Bangladesh, China, India, 

Indonesia, Japan, Malaysia, the Philippines, Singapore, Taiwan, and Thailand28.  However, 

the degree of underreporting has not been fully evaluated in this and to some extent also in 

other regions. Few studies and low numbers of publications, poorly implemented 

surveillance programs, lack of guidelines and standard case definitions, and inappropriate 

laboratory methods are significant issues in Asia, with some notable exceptions22,33,34. 

In Africa, endemic B-MD disease has been reported only in Ghana and South Africa, with 

almost no B-MD cases reported from the remaining countries. In the 26 countries of the 

sub-Saharan meningitis belt the incidence of serogroup A decreased dramatically after 

MenAfriVac® introduction; serogroup W and more recently C have become predominant35.  

 

Outbreaks of B-MD Disease 

A small fraction of reported MD cases occur within the context of meningococcal 

outbreaks. They are unpredictable and associated with severe outcomes, which can be 

emotionally devastating within affected communities or institutions. According to the USA 

Centers for Disease Control and Prevention (CDC), an outbreak is defined by the 

occurrence of at least three confirmed or probable primary cases of MD caused by the same 

serogroup in ≤3 months, with a resulting primary attack rate of ≥10 cases per 100,000 

population36.  This definition is used primarily to guide vaccination and antibiotic 

intervention recommendations.  However, in organization-based outbreaks, such as those 

that occur in universities, schools, daycare centers, occupational training centers, or 
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correctional facilities, with three or even just two cases of disease, rates may reach >10 

cases/100,000 population.  In such situations, public health officials may also consider 

vaccination after only two primary cases are identified. In figure 2, we depict outbreaks 

reported to the World Health Organization (WHO) from 2012 to 2017; most were caused 

by serogroup B, affecting high schools, colleges and universities.  

  



	   12	  

Group B Meningococcal Vaccines 

The first attempts to prevent MD by vaccination occurred at the beginning of the twentieth 

century with whole cell formulations, which were used until sulfa chemoprophylaxis 

became available37.  Development of polysaccharide vaccines began in the 1960s with the 

hallmark finding that susceptibility to invasive disease was associated with low levels of 

serum bactericidal antibodies (SBA) to meningococci38.  Due to the relatively low 

incidence of endemic meningococcal disease, vaccine efficacy studies would require 

hundreds of thousands of subjects.  Accordingly, the WHO has accepted an SBA titer using 

exogenous human complement (hSBA) > 1:4 as correlate of protection39,40.  Meningococcal 

A, C, W and Y conjugated polysaccharide vaccines have been developed and licensed, in 

mono, bivalent and multivalent formulations since the year 200040.  The capsular 

polysaccharide of serogroup B strains is poorly immunogenic due to its antigenic structure, 

which resembles glycosylated neural cell adhesion molecule which is expressed in the 

developing human brain; as well as immunological tolerance, this antigenic mimicry with 

human tissue raises the potential for the induction of autoimmunity34.  For this reason, 

serogroup B vaccine antigen selection strategy moved towards OMPs, mainly porA and 

porB, which can elicit strain-specific protective antibodies measurable in human sera.  

These OMPs were first obtained from OMVs generated in laboratory conditions and shed 

during the growth process of N. meningitidis.  They mimic the structure of the outer 

membrane of the specific meningococcal B strain, are soluble and induce a robust immune 

response by presenting proteins in their native structural conformation34,40–43.  OMV 

vaccines were successfully used in specific clonal outbreaks in Cuba, Norway and New 

Zealand34,39,40,43,44.  However, monovalent OMV vaccines elicit highly specific immune 
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responses to the PorA subtype, and these subtypes are highly variable among different 

isolates of N. meningitidis circulating worldwide.  

Studies showed disparity in population immunogenicity, effectiveness and persistence 

between OMVs, mainly in infants and toddlers39,40,44.  Multivalent PorA candidates were 

evaluated, but SBA responses and direct bactericidal activity against strains varied 

depending on the PorA type40.  Thus a universal OMV vaccine was not deemed 

feasible34,39,40.  Using genomic based approaches, specific OMPs have been synthesized 

and used with the aim of broadening strain coverage as they should be functionally 

relevant, immunogenic, and more conserved among geographically diverse strains, 

compared to OMVs34.  For MenB, the antigenic variability and level of surface expression 

of OMPs presents a challenge for determining vaccine coverage against the myriad of 

circulating strains34,45,46.  These novel B-MD vaccines, denominated 4CMenB (Bexsero®, 

GlaxoSmithKline (GSK)) and bivalent rLP2086 (Trumenba®, Pfizer) are now licensed in the 

USA, Canada and Europe as well as in other countries.   

The multicomponent vaccine 4CMenB has three primary recombinant antigens obtained 

using an approach denominated “reverse vaccinology”, based on DNA sequence data from 

serogroup B strains which identified surface-exposed proteins, with capacity to induce 

bactericidal antibodies in animal models42,47: factor H binding protein (fHbp), subfamily 

B/v1, neisserial adhesin A (NadA), and Neisseria heparin binding antigen (NHBA).  In 

addition it includes the OMV expressing PorA from the New Zealand strain, NZ PorA 

P1.4.  Native OMVs have a potential advantage, as detergent extraction solubilizes 

phospholipids and membrane-associated lipoproteins that enhance the immune response48.  

The selection of the OMV-NZ strain was based on the experience from the OMV-based 

vaccine MeNZB®, which proved to be safe and efficacious in the control of the clonal 
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MenB epidemic in New Zealand42, in combination with immunogenicity results from a 

study performed in healthy adults49.  The latter provided evidence that the addition of 

OMV-NZ to the other three antigens (fHbp, NadA and NHBA) enhanced the coverage 

against ST-41/44 complex/lineage III strains.  Pivotal phase II/III studies are summarized in 

table 1.  The vaccine has been demonstrated to provide a robust priming and anamnestic 

immune response in all age groups against four laboratory serogroup B reference strains 

chosen to measure responses against each antigen included in the vaccine, even using a 

reduced vaccine schedule in young infants50, and allows concomitant administration with 

other routine vaccines.  Concomitant administration of MCC-CRM vaccine with 4CMenB 

was performed in Brazilian infants at 3 and 5 months with a booster at 12 months of age.  

Although the geometric mean titers against meningococcal serogroup C were lower among 

subjects that received 4CMenB, the proportion that achieved seroconversion was identical, 

and considered sufficient to MenB, after primary and booster vaccination.  Reactogenicity 

was higher for concomitant vaccines administration, but no safety concerns were 

identified51.  The safety profile of 4CMenB has been considered acceptable, although it is 

reactogenic.  Injection site pain/tenderness and fever in infants, and injection site pain, 

malaise, and headache in adolescents are relatively common52-54.  Among infants, side 

effects can become a cause for emergency room visits, hospitalizations, and increase 

antimicrobial misuse55,56.  The European Medicines Agency (EMA) approved 4CMenB in 

2013 for infants from 2 months of age, as a three-dose primary schedule followed by a 

booster in the second year of life, and a two-dose schedule in children, adolescents and 

adults57.  The USA Food and Drug Administration (FDA) approved the vaccine in 2015 as 

a two-dose schedule for use in individuals aged 10 through 25 years of age58.  This vaccine 

was introduced into the United Kingdom (UK) universal immunization schedule at 2, 4 and 
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12 months of age in 201559,60.  Other countries with approval include Australia, Canada, 

Chile, Brazil, and Argentina.  

The bivalent rLP2086 includes two variants of the surface-exposed fHbp protein.  This 

protein segregates into two genetically and immunologically distinct subfamilies, A (A05) 

and B (B01), which have been found to be expressed in nearly all strains isolated from 

invasive disease caused by serogroup B in reference laboratories in Europe and USA41.  

Clinical studies included more than 15,000 subjects aged 10 through 25 years of age in 11 

clinical studies conducted in the US, Europe, Canada, Chile, and Australia.  These studies 

demonstrated that the bivalent rLP2086 elicits SBA capable of killing serogroup B strains 

expressing fHbps that are homologous and heterologous to vaccine components.  In phase 

II trials, two doses of rLP2086 provided robust immunogenicity in healthy adolescents 

which increased after a third dose61–64 (Table 1).  The vaccine can be administered to 

adolescents concomitantly with other licensed vaccines, including ACWY meningococcal 

(MenACWY) conjugate vaccine, quadrivalent human papillomavirus vaccine (HPV), 

reduced diphtheria toxoid, tetanus toxoid, acellular pertussis and inactivated polio virus 

vaccine (TdaP-IPV) and tetanus toxoid, reduced diphtheria toxoid and acellular pertussis 

vaccine adsorbed (Tdap)64-66.  The vaccine has been reported to be well tolerated in clinical 

trials, although mild to moderate adverse reactions such as pain, redness and swelling at the 

site of injection are common, followed by headache, fatigue and fever as systemic 

reactions62,64,67,68.  The vaccine was approved by the FDA in 2014 for use in adolescents 

and young adults aged 10–25 years in a three-dose schedule, 0, 1-2 and 6 months or a two-

dose schedule, 0 and 6 months, depending on the risk of exposure and the patient’s 

susceptibility to meningococcal serogroup B disease65.  EMA approved the vaccine in 2017 

for subjects aged 10 years and older, in a two-dose schedule administered at a 0 and 6 
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months interval, or in a three-dose schedule, 0,1-2 and 6 months.  At the time of writing, 

the vaccine had not been submitted for use in children below 10 years of age.  A booster 

dose should be considered following either dosing regimen for individuals at continuing 

risk of invasive MD66.  

4CMenB in infants is associated with higher rates of local and systemic reactions when 

given with other routine infant vaccinations, with a significantly increased the risk of 

serious adverse events (SAEs) compared with control vaccines (odds ratio 4.36 [95% CI 

1.05–18.1]; p=0.043), but the incidence of potentially vaccine-related acute SAEs in 

individuals receiving 4CMenB was low (5.4 per 1,000 individuals)69.. Fever, local 

tenderness, erythema and pain have been the most commonly reported adverse effects 

across the studies.  Fever was seen up to 41%, usually on day 1, returning to normal by day 

3.  Prophylactic administration of paracetamol before and 4–6 hours after vaccination 

significantly reduces post vaccination fever without affecting immunological responses70.  

Severe erythema, swelling, or induration were seen in < 1%, with a peak on day 1, with a 

steep decrease on day 2 and lower incidence after booster (table 1).  The most commonly 

reported SAE were febrile convulsions, Kawasaki disease and arthritis.  Seven cases of 

febrile seizures occurred after vaccination with 4CMenB, with a rate of 0.1 events/1,000 

vaccination visits in the 4CMenB study arms, mainly during primary infant series, on the 

day of or day following vaccination69,71.  Arthritis was reported in 4 subjects, three of them 

after 4CMenB vaccination69.  Finally, Kawasaki disease was reported in 7 subjects (1 in the 

control group and 6 in the 4CMenB groups) in the pre-licensure studies.  The onset varied 

from 1 day to 5.5 months after vaccination and all cases were adjudicated by a panel of 

outside experts and estimated annual incidence post-vaccination was 72 (95 % CI 23–169) 

per 100,000 subject-years after 4CMenB versus 56 (95 % CI 1–311) after control vaccines, 
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which were similar to rates of other rare adverse events observed in other pre-licensure 

clinical programs46,57,58,69,71, however, post-licensure safety surveillance will be of 

paramount importance.  In phase 1/2 study in infants, rLP2086 was considered not 

acceptable due to the high fever rate experienced (64-90%) in the 20 and 60 µg groups so 

formulation were discontinued72.  

In adolescents headache and fatigue were the most common systemic events for both 

vaccines.  Fever was as infrequent as 4%.  Local and systemic reaction rates were similar 

after each injection and did not increase with subsequent doses, but remained higher than 

placebo.  Pain was most frequently reported in pre-licensure studies with 4CMenB than 

rLP2086 recipients (86% versus 9,9%), however, an observational study of adverse events 

during a college outbreak after a campaign vaccination with rLP2086 published recently, 

reported that the most commonly event following vaccination was injection site pain, 

reaching 77,6% after the first dose, but only 4% was considered severe54,57,58,62,65-68,73,74. 

Persistence of bactericidal antibodies among infants vaccinated with 4CMenB wanes at 12 

months of age although remaining higher than baseline; the magnitude of waning varied for 

each antigen being less for NadA and fHbp75,76.  Actually, at 12 months of age, after three 

priming doses and before the booster dose, the proportions with hSBA titers ≥ 1:5 for fHbp 

was 57%-85%, ≥ 96% for NadA and between 18-35% for PorA.  Following a 12-month 

booster-dose ≥ 95% of previously immunized participants had titers ≥1:5 for all strains, 

independent of the priming schedule interval75.  Similar results were observed in a study 

that assessed the persistence of immune responses after one year in participants vaccinated 

as infants, and responses in vaccine-naïve children.  Antibodies waned over 12 months, 

particularly against strain NZ98/254 (PorA), although higher GMTs were observed 
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compared to the unvaccinated control group76.  Even in children vaccinated with 5 doses, at 

2, 4, 6, 12 and 40 months of age, waning of immunity was observed by 5 years of age, with 

protective antibodies ranging from 44% to 88% against matched strains and from 13% to 

81% against mismatched strains77.  In children vaccinated between 12 and 24 months of 

age waning of hSBA titers was also observed by 4 years of age, with a robust response after 

a booster dose at 40 months of age78.  For adolescents, protective hSBA titers 18-24 months 

after completing a two-dose vaccine schedule with the 4CmenB vaccine were detected in 

64% for all vaccine-related antigens and in 85% for two of the three target antigens; a third 

dose did not provide additional benefit79.  

Antibody persistence after the bivalent rLP2086 vaccine was assessed in an open-label, 

follow-up study of subjects previously enrolled in a primary study.  The decline in antibody 

levels among individuals 11 to 18 years of age, 4 years after a primary series on a 2 or 3-

dose schedules, follows a similar pattern.  A decrease in response was evident for all test 

strains from month 6 to month 12, followed by a plateau thereafter up to month 48.  

Subjects achieving protective hSBA titers for four fHbp variants strains combined ranged 

from 15.7% to 18.2%.  Taking into account the importance of circulating serum antibodies 

to maintain protection against invasive meningococcal disease, the persistence data suggest 

that booster doses would be required to maintain long-term protection.  All subjects showed 

a robust immune response one month after a booster dose for different fHbp variants 66,74,80 

The capacity of these protein based vaccines to prevent acquisition of serogroup B carriage, 

or otherwise to interrupt transmission and thus provide herd protection, once targeting the 

age groups responsible for carriage, is currently unclear.  In UK university students no 

significant difference in serogroup B carriage prevalence was detected between the 
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4CMenB vaccinated and non-vaccinated control groups one month after the second dose, 

however three to twelve months after vaccination, meningococcal carriage prevalence was 

reduced for all N meningitidis and capsular groups BCWY in vaccinated individuals, 

although to a lower extent compared to carriage reduction conferred by ACWY conjugated 

vaccines81.  Another meningococcal carriage study was performed in 3,082 students at the 

Oregon University following a meningococcal B vaccination campaign with both novel B-

MD vaccines, in response to an outbreak in 2015.  After 4 carriage surveys over a period of 

11 months, no impact on meningococcal carriage was shown, suggesting that novel B-MD 

vaccines may not provide herd protection in the context of an outbreak response82.  Similar 

experience was seen in Rhode Island after a mass vaccination campaign in a college with 

rLP2086, reinforcing the need for high vaccination coverage to protect vaccinated 

individuals and chemoprophylaxis for close contacts during outbreaks83.  A recent study 

performed in Spain found that the potential impact of the 4CMenB vaccine on Spanish 

asymptomatic carrier strains appears to be due to the NHBA antigen84. 

Effectiveness of the protein-based vaccines will depend on strain coverage, which can be 

estimated from hSBA responses performed with a panel of serogroup B strains 

representative of antigenically and epidemiologically diverse invasive disease isolates. 

However, the logistical limitations associated with the use of hSBA led to the development 

of alternative nonfunctional assays to infer vaccine breadth of coverage, such as the 

meningococcal antigen typing system (MATS) and/or the meningococcal antigen surface 

expression (MEASURE) flow cytometry-monoclonal antibody based method.  4CMenB is 

conservatively estimated to provide 66–91% coverage against serogroup B strains 

worldwide46,85 based on analysis of pooled sera from vaccinated infants that meet a 
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minimum threshold of reactivity in the MATS ELISA and/or contain the PorA 1.4 antigen.  

For the bivalent rLP2086, MEASURE uses immune sera specific to a surface-expressed 

epitope common to variants within both fHbp subfamilies included in the bivalent 

vaccine50; at the time of writing, testing of strains had not yet been published.  For 

rLP2086, pairwise identity analysis between a test strain and fHbp sequences from the same 

subgroup indicate high sequence conservation, estimating a coverage from 84.8% to 

88.5%86.   In the future, these types of analysis may provide temporal and regional data for 

serogroup B vaccine policy related decisions.  The meningococcal antigen typing system 

(MATS) could potentially underestimate coverage, as it was shown in a study when MenB 

isolates from England and Wales were assessed, reaching a 73% to 88% coverage45–48. 

Another study performed in the United Kingdom (UK) following 4CMenB introduction in 

infants showed >80% vaccine-mediated protection against all current MenB strains 

circulating in the country87,88.  This could be explained by the existence of cross-protective 

epitope on fHbp variant 1.1 that elicit bactericidal neutralizing antibodies to antigen-

binding fragment 1A12 which is cross-reactive and targets an epitope highly conserved 

across the repertoire of three naturally occurring fHbp variants89   

These vaccines may prove to be effective against non-serogroup B strains due to cross-

protection provided by the highly conserved antigenic proteins included in the vaccines85,90, 

as has been reported in the UK in relation with the hyper virulent Neisseria meningitidis 

serogroup W strain circulating, especially in infants.  The technique to predict non-MenB 

vaccine strain coverage using MATS positive bactericidal threshold has not yet been 

validated.  Therefore to evaluate the impact that 4CMenB vaccination may have on non-

serogroup B disease SBA activity of sera from vaccinated subjects to kill meningococcal 

strains belonging to serogroups C, Y, and W isolates have been used, provided by the 
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reference laboratories in UK, Germany, France and Brazil.  An overall proportion of 

serogroups C, Y and W strains killed at hSBA titers ≥8 ranged from near 45% to 90% 91.  

Another study, performed by Gorla et al, with strains representing the total MD cases 

occurring during 2012 in Brazil showed differences between adolescents and infants 

coverage with a 100% coverage for MenW and MenY, but no coverage for MenC strains 

tested with pooled infant immune sera and 100% for MenC, 86% for MenW, and 67% for 

MenY using adolescent immune sera92.  Regarding serogroup X, the same analysis was 

performed for strains from Niger, Chad, Burkina Faso and France, suggesting coverage for 

african isolates but not for X isolates from France which expressed unrelated fHbp sub 

variants belonging to variants 2 and 393.  The universal presence of full-length NadA genes 

within currently circulating MenW cc 11 clones, English/Welsh strain, indicates that 

4CMenB may afford protection.  Tested invasive MenW:cc11 isolates from patients 4 

months to 91 years old in England and Wales during 2011–2012 with pooled sera from 

vaccinated children showed that hSBA titers were high (>1:32) against all MenW 

isolates8,90.  In addition, 4CMenB variants for NadA and NHBA, unless different from 

these alleles peptides in MenW English/Welsh strain, can induce cross-protection, and 

collaborate in the complement-mediated bactericidal killing90.  

Considering the commonly accepted threshold of €50,000 per QALY, novel MenB 

vaccines are not expected to be cost-effective in a National Immunization Program (NIP) 

unless a considerable increase in MenB incidence occurs or new information that clarify its 

role in herd protection or persistence of immune protection becomes available.  Infant 

vaccination could further reduce the burden of disease and prevent more deaths as 

compared to adolescent schedules, but at a substantially higher cost; so cost- effectiveness 

and feasibility of introducing a novel MenB vaccine into a NIP needs to be based on 
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country-specific assessments94–100.  This issue requires further analysis and studies, which 

should be obtained and complemented from the UK experience.  

Regarding vaccines comparison, 4CMenB and rLP2086 are both proteins based vaccines, 

developed using different strategies, aiming to provide broad strain coverage.  4CMenB 

includes three antigens (including only one subtype of fHbp) in addition to OMV while 

rLP2086 includes the two main subtypes of fHbp.  Comparisons of potential strengths and 

weaknesses have to be made with caution as different techniques have been used to 

evaluate these vaccines.  Face to face efficacy studies are not available and thus vaccines 

cannot be fairly compared.  Immunogenicity studies use different antigens and criteria and 

thus for are not comparable.  For rLP2086 vaccines protective antibody titers surpass 73% 

and 80% after two or three doses respectively in adolescents74 and for 4CMenB, protective 

levels ranged from 99% to 100% for PorA, fHbp, and NadA antigens54.  Only the 4CMenB 

vaccine was licensed in infants with composite antibody levels reaching 85–95 % after the 

primary series with three doses57.  Studies of antibody persistence revealed a bactericidal 

activity lasting 18-24 months in over 64% of adolescents for all three tested 4CMenB 

vaccine-related antigens79 and a sharp decline for antigens expressing fHbp subfamilies A 

and B ranging from near 25% to 60% in the percentage of subjects with protective 

antibodies since 12 to 48 months after priming with rLP208680; indicating that immunity 

wanes for both vaccines.  In children, a recently published meta-analysis assessed 4CMenB 

persistence of immunogenicity against the four reference strains finding that it remained 

high 6 months after the booster dose just for NadA and NHBA reference strains and then 

decreased till values obtained before booster dose69,75,78  
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The potential for cross-protection against non-B meningococcal strains has been described 

for 4CMenB, specifically for C, W, Y and X strains, but not yet for rLP2086.  For both 

vaccines, the impact of vaccination on nasopharyngeal carriage is uncertain. 4CMenB has 

demonstrated a reduction only in one study performed in UK from 3 months after dose two, 

of 18.2% on any meningococcal strain and 26.6% for capsular groups BCWY, with a 

reduction in prevalence of carriage observed over 1 year of follow-up81.  For rLP2086 no 

impact on carriage has been demonstrated, regardless the number of doses administrated 

during outbreaks in American universities and colleges82,83.  Both vaccines can be 

coadministered with other childhood or adolescent vaccinations.  4CmenB can be 

coadministered with monovalent or combination vaccines including: diphtheria, tetanus, 

acellular pertussis, Haemophilus influenzae type b, inactivated poliomyelitis, hepatitis B, 

heptavalent pneumococcal conjugate, measles, mumps, rubella, varicella, and MCC-CRM 

vaccine in infants and children; coadministration studies are not available for 

adolescents57,58.  For rLP2086 the following vaccines can be given concomitantly in 

adolescents, TdaP-IPV, quadrivalent HPV, MenACWY conjugate vaccine and tetanus 

toxoid, Tdap.  Bivalent rLP2086 vaccine is not approved for infants65,66.  Both vaccines are 

relatively reactogenic as has been described above, causing pain at the site of injection in 

adolescents and infants, and fever in infants; it is unclear if one vaccine is more reactogenic 

than the other as no head to head studies are available.  4CmenB has been included in five 

NIPs59,60,101-104 and has been used in regional programs and to control specific outbreaks105–

110, especially in colleges, while rLP2086 has not yet been incorporated into a NIP, but has 

been used in college outbreaks110–112.  Finally, both vaccines are currently of relatively high 

cost97,98,100. 
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For the investigational  vaccine against serogroups A, B, C, W and Y (MenABCWY), 

phase 2 studies performed in adolescents have showed that two or three doses are able to 

elicit a robust immune response against ACWY serogroups, at least comparable with those 

after one dose of MenACWY-CRM vaccine, and for serogroup B test strains with an 

acceptable reactogenicity and safety profile, similar to 4CMenB.  In addition, MenABCWY 

vaccine may be suitable for booster doses after priming with MenABCWY vaccine or 

4CMenB vaccine113-116.  Further clinical development is necessary but promising to give us 

the opportunity to control MD. 

 

Consideration for use of the serogroup B protein based vaccines for N. meningitidis 

outbreaks 

Massive vaccination campaigns can be implemented for outbreak control. Importantly, 

vaccination does not replace recommended chemoprophylaxis36,105,117.  Before vaccine 

implementation, appropriate surveillance systems including follow-up of close contacts 

should be available.  Ideally, the infecting strain should be characterized, but, this should 

not delay the decision regarding vaccine introduction during outbreaks36.  There is no 

current preference for one of the two available vaccines according to CDC 

recommendations and vaccine interchangeability cannot currently be endorsed118.  

 

Effectiveness and safety of serogroup B protein-based vaccines from “early adopter” 

countries/regions 

The UK experience 
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For the last several decades capsular group B endemic meningococcal disease has 

predominated in the British Isles at incidence rates that are higher than those seen 

elsewhere in Europe33.  Numerous clonal types of group B causing invasive disease have 

circulated119.  This is in contrast to some other capsular groups, notably group C in the 

1990s and group W in the second decade of the twenty first century, each of which showed 

rapid rises in incidence associated with spread of single hyper invasive clones8.  While 

these latter problems were, respectively, solved120 and, at the time of writing, are being 

tackled by widespread deployment of conjugate vaccines in the adolescent age group121, 

who are most commonly carriers and thus onwards transmitters of meningococci in the 

population, this option does not currently exist for group B. 

Accordingly, in the context of recognition that efforts to improve early diagnosis and to 

improve outcomes through more aggressive or novel adjunctive therapy were unlikely 

further to reduce case fatality rates or the frequency and severity of long term morbidity 

and buoyed by strong public and political support for action, the pediatric academic 

community in Europe engaged actively with the company developing 4CMenB and 

contributed to advancing the pre-licensure development program122. 

Following European licensure, initial evaluation of the cost effectiveness of using the 

vaccine, based on estimates of likely coverage of UK invasive strains122, cast doubt as to 

whether it would meet the stringent criteria set by the UK government for introduction of 

healthcare interventions within the National Health Service in the country60.  However, 

after further evidence was gathered, it became clear that the threshold could be met if a 

slightly modified schedule from the one specified in the product license was used and the 

vaccine was introduced for infants in September 201559.  Infants receive 2 doses at 2 and 4 
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months of age alongside other primary schedule vaccines and receive a third dose at 12-13 

months.  The uptake reported from August to December of 2017 in UK, reached 95.9% for 

one dose and 88.4% for two doses by six months of age and 87.4% for the booster dose123.  

Advice concerning routine antipyretic-analgesic use was modified to advise that 

paracetamol should be given at the time of the first two doses. 

Early ecological data comparing changes in rates of meningococcal group B disease over 

time in the immunized cohort with those in older age groups indicate that the vaccine 

induces protection more effectively than was predicted pre-implementation87.  The rates of 

uptake of the vaccine have been consistently high but concerns that its tendency to cause 

fever in many infants when given with other vaccines would lead to increases in rates of 

hospital attendance have been confirmed, reinforcing the importance of paracetamol 

prophylaxis56. 

Whether deployment of the vaccine in adolescents would reduce carriage and result in herd 

protection as seen following conjugate vaccine programs remains an unanswered question 

at the time of writing.  If 4CMenB and/or the more recently licensed bivalent fHbp vaccine 

can do this will determine whether cost-benefit thresholds can be met for their use in this 

age group.  An on-going study in South Australia (Marshall et al., manuscript submitted for 

publication) and a planned study in the UK may provide the answer. 

 

The Saguenay-Lac-Saint-Jean experience in Canada  

The Saguenay-Lac-Saint-Jean (SLSJ) region was affected by a 269 (ST-269) serogroup B 

clone with an average incidence rate of 3.4 per 100,000 person-years from 2006 to 2013, 
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which surpassed Canadian average rates by more than 10-fold (0.3/100,000). Cases were 

concentrated among individuals ≤ 20 years of age.  To control the spread of this clone, a 

massive vaccination campaign using 4CMenB according to its locally approved schedule, 

was undertaken, targeting more than 50,000 people between the ages of 2 months and 20 

years residing in, or attending an educational institution in the region109.  The vaccine 

uptake rate for one dose was 82%, but only 70% for at least two doses, mainly due to low 

uptake in older adolescents and young adults.  The vaccination campaign was estimated to 

have reduced disease incidence by 77% and new serogroup B cases have not been reported 

among vaccinees, with two cases observed among non-vaccinated adults.  An enhanced 

surveillance system was also implemented to monitor the onset of adverse events following 

immunization in real time109,124.  Fever was reported in 12% of vaccinees and was more 

frequent in young children.  Antipyretic prophylaxis (paracetamol mainly) was 50% 

effective in preventing the occurrence of fever in children less than 5 years of age but not in 

older age groups.  There was no death and no major adverse event with or without sequelae 

associated with vaccination.  During the two-year period following the immunization 

campaign in SLSJ, no IMD case was recorded among unvaccinated individuals, including 

infants, thus it seems that at least some herd effect may be occurring109.  

 

Vaccine use for control of university outbreaks in the USA 

From 2009 to 2014 five serogroup B outbreaks on college campuses were reported to CDC.	  	  

In 2013, 4CMenB vaccination campaigns were implemented in response to ongoing 

serogroup B outbreaks at the Universities of Princeton and Santa Barbara, due to sustained 

transmission during 2 academic years.  The FDA approved the use of 4CMenB before 
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national licensure under an expanded access investigational new drug protocol in December 

2013106,108.  The attack rate in Princeton was 134/100,000 among undergraduates living in 

dorms, with individual cases occurring 2 to 4 weeks apart.  The strain isolated expressed 

two of the 4 antigens (fHbp and NHBA) in sufficient quantities to suggest that 4CMenB 

might be protective108.	   	   Vaccine was offered to nearly 5,800 individuals including 

undergraduate students, faculty, staff and graduate students at increased risk of 

meningococcal disease, and spouses and caregivers of graduate and undergraduate students 

living in a dormitory with students.  Uptake was very high, reaching 95% for the first dose 

and 89% for the second dose, with approximately 5,200 individuals who received al least 

one dose106.  The rate of reported SAEs was near 2.0/1,000 vaccinees following the first 

dose and 0.2/1,000 following the second dose, with no causality related to 4CMenB 

observed108.  In the University of California at Santa Barbara outbreak, the attack rate was 

21.1/100,000; despite the fact that the strain was different from the Princeton strain, 

protection was expected from 4CMenB based on killing properties of pooled post-

immunization sera.  The target groups were similar to Princeton with nearly 20,000 subjects 

eligible and nearly 17,000 vaccinated with no cases occurring in vaccinated 

students34,108,117.	   	   Parallel to this immunization campaign, an immunogenicity study was 

performed in a subset of 607 subjects showing that 66.1% had hSBA protective titers 

against the outbreak strain125.  This result was lower than that predicted by the MATS test, 

suggesting that hSBA underestimates protective immunity.  The bivalent rLP2086 vaccine 

was administered to 3,525 subjects in Providence College and to nearly 22,0000 students in 

the University of Oregon during outbreaks occurring in 2015, achieving a 94% first dose 

uptake among eligible students.  College-associated cases were not identified during the 4 

months follow up period82,83,107,126. 
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Despite the success achieved after the widespread vaccination campaigns to control 

outbreaks of serogroup B-MD, with no further cases reported among vaccinated subjects, 

the long-term duration and breadth of protection, as well as the impact of these vaccines on 

prevention of carriage remains to be determined. 

 
Conclusions 

Rates of invasive B-MD have been declining worldwide, although in certain geographical 

areas and populations incidence rates can be particularly high. In addition, outbreaks of B-

MD occur in an unpredictable manner in a number of settings where people gather, 

especially universities. Although several possibilities were raised to explain the declining 

trend in B-MD incidence observed during the last decades, including declining smoking 

rates, changes in population immunity, bacterial virulence and a natural cyclical pattern of 

meningococcal serogroup distribution 25, reasons remain unclear. The high CFR and the 

significant sequelae in surviving individuals, as well as its potential epidemic nature are the 

main reasons for primary prevention, for which vaccination is the only effective tool. Age 

groups at highest risk are young children, especially infants under one year of age, followed 

by adolescents in areas where close contact is frequent such as university dorms in the 

USA. Meningococcal vaccines against non-serogroup B strains have been based on protein 

conjugated capsular polysaccharides targeting specific serogroups (A, C, W and Y) with 

great success. The rapid and sustained reduction in serogroup C disease rates in the UK and 

other countries after vaccine implementation into national immunization programs has been 

a significant achievement. Flexible vaccine schedules focusing not only on direct 

protection, targeting the age groups with the highest incidence rates of disease (usually 

infants), but also vaccinating the age groups that act as the reservoir for infection (usually 



	   30	  

adolescents and young adults) and thus reducing carriage rates and interrupting 

transmission in the community, have proven effective for serogroups susceptible to be 

prevented by this vaccine strategy. 

The antigenic mimicry between serogroup B polysaccharide and human neural tissue 

antigens curtailed development of polysaccharide-based vaccines against this pathogen, and 

left it unprevented for decades.  The solution was found in targeting outer membrane 

proteins, first in the form of OMVs, which are a laboratory-obtained simile of the outer 

membrane (of which porins are the main antigenic target).  This vaccine proved to be 

immunogenic, protective, and effective in controlling regional outbreaks, with the caveat 

that the immune response, based on the induction of SBA, was highly strain-specific for the 

porin within the OMV.  The significant variability of porins among strains circulating 

worldwide precluded this strategy for universal vaccination.  But the proof of concept that 

protein antigen vaccines can be highly protective had been established.  Second generation 

protein-based vaccine candidates aimed to identify antigens expressed in as many 

serogroup B strains as possible in order to provide “broad strain” protection.  These 

candidates are now licensed vaccines although in a stage of post-licensing “field 

evaluation” as they were approved based on safety and immunogenicity studies and their 

use is currently limited to only one country in a routine national program, to some regions, 

and a few outbreak situations.  The fact that in all the experiences to date results have been 

encouraging is promising.  The 4 component vaccine targeting four different proteins from 

GSK (developed by Novartis vaccines) and the two component vaccine targeting the two 

subfamilies of one relevant protein, from Pfizer, elicit serum bactericidal antibodies 

although in variable quantities depending on the antigen.  It seems that antibodies to any of 
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the protein antigens in the vaccine may be sufficient to protect, but this is uncertain.  The 

exact protective effectiveness for each vaccine is thus currently unknown although for 

4CMenB it seems to surpass 85% for the first year after the primary series.  Antibodies 

wane and because MD is fulminant, depending on memory cells is not sufficient to avoid 

severe disease if a vaccinated individual is exposed several years after vaccination.  Thus, 

booster doses are likely to be needed to provide sustained individual protection.  In 

addition, the breadth of strain coverage, which seems quite inclusive based on MATS 

testing for 4CMenB (over 60% of strains) and probably also for rLP2086, will require 

persistent strain surveillance over time.  One limitation associated with both vaccines is 

their high reactogenicity profile both local and systemic, especially among infants.  Only 

one of the two vaccines, 4CmenB, has been licensed for use in infants, and increased 

medical visits and even hospitalization due to febrile episodes have been reported.  

Importantly though, this reactogenicity profile has not been associated with severe 

outcomes to date, and hopefully will be adequately dealt with through parental education, 

as we gain more experience with both vaccines.  

The two-serogroup B vaccines are a significant addition to our armamentarium against 

highly significant pathogens for humans.  The vaccines should certainly be considered for 

persons at increased risk for MD and when dealing with serogroup B outbreaks occurring in 

institutions or specific regions, as they will most likely save lives and prevent severe 

sequelae.  Incorporation into national programs will require thorough analysis such as has 

been done in the UK; the world is once again watching closely the vaccine experience of 

this country (a post licensure field experiment) which will be of significant help to other 
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countries with relatively high prevalence rates, who may be considering the incorporation 

of a serogroup B vaccine for the benefit of their populations. 
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Figures legends 

 

Figure 1. Annual incidence per 100,000 people of serogroup B invasive meningococcal 

disease worldwide from Jan 1, 2000, to March 1, 2015 (28).  

 

Footnote: authorization obtained by Lancet Infectious Diseases, license number 

4253831337542 

 

Figure 2. Meningococcal Outbreaks reported to the WHO from 2012 to 2017.  

 

Figure 3. Timeline of some relevant moments in meningococcal disease control and 

prevention 

 





Oregon: Oregon State University, 3 cases, 
2016-2017 

Oregon: Oregon State University, 7 cases,  
1 death, 2015 

California: California University at Santa 
Barbara, 4 cases, 2013 

California: Santa Clara University, 3 cases, 2016 

Wisconsin: University of Wisconsin, 3 cases, 
2016 

Rhode Island: Providence College, 2 
cases, 2015 

New Jersey: Princenton University, 9 cases, 2013-2014 

Niger:  5855 cases, Jan 1st  to May 10th 2015 

Chad: 2828 suspected cases, 135 deaths, Jan 1st to Apr 17th 2012 

Sudan: 275 suspected cases, 13 deaths, Jan 1st to  Apr 17th 2012 

Togo: 201 cases, 17 deaths, Jan 1st 2017 

Ghana: 569 suspected cases, 56 deaths, Jan 1st to Apr 17th 2012 

Burkina Faso: 5300 suspected cases, 553 deaths, Jan 1st to Apr 17th 2012 

Benin: 758 suspected cases, 71 deaths, Jan 1st to Apr 17th 2012 

New Jersey: Rutger University, 3 cases, 2016 

Nigeria:  468 cases, Dec 13th 2016 to Jun 2nd 2017 

Cote D’Ivore: 399 suspected cases, 49 deaths, Jan 1st to Apr 17th 2012 





Table 1.  Immunogenicity and safety data from pivotal phase II/III studies for novel recombinant B-MD vaccines  

Author, vaccine, study design Immunogenicity Safety Concomitant vaccines 

Gossger N, et al. 4CMenB 53 

Phase IIb, multicenter, open-

label, parallel group, 

randomized controlled trial; 

infants 2 months of age 

including two different 3 +1 

schedules (sole or co-

administered with routine 

vaccines); N=1,885  

After priming > 99% reached 

protective titers (hSBA > 5) against 

Nad A, fHbp; and 79 - 86,1% for 

PorA tests strains.  

 

Immune responses were non-

inferior by concomitant 

vaccination; and its 

immunogenicity was non-inferior to 

routine vaccines alone for all 

antigens. 

 

Sole administration elicited higher 

hSBA GMTs for all strains 

compared to coadministration with 

routine vaccines; 2,4, and 6-month 

schedule, rather than an accelerated 

2-, 3-, and 4-month schedule, 

resulted in higher hSBA GMTs for 

the Nad A test strain. 

 

Fever was more frequent after 

4CMenBdoses (26%-41%) compared 

with routine vaccines (23%-36%); 

severe erythema, swelling, or 

induration were seen in < 1%; severe 

pain was registered in 16% in the 

accelerated groups. 

PCV7 and DTaP-HBV-IPV/Hib 

No evidence of immune 

interference, except for pertactin 

and pneumococcal serotype 6B, 

of unlikely clinical significance.  

Increase in reactogenicity in the 

coadministration group, mainly 

fever (51%-61%) and severe 

pain at the injection site (12%). 

Vesikari T, et al, 4CMenB 52 

Phase III, multicenter, 

randomized, open label for 

immunogenicity and observer 

blind for safety; infants 2 – 12 

months of age; 3 +1 schedule  

N= 3,360  

After priming 100% reached hSBA 

≥ 5 against fHbp and Nad A, and 

84% for New Zealand OMV and 

NHBA tests strains. 

After booster dose: 95−100% of 

children had hSBA ≥ 5 for all 

antigens. 

Fever, injection-site reactions and 

tenderness were the most frequent 

adverse events reported 

Fever: usually on day 1, returning to 

normal by day 3.  

Injection-site reactions: peaked on 

day 1, with a steep decrease on day 2 

and lower incidence after booster. 

PCV7 and DTaP-HBV-

IPV/Hib; MMRV 

No evidence of immune 

interference, except for 

poliovirus type 2 responses, 

with unknown clinical 

significance. 

Increase in reactogenicity in the 

coadministration group; mainly 

fever (77% vs. 45%). 



 

Martinón-Torres F, et al, 

4CMenB 50 

Phase IIIb, multicenter, 

randomized, open-label; healthy 

subjects from 2 ½ months to 10 

years old, divided in four 

groups:  

Group 1: doses at 2½, 3½, and 

5 + 11 months of age;   

Group 2: doses at 3½ and 5 + 

11 months of age; 

Group 3: dose at 6 and 8 + 11 

months of age.  

Group 4: 2-dose-catch-up 

series, administered 2 months 

apart. 

 

N= 754 infants and 404 

children 

After priming for groups 1 to 3, and 

after the catch up series for group 4 

100% and 99% reached hSBA ≥ 4 

against fHbp and Nad A; 

After primary/catch-up series hSBA 

≥ 4 against Por A was reached in 

groups 1,3 and 4 in 99% and in 

98% for group 2.   

NHBA 1 month after 

primary/catch-up series reached 

59% for group 1, 49% for group 2, 

77% for group 3, and  95% for 

group 4 

After booster response (measured in 

groups 1,2 and 3) 100% reached  
hSBA titers > 4 for fHbp and Nad 

A, >99% for Por A  

NHBA reached hSBA titers > 4 in 

84%, 88% and 87% in groups 1, 2 

and 3 respectively.    

In infants local tenderness, erythema 

and pain were the most commonly 

reported adverse effects  

 

Rates of systemic adverse reactions 

in infants were similar across the 3 

groups and highest after the first 

vaccination.  Across all groups, no 

increased reactogenicity was 

observed following subsequent 

vaccinations 

None 

Santolaya ME, et al., 4CMenB 
54 

Phase IIb/III, multicenter, 

randomized, observer-blind, 

placebo-controlled study; 

adolescents from 11 to 17 years 

old; 1, 2 or 3 dosing schedule 

with 1,2 and/or 6 month 

intervals; N= 1,631  

After 1 dose: 92–97% had hSBA 

titers ≥ 4 against  test strains   

After 2 or 3 doses: 99–100% had 

hSBA titers ≥ 4  against  test 

strains; reaching seroresponse rates 

of 99–100% for each strain at 6 

months. 

A third dose had a small 

incremental effect on geometric 

mean titers, especially when given 

at 6 months, but did not increase the 

Local and systemic reaction rates 

were similar after each injection and 

did not increase with subsequent 

doses, but remained higher than 

placebo.  

Pain was reported in 86% of which 

17% was severe, most resolving at 

day 3; malaise: 51%; headache: 42% 

and fever: 4%; all the above were 

statistically significant compared to 

placebo. 

No vaccine-related SAEs were 

None 



proportion of participants achieving 

protective titers 

reported and no significant safety 

signals were identified. 

 

Vesikari T, el al. rLP2086 63 

Phase II, randomized, 

multicenter, single-blind study; 

adolescents from 11 – <19 

years old; 2- or 3-dose 

schedules (0,1,6-month; 0,2,6-

month; 0,2-month; 0,4-month; 

0,6-month); N= 1,713  

 

Participants whom elicited hSBA 

titers ≥1: 8 for serogroup B test 

strains expressing vaccine-

heterologous fHbp variants A22, 

A56, B24, and B44: After 2 doses: 

90-93%, 98-100%, 69-81%, and 

70-77% . 

After 3 doses: 92-95%, 98-99%, 

88-89%, and 86-88% . 

GMTs were similar between the 2- 

and 3-dose regimens.  

Pain at the injection site, redness and 

swelling were the most common 

reactions and were mild to moderate. 

Severe pain was reported by 9.9% of 

subjects  

Headache and fatigue were the most 

common systemic symptoms and 

were mild or moderate in severity. 

Fever was infrequent (1.7%–4.3%).   

There were no differences in the 

incidence of SAEs between bivalent 

rLP2086 and saline recipients.  

None 

Muse D, et al.; rLP2086 64 

Phase II, multicenter, 

randomized, active-controlled, 

observer-blinded study; 

adolescents from 10 to <13 

years old;  concomitant or 

standalone schedule:  0,2 and 6 

months; N=2,648 

 

Immune responses to MCV4 + 

Tdap + rLP2086 were non-inferior 

to MCV4 + Tdap or rLP2086 alone. 

Seroprotective hSBA (>1:4) were 

documented for 62.3%–68.0% and 

87.5%–90% of MCV4 + Tdap + 

bivalent rLP2086 recipients after 

doses 2 and 3, respectively. A ≥4-

fold rise in hSBA titers from 

baseline was achieved by 56.3% – 

64.3% and 84.0%–85.7% of 

subjects after doses 2 and 3, 

respectively. Bivalent rLP2086 

alone induced similar responses. 

Concomitant administration did not 

substantially increase reactogenicity 

compared with rLP2086 alone. 

MCV4 and Tdap  

Bivalent rLP2086 

concomitantly with MCV4 + 

Tdap met all noninferiority 

immunogenicity criteria without 

an increase in reactogenicity. 

 

Ostergaard L, et al.; rLP2086 67 

Phase III, multicenter, 

Immunogenicity data were not 

collected 

SAEs: 1.6% of rLP2086 recipients 

Medically attended AEs were similar 

None 



 

4CB-MD: Bexsero®; fHbp: factor H binding protein; Nad A: neisserial adhesin A; neisseria heparin binding antigen: NHBA; OMV: outer-

membrane vesicle; hSBA: human complement serum bactericidal activity; GMTs: geometric mean titres; SAE: serious adverse events; AE: adverse 

event; SBA: serum bactericidal assays; hSBA: serum bactericidal assays using human complement; PCV7: heptavalent pneumococcal conjugate 

vaccine; DTaP-HBV-IPV/Hib: diphtheria, tetanus, acellular pertussis, Haemophilus influenzae type b, inactivated poliomyelitis, hepatitis B vaccine; 

MMRV: measles, mumps, rubella, varicella; MCV4: meningococcal ACWY conjugate vaccine; Tdap: tetanus toxoid, reduced diphtheria toxoid and 

acellular pertussis vaccine adsorbed 

 

 

randomized, active-controlled, 

observer-blind study; 

adolescents and young adults ≥ 

10 - <26 years old; 3 doses 

schedule (0, 2, and 6 months); 

N=5,712 

between rLP2086 and hepatitis A 

vaccine/placebo group (5,5% - 7%) 

and decreased after each consecutive 

dosing 

Subjects reporting ≥ 1 AE were 

greater in the rLP2086 vaccine group. 

Ostergaard L, et al.; rLP2086 68  

Phase III, multicenter, 

randomized, controlled, 

observer-blinded, adolescents 

from 10 – 18 years old and 

from 18 to 25 years old; 3 doses 

(0,2 and 6 months) 

N= 3596 adolescents (10 to 18 

years of age); 3304 young 

adults (18 to 25 years of age) 

After 2 doses hSBA titer > 4 

against each primary strain ranged 

from 56.0 to 85.3% in subjects 10 – 

18 years old and from 78.8 to 

90.2% after dose 3 

Young adults with hSBA titers > 4 

ranged from 54.6 to 85.6% and 78.9 

to 89.7%, after doses 2 and 3, 

respectively 

Composite responses after doses 2 

and 3 in adolescents were 53.7% 

and 82.7%, respectively, and those 

in young adults were 63.3% and 

84.5%, respectively 

Pain was the most common reaction 

in the two trial groups, mainly after 

dose 1, and ≤1.1% reported increased 

severity of reaction with subsequent 

doses 

Headache and fatigue were the most 

common systemic events among both 

adolescents and young adults 

None 
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