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ARTICLE

Dynamical origins of heat capacity changes in
enzyme-catalysed reactions
Marc W. van der Kamp 1,2, Erica J. Prentice 3, Kirsty L. Kraakman3, Michael Connolly 2,

Adrian J. Mulholland2 & Vickery L. Arcus 3

Heat capacity changes are emerging as essential for explaining the temperature dependence

of enzyme-catalysed reaction rates. This has important implications for enzyme kinetics,

thermoadaptation and evolution, but the physical basis of these heat capacity changes is

unknown. Here we show by a combination of experiment and simulation, for two quite

distinct enzymes (dimeric ketosteroid isomerase and monomeric alpha-glucosidase), that the

activation heat capacity change for the catalysed reaction can be predicted through atomistic

molecular dynamics simulations. The simulations reveal subtle and surprising underlying

dynamical changes: tightening of loops around the active site is observed, along with changes

in energetic fluctuations across the whole enzyme including important contributions from

oligomeric neighbours and domains distal to the active site. This has general implications for

understanding enzyme catalysis and demonstrating a direct connection between functionally

important microscopic dynamics and macroscopically measurable quantities.
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A critical variable for the rate of a reaction is temperature.
For uncatalysed chemical reactions, the rate of reaction
typically increases exponentially with increasing tem-

perature, as described by the Arrhenius and Eyring equations1,2.
In reactions catalysed by enzymes, the effects of temperature are
complex and include (often opposing) contributions from active
site geometry and reactivity, protein stability, conformational
changes and temperature-dependent regulation. Changes in
temperature can also potentially affect features of the enzyme-
catalysed reaction outside the chemical steps, such as substrate
binding, product release and conformational changes. Despite
these complexities, enzymes generally show a characteristic
temperature profile including an optimum temperature (Topt) for
activity above which rates decline with increasing temperature.
The decline in rate above Topt cannot simply be explained
by enzyme unfolding at higher temperatures and deviations
from Eyring behaviour are also often seen at temperatures below
Topt3–5. We recently developed macromolecular rate theory
(MMRT)6,7, which explains the temperature dependence of
enzymes including an intrinsic Topt in the absence of denatura-
tion by introducing the concept of heat capacity changes along
the reaction coordinate: the heat capacity (CP) for the
enzyme–substrate complex is generally larger than CP for the
enzyme–transition state (TS) complex, in enzymes for which the
chemical reaction is rate limiting. Hence, the activation heat
capacity, ΔCz

P, for the enzyme-catalysed reaction is generally
negative (Fig. 1a; in case the chemical reaction is not rate limiting,
a small positive ΔCz

P is possible
8). We have demonstrated that this

accounts for the curvature observed in Eyring plots for a number
of enzymes6. As we have discussed previously, curvature in
Eyring plots due to ΔCz

P has also been observed for protein-
folding kinetics (e.g. ref. 9). This is directly analogous to

temperature-dependent curvature in protein stability due to
ΔCP that gives rise to both high- and low-temperature
denaturation10.

ΔCz
P is a statistical thermodynamic property for the catalysed

reaction that describes the difference in heat capacity between the
thermodynamic ensemble in the ground state and that at the TS.
It can be determined experimentally11, and can also be calculated
from the variance in enthalpy at equilibrium for each of these
states12

ΔCz
P ¼ Δh∂H2iz

kBT2
: ð1Þ

In principle, atomistic molecular dynamics (MD) simulations
at equilibrium can provide a distribution of enthalpies from
which the variance h∂H2i (the mean square fluctuation in the
enthalpy) may be calculated. To do so, the ensemble for the
enzyme–substrate complex and separately, that for the
enzyme–TS complex, should be simulated.

Here we experimentally determine the value for ΔCz
P from the

temperature dependence of the rate in the absence of enzyme
denaturation for two quite different enzymes: the small, dimeric
ketosteroid isomerase (KSI) and the large, monomeric α-
glucosidase MalL. In parallel, we employ extensive MD simula-
tions (10 μs per enzyme) to obtain heat capacity differences
between two states along the reaction pathway. KSI is a very well-
studied enzyme that is involved in steroid biosynthesis and
degradation: it performs two consecutive proton transfers to shift
the position of a C=C double bond13. MalL is a large α-gluco-
sidase: it hydrolyses terminal non-reducing (1 → 6)-linked α-
glucose residues in a two-step reaction, releasing α-glucose14.
Previously, we have shown by experiment that there is a large
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Fig. 1 Basis of a negative ΔCz
P and its determination through experiment or simulation. a Conceptual depiction of a difference in CP between the

enzyme–substrate (E–S) and enzyme–transition state (E–TS) complexes along a reaction, resulting in a negative ΔCz
P. b Conceptual depiction of differences

in enthalpy distribution at the E–TS (red) and the E–S states (blue). Arrows indicate the inflection points (at μ+ σ), and the difference defines ΔCP between
the two states according to the formula given (see Eq. 1). c–d Experimentally determined ΔCz

P values (kJ mol−1 K−1 ± SE) for the temperature-dependent
rates of KSI (c) and MalL (d). The data are fit with MMRT (see Methods). Error bars, where visible, represent the standard deviation of three replicates.
Structures of KSI and MalL are drawn to scale
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change in heat capacity for this enzyme-catalysed reaction and
that single point mutations can dramatically alter the temperature
dependence of the rate by altering the heat capacity of either the
enzyme–substrate complex or the enzyme–TS complex7.

Activation heat capacities from simulations and experiment
are in good agreement for both enzymes. This shows that
prediction of activation heat capacity for enzymes is feasible by
simulations, opening a new route to predicting and engineering
optimum temperatures for enzyme activities. Further, the
simulations provide an atomically detailed picture of the
dynamical differences between TS and Michaelis complexes
that give rise to this behaviour, revealing complex, and intri-
guing changes in dynamics across the whole enzyme structure
(similar to changes observed by nuclear magnetic resonance in
protein dynamics upon ligand binding15–17). We thus use
simulation to interpret the ΔCz

P obtained from macroscopic
kinetics measurements in terms of detailed contributions at the
atomistic level, providing a link between enzyme structural and
energetic molecular fluctuations to its function and
thermoadaptation.

Results
ΔCz

P determined by experiment:. As shown previously6,7, ΔCz
P

can be determined by fitting the ln(rate)-versus-temperature
plot using MMRT (Fig. 1). For MalL, curvature in this plot is
very significant (Fig. 1d), and unrelated to unfolding5. This
leads to a negative ΔCz

P value of –11.6 ± 0.4 kJ mol−1 K−1. For
KSI, the curvature is less extreme, but still obvious, leading to a
small negative ΔCz

P of –0.86 ± 0.1 kJ mol−1 K−1 (Fig. 1c). An
important consequence of the ΔCz

P values for each enzyme is
the position of the optimum temperature (Topt) for activity as
these parameters are correlated. For example, the large negative
ΔCz

P value for MalL dictates the position of Topt at 320 K,
whereas the much smaller ΔCz

P value for KSI places the Topt well
above 320 K (in absence of protein unfolding). Similarly, the
significant curvature of the MalL temperature dependence
means that at lower temperatures, the rate approaches zero
much faster for MalL than for KSI. Implicit in this approach is
the assumption that ΔCz

P is independent of temperature in the
temperature range studied, and is justified based on the good fit
of the MMRT model to the experimental data.

Heat capacity differences from simulation. Heat capacity dif-
ferences for enzyme-catalysed reactions can be calculated from
Δh∂H2iz (Eq. (1)). To measure Δh∂H2iz from simulation, there
are two main challenges: (a) the amount of sampling required
for the system to define the enthalpy variance, and (b) an
accurate and consistent representation of the reactant state
(Michaelis complex) and the TS. A statistical thermodynamic
analysis of a 1 ms MD simulation of the bovine pancreatic
trypsin inhibitor indicated that 10s of microseconds (μs) of
simulation may be needed to converge the heat capacity dif-
ference between two conformational states18. Sampling on the
order of (at least) microseconds is thus expected to be required
for reliable identification of heat capacity differences. Such
sampling is now routinely feasible with a ‘molecular mechanics’
description of the atoms and their interactions. Molecular
mechanics force fields have been developed and optimised over
many years19, and can provide a generally good description of
the structure and dynamics of proteins and protein–ligand
binding20. They are, however, empirical potential functions and
typically (for reasons of computational efficiency) lack physi-
cally important effects, such as variations in electronic polar-
isation. This may be related to limitations in their ability to
capture details of fast dynamics21. Here, to calculate ΔCz

P, we

use extensive MD simulation to quantify the change in fluc-
tuation between two states, A and B (Fig. 1a). The difference in
heat capacity between these states can be determined by:

ΔCA;B ¼ hδH2
Bi � hδH2

Ai
kBT2

: ð2Þ

To sample the conformational dynamics of the reactant (E–S
or RS) and ‘TS’ (E–TS) enzyme complexes consistently,
electronically unstable states (e.g. with half-formed bonds
involving enzyme residues) should be avoided for the ‘TS’
representation. We, thus, use molecular species that are
representative for the TS (i.e. TS analogues), and predict that
these will show a similar heat capacity change from the reactant
state. This prediction has been demonstrated experimentally for
human 5′-methylthioadenosine phosphorylase11. For KSI, a
charged enediolate intermediate is formed after the first proton
transfer, and this is the key species stabilised by the enzyme for
catalysis of the reaction22,23. We use this intermediate state as a
proxy for the two enzyme–TS complexes (one for each proton
transfer) as the intermediate lies between the two TSs at similar
energy. The substrate (5-androstene-3,7-dione) and intermedi-
ate complexes (Fig. 2a, Supplementary Fig. 1; Supplementary
Fig. 3) were built based on KSI in complex with the inhibitor 5α-
estran-3,17-dione (PDB 1OHP). For MalL, we obtained an
experimental X-ray structure co-crystallised with a stable
transition-state analogue (Supplementary Table 1; Supplemen-
tary Fig. 4 and 5) and use this to simulate the thermodynamics
of the substrate isomaltose and a close analogue of the
transition-state species at the rate determining step24 (Fig. 2b;
Supplementary Fig. 2).

A total of 5 μs of explicit solvent MD simulation was run for
KSI and MalL in both the substrate-bound and proxy TS
representations over ten replicate simulations for each state. The
force-field potential energy was used as an approximation for the
system enthalpy, and was recalculated for the protein–ligand
system (i.e. all atoms) without explicit water. Considering the
variance of the enthalpy is the quantity required for CP

calculation (Eq. (1)) and a difference in variance between two
states is used to determine ΔCz

P (Eq. (2)) these approximations
should be reasonable. Calculating the variance with explicit
solvent is problematic because there is no clear criterion for
selecting the water molecules that should be included in such a
calculation (see Supplementary Note 6). We note that ΔCz

P values
calculated with an implicit solvent are qualitatively similar to
those reported below for both enzymes (Supplementary Table 5).
Note that there is, in principle, an alternative approach to
calculating ΔCz

P , via the variance in entropy12. Calculating
entropy from simulation accurately is much more challenging;
however, this may be feasible in the future.

For KSI, the conformational space sampled is limited, with only
two distinct structural clusters discernible (see Supplementary
Note 5, Supplementary Fig. 6 and Supplementary Table 3). The
difference between these clusters is in a small region in the
unoccupied monomer (Fig. 2c). The H variance is significantly
different between the clusters, however (Fig. 2e). For ΔCz

P
calculation, we thus calculate the variance of the clusters separately,
with the total variance for each state being the average variance
weighted by the cluster occupation (Fig. 2e; Supplementary Note 5).

MalL samples a larger conformational space than KSI,
occupying and regularly switching between a number of
structural clusters along the simulation trajectories, related
primarily to changes in loops surrounding the active site (Fig. 2d;
Supplementary Notes 4 and 5, Supplementary Table 2, Supple-
mentary Fig. 8, 10 and 11). Due to the presence of multiple
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conformational clusters, consideration of the system over the full
simulation time overinflates the enthalpy variance. However,
calculating variances for each cluster (as for KSI) does not take
into account that frequent switches between the distinct
conformational states will also contribute to the variance. In
addition, several clusters are dominated by one state only
(Supplementary Fig. 11). To be independent of clustering and
account for switching between conformational substates, enthalpy
variance was calculated using a moving window along the
simulation trajectory for each simulation, and subsequent
averaging. The ‘window’ for the moving average was varied
between 5 and 80 ns and calculated ΔCz

P values converge when
the window size is between 40 and 80 ns (Fig. 2f, Supplementary
Table 4). Thus, the calculated ΔCz

P values for MalL converge on a
value of −10.0 ± 1.7 kJ mol−1 K−1 (using a window of 70 ns),
which is within the error range of the experimentally determined
ΔCz

P value of –11.6 ± 0.4 kJ mol−1 K−1.

Local and global contributions to ΔCz
P. The observation that

ΔCz
P values calculated from extensive conformational sampling

agree with those determined experimentally allows meaningful
analysis of the differences between the two ensembles. A sig-
nificant part of ΔCz

P resides in the protein backbone (in agree-
ment with experiments that suggest side-chains contribute only a
fraction to the total protein heat capacity17; Supplementary
Table 5), although the contribution of side-chains cannot be
ignored. Striking results emerge from analysing contributions
from different regions of the enzymes, by calculating ΔCz

P values
for parts of the structures (by recalculating energies and their
variances for specific regions only; Fig. 3). Energy contributions
from interactions with neighbouring regions are not included,
and therefore one should not expect these ‘partial’ ΔCz

P values to
add-up to the total value. They do, however, offer new quanti-
tative insights. Conceptually, one may expect differences in partial
ΔCz

P values to align with regions that differ in flexibility. This is
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largely true for some small regions with clear differences in
flexibility (e.g. residues 46–70 for KSI; residues 250–321 and
374–459 for MalL; see Fig. 3), but is not obvious throughout the
structure, especially for larger regions. Crucially, differences in
ΔCz

P are distributed across the full protein structure, whereas
significant differences in flexibility are limited to regions that
interact with the ligand bound in the active site. This observation
bears similarity with the findings of Homans and others regarding
entropy differences upon protein–ligand binding: unfavourable
entropic contributions (restricted protein dynamics) around the
binding site were observed to be (partially) offset by increases in
the amplitude of motions in adjacent protein regions15,16.

KSI, as a dimer, offers the opportunity to assess the dynamical
role of the monomer that is distal to substrate turnover. The distal
monomer of KSI is the main contributor to reduce ΔCz

P at the TS
(Fig. 3). Overall, the catalytic monomer contributes a positive
ΔCz

P ; the N- and C-terminal regions forming the back of the
active site and more remote regions contribute a positive ΔCz

P ,
while helix 48–59 that closes over the active site opposite from the
catalytic Asp38 rigidifies and contributes a negative ΔCz

P . The
finding that the non-catalytic chain is as a significant contributor
to negative ΔCz

P points to an important role for the oligomer in
the temperature dependence of the catalytic process. Enzyme
oligomerization is common, indicating an evolutionary advan-
tage25; however, the functional purpose of these quaternary
interactions is not well understood. If interactions are optimised
to allow global contributions from changes in the distribution of
vibrational modes across the multimer26, oligomerization may
provide a means to tune the temperature dependence of rates
through global contributions to the overall CP change.

The active site of MalL (and TIM barrel enzymes in general27)
sits displaced to one side above the TIM barrel core, interacting

with a half of the barrel comprising β5–8 and α4–7 (Fig. 3).
Analogous to the ligand bound chain of KSI, the catalytic half of
the TIM barrel increases in CP at the TS, while more remote
protein components, including the second TIM half barrel
contribute to the overall negative ΔCz

P . The lid domain, consisting
of a helix–loop–helix extension above the barrel, contributes
significantly to the overall reduction in CP at the TS, consistent
with a role in shielding the active site from solvent at the catalytic
step. The parallels between the KSI dimer and MalL barrel halves
are especially noteworthy in that the TIM barrel is argued to have
evolutionary origins as a dimer of (βα)4 units13,27, the dynamical
origins of which may still be discernible in the now fused
structure.

Overall, these data indicate that the decrease of CP between the
enzyme–substrate and enzyme–TS complexes is not just a
function of rigidification of elements around the active site, but
significant contributions are also made by regions remote from
the active site, including oligomeric partners. Further, the
individual contributions of different domains are markedly
different in sign and magnitude (distinct from homogeneous
rigidification), suggesting a functional and evolutionary role of
spatially distant regions in thermoadaptation.

Discussion
In enzyme catalysis, ΔCz

P is emerging as a critical parameter for
describing the temperature dependence of enzymatic rates, and as
a consequence, for thermal adaptation in enzyme evolution6,7.
The capacity to predictably manipulate enzyme activity with
temperature continues to be a sought-after goal in biotechnol-
ogy28, but a lack of understanding of the principles governing
thermal activity hampers the guided development of enzymes.
The in silico replication of experimental ΔCz

P values gives insight
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into the atomic-level details of CP changes along the reaction
coordinate, which govern the temperature dependence of enzyme
rates. In turn, this provides a route to engineer temperature
optima of enzymes: modifications in enzyme structure that
change ΔCz

P can be proposed and tested. Due to the difficulty of
converging the difference in enthalpy variance that underlies
ΔCz

P , one cannot expect perfect quantitative agreement between
simulation and experiment, but trends and, importantly, ato-
mistic mechanistic details can be extracted.

In two distinct enzyme systems, contributions to reduce ΔCz
P at

the TS come from small domains surrounding the active site, as
well as domains distant from the catalytic centre. Rigidification of
loops close to the active site is expected in the TS ensemble
because of stabilisation of the TS. Unexpectedly, domains distal to
the active site contribute significantly to the overall negative ΔCz

P ,
offsetting positive contributions to ΔCz

P around the active site
(excluding the loops). This observation has implications for the
biological importance of both enzyme mass and oligomerization.
Previously, enzyme mass has been found to be correlated to
catalytic efficiency6. Enzyme mass is also directly related to its
heat capacity, because adding amino acids to the protein increases
the overall heat capacity29. Therefore, one could posit the con-
jecture that heat capacity is correlated to catalytic efficiency in
some way. Note that we do not suggest that enzyme dynamics
directly contributes to lowering of the energy barrier, or
increasing the rate, of reaction (any such effects are likely to be
small30); we do not investigate the reaction itself in this work.
Here, simulation and experiment concur in showing negative
values of ΔCz

P for two enzymes, revealing (and identifying the
nature of) significant differences in dynamical behaviour between
the ground state and TS ensembles. Analysis of the contributions
to these differences show that negative contributions to ΔCz

P are
dispersed throughout the protein and arise from auxiliary
domains (MalL) and dimeric units (KSI) not directly involved
with the reaction chemistry. The conjecture that the heat capacity
of the enzyme is correlated with the catalytic efficiency and the
observation that changes in heat capacity are dispersed across the
enzyme is intriguing and suggests a range of further experiments;
it may indicate a significant functional role of distal domains
regardless of proximity to the active site, suggesting a reason for
driving the evolution of these domains and interactions.

Methods
Enzyme production and characterisation. Cloning, expression, purification and
activity assays of MalL were as described previously7. Co-crystallisation of MalL
with 0.5 mM 1-deoxynojirimycin was performed using hanging drop vapour dif-
fusion at 18 °C. Crystals were flash cooled with cryoprotectant comprising of the
crystallisation mixture with 20% glycerol for collection at the Australian Syn-
chrotron (MX1). Molecular replacement was performed with the WT MalL apo
structure (PDB 4M56 (https://doi.org/10.2210/pdb4M56/pdb))7 as the search
model.

The KSI sequence (Pseudomonas testosteroni) with a C-terminal hexa-His tag
was optimised for expression in Escherichia coli. Expression was carried out over
~24 h in Luria-Bertani broth at 28 °C. Purified KSI was obtained by a two-step
immobilised metal affinity chromatography-gel filtration chromatography process.
KSI activity was measured in vitro using a continuous enzyme assay following the
isomerization of 19-nor-androst-5(10)-ene-3,17-dione at 248 nm in phosphate
buffer (pH 7.0) for minimal pH change with temperature. See Supplementary
Note 1 for additional details for both enzymes.

Experimental ΔCz
P determination. Temperature versus rate profiles were deter-

mined by measuring rates in a continuous assay at temperature intervals of 2–4 °C
at saturating substrate concentrations. Temperature was controlled via a Ther-
moSpectronic single cell peltier, and independently checked before and after assays
by thermocouple. Initial rates were measured over a period of 10 s to limit the effect
of denaturation, if present, at elevated temperatures. Temperature profiles were fit
with Eq. 3 with reference temperature (T0) set to Topt – 4 K:

ln kð Þ ¼ ln
kBT
h

� �
�

ΔHz
T0

þ ΔCz
p T � T0ð Þ

h i
RT

þ
ΔSzT0

þ ΔCz
pln T=T0ð Þ

h i
R

; ð3Þ

where k= rate; kB= Boltzmann constant; h= Planck's constant; ΔHǂ
T0= enthalpy

change at T0; R= ideal gas constant; ΔSǂT0= entropy change at T0. The trans-
mission coefficient, κ, is assumed to be 1 for simplicity and is thus not included.

MD simulation and analysis. All simulations and analyses were performed using
the Amber package (http://ambermd.org/) and the ff99SB-ILDN protein force field
[31] (see also Supplementary Note 2). Tests with a more recent force field are
included in Supplementary Note 3, Supplementary Fig. 3 and Supplementary Fig. 9.
For KSI, PDB entry 1OHP (https://doi.org/10.2210/pdb1OHP/pdb) was used with
Asn38 mutated back to the wild-type Asp and either the substrate or intermediate
of the KSI reaction (Fig. 2a) modelled in chain A (based on the co-crystallised
inhibitor 5α-estran-3,17-dione); chain B was left empty. General Amber FF (GAFF)
parameters with charges from HF/6-31G(d) restrained electrostatic potential
(RESP) fitting (RED server: http://upjv.q4md-forcefieldtools.org/REDS/) were used
for the ligand. Asp38 was treated as protonated only for the intermediate state in
chain A. Asp99 was protonated in both chains, with all other ionisable residues in
their standard states. All three histidines were singly protonated on Nε2 and some
Asn/His residue side-chains were rotated by 180° to obtain an optimal hydrogen
bond network. For MalL, chain A from the 1-deoxynojirimycin bound structure
obtained here (PDB entry 5WCZ (https://doi.org/10.2210/pdb5WCZ/pdb)) was
used with missing atoms built in with COOT based on electron density where
available. The substrate isomaltose was placed in the active site by overlay with
PDB entry 3AXH (https://doi.org/10.2210/pdb3AXH/pdb) (E277A MalL from
Saccharomyces cerevisiae; Cα RMSD 0.84 Å) and simulated using GLYCAM (06j-1)
parameters. The TS analogue used in simulation was placed in the active site based
on the modelled position of isomaltose and the position of 1-deoxynojirimycin in
our co-crystal structure, and simulated using GLYCAM for the glucose unit, and
GAFF (with HF/6-31G(d) RESP fitted charges) for the unit containing the pro-
tonated nitrogen. Asp63 and Glu371 were treated as protonated in both states, with
the catalytic residues Asp199 unprotonated and Glu255 protonated (in line with
the mechanism). Other ionisable residues were in their standard protonation states,
with His161 singly protonated on Nδ1 and all other His on Nε2.

The preparation/equilibration protocol was as follows: solvation in a truncated
octahedral box of TIP4P-Ew water molecules (keeping all crystallographic waters)
with Na+ ions added to neutralise overall charge (ion positions randomised for each
independent run), brief minimisation followed by heating in 20 ps to 300 K (KSI) or
320 K (MalL) with positional restraints on Cα atoms (5 kcal mol−1 Å−2), gradual
release of restraints in 40 ps, equilibration in the NPT ensemble for 1 ns. Five-
hundred nanosecond production simulations were performed in the NVT ensemble
with the Berendsen thermostat and loose temperature coupling (10 ps time constant).
For both enzymes, restraints were used to maintain the Michaelis complex (with
equivalent restraints on the IS or TSA states; see Supplementary Note 3).

Analysis was performed using 10 ps snapshots from 50–500 ns of the
simulations, with force-field energies recalculated after stripping of solvent and
ions. Clustering on the Cα RMSD (excluding the highly flexible C-terminal residues
117–125 in KSI and the N-terminal residues 1–6 in MalL) was performed as
follows: for KSI, the K-means clustering algorithm was used to produce two
clusters (after establishing the trajectories are best represented by two main
conformational clusters, see Supplementary Table 3). For MalL, the hierarchical
agglomerative algorithm was used with a minimum cluster distance of 2.1. Cα
RMSF was calculated using RMSD fitting to a running average coordinates from a
time window of 10 ns.

Data availability. Coordinates and structure factors for MalL co-crystallised with
1-deoxynojirimycin are deposited in the PDB under accession number 5WCZ.
Simulation input files are available from figshare (https://doi.org/10.6084/m9.
figshare.5875734).
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