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In addition to the visual information contained in intensity and color, imaging polarimetry allows visual infor-
mation to be extracted from the polarization of light. However, a major challenge of imaging polarimetry is image
degradation due to noise. This paper investigates the mitigation of noise through denoising algorithms and com-
pares existing denoising algorithms with a new method, based on BM3D (Block Matching 3D). This algorithm,
Polarization-BM3D (PBM3D), gives visual quality superior to the state of the art across all images and
noise standard deviations tested. We show that denoising polarization images using PBM3D allows the degree
of polarization to be more accurately calculated by comparing it with spectral polarimetry measurements.
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1. INTRODUCTION

The polarization of light describes how light waves propagate
through space [1]. Although different forms of polarization can
occur, such as circular polarization, in this paper we focus only
on linear polarization, the form that is abundant in nature.
Light is said to be completely linearly polarized (or polarized
for the purposes of this paper) when all waves travelling along
the same path through space are oscillating within the same
plane. If, however, there is no correlation between the orienta-
tion of the waves, the light is described as unpolarized.
Polarized and unpolarized light are the limiting cases of partially
polarized light, which can be considered to be a mixture of
polarized and unpolarized light.

The polarization of light can be altered by the processes of
scattering and reflection. As a form of visual information, it
provides a fitness benefit such that many animals [2,3] use
polarization sensitivity for a variety of task-specific behaviors
such as navigation [4], communication [5], and contrast
enhancement [6]. Inspired by nature, many devices, known
as imaging polarimeters or polarization cameras, are now avail-
able that capture images containing information about the
polarization of light [7,8]. These have been used in a growing
number of applications [9], including mine detection [10],
surveillance [11], shape retrieval [12], and robot vision [13]
as well as research in sensory biology [8,14].

A major challenge facing imaging polarimetry, addressed in
this paper, is noise. State-of-the art imaging polarimeters suffer
from low signal-to-noise ratios (SNR), and it will be shown that
conventional image denoising algorithms are not well suited to
polarization imagery.

While a great deal of previous work has been done on
denoising, very little has specifically been tailored to imaging
polarimetry. Zhao et al. [15] approached denoising imaging
polarimetry by computing Stokes components from a noisy
camera using spatially adaptive wavelet image fusion, whereas
Faisan et al.’s [16] method is based on a modified version of the
nonlocal means (NLM) algorithm [17].

This paper compares the effectiveness of conventional
denoising algorithms in the context of imaging polarimetry.
A novel method termed Polarization-BM3D (PBM3D),
adapted from an existing denoising algorithm, BM3D
(Block Matching 3D) [18], is then introduced and will be
shown to be superior to the state of the art.

2. IMAGING POLARIMETRY

A. Representing Light Polarization

A polarizer is an optical filter that only transmits light of a given
linear polarization. The angle between the transmitted light and
the horizontal is known as the polarizer orientation. Let I
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represent the total light intensity and I i represent the intensity
of light, which is transmitted through a polarizer orientated at i
degrees to the horizontal. The standard way of representing the
linear polarization is by using Stokes parameters �S0; S1; S2�
[19], which are defined as follows:

S0 � I ; (1)

S1 � I 0 − I 90; (2)

S2 � I 45 − I 135: (3)

Note that I � I 0 � I 90 � I 45 � I 135, so the above can be
rewritten, using I 0, I 45, and I 90, as

S0 � I0 � I 90; (4)

S1 � I 0 − I 90; (5)

S2 � −I 0 � 2I45 − I 90: (6)

The degree of (linear) polarization (DoP) and the angle of
polarization (AoP) are defined as

DoP �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 � S22

p
S0

; (7)

AoP � 1

2
arctan

�
S2
S1

�
: (8)

The DoP represents the proportion of light that is polarized,
rather than being unpolarized, i.e., DoP � 1 means that the
light is fully polarized, DoP � 0 means unpolarized. The AoP
represents the average orientation of the oscillation of multiple
waves of light, expressed as an angle from the horizontal.

B. Imaging Polarimeters

Imaging polarimeters are devices that, in addition to measuring
the intensity of light at each pixel in an array, also measure the
polarization of light at each pixel location. There are many
designs of a passive imaging polarimeter (here, we are not con-
cerned with active imaging polarimeters), summarized in [20].
The common feature they share is in measuring the intensity
of light, which passes through polarizers of multiple orienta-
tions, �I i1 ; I i2 ;…; I in�, possibly with additional measurements
of circular polarization, at each pixel in an array. The measure-
ments for multiple orientations are taken either simultaneously
or of a completely static scene. The Stokes parameters are
then derived at each pixel. For the rest of this paper, we will
consider a polarimeter that measures I 0, I 45, and I90, which
is a common arrangement [7,8]. Generalizations to imaging
polarimeters, which measure intensities at different angles,
are straightforward.

As this paper addresses polarization measurements across an
array, the symbols I0, I 45, I 90, S0, S1, S2, DoP, and AoP will
henceforth refer to the array of values, rather than a single mea-
surement. I 0, I 45, and I 90 are known as the camera compo-
nents and S0, S1, and S2 as the Stokes components.

C. Noise

Noise affects most imaging systems and is especially challenging
in polarimetry due to the complex sensor configuration in-
volved with measuring the polarization. Each type of imaging
polarimeter (see [20] for a description of the different types)

either is affected by noise to a greater extent than are conven-
tional cameras or suffers from other degradations that limit its
use to specific applications. “Division of focal plane” polarim-
eters, which use micro-optical arrays of polarization elements,
suffer from imperfect fabrication and crosstalk between polari-
zation elements. “Division of amplitude” polarimeters, which
split the incident light into multiple optical paths, suffer from
low SNR due to the splitting of the light. “Division of aperture”
polarimeters, which use separate apertures for separate polari-
zation components, suffer from distortions due to parallax (ex-
cept in the case where a scene has no depth). “Division of time”
polarimeters require static, or slowly evolving, scenes, and are
thus incapable of recording video of scenes with rapid move-
ment and so, for many applications, cannot be used. Also, in
polarimetry, where DoP and AoP are often the quantities of
interest, they are nonlinear functions of the camera and
Stokes components, which in this case have the effect of am-
plifying the noise degradation.

To highlight the degradation of a DoP image due to noise,
consider Fig. 1. The top row shows the three camera compo-
nents of an unpolarized scene (i.e., all three components are
identical, and DoP � 0 everywhere). The original images with
noise added are shown in the bottom row. Although there is only
a small noticeable difference between the original and noisy cam-
era components, the difference between the original and noisy
DoP images is severe. This indicates a large error, with 25% of
pixels exhibiting an error greater than 10%. The error is greater
when the intensity of the camera components is smaller. To see
why this is the case, consider a noisy Stokes image �S0; S1; S2�,
where the measured values are normally distributed around the
true Stokes parameters �T 0; T 1; T 2�. Let the true DoP be given
by δ0 � �T 2

1 � T 2
2�1∕2∕T 0. The naive way to compute δ0 is to

apply the DoP formula to the measured Stokes parameters
δ � �S21 � S22�1∕2∕S0. But E�δ� ≠ δ0 (where E is expected
value), meaning that this is a biased estimator; thus, the calcu-
latedDoP does not average to the correct result. This can be seen
by the fact that, if the trueDoP, δ0, is zero, andT 0 > 0, then any
error in S1 and S2 results in δ > 0. Denoising algorithms,
including the one proposed in this paper, PBM3D, are thus
essential for mitigating such degradations due to noise.

This paper considers only uniformly distributed indepen-
dent Gaussian noise. This noise model is only a good fit in the
case of detector-limited noise but serves as an approximation of
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Fig. 1. Simulation of an unpolarized scene with and without noise
(σ � 0.02). Black represents a value of 0, white of 1. The error is large
for the noisy DoP image.
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the shot-noise process and has precedence in the literature
[15,16]. A noise model in which the Gaussian parameters
are allowed to vary between pixels depending on the intensity
would have greater general applicability to polarimetry, but
BM3D, on which our algorithm PBM3D is based, assumes
uniformly distributed noise. In Section D, PBM3D is applied
to real polarimetry and is shown to be effective, thereby justify-
ing our choice of noise model. Throughout this paper, a noisy
camera component, I i, is described as follows. LetΩ denote the
image domain. For all x ∈ Ω and i ∈ f0; 45; 90g:I i�x� �
I 0i�x� � n�x� where the noise, n�x�, is a normally distributed
zero-mean random variable with standard deviation σ, and I i 0 is
the true camera component.

3. STATE OF THE ART

There are various methods for mitigating noise degradation in
imaging polarimetry. For example, polarizer orientations can be
chosen optimally for noise reduction [21,22]; however, this is
not always possible due to constraints on the imaging system.
Further reductions in noise can also be made through the
use of denoising algorithms, which attempt to estimate the
original image.

While vast literature exists on denoising algorithms in
general, little is specifically targeted at denoising imaging polar-
imetry. Zhao et al. [15] approached denoising imaging polar-
imetry by computing Stokes components from a noisy camera
using a spatially adaptive wavelet image fusion, based on [23].
A benefit of this algorithm is that the noisy camera components
need not be registered prior to denoising. The algorithm of
Faisan et al. [16] is based on a modified version of Buades et al.’s
nonlocal means (NLM) algorithm [17]. The NLM algorithm is
modified by reducing the contribution of outlier patches in the
weighted average and by taking into account the constraints
arising from the Stokes components having to be mutually
compatible. A disadvantage of this method is that it takes a long
time to denoise a single image (550s for a 256 × 256 image,
which takes approximately 1 s using our method, PBM3D.
Both on an Intel Core i7, running at 3 GHz).

In this paper, our PBM3D algorithm will be compared with
the above two algorithms. Faisan et al. [16] compared their
denoising algorithm with earlier methods [24–26] and demon-
strated that their NLM-based algorithm gives superior denois-
ing performance. For this reason, comparison with these
algorithms is not considered.

4. METHOD

Our approach to denoising polarization images is to adapt
Dabov’s BM3D algorithm [18] for use with imaging polarim-
etry, a novel method that we call PBM3D.

BM3D was chosen primarily for its robustness and effective-
ness. Sadreazami et al. [27] recently compared the performance
of a large number of state-of-the-art denoising algorithms, using
three test images and four values of σ, the noise standard
deviation. The authors showed that no one denoising algorithm
of those tested always gave the greatest denoised peak signal-to-
noise ratio (PSNR). However, BM3D was always able to give
denoised PSNR values close to the best performing algorithm
and, in more than half the cases, was in the top two. Another

appealing aspect of BM3D is that extensions have been pub-
lished for color images (CBM3D) [28], multispectral images
(MSPCA-BM3D) [29], volumetric data (BM4D) [30], and
video (VBM4D) [31]. This extensibility shows the versatility of
the core algorithm. Sadreazami et al. found that CBM3D was
the best-performing algorithm for color images with high
noise levels.

A. BM3D

BM3D consists of two steps. In Step 1, a basic estimate of the
denoised image is produced; Step 2 then refines the estimate
produced in Step 1 to give the final estimate. Steps 1 and 2
consist of the same basic substeps, as shown in Algorithm 1.

Algorithm 1: BM3D, single step

1: for each block (rectangular neighbourhood of pixels) in noisy
image do

2: find similar blocks across the image ▹ for Step 1 this is done
using the noisy image; for Step 2 the basic estimate

3: stack similar blocks to form 3D group
4: apply 3D transform to obtain sparse representation
5: apply filter to denoise ▹ for Step 1 the filtering is done using a

hard thresholding operation; for Step 2 a Wiener filter is used
6: invert transform
7: for each pixel do
8: estimate single denoised value from values of multiple

overlapping blocks
9: return denoised image

BM3D is described more fully in [18], and thorough analy-
sis is provided in [32].

B. CBM3D

CBM3D adapts BM3D for color images [28]. Figure 2 outlines
the algorithm, which works by applying BM3D to the three
channels of the image in the YUV color space, also in two
steps, but computing the groups only using the Y channel.
Details of CMB3D are as shown in Algorithm 2.

Algorithm 2: CBM3D, single step

1: input noisy color image
2: apply color-space transform �Y ;U ; V � ← T �R; G; B� ▹ YUV

represents a chosen luminance-chrominance color space
3: for each block in channel Y image do
4: find similar blocks across the image ▹ for Step 1 this is done

using the noisy image; for Step 2 the basic estimate
5: stack similar blocks to form 3D group
6: for channels U; V do
7: stack blocks to form 3D groups using the same groups as

formed in Line 5
8: for each channel Y ;U ; V do
9: for each group do
10: apply 3D transform to obtain sparse representation
11: apply filter to denoise ▹ for Step 1 the filtering is done

using a hard thresholding operation; for Step 2 a Wiener
filter is used

12: invert transform
13: for every pixel do
14: estimate single denoised value from values of multiple

overlapping blocks
15: Apply inverse color-space transform �R;G; B� ← T −1�Y ;U ; V �
16: return denoised image
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Dabov et al. [28] provide the following reason for why
CBM3D performs better than applying BM3D separately to
three color channels:

• The SNR of the intensity channel Y is greater than the
chrominance channels.

• Most of the valuable information, such as edges, shades,
objects and texture, are contained in Y .

• The information in U and V tends to be low-frequency.
• Isoluminant regions, with U and V varying are rare.

If BM3D is performed separately on color channels, U and
V , the grouping suffers [28] due to the lower SNR, and the
denoising performance is worse, as it is sensitive to the
grouping.

C. PBM3D

In order to optimize BM3D for polarization images, we
propose taking CBM3D and replacing the RGB to YUV
transformation with a transformation from the camera compo-
nent image �I 0; I 45; I90� image to a chosen polarization space,
denoted generally as �P0; P1; P2�. This is shown in
Algorithm 3.

Algorithm 3: PBM3D, single step

1: input noisy polarization image
2: apply polarization transform �P0; P1; P2� ← T �I 0; I 45; I 90� ▹

�P0; P1; P2� represents a chosen luminance-polarization color
space

3: for each block in channel P0 image do
4: find similar blocks across the image ▹ for Step 1 this is done

using the noisy image; for Step 2 the basic estimate
5: stack similar blocks to form 3D group
6: for channels P1; P2 do
7: stack blocks to form 3D groups using the same groups as

formed in Line 5
8: for each channel �P0; P1; P2� do
9: for each group do
10: apply 3D transform to obtain sparse representation
11: apply filter to denoise ▹ for Step 1 the filtering is done

using a hard thresholding operation; for Step 2 a Wiener filter is
used

12: invert transform
13: for every pixel do
14: estimate single denoised value from values of multiple

overlapping blocks
15: apply inverse color-space transform

�I0; I 45; I 90� ← T −1�P0; P1; P2�
16: return denoised image

The choice of T has a large effect on denoising performance.
Which matrix is optimal is dependent on the image statistics
and the noise level, which are both dependent on the applica-
tion. A possible choice for the polarization transform is to use
Stokes parameters [Eqs. (4)–(6)], which is shown in Fig. 2. The
transform to Stokes parameters (Stokes transform) results in the
first channel, P0 � S0 being intensity, which uses arguments
similar to those used in Section 5, is likely to contain most
of the valuable information. For this reason, the Stokes trans-
form was used as a starting point in finding the optimal denois-
ing matrix in Section 5.

Here, we describe an algorithm estimate of the optimal
matrix, T opt, given a set of noise-free model images, D, and
a given noise standard deviation, σ.

Let Ii ∈ D be a noise-free camera component image (e.g.,
I � �I0; I45; I90�), Ii 0 be Ii with Gaussian noise of standard
deviation σ added, D 0 be the set of images Ii

0
and PBM3DT

represent the operation of applying PBM3D with transforma-
tion matrix T . Define T opt as follows:

T opt � arg min
T

X
i
MSE�Ii ; PBM3DT �Ii 0 ��; (9)

where MSE is the mean square error. Note that T is normalized
such that, for each row, � a b c �, jaj � jbj � jcj � 1.

Due to the large number of degrees of freedom of T and the
fact that the matrix elements can take any value in the range
�−1; 1�, it is not possible to perform an exhaustive search.
Instead, a pattern search method can be used and is described
in Algorithm 4. Note that the intervals δ and 10δ are both used
to avoid converging to nonglobal minima. Results from the
method are shown in Section 5.

Algorithm 4: Pattern search method

1: choose a starting matrix T 0 and small interval δ
2: i ← 0
3: loop
4: find all perturbations of T i by δ, which preserve the

normalization condition ▹ for each row � a b c �,
jaj � jbj � jcj � 1

5: find all perturbations of T i by 10δ, which preserve the
normalization condition

6: for every perturbation, P, of T i do
7: for every image, I 0 ∈ D 0 do
8: denoise I 0 using P
9: MP ←

P
iMSE�I 0; PBM3DP�I 0��

10: T i�1 ← arg minPMP
11: if T i�1 � T i then return T opt ← T i
12: i ← i � 1

5. EXPERIMENTS

A. Data Sets

In order to demonstrate the effectiveness of denoising algo-
rithms, they must be evaluated using representative noisy test
imagery. The test imagery used in these experiments comprises
noise-free polarization images, with simulated noise. As noise-
free polarization images cannot be produced using a noisy im-
aging polarimeter, we instead use a digital single-lens reflex
(DSLR) camera with a rotatable polarizer in front of the lens.
This approach to producing imaging polarimetry is one of the
earliest [33] and has been used by various authors, e.g., [6,34].

For this approach to work, the camera sensor must have a
linear response with respect to intensity, that is Imeasured �
kI actual, where Imeaured and I actual are the measured and actual
light intensities, and k is an arbitrary constant. The linearity can
be verified using a fixed light source and a second rotating
polarizer. As one polarizer is kept stationary, and the other is
rotated, the intensity values measured at each pixel will produce
a cosine squared curve if the sensor is linear, according to

Research Article Vol. 35, No. 4 / April 2018 / Journal of the Optical Society of America A 693



Malus’ law [19]. The DSLR used to generate the images in this
paper was a Nikon D70, whose sensors have a linear response.

The images are generated as follows:

1: All camera settings are set to manual for consistency
between shots.

2: To prevent inaccuracies due to compression, the camera
is set to take images in raw format.

3: The camera is placed on a tripod or otherwise such that
it is stationary.

4: The polarizer is orientated to be parallel to the horizon-
tal and an image is taken.

5: The polarizer is rotated so that it is at 45 deg to the
horizontal and a second image is taken.

6: The polarizer is rotated so that it is orientated vertically
and the final image is taken.

Given the superior SNR of modern DSLR cameras, this
provides low noise polarization images. For arbitrarily low noise
levels, multiple photos for a given polarizer angle are taken,

registered, and averaged. The main drawback of this method
is that the light conditions and image subjects must be station-
ary; this method therefore cannot be used for many applica-
tions but still allows noise-free polarization images to be taken
and so is invaluable for testing denoising algorithms.

B. Optimal Denoising Matrix

The optimal matrix for a given application is dependent on the
image statistics and the noise level. In order to test the matrix
optimization algorithms given in Section 4, and, with no par-
ticular application in mind, we produced a set of 10 polariza-
tion images, using the method above, of various outdoor
scenes. We added noise of several values of σ, the noise standard
deviation (see Tables 1 and 2). The optimal matrices given in
this section are therefore only optimal for this particular image
set. However, they provide a useful starting point and are likely
to be close to optimal for applications where the images involve
outdoor scenes. The choice of 10 images was arbitrary. Using a
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Fig. 2. Basic outline of the CBM3D/PBM3D denoising algorithm.

Table 1. PSNR Values for Images (Street, Dome, Building) Denoised Using the Following Matrices: I, Identity Matrix; S,
Stokes Matrix; O, Opponent Matrix; P, Pattern Search Optimala

Street Dome Building

σ I S O P I S O P I S O P

0.01 32.6 32.6 32.6 46.2 44.8 45.7 46.5 46.8 40.9 41.2 41.5 47.0
0.057 30.9 31.1 31.3 36.3 37.5 38.5 39.2 39.2 35.0 35.8 36.5 37.3
0.1 28.7 29.2 29.4 31.8 32.9 33.1 33.5 33.6 31.0 32.5 33.3 33.6
0.15 26.7 26.8 27.1 28.3 29.7 29.0 29.1 32.0 28.7 29.4 30.2 30.3

aσ is the noise standard deviation. Bold indicates maximum PSNR.
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larger number of images would result in a more robust estimate
of the optimal matrix. The I 0 component of each image is
shown in Fig. 3.

The natural choice of transform to gain an intensity-
polarization representation of a polarization image from the
camera components is to use a Stokes transformation, which,
after normalization, is given by

T stokes �

0
BB@

1
2 0 1

2

1
2 0 − 1

2

− 1
4

1
2 − 1

4

1
CCA: (10)

However, it was found during experiments that the oppo-
nent transform, T opp matrix of CBM3D [28], given below,

almost always gives superior denoising performance compared
with that of the Stokes transform:

T opp �

0
BB@

1
3

1
3

1
3

1
2 0 − 1

2

1
4 − 1

2
1
4

1
CCA: (11)

This is logical because taking the mean of the three camera
components gives a greater SNR than taking the mean of only
two components, and having greater SNR gives better grouping
in the PBM3D algorithm, which is important, as denoising
performance is sensitive to the quality of the grouping. The
opponent matrix was therefore taken as the initial matrix, T 0

in the pattern search algorithm.
The pattern search method was applied to the model

imagery with δ � 0.01. Table 1 shows the PSNR values for
images denoised using the estimated optimal matrices. It can
be seen that, in every case, the matrix found using the pattern
search method results in the most effective denoising.

The pattern search method was then applied at 10 sigma
values, giving an estimated optimal matrix for each (Table 2).

The pattern search method was also applied to an image set
containing all 10 images, each with noise added of 10 different
σ values. The following matrix was found to be optimal on
average across all σ values:

T opt �

0
BB@

0.3133 0.3833 0.3033

0.4800 0.0300 −0.5100

0.2600 −0.5200 0.2200

1
CCA: (12)

C. Comparison of Denoising Algorithms

The performance of PBM3D with a variety of images (different
to those used for the matrix optimization) and noise levels
was compared with the performance of several other denoising
algorithms for polarization:

• BM3D: Standard BM3D for gray-scale images applied
individually to each camera component �I0; I45; I90�.

• BM3D Stokes: Standard BM3D applied individually to
each Stokes component �S0; S1; S2�, found by transforming
the camera components.

• Zhao: Zhao et al.’s method [15].
• Faisan: Faisan et al.’s method [16].

In order to quantitatively compare the denoising perfor-
mance, PSNR was computed for each denoised image.

For Stokes image �S0; S1; S2� with ground truth given
by �S 0

0; S
0
1; S

0
2�, with S0�x� ∈ �0; 1�, S1�x� ∈ �−1; 1�,

S2�x� ∈ �−1; 1�, and x ∈ Ω, where Ω is the image domain,
PSNR is given by

PSNR � 10 log10

�
1

MSE

�
; (13)

where

Table 2. Optimal Matrices Computed Using the Pattern
Search Method for 10 Values of σ, the Noise Standard
Deviation

σ Optimal Matrix

0.01

 
0.323 0.363 0.313
0.500 −0.210 −0.290
0.150 −0.500 0.350

!

0.026

 
0.323 0.363 0.313
0.500 −0.210 −0.290
0.150 −0.500 0.350

!

0.041

 
0.323 0.363 0.313
0.500 −0.230 −0.270
0.160 −0.500 0.340

!

0.057

 
0.323 0.363 0.313
0.500 −0.210 −0.290
0.150 −0.500 0.350

!

0.072

 
0.323 0.363 0.313
0.510 −0.010 −0.480
0.250 −0.510 0.240

!

0.088

 
0.323 0.363 0.313
0.300 0.210 −0.490
0.240 −0.520 0.240

!

0.1

 
0.323 0.373 0.303
0.420 0.080 −0.500
0.250 −0.510 0.240

!

0.12

 
0.343 0.353 0.303
0.480 −0.120 −0.400
0.130 −0.520 0.350

!

0.13

 
0.333 0.333 0.333
0.480 −0.230 −0.290
0.040 −0.530 0.430

!

0.15

 
0.343 0.353 0.303
0.480 −0.120 −0.400
0.130 −0.520 0.350

!

Fig. 3. I 0 of each image in the set.

Research Article Vol. 35, No. 4 / April 2018 / Journal of the Optical Society of America A 695



MSE � 1

3MN

X
x∈Ω

��S0�x� − S 0
0�x��2

� 1

2
�S1�x� − S 0

1�x��2 �
1

2
�S2�x� − S 0

2�x��2�: (14)

Table 3 shows the PSNR values for four images (“oranges,”
“cars,” “windows,” “statue”). The same data, along with those
for four other images, are plotted in Fig. 4. It can be seen that
PBM3D always provides the greatest denoising performance.
Every image denoised using PBM3D at every noise level had
a greater PSNR than images denoised using all other methods.
The second-best performing method in every case was BM3D
Stokes, with PBM3D denoising images with a greater PSNR of
0.84 dB on average. The difference in PSNR between images
denoised using PBM3D and BM3D Stokes was greatest for the
intermediate noise levels. The smaller noise levels exhibited less
of a difference, and the PSNR values in the higher noise values

became closer as noise was increased. The convergence of the
PSNR values in the higher noise levels can be explained by the
fact that the S1 and S2 components of the images become so
noisy that they bear little resemblance to the ground truth, as
shown in Fig. 5. Zhao’s method performed poorly at all noise
levels; it provided a smaller PSNR at higher noise levels than the
other methods at higher noise levels. Faisan’s method had worse
performance than all of the BM3D-based methods, at all noise
levels (images denoised using Faisan had a PSNR 4.50 dB
smaller on average than those denoised using PBM3D) but
performed significantly better than Zhao’s method.

Figures 6–8 show the denoised images corresponding to the
σ � 0.026 row of Table 3 as well as the ground truth and noisy
images. It can be seen that, as well as providing the greatest
PSNR value, the visual quality of the images denoised using
PBM3D is the greatest of the methods tested. In all three
figures, the S0 component for the images denoised using
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Fig. 4. PSNR for denoised images as a function of σ, the standard deviation of noise. Above each plot is the name of the image denoised; line
colors correspond to different denoising algorithms. For the top row, PSNR values are shown in Table 3. It can be seen that, for all images and all
values of σ, PBM3D produces images with the greatest PSNR.

Table 3. PSNR for Denoising of Four Images (“Oranges,” “Cars,” “Windows,” “Statue”) Using Several Methods (B, BM3D;
S, BM3D Stokes; P, PBM3D; Z, Zhao; F, Faisan) and Several Values of σ, the Standard Deviation of the Noise, Addeda

Oranges Cars Windows Statue

σ B S P Z F B S P Z F B S P Z F B S P Z F

0.010 47.3 48.3 49.0 34.7 45.6 45.6 46.4 47.0 28.4 43.0 44.8 46.1 47.1 24.5 42.1 45.2 46.5 47.3 26.9 42.5
0.026 43.4 44.2 44.9 34.7 41.8 40.4 41.2 41.9 28.4 37.5 39.1 40.5 41.5 24.5 35.4 40.1 41.4 42.1 26.9 36.4
0.041 41.5 42.3 43.0 34.6 39.9 38.0 38.9 39.5 28.4 35.2 36.3 37.7 38.8 24.5 32.5 37.7 39.0 39.6 26.9 33.7
0.057 39.8 40.7 41.5 34.4 38.1 36.3 37.2 37.9 28.3 33.5 34.4 35.8 36.9 24.5 30.6 35.8 37.2 37.9 26.9 32.1
0.072 38.5 39.5 40.5 34.3 36.9 34.9 35.8 36.6 28.3 32.4 33.0 34.4 35.5 24.4 29.4 34.4 35.9 36.7 26.9 31.1
0.088 37.4 38.4 39.4 34.0 35.8 33.9 34.8 35.7 28.2 31.5 31.8 33.2 34.3 24.4 28.4 33.3 34.8 35.6 26.8 30.1
0.103 36.6 37.7 38.7 34.0 34.9 33.0 34.0 34.8 28.2 30.8 31.0 32.4 33.4 24.3 27.6 32.3 33.8 34.6 26.8 29.6
0.119 35.8 37.0 37.9 33.8 34.2 32.3 33.4 34.1 28.1 30.2 30.1 31.3 32.5 24.4 26.8 31.5 33.1 33.9 26.8 29.0
0.134 35.0 36.4 37.1 33.4 33.5 31.6 32.7 33.3 28.1 29.7 29.4 30.7 31.6 24.3 26.2 30.8 32.4 33.1 26.7 28.6
0.150 34.4 36.1 36.2 33.3 33.0 31.2 32.4 32.5 28.0 29.3 28.9 30.2 30.6 24.3 25.7 30.3 31.9 32.2 26.7 28.3

aBold indicates greatest PSNR. It can be seen that PBM3D is always the best-performing method. The pattern continues with other images; the results (including
those shown here) are plotted in Fig. 4.
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BM3D, BM3D Stokes, and PBM3D appear similar to the
ground truth, with the image denoised using Faisan appearing
to be slightly less sharp. The S1 and S2 components of the im-
ages denoised using BM3D and Faisan appear to have more
denoising artifacts than those denoised using BM3D Stokes
and PBM3D. In the DoP components, the images denoised

using PBM3D have cleaner edges, which are more similar to
the ground truth than DoP components denoised using all
of the other methods; this is highlighted in Fig. 9, which shows
a close-up of the “window” images. The AoP components
denoised using PBM3D are notably more faithful to the

S
0

G      

S
1

S
2

S      

P      

Fig. 5. “Oranges” image with noise of standard deviation σ � 0.15
(a high noise level), denoised using BM3D Stokes (S) and PBM3D (P)
(G, ground truth). For BM3D Stokes and PBM3D, the S0 images are
visually similar to the ground truth. For both methods, however, the
S1 images are notably different, and the S2 images are almost unrec-
ognizable.
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S
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S  
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Z   

F   

Fig. 6. Polarization components of “oranges” image after applica-
tion of several denoising methods. G, ground truth; N, noisy; B,
BM3D; S, BM3D Stokes; P, PBM3D; Z, Zhao; F, Faisan. Noise stan-
dard deviation, σ � 0.026. Note that the DoP images have been
scaled such that black represents DoP � 0 and white represents
DoP � 0.5.

S
0

G  

S
1

S
2 DOP AOP

N  

B  

S  

P  

Z   

F   

Fig. 7. Polarization components of “cars” image after application of
several denoising methods. G, ground truth; N, noisy; B, BM3D; S,
BM3D Stokes; P, PBM3D; Z, Zhao; F, Faisan. Noise standard
deviation, σ � 0.026.
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Fig. 8. Polarization components of “window” image after applica-
tion of several denoising methods. G, ground truth; N, noisy; B,
BM3D; S, BM3D Stokes; P, PBM3D; Z, Zhao; F, Faisan. Noise stan-
dard deviation, σ � 0.026.
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original than the other methods, which can be seen in Figs. 9
and 10.

D. Denoising Real Polarization Imagery

To further test PBM3D with real rather than simulated noise
(as has been used so far), we used a DSLR camera with a rotat-
able polarizer to capture the three camera components, I 0, I 45,
I 90, of a scene of several lab objects, using several exposure
settings on the camera (Table 4). The exposure setting was var-
ied in order to vary the amount of noise present. The polari-
zation images were then denoised using PBM3D. Figure 11(a)
shows the DoP of the captured image when the exposure was
0.0222 s, and Fig. 11(b) shows the DoP of the same image,
denoised using PBM3D. The effect of denoising is evident,
with the perceptible noise in the noisy DoP image being greater
than for the denoised DoP image.

In addition to the imaging polarimetry, we also measured
the DoP of several regions of the scene using a spectrometer.
The intensity count was averaged across the wavelength range
corresponding to the camera sensitivity (400–700 nm) at three
different orientations of a rotatable polarizer, i.e., 0 deg, 45 deg,
and 90 deg. These mean intensities, I0, I 45, I 90, were then used
to calculate the DoP using Eq. (7). The DoP of the correspond-
ing regions in the polarization images was also calculated using
Eq. (7) with a weighting on each of the camera components
�I0; I45; I 90� to account for the separate RGB channels,

I i � 0.299R � 0.587G � 0.11B, which corresponds to the
luminance, Y , of the YUV color space. The absolute differ-
ence between the DoP values from the spectrometry and from
the imaging polarimetry with the noisy image and the same
image denoised using PBM3D is shown in Fig. 12. The results
were that the process of denoising extended the range of

DOP

G      

AOP

S      

P      

Fig. 9. Close-up of “windows” image from Fig. 8 (G, ground truth;
S, BM3D Stokes; P, PBM3D). The DoP component of the image
denoised using PBM3D exhibits fewer artifacts than the imaged
denoised using BM3D Stokes, especially underneath the window.
In the AoP components, the lower windows are much more faithfully
represented by the image denoised using PBM3D than BM3D
Stokes.

DOP

G      

AOP

S      

P      

Fig. 10. Close-up of “cars” image from Fig. 7 (G, ground truth; S,
BM3D Stokes; P, PBM3D). DoP components are similar for the im-
ages denoised using BM3D Stokes and PBM3D, with slight
differences noticeable in the car’s bumper. Detail around the number
plate of the car and panels on the right side of the image are more
faithfully denoised using PBM3D than BM3D Stokes.

Table 4. Estimated σ, the Standard Deviation of Noise,
and Wilcoxon Test Results for the Data in Fig. 12a

Noisy Denoised

Wilcoxon �n � 24�
Exposure Estimated σ V p V p

0.1667 0.0021 154 0.8934 217 0.6575
0.1000 0.0034 83 0.2700 191 0.6134
0.0500 0.0055 74 0.0620 145 0.9589
0.0222 0.0103 43 0.0024 157 0.9261
0.0111 0.0199 18 0.0001 116 0.4154
0.0056 0.0363 16 0.0000 73 0.0402
0.0029 0.0678 7 0.0000 75 0.0022

aσ values were estimated using the method in [16]. The Wilcoxon test
indicates that when σ ≥ 0.0103, the DoP values calculated from the noisy
image are significantly different to the DoP values calculated from the
spectrometer (bold indicates p < 0.05). In contrast, the DoP values calculated
from the denoised images are significantly different when σ ≥ 0.0363.
Denoising therefore significantly reduces the effect of noise when
0.0103 ≤ σ < 0.0363.

698 Vol. 35, No. 4 / April 2018 / Journal of the Optical Society of America A Research Article



exposure time, over which the imaging polarimetric values were
the same as the spectrometry measurements. Table 4 demon-
strates that, at an exposure time of 0.0222 s, when σ ≥ 0.0103,
the values of the DoP from the noisy image become signifi-
cantly different (Wilcoxon, n � 24, V � 43, p � 0.002) from

those calculated using the spectrometry measurements. In con-
trast, when the images were denoised using PBM3D, the ex-
posure time could be bought down to 0.0056 s (σ ≥ 0.0363)
before the DoP values became different (Wilcoxon, n � 24,
V � 73, p � 0.040). Therefore, denoising using PBM3D
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(b)

Fig. 11. DoP image of a collection of lab objects, taken with an exposure of 0.0222s. (a) Image without denoising. (b) Image denoised using
PBM3D. The circles indicate where the true DoP value was measured using a spectrometer. It can be seen that the noisy image tends to show much
larger DoP values. DoP values measured at each point are shown in Fig. 12.
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increases the accuracy of the measurements by reducing the ef-
fect of noise on the measurement, allowing approximately 3.5
times as much noise to be tolerated.

6. CONCLUSION

Imaging polarimetry provides additional useful information
from a natural scene compared with intensity-only imaging,
and it has been found to be useful in many diverse applications.
Imaging polarimetry is particularly susceptible to image degra-
dation due to noise. Our contribution is the introduction of a
novel denoising algorithm, PBM3D, which, when compared
with state-of-the-art polarization denoising algorithms, gives
superior performance. When applied to a selection of noisy im-
ages, those denoised using PBM3D had a PSNR of 4.50 dB
greater on average than those denoised using the method of
Faisan et al. [16] and 0.84 dB greater than those denoised using
BM3D Stokes. PBM3D relies on a transformation from camera
components into intensity-polarization components. We have
given two algorithms for computing the optimal transforma-
tion matrix and given the optimal for our system and data
set. We have also shown that, if imaging polarimetry is used to
provide DoP point measurements, denoising using PBM3D
allows approximately 3.5 times as much noise to be present
than without denoising for the image to still have accurate
measurements.
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