
 Hosseinabady, M., & Nunez-Yanez, J. L. (2017). A systematic approach to
design and optimise streaming applications on FPGA using high-level
synthesis. In 2017 27th International Conference on Field Programmable
Logic and Applications, FPL 2017 [8056758] Institute of Electrical and
Electronics Engineers (IEEE). https://doi.org/10.23919/FPL.2017.8056758

Peer reviewed version

Link to published version (if available):
10.23919/FPL.2017.8056758

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at http://ieeexplore.ieee.org/document/8056758/. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.23919/FPL.2017.8056758
https://doi.org/10.23919/FPL.2017.8056758
https://research-information.bris.ac.uk/en/publications/a-systematic-approach-to-design-and-optimise-streaming-applications-on-fpga-using-highlevel-synthesis(0c140ff7-af6e-48fb-afd3-eb104e048b89).html
https://research-information.bris.ac.uk/en/publications/a-systematic-approach-to-design-and-optimise-streaming-applications-on-fpga-using-highlevel-synthesis(0c140ff7-af6e-48fb-afd3-eb104e048b89).html

A Systematic Approach to Design and Optimise
Streaming Applications on FPGA Using High-Level

Synthesis
Mohammad Hosseinabady and Jose Luis Nunez-Yanez

Department of Electrical and Electronic Engineering University of Bristol, UK.
Email: {m.hosseinabady, j.l.nunez-yanez}@bristol.ac.uk

Abstract—This paper proposes a systematic approach to help
designers to optimise a given streaming application for FPGAs using
High-Level Synthesis (HLS). The proposed technique specifically
addresses the two main issues in a streaming application that
are determining the exact amount of loop unrolling in the HLS
code to increase the throughput and finding the optimum buffers’
size to prevent deadlocks. To evaluate the proposed techniques
two applications from the machine learning optimisation area are
studied in the paper. These applications are Hessian-vector product
and Conjugate Gradient (CG). The experimental results show up
to 38x speed-up in throughput compared to the original streaming
implementations provided by knowledgeable engineers using the
dataflow, loop pipelining and FIFO channel related pragmas pro-
vided by the HLS tool. In addition, these applications show up to
2.98 GB/sec usage of memory bandwidth which is 93.1% of the total
memory bandwidth available on the system. The source codes of the
designs are available at https://github.com/Hosseinabady/csdfg-hls.

I. INTRODUCTION

Recently High-Level Synthesis (HLS) has emerged as a
promising approach for designing computation and communi-
cation tasks. HLS tools translate an application described in
a high-level language such as C/C++/SystemC/OpenCL into a
high-performance Register Transfer Level (RTL) code which
can later be synthesised into a netlist to be used for the
ASIC fabrication or FPGA configuration. However, describing
algorithms in C/C++ to be synthesised efficiently is a challenge
that requires proposing systematic approaches.

This paper proposes a systematic approach to provide a
high-performance HLS implementation of an intrinsic streaming
application. The main technique of this paper in providing a
high-performance design is to saturate the memory bandwidth
by transferring data to the FPGA that directly take part in
the computation. Fig. 1 shows the overview of the proposed
methodology. This approach starts with a formal modelling of the
application (i.e., Path (1) in Fig. 1) which can be used to optimise
the throughput and memory-bandwidth of the corresponding
HLS description. The proposed formal model is based on the
Cyclo-Static Data Flow Graph (CSDFG) [1] which will be
augmented with parameters (i.e., Path (3) in Fig. 1) provided
by the HLS tool synthesising the original implementation of the
design (i.e., Path (2) in Fig. 1). The optimization techniques
direct the designers (i.e., Path (4) in Fig. 1) to add HLS pragmas
to the application code and use a specific coding structure
to improve performance and memory throughput. This paper
addresses Paths 3 and 4 and assumes that designers are already
familiar with Paths 1, 2, and 5. We propose to use the actor
initiation interval (II), obtained by an HLS tool, instead of the
common notion of time in the CSDFG. This helps us to propose a
clock-based definition for throughput and buffers’ length. Using
the modified CSDFG two techniques are proposed to reduce the
II and to detect artificial deadlocks. Whereas the former, called

Fig. 1: Proposed systematic design flow

token grouping, increases the throughput the latter determines
the minimum buffer length to prevent deadlocks.

For evaluation, we applied the proposed approach in designing
two optimisation algorithms used in the area of machine leaning
as case studies. The first algorithm is Hessian-vector product
which is a compute-intensive operator used in logic regression.
The second algorithm is Conjugate Gradient (CG) which is an
iterative optimisation algorithm used in the deep learning area.
The results of running these applications on the Xilinx Zynq SoC
shows up to 38x speed-up in the throughput compared to the
original streaming implementations provided by knowledgeable
engineers using the dataflow, loop pipelining and FIFO channel
related pragmas provided by the HLS tool. Furthermore, the
applications consume up to 93.1% of the total bandwidth avail-
able on the four 64-bit High-Performance (HP) ports at 100MHz
which is 3.2 GByte/sec.

The rest of this paper is organised as follows. The next section
clarifies the motivations behind this paper and explains our
contributions. Section III briefly explains the previous work. The
details of the proposed methodology are explained in Section IV.
Section V shows how to use the proposed approach in designing
two algorithm as case studies. Finally, Section VI concludes the
paper.

II. MOTIVATIONS AND CONTRIBUTIONS

Using a constructive example, this section explains the motiva-
tions and contributions of this paper. Let’s consider y = ATAx
operator as a running example in which A is a matrix of size
n × m, and x and y are two vectors of size m. This operator
and its modified versions appear in many applications such
as equation and eigenvalue solvers, iterative Newton methods
for logistic regression [2]. An implementation can perform this
operator using two matrix vector product operations. The first
product calculates the z = Ax expression and the second one
produces the output y = AT z. The dataflow graph in Fig. 2a
models this operator. This graph consists of five nodes in which
Node n1 reads the x vector into a memory accessible by Node
n3. The n2 node reads matrix A from the main memory and
sends it to Node n3 and n4. Nodes n3 and n4 perform the
two aforementioned matrix vector products. Finally, Node n5

(a) A dataflow graph for y = ATAx operator

(b) An SDFG for Nodes n2, n3 and n4

Fig. 2: y = ATAx graphs

Fig. 3: Simplified timing diagrams of Fig. 2b

writes the results back to the main memory. The three n2, n3
and n4 nodes can perform their tasks in a streaming fashion
which is shown by the corresponding Synchronous Dataflow
Graph (SDFG) in Fig. 2b. This SDFG consists of three Actors
a2, a3 and a4 corresponding to Nodes n2, n3 and n4 in Fig. 2a,
respectively. When the a2 actor fires, it reads an element of A
and pushes the corresponding token into channels c2 and c5.
Then, Actor a3, which has access to the x vector, reads these
tokens and for every m input tokens generates an output token
pushed into the c3 channel towards the a4 actor. Finally, the a4
actor receives one token from c3 and m tokens from c5 in order
to update the y vector. Below each actor in Fig. 2b, there is the
corresponding C++ code consisting of nested loops that traverse
over the input domain. Synthesising the pipelined version of
these C++ codes by the Xilinx Vivado-HLS determines the
minimum initiation interval (II) of actors that are IIa2 = 1,
IIa3 = 5 and IIn4 = 1. These minimum II may not be held
when the actors are connected through FIFOs to collaborate in
a stream computing fashion, as shown in Fig. 3. Since data
generation and consumption rates of two actors a2 and a3 are
not the same, thanks to their different IIs, a2 should wait for
an empty space in the FIFO implementing the c2 channel. This
inserts some stalls into its pipeline stages which increases its real
initiation interval to 5. This reduces the memory bandwidth usage
by the a2 actor, consequently, reduces the design throughput. As
the c5 channel connects the two Actors a2 and a4 which are
apart in the pipelined timing diagram, its corresponding FIFO
should have enough room to keep the tokens generated by the
a1 actor until they are consumed by a4. A short length FIFO
implementing the c5 channel causes a deadlock in the design.

In summary, maximising the throughput and avoiding dead-
locks are the main contributions of the proposed techniques in
this paper.

Fig. 4: A CSDFG for y = ATAx operator

III. PREVIOUS WORK

Synchronous Dataflow Graph (SDFG) and its generalisations
such as CSDFG, Multidimensional SDFG have been studied
extensively in modelling and designing streaming applications.
Stuijk et al. [3] study the trade-off space between throughput and
buffer size in cyclo-static and synchronous data flow graph. For
this purpose they propose a systematic technique to formulate
the problem and approximate the optimum buffer-size. Similarly,
Benazouz et al. [4] minimizes the cyclo-static dataflow graph
using new formulation. However, they have not considered the
pipelined actors and the overlap between execution of two con-
secutive firings of an actor. Unlike this technique, our approach
tries to explain the capability of CSDFG in modelling streaming
applications to be synthesised by an HLS tool.

IV. PROPOSED METHODOLOGY

This section first defines the CSDFG modelling tool, aug-
mented by the initiation interval and formulates the throughput
and the memory bandwidth utilisation of a design. Then, using
the parameters of throughput and bandwidth, it proposes the
optimisation techniques.

A. CSDFG+II

A CSDFG is a directed graph in which nodes represent tasks,
known as actors, and links denote communication media or
channels between tasks. An actor in a cyclo-static dataflow graph
(CSDFG), known as a multi-phase actor, has a periodic sequence
of firings (or phases) with the size of N , each of which consumes
a fixed number of tokens. Actors may execute different functions,
defined by fN−1, ..., f1, f0 during their phases. The consumption
and production rates of tokens on each channel are represented
by a sequence of numbers in contrast to the only one token rate
in SDFG. The rates at each port p (where a channel is connected
to an actor) are denoted by tN−1(p), ..., t1(p), t0(p). For the sake
of simplicity, in this paper, we assume that each actor consumes
and produces its tokens at the first and last lock cycle in each
phase, respectively. Fig. 4 shows the CSDFG corresponding to
the SDFG in Fig. 2b. In this paper, we restrict our discussion
to acyclic CSDFG as the HLS tool considered in this paper
only support this type of streaming dataflow synthesis. Note that
for the sake of simplicity self-loops around each actor which
represent their states (e.g., loops’ indices) are omitted. In this
case, each actor has N = m phases.

Initiation Interval (II): The initiation interval of two con-
secutive phases of an actor (denoted by IIi(a) for phases i
and i + 1 of the a actor) is defined as the number of cycles
between the starting point of the two phases. In this paper,
we assume that the lower bound of the number of cycles
between all consecutive phases of a given actor a are equal and
denoted by IIHLS(a) determined by an HLS tool. Therefore,
∀i ∈ {0, 1, ..., N − 2}, IIi(a) ≥ IIHLS(a)

Fig. 5: Token grouping for y = ATAx operator

B. Throughput Optimization

Equ. 1 represents the upper-bound of throughput in a CSDFG
augmented with II.

Thr(a) ≤
∑i=N(a)

i=0 ti(a)∑i=N(a)
i=0 IIi(a)

≤
∑i=N(a)

i=0 ti(a)

N(a)IIHLS(a)
(1)

There are three main techniques to improve this throughput:
utilising the wide-bus width, employing multiple memory ports
and reducing the initiation interval. The experimental results
show the impact of the first two techniques and the detail of
the last one is described in the sequel.

The main factor determining the throughput of a streaming
application mapped on FPGA is the achievable II at runtime.
The initiation interval depends on the design and HLS tools and
there are a few general techniques to improve it in a given HLS
tool. In this paper, we propose a structural technique to increase
the CSDFG throughput in which the actor with high II processes
more than one token in its firing which is explained in the sequel.

Let’s consider a computational actor a with II(a) = k > 1
and N(a) = m. Approximately, it takes km cycles to finish its
task. However, if the actor can process k tokens in each phase
without changing its II then N(a) = m/k and consequently
the number of cycles to finish the task reduces to (m/k)k =
m. This technique is called token grouping. For example, the
initiation interval of actor a3 in Fig. 4 is 5 then by utilising this
technique the throughput increases by a factor of 5. The modified
CSDFG is shown in Fig. 5 in which the a3 actor consumes all
the tokens generated by actor a2 with II(a2) = 1 and still the
FIFO implementing channel c2 has the length of 1.

To increase the throughput of the CSDFG, the bottleneck actor
which has high II should be found and unrolled with the factor
of its II without changing its original initiation interval. This
situation is possible for many compute-intensive applications.
Section V shows this situation for two case study benchmarks.
A systematic way to implement the token grouping is using the
partial loop unrolling which is one of the basic optimization
techniques in HLS tools.

C. Bounded Buffer

An insufficient communication buffer between two actors may
lead to stall insertions into pipeline stages or even may induce
an artificial deadlock mainly because of an unbalanced latency
of two divergent paths that converge at an actor. This latency can
have two sources: the input data-size and the design structure.
For example in our running example of Fig. 4, the two paths
a2 → a3 → a4 and a2 → a4 can cause a deadlock if the size of
buffer implementing the c5 channel is not sufficient to keep the
tokens for actor a4 when it is required. Actors a2 and a4 are the
source and sink of the reconvergent paths, respectively. Actor
a4 can consume the tokens on the c2 channel on each phase, as
based on the graph, the source actor a2 is able to provide them.
However, actor a4 cannot immediately consume a required token
from the c3 channel, as actor a3 provides that with a delay on
its last phase, after II(a3).m + la3

cycles, in which II(a3) is
the initiation interval of a3, m is the number of iterations that

a3 requires to generate a token on the c3 channel and la3 is the
latency of this actor. Therefore, the first path i.e., a1 → a2 → a3
has the latency of mII + la3

cycles to deliver the first token to
actor a3 while during this time actor a2 generates tokens that
should be buffered in c3. Since II(a2) determines the rate of a2
generated tokens, then the lower bound of buffer size should be
(mII(a3)+la3

)/II(a2). According to the discussion in previous
subsection II(a2) = II(a3) = 5 and the latency of a3 actor is
12 obtains after synthesis. Therefore, the minimum buffer size
on the c3 channel is bm+12/5c = m+3. Note that, if the actor
reads the token on channel c3 with an offset of s clocks from
the start of the iteration, it should be added to the length of the
buffer.

V. CASE STUDIES

This section explains two tasks used in machine learning
considered as case studies. The source codes can be found at
out Github site [5].

A. Hessian-vector product
The Hessian-vector product is defined as Equ. 2 in which d

is a vector of size N and I , X and D are identity, normal and
diagonal matrices of size N ×N , respectively. Note that the D
can be represented by a vector of size N . Similar to the approach
in [2], the right hand side of this equation can be calculated as
four terms connecting together serially: Xd, D(Xd), XT (DXd)
and d + XT (DXd). In the rest of this paper, we assume the
size of matrices and vectors in the Hessian-vector product are
1000×10000 and 1000, respectively. In the sequel, we will apply
our design flow shown in Fig. 1 to this example.

∇2f(w) = (I +XTDX)d (2)

Path (1) in Fig. 1: Fig. 6a shows the corresponding CSDFG
of a streaming implementation that a knowledgeable engineer
who is familiar with stream computing will achieve using the
pragmas available in the HLS tool. This CSDFG has a similar
structure as the running example except for the extra actor and
channel.

Path (2) in Fig. 1: The designer may use the RTL simulation
provided by the HLS tool to determine the channels’ buffer size
through a trial and error effort or may be consider a high value
for buffers’ size. The second row of the table in Fig. 7b, denoted
by or label, shows the resource utilisation of this implementation
after synthesising by the Xilinx Vivado-HLS tool. The execution
time of this implementation is about 50.2msec as shown in
Fig. 7a.

Path (3) in Fig. 1: The HLS synthesis also reveals the actors’
II which are shown in the CSDFG of Fig. 6a. The two path
a1 → a2 → a3 → a4 and a1 → a4 in Fig. 6a converge with
unbalanced latency. Therefore, the lower bound for the buffer
size on path a1 → a4 is bN + (la2

+ la3
)/IIac = N + 4.

Path (4) in Fig. 1: Note that the token grouping can be
applied to Actor a2 as it is the bottleneck in achieving the high
throughput thanks to its high II. Applying the token grouping on
actor a2 by processing 5 tokens (equal to its initiation interval)
in each iteration improves its throughput by a factor of 5 (about
5 times faster as shown in Fig. 7a). In addition its corresponding
resource utilisation is reported in the third row of table in Fig. 6a.
The wide-bus and multiple memory port utilisations techniques
focus on actor a1 to improve the throughput. The fourth and
fifth rows of table in Fig. 6a shows the corresponding resource
utilisation of considering wide bus and multiple memory port,
respectively.

Path (5) in Fig. 1: Fig. 7a depicts that applying all opti-
mization techniques on the Hessian vector product speeds up
the implementation by a factor of 38.0 compared to the original

(a) Original CSDFG

(b) Modified CSDFG

Fig. 6: Hessian-vector product CSDFG

(a) Execution time

(b) Hardware resource usage

Fig. 7: Hessian-vector product

implementation. The CPU implementation on one core of the
ARM Cortex-A9 available on the Zynq is also shown in this
diagram for comparison. The total number of bytes transfer
to the FPGA during this time is 1000 × 1000 ∗ 4 = 4MB,
therefore, the total memory bandwidth utilisation in the most
optimised implementation is 4MB/1.366ms = 2.93GB/sec.
Note that, each 64-bit HP port on the Zynq SoC with 100MHz
clock frequency can transfer 64-bit (i.e., 8 bytes) data in each
clock cycle between the main memory and FPGA using the burst
data transfer protocol. Therefore, the total memory bandwidth,
provided by the four HP ports, is 8 ∗ 100 ∗ 4 = 3.2GB/sec
of which 2.93GB/sec is used by our optimised design which
shows 91.5% efficiency.

B. Conjugate Gradient (CG)

The CG method proposes an iterative algorithm to solve a
linear equation denoted by Ax = b in which A is a symmetric
and positive-defined matrix of size N × N and x and b are
vectors of size N [5]. Fig. 8a compares the execution time of the
optimisation techniques (i.e., token grouping, wide bus utilisation
and using five memory ports in parallel) applied to this solver
with the matrix of size 4000× 4000 and 40 iterations. The total
number of bytes transfer to the FPGA during this time is 4000×
4000 ∗ 4 ∗ 40 = 2.56GB, therefore, the total maximum memory

(a) Execution time

(b) Hardware resource usage

Fig. 8: Conjugate gradient

bandwidth utilisation is 256MB/0.86sec = 2.98GB/sec which
shows 2.98/3.2 = 93.1% efficiency.

VI. CONCLUSIONS AND FUTURE WORK

This paper has proposed a systematic design flow for stream-
ing applications to be synthesised by a high-level synthesis tool
for mapping on a target FPGA-based embedded system. The
design flow utilises CSDFG model to describe the application.
This model is annotated with information obtained from the
HLS tool. The CSDFG is used to estimate the buffer size used
as the communication channels between actors. Applying the
proposed design flow to two applications (Hessian-vector product
and conjugate gradient) shows its capability to detect bottlenecks
and improve their execution time by a factor up to 38x.

REFERENCES

[1] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-static
data flow,” in Acoustics, Speech, and Signal Processing, 1995. ICASSP-95.,
1995 International Conference on, vol. 5, May 1995, pp. 3255–3258 vol.5.

[2] M. C. Lee, W. L. Chiang, and C. J. Lin, “Fast matrix-vector multiplications
for large-scale logistic regression on shared-memory systems,” in Data
Mining (ICDM), 2015 IEEE International Conference on, Nov 2015, pp.
835–840.

[3] S. Stuijk, M. Geilen, and T. Basten, “Throughput-buffering trade-off explo-
ration for cyclo-static and synchronous dataflow graphs,” IEEE Transactions
on Computers, vol. 57, no. 10, pp. 1331–1345, Oct 2008.

[4] M. Benazouz, O. Marchetti, A. Munier-Kordon, and T. Michel, “A new
method for minimizing buffer sizes for Cyclo-Static Dataflow graphs,” in
2010 8th IEEE Workshop on Embedded Systems for Real-Time Multimedia,
Oct 2010, pp. 11–20.

[5] M. Hosseinabady, “A systematic approach to design and optimise streaming
applications on fpga using high-level synthesis: Source code,” 2017.
[Online]. Available: https://github.com/Hosseinabady/csdfg-hls

