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Abstract

It is shown that the two common notions of topological continuity for pref-

erence preorders, which require closed contour sets and a closed graph re-

spectively, are equivalent even when completeness is not assumed, provided

that the domain is a normed linear space or a topological group and the

preorder is additive.
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1. Introduction

In all theoretical work in economics where the aim is to provide a con-

tinuous utility, weak utility or multi-utility representation of a preference

preorder, it is of interest to ensure that the topology on the preference

domain is in a natural sense compatible with the preorder. This can be

achieved by assuming that the latter is either continuous, in the sense that
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it is closed as a subset of the product space, or hemicontinuous, in the sense

that the upper and lower contour sets of the preorder are closed for every

element of the domain.

It is well-known that if the preorder is complete so that any two elements

are preference-comparable, then continuity and hemicontinuity are equiv-

alent (Ward, 1954; Bridges and Mehta, 1995). When the preorder is not

complete, however, continuity is generally stronger than hemicontinuity. A

general characterization of the additional structure that continuity imposes

in this more general setting is provided in Gerasimou (2013). However, it

seems to be unknown at present whether mild conditions on the preference

relation and/or on its domain suffice for the equivalence between the two

topological properties to be restored in the context where completeness is

not assumed.

The contribution of this paper is to show that continuity and hemi-

continuity are equivalent when the domain is a normed vector space or a

topological group and the preorder is additive. In the former case where

the space has a linear structure, additivity is shown to be satisfied if the

preorder is homothetic and also obeys the independence axiom (in fact, it

is shown that additivity and independence are equivalent under a weak no-

tion of homotheticity). Despite the well-known descriptive shortcomings of

these axioms, they are all essential, for instance, in modelling individuals

who maximize subjective expected value in the sense of de Finetti (1937)1,

even when completeness is not assumed (see Ghirardato et al. 2004).

With regard to the relevant literature, two recent papers on the problem

of identifying the way in which different notions of preference continuity are

1See also Chapter 10 in Gilboa (2009).
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logically related and whether they become equivalent under certain condi-

tions are Karni (2007) and Gilboa et al. (2010). Karni (2007) studied the

relationship between Archimedean and mixture continuity for a complete

preorder that is defined on a probability simplex. He found a condition,

called “local mixture dominance”, which, jointly with Archimedean conti-

nuity, characterizes mixture continuity. Moreover, in the context of prefer-

ences over Anscombe-Aumann acts, Gilboa et al (2010, Lemma 3) proved

that a possibly incomplete preorder that satisfies monotonicity and indepen-

dence is continuous in the above sense if and only if it is mixture-continuous,

provided a technical domain restriction is satisfied.

2. Preliminaries

A preordered topological space (X, τ,%) consists of a set X, a topology τ

and a reflexive and transitive relation % on X. I will write (X,%) or simply

X and refer to it as a preordered space. If the sets U(x) := {y ∈ X : y % x}

and L(x) := {y ∈ X : x % y} are closed for some x ∈ X, then the preorder

is upper- and lower-hemicontinuous at x, respectively. A preordered space

X is hemicontinuously preordered if the sets U(x) and L(x) are closed for

all x ∈ X. It is continuously preordered if % is closed as a subset of the

product space X×X. The complement of a preorder % in X×X is denoted

by 6%. The complement of a set A ⊂ X is denoted by Ac.

The first example below shows a preorder that is hemicontinuous but

not continuous. It was suggested to me by Ettore Minguzzi (Florence).

Example 1. Let X = R with its natural topology. Define the relation % on
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X by

x % y ⇐⇒


x = y

or

y < −1 and x = −y

The relation % is clearly reflexive and antisymmetric. It is also trivially

transitive (if x � y, then y � z for all z ∈ X). Hence, it is a partial

order. By definition, U(x) = {x,−x} for all x < −1 and U(x) = {x} for

all x ≥ −1. Moreover, L(x) = {x} for all x ≤ 1 and L(x) = {x,−x} for

all x > 1. Thus, % is hemicontinuous. Now define the sequences (xn), (yn)

in X by xn = 1 + 1
n

and yn = −1− 1
n

. It holds that xn % yn for all n ∈ N,

xn → x = 1, yn → y = −1 and x 6% y. Hence, % is not continuous.

The next example features a preorder on a probability simplex which

also fails to be continuous despite being hemicontinuous.

Example 2. Let X = {(p1, p2, p3) ∈ R3
+ : p1 +p2 +p3 = 1} with the induced

topology. For p = (p1, p2, p3) ∈ X, let p′ ∈ X be defined by p′ = (p3, p2, p1).

Define the relation % on X by

p % q ⇐⇒


p = q

or

q = p′ and p3 > 2
3

This relation is clearly reflexive. Moreover, if p % q and p 6= q, then q = p′

holds by construction, and there is no r ∈ X such that q % r and q 6= r.

Indeed, suppose the latter is not true. Then, q3 > 2
3

and r = q′ = p, because

q = p′ implies q′ = p. But since q′ = p ∈ X, q3 > 2
3

implies q′3 = p3 < 2
3
.

This is a contradiction. Therefore, % is trivially transitive. Finally, the
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previous argument also establishes that % is antisymmetric, and hence a

partial order.

From the above definition of % we have that, for all q ∈ X, U(q) = {q}

if q1 ≤ 2
3
, U(q) = {q, q′} if q1 > 2

3
, L(q) = {q} if q3 ≤ 2

3
and L(q) =

{q, q′} if q3 > 2
3
. These sets are closed for all q ∈ X and therefore % is

hemicontinuous. Let (pn), (qn) be sequences in X defined by

pn =

(
1

6
− 1

6n
,

1

6
,

2

3
+

1

6n

)
qn =

(
2

3
+

1

6n
,

1

6
,

1

6
− 1

6n

)
Clearly, pn % qn for all n ∈ N, pn → (1

6
, 1
6
, 2
3
), qn → (2

3
, 1
6
, 1
6
), and p 6% q.

Thus, % is not continuous.

3. Main Result

If the preference domain X is a vector space, then a preorder % on X

is additive if x % y implies x + z % y + z for all z ∈ X. The behavioural

implications (particularly in relation to risk neutrality) of additivity in the

context of choice under uncertainty are discussed in detail in Gilboa (2009).

The paper’s main result is the following:

Theorem 1. Suppose (X,%) is a preordered normed vector space and % is

additive. The following are equivalent.

(a) % is upper- or lower-hemicontinuous at 0.

(b) % is hemicontinuous.

(c) % is continuous.

Proof. It is obvious that (c) implies (a). It will be shown that (a) implies

(b) implies (c).
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(a)⇒ (b). Without loss of generality, assume that % is upper-hemicontinuous

at 0. Suppose (yn) is a sequence in X such that 0 % yn for all n ∈ N. Since

X is a vector space and yn ∈ X, it follows that −yn ∈ X. Since % is addi-

tive, 0 % yn is equivalent to −yn % 0 for all n. Suppose yn → y. Since U(0)

is closed and −yn → −y it follows that −y % 0, or 0 % y. Hence, L(0) is

also closed.

Now consider some arbitrary x ∈ X. Suppose (yn) is a sequence satisfy-

ing yn % x for all n, and let yn → y. It holds that yn−x % 0 for all n. Since

yn − x → y − x, it follows from the above that y − x % 0 or, equivalently,

y % x. Thus U(x) is closed. A symmetric argument shows that L(x) is

closed too.

(b) ⇒ (c). Suppose X is normed by || · || and let the topology on X be

generated by the metric d(·, ·) that is induced by this norm. Suppose x 6% y.

From hemicontinuity, the sets L(x)c and U(y)c are open. Hence, x 6% y

implies there are open balls Bεx(x) and Bεy(y) such that x′ 6% y and x 6% y′

for all x′ ∈ Bεx(x) and all y′ ∈ Bεy(y), respectively. Define ε := min{εx, εy}.

It holds that

x 6% y′ and x′ 6% y ∀ x′ ∈ Bε(x), y′ ∈ Bε(y). (1)

Now consider the distance ε
2

and suppose, per contra, that B ε
2
(x)×B ε

2
(y)

6⊂ 6%. Then, there exist x′ ∈ B ε
2
(x) and y′ ∈ B ε

2
(y) such that x′ % y′. Let

v := x−x′. By assumption, v ∈ X. Moreover, since % is additive, it follows

that

x′ % y′ =⇒ x′ + v % y′ + v

=⇒ x % y′ + x− x′. (2)
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From the triangle inequality we get

d(y, y′+x−x′) = ||y− y′−x+x′|| ≤ ||y− y′||+ ||x′−x|| < ε

2
+
ε

2
= ε. (3)

It follows from (3) that y′ + x − x′ ∈ Bε(y) and therefore, from (1), that

x 6% y′ + x− x′. But this contradicts (2). Therefore, x 6% y implies that an

open neighborhood of (x, y) can be found that is contained in 6%. Hence, 6%

has an open graph, or, equivalently, % is continuous.

Remark 1. The Euclidean space Rn with the usual partial ordering ≥

is an example of a normed vector space with an additive hemicontinuous

preorder. As is well-known, ≥ is also continuous. On the other hand,

the hemicontinuous but not continuous partial order in Example 1 is de-

fined on a normed vector space but fails to be additive (e.g. 2 % −2 but

2 + 1 = 3 6% −1 = −2 + 1), whereas the one in Example 2 is not defined on

a normed vector space and, by construction, is not additive either.

The logical relationship between additivity and some other well-known

preference axioms is studied next. Recall first that a preorder % on X is

affine if x % y implies αx+ (1− α)z % αy + (1− α)z for all α ∈ [0, 1] and

all z ∈ X, and homothetic if x % y implies αx % αy for all α > 0. I will

refer to % as lower-homothetic if x % y implies αx % αy for all α ∈ (0, 1).

Claim 2. A lower-homothetic preorder % on a vector space X is affine if

and only if it is additive.

Proof. Assume first that % is lower-homothetic and affine, and suppose

x % y. It holds that αx+ (1−α)z % αy+ (1−α)z for all α ∈ (0, 1) and all

z ∈ X. Since % is lower-homothetic, α
1−αx + z % α

1−αy + z. When α = 1
2
,

this is equivalent to x+ z % y + z.
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Conversely, assume that % is lower-homothetic and additive, and let

x % y. Consider α ∈ (0, 1). From lower-homotheticity, αx % αy. From

additivity, αx+ (1− α)z % αy + (1− α)z.

Remark 2. Consider a convex cone C in a topological vector space X, i.e.

a convex subset of X with the property that x ∈ C implies λx ∈ C for all

λ ≥ 0. The cone C induces a preorder % on X by x % y if and only if

x − y ∈ C. Here, C coincides with the upper-contour set U(0) of %. It is

well-known that this preorder % is continuous if and only if C is closed (see

pp. 19-20 in Wong and Ng (1973)).2 Theorem 1 relaxes the conditions on

% in this result by not requiring U(0) to be a convex cone, while retaining

additivity. Therefore, % is not assumed to be convex or homothetic (and

hence, in view of Claim 2, not affine either).

As already noted, a context where a possibly incomplete preference pre-

order satisfies the conditions of Theorem 1 (in fact, all three conditions

in the statement of Claim 2) is that of subjective expected value with in-

complete preferences. Such a representation is given in Proposition A.2 in

Ghirardato et al. (2004). There, the agent is portrayed as having incomplete

preferences over monetary bets as well as a set of priors over the states of

the world, and to weakly prefer one bet over another if and only if it yields

a weakly higher expected value according to each prior (see also Theorem 1

in Bewley (2002) for a strict-preference analogue of this result). Although

full continuity was assumed directly in Ghirardato et al. (2004), in light

of Theorem 1 this can be replaced by the weaker notion of hemicontinuity

2I thank a reviewer for this reference.
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or even upper- or lower-hemicontinuity at the origin, at least whenever the

domain of acts is a linear space.

Finally, as is well-known since Schmeidler (1971) and, more recently,

Dubra (2011), when sufficiently strong continuity notions are imposed on

a preorder that is defined on some suitably rich domain, the preorder is

actually complete. However, as remarked above with the example of the

usual partial ordering, there also exist continuous preorders that are additive

as well as convex and homothetic which are, in fact, incomplete. Therefore,

the interaction of additivity and (hemi)continuity is not sufficiently strong

to imply completeness.

4. Extension to Topological Groups

The proof of Theorem 1 that was given above did not make use of the

fact that linear spaces are closed under the operation of scalar multiplica-

tion. This suggests the possibility that the essence of the result extends to

topological groups, where this structure is not imposed. To this end, let

(G,%) be a preordered topological group, with 1 ∈ G the identity element

of the group. That is, 1 ∈ G is the unique element with the property that,

for all a ∈ G, the equation 1a = a1 = a holds.

In this context, the preorder % is additive if x % y implies xz % yz for

all x, y, z ∈ X. The following extension of Theorem 1 was suggested to me

by Hans-Peter Künzi (Cape Town).

Theorem 3. Suppose (G,%) is a preordered topological group and % is

additive. The following are equivalent:

(a) % is upper- or lower-hemicontinuous at 1.
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(b) % is continuous.

(c) % is hemicontinuous.

Proof. It is clearly true that (b) implies (c) and (c) implies (a). It will

be shown that (a) implies (b). Without loss of generality, let % be upper-

hemicontinuous at 1. Suppose that (xd, yd)d∈D is a net converging to (x, y) ∈

G × G, and that xd % yd for all d ∈ D. Since G is a group, wz−1 ∈ G for

all w, z ∈ G. Thus, xdy
−1
d ∈ G and xdy

−1
d % 1 for all d ∈ D. Since U(1) is

closed and (xdy
−1
d )→ xy−1 because G is a topological group, it follows that

xy−1 % 1, or x % y. Thus, % is continuous.

With regard to some related literature on topological groups, the reader

is referred to Candeal-Haro and Indurain-Eraso (1992) for a weak utility

representation of a partial order on such domains.
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