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ABSTRACT 

This thesis describes an experimental investigation of optical frequency conversion in 

isotropic semiconductor waveguides by use of several phase-matching approaches. 

Efficient, type I second harmonic generation of femtosecond pulses is reported in 

birefringently-phase-matched GaAs/Alox waveguides pumped at 2.01 µm. Practical 

second harmonic average powers of up to ~ 650 µW are obtained, for an average 

launched pump power of ~ 5 mW. This corresponds to a waveguide conversion 

efficiency of ~ 20 % and a normalized conversion efficiency of greater than 1000 % 

W-1cm-2. Pump depletion of more than 80 % is recorded. 

Second harmonic generation by type I, third order quasi-phase-matching in a GaAs-

AlAs superlattice waveguide is reported for fundamental wavelengths from ~1480 to 

1520 nm. Quasi-phase-matching is achieved through modulation of the nonlinear 

coefficient , which is realised by periodically tuning the superlattice bandgap. An 

average output power of ~25 nW is obtained for a launched pump power of <2.3 mW.  

)2(
zxyχ

Type I second harmonic generation by use of first order quasi-phase-matching in a 

GaAs/AlAs symmetric superlattice waveguide is also reported, with femtosecond 

fundamental pulses at 1.55 µm. A periodic spatial modulation of the bulk-like second-

order susceptibility  is realized using quantum well intermixing by As)2(
zxyχ + ion 

implantation. A practical second harmonic average power of ~1.5 µW is detected, for 

a coupled pump power of ~11 mW. 

Second harmonic generation through modal-phase-matching in GaAs/AlGaAs 

semiconductor waveguides is reported. Using femtosecond pulses, both type I and 

type II second harmonic conversion is demonstrated for fundamental wavelengths 

near 1.55 µm. An average second harmonic power of ~10.3 µW is collected at the 

waveguide output for a coupled pump power of <20 mW.   

For a complete characterisation, the optical loss is measured in these nonlinear GaAs-

based waveguides over the spectral range 1.3-2.1 µm in the infrared, by deploying a 

femtosecond scattering technique. Typical losses of ~5-10 dB/cm are measured for 

the best of the waveguides, while a systematic intensity and wavelength dependent 

study revealed the contribution of Rayleigh scattering and two photon absorption in 

the overall transmission loss.   
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PROLOGUE 
 

1. Prologue 

The present thesis outlines work carried out at the University of St. Andrews during 

the period 1999-2003, in the area of nonlinear frequency conversion in III-V 

semiconductor waveguides. This work was performed within the frame of an ongoing 

European collaboration (OFCORSE project1), which comprised four participant 

members2. The objective of this collaboration is to exploit the optical nonlinearities in 

III-V semiconductor materials for efficient nonlinear frequency conversion. This 

could lead to the development of numerous functional devices operating in the near 

and mid-infrared (IR), ranging from second harmonic generation structures, to 

integrated devices for difference frequency generation, parametric amplification and 

oscillation.  

Accessing the near and mid-IR spectral region is of considerable interest for a number 

of applications. Most molecules present vibrational resonances within the 2 to 20 µm 

wavelength range [1], making compact sources in the near and mid-IR imperative for 

spectroscopic studies [2,3], as well as for gas sensing purposes with potential use in 

environmental monitoring [4,5] and photo-medicine [6]. Furthermore, generation and 

conversion of coherent radiation at 1.55 µm could be useful for applications in 

wavelength division multiplexing and all-optical switching in telecommunication 

networks [7-9]. Nonlinear frequency conversion in this spectral range has also been 

proposed as a route to designing twin-photon sources for quantum optical 

communications [10] and for testing fundamental concepts of quantum physics and 

relativity [11]. 

Current infrared laser sources include narrow-band laser diodes [12], lead salt [13] 

and antimonide lasers [14]. In general these approaches require cryogenic cooling, 

offer modest output powers and do not produce a tunable output. A novel addition to 

the family of infrared sources is the quantum cascade laser [15], which is still 

                                                 
1 Optical Frequency COnveRsion in Semiconductors 
 
2  1) The group of Prof. Assanto at Roma University-III, which focused on theoretical studies,  
2) The group of Prof. Berger at Thomson CSF (THALES), which was responsible for the design and 
fabrication of birefrintent materials,  
3) The group of Prof. Aitchinson at Glasgow University, which concentrated its efforts on designing 
and fabricating quasi-phase-matched structures, and  
4) The group of Dr. M. Ebrahimzadeh at St. Andrews, which undertook the responsibility of building a 
characterisation facility and carrying out the optical experiments on the materials. 
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undergoing intense development. Available quantum cascade lasers offer high output 

power levels and considerable temperature tuning, yet continuous-wave, room 

temperature operation has been proven illusive. Sources based on nonlinear frequency 

conversion (most notably, the optical parametric oscillation and difference frequency 

generation) represent an attractive alternative to accessing this spectral region [1, 4, 5, 

16]. Efforts in this direction have been mostly focused on the search for materials 

with the desirable properties. Unquestionably, the most promising breakthrough in 

nonlinear material science and fabrication technology followed the development of 

periodically polled lithium niobate [17]. However, the transparency range of lithium 

niobate limits its use to wavelengths shorter than ~5 µm. Other infrared materials 

developed to date, such as chalcopyrites [18], still suffer from a variety of issues 

related to the immature growth technologies available.         

In this direction, GaAs/AlGaAs emerges as a very attractive infrared nonlinear 

material system for a number of reasons. First and foremost, GaAs exhibits a large 

second order nonlinearity with reported values for the second order nonlinear 

coefficient d14=d36 of ~100 pm/V in the IR [19-23]. This value is approximately three 

times higher than the respective value for lithium niobate and two orders of 

magnitude larger than that of conventional birefringent materials. Further distinctive 

advantages of this material include its broad IR transparency (0.9-17 µm), low optical 

absorption, high damage threshold, high thermal conductivity and mature growth and 

fabrication technology, which supports the possibility of integration with 

semiconductor laser sources as well as the potential for mass production at low cost. 

On the negative side, GaAs has a cubic symmetry and thus is optically isotropic and 

lacks natural birefringence. Therefore, matching the phase velocities of the interacting 

waves (a necessity for efficient frequency conversion) is not a straightforward 

process. Circumventing the problem of phase-matching has been the principal 

challenge of this project. Three different phase-matching approaches have been 

proposed and studied:  

• Artificial (or form) birefringence, by means of selective oxidation 

• Quasi-phase-matching, through quantum well intermixing, and 

• Modal-phase-matching  
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Within the broader framework of the OFCORSE project, scope of the present doctoral 

work was to investigate the feasibility of the preceding phase-matching techniques 

through investigations of second harmonic generation in guided-wave GaAs-based 

structures. The waveguide-based design yields the high intensities and provides 

maximised overlap between the interacting modes that are necessary for high 

conversion efficiencies. The significance of such a study is three-fold: Firstly, it is a 

step towards the establishment of GaAs as a practical nonlinear material. Secondly, it 

demonstrates a hybrid frequency converter with its own, independent significance. 

Thirdly, it serves as a guideline for the further development of integrated devices.      

For this purpose, the early efforts were directed towards setting up a complete 

characterisation facility. A synchronously pumped, femtosecond optical parametric 

oscillator (OPO) was constructed and served as the pump source. The OPO was a 

reasonable choice, since it provides a unique wavelength tuning capability, which is 

necessary to overcome unavoidable inaccuracies and errors in the prediction of the 

phase-matching wavelength. Operation in the femtosecond regime was favoured in 

order to achieve the large peak powers necessary for efficient conversion. The 

laboratory was also equipped with a number of commercial instruments, including 

optic elements, end-fire coupling apparatus, IR cameras, microscopes and detection 

diagnostics. 

The main body of the work involved experimental investigations of second harmonic 

generation in a large number of materials provided by the collaborators. In fact, 

successful harmonic generation was demonstrated by means of all three different 

phase-matching technologies. Experimental efforts concentrated on a) establishing 

that the generated signal is indeed result of a phase-matched interaction and b) 

determining the efficiency of the process. The latter, required theoretical calculations 

of a number of group-velocity dispersion related effects (that reveal the complicated 

dynamics in this time scale), as well as experimental determination of the propagation 

loss associated with the materials. Loss measurements were carried out using an 

improved scattering technique. Note that knowledge of the propagation loss is 

important not only for the purposes of the current work, but also for the calculation of 

the threshold pump power required for the consequent construction of integrated 

resonant devices by use of the same material.       
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This thesis is organised in eight chapters. The present (first) chapter provides a short 

introduction to the scope and challenges of this project. The second chapter 

summarises basic concepts of nonlinear optics that are fundamental to this work. The 

third chapter is dedicated to presenting an overview of the femtosecond optical 

parametric oscillator that was constructed and used as the main experimental tool for 

the material characterisation. The three following chapters present details of the 

different approaches used to solve the phase velocity synchronism problem, along 

with results from the corresponding harmonic generation experiments, namely: Phase- 

matching based on form firefringence (fourth chapter), quasi-phase-matching (fifth 

chapter) and modal-phase-matching (sixth chapter). The seventh chapter reports 

results from measurements of the propagation loss on these materials based on a 

femtosecond scattering technique. The thesis concludes with a summary and a 

comparison of the results, which is attempted in the eighth chapter. Finally, two 

appendices are included to discuss special issues on ultrashort pulse propagation and 

measurement (appendix A), and list the publications arising from this work (appendix 

B). 

It should be mentioned that throughout these years a number of further experiments 

was carried out, including:  

• Investigation of parametric oscillation based on a LiInS2 crystal,  

• Demonstration of optical rectification in GaAs waveguides, and  

• Generation of femtosecond blue light pulses through frequency doubling 

in a BiBO crystal.  

Details of these experiments (which are not directly related to the OFCORSE project) 

are not included on this thesis, mainly for reasons of conceptual continuity.   
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CHAPTER 2 NONLINEAR OPTICS CONCEPTS 
 

2. NONLINEAR OPTICS CONCEPTS 

2.1 Review of Maxwell equations 

In 1864, J.C. Maxwell enclosed the fundamental laws governing the generation, 

propagation and interaction of electromagnetic (EM) radiation with matter, in the 

famous set of equations (2-1). Expressed in MKSA units, Maxwell equations are: 

 0),(),( =
∂
∂

+×∇ trB
t

trE rrrrr
                                                                    (2-1 a) 

 ),(),(),( trJtrD
t

trH rrrrrrr
=

∂
∂

−×∇                                              (2-1 b)    

 0),( =⋅∇ trB rrr
                                                                                             (2-1 c) 

 ),(),( trtrD rrrr
ρ=⋅∇                                                                                    (2-1 d)  

where:   E
r

…is the electric field intensity vector in Volts/meter 

  H
r

…is the magnetic field intensity vector in Ampere/meter 

  B
r

…is the magnetic flux density vector in Tesla 

  …is the electric displacement vector in Coulomb/meterD
r 2 

  …is the electric current density vector in Ampere/meterJ
r 2 

  ρ …is the electric charge density in Coulomb/meter3

E
r

, H
r

, B
r

, ,  and D
r

J
r

ρ  are real functions of time t  and spatial location with respect to 

a specific coordinate system rr . Solving Maxwell equations to determine the field 

vectors, requires three relations that reveal the behaviour of the medium under the 

influence of the field, known as the constitutive relations: 

  )},(),,({),( trHtrEDtrD rrrrrrr
=                                                                      (2-2 a) 

 )},(),,({),( trHtrEBtrB rrrrrrr
=                                                                       (2-2 b) 

 )},(),,({),( trHtrEJtrJ rrrrrrv
=                         (2-2 c)          

If the field vectors are linearly related, the medium is said to be linear and the 

constitutive relations take the form:  

),()(),(),(),( 00 trErtrPtrEtrD rrrrrrrrr
εεε =+=                                              (2-3 a)                     

),()(),(),(),( 00 trHrtrMtrHtrB rrrrrrrrr µµµ =+=                                          (2-3 b) 

),()(),( trErtrJ rrrrr σ=               (2-3 c)
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where:       0ε  … is the electric permittivity of free space 
     0µ … is the magnetic permeability of free space 

     P
r

 … is the macroscopically averaged electric dipole (optical polarisation) 
     M

r
… is the magnetisation 

     ε   ...  is the relative permittivity (dielectric constant) of the medium 
     µ  ...  is the relative permeability of the medium 
     σ  ...  is the electric conductivity of the medium 

If ε, µ and σ  are constant through the medium, the medium is said to be homogenous. 

The medium is referred to as isotropic when ε, µ and σ  are scalar quantities. In the 

proceeding equations, it has been assumed that the polarisation (magnetisation) and 

the electric (magnetic) field intensity are linearly related, so that one can write: 

 [ ] ),(),()(1),( )1(
00 trEtrErtrP rrrrrrr χεεε =−=                                                      (2-4) 

where:  

εχ −=1)1(                   (2-5) 

is known as the (first order or linear) susceptibility of the medium. 

In the rest of this section some main results are outlined in the linear response limit 

for future reference. The most important consequence arising from Maxwell equations 

is that they can be formulated in a wave-motion equation and, thus, establish the 

existence of electromagnetic waves. For a linear, isotropic and homogeneous medium 

the wave equation derived by use of the standard four-step-process1 has the well-

known form: 

t
trJ

t
trEtrE

∂
∂

=
∂

∂
−∆

),(),(),( 02

2

00

rrrr
vr

µµµεµε               (2-6) 

where denotes the linear vector Laplace operator.  2∇=∆

                                                 
1 (1) From (2-1 a) follows: )()( 0 H

t
E

rrrrr
×∇

∂
∂

−=×∇×∇ µµ   

(2) Substituting H
rr

×∇  from Eq. (2-1 b) gives: E
t

J
t

E
rrrrr

2000)(
∂
∂

−
∂
∂

−=×∇×∇ µεµεµµ  

(3) Applying the vector identity  AAA
rrrrrrr

∆−⋅∇∇=×∇×∇ )()(  the proceeding can be rewritten as: 

E
t

J
t

EE
rrrrrr

2000)(
∂
∂

−
∂
∂

−=∆−⋅∇∇ µεµεµµ  

(4) Substituting E
rr

⋅∇ from Eq. (2-1 d) it follows: E
t

J
t

E
rrrr

2000
0

)(
∂
∂

−
∂
∂

−=∆−∇ µεµεµµ
εε

ρ  

The last equation is identical to Eq. (2-5), under the assumption that the electric charge density is 
homogeneous and thus: 0=∇ρ

r
. 
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It can be readily recognised that Eq. (2-6) manifests the existence of electromagnetic 

waves that propagate with a velocity given by: 

n
cc

===
εµµεµε

υ
00

1                                       (2-7) 

where 00/1 µε=c  is the propagation velocity in free space and  

εµ=n                                                   (2-8) 

is the refractive index of the medium. The disturbance term tJ ∂∂ /
r

on the right hand 

side of the wave equation has a dual interpretation. Firstly, it indicates that time-

varying currents (i.e., accelerated charges) are responsible for EM wave generation. 

Secondly, it represents a loss factor for wave propagation in conductive materials 

(σ≠0). To simplify the treatment, in the rest of this chapter considerations are limited 

to non-conductive, loss-less ( ), non-magnetic (0== σJ
r

1,0 == µM
r

) media with no 

free charges (ρ=0).   

One family of solutions to the wave equation (2-6) comprises functions that vary 

sinusoidally in time with a single angular frequency, the conventional representation 

of which reads:  

)exp()()exp()(),( tirEtirEtrE ωω rrrrrr ∗+−=                          (2-9) 

where: )(rE rr  is the complex field amplitude, ω is the frequency and the second term 

of the summation is the complex conjugate of the first term, to ensure that the 

instantaneous electric field ),( trE rr
 is a real quantity. This type of fields, known as 

time-harmonic, is of particular interest for two reasons. The first reason is that any 

arbitrary solution of Maxwell equations can be reconstructed by Fourier superposition 

according to: 

∫
+∞

∞−

−= ωω ω derEtrE ti),(),( rrrr
                                                     (2-10) 

where the Fourier amplitude ),( ωrE rr
 denotes the complex field amplitude for each 

individual frequency component. The second reason is that time harmonic fields can 

be used to eliminate the explicit time dependency in Maxwell equations and, thus, 

facilitate the study of EM phenomena in the frequency domain. In fact, by substituting 

Eq. (2-9) into the set of equations (2-1), the time-independent form of Maxwell 

equations can be obtained.  
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)()( rBirE rrrrr
⋅=×∇ ω   )()( rDirH rrrrr

⋅−=×∇ ω  

0)( =⋅∇ rB rrr
   0)( =⋅∇ rB rrr

 

Following the same four-step process a wave equation in the frequency domain can be 

derived, which for non-conductive, non-magnetic, charge-free, linear, isotropic and 

homogeneous media has the form: 

0)()( 00
2 =+∆ rErE rrvr

µεµεω                                  (2-11) 

The solutions of Eq. (2-11) are known as monochromatic or continuous EM waves 

and cover the entire EM spectrum. In fact, Eq. (2-11) is satisfied by functions of the 

form: 

)exp()( rkiErE rrrrr
=                                            (2-12) 

where E
r

 is a constant complex amplitude vector and k
r

 is known as the propagation 

vector. Therefore, combining Eqs. (2-9) and (2-12) the real field vector emerges: 

))(exp())(exp(),( trkiEtrkiEtrE ωω −−+−= ∗ rrrrrrrr
                     (2-13) 

It is evident that for any given real vector k
r

, a constant phase front of the field (i.e., a 

surface on which the field amplitude is constant) is defined by setting constant. 

In turn, this condition implies that a constant phase front is a plane surface normal to 

=⋅ rk vr

k
r

 that propagates in the direction of k
r

. Such waves are known as plane waves. 

Substitution of Eq. (2-12) into Eq. (2-11) yields the dispersion relation: 

c
nk ωµεµεω == 00                              (2-14) 

where || kk
r

=  is the propagation constant (or wave number). It is convenient here to 

define the spatial and temporal period of the wave, known as wavelength λ and period 

T, which readily from Eq. (2-13) can be expressed as: 

  
ϖ
ππλ

n
c

k
22

==   and 
ω
π21

==
v

T             (2-15) 

where v is the frequency of the wave. It can be seen from the above equations that the 

wave propagation velocity is related to the frequency and the wavelength via:  

v
n
c λυ ==                 (2-16)

   

The wavelength λ0 in free space (n=1) can also be introduced via c=λ0 v, so that one 

can write n/0λλ =  and:  
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0

2
λ
πnk =                 (2-17) 

Note that the operation of ∇ on the spatial dependency )exp( rki vr  is equivalent to 

replacing ∇ with ki
r

. Using this, the Maxwell equations in the frequency domain for a 

linear, isotropic and homogeneous medium can be rewritten as: 

)()( rBrEk rrrrr
⋅−=× ω   )()( rDrHk rrrrr

⋅=× ω   

0)( =⋅ rBk rrr
   0)( =⋅ rDk rrr

 

These equations (viewed in combination with the constitutive relations for a linear 

and isotropic medium which suggest that DE
rr

//  and HB
rr

// ) underline the transverse 

vectorial nature of plane EM waves, usually referred to as polarisation. In other 

words, they imply that E
r

 and H
r

 are orthogonal and lie in a plane orthogonal to the 

propagation direction.                

Finally, it should be noted that the product of the electric field vector by the magnetic 

field vector is a quantity with dimensions of Watt/meter2, i.e. it has units of power 

flux density. Based on that (and without any further mathematical proof here), the 

Poynting vector: 

HES
rrr

×=                       (2-18) 

can be introduced to represent the flow of electromagnetic energy with regard to both 

its magnitude and direction of propagation. 

This section presented a brief overview of the Maxwell equations and useful results in 

the linear-optics limit. In particular, the formulation of Maxwell equations in a wave-

motion equation was outlined and the plane wave solutions presented. In this analysis, 

considerations were limited to isotropic and homogeneous media. In a later section 

(2.2.2), the consequences of expanding the scalar dielectric constant (and hence the 

linear susceptibility) into a tensor to account for the optical anisotropy, which is 

present in a number of media, will be discussed. In what follows, a short introduction 

to the optical polarisation of matter under the influence of an external field is given to 

serve as a transition to the nonlinear response regime. 
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2.2 On the optical polarisation of matter 

It has been shown that linear optics is based on the assumption that the EM field 

vectors are linearly related according to the constitutive relations (2-3). In turn, this 

imposes the condition that the optical polarisation of matter under the influence of the 

field is also linearly related to the electric field intensity, as Eq. (2-4) indicates. 

Evidently, the optical polarisation itself becomes a vital quantity for an accurate 

description of EM phenomena. Generally, the optical polarisation represents the 

macroscopically averaged electric dipole and is given by: 

δ
rr

⋅⋅−= eNP                 (2-19) 

where N is the number of atoms over which the averaging is taking place, e is the 

electron charge and  is the electron displacement from the equilibrium position.  δ
r

For the calculation of the optical polarisation, the classical atomic model of Lorentz 

can be used in the linear limit. According to the model, an external field causes a 

harmonic oscillator type of electronic motion around the nuclei. However, in presence 

of sufficiently strong fields, the deviation of electrons from the equilibrium position 

can become large enough to break the harmonicity of the electron oscillators. 

Extension of the standard model to that of an anharmonic oscillator by Bloembergen 

[1] set the foundations of the field of nonlinear optics   

2.2.1 The anharmonic oscillator treatment of the optical polarisation       

A number of authors [1-5] have discussed the anharmonic oscillator model of the 

optical polarisation in a quantum mechanics context. Such a study is beyond the scope 

of this thesis. Instead, an overview of the problem in a classical formalism will be 

allowed [6]. To simplify the problem further, the electron coordinate  will be 

constrained in one dimension [7]. The scalar electron coordinate δ is required to 

satisfy the equation of motion of a one-dimensional anharmonic oscillator driven by a 

field, which in the most general case has a number of individual frequency 

components: 

δ
r

])()([
2
1),( * ti

n
n

ti
n

nn erEerEtrE ωω ⋅+⋅= ∑ −                                                (2-20) 

 

 12



CHAPTER 2 NONLINEAR OPTICS CONCEPTS 
 

Note that in this one-dimensional analysis the field is also taken as scalar, while the 

assumption of n discrete frequency components allows reduction of the integral field 

expression (2-10) to the preceding summation form. Assuming a damping force 

, and correcting the linear (harmonic) restoring force by a series of infinite 

higher order factors: 

δγ &m2−

∑
∞

=

⋅−−=
2

2
0

l

l
lres ammF δδω                                                                        (2-21) 

where oω  is the atomic resonance frequency and m the electronic mass, the equation 

of motion of the anharmonic oscillator can be written as: 

),(2
2

2
0 trE

m
ea

l

l
l ⋅−=⋅+++ ∑

∞

=

δδωδγδ &&&                                                  (2-22) 

There is no known analytical solution to Eq. (2-22). However, under the assumption 

that the anharmonic coefficients αl are small compared to the linear ω0, it is useful to 

try a solution of the form: 

                                                                         (2-23) ∑∑
∞

=

∞

=

⋅==
11

)( ),(
s

s
s

s

s trEξδδ

where the following definition is used: 

),()( trE s
s

s ⋅= ξδ                                                                                       (2-24) 

Inserting (2-23) into (2-22) gives: 

∑ ∑∑∑∑
∞

=

∞

=

∞

=

∞

=

∞

=

−=+++
2

)1(

11

)(

1

)(2
0

1

)(

1

)( ][2
l

l

s

s
l

s

s

s

s

s

s

m
ea δ
ξ

δδωδγδ &&&                   (2-25) 

Terms of same order in can now be collected and required to satisfy (2-25) 

separately. From the definition of the field (2-20) it is clear that all and  

are of s-order in . Therefore, each individual term of the three first summations 

in the left side of (2-25) contributes to an s-order term. The fourth double-summation, 

contributes terms in orders varying for each value of l, from l to 

),( trE

)()( , ss δδ & )(sδ&&

),( trE

∞ , where . The 

right side term is of first order. Hence, equation (2-25) is equivalent to a system of 

infinite differential equations of increasing order, the first three of which are clearly:   

2≥l

)1(

1

)1(2
0

)1()1( 2 δ
ξ

δωδγδ
m

e
−=++ &&&                                                           (2-26 a) 

0)(2 2)1(
2

)2(2
0

)2()2( =+++ δδωδγδ a&&&                                                     (2-26 b) 
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0)(22 3)1(
3

)2()1(
2

)3(2
0

)3()3( =++++ δδδδωδγδ aa&&&                                 (2-26 c) 

Equation (2-26 a) can be recognized as the motion equation of a harmonic oscillator, 

the solution of which is rather trivial and coincides with the result of the conventional 

Lorenz model:    

∑ +
⋅

−=
−

n n

ti
n cc

D
erE

m
e n

.].
)(

)(
[

2
1)1(

ω
δ

ω

                                                         (2-27) 

where the following definition is used: 
22

0 2)( nnn iD ωωγωω −−=                                                                          (2-28) 

Combining equations (2-24), (2-27) and (2-28), equation (2-26 b) gives: 

∑∑ +
+⋅⋅

⋅⋅
=

+−

n m mnmn

ti
mn cc

DDD
erErE

m
ae mn

.].
)()()(

)()(
[

2
1 )(

2
2

2
)2(

ωωωω
δ

ωω

                        (2-29) 

Now the third order term can be calculated from (2-26 c) and so forth for higher 

orders. From the definition of the polarisation density it is obvious that the Eq. (2-23) 

suggests that the polarisation is given by a series of the form: 

∑∑ ⋅⋅−==
s

s

s

s eNPP )()( δ                                                                       (2-30) 

where the first order or linear polarisation is: 

∑ +
⋅

=
−

n n

ti
n cc
D

erE
m
eNP

n

.].
)(

)(
[

2
12

)1(

ω

ω

                                                       (2-31)   

and the second order nonlinear polarisation is:  

∑∑ +
+⋅⋅

⋅⋅
−=

+−

n m mnmn

ti
mn cc

DDD
erErE

m
ae

NP
mn

.].
)()()(

)()(
[

2
1 )(

2
2

3
)2(

ωωωω

ωω

                 (2-32) 

It is interesting to point out that the linear polarisation comprises same frequency 

components as the incident field. On the other hand, the second order polarisation 

involves all possible frequency components of the form: 

mnq ωωω +=                                                                                             (2-33) 

Separating the polarisation frequency components, equations (2-31) and (2-32) can be 

written in the equivalent form: 

ti
n

n
n

nerE
D

meNP ω

ω
ω −⋅⋅

⋅
= )(

)(
/)(

2
)1(                                                            (2-34) 

ti
mn

qmn
mnq

qerErE
DDD

maeN
P ω

ωωω
ωωω −⋅⋅⋅

⋅⋅
−⋅

= )()(
)()()(

)/(
),,(

2
2

3
)2(               (2-35) 
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The complex conjugate terms of (2-31) and (2-32) appear in (2-34) and (2-35), 

respectively, through the allowed negative values of nω  and mω . Clearly, the second 

order polarisation of matter can be viewed as the interaction of two monochromatic 

electromagnetic waves at frequencies nω  and mω , giving rise to all possible 

frequency components qω  such as defined in (2-32), namely:  

• )2( nq ωω ±=  and )2( mq ωω ±=  (second harmonic component)  

• )( mnq ωωω +±=  (sum frequency component) 

• )( mnq ωωω −±=   (difference frequency component) and  

• 0=qω  (DC component).  

The third and higher order polarisation of matter is responsible for many interesting 

phenomena, such as the Kerr effect [8], two-photon absorption [9], Brillouin and 

Raman scattering [10], four wave mixing [11], etc. However, all effects of interest for 

the present work are related to the second order nonlinear polarisation and therefore 

no further discussion on the higher order terms need be included. 

Finally, it should be noticed that the anharmonic restoring force assumed in (2-21) 

corresponds to a potential energy function of the form:  

∫ ∑ +⋅
+

+=−=
s

s
sres a

s
mdFU 122

0 1
1

2
1)( δδωδδ                                      (2-36) 

It is clear that in the case of materials possessing a centre of symmetry, the electronic 

potential energy should reflect the symmetry in a way such that: )()( δδ −= UU . This 

implies that only even powers of δ should appear in (2-36) and consequently only odd 

values are allowed for the variable s. Hence, for a centrocymmetric material ( ) 

the equation responsible for the excitation of second order polarisation (2-10 b) 

reduces to:  

02 =a

02 )2(2
0

)2()2( =++ δωδγδ &&&  

Since this is the equation of an oscillator damped but not driven, the steady-state 

solution is . Therefore, no second order polarisation is present in 

centrosymmetric media.  

0)2( =δ
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2.2.2 Nonlinear susceptibility  

Previously the linear (or first order) susceptibility was introduced as the quantity that 

relates the electric field to the first order polarisation (see Eq. (2-5)). In a similar 

manner, the nth-order susceptibility  is defined as the quantity that relates the 

electric filed with the nth-order polarisation. For instance, the second order 

susceptibility is given by:  

)(nχ

),(),(),,(),,( )2(
0

)2( trEtrEP mnmnqmnq ωωωχεωωω =           (2-37) 

Eqs. (2-5) and (2-37), complemented with Eqs. (2-34) and (2-35), respectively, 

provide direct analytical expressions for the first and second order susceptibility:   

)(
)/(

)( 0
2

)1(

n
n D

meN
ω

ε
ωχ

⋅⋅
=                                                                          (2-38) 

)()()(
)]/([

),,( 0
2

2
3

)2(

qmn
mnq DDD

maeN
ωωω

ε
ωωωχ

⋅⋅
⋅−⋅

=                                              (2-39) 

It can therefore be seen that: 

)()()(),,( )1()1()1()2(
mnqmnq ωχωχωχωωωχ ∝            (2-40) 

The general expression (2-37) clearly implies that the polarisation components at the 

second harmonic, sum mixing, and difference mixing frequencies are: 

),(),,2(2/1),,2( 2
0

)2()2( trEP nnnnnnn εωωωχωωω =                                            (2-41 a) 

),(),(),,(),,( 0
)2()2( trEtrEP mnmnmnmnmn εωωωωχωωωω +=+                        (2-41 b) 

),(),(),,(),,( *
0

)2()2( trEtrEP mnmnmnmnmn εωωωωχωωωω −−=−−                     (2-41 c) 

where, by definition,  is the field at the frequency ),(* trEm mω− .  

The factor 1/2 appearing in the expression for second harmonic generation, known as 

the degeneracy factor, originates from the fact that during this process two of the 

interacting waves are degenerate. On the contrary, for sum and difference frequency 

mixing this degeneracy is clearly broken, since three distinctive waves are interacting. 

It should be mentioned that since qω , nω  and mω  are uniquely related through (2-

33), which can be viewed as the fundamental expression of energy conservation in the 

three wave mixing process, it is not technically necessary to include all three 

arguments in the expressions for the second order susceptibility and polarisation.  
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Up to this point, this ongoing discussion limited the electronic oscillations, the electric 

field and the polarisation in one dimension. To allow for a proper description of 

optical polarisation, the deduced results need be extended to three dimensions. The 

electric field as defined in (2-20) should now be written as: 

])()([
2
1),( * ti

n
n

ti
n

nn erEerEtrE ωω ⋅+⋅= ∑ − rrrr
                                               (2-42) 

The second order susceptibility in three dimensions is correspondingly given by a 

third rank tensor. Hence, for the i-component of the second order polarisation 

equation (2-37) expands to:  

kmjnmnqijkimnqi trEtrEP ),(),(),,(),,( 0
)2()2( rrεωωωχωωω =                       (2-43) 

where the Einstein summation convention is used and i, j, k take values X,Y,Z 

corresponding conventionally to the crystalline piezoelectric axis.   

It is clear that 27 different nonlinear susceptibility components are required to 

describe the second order polarisation at qω , for all combinations of i, j, k. 

Furthermore, two more frequency components need be determined, namely: 

 and , each one of which introduces 27 more 

nonlinear susceptibility components, increasing the total number to 81. It has been 

shown though by Armrtong et al [3], that  is invariant with permutations in 

frequencies 

),,()2(
nqmP ωωω −

r
),,()2(

mqnP ωωω −
r

)2(χ

qω , nω  and mω , as long as the indices i, j, k are simultaneously permuted 

in the same way. This in essence reduces the number of independent nonlinear 

susceptibilities to 27. A second symmetry condition, introduced by Kleinman [12], 

extends the first one to state that, in the case of lossless media, the indices i, j, k can 

be permuted without permuting the frequencies. 

Commonly, the nonlinear coefficient matrix d is used in place of the nonlinear 

susceptibility, defined as1: 

),,(2/1 )2(
mnqijkijkd ωωωχ=                                                                      (2-44) 

Clearly the matrix consists of 27 elements when expressed fully. However, when 

Kleinman condition applies, can be expressed in a reduced notation , where l ijkd ild

                                                 
1 Depending on the definition of , a factor of ½ may or may not appear in the definition of the 
nonlinear coefficient.   

)2(χ
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takes values from 1 to 6 according to Table 2.1. Using this conventional reduced 

notation, the nonlinear coefficient is a 3x6 matrix, which allows us to re-write 

equations (2-26) for second harmonic generation, sum and difference frequency 

mixing in three dimensions as follows:   
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where for space economy the argument of the electric fields ),( trr  has been neglected 

and  has been reduced to  with similar argument 

simplification for the sum and difference mixing components. 

),,2()2(
nnnP ωωω )2()2(

nP ω

j,k X,X Y,Y Z,Z Y,Z  Z,Y X,Z  Z,X X,Y  Y,X 

l 1 2 3 4 5 6 

 

 
Table 2.1 Contracted index notation. X,Y,Z are piezoelectric axis 
directions. 
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It can be seen that an explicit use of Kleinman symmetry denotes that in the case of 

lossless crystals not all of the 18 elements of the nonlinear coefficient matrix are 

independent (for example, 2621212212 dddd === ). Applying this idea systematically, 

the number of independent elements in the 3x6 coefficient matrix reduces to 10 and d 

takes the form: 

                                                                 (2-45) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

141323332415

121424232216

161514131211

dddddd
dddddd
dddddd

d

Further reduction of the number of independent elements can be realised on the 

grounds of the crystal symmetry. For example, cubic crystals belonging to the m43  

class system (GaAs), present only three non vanishing elements and only one 

independent coefficient, resulting in the nonlinear coefficient matrix: 

  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

14

14

14

00000
00000
00000

d
d

d
d

Establishing the exact expression for the nonlinear coefficient of a material allows the 

calculation of a scalar quantity which, for a specific wave interaction (i.e known 

propagation direction and polarisation axis of the waves), can be used with the scalar 

amplitudes of the interactive waves to describe the three wave mixing process. The 

calculation of this scalar effective nonlinear coefficient for the various crystal classes 

has been discussed in a number of sources [13-15] and allows the second harmonic 

generation, sum and difference frequency mixing to be expressed, respectively, via: 

effd

 |),(|)2( )2(
0

)2( trEdP neffn
rεω =                                                                          (2-46 a) 

|),(||),(|2)( 0
)2( trEtrEdP mneffmn

rrεωω =+                                                   (2-46 b) 

 |),(||),(|2)( *
0

)2( trEtrEdP mneffmn
rrεωω =−                                                   (2-46 c) 

where  is the scalar amplitude along the propagation direction of the wave 

at 

|),(| trEn
r

nω . The effective nonlinear coefficient is almost explicitly used in all applications. 
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2.3 Propagation of electromagnetic waves in nonlinear media 

It has been shown that electromagnetic waves at given frequencies can induce a 

polarisation at other frequencies in appropriate (nonlinear) media. This induced 

polarisation will now be inserted as a source term in Maxwell equations (2-1) to 

unfold how this leads to the generation of new electromagnetic waves at the converted 

frequencies and how power is transferred between the interacting fields.   

2.3.1 Coupled wave equations for nonlinear frequency conversion 

Maxwell equations for a non-conductive, non-magnetic, source free second order 

nonlinear medium (i.e., 0=== ρJM
rr

 and 0)2( ≠P
r

) are: 

0),((),( 0 =
∂
∂

+×∇ trH
t

trE rrrrr
µ                                                                (2-47 a)

 0]),([),( )2(
0 =+

∂
∂

−×∇ PtrE
t

trH
rrrrrr

εε                                           (2-47 b)   

 0),( =⋅∇ trB rrr
                                                                                           (2-47 c) 

 0]),([ )2( =+⋅∇ PtrEo

rrrr
εε                                                                         (2-47 d)    

The trivial four-step process of formulating Maxwell equations in a wave motion 

equation [16] can be followed to obtain: 

0)),((),( 2

)2(2

2

2

00
2 =

∂
∂

+
∂

∂
−∇

t
P

t
trEtrE r

rrr
rr εεµ                                             (2-48) 

In the absence of the nonlinear source term, Eq. (2-48) decays to the standard linear 

wave equation. Without compromising the physical context of the nonlinear wave 

equation, the treatment can be simplified by considering fields propagating in the z-

axis. Eq. (2-48) can then be written in a scalar form: 

  0)),((),(
2

)2(2

2

2

002

2

=
∂

∂
+

∂
∂

−
∂

∂
t
P

t
tzE

z
tzE

rrr

εεµ                       (2-49) 

Assuming that the nonlinear term is “small” compared to the linear one, plane-wave-

like solutions can be adopted, with the proper introduction of a complex field 

amplitude )(zE
r

, which is not a constant as in Eq. (2-13), but a slowly varying function 

of z:  

].)()()([
2
1),( )()()( 332211 ccezEezEezEtzE tzkitzkitzki +⋅+⋅+⋅= −−− ωωω

rrrr
           (2-50) 
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Each individual frequency component of the field is required to satisfy Eq. (2-49).  

Taking as an example the sum frequency component ω3= ω1+ω2 and substituting the 

nonlinear polarisation term by use of Eq. (2-46 b), the wave equation gives:    

−
∂
∂

−
∂
∂ −− ][)()( )(

2

2

300
)(

32

2
3333 tzkitzki e

t
zEezE

z
ωω εεµ                                               

0]}[)()(2 ])()[(
2

2

2100
2121 =

∂
∂

− +−+ tzkki
eff e

t
zEzEd ωωεµ  

Carrying out the calculations for the derivatives and ignoring the term , 

which is an acceptable approximation within the limits of the slowing varying 

envelope assumption, we find:  

2
3

2 /)( dzzEd

0)()(2)()(
)(

2 )(
21

2
3003

2
303

2
3

3
3

321 =++− −+ zkkki
effro ezEzEdzEzEk

dz
zdE

ik ωεµωεεµ  

Similar expressions can be found for the waves at ω2= ω3-ω1 and ω1= ω3-ω2, 

substituting this time the nonlinear term with the difference frequency polarisation 

component given by (2-46 c). With appropriate use of equations (2-8), (2-14) and 

introducing the definition: 

123 kkkk −−=∆                                                                                        (2-51) 

these expressions can be rewritten in the most commonly used form: 

kzi
eff ezEzEd

cn
i

dz
zdE ∆= )()(
)( *

23
1

11 ω
                                                          (2-52 a) 

kzi
eff ezEzEd

cn
i

dz
zdE ∆= )()(
)( *

13
2

22 ω
                                                         (2-52 b) 

kzi
eff ezEzEd

cn
i

dz
zdE ∆−= )()(
)(

21
3

33 ω
                                                        (2-52 c)                               

Equations (2-58) are called “coupled wave equations” and describe the general three 

wave mixing process. They manifest that the interacting fields are coupled through 

the nonlinear coefficient, , which enables energy flow from one frequency 

component to another.  

effd
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Similarly, the driving polarisation component at the second harmonic (2-46 a) can be 

used to obtain the following set of coupled wave equations for second harmonic 

generation: 

kzi
eff ezEzEd

cn
i

dz
zdE ∆= )()(
)( *

2 ωω
ω

ω ω                                                      (2-53 a) 

kzi
eff ezEd

cn
i

dz
zdE ∆−= )(

2
2)( 2

2

2
ω

ω

ω ω                                                           (2-53 b) 

2.3.2 The Manley-Rowe relations 

The coupled wave equations can be rewritten in an equivalent form by substituting the 

electric fields with the intensity of the electromagnetic wave, which is defined 

through: 

)()()(
2
1 *2/1

0

0 zEzEnI iiii µ
ε

=                                                                       (2-54) 

The spatial variation of the intensity corresponding to the frequency component ω1 

(for example) is then: 

)]()()()([)(
2
1

1
*
1

*
111

2/1

0

01 zE
dz
dzEzE

dz
dzEn

dz
dI

+=
µ
ε

 

Inserting (2-52 a), the last equation gives: 

⇔+−= ∆∆− ])()()()()())(([)(
2
1 *

23
*
12

*
31

1

1
1

2/1

0

01 kzikzi
eff ezEzEziEezEzEizEd
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dz
dI ω

µ
ε

 

]})()()({})()()({[)(
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1 *
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*
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*
13

*
2

*
1

1

1
1

2/1

0

01 kzikzi
eff ezEzEzEiezEzEzEid

cn
n

dz
dI ∆∆ −=

ω
µ
ε

 

Similar expressions can be found for the other two frequency components. Using the 

identity:  and after some rearrangement, these 

expressions can be written in the form: 

)Im()Im()(2/1 ** AAiAiA =−=−

})()()(Im{ 3
*
2

*
112

01 kzi
eff ezEzEzEd

cdz
dI ∆−= ω

ε
                                         (2-55 a) 

})()()(Im{ 3
*
2

*
122

02 kzi
eff ezEzEzEd

cdz
dI ∆−= ω

ε
                                        (2-55 b) 

})()()(Im{ 3
*
2

*
132

03 kzi
eff ezEzEzEd

cdz
dI ∆= ω

ε
                                           (2-55 c) 

Equations (2-55) suggest that the following relationship holds: 
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)()()(
3

3

2

2

1

1

ωωω
I

dz
dI

dz
dI

dz
d

−==                                                                  (2-56)  

Relations (2-55), known as Manley-Rowe relations, describe the intensity change for 

the three interacting waves. They clearly imply that the growth of one field 

component will be at the expense of another of the fields coupled through the 

nonlinear coefficient. In an equivalent frame, they manifest the conservation of the 

total intensity field. This can also be viewed mathematically through the following 

equation, which is always satisfied due to Eqs. (2-55): 

0321 =++
dz
dI

dz
dI

dz
dI

                                                                                  (2-57) 

2.3.3 Second order nonlinear frequency conversion processes and gain 

Having established the coupled differential equations (2-52) and (2-53) that govern 

the interaction of three waves in a nonlinear medium, it is evident that four distinctive 

processes are possible, shown schematically in Fig. 2.1. These processes, namely 

second harmonig generation (SHG), sum generation (SG), parametric generation (PG) 

and difference generation (DG), are identical in their nature but differ in the direction 

of power growth. 
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   Fig 2.1 Schematic diagram of possible χ(2) processes 
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Calculating the gain of a specific interaction requires solving the coupled wave 

equations. The general treatment of this problem can be found in [1]. For the scope of 

the present discussion, an example will be given through the special case of the 

undepleted second harmonic generation. 

The coupled wave equations for second harmonic generation (2-53), assuming that the 

driving field at ω does not undergo strong depletion, and hence , 

give: 

constEzE == ωω )(

 ⇒= ∫∫ ∆− dzeEd
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izdE
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2

20
2 2

2)( ω
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2
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2/
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2
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eff e
kli
eeEld
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iElE ∆−
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∆
−

=− ω
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ω  

where l is the interaction length. Assuming the initial condition of zero input second 

harmonic field, the last equation takes the form: 

2/2

2
2 }

2
{sin)( kli

eff eklcEld
cn

ilE ∆−∆
= ω

ω
ω

ω                                                    (2-58) 

where by definition: . Multiplying the last equation 

with its complex conjugate, a similar expression can be obtained in terms of the field 

intensities: 

)2/()(/sin)(sin ixeexxxc ixix −−==

⇒
∆

= }
2

{sin][)()()( 22*2

2

*
22

klcEEld
cn

lElE eff ωω
ω

ωω
ω  

⇒
∆

= − }
2

{sin])(
2
1[)()( 212/1

0

022

2
2

klcnIld
cn

lI eff ωω
ω

ω µ
εω  

}
2

{sin]
2

[)( 22

22

2

3
0

22

2
klcI

nnnc
dl

lI eff ∆
⋅⋅= ω

ωωω
ω

ω
ε

                                           (2-59) 

The intensity gain experienced by the second harmonic field is thus: 

}
2

{sin
)(

)( 2222
2

klcl
I

lI
lG ∆

Γ==
ω

ω
ω                                                            (2-60) 

where the gain coefficient Γ has been introduced, such as: 

ω
ωωε

ω
I

nnc
d eff
2
2

3
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22
2 2

=Γ                                                                                     (2-61) 
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Since the directly measurable quantity is power rather than intensity, the nonlinear 

conversion efficiency nSHG is commonly used instead of the intensity gain. Within the 

limits of the plane-wave approximation, an interaction area A can be assumed and (2-

60) can be written in terms of powers to give: 
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[ 22
2
2
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22
2 klc
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l
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d
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P

n eff
SHG
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⋅⋅⋅== ω

ωωω

ω

ε

ω
                                   (2-62) 

Similar analysis can be followed for all other processes. Avoiding the details of these 

mathematical problems, we will only point out that in the limit of the plane wave 

approximation and assuming no depletion (low conversion efficiency limit), it is 

possible to express the intensity gain in a form identical to (2-60), as summarised in 

Table 2: 
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Table 2 Gain expressions for second order nonlinear processes.  
 

From the preceding, the general conclusion can be derived that the efficiency of a 

second order nonlinear process depends on the physical parameters of the material 

(nonlinearity, dispersion profile, physical length), the interacting wavelengths and 

scales with , as plotted in Fig. 2.2. )2/(sin 2 klc ∆
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Fig 2.2 The dependence of the nonlinear conversion efficiency on   
the phase-mismatch parameter l 2/k∆ . 

Fig. (2.2) demonstrates that, for a finite length material, the efficiency of a nonlinear 

interaction maximises when: 

0123 =−−=∆ kkkk                                                                                  (2-63) 

Equation (2-63) is known as the phase-matching condition. Note that the phase- 

matching condition as expressed above is a result of the scalar wave approximation. 

In the most general case the three wave-vectors should be matched instead: 

0123 =−−=∆ kkkk
rrrr

 

The wave vectors under phase-matching can be either collinear (scalar phase- 

matching) or noncollinear (vector phase-matching) [17]. In the most interesting case 

for the purposes of the present work, that of scalar phase-matching, (2-63) can be 

written in the equivalent form:  

               221133 ωωω nnn +=                                                                                (2-64) 

Clearly, in a dispersion-free material (i.e. n3= n2= n1) the phase-matching condition is 

spontaneously satisfied. In all practical cases though, a higher degree of sophistication 

is required to compensate for dispersion and phase-match the nonlinear interactions. 

In what follows, a further insight into the physical content of the phase-matching 

condition, along with an outline of the two main approaches of achieving phase- 

matching in dispersive media will be given.   
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2.4 Phase-Matching 

2.4.1 The physical content of phase-matching 

In the previous sections, the different nonlinear processes were distinguished and the 

gain experienced by the growing field evaluated. The subsequent step is to reveal the 

physical criteria that favour the growth of one field component to the other. For this 

purpose, a phasor model will be used to illustrate how the relative phase of the fields 

influences the power competition process.  

It is evident that the direction of change in power of the field at ω3 (for example) is 

determined by the sign of the differential equation (2-52 c), which for the needs of the 

present discussion will be written in the form: 

   zezEzEizE kzi δκδ ∆−= )()()( 213  
where κ is a real constant. The field amplitudes E1(z), E2(z) and E3(z) are complex 

quantities and can be represented by a vector in the complex plane with phases ϕ1,  ϕ2 

and ϕ3, respectively. With only the relative phase of the fields ∆ϕ = ϕ3- ϕ1- ϕ2 being 

of interest, we can choose for simplicity the phase of the field at ω3 to be zero. 

Furthermore, having assumed a slowly varying envelope, it is acceptable to consider 

that ϕ1, ϕ2 and ϕ3=0 remain constant with z. Thus: 

)(exp)
2

(exp)( 213 zikzizE Φ=∆−++⋅∝
πϕϕδ                                       (2-65) 

where by definition: 

kzz ∆−++=Φ
2

)( 21
πϕϕ                                                                          (2-66)  

The situation described above is presented schematically in Fig. 2.3.  

E3(z) Re

Im

δE3(z)

Φ(z)

E3(z) Re

Im

δE3(z)

Φ(z)

Fig. 2.3 Phasor representation of the amplitude and increment  
change of the field E3 for an arbitrary relative phase.    
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At the point the process is initiated, that is at z=0, the field E3(z) experiences a 

maximum increase when the incremental change δE3(z=0) lies along the positive-real 

axis. On the other hand, the filed experiences a maximum decrease when δE3(z=0) 

lies along the negative-real axis. The dependence of the magnitude and direction of 

the power change on the relative phase follows immediately: 

• Maximum increase in E3 occurs when: 
2

0)0( 213
πϕϕϕϕ =−−=∆⇒=Φ   

• Maximum decrease in E3 occurs when:  
2

)0( 213
πϕϕϕϕπ −=−−=∆⇒=Φ  

It is generally accepted that at z=0, the relative phase adjust itself to the value that 

ensures power flow from the strong input field the weaker field. As the fields 

propagate through the medium and z increases, in presence of a phase-mis-match ∆k, 

the value of Φ varies periodically with z and so does the direction of power exchange 

between the fields. The spatial period over which the un-phase-matched process 

builds up in one direction is called coherence length . From Fig 2.3, it can be seen 

that E

cl

3 builds up for values of Φ(z) between -π/2 and π/2, or equivalently for 

2/2/ ππ ≤∆≤− kz . It follows that: 

k
lc ∆

=
π                                                                                                        (2-67) 

On the contrary, when the phase-matching condition is satisfied, Φ(z) acquires a 

constant value and the interaction proceeds one-way over unlimited lengths. The last 

conclusion reveals the physical content of the phase-matching condition, in agreement 

with the calculated nonlinear gain presented in Table 2 and plotted in Fig. 2.2.  

For standard nonlinear materials and interactions in the visible and near infrared, the 

coherence length takes typical values of the order of 1-10 µm. In order for meaningful 

power levels to be obtained, the nonlinear process should keep growing over distances 

much longer than the coherence length. The most established techniques for achieving 

phase-matching in dispersive media, known as birefringent-phase-matching (BPM) 

and quasi-phase-matching (QPM), are presented in the following sections.     
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2.4.2 Birefringent-phase-matching (BPM) 

The natural birefringence present in a number of nonlinear crystals was first employed 

to phase-match interactions by Giordmaine [18] and Maker et al [19]. Birefringence 

[20] is a linear optical effect resulting from the expansion of the dielectric constant in 

three dimensions. For anisotropic materials, the dielectric constant is represented by a 

tensor rather than a scalar. Therefore, the refractive index of an anisotropic material, 

uniquely related to the dielectric constant via Eq. (2-8), depends on both the 

propagation direction and polarisation state of the involved waves. It can be shown 

that in all anisotropic materials three distinctive directions exist that can be used to 

express the dielectric constant in a diagonal matrix format. These directions are 

known as the principal dielectric axes x, y, z. It is thus always possible to express the 

refractive indices of an anisotropic crystal at a given wavelength, in terms of the 

refractive indices for waves polarised along the principal dielectric axes, known as the 

principal refractive indices, nx, ny, and nz. The refractive index of the crystal can then 

be visualised via a three-dimensional ellipsoid referred to as the index ellipsoid, as 

shown in Fig. 2.4.    
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Fig 2.4 Index ellipsoid for an anisotropic crystal: 1
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The propagation direction along the wave vector k is at an angle θ from the z-axis, 

while the projection of k in the x-y plane is at an angle φ from the x-axis. The wave 

propagating in the k-direction will be polarised in a plane normal to k. The region of 

this plane confined by the index ellipsoid, shown shaded in Fig. 2.4 and referred to as 

the refractive index surface, is bounded by an ellipse that satisfies [21-23]: 

0cossinsincossin
22

2

22

22

22

22

=
−

+
−
⋅

+
−
⋅

−−−−−−
zyx nnnnnn

θφθφθ                                        (2-68) 

where in the most general case zxyz nnnn ≠≠≠ . The index ellipsoid presents two 

inclined sections for which the bounding ellipse degenerates to a cycle and the 

refractive index surface becomes a circular disk. Waves propagating normal to these 

two sections, along what is called the optic axis, experience refractive indices 

independent of polarisation. In presence of two distinctive optic axes, both of which 

lies in the plane containing the smaller and larger principal refractive indices (x-z 

plane in the case of Fig. 2.4), the anisotropic material is referred to as biaxial.   

Equation (2-68) has generally two real positive solutions, corresponding to the 

refractive indices for the two allowed orthogonal polarisations of the wave. The larger 

of the two solutions, corresponds to the polarisation marked as “s” (slow-ray) in Fig. 

2.4 and the smaller to the polarisation marked as “f” (fast-ray). In the following, these 

solutions will be denoted by  and , respectively. sn fn

The polarisation dependence of the refractive index can be readily used to satisfy the 

scalar phase-matching condition. Following the standard nomenclature, two different 

phase-matching geometries can be applied: The first, known as Type I phase- 

matching, involves parallel polarisations for the two interacting waves of lower 

frequency. In Type II phase-matching, the two low-frequency waves have orthogonal 

polarisations. Clearly, in the case of SHG, Type I phase-matching implies that the 

fundamental consists of a single polarisation orthogonal to the second harmonic, 

while Type II phase-matching implies a mixed polarisation of the fundamental. The 

scalar phase-matching condition (assuming normally dispersive medium: n3> n2> n1 

with ω3> ω2> ω1) can now be rewritten for each type as: 

Type I:   22,11,33, ωωω ssf nnn +=                                                            (2-69 a) 

Type II:  22,11,33, ωωω fsf nnn +=                                                           (2-69 b) 

 30



CHAPTER 2 NONLINEAR OPTICS CONCEPTS 
 

Given the frequency-dependent principal refractive indices from the Sellmeier 

equations of the specific material, equation (2-68) can be solved and substituted into 

either of (2-69) to determine the phase-matching geometry. This problem is generally 

rather complicated and has been treated elsewhere [24,25]. For the sake of clarity, a 

special case of greater simplicity will be discussed here. 

This simplified case assumes a crystal in which two of the principal refractive indices 

are equal, say: ezoyx nnnnn =≠== . In this case, the two optic axes coincide with 

the z-axis and the crystal is therefore called uniaxial (Fig. 2.5).  
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Fig 2.5 Index ellipsoid for a positive uniaxial crystal ( zyx nnn <= ) 

 

Clearly, in a uniaxial crystal a wave polarised parallel to the x-y plane1 experiences a 

refractive index independent of the angle φ, named ordinary refractive index . The 

wave polarised orthogonal to that (e-ray) experiences an extra-ordinary refractive 

index 

on

)(θen  varying from  to  as θ increases from 0 to 90 degrees. This can also 

be viewed through equation (2-68), which for the uniaxial case reduces to: 

on en

2

2

2

2

2

sincos
)(

1

eoe nnn
θθ

θ
+=                                                                            (2-70) 

                                                 
1 Note that due to the symmetry of the object, x and y axis can be freely chosen in the x-y plane. 
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There are two classes of uniaxial crystals: Those with n0<ne, commonly referred to as 

positive uniaxial crystals and those with n0>ne, known as negative uniaxial crystals.   

In the notation of o- and e-rays, the fast and slow rays correspond to: 

• Positive crystals:  and of nn = )(θes nn = .  

• Negative crystals:  and os nn = )(θef nn = .  

For a positive uniaxial crystal, Eqs. (2-69) can now be rewritten as: 
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While for a negative uniaxial crystal: 
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The polar angle θ that phase-matches the mixing process for three fixed wavelengths, 

can be directly calculated from the above equations1. Note that the treatment of a 

biaxial crystal is identical to that of a uniaxial crystal if propagation is confined in a 

principal plane. For example, assuming propagation in the x-y plane (θ=0), Eq (2-68) 

gives: 

2

2

2

2

2

sincos
)(

1

xy nnn
φφ

φ
+=  

which is symmetrical to Eq. (2-70). 
 

It has been shown that the optical anisotropy present in a number of crystals can be 

used to perfectly phase-match nonlinear interactions. Under perfect phase-matching 

(∆k=0), the only limitation to the useful interaction length is set by the Poynting 

vector walk-off. The Poyinting vector (or spatial) walk-off can be described as 

                                                 
1Note that for Type II geometries, with the lower frequency waves orthogonally polarised, ω1 and ω2 
can be exchanged.  Often in bibliography the possible phase-matching geometries are denoted as: 
Positive I: oee, Positive II: oeo (ooe), Negative I: eoo and Negative II: eoe (eeo). In any case, at least 
one of the interacting waves must be extraordinarily polarised. It should be pointed out that this 
notation is somewhat ambiguous, and often the following definition is used: eee to describe an 
interaction with all waves polarised along the z-axis, i.e., all waves experiencing a refractive index ne. 
The later notation will be used in the next chapter to describe quasi-phase-matched process in PPLN.  
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follows: From the introduction to Maxwell equations presented in paragraph 2.1, it is 

evident that the Poynting vector is perpendicular to the electric field vector ( ), 

while the electric displacement vector is perpendicular to the wave propagation 

direction ( ). For isotropic media, the electric field and electric displacement 

vectors are related through a scalar constitutive relation and hence are parallel. One 

can recognise that in this case the wave vector and the Poynting vector are also 

parallel, suggesting that the energy propagates along the wave. However, in 

anisotropic media the relative permitivity is no longer scalar and the electric field 

vector is generally not parallel to the displacement vector. This results in a walk-off 

angle ρ between the directions of wave propagation and energy transmission, which 

for uniaxial crystals (or biaxial crystals with propagation taken along one of the 

principle planes) is given by an equation of the form [26]: 
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In presence of walk off the geometry is usually referred to as critical phase-matching 

and the spatial overlap of the interacting waves will suffer, resulting in a decrease of 

the nonlinear efficiency, until a length is reached at which the process is halted. A 

possible solution to this problem is choosing the suitable geometry for which ρ=0. 

From the preceding equation it can be seen that this occurs for θ=π/2. This geometry, 

usually refereed to as non-critical phase-matching, involves propagation in one of the 

two (indistinguishable) ordinary dielectric axis. Although non-critical phase-matching 

solves the problem of spatial walk-off and allows nonlinear interactions to build over 

extensive material lengths, it restricts the wavelength choice of the interaction and 

(possibly) fails to access the larger nonlinear coefficients.      

The geometry constrains related to birefringent-phase-matching can be avoided with 

use of a different technique, namely quasi-phase-matching, which is outlined in the 

following section. 
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2.4.3 Quasi-phase-matching (QPM) 

An alternative technique for achieving phase-matching (quasi-phase-matching), 

involves the engineered spatial modulation of the effective nonlinear coefficient along 

the propagation axis. Though QPM with aperiodic modulation of the nonlinearities 

has been discussed and demonstrated [27-29], here only the conclusions of the 

periodic quasi-phase-matching treatment carried out in [30-35] are summarised. 

Being a periodic function, the spatially varying nonlinear coefficient can be expanded 

in a Fourier series:   

∑
∞

−∞=

⋅=
m

zik
meff

QPM
eff

meGdzd )(                                                                        (2-72) 

where deff is the bulk coefficient, Λ the period of modulation and km the wave (or 

grating) vector of the m-th harmonic of the series, given by: 

mkm Λ
=

π2                                                                                                   (2-73) 

The couple wave equations, using (2-72) give: 
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Following an analysis similar to that in paragraph 2.3.3, the generated field after a 

distance l is: 
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where the following definition is used: 

mkkkkkk mQ Λ
−−−=−∆=∆

π2
213                                                        (2-76) 

From the behaviour of the sinc-function (Fig. 2.2), it is evident that as l increases, the 

contribution of the m-th harmonic in the summation of (2-75) is small for all non-zero 

values of ∆kQ. Therefore, if a value of m exists such as:  

02
213 =

Λ
−−−=−∆=∆ mkkkkkk mQ

π                                                  (2-77) 

then all the other harmonics can be ignored and (2-75) reduces to: 
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where: 

)( effm
QPM dGd =                                                                                         (2-79) 

Comparing (2-78) with (2-58), suggests that a periodically quasi-phase-matched 

interaction can be analysed in the same way as an interaction taking place in the bulk 

material, provided ∆k and deff
 are replaced by ∆kQ and dQPM respectively.  

The most meaningful shape of modulation is that in which the effective nonlinear 

coefficient switches from +deff to - deff over a period Λ, with positive sections of 

length l+ and a duty cycle D given by: 

Λ
= +lD                                                                                                         (2-80) 

                 
The Fourier coefficient of the m-th harmonic is then equal to: 

)sin(2 Dm
m

Gm ⋅⋅
⋅

= π
π

                                                                           (2-81) 

Clearly, the efficiency of the QPM process is maximised for a 50% duty cycle and 

odd values of m, in which case (2-79) simplifies to: 

  eff
QPM d

m
d

⋅
=

π
2                                                                                        (2-82) 

Equation (2-82) implies that in a QPM interaction the nonlinear coefficient is reduced 

by a factor (2/πm) compared to that of the bulk material. The highest QPM nonlinear 

coefficient is accessed for m=1 (first order QPM). A final point of interest arises from 

combining the quasi-phase-matching condition (2-77) with (2-67), to obtain:  

mlk cQ )2(0 =Λ⇔=∆                                                                               (2-83) 

Equation (2-83) states that the quasi-phase-matching condition can be met only if the 

period of modulation is equal to an integer multiple of 2lc. Taking into account the 

optimum condition of a 50% duty cycle, suggests that the sign of the nonlinear 

coefficient is to be switched every m coherence lengths (m=1,3,5…). The above 

analysis can be physically understood through Fig. 2.6. The intensity of the second 

harmonic1 field is plotted against the interaction length.  

                                                 
1 SHG is chosen as an example, although the results for other nonlinear processes are fundamentally 
similar. 
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Fig 2.6 SHG intensity growth against the propagation distance under     
(a) perfect phase-matching (b) phase-mismatch ∆k1 (c) first order 
QPM (d) third order QPM 

Curve (a) shows the quadratic growth of the field under perfect (birefringent) phase- 

matching in the bulk material resulting from an effective nonlinear coefficient deff. 

Curve (b) represents the un-phase-matched interaction in the bulk. Clearly, the field 

grows from zero reaching a peak after one coherence length. At this point, the phase- 

difference between the interacting waves is equal to π and the sign of the coupled 

wave equations reverses: the interaction proceeds in expense of the second harmonic 

field, until it reaches again zero at the end of the second coherence length. The 

interaction goes on periodically thereafter.     

 Curve (c) shows the intensity growth for the first order, 50% duty cycle2 QPM 

interaction. Since not actually phase-matched, the field behaves as in curve (b) until it 

reaches the first coherence length. A this point, the phase-mismatch of the interacting 

waves reverses the sign of the coupled wave equations as in (b). However, the sign of 

the nonlinear coefficient is also reversed, compensating for the phase-mismatch: the 

interaction keeps growing on the same direction. The building up of the intensity 

oscillates around a quadratic curve, shown dashed in Fig 2.6, which corresponds to 

                                                 
2 Clearly, a duty cycle of less (more) than 50% results in a lower efficiency, since the growth of 
intensity beyond the un-phase matched level starts before (after) the maximum is reached  

 36



CHAPTER 2 NONLINEAR OPTICS CONCEPTS 
 

the intensity growth under perfect phase-matching and due to an effective nonlinear 

coefficient reduced by (2/π) in agreement with (2-82).  

Similarly, curve (d) describes the intensity growth for third order QPM. This case is 

conceptually identical to the first order QPM, taking into account that the intensity 

starts growing beyond the un-phase-matched level at the third coherence length, 

oscillating around a quadratic curve (dashed line) that corresponds to a perfectly 

phase-matched interaction due to an effective nonlinear coefficient reduced by (2/3π).  

The magnitude of the quasi-phase-matched interaction, being proportional to the 

square of the effective coefficient, is (2/mπ)2 smaller than the magnitude of the 

birefringent-phase-matched interaction. While this is an obvious physical advantage 

of BPM over QPM, it should be seen in parallel with a number of factors that may 

establish QPM as the most attractive approach for a number of applications.  

Firstly, BPM requires at least one of the interacting waves being polarised as a fast 

ray. This limitation does not generally allow access to the maximum nonlinear 

coefficient and results in Poynting vector walk off. In quasi-phase-matching; 

however, the propagation and polarisation directions can be selected to avoid these 

complications and hence interactions over unlimited lengths can be achieved.         

Secondly, BPM is only possible in anisotropic crystals and the frequencies that can be 

phase-matched are determined by the dispersion profile of the material. In contrast, 

QPM offers external control over the phase-matched frequencies, since the period of 

modulation introduced to the phase-matching condition (2-76) can be (in principle) 

freely varied. 

The major drawback for QPM nonlinear frequency conversion arises from difficulties 

in fabricating suitable, uniform, micrometer-scale periodic structures that maintain the 

nonlinearity and transparency of the bulk material throughout. Current technology 

limits the QPM candidates to ferroelectric materials. Ferroelectrics have as their basic 

building block atomic groups (domains) which present a spontaneous built-in 

polarisation as a result of their structure. Periodic reversal of the ferroelectric domains 

corresponds to a periodic sign reversal of the nonlinear coefficients. Although a few 

techniques have been proposed [36-39], the only reliable method to date for achieving 

domain reversal is via electric field poling [40-43].                                                        
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2.4.4. Phase-matching acceptance bandwidths 

It can be understood that variations in any of the parameters that affect the values of 

the wave constants will have an impact on the phase-mismatch ∆k and hence on the 

phase-matching condition. Such parameters are the wavelengths of the interaction, the 

temperature (which influences the refractive index) and the angle of propagation 

(which influences the refractive index in anisotropic media). It is therefore imperative 

to evaluate the tolerances of the nonlinear interactions to changes in any of these 

parameters, by calculating the effect of such changes on the efficiency of the 

interaction. It has been shown that for propagation in a nonlinear medium of length L 

the conversion efficiency scales with: 

)
2

(sin 2 kLc ∆  

From the above, it is easy to show that the efficiency reduces to 50% of its peak value 

when: 

π443.0
2

±=
∆kL                (2-84) 

This result can be used to calculate the range over which a parameter ζ should be 

scanned to reduce the efficiency of the process by a factor of 1/2, usually refereed to 

as the full width at half maximum (FWHM) acceptance bandwidth in ζ. This 

calculation is based on an expansion of the phase-mismatch to a Taylor series about 

the value ζ0 which achieves ∆k(ζ0)=∆k0=0 (perfect phase-matching) according to:  

...
00 +

∂
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+∆=∆ δζ
ζ ζ
kkk               (2-85) 

Clearly, only the first two terms of the expansion has been accounted, which is an 

acceptable approximation provided ∆k has a first order dependence on ζ. The FWHM 

acceptance bandwidth in ζ, which will be denoted ∆ζ, is then found by:  

1) fixing all other parameters to a set value  

2) solving Eq. (2-85) for the value of δζ that satisfies Eq. (2-84) and  

3) using: ∆ζ=2 δζ 

This procedure gives: 
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Analytical expressions for the acceptance bandwidths will now be derived for the 

indicative case of second harmonic generation (SHG). For perfect phase-matching, 

the scalar phase-matching condition for SHG can be expressed as:   
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where λF, λSHG(=1/2 λF), nF and nSHG  are the free space wavelengths and refractive 

indices for the fundamental and second harmonic, respectively, at perfect phase- 

matching. Thus, the derivative with respect to the fundamental wavelength is given 

by: 
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Substituting to Eq. (2-86) yields the fundamental (or pump) wavelength acceptance 

bandwidth: 
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Similarly, the temperature acceptance bandwidth can be calculated: 
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where the derivatives are calculated at the perfect phase-matching temperature T0.  

In the case of quasi-phase-matching, the grating period term should be added to Eq. 

(2-87), resulting in an SHG phase-matching condition: 
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where Λ is the grating period, which clearly is independent of wavelength. Therefore, 

the pump acceptance bandwidth is given by equation (2-88) that was obtained for 

perfect phase-matching. On the contrary, Λ does depend on temperature since the 

material undergoes thermal expansion. Hence, for quasi-phase-matching the 

temperature acceptance bandwidth is given by: 
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Studies of acceptance bandwidths for three wave mixing processes as well as 

expressions for angular acceptance bandwidths, can be found elsewhere [1,2].  
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2.5 Nonlinear interactions with Gaussian beams 

In section 2.3.3 the coupled wave equations for SHG were solved to establish the 

efficiency of the undepleted nonlinear process assuming zero input, plane wave 

propagation in a lossless medium. In most practical cases, however, focused Gaussian 

beams are used in nonlinear interactions, in order to increase the fundamental power 

density  and therefore the generated second harmonic intensity. A general theory 

of focused Gaussian beams interactions has been discussed by a number of authors 

[44-48]. Being relatively simple, it is interesting to examine the special case of SHG 

in a short length nonlinear material as illustrated in Fig 2.7. 
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Fig 2.7 Gaussian beam geometry with beam radius at waste w0 and  
confocal parameter b larger than the length of the nonlinear 
medium. Dashed lines show the increase in curvature of the 
wavefronts with distance from the waist.   

It has been assumed that the length of the crystal is smaller than the confocal 

parameter b of the focused Gaussian beam, defined as the length over which the beam 

size acquires the value 02w , where  is the beam waist. The confocal parameter b 

is related to beam waist via [49]: 

0w

                                                                                                   (2-92) 2
owkb ⋅= ω

In this case, it is a valid approximation to consider the beam as being collimated 

throughout the interaction length. In this near field limit, the field can be expressed as:  
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Multiplying (2-93) by its complex conjugate the corresponding intensity can be 

expressed as: 
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where the following substitution is used: 
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The power of the field can readily be calculated: 
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The same process can be followed for the generated SH field. Assuming that the 

fundamental and generated fields have equal confocal parameters, the beam waist of 

the second harmonic beam is equal to 2/0w , thus: 
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By definition, and are the field intensities along the propagation axis (r=0) 

and are expected to satisfy the plane wave result (2-59):  
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resulting in a nonlinear efficiency: 

}
2

{sin]
2

[ 2
2
0

2
2
2

3
0

22
2 klc

w
P

l
nnc

d
P
P

n effGauss
SHG

∆
⋅⋅⋅==

πε

ω ω

ωωω

ω                                    (2-98) 

It is clear that the efficiency of the process increases as the beam waist decreases, that 

is, as focusing becomes tighter. Therefore, the maximum efficiency is achieved at the 

limit:  (confocal focusing), corresponding to a value: bl →
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Further focusing results in a reduced efficiency, due to strong difraction within the 

crystal. 

A more accurate analysis by Boyd and Kleinman [44] includes the effects of double 

refraction and results in an expression identical to (2-83), introducing though a 

reduction factor hm(ξ,ρ), where bl /=ξ is the focusing parameter and ρ the Poynting 

vector walk off angle given by (2-63). Numerical evaluation of the reduction factor 

can be found in the original work [44]. 

 

2.6 Summary 

In this chapter a brief review of basic nonlinear optics concepts was given. It was 

shown that the nonlinearity in light-matter interactions arises from a distortion in the 

harmonicity of the atomic dipole oscillators in presence of efficiently strong fields. 

The nonlinear susceptibility was introduced to develop expressions for the resulting 

higher order optical polarisation in matter. The second order polarisation was then 

inserted into Maxwell equations to obtain a wave equation. Solving the wave equation 

allowed the description of the interaction of three waves via a set of three differential 

equations known as the coupled wave equations. It was shown that the coupled wave 

equations predicted that the strength of a nonlinear interaction maximises when the 

phase-matching condition is satisfied. 

The complications in achieving phase-matching in dispersive media were discussed 

and the standard phase-matching methods presented. It was shown that the optical 

anisotropy of a medium can be used to perfectly phase-match nonlinear interactions, 

while the alternative technique of quasi-phase-matching through spatially modulating 

the nonlinear coefficients was described. A final discussion on the use of Gaussian 

beams instead of plane waves in nonlinear interactions was allowed. 

In the following chapter, the theory presented here will be used to provide an insight 

into a nonlinear device that was constructed and served as the pump source for the 

experiments in this thesis: The femtosecond optical parametric oscillator.    
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3. FEMTOSECOND OPTICAL PARAMETRIC 

OSCILLATOR 

3.1 Introduction  

The generation of tunable optical pulses in the infra-red (IR), with picosecond and 

femtosecond durations, has been one of the main objectives of laser research in view 

of a variety of applications, ranging from time-resolved spectroscopy of molecules to 

carrier dynamics in semiconductors. It is also vital for the investigation of phase-

matched nonlinear processes where high peak power levels and tunable pump beams 

are desirable. One successful approach for ultrashort pulse generation relies on mode-

locking of conventional laser media with broad gain bandwidths, such as dye or 

vibronic solid state lasers (most notably the Ti: sapphire). However, these sources are 

limited in wavelength below ~ 1 µm. The potential of nonlinear frequency conversion 

as an alternative means for tunable light generation in previously unavailable 

wavelengths was established in 1965 with the realisation of the first optical parametric 

oscillator (OPO) by Giordmaine and Miller  [1].   

An OPO down-converts a higher frequency pump beam (ωp) provided by a laser 

source into lower frequency signal (ωs) and idler (ωi) beams through parametric 

generation in a second order nonlinear material. The signal and idler wavelengths are 

determined by the phase-matching condition in the crystal. Parametric oscillation has 

been demonstrated in both birefringent and quasi-phase-matched media. Modifying 

the phase-matching condition by controlling the angle, the temperature, the pump 

wavelength or the quasi-phase-matching period makes the OPO a versatile source of 

coherent radiation, with tuning limited in principle only by the transparency range of 

the material. Comprehensive reviews on optical parametric devices can be found in a 

number of sources [2-10]. 

This Chapter is dedicated to presenting results from a synchronously pumped optical 

parametric oscillator (SPO) that was constructed and used as the pump source for all 

the experiments related to this work, along with an introduction to this class of 

devices.    
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3.2 Synchronously pumped optical parametric oscillators 

3.2.1 Optical parametric devices: An overview 

Optical parametric devices have been operated in a number of configurations. In the 

most general case, the incident pump laser beam is focused into the crystal providing 

parametric gain at the signal and idler frequencies. In the absence of a complementary 

source of signal or/and idler beams at the input, the initial supply of down-converted 

photons for the initialisation of the interaction is provided spontaneously through a 

process referred to as parametric fluorescence. For sufficiently high gain, macroscopic 

amplification of the parametric waves can be achieved with a single pass through the 

crystal. Devices based on this principle are parametric generators (OPG) and 

parametric amplifiers (OPA) [11]. Optical parametric oscillators form a different type 

of parametric device, which can be schematically represented by a nonlinear crystal in 

a cavity. In this case, when the parametric gain exceeds the cavity loss, the OPO 

exceeds threshold and oscillates in a manner similar to a laser oscillator, with the clear 

difference that the instantaneous χ(2) process results in lack of gain storage. An 

immediate distinction can be made between doubly resonant OPO’s (DRO) operating 

with resonant feedback at both the signal and idler frequencies [12,13], and singly 

resonant OPO’s (SRO) with only one resonant parametric field [14,15]. Doubly 

resonant devices operate with lower pump threshold intensities than SROs, since both 

generated waves experience minimal loss. However, they suffer from instabilities 

caused by cavity length or pump frequency variations due to the fact that both signal 

and idler waves need to be properly resonated. Other architectures include SRO or 

DRO devices with resonant pump enhancement [16] by use of a separate pump source 

as well as OPO’s with the nonlinear crystal placed inside the cavity [17] of the pump 

laser where large intracavity intensities are available.         

Parametric oscillators are classified as cw [12-17] or pulsed [1, 18-20] devices, 

depending on the means of pumping. Pulsed devices (typically driven by Q-switched 

lasers) offer the advantage of large input intensities compared to cw OPOs. However, 

in the former case operation above threshold requires that pump pulse duration is 

larger than the time required for the parametric gain to built up above the intracavity 

loss, known as rise time [21]. This limits the applicability of pulsed OPOs to 

nanosecond time scales. Picosecond [22-25] and femtosecond [26-30] pulses can be 
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attained by means of a different geometry, involving synchronous pumping. A 

synchronously pumped OPO (SPO) is designed so that the device cavity length is 

matched to the cavity length of the pump source. In this way, the intracavity 

parametric pulses return to the nonlinear crystal entrance at the same time as the 

subsequent pump pulse, ensuring that the amplification process is repeated over every 

round trip of the resonant pulses. The pump pulses in a SPO may arrive in the form of 

either a continuous sequence or a train of pulses contained within a nano/microsecond 

envelope. In the first case, the device operates in a quasi-cw fashion (cw SPO) and a 

steady state analysis can be applied to describe its performance, considering that the 

peak pump power determines the nonlinear gain. In the later case (pulsed SPO), a 

more complicated transient analysis is required accounting for the rise time effects 

present in pulsed OPOs.  

3.2.2 Steady-state analysis of the continuous wave, singly resonant OPO 

A simple model [2] providing a guide to the operational characteristics of the cw-

SRO, which is of paramount interest for the purposes of this work, can be outlined 

based on the following assumptions: a) all interacting waves can be approximated by 

plane waves, b) the pump and the non resonated parametric filed (idler, say) are single 

passed through the nonlinear crystal so that the parametric waves are amplified in the 

forward direction only, c) the pump is not depleted. In this case and under steady state 

operation the resonant signal field may be taken as constant throughout the length of 

the nonlinear medium. On the contrary, the idler field grows from zero at the entrance 

to a finite value at the exit of the crystal, before abandoning the cavity after a single 

pass.  

The threshold condition for the SRO occurs when the parametric gain equals the 

round trip power loss at the resonated signal, which is denoted by as and accounts for 

the leakage of the coupler mirror, as well as any other parasitic losses in the cavity. In 

turn, the parametric gain coefficient has been presented in Table 2.1: 
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where the usual notation is used. It should be noted that Eq. (3-1) implies that the 

parametric gain obtains a maximum at the degenerate case when λs= λs= 2λp and 

decreases for operation away from degeneracy. However, in practical SRO devices 
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operation very close to degeneracy is disturbed since the two parametric fields are 

indistinguishable. Assuming a crystal length L, the threshold condition can therefore 

be expressed as: 

saL =Γ 22  

resulting by use of (3-2) in a threshold pump intensity: 
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The exchange of energy between the interacting waves is explicitly described by a 

system of equations which includes: a) the photon conservation relation1 (3-3), which 

is a modified form of the Manley-Rowe relations to account for the intracavity loss 

for the signal (as) and idler (ai), and b) the coupled wave equations (3-4) for three 

wave mixing, modified appropriately to account for the assumptions of constant 

signal field and (for simplicity) perfectly phase-matched process: 
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Differentiating the last of Eq. (3-4) with respect to the propagation length z and 

substituting the first of (3-4) to eliminate the idler wave amplitude, the equation of 

motion of a harmonic oscillator arises as: 
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The general solution is thus given by: 
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where A, B are constants and  
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Applying the boundary conditions that at z=0, both Ei and hence dEp/dz are zero, the 

constants A and B are readily determined (A=0 and B=Ep(0)), so that: 

                                                 
1 Relation (3-3) suggests that every lost pump photon inside the medium generates one signal and one 
idler photon at the output 

 49



CHAPTER 3         FEMTOSECOND OPTICAL PARAMETRIC OSCILLATOR 
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With appropriate use of the intensity definition2, as well as of equations (3-3) and (3-

2), the harmonic oscillator frequency Ω can be simplified: 
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Combining (3-8) and (3-9), the transmitted pump intensity at the exit facet of the 

nonlinear medium can be given as a function of the input pump intensity: 
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For input pump intensities below the threshold intensity Eq. (3-10) has no real 

solution. At the limit when the input pump intensity equals the threshold intensity, Eq. 

(3-10) suggests that all the pump power available in the entrance transmits through 

the crystal and hence no conversion takes place. As the input pump increases beyond 

threshold, the transmitted pump starts converting into signal and idler waves until it is 

100% converted (Ip(L)=0) for an input pump intensity 2.47 times the threshold pump 

intensity. With further increase of the input intensity the efficiency of the process is 

actually reduced, since the pump wave begins to grow at the expense of the signal. 

This behaviour is depicted in Fig. 3.1.  

It is pointed out again that the above discussion is valid for both cw SROs and quasi-

cw synchronously pumped SROs, with use in the second case of peak pump 

intensities. A more sophisticated analysis of the SRO dynamics can be found in a 

number of sources [3,31]. The main results, however, including the condition for 

100% conversion, remain the same for operation a few times above threshold. It is 

shown that threshold can be reduced by a factor of 2 if the pump wave is double-

passed through the nonlinear medium, or by a factor of 4 if the pump and the non-

resonant parametric waves are double passed.  
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3.2.3 SPO spectral considerations 

In general, the spectral properties of an OPO are determined by the phase-matching 

condition and the energy conservation requirement, the cumulative effect of which, 

for scalar BPM and QPM, respectively, is given by:  
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One of the most important consequences is that the OPO is a widely tunable optical 

source, since evidently from the above equations the output signal wavelength can be 

adjusted by means of pump wavelength, refractive index and grating period control 

(in the case of QPM). Refractive index control can be achieved with exploitation of 

the temperature or angle of incidence dependence of the refractive index (the second 

method limited to anisotropic media), as prescribed explicitly by the Sellemeier 

equations for the nonlinear crystal. Among all available techniques, grating period 

tuning is often the most flexible since: a) pump wavelength tuning is limited by the 

laser gain bandwidth, b) temperature tuning requires time for thermal equilibrium to 

be reached, and c) angle tuning complicates cavity alignment. In the following section 
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it will be shown that synchronously pumped OPOs are privileged with an additional 

tuning method due to temporal effects, namely cavity length mismatch tuning. 

The preceding discussion refers to a single spectral line of the pump. With ultrashort 

pulses, however, the pump spectrum is expected to be relatively broad (typically ~10 

nm for transform limited pulses in the femtosecond regime). Efficient parametric 

conversion, therefore, requires that the pump acceptance bandwidth as described in 

Chapter 2 is sufficiently high to provide gain even in the extremes of the pump 

spectrum. It has been shown that the acceptance bandwidth is inversely proportional 

to the length of the interaction, thus the crystal length should be short enough to allow 

participation of the entire input spectrum in the process. For many common nonlinear 

materials this limit corresponds to ~4-5 mm. It will be shown next that temporal 

effects impose more severe restrictions to the desired crystal length. Other spectral 

implications that might be of importance with ultrashort pulses include self-phase 

modulation but may be neglected to a first approximation.     

3.2.4 SPO temporal considerations 

With the use of ultrashort pulses the effects of group velocity dispersion (GVD) and 

walk-off as well as third order dispersion3 need be considered in an analysis of the 

operational dynamics of the SPO. Advanced models have been developed to simulate 

the growth of the parametric pulses using both the plane wave limit [32] and Gaussian 

beam theory [33]. One of the main conclusions of these studies is that, in absence of 

GVD, the parametric pulses from a SPO are always shorter than the pump pulse. 

Furthermore, it is shown that the output pulse duration increases with increasing 

pump depletion.  

In practice, however, the generated pulses experience temporal broadening due to 

GVD and higher order dispersion. To a first approximation, third or higher order 

dispersion can be neglected for pulses with duration longer than ~50 fs. Second order 

dispersion (GVD), although not always welcome, has an interesting side effect: it 

introduces a complementary means of tuning through manual cavity length mismatch. 

In fact, a gradual change in the cavity length from the optimised synchronous 

geometry results in a shift of the output wavelength before it brings operation to a 

 
3 A discussion on ultrashort pulse propagation can be found in Appendix A. 
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halt. This can be understood in terms of GVD alone as follows: Even for slightly 

mismatched cavity (shorter length, say), the SPO keeps running at the same repetition 

rate as the pump source since the parametric gain is instantaneous. Assuming positive 

GVD, sufficient temporal overlap between the pump and resonated pulse is only 

available for shorter (and thus slower) output wavelength components. Hence, shorter 

cavity lengths favour shorter signal wavelengths and vice versa. It can be shown that 

the cavity length tuning rate dλ/dL is related to the net single pass cavity dispersion 

by [33,34]: 
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For common nonlinear crystals (PPLN for example) this suggests that a tuning range 

of the order of hundreds of nanometers is attainable (provided a similarly broad gain 

bandwidth is supported) with sub-mm cavity length adjustment. The rate of cavity 

length tuning can be reduced (or abolished in case of zero GVD) when dispersion 

compensation optics are introduced. Third order dispersion can be usually neglected 

in near and mid-IR wavelengths for pulse durations longer than ~50 fs. 

Finally, group velocity mismatch between the pump, signal and idler becomes a 

dominating temporal effect, especially with femtosecond pulses, restricting the actual 

interaction length. Clearly, the temporal separation due to group velocity mismatch 

between the pump and the resonant field (signal, in our standard example) has a direct 

effect to the efficiency of the interaction. However, mismatch between the pump and 

the non-resonant fields (idler) also has an impact on the interaction since it restricts 

the pump-idler mixing process. In the near and mid-IR, many standard nonlinear 

materials produce a walk-off value of a few hundreds of fs/mm for the pump-signal 

propagation, suggesting that crystals lengths in excess of ~1-2 mm are not suited. 

Compared to the 4-5 mm limitation set by gain bandwidth considerations, it is evident 

that group velocity walk-off sets the ultimate limit to the crystal length. It should be 

noted that the quoted values refer to femtosecond systems. In the case of picosecond 

OPOs temporal effects become less critical.  
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3.2.5 SPO design considerations 

In designing a SPO a number of issues concerning the pump source, the nonlinear 

medium, and the cavity geometry should be addressed properly. With respect to the 

first, the main parameters determining the potential of a laser as a pump source are 

output wavelength and intensity, in order to access the desired λp and maximise the 

parametric gain. For synchronous pumping, the repetition rate of a laser is also 

important. In fact, a repetition rate of at least a few tens of MHz is required to restrict 

the synchronous OPO cavity to practical lenghts (~1 m) for a standard optical table.  

Additionally, a low output divergence is necessary to allow proper focusing of the 

pump beam into the crystal.           

In choosing the gain medium, an obvious requirement is the presence of sufficiently 

large optical nonlinearity. In parallel, the dispersion profile of the medium should 

allow phase-matching in wavelength regions of interest. The linear optical properties 

of the material also determine the magnitude of walk-off and acceptance bandwidths, 

all of which play important role in OPO operation. The transparency range of the 

medium is also crucial, since absorption may result in rapid reduction in parametric 

gain. Moreover, absorption may cause heat or mechanical damage of the crystal, 

destabilizing or even halting the operation. In general, material damage threshold has 

a strong dependence on wavelength and pulse energy and can only be experimentally 

determined for conditions that apply to a specific device.  

The SPO cavity specifications are influenced to a great extent by the need to focus the 

pump beam into the crystal so as to maximise the pump intensity and hence the 

parametric gain. A detailed theoretical analysis of the SRO threshold power [35,36] 

for focused Gaussian beams resulted in the following expression: 
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In the above, units are in the MKSA system, hs is a focusing related reduction factor 

which is a function of the confocal parameter b (Eq. (2-76)) and all other variables 

have been defined earlier. Numerical calculations [36] show that the focusing factor 

maximises – and thus threshold obtains a minimum value – when: 
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With femtosecond pulses, the optimum length of the nonlinear medium is typically 

limited to ~1 mm. Substituting this value for L and assuming an indicative process 

with generated signal at ~1.5 µm, Eq. (3-11) gives an optimum beam waist radius w0 

~ 10 µm.  

The stability range of the OPO resonator can be analysed in a similar way to laser 

resonators using an ABCD matrix analysis [37,38]. This problem is beyond the scope 

of the present discussion. It should be mentioned, however, that stable resonators with 

corresponding spot sizes of the order ~ 10 µm are available with three (V) and four 

mirror (X, Z) standing-wave configurations. Ring (travelling wave) oscillators have 

also been demonstrated but present significant alignment complications [39]. One of 

the most extensively studied is the V-type cavity resonator shown in Fig. 3.2a. 

Typically, an input lens focuses the pump beam into the crystal. For cavity loss 

reduction, antireflection-coated crystals are commonly used at normal incidence. An 

alternative approach involves a Brewster-angled crystal, which however restricts 

angle tuning of the OPO. The fold-angle θ is kept small (<2-3 degrees) to minimise 

aberrations caused by astigmatism. The curvature of the cavity mirrors determines the 

spot size of the resonated parametric wave and thus the mode overlap between the 

interacting fields. Finally, the optimum transmission of the output coupler mirror is 

solely determined by the 100% depletion condition accounting for the maximum 

available pump power from the laser source. In Fig. 3.2b a semimonolithic variation 

of the V-cavity is shown [40,41]. Although in many aspects similar to the V-cavity, 

the semimonolithic design involves lower cavity loss (due to the smaller number of 

mirror surfaces) as well as easier collection of the non-resonated (idler) beam.               
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Fig. 3.2 Standard V-cavity (a) and semimonolithic (b) OPO 
configurations. 
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3.3 OPO construction and performance 

3.3.1 Periodically poled lithium niobate 

Our aim was to construct a device able to provide femtosecond pulses and access the 

IR wavelength range in which GaAs-based waveguides are candidates for nonlinear 

frequency conversion investigations, namely the ~1.5 to ~2 µm. Synchronously 

pumped OPOs based on periodically polled lithium niobate (PPLN) uniquely serve 

this task. In fact, lithium niobate (LiNbO3) is a cornerstone material in the area of 

nonlinear optical devices with special reference to OPOs. This is mainly due to its 

large optical transparency, which extends from4 ~0.33 µm to ~6.0 µm, and its 

exceptionally high nonlinearity. Furthermore, lithium niobate is ferroelectric and 

mature technology exists for fabrication of QPM structures through domain reversal 

by means of periodical poling [42]. Periodically poled lithium niobate (PPLN) has 

been extensively used in a number of applications ranging from SHG in the visible 

[43] to IR light generation by DFG [44] and parametric oscillation [45,46]. On the 

negative side, PPLN is susceptible to photorefractive damage5 [45]. The 

photorefractive effect increases with decreasing wavelength, yet it remains substantial 

with IR parametric processes due to unavoidable non-phasematched SHG of the pump 

as well as pump-signal mixing that result in visible light generation. It is commonly 

accepted that photorefractive damage can be minimised by heating the crystal to 

temperatures above ~120 degrees.      

Lithium niobate is a negative uniaxial crystal belonging to the crystallographic group 

3m and hence it has three independent non-zero nonlinear coefficients [47]: d22~2.1 

pm/V, d31~-4.3 pm/V and d33~-27 pm/V. A QPM interaction with all waves polarised 

along the z-optic axis is very attractive since it avoids spatial walk-off complications 

and also accesses the larger effective coefficient: pm/V. From 

different reports of refractive index studies, the temperature dependent dispersion 

17~/2 33 −= πdd QPM
eff

                                                 
4 A second window exists in the range 6.3-7.5 µm 
5 This effect can be understood as a combination of the electro-optic effect (refractive index modulation 
in presence of an electrostatic field) and photoconductivity (conductivity due to illumination). In fact, 
when a beam with spatially varying intensity distribution propagates through PPLN, charge from high 
light intensity regions enters the conduction band and is transported to regions of low light intensity.  In 
steady state, this charge separation creates a static space charge field, which induces a modulation in 
the index profile. 
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relation for the extraordinary index in Ref. [48] was adopted to evaluate the 

magnitude of group velocity dispersion and walk-off.  
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Fig. 3.3 Group velocity dispersion (dotted curves) and mismatch 
(solid curves) for PPLN in a wavelength range 1.3-2.1 µm. Group 
velocity dispersion varies with temperature as the arrow indicates 
(T=25, 150 and 3000 C). Group velocity mismatch has been 
calculated between a pump pulse at 800, 815 and 830 nm and a 
signal/idler pulse in the 1.3 to 2.1 µm wavelength range.    

 

Shown in Fig. 3.3, it is clear that PPLN presents a GVD of ~ 150 fs2mm-1 at 

wavelengths near ~1.5 µm and crystal temperatures ranging from 25 to 30 0C. This 

suggests that temporal broadening is significant for femtosecond pulses travelling 

through lengths as short as ~1 mm. Fig. 3.3 also depicts the group velocity mismatch 

between a pulse at 800, 815 and 830 nm and a signal/idler pulse in the wavelength 

range 1.3-2.1 µm. It can be seen that walk-off is of the order of ~250 fs/mm in this 

wavelength range. The selection of the spectral range over which calculations were 

carried out is not random. In fact, a straight forward calculation shows that the 1.3-2.1 

µm range corresponds to the output wavelengths of a PPLN OPO with a grating 

period Λ of ~21 µm, when pumped with a Ti:sapphire laser typically tunable between 

~800 and 840 nm. Theoretical and experimental results for this device, along with the 

details of the actual PPLN crystal, will be given in following sections. 
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3.3.2 Device configuration and alignment 

A continuous wave, singly resonant at the signal, semimonolithic, synchronously 

pumped femtosecond OPO [40] based on PPLN was constructed and served as the 

main source for all the experiments presented later in this thesis. The OPO was 

pumped by a home-made, Kerr-lens mode-locked, X-cavity Ti;sapphire laser [49], 

which produced pulses of ~120 fs duration at a repetition rate of ~89.5 MHz. The 

laser had a mode-locked tuning range of ~800 nm to ~840 nm with a spectral FWHM 

of ~ 6 nm and a bandwidth-duration product of ∆ν∆τ~0.321, indicating transform 

limited pulses. Stable operation was achieved for long periods of time and output 

average power levels up to ~1 W were obtained throughout the tuning range, with 

corresponding peak powers exceeding ~90 kW. The Ti:sapphire laser was optically 

pumped by a commercial diode-pumped, cw, frequency doubled Nd:YVO4 laser 

(Spectra-Physics Millennia 2000) which produced ~5W of output power at 532 nm. 

The OPO pump system is well established, it operates routinely in a number of 

laboratories and thus no further details regarding its construction and characterisation 

need be presented here.       

The SPO cavity configuration is portrayed in Fig. 3.4. An optical Faraday isolator was 

introduced between the OPO and the pump laser to prevent feedback from the OPO, 

which could disturb the mode-locking process. A half-wave plate was also included to 

enforce the horizontal polarisation state of the pump required to access the optimum 

e→e+e interaction. The input pump beam was first expanded, through a two-lens 

telescope, and then focused at the back facet of the PPLN crystal via a 100-mm focal 

length input lens. The beam radius at the waist had a measured value of ~17 µm. The 

cavity comprises an input concave focusing mirror M1 with a radius of curvature 

R1=100 mm and a plane output coupler M3. The mirror M1 was coated1 for high 

transmission (T>99%) at pump wavelengths and had high reflectivity (R>99.5%) over 

the signal wavelength range. The output coupler M3 was highly reflecting at the signal 

wavelength range (a collection of output couplers was available, with corresponding 

reflectivities R=99%, R=94% and R=87%). The cavity was completed with a plane 

mirror M2 directly coated at the exit facet of the nonlinear crystal, providing high  

 
1 Coating bandwidths are: (a) Pump range: ~0.77 -0.91 µm (b) Signal range: ~1.3-1.55 and (c) Idler 
range:~1.6-2.4 µm 
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reflection at the signal (R>99%) and pump (R>90%) and high transmission (T>80%) 

at the idler wavelength range. This allowed double-pass of the pump with a resulting 

reduction of the threshold power as well as easy extraction of the idler. The front facet 

of the crystal was also coated for high transmission at the pump (T>98%) and anti-

reflection for the signal (R<0.25%) range. Two more plane high reflectors at the 

signal were inserted to fold the beam for practical purposes. The entire round-trip 

length of the cavity was ~336 cm. A pair of SF 14 prisms with an apex separation of 

~19 cm was used for dispersion compensation. The prism separation length followed 

calculations based on the equations of Appendix A.  

The PPLN crystal was provided by D.H. Jundt of Crystal Technology Inc. It 

comprised eight evenly spaced gratings of periods ranging from Λmin=20.6 µm to 

Λmax=22 µm in steps of 0.2 µm, chosen to access the desired wavelength range near 

~1.5 µm (signal) and ~2 µm (idler). The length of the crystal was 1 mm, after group 

velocity mismatch considerations (plot 3.3) were taken into account. Its aperture was 

0.5 mm (width) by 12 mm (height). The crystal orientation was such that collinear 

e→e+e interaction was employed with a horizontal input polarisation as described 

before. The PPLN was mounted on a three-dimension rotational and translation 

control stage and was maintained at temperatures of 120-200 0C in a specially 

designed servo-controlled oven.  

The OPO alignment involved the following steps. First, the pump propagation axis X 

was marked on the optical table and the isolator, the telescope, the input focusing lens 

and the input mirror M1 were positioned properly with respect to the X axis. The 

nonlinear crystal was then placed in the path near the beam waist and the back 

reflection of the pump from the crystal facet was aligned with the incoming beam to 

ensure normal incidence. The subsequent steps were greatly assisted by the non-

phase- matched frequency doubling of the pump, which generated visible (blue) light. 

This visible light provided an indication as to the optimal relative positions of the 

input lens, the input mirror M1 and the crystal. In fact, by locking one of these 

elements (M1, say) to a permanent position, the input lens was linearly translated on 

X-axis until the blue light power was maximised. Then, the reflection of the visible 

light from the crystal was collimated by linearly translating on X-axis the crystal. 

These two steps were repeated until both maximum power and beam collimation were 
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achieved simultaneously. Following that, the folding mirrors were inserted and an 

intracavity path was impressed. The output coupler M3 was placed at a distance 

matching the cavity length of the pump laser. That the output coupler was 

perpendicular to the beam path was ensured by overlapping the back reflected blue 

light with the intracavity beam. The OPO operation should readily kick in with fine 

translation of M3 perpendicular to the intracavity path. Having achieved operation for 

the un-compensated system, a small amount of glass from the first prism was inserted, 

allowing the OPO to continue its operation but redirecting part of the intracavity beam 

to another path. This redirected beam was used to set the prism in a Brewster angle 

and consequently the second prism was added in the same way and at the calculated 

distance from the first prism. These two prisms defined the intracavity path of the 

compensated cavity, which was terminated by a second output coupler placed at the 

correct distance. The compensated OPO should require only fine adjustment of the 

(second) output coupler for oscillation to begin.    
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Fig. 3.4 Semimonolithic OPO arrangement. The input focusing lens 
has focal length f=100 mm. The input cavity mirror M1 has a radius 
of curvature R1=100 mm. The folding angle θ is set to less than 3 
degrees, while the prism separation is 19 cm and the total one-way 
cavity length is 168 cm. 
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3.3.3 Device performance 

Maximum output power from the compensated OPO cavity was obtained with an 87% 

output coupler. Average powers exceeding 100 mW for the signal and 50 mW for the 

idler were routinely attainable without the need of major maintenance work for 

periods of many months. The corresponding pump power reaching the crystal front 

facet was ~750 mW, indicating that the total available power from the laser (~1 W) 

was reduced by a factor of ~25% due to loss in the intermediate optics (a ~7 % loss 

contribution was measured form the optical isolator alone). The pump threshold 

power was less than ~200 mW, suggesting that the OPO was operated approximately 

4 times above threshold. Increasing the cavity loss by use of a higher transmission 

output coupler would thus result in stronger conversion efficiency. No further studies 

were carried out in this direction since the power levels available with the 87% 

coupler were sufficient for the applications the system was dedicated to. 

The combination of grating period, cavity length, pump wavelength and temperature 

tuning enabled coverage of the ~1.28-1.58 µm range for the signal branch and, 

correspondingly, ~1.71-2.28 µm for the idler branch. However, practical powers 

(>5mW) were only obtained in the ~1.3 µm to 1.58 µm and ~1.8 µm to 2.1 µm bands. 

It is evident that the dominant limiting factor in the OPO tuning range is the 

bandwidth of the mirror coatings. Fig. 3.5 presents typical OPO spectra throughout 

the tuning range of the device. The peak of each curve indicates the measured average 

power that corresponds to the specific wavelength. The spectral FWHM bandwidth 

was ~10 nm for the signal and ~26 nm for the idler. The strong modulation in the 

signal spectra near ~1.4 µm is due to absorption lines of water vapour in air.  

A two-photon absorption autocorrelator was built to measure the signal and idler 

pulse duration. The apparatus of this instrument is shown in Appendix A. The 

necessity for autocorrelation quadratic response to input power was met by use of a Si 

photodiode [50] for the signal and an InGaAs photodiode for the idler [30]. Typical 

intensity and interferometric autocorrelations for both parametric pulses are shown in 

Fig. 3.6. With a good reproducibility, the signal pulse duration was found to be of the 

order of ~250 fs, while the idler duration was ~185 fs. Accounting for a ~90 MHz 

repetition rate, the resulting peak powers are  ~ 4.5 kW for the signal and ~ 3 kW for 

the idler, with corresponding pulse energies of ~1.1 nJ and ~0.5 nJ. Furthermore, with 
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use of the measured spectral FWHM the bandwidth-duration product is ∆ν∆τ~0.33 

and  ∆ν∆τ~0.36 for the signal and idler, respectively, indicating near transform 

limited pulses.  

A further insight into the tuning behaviour of the OPO is shown in Figs. 3.7 and 3.8. 

As discussed previously, the phase-matching condition involves four parameters, 

namely the parametric wavelength, the pump wavelength, the grating period and the 

temperature. In Figs. 3.7-3.8 two of these parameters are kept constant and the 

normilised gain is plotted in the two-dimensional space defined by the two remaining 

variable parameters. Perfect phase-matching (∆k=0) follows the solid lines. The 

parametric gain reduces to zero (∆k=±2π) across the dashed lines and varies from 0.9 

to 0.1 (in steps of 0.1) in the intermediate paths indicated by the dotted lines. These 

theoretical calculations were carried out with use of the dispersion relations given in 

Ref. [48]. In the case of Fig. 3.7 (grating period tuning diagram), the constant 

parameters are temperature: T=1700C and pump wavelength: (a) λp=800 nm (b) 

λp=815 nm (c) λp=830 nm. In Fig. 3.8 (temperature tuning diagram), the constant 

parameters are grating period: Λ=21 µm and pump wavelength: λp=815 nm. These 

plots are supplied with corresponding experimental data obtained by means of cavity 

length tuning and shown as open circles. 

A plethora of useful information can be obtained from these plots. It can be seen, for 

example, that the device operated in regions where normalised gains as low as ~10% 

were available. Furthermore, Fig. 3.7 indicates that (for a temperature of 170 0C) the 

pump wavelength has to be scanned in the ~817-835 nm range in order to achieve 

oscillation with use of all the available gratings.  Most importantly, one can recognise 

that the amount of tuning through cavity length mismatch far exceeds the tuning 

available by grating period, temperature or indeed pump wavelength control. In fact, 

the parametric wavelength could be continuously shifted as mach as ~ 250 nm for the 

signal and ~ 400 nm for the idler output. Again it is clear that the OPO tuning is 

limited by the bandwidth of the coatings.  

The cavity length tuning rate dλ/dL at ~1.5 µm was found to be  -0.0067 (that is, ~100 

nm increase in wavelength for ~15 µm of cavity length decrease). Substituting this 

value in Eq. (2-11) results in a single-pass cavity GVD greater than -500 fs2. 
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Accounting for a theoretical prediction (Fig. 3.3) of GVD~125 fs2 due to a single pass 

through 1 mm of PPLN, as well as for some additional positive GVD in the air and 

mirror surfaces, this result suggests that the prism pair contributes a large amount of 

negative GVD. This is also supported by the fact that the resonated signal field had 

longer pulse duration than the idler wave. In fact, for the 87% output coupler the 

average signal pulse lifetime in the cavity is ~7.6 roundtrip times, and thus a total 

amount of GVD as large as (~15×500=) -7500 fs2 emerges. Of course, the output 

signal pulse is not as temporally broad as one might expect in the presence of such 

large GVD, since other effects play important role in the pulse evolution, including 

shelf-phase modulation and  temporal overlap between the pump and the parametric 

pulses. However, the prism pair was successful in removing chirp from the output 

pulses, by cancelling out the positive chirp due to self-phase modulation and positive 

GVD in the crystal. This was evident from spectral and autocorrelation measurements 

for the prism-free cavity, which indicated a bandwidth-duration product for the signal 

715.0≅∆∆ τν . Further studies to achieve improved dispersion compensation as well 

as to fully understand the reasons behind the discrepancy between calculations and 

measurements, might be part of future work1.  

It should be noted that the device specifications presented here and summarised in 

Table 3.1 were obtained immediately after the OPO construction was finished. 

Having operated the system for long periods of time, maintenance and re-optimisation 

work was necessary and the characteristics were often slightly changed. In the next 

chapters, the details of the OPO behaviour during each experiment will be explicitly 

summarised.   
 

 Tuning range2 Average power Pulse duration τν∆∆  

Signal 1.3-1.58 µm >100 mW ~250 fs ~0.33 

Idler 1.8-2.1 µm >50 mW ~185 fs ~0.36 
 

Table 3.1 Femtosecond OPO operational characteristics  

                                                 
1 For the purposes of the investigations described in the following chapters, the OPO as such is actually 
more attractive than a truly compensated device. In particular, for zero GVD operation shorter output 
pulse durations (~150 fs) should be expected, with a resulting compromise in the (walk-off limited) 
length of interaction in the waveguides.   
2 Practical tuning range is shown (output power bigger than 5 mW) 

 63



CHAPTER 3         FEMTOSECOND OPTICAL PARAMETRIC OSCILLATOR 
 

 

1300 1400 1500 1600 1700 1800 1900 2000 2100 2200
0

25

50

75

100

125

 

Av
er

ag
e 

po
w

er
 (m

W
)

Wavelength (nm)
 

Fig. 3.5 Signal and idler spectra throughout the tuning range of the 
OPO.  
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Fig. 3.6 Intensity (left) and interferometric (right) autocorrelations 
for the signal (a) and idler (b) at ~1.5 µm and ~2 µm respectively.  
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Fig. 3.7 Grating period tuning diagram for (a) λp=817 nm (b) 
λp=825 nm and (c) λp=835 nm. Solid (dashed) curves indicate areas 
of maximum (minimum) parametric gain. Dotted lines depict the 
variation of gain from 90% to 10%. Open cycles show 
corresponding experimental data. Both theoretical calculations and 
measurements were carried out at T=1700C. 
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Fig. 3.8 Temperature tuning diagram for grating period Λ=21 µm 
and λp=815 nm. Lines and symbols indicate the same as in Fig. 3.7 
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3.4 Conclusions 

The design and performance of a femtosecond optical parametric oscillator based on 

periodically polled lithium niobate and operating in the near to mid infrared was 

described. The device was configured in a semimonolithic, singly resonant at the 

signal cavity and was synchronously pumped at a ~90 MHz repetition rate by a self-

mode-locked Ti: sapphire laser. Maximum average power levels of more than 100 

mW (50 mW) were observed for the signal (idler), with corresponding peak powers of 

~4.5 kW (~3 kW) and pulse energies of ~1.1 nJ (0.5 nJ). The pump power threshold 

was ~ 200 mW with an 87 % output coupler and typical operation was at four times 

above threshold.  Output pulses of ~250 fs and ~185 fs duration were obtained for the 

signal and idler, respectively, with corresponding spectral FWHM bandwidths of ~10 

nm and ~26 nm, indicating near-transform limited pulses. The OPO offered 

continuous coverage of the ~1.28 µm to ~1.58 µm (signal) and 1.71 µm to ~2.28 µm 

(idler) wavelength range. The device operated in a stable fashion for many hours a 

day and did not require maintenance for periods of many months. 

Accessing the vital wavelengths near ~1.5 µm and ~2 µm and providing significant 

peak powers made the OPO an attractive source for demonstration of nonlinear 

frequency conversion in GaAs-based waveguides. In the following chapter results are 

presented from experimental studies of second harmonic generation in birefringently 

phase-matched Ga-As waveguides pumped with this OPO system.  
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4. EFFICIENT SECOND HARMONIC GENERATION IN 

BIREFRINGENTLY-PHASE-MATCHED GaAs/Al2O3 

WAVEGUIDES 

4.1 Introduction 

Since the first report of birefringent-phase-matching (BPM) in isotropic GaAs [1], 

there has been considerable interest in this class of materials for potential applications 

in various functional devices, ranging from second harmonic generation (SHG) 

structures to integrated devices for difference frequency generation (DFG), all-

semiconductor optical parametric oscillators, optical communications and all-optical 

signal processing [2], [3]. The advantages of GaAs-based devices over existing 

materials have been discussed in detail previously and include large second order 

nonlinear coefficients, broad range of mid-infrared transparency, room-temperature 

operation and mature growth and fabrication technology. Birefringent-phase-matching 

offers higher conversion efficiencies compared to quasi-phase-matching (QPM) 

schemes in the same material, due to lower transmission loss. It can also offer 

advantages over modal-phase-matching (MPM) techniques, due to the higher overlap 

between the interacting modes.    

Based on BPM, several second order processes including SHG [4], DFG [5-6], and 

parametric fluorescence [7] have been successfully demonstrated in GaAs/AlGaAs 

waveguides. This chapter presents experimental work that resulted in efficient SHG  

of near-IR femtosecond pulses in birefringently-phase-matched GaAs waveguides. 

This represented the first demonstration of nonlinear frequency conversion in such 

waveguides in the femtosecond regime. The use of femtosecond pulses for frequency 

conversion is attractive because it offers the potential for employment of GaAs-based 

waveguides in wavelength and time division multiplexing applications. 

A short theoretical discussion will be initially presented, aiming to expose the 

technology for engineering birefringence in isotropic media and its application to 

phase-matched nonlinear processes. 
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4.2 Birefringent-phase-matching technologies in isotropic materials 

4.2.1 Form birefringence in a laminar structure 

The birefringent properties of a variety of crystals due to the intrinsic anisotropy at a 

microscopic (molecular) level have been discussed in Chapter 2. Here, it is shown that 

birefringence can be engineered by use of many alternating layers of two different 

homogenous and isotropic materials in a much larger scale (form birefringence). The 

propagation of electromagnetic waves in finely layered media has been studied by 

numerous authors [8-10]. The exact calculation of the multilayer system birefringence 

is carried out directly from Maxwell equations. More recently, an alternative 

explanation was suggested for waveguide structures, using modal wavefunction 

considerations [1]. For the needs of the present work, a somewhat simplified yet 

revealing discussion on the origin and magnitude of form birefringence will be 

presented, based on [11]. 

We start by investigating the continuity of the electromagnetic vector quantities in an 

interface between two different media [12]. By means of Gauss and Stokes theorems, 

the differential Maxwell equations (2-1 a) and (2-1 d) can be written in an equivalent 

integral form: 

∫∫∫
ΑΑ

⋅
∂
∂

−=⋅=⋅×∆ adB
t

ldEadE rrrrrrr
)(                                                        (4-1 a) 

∫∫∫ ⋅=⋅=⋅⋅∆
VV

dVadDdVD ρrrrr
                                                               (4-1 

b) 

In (4-1 a) the first and third integrations are carried out over an area A and the second 

along the boundary line of A. Similarly, in (4-1 b) the first and third integrals are over 

a volume V and the middle one over the surrounding surface of V. The volume V and 

the area A can now be chosen around the interface of the two materials as shown in 

Fig. 4.1. Assuming source-free materials (ρ=0) and allowing the height of the 

cylindrical volume V as well as the short arms of the rectangular area A to become 

infinitely small, Eqs. 4.1 suggest that the following boundary relations are valid at the 

interface: 

0=⋅=⋅ ∫∫ adDldE rrrr
                                                                                   (4-2) 
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The line element ld

r
being parallel and the surface element adr  being perpendicular to 

the interface (as evident from Fig. 4.1), the last relations establish that the tangential 

component of the electric filed vector and the normal component of the electric 

displacement vector are continuous across a discontinuity surface.    
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Fig 4.2 Periodical layered structure 
consisting of two isotropic materials. 
Propagation of light is assumed 
parallel to the layers   

Fig 4.1 Schematic diagram of plane 
interface between different media, with 
a volume V and a surface A selected 
half in one medium and half in the 
other.     

 

The results of the above analysis can be applied to allow for an accurate calculation of 

the effective dielectric constant in the case of the laminar structure depicted in Fig. 

4.2. The period of the structure comprises two sandwiched layers of different media 

with bulk dielectric constants ε1 and ε2.The thickness of each layer is h1 and h2 

respectively. We first consider a plane monochromatic wave propagating parallel to 

the plates along Z-axis, with its electric field vector parallel to the interface between 

the plates along X-axis (TE- polarisation). Further, assuming that h1 and h2 are small 

compared to the wavelength, the field in each region may be considered to be 

uniform. In this case, one can make use of the continuity of the tangential component 

of the electric field vector to write the electric displacements in the two layers as: 

ED
rr

⋅= 11 ε  and ED
rr

⋅= 22 ε  

The mean electric displacement can be found in an elementary way with a direct 

averaging over the total volume: 
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An effective dielectric constant and refractive index can therefore be defined: 
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                                                              (4-3) 

One can proceed to examine the case in which the field propagating along Z-axis has 

its electric vector perpendicular to the interface, along Y-axis (TM – polarisation). 

Here; the continuity of the normal component of the electric displacement can be 

used, allowing with similar arguments for the uniformity of the field to extract the 

field vectors in the two regions as: 

1
1 ε

DE
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r
=  and 

2
2 ε

DE
r

r
=  

The mean electric field averaged over the total volume is now: 
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Hence, an effective dielectric constant and refractive index can be introduced: 
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                                                              (4-4) 

This discussion has restricted the direction of propagation along the Z-axis. By 

allowing the propagation direction to be rotated with respect to Z-axis, one can 

recognise that, due to the symmetry of the structure, (4-3) is valid for all polarisation 

states that lie in the X-Z plane. On the contrary, a wave polarised along the Y-axis will 

experience a refractive index that changes with the direction of propagation, since the 

relative thicknesses of the layers depend on the propagation direction. The laminar 

structure, therefore, resembles a uniaxial crystal with 0nnnn TEZX ===  and 

 and optical axis parallel to Y. Additionally, the difference of the TE 

and TM effective refractive indices is always positive, since from (4-3) and (4-4): 

eTMY nnn ==
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)(

)(
1
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2
21

2
21

21
2

2

>
⋅

−
⋅

+
⋅

+=
εε
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hh
hh
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n

TM

TE                (4-5) 

Equation (4-5) implies that the assembly specifically behaves like a negative uniaxial 

crystal ( ).  enn >0
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4.2.2 Phase-matching by use of form birefringence 

Exploitation of form birefringence in a laminar structure to phase-match second order 

nonlinear processes is a concept proposed as early as 1975 by Van der Ziel [13]. 

Following his proposal, the result of (4-5) can be employed to compensate for normal 

dispersion in a SHG interaction for TE fundamental and TM second harmonic (type I 

geometry). The phase-mismatch is obtained by combining (4-3) and (4-4) and the 

scalar phase-matching condition is given by: 

0)()( 2/12/122 =−=− ωωωω εε TETMTETM nn       

or, in terms of the dielectric constants and relative thicknesses of the two layers: 
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            (4-6) 

Phase-matched SHG interaction in this structure, therefore, requires that (4-6) has real 

and positive solutions. These requirements, viewed from a slightly different 

perspective than that of [13], impose the following conditions1:   
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                                                                     (4-7 b) 

Equation (4-7 b) restricts the utility of form birefringence as a phase-matching method 

to the case of two layers with sufficiently different refractive indices. As an example, 

we consider SHG in GaAs with fundamental at 2 µm (  and ). 

Standard fabrication technology allows growth of ultra-thin alternating layers 

(superlattices) of GaAs/ Al

35.3≅ω
GaAsn 50.32 ≅ω

GaAsn

xGa1-xAs as well as GaAs/GaP systems, making these 

materials attractive candidates. Index data for AlxGa1-xAs [14] suggest that maximum 

index contrast is available in AlAs (x=1), with and . These 

values however, do not satisfy (4-7 b). The same is indeed the case with GaP for 

which the index contrast is even smaller.  

90.2≅ω
AlAsn 95.22 ≅ω

AlAsn

                                                 
1 A second-order equation of the form Ax2+Bx+C has real solutions x1and x2 when B2-4AC ≥ 0, in 
which case x1⋅x2=C/A and x1+x2=-B/A. In this notation and assuming normal dispersion, it is evident 
that for Eq. (4-6) the value of C/A is always positive. Hence, x1,x2 >0 or x1,x2<0. Requiring positive 
solutions implies that the summation x1+x2=-B/A must be positive. Applying again the assumption of 
normal dispersion, (4-6) has a positive coefficient A and therefore the last condition is equivalent to 
B<0.  
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Due to a lack of a suitable material pairs with sufficient index contrast, the 

experimental realisation of Van der Ziel’s proposal had not been achieved until the 

early 1990’s when a wet oxidation technique was developed [15] to selectively 

convert AlAs into an oxide (Al2O3 or “Alox”), with refractive index nAlox≅1.6 in the 

near-IR. Alox is an amorphous, centrocymmetric material (χ(2)=0), highly transparent 

in the near-IR and thus non-dispersive to a permissible approximation. Due to its high 

refractive index contrast with GaAs, Alox has attracted attention in the development 

of semiconductor lasers [16] and Bragg reflectors [17]. The birefringent properties of 

GaAs/Alox multilayers have also been studied recently and enhancement of form 

birefringence after oxidation by a factor greater than 2 was reported [18-19]. In fact, 

this amount of birefringence is enough to phase-match SHG at ~2 µm. This can be 

seen from (4-6) which - under the assumption of a constant value for nAlox - has a 

single non-zero solution for the GaAs/Alox system (hGaAs/hAlox ≅ 30) with a 

corresponding effective refractive index for the TE fundamental and the TM second 

harmonic . It should be noted that the effective nonlinearity of the 

multilayer structure scales with the weighted nonlinearities of each component layer. 

That the solution requires a much thicker layer of GaAs is, therefore, to the benefit of 

the overall nonlinearity.  

3.32 ≅= ωω
TMTE nn

From a descriptive point of view [1], the novel properties of the GaAs/Alox assembly 

can be interpreted as a consequence of the breaking of the cubic symmetry of GaAs 

due to the presence of Alox in a way that the artificial medium has similar linear 

optical behaviour to KDP. Therefore, phase-matching in GaAs/Alox structures 

exploits the microscopic nonlinear properties of GaAs and the macroscopically 

engineered linear asymmetry of the final structure. 

It has been shown that birefringence can be artificially induced in a laminar isotropic 

medium and used to phase-match nonlinear processes. The requirement for sufficient 

index contrast was discussed and it was established that near-IR SHG is possible in a 

GaAs/Alox system. In the following section, details of the oxidised waveguide used in 

our experiment are presented.       
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4.3 Optical experiment 

4.3.1 Sample details 

The nonlinear waveguides used for the SHG experiment were designed and fabricated 

by collaborators2 at Thomson CSF. The basic structure is portrayed at Fig. 4.3. It 

consists of a multilayer GaAs/AlxGa1-xAs/AlAs structure, grown by molecular beam 

epitaxy on a non-intentionally doped GaAs substrate. For optical confinement, a 

cladding layer with refractive index lower than the effective index experienced by the 

interacting waves (n≅3.2) is required. This is possible with high Al composition 

AlxGaxAs (x>0.7). The use of plane AlAs (x=1) was not favoured because of its 

chemical instability. On the other hand, an Alox cladding layer would require a great 

oxidation thickness resulting in mechanical instabilities. In the actual sample, the 

lower cladding is constituted by two 1-µm-thick layers of Al0.92Ga0.08As and 

Al0.7Ga0.3As. A single 2 µm-thick layer of Al0.92Ga0.08As would naturally be more 

efficient but fragile. The waveguide core comprises four 250-nm-thick GaAs layers 

sandwiched between five 50-nm-thick layers of AlAs. The top cladding was a 1-µm- 

thick layer of Al0.7Ga0.3As, while a 30-nm GaAs cap was added to the structure for 

protection. The processing of the waveguides consists basically of three steps. First, 

the optical ridge (4-12 µm wide) is obtained by standard photolithography and 

reactive ion etching, in order to provide a 2D optical confinement. Second, a deeper 

and larger mesa is etched in order to allow lateral oxidation of all 50-nm-thick AlAs 

layers. Finally, the sample is oxidized in a furnace under a controlled flux of nitrogen 

and water vapors. It is estimated that oxidization reduces the Alox layer thickness by 

~ 20%.  

The alloy composition and layer thickness were designed so that the SHG wavelength 

would be phase-matched near 1.0 µm. There is an obvious discrepancy between the 

value of hGaAs/hAlox ≅ 30, calculated in section 4.2.2, and the value implemented in the 

sample (hGaAs/hAlox ≅ 6.25, accounting for the 20% factor). In fact, equations (4-3) and 

(4-4) fail to adequately describe the interaction in this case, because the thickness of 

the layers is not small enough compared to the interacting wavelengths. A more useful 

model was developed by scientists at Thomson CSF. Fig. 4.4 shows the dispersion 

curves predicted by both models for TE and TM polarisation.  

                                                 
2 A. De Rossi, V. Berger, M. Calligaro and V. Ortiz 
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Fig 4.3 Structure of the GaAs/Alox waveguide used in the SHG 
experiment. It consists of GaAs substrate / 1000-nm Al0.92Ga0.08As / 
1000-nm Al0.7Ga0.3As / 4 × (50-nm AlAs / 250-nm GaAs) / 50-nm 
AlAs / 1000-nm Al0.7Ga0.3As / 30-nm GaAs. The magnified section 
shows the oxidation front between AlAs and Alox.  
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Fig 4.4 Effective indices of TE and TM modes in the waveguide 
calculated using (a) the transfer matrix algorithm developed by 
collaborators at Thomson, and (b) using equations (4-3) and (4-4).   
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4.3.2 Experimental set-up 

A schematic of the apparatus used for our experiment is displayed in Fig. 4.5. The 

pump source was the singly resonant, femtosecond PPLN OPO, described previously 

in Chapter 3. Configuring the OPO in a semi-monolithic cavity design permitted 

maximum extraction of the idler power, which was used as the source of fundamental 

(pump) pulses. The idler pulses had a duration of ~200 fs at a repetition rate of ~90 

MHz (∆τ∆ν~0.38, indicating near-transform-limited pulses) and were tunable over a 

range 1.8-2.1 µm, with average power levels of ~50 mW routinely attainable.  
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 Fig. 4.5 Experimental apparatus 

Due to a slight divergence of the beam, a lens was placed after the PPLN crystal to 

allow for idler collimation. The idler beam was then passed through a germanium 

filter, which blocked any residual signals below 1.5 µm, ensuring that only the useful 

fundamental wavelengths were directed into the waveguide. A half-wave plate 

centred at 2 µm was placed in the beam path to control the polarisation state of the 

pump, while the input power was controlled by use of a rotating density filter. A 
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flipper mirror was inserted to redirect the input beam into a thermal power meter and 

an IR monochromator, allowing for measurements of the input beam power and 

spectrum. An end-fire coupling rig was used for mounting the sample. The TE-

polarised pump pulses from the OPO were focused into the waveguide by a 40X 

microscope objective. The transmitted SHG and the pump were collected by use of a 

second 20X microscope objective. An IR camera was used to optimise the coupled 

pump into the waveguide. A polarising beam splitter was placed at the output to 

separate out the TE pump and the TM second-harmonic signal. The transmitted pump 

power was measured with an InAs detector (sensitive in the 0.5-3.0 µm range) and a 

lock-in amplifier combination. The detector-amplifier system was calibrated using a 

collection of neutral density filters. As shown in Fig. 6.4, the response was found to 

be linear for idler power levels ranging from ~0.04 to ~1 mW, with a corresponding 

slope efficiency of ~3.5 Volts/Watt. The required modulation of the fundamental for 

lock-in amplification was introduced via a 50% duty cycle chopper, placed before the 

input objective. The exact measurement of the transmitted pump power was further 

ensured by inserting a long-pass quartz filter (T<1% for λ<1.6 µm) before the InAs 

detector. Transmitted pump spectra were collected again using the IR 

monochromator. The power of the SHG signal was measured with a Si-head power 

meter. SHG spectra were obtained using an IR spectrum analyser. 
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Fig. 4.6 InAs detector calibration measurements 
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4.3.3 Results and discussion 

Two samples, identical in design and fabrication but of different lengths (1.0 and 2.2 

mm), were investigated. For appropriate tuning of the pump wavelength, a signal 

could be readily observed at the waveguide output on an IR card or even a white piece 

of paper (evidently the SHG signal). For both samples and a variety of waveguides, 

the selection rules were put to test and it was established that the polarisation states of 

the pump and the generated signal satisfy the condition (TE0(ω)→TM0(ω)) for type I 

phase-matching. As the pump polarisation was rotated, the intensity of the generated 

signal was reduced until eventually reaching noise-levels for TM0 input. Spectra of 

the observed signal along with the corresponding pump were recorded. Fig. 4.6 

illustrates a typical set of such spectra for both samples. Clearly, the generated signal 

is located at half the pump wavelength.      
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Fig 4.6 Input pump (a), (c) and output SHG (b), (d) spectra for a 1   

mm and a 2.2 mm long waveguide respectively.    
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As can be seen in Fig. 4.6, both sample presented phase-matching at about the same 

wavelength (λ~2010 nm), indicating a strong accuracy in the engineering of the 

structure parameters. The input pump has a FWHM bandwidth of ~26 nm. The 

corresponding FWHM spectral width of SHG is ~1.2 nm for the shorter waveguide 

and ~0.9 nm for the longer one. With such a broad input spectrum, the secondary 

peaks of the sinc2 nonlinear gain function could be resolved. Evidently, the pump 

spectral acceptance is twice that of the SHG linewidth. Therefore, less than 2.5 nm of 

the broad input spectrum from the femtosecond fundamental was utilised in the 

conversion process. Assuming a Gaussian spectral shape, this suggests that less than 

50% of the available input power is actually engaged in the interaction3. That this is 

so is clearly verified by the incomplete spectral depletion (conversion into SHG and 

loss processes) of the transmitted pump, shown in Fig. 4.7. Here it is illustrated that, 

although the off-resonance transmitted spectrum (curve c) is smooth and Gaussian-

like, a strong dip appears in on-resonance spectra. As the pump (curve a) is slightly 

de-tuned within the acceptance bandwidth (curve b), no shift is observed in the 

position of the dip in the transmitted pump spectrum or in the position of the peak in 

the SHG spectrum (curve d). These measurements were clear confirmation that the 

SHG process was indeed phase-matched. It is interesting to point out that the FWHM 

of the off-resonance transmitted spectrum is ~35 nm, that is significantly broader than 

the input pump spectrum. This broadening could be an artefact of the low available 

power levels, which enforced the use of  wider monochromator slits, or indeed a real 

effect related to higher-order nonlinear processes (e.g. self-phase modulation).  

Spectral depletion was also examined as a function of the input power. With 

decreasing pump power, it is expected that the conversion efficiency and hence the 

spectral depletion is reduced. This is clearly illustrated in Fig. 4.8. The undepleted  

 
3 In detailed, we assumed a normalised Gaussian function: )2/( 22

2
1 σλ

πσ
−

⋅
e  where the standard 

deviation σ is related to the FWHM by: FWHM=26 nm= 2(2ln2)1/2σ.  The overall power 
corresponding to a 2.5 nm band centred at the peak of the Gaussian is then given by the integral: 

%10
2

1 )2/(
3.1

3.1

22

≅
⋅

−
+

−
∫ λ

πσ
σλ de . In the preceding we quote “less than 50%” to ensure that the 

efficiency is not over-estimated (see next paragraph).  

 81



CHAPTER 4  EFFICIENT SHG IN BIREFRINGENTLY PHASE-MATCHED 
GaAS/Al2O3 WAVEGUIDES 

 

1960 2000 2040 2080
0.0

0.5

1.0

(d)

(c)(b)
(a)

FWHM ~ 32 nm
corresponding 
SHG spectrum

Transmitted pump spectra
on-resonance

Transmitted pump spectrum 
off-resonance

Tr
an

sm
itt

ed
 P

um
p 

in
te

ns
ity

 (a
rb

. u
ni

ts
)

Transmitted Pump wavelength

980 1000 1020 1040

0

2

4

SH
G

 in
te

ns
ity

 (a
rb

. u
ni

ts
)

SHG wavelength

 
Fig 4.7 Transmitted pump spectra with clear depletion on-resonance  
(a, b) and Gaussian-like transmitted pump spectrum off-resonance 
(c). The corresponding SHG spectrum is shown in red (d). All spectra 
were collected for a 1-mm waveguide.   
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Fig 4.8 Pump depletion as a function of the input power. The black  
dotted curve shows a Gaussian fit to the corresponding input 
spectrum. 
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dashed curve is a qualitative Gaussian fit. The FWHM of the fit (~25 nm) is 

comparable to that of the input pump spectrum. This is an indication that the spectral 

broadening of the transmitted pump depicted in Fig. 4.7 is real, since the depleted on- 

resonance spectra do not seem to suffer from (nonlinear and thus power-dependent) 

broadening mechanisms. Although not suitable for extraction of quantitative 

conclusions, it is evident from Fig. 4.8 that within the conversion bandwidth the 

depletion of the pump is in fact greater than 80%. The validity of spectral pump 

depletion is supported by pump power depletion measurements, in which the 

transmitted pump power was recorded on and off resonance. Clearly, for constant 

input power, any difference in the transmitted power on and off resonance is due to 

pump depletion. Numerous waveguides were tested and typical values of 20 to 40% 

of pump power depletion were calculated. These values were indeed expected, since 

they approximately equal the product of the input power that is taking part in the 

interaction (<50%) and the observed spectral depletion within the conversion 

bandwidth (≥80%).   

For a 1-mm (2-mm) waveguide, the maximum usable average SHG power measured 

after the output objective was ~650 µW (390 µW) for a pump average power of ~50 

mW measured before the input objective. This maximum power represents an overall 

external efficiency of 1.3% (0.78%). A more detailed discussion on the efficiencies 

will be carried out in the next section. Different input microscope objectives were 

used (20X and 10X) to vary the input beam spot size and it was established that 

maximum second-harmonic power was indeed generated with the initial 40X 

objective. It should be noted that the SHG power was measured after removing the 

chopper (which reduced the average pump power by a factor of 2) from the input 

beam path. Fig. 4.9 shows the variation of the (square root of the) generated SHG 

average power with the pump average power for waveguides of different lengths. As 

expected, the SHG power has a quadratic dependence on the input power. For a 1-mm 

waveguide, saturation of gain is observed for pump power levels exceeding ~25 mW. 

Apart from pump depletion, multi-photon absorption could be responsible for the 

saturation of gain. The facts that the 1-mm long waveguides a) experienced saturation 

of gain, b) presented broader SHG spectra, and c) had a measured higher efficiency 

than the 2.2-mm waveguides, are consistent with one another.  
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Fig 4.9 Square root of the second-harmonic power plotted as a  
function of the pump power for a 1-mm (a) and a 2.2-mm (b) 
waveguide. 
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Fig 4.10 Second harmonic average power plotted as a function of the  
input central pump wavelength (tuning curve) for a 1-mm (a) and 2.2-mm (b) 
waveguide. The corresponding FWHM is ~35 nm and ~31 nm, respectively. 
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Figure 4.10 shows the second-harmonic power versus the central pump wavelength 

(tuning curve) for a typical waveguide in each sample. During these measurements, 

the input power was kept constant at ~ 30 mW. One can clearly see a phase-matching 

peak at ~ 2010 nm. The FWHM of this peak was ~ 35 nm and ~ 31 nm for a 1-mm 

and 2.2-mm-long waveguide, respectively. The bandwidth of the tuning curve 

depends on the convolusion of the pump spectra (FWHM ~26 nm) with the phase- 

matching spectral acceptance (FWHM ~ 1.2 nm).  Therefore, one should expect that 

the tuning curves present a FWHM of  ~28 nm. Two complementary scenarios can be 

employed to explain the broadening of the tuning curves. The first one involves the 

possible off-resonance pump spectral broadening. According to this picture, as a 

slightly off-resonance input pulse propagates through the waveguide, it experiences a 

gradual spectral broadening until eventually it enters the phase-matching acceptance 

bandwidth initiating the SHG. According to the second scenario, the tuning curve 

broadening reflects a broadening of the actual SHG acceptance bandwidth due to 

temporal walk-off effects4.  

An attempt to gain an insight to the complicated dynamics of the process was made 

by developing a Mathcad program to evaluate β2-related quantities (see Appendix 1). 

Table 4.1 presents results obtained for bulk GaAs as well as for the structure of Fig. 

4.3. A group velocity dispersion (GVD) smaller than 1000 fs2mm-1 suggests that 

temporal pulse broadening is not significant for propagation length of ~2 mm (the 

corresponding dispersion length is ~20 mm). However, temporal walk-off restricts the 

interaction length to less than ~200 µm, which is 5 times smaller than the physical 

length of the shortest waveguides. This translates to a theoretical value for the pump 

acceptance bandwidth of more than ~10 nm, which is clearly much larger than one 

should expect accounting for the measured FWHM of the SHG spectrum.  

Examination of the dependence of SHG spectral and efficiency characteristics on the 

width of the waveguide was also attempted, but no systematic or significant 

differences were observed.      

 

 
4 As has been shown in Chapter 2, the SHG acceptance bandwidth is inversely proportional to the 
interaction length, which with fs pulses is limited by group velocity mismatch (temporal walk-off). 
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Table 4.1 Calculated values of GVD, temporal walk-off, interaction length and pump 
acceptance bandwidth for bulk GaAs and the actual, oxidised sample. All quantities 
are given as functions of refractive indices and interacting wavelengths. For the 
refractive index n of GaAs, Afromowitz [14] model was adopted. Indices nTE and nTM 
were calculated from equations (4.3) and (4-4) respectively. Pulse duration ∆τ=200 fs 
was assumed for the evaluation of the interaction lengths. Calculations were made for 
pump wavelength λp=2µm and for bulk interaction at λp=1.5µm (the latest values 
shown in parenthesis).        
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4.3.4 Efficiency considerations 

In the previous section it was stated that for the most efficient 1-mm waveguide, the 

maximum collectable SHG average power after the output objective was ~650 µW for 

an input average power of ~50 mW measured before the input objective, resulting in 

an overall practical efficiency of 1.3%. This figure is of interest when viewing the 

experimental set up as a “black box” nonlinear frequency converter. From the 

material standpoint, however, the internal waveguide efficiency should be calculated 

instead. That the internal efficiency is significantly higher is evident from the strong 

depletion of the pump. Furthermore, when pump pulses are employed, the normalised 

nonlinear conversion efficiency is most commonly used: 

2
11

)(
)(%

LP
P

cmW Pump
peak

SHG
peak

⋅
=−−η                                                  (6.1) 

The revealing nature of the normalised efficiency as defined above is manifest, since 

it measures the equivalent SHG power generated from 1 centimetre of the material 

and 1 W of continuous-wave pump power.    

Accounting for a measured 10% loss from the input microscope objective, a 

calculated 30% reflection loss5 in the waveguide facet and a geometrical coupling 

factor6 (due to the difference in the shape of the field outside and the modal wave 

function inside the waveguide), we estimate that only ~10% of the available pump 

power is actually coupled into the waveguide. Typical transmission losses of ~ 5 to ~ 

10 dB/cm were measured7 in these waveguides in the wavelength range  of ~1.3 - 2 

µm. This translated to an estimated transmission of >80 % for both the pump and the 

second-harmonic through 1-mm-long waveguide. Moreover, due to the output facet 

reflectivity, the output objective transmission loss and the divergence of the output 

beam, the output detection efficiency is lower than 50%. The validity of the quoted 

values is supported by measurements of the off-resonance (and hence undepleted) 

transmitted pump power, which did not exceed ~1 mW for ~25 mW of input power, 

indicating an overall transmission of 4%. 

                                                 
5 The standard expression for the reflection coefficient at normal incidence was used: 

2

2

)(
)(

GaAsair

GaAsair

nn
nn

R
+
−

= , where the refractive index is ~1 in the air and ~ 3.4 in GaAs.            

6 The geometrical coupling factor has been calculated by collaborators at Thomson-CSF.  
7 The loss measurement technique, along with the detailed results, is presented independently in 
Chapter 7. 
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Following the discussion of the loss parameters, the internal efficiency can be readily 

calculated. The maximum collected SHG average power of ~650 µW suggests that 

~1.3 mW of second-harmonic reaches the output facet of the waveguide. In addition, 

out of the ~50 mW of available input power only ~5mW is actually coupled into the 

waveguide. This results in an internal efficiency greater than 20%.  

 Extraction of the normalised internal efficiency is more complicated, since it requires 

knowledge of the real interaction length. As discussed in the previous section, with 

femtosecond pulses, group velocity walk-off limits the effective interaction length to 

an estimated 200 µm. Taking into account the duty cycle of the pump source (1.8 × 

10-5), the peak powers corresponding to 5 mW of coupled fundamental and 1.3 mW of 

internally generated SHG are ~ 275 W and ~70 W respectively. This results in a 

normalised conversion efficiency of greater than 250 %W-1cm-2. Moreover, given that 

no more than one half of the pump spectrum is utilised in the conversion process, this 

corresponds to a waveguide conversion efficiency of at least 1000 %W-1cm-2. This 

represents an increase of over 2 orders of magnitude from the reported value in [4]. 

That the quoted efficiency is not over-estimated is clear because we have ignored: a) 

SHG propagation loss, which is significant due to the short interaction length, b) 

temporal pulse broadening due to GVD, which reduces pump peak power (the effect 

of GVD is smaller for the SHG as shown in Table 6.1), and c) possible higher-order 

nonlinear effects such as self-phase modulation of the pump and multi-photon 

absorption of the SHG. It should also be mentioned that after the first effective length, 

the process can start building up again for a second length and so forth, creating a 

train of SHG pulses. In this discussion, we have assumed that the contribution of all 

train pulses after the first is negligible, due to strong depletion of the pump.    

For the longer sample, the respective values are reduced by a factor of (390 µW / 650 

µW =) 0.6. This reduction – under the assumption that the two samples have same 

facet quality – should be attributed to the extra amount of SHG propagation loss 

present in the longer sample. In fact, this is an indirect method for estimating the 

propagation loss at the SHG wavelength which, accounting for a 60% loss through 1.2 

mm, is equal to ≥ 15dB/cm - that is notably higher than the measured values for the 

best waveguides.   
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4.4 Conclusions 

It has been shown that form birefringence externally induced in an isotropic material 

can be used to phase-match second-order nonlinear processes in isotropic material 

systems. Efficient SHG in type I birefringently-phase-matched GaAs/Alox 

waveguides was demonstrated using femtosecond pulses at 2.01 µm. Practical 

average SHG powers of ~ 650 µW, with an overall external efficiency of ~ 1.3% and 

a corresponding normalized waveguide efficiency of greater than 1000%W-1cm-2 have 

been obtained with an input pump average power of ~ 50 mW. Depletions of as much 

as 40% in the transmitted pump power were achieved, with more than 80% spectral 

depletion in the converted pump bandwidth. Extension of these experiments to the 

1.2-1.6 µm wavelength band will open up the possibility for development of a new 

class of integrated nonlinear frequency conversion devices for telecommunications 

applications based on GaAs technology. 
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5. SECOND HARMONIC GENERATION IN QUASI- 

PHASE-MATCHED GaAs/AlAs WAVEGUIDES 

5.1 Introduction 

It has been discussed in detail that the large χ(2) coefficients present in III-V 

semiconductors establish them as excellent candidates for efficient optical frequency 

conversion. It has also been made clear that, due to the lack of intrinsic birefringence 

and large dispersion in these material systems, it is difficult to phase-match second-

order nonlinear processes. Previously, the use of artificial birefringence by means of 

embedding native oxide layers in a GaAs-based waveguide structure to compensate 

for normal dispersion was demonstrated through second harmonic generation studies. 

An alternative scheme to attack the problem of phase-matching relies upon the 

realisation of structures with a periodic modulation of the nonlinear coefficient, which 

introduces an additional wave (or grating) vector, Λ, in the phase-mismatch parameter 

and thus allows quasi-phase-matched (QPM) interactions. QPM technology generally 

offers greater flexibility than BPM approaches, through the control of the wave 

vector. However, traditional methods for producing quasi-phase-matched structures 

(e.g., electric field poling) are only available with ferroelectric crystals.  

In this chapter, emerging quantum well intermixing technologies for the realisation of 

quasi-phase-matched GaAs-based structures will be outlined. Results will also be 

presented from two experiments that resulted in the respective demonstrations of first 

and third order (respectively) quasi-phase-matched SHG in GaAs/AlAs symmetric 

superlattice waveguides. To our knowledge, these experiments were the first 

demonstrations of nonlinear frequency conversion exploiting the large bulk-like  

nonlinear coefficient by means of quantum well intermixing. Furthermore, it is 

believed that for the first time quasi-phase-matching through quantum well 

intermixing was achieved in GaAs-based waveguides by use of first-order grating 

periods.      

)2(
zxyχ
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5.2 Quasi-phase-matching technologies in III-V semiconductors 

Early reports [1-3] on QPM interactions in semiconductors involved the epitaxial 

growth of AlxGa1-xAs on a patterned substrate; where the periodic crystal domain 

inversion was achieved using selective etching and wafer bonding. Although this is 

the most direct method, efforts were limited by relatively large losses in these 

structures. An alternative approach is based on the control of the second-order 

nonlinearities in semiconductor heterostructures by means of quantum-well- 

intermixing. This technique is of special interest for this work and some space will be 

given to describe the basic principles behind it.       

5.2.1 Quantum-well-intermixing (QWI)  

The forthcoming discussion requires the introduction of some elementary quantum 

mechanics ideas. Although a comprehensive treatment of quantum well formation in 

superlattices and quantum well intermixing is in fact not trivial, here a vivid picture of 

the basic concepts will be provided.  

It is understood that the solutions of the time-independent Schrödinger equation for a 

free atom suggest the existence of distinctive electronic energy levels. For bulk solids 

the interference of the carrier wavefunctions causes the energy levels to degenerate to 

quasi-continuous energy bands, known as the valence (lower) and the conduction 

(upper) band. The valence and conduction bands are separated by an energy bandgap 

that depends on the specific material properties. Superlattices (SL) are more 

complicated structures, consisting of alternating layers of two semiconductors with 

different bandgaps and typical thicknesses of ~10 nm. In superlattices, a discontinuity 

is induced in the conduction and valence bands of the engineered structure. This is 

depicted in Fig. 5.1 for the indicative case of a GaAs/AlAs system. In this example, 

the layers of the greater bandgap material (AlAs) act as barriers, while the layers of 

the lower bandgap material (GaAs) confine the carriers (electrons and holes) in what 

is known as a quantum well. The small size of the wells causes the carrier energy 

levels to quantise, as quantitatively represented in Fig. 5.1.  
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Fig. 5.1 Quantum well formation in a GaAs/AlAs superlattice.  

Quantum well intermixing (QWI) [4] refers to a number of post-growth techniques 

that have been developed to control the properties of semiconductor quantum well 

structures, typically allowing the energy bandgap to be increased (blue-shifted). In 

general, QWI results from elevating the structure’s temperature (annealing) in order to 

excite the atoms and thus cause intermixing with surrounding atomic constituents. To 

date, a number of QWI approaches have been demonstrated including impurity 

induced intermixing [5], impurity free vacancy disordering [6-8], and laser induced 

disordering [9]. The first approach is based on diffusion of impurities to reduce the 

required annealing temperature for intermixing and thus suffers from high optical 

absorption caused by the dopants. Laser induced methods avoid such complications, 

but offer limited spatial resolution. For these reasons, impurity-free techniques are 

most promising for a variety of applications. In the following, two successful and 

interesting impurity-free techniques for the purposes of the present work are briefly 

described. 

The first technique of relevance is often referred to as dielectric cap annealing [6] and 

is illustrated in Fig. 5.2. Fig. 5.2-a shows the atomic structure of an as-grown 

GaAs/AlaAs superlattice. The sample is coated with a layer of silica (SiO2) and then 

annealed. At elevated temperatures, silica tends to absorb gallium providing a 

mechanism by which group III vacancies are generated. The vacancies defuse from 

their high concentration region at the surface to areas deeper inside the superlattice in 

a “random” way. The effect of the vacancy migration is to intermix the regular 

layered structure of the as-grown supperlattice, as depicted in Fig. 5.2-b. In turn, the 

effect of intermixing on the band structure is illustrated in Fig. 5.3. The red lines show 

the conduction and valence bands for the as-grown material. Intermixing causes Al 
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atoms to diffuse into, and Ga atoms out of, the quantum well, with the net result that 

the quantum well becomes shallower and wider and thus the bandgap is increased (or, 

in other words, the absorption edge is shifted to shorter wavelengths) as shown by 

blue lines. The second technique is known as ion implantation induced intermixing 

[8] and differs from the dielectric cap technique in that the Ga vacancies are generated 

through displacement of lattice atoms due to collisions with implanted ions (typically 

As+). Therefore, the bandgap modulation, depicted in Fig. 5.3, applies equally to the 

ion implantation method. 

Ga atoms
Al atoms

SiO2

Anneal

(a) (b)Ga atoms
Al atoms

SiO2

Anneal

(a) (b)

 
 
Fig. 5.2 GaAs/AlAs supperlattice atomic structure before (a) and 
after (b) intermixing. 
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Fig. 5.3 Bandgap structure of a GaAs/AlAs superlattice before (red 
lines) and after (blue lines) intermixing. 
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There are two key issues related to QWI technologies. Firstly, the capability is offered 

of intermixing selective areas in the sample, while the rest remains in the as-grown 

form. This can be achieved through lithographic definition of the silica film in the 

case of dielectric cap intermixing, or alternatively, via deposition of a patterned 

protective mask to localise ion penetration in the case of implantation induced 

intermixing. Typically, the spatial resolution of the different QWI techniques is in the 

µm region, with possibly ion implantation induced intermixing offering optimum sub-

 µm resolution [10]. 

Secondly, the modulation of the superlattice bandgap provides a mechanism through 

which the linear [11] and nonlinear [12-14] optical properties of the structure can be 

controlled. Interpretation of the influence of bandgap modulation on the second-order 

susceptibility is based on theoretical studies [15], which indicated that the dispersive 

χ(2) for bulk GaAs presents peaks when one of the optical frequencies (e.g., second 

harmonic) approaches the bandgap energy. Therefore, it is anticipated that the blue-

shift of the band-edge on intermixing leads to a reduction in the magnitude of the 

second-order nonlinearity at a specific frequency.  

Considerable work has been carried out in developing models for band-structure 

predictions in superlattice structures. This includes the modified Kroning-Penney 

model of Masselink et al [16], as well as algorithms that account for general 

(diffused) potential profiles [17] which can thus be applied to simulate intermixed 

regions. Further algorithms have been developed [18] to compute the χ(2) dispersion 

profile as a function of the bandgap. Simulations suggested [19] that for a 14:14 

monolayer GaAs/AlAs supperlattice, the bandgap blue-shift upon complete 

intermixing (i.e., for a resulting uniform alloy of Al0.5Ga0.5As) is of the order of ~150 

nm. Complete intermixing, however, is difficult to achieve in practise and thus less 

substantial shifts should be expected. Hutchings and Kleckner computed [20], for the 

same material system and complete intermixing, a reduction in the second-order bulk 

susceptibility at 1.55 µm of ~50 pmV-1. Although in relative terms this is a modest 

modulation (the larger bulk GaAs coefficient in the IR is χ(2)
xyz~340 pmV-1), it is still 

comparable to the absolute modulation in periodically poled LiNbO3.  
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Note that the uncertainties imposed by the material processing and the limited 

accuracy in knowledge of the material parameters, necessitate the development of 

experimental methods to evaluate both the bandgap shift and the nonlinear coefficient 

modulation [21]. The former is typically done by comparing the photoluminescence 

emission wavelength of an as-grown and an intermixed sample. Modulation in the 

nonlinearity upon QWI is commonly measured by comparing the un-phase-matched 

SHG power obtained by use of an as-grown and an intermixed sample [13].   

The linear refractive index of the superlattice is also of great importance for all 

applications. However, existing heterostructure models fail to provide results of 

sufficient accuracy for quantum well structures [19,22], including the form 

birefringence model described in Chapter 4. The problem is further complicated by 

inaccuracies of the available bulk GaAs refractive index models for wavelengths near 

the bandgap. Thus, one has to retreat to experimental methods, most notably the 

grating coupler technique [23], for an accurate evaluation of the superlattice index of 

refraction. Note that with the use of superlattices for quasi-phase-matched processes, 

such individual-point measurements of the refractive index dispersion profile can be 

substituted to the phase-matching condition and thus allow prediction of the 

interacting wavelengths. Additionally, refractive index measurements are necessary 

for evaluation of the coherence length, which for SHG can be expressed as: 

)(4 2 ωω

ωλ
nn

Lc −
=  

In turn, knowledge of the coherence length is vital for QPM duty cycle predictions.  

These measurements alone, however, do not provide analytical refractive index 

expressions and hence can not be used to calculate GVD related effects (where the 

derivative of the index appears) when short pulses are used.   

All aspects of QWI technologies for nonlinear frequency conversion in superlattices 

have been the focus of another doctoral thesis within the OFCORSE II collaboration 

[19]. Therein, all the concepts briefly described in this section (as well as in much of 

the rest of this chapter), including the theoretical models and computed results, are 

discussed in great detail.    
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5.2.2 Quasi-phase-matching strategies by use of QWI 

It has been shown that QWI can be used to suppress the superlattice nonlinear 

coefficients. It was also explained that it is possible to intermix selective regions of 

the as-grown sample. This capability of selectively modulating the nonlinear 

coefficients can be used to engineer quasi-phase-matching geometries. Recall that the 

QPM condition for SHG is: 

022
2

2
2

2

2
2 =

Λ
−−=−−=∆

mnn
kkkk m

QPM π
λ
π

λ
π

ω

ω

ω

ω
ωω     

where the usual notation applies. Evidently, the phase-matching wavelength is solely 

determined by the grating vector, Λ, and does not depend on the depth of modulation, 

which is commonly introduced through the parameter (1-γ), where γ is defined as:  
grownas

eff
ermixed

eff dd −= /intγ                   (5-1) 

On the contrary, the effective nonlinear coefficient (and hence the efficiency of the 

process) – being proportional to the spatial Fourier component- does depend on the 

factor (1-γ) according to: 

grownas
eff

QPM d
m

d −−
=

π
γ )1(                   (5-2) 

Note that under ideal domain inversion  (γ=-1), Eq. (5-2) degenerates to the 

expression (2-82). Ideal domain disordering (γ=0) sets an upper limit to the QPM 

conversion efficiency achievable by means of QWI, equal to 1/4 of the QPM 

efficiency under ideal domain inversion (or 1/4 (2/mπ)2) of the efficiency under 

perfect phase-matching). As discussed previously, due to the fact that the effective 

nonlinearity of the as-grown material is large, only relatively small modulation depths 

are required to access competitive conversion efficiencies. 

There are two possible routes by which QPM structures can be realised using QWI 

[13]. The first is based on engineering an asymmetric multiple quantum well 

(AMQW) structure, with the symmetry breaking along the surface normal (z) 

direction. Such an AMQW structure is associated with additional second-order 

nonlinear coefficients, namely , )  and , which otherwise 

vanish in bulk Al

)2()2(
yzyzxz χχ = 2()2(

zyyzxx χχ = )2(
zzzχ

xGa1-xAs, as well as with the bulk-like coefficients ; 

. Upon selective intermixing, the structure acquires a higher degree of 

symmetry and the bandgap is blue shifted, with both of these mechanisms giving rise 

)2(
ijkχ

kjkiji ≠≠≠ ,,
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to a reduction in the asymmetry-induced nonlinearity. By means of QWI in AMQW 

structures, SHG has recently been demonstrated [24,25], but efficiencies were limited 

due to the small values [26] of the induced coefficients (typically, < 10 pmV-1). 

The second route promises much higher efficiencies by directly accessing the large 

bulk-like AlxGa1-xAs coefficients, which are readily available in a symmetric quantum 

well structure. Again, upon selective intermixing these coefficients are suppressed, 

providing a means of engineering a QPM device. Some attention has to be paid to the 

geometry of the interaction [27]. A conventionally orientated waveguide is depicted in 

Fig. 5.4 (growth parallel to [001], cleavage planes parallel to [110]). Following this 

convention, the waveguide is cut parallel to the (Z’,X’) plane and propagation is taken 

along Y’ axis, where (X’,Y’,Z’) denote the waveguide orientation. On the other side, 

the crystal orientation (X,Y,Z) is such that the Z axis is normal to the wafer and 

overlaps with Z’, while X and Y axis exhibit a 450 orientation with respect to the 

corresponding waveguide axis (X’ and Y’). One can easily recognise that the TE, TM 

and propagation directions are parallel to unit vectors according to Table 5.1.  

 

 

Waveguide orientation 
(X’Y’Z’) 

 

Crystal orientation   
(X,Y,Z) 

TE direction unit vector (1,0,0) ( 2/1 , 2/1 ,0) 

TM direction unit vector (0,0,1) (0,0,1) 

Propagation direction   
unit vector (0,1,0) (- 2/1 , 2/1 ,0) 

 

Table 5.1 Unit vectors defining  (1) a TE wave, (2) a TM wave, and 
(3) the propagation direction in the orientation of the waveguide and 
the crystal.  

By using  Eq. (2-43) and accounting for the fact that AlxGa1-xAs has non-zero tensor 

elements )  only when  2(
ijkχ kjkiji ≠≠≠ ,, , it is evident that the following two 

possibilities exist: 
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• A TE input, having electric field components along X and Y crystal axis, 

exploits  to produce a polarisation component along Z-axis (TM). This 

TE→TM process corresponds to a type I phase-matching geometry.  

)2(
zxyχ

• A TM+TE input, having electric field components along Z and X, Y axis, 
exploits simultaneously  and (= ) to produce two equal 

polarisation components along X and Y which add together to give a net 
polarisation component along X’-axis (TE polarisation). This TM+TE→TE 
process corresponds to a type II phase-matching geometry. 

)2(
xzyχ )2(

yzxχ )2(
xzyχ

Note that the superlattice breaks the degeneracy between  and  that exists in 

bulk Al

)2(
zxyχ )2(

xzyχ

xGa1-xAs, but is restored upon QWI, with the larger modulation predicted for 
)  [18]. 2(

xzyχ
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Fig. 5.4 Crystal orientation with respect to the waveguide. 

In what follows, results are presented from two experiments that resulted in 

demonstration of SHG in QPM GaAs/AlAs superlattice waveguides. The first 

experiment was based on a third-order QPM structure fabricated by means of 

dielectric cap annealing. The second experiment demonstrated first-order quasi-phase- 

matching (and thus greater conversion efficiencies), based on sufficient improvement 

of the spatial resolution of the grating period achieved by use of ion implantation 

induced intermixing.  

 100



CHAPTER 5  SHG IN QUASI-PHASE-MATCHED 
GaAS/AlAs WAVEGUIDES 

 
5.3 Initial efforts: Third-order quasi-phase-matching experiment 

5.3.1 Sample details and experimental set-up  

The sample used in this experiment, designed and fabricated by collaborators∗ at 

Glasgow University, was 4 mm long and comprised third-order grating periods 

between 5.8 µm to 12.4 µm. The structure is depicted in Fig. 5.5 and was composed 

of 0.6 µm of a symmetric superlattice waveguide core made of 14:14 monolayers of 

GaAs:AlAs, respectively. The lower and upper cladding were bulk Al0.6Ga0.4As of 4 

µm and 1.5 µm width, respectively. A 100-nm GaAs cap was used to cover the upper 

cladding. The structure was nominally undoped and grown by molecular beam 

epitaxy on a GaAs substrate.  

The room temperature photoluminescence (PL) emission wavelength of the structure 

was 745 nm from the central portion of the wafer∗. This design allowed an operating 

fundamental wavelength of 1550 nm at 30 meV below the half-bandgap, (avoiding 

two-photon absorption), and used the modulation attained in the resonant component 

of  as the bandgap of the structure is shifted. Domain disordering was achieved 

using a slight variation of the dielectric cap annealing method outlined previously [7] 

(often referred to as sputtered silica defect induced intermixing), with electron gun 

deposited silica caps to suppress the process. The sputtered-silica induced intermixing 

process is not expected to introduce any significant optical loss [28]. Relative 

measurements indicated that the best of the waveguides exhibited loss of ~20 dB/cm. 

After annealing of the present sample, room temperature PL wavelength peaks were 

observed at 725 nm and 680 nm; the peaks originated from the as-grown and the 

disordered regions, respectively. The reduction of the PL emission wavelength from 

the as-grown regions upon intermixing indicates some lateral vacancy diffusion. The 

periodic modulation in the superlattice bandgap induces a modulation in , as 

illustrated in Fig. 5.5, where intermixing occurs under the sputtered silica caps only.  

)2(χ

)2(χ

 

                                                 
∗ A. S. Helmy, D.C. Hutchings, T.C. Kleckner, A.C. Bryce, J.M. Arnold, C.R. Stanley, and J.S. 
Aitchison. Note that results obtained by these collaborators and presented in this chapter, are explicitly 
denoted by the star symbol.   
 

 101



CHAPTER 5  SHG IN QUASI-PHASE-MATCHED 
GaAS/AlAs WAVEGUIDES 

 
 

χ(2), Eg

PECVD 
SiO2

Sputtered 
SiO2

As-grown 
SL

Intermixed
SL

ω 2ω, ω

χ(2), Eg

PECVD 
SiO2

Sputtered 
SiO2

As-grown 
SL

Intermixed
SL

ω 2ω, ω

 

Fig. 5.5 Design of the sample used in this experiment, along with the 
corresponding second-order susceptibility modulation along the 
propagation axis. 
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Fig. 5.6 Schematic representation of the experimental apparatus. 
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The experimental arrangement is shown in Fig. 5.6. The optical source used in the 

measurements was the synchronously pumped, singly resonant femtosecond PPLN 

OPO described in Chapter 3. Note, however, that these experiments were carried out 

at a very early stage of this work and the source was operating at the time without 

intracavity dispersion control prisms. In fact, the signal (which was used as the 

fundamental beam for the conversion process) had a pulse duration ~500 fs and a 

corresponding spectral FWHM of ~11 nm near 1.5 µm, indicating chirped pulses 

(∆ν∆τ > 0.7). The OPO was running at a ~90 MHz repetition rate. An average power 

of 80 mW was obtained in the OPO signal, which was tuneable in the ~1.3-1.58 µm 

range.  

Appropriate polarisation optics and filters were introduced to ensure that only the TE 

polarised signal was coupled into the waveguide.  The input diagnostics consisted of a 

thermal power meter and a commercial spectrometer. A 50% duty cycle chopper was 

inserted before the waveguide for lock-in detection. The sample was mounted on an 

end-fire coupling rig and two microscope objectives were used to couple the input, 

and collect the output, beam from the waveguide. The coupling procedure was 

assisted by monitoring the waveguide output with an IR camera. The output of the 

waveguide was passed through a polarising beam splitter to verify the polarisation 

state of the second harmonic and separate the generated beam (TM) from the 

transmitted fundamental (TE). The second harmonic signal was aligned into a 

monochromator with a ~0.1 nm resolution. A photomultiplier tube (PMT) was then 

used to detect the second harmonic at the output of the monochromator using an 

internal PMT amplifier, and a lock-in amplifier. The PMT had a spectral range ~185 

nm to 900 nm, and therefore no signal resulting form the fundamental could be 

detected. Measurements of the input fundamental power into the waveguide as a 

function of the detected fundamental power at the waveguide output confirmed the 

linearity of their relation, ensuring that there is no significant two-photon absorption 

of the pump, neither in the detector nor in the waveguide itself. The electrical current 

reading of the detection scheme was translated into optical power by use of 

calibration tables provided by the producer of the PMT.  
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5.3.2 Results and discussion 

It has been explained in the previous section that there are two possible phase-

matching geometries: (1) type-I phase-matching exploiting the modulation in , 

accessed by launching the fundamental in TE polarisation at the input and the SH 

expected in TM polarisation, and (2) type-II phase-matching exploiting the 

modulation in , accessed with a mixed TE:TM polarisation for the fundamental, 

with the SH expected in TE polarisation. These two cases will be phase-matched at 

different QPM grating periods due to the difference in propagation constant with 

polarisation mode.  

)2(
zxyχ

)2(
xyzχ

A typical measurement of the type-I second harmonic along with the corresponding 

fundamental spectra are shown in Fig. 5.7, in which there is a clear SH signal for TM 

polarisation and there is no signal for the TE. The measured bandwidth of the SH 

(FWHM of ~3 nm) is limited by the finite width of the monochromator slit at an 

acceptable signal-to-noise ratio, whereas the measured FWHM is 11 nm for the 

fundamental. Additional spectral narrowing occurs, owing to the finite acceptance 

bandwidth of the QPM grating. The second harmonic signal appears only when the 

output spectrum of the OPO is tuned so that it contains the appropriate wavelength for 

the QPM grating under test. Fig. 5.8 shows a typical result for the dependence of the 

SH power on the fundamental power. The best fit to the slope on a log-log plot is 1.9, 

confirming the expected parabolic power dependence with no observed saturation. 

The wavelength of the SH generated as a function of various grating periods available 

in the sample is plotted in Fig. 5.9. As the grating period is decreased, the QPM 

wavelength also decreases in this normally dispersive medium. The lower wavelength 

limit was reached when the SH photon energy approaches the material bandgap and 

experiences excessive band-edge absorption. 

The largest average SH power measured by the PMT was 25 nW for a wavelength of 

758 nm. However; the optical measurement system had a measured 5-dB loss 

between the waveguide and PMT. With a further 30% reflection loss at the rear facet 

of the waveguide, a maximum average SH power of ~110 nW inside the waveguide is 

expected. In this case, a transmitted fundamental average power of 250 µW was 

measured (for  ~80 mW of available input) which, with a 30% loss at the rear facet 

and a measured optical loss of ~20 dB/cm in the waveguide, translates to an average 
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pump power of ~2.3 mW just after the front facet of the waveguide. Note that there is 

a reduction of approximately 2 orders of magnitude in the fundamental power 

between the OPO output and the guided-mode, due principally to coupling losses.  

Following the definitions introduced in the last chapter, an overall practical efficiency 

as low as 3x10-5 % can be calculated, corresponding to an internal efficiency of just 

~0.005 %. Evidently, there is a reduction of approximately five orders of magnitude 

in the conversion efficiency of the present scheme compared to the BPM structure 

presented earlier. This exceeds by far the theoretically expected reduction factor of 

(1/mπ)2~100. Further reduction should be attributed to a number of factors, including 

sample quality and length. In fact, the QPM sample was ~4 times longer than the most 

efficient BPM sample, while group-velocity mismatch is expected to limit the 

interaction length at 1.5 µm to less than half its value at 2 µm. However, the scope of 

this initial experiment was to demonstrate the potential of quantum well intermixing 

techniques for engineering QPM structures, rather than to obtain competitive 

efficiencies.     

Following the relative success of the present set-up, a number of samples were later 

fabricated and tested with the aim of enhancing conversion efficiencies, by means of 

improving the sample, as well as the pump source, quality. Efforts by collaborators 

were focused on designing first-order QPM gratings. However, the sample processing 

required for the necessary micron-scale resolution has been difficult to reproduce and 

conversion efficiency improvements have proved elusive in spite of extensive process 

development and optimisation [29]. These fabrication limitations are now believed to 

be unavoidable as the sputtered silica process creates group-III vacancies at the wafer 

surface, which then have to migrate across the waveguide cladding and the core 

regions to promote intermixing and some lateral spreading is inevitable. Indeed, 

significantly higher efficiencies were only achieved with use of first-order QPM 

waveguides, which were realised after abandoning the dielectric cap annealing 

technique and retreating to the alternative of ion implantation induced intermixing. 

Results from the latest experiment are presented in the following section.  
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Fig. 5.7 TE fundamental (left) and SH (right) spectra confirming 
type-I phase-matching process. 
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Fig. 5.9 Tuning curve indicating the SH wavelength as a function of 
the QPM grating period. 
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5.4 Optimised design: First-order quasi-phase-matching experiment 

5.4.1 Sample details and experimental set-up  

The layer structure of the sample used in this study, which was also fabricated by 

collaborators at Glasgow University, was similar to the third-order QPM structure 

presented earlier: it consisted of a 0.6-µm core of GaAs/AlAs superlattice comprising  

75 periods of 14:14 monolayer and was clad on either side with 0.3-µm Al0.56Ga0.44As 

buffer layers. The lower and upper cladding layers were bulk Al0.6Ga0.4As of 4 µm 

and 0.8 µm thickness, respectively. The upper cladding layer was capped with 100 nm 

of GaAs to prevent any undesirable Al oxidation. The structure was nominally 

undoped, grown by molecular beam epitaxy (MBE) on a GaAs substrate. The room 

temperature photoluminescence emission wavelength of the structure was 750 nm 

from the central portion of the wafer. This design allowed the operating fundamental 

wavelength, ~1550 nm, at 30 meV below the half-bandgap to avoid two-photon 

absorption and used the modulation attained in the resonant component of  as the 

bandgap of the structure is shifted. The sample was initially 2-mm-long and included 

a number of first-order gratings with periods near ~3.7 µm, that is, the expected 

phase-matched period for a fundamental wavelength at 1.5 µm, calculated using the 

effective refractive index data measured by using the coupler grating technique. 

However, only a couple high quality waveguides were actually found in the final 

sample, possibly due to physical damage that occurred during its transport from the 

fabrication room in Glasgow to the test laboratory in St. Andrews. 

)2(χ

Superior intermixing resolution, suitable for engineering first-order QPM gratings, 

was achieved using As+ ion implantation, in order to avoid introducing any impurity 

defects into the material. Commercially available software simulation predicted that 

ion energy of 4 MeV corresponds to an ion range of 1.7 µm and a lateral straggle of 

0.45 µm, adequate for the creation of group-III vacancies in the superlattice layers yet 

maintaining the desired spatial resolution. A gold mask of ~1.5 µm thickness, which 

was predicted to be sufficient to protect the desired regions from the As+ ions, was 

grown. This was done by firstly transferring the QPM pattern on a photoresist layer 

by using electron beam lithography technology, and then submerging the sample in a 

gold solution. Once the gold pattern had been grown, the photoresist was stripped off 
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using hot acetone. After implantation, the gold mask was removed by wet etching. 

The sample was annealed face down in a rapid thermal annealer at 850°C for 30 

seconds. Fig. 5.10 shows the photoluminescence peak wavelength blue shift in the 

large-area intermixed samples in comparison to the as-grown sample, as a function of 

ion flux. It can be seen that the photoluminescence blue shift is approaching its 

saturation value of ~60 nm for a dosage 1013-1014 ion/cm2. High ion dosages would 

substantially increase optical losses due to amorphisation. Rib waveguides were 

fabricated using reactive-ion etching and the sample was cleaved on each side.  Loss 

measurements at a wavelength of 1.55 µm yielded a value of ~21 dB/cm in the QPM 

sample implanted with an ion dosage of 1014 ion/cm2, which was employed in the  

nonlinear measurements described below. 
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Fig. 5.10 Photoluminescence (at 77 K) blue shift as a function of 
As+ ion flux at 4 MeV energy. Samples were annealed at 850°C for 
30 seconds. These measurements were carried out by our 
collaborators. 

The experimental arrangement is similar to that of Fig. 5.6, with only two major 

differences. Firstly, the synchronously pumped, femtosecond PPLN OPO was 

dispersion-controlled by means of intracavity prisms. This configuration allowed an 

average signal power of ~80 mW to be routinely attainable in pulses of ~250 fs 

duration at  ~90 MHz repetition rate. Accounting for a measured spectral FWHM 

bandwidth for the signal of ~10 nm, a time-bandwidth product of ∆ν∆τ~0.33 can be 

calculated, indicating near-transform-limited pulses. Secondly, the improvement in 

the conversion efficiency was sufficient to allow replacement of the monochromator-

PMT combination in the output diagnostics set-up, with simply a commercial 

semiconductor head power meter and an IR optical spectrum analyser.   
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5.4.2 Results and discussion 

Linearly polarised light from the OPO was launched into one of the few high quality 

waveguides available in the sample, with the output of the waveguide directed to the 

spectrum analyser. Typical second harmonic spectra, along with the corresponding 

pump spectra, are shown in Fig. 5.11. As expected for type-I phase-matching, the 

detected SH signal was TM-polarized with a TE fundamental polarization. There was 

no SH signal detected for a TM-polarized fundamental. Fig. 5.11 shows that the SHG 

signal appeared only when the output spectrum of the OPO was tuned to provide the 

appropriate wavelength for the QPM grating under test. By tuning the pump away 

from the phase-matching wavelength, a broad-bandwidth non-phase-matched signal 

was also observed at lower power levels (~100 nW).  This is depicted in the inset of 

Fig. 5.11, where the fundamental was detuned by ~20 nm with respect to the optimal 

phase-matching wavelength. The measured bandwidth of the fundamental was ~10 

nm (FWHM), while that of the phase-matched SHG, determined by the finite 

bandwidth of the QPM grating, was ~0.9 nm. Using longer grating periods, third-

order QPM could be observed with an appropriate drop in SHG power.    
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Fig. 5.11 Observed second harmonic (bottom) and the fundamental 
(top) spectra. Fine-tuning of the pump results in a change in SHG 
power, but the SHG wavelength remains locked, confirming phase-
matched process. Inset shows the non-phase-matched SHG 
spectrum corresponding to a larger detuning of ~20 nm. 
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The measured average SHG power is plotted in Fig. 5.12 as a function of the peak 

fundamental wavelength for a constant input power level. As the source is not 

monochromatic, the line shape is determined by the fundamental spectrum rather than 

the sinc2 gain function. A Gaussian fit to the data resulted in a ~10 nm FWHM 

bandwidth of this wavelength tuning curve, which is comparable to the pump spectral 

bandwidth. Figure 5.13 shows a typical result for the dependence of the average SHG 

power on the fundamental power. The corresponding best fit to the slope on a log-log 

scale is 2.04, confirming the expected quadratic power dependence. Saturation of the 

SHG power was observed for input average powers exceeding ~40 mW.  
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Fig. 5.12 SHG power as a function of the input wavelength 
(wavelength tuning curve), exhibiting a FWHM of 10 nm. 
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Fig. 5.13 SHG average power as a function of the fundamental input 
average power on a log-log scale. The best fit to the slope is 2.04 
confirming the expected quadratic power dependence. 
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The largest SHG average power measured was 1.5 µW at a wavelength of 767 nm. 

Taking into account an estimated 5 dB loss between waveguide and detector and 30% 

reflection loss at the rear facet of the waveguide, an average SHG power of ~7 µW 

generated within the waveguide is estimated. The average power in the transmitted 

fundamental was ~2.9 mW which, with a 30% loss at the rear facet and a measured 

optical loss of ~21 dB/cm in the waveguide, translates to an average pump power of 

~11 mW just after the front facet of the waveguide. This corresponds to an end-fire 

coupling efficiency of around 18%, increased by a factor of ~5 compared to the third- 

order QPM sample presented earlier. Therefore, the overall practical conversion 

efficiency of the present set-up was ~0.002 % and the corresponding internal 

conversion efficiency ~0.06 %. These values represent an improvement in the internal 

efficiency of at least one order of magnitude compared to the third-order QPM result. 

Combined with the increase in the coupling efficiency by a factor of ~5, this naturally 

yields an observed improvement in the overall practical efficiency of almost two 

orders of magnitude.    

It was outlined earlier that existing theoretical models for superlattice refractive index 

predictions exhibit limited accuracy. This gives rise to difficulties in calculating the 

actual interaction length and consequently the normalised efficiency in the present 

QPM waveguides. Using the results of table 4.1 for bulk GaAs, one can substitute the 

value of ~100 µm for the interaction length to obtain an indicative value for the 

normalised efficiency of the first-order QPM sample of ~1.2 %W-1cm-2. Similar 

calculations for the third order QPM sample resulted1 in an indicative value for the 

normalised conversion efficiency of ~0.15 %W-1cm-2. This one order-of-magnitude 

difference between the internal efficiencies for first- and third-order QPM is in good 

agreement2 with the theoretically expected reduction by a factor of (32=) 9.    

 
1 Note that in the evaluation for the third order QPM sample, a ~500 fs pulse duration should be used 
for the calculation of the interaction length and peak powers. 
2 A direct comparison between first- and third-order QPM internal efficiencies should account for the 
following facts: 
a) The SHG spectral bandwidth (and hence the utilised pump spectrum) was larger for third-order 

phase-matching and 
b) The sample length (and hence the SHG propagation loss) was also larger for third-order phase- 

matching.  
(a) should result in a reduction of the theoretical factor of 9, while (b) should result in an increase in 
this factor. It seems that the combination of these two differences in the present set up cancel out. 
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Although significant output power improvement was observed in this-first order QPM 

experiment, the obtained efficiencies were still more than two orders of magnitude 

smaller than the efficiency of the BPM sample presented in Chapter 4. This reduction 

is far larger than the expected reduction by a factor of (1/π)2 ~ 0.1, corresponding to 

first-order QPM under ideal domain disordering1. Additional efficiency reduction 

should be attributed primarily to (a) limitations in the modulation depth factor, γ, that 

can be achieved using QWI, and (b) possible departure from the ideal 50:50 square-

wave QPM grating duty cycle, due to the defect out-diffusion at high annealing 

temperature in addition to the ion implantation lateral straggle. Furthermore, it has 

been predicted that the associated modulation in the linear refractive index will also 

compromise conversion efficiency by ~30% [30,31].  

Hence, there is considerable scope for improvement of the present set-up, with main 

efforts directed towards fabrication of lower-loss samples. In fact, the optical losses of 

the waveguides under test were relatively high in comparison to previous intermixed 

waveguides. This may be partly due to the surface damage caused by the gold etch. 

An additional protective silica layer is being introduced in future samples to avoid this 

problem. It may also be desirable to use a lower ion dosage to trade off some of the 

modulation of the nonlinear coefficient for lower losses. Moreover, an increase in the 

normalised efficiency, as well as a more conclusive evaluation of this critical 

parameter, is considered possible with a reproduction of the experiment using a 

picosecond OPO. Such a test is expected to result in exploitation of the entire 

fundamental spectrum and avoid group velocity dispersion and temporal walk-off 

complications. 

 

  

 

 

 

 
1 The reduction factor of ~6 assumes that the oxidised GaAs/AlAs BPM structure and the QPM 
GaAs/AlAs superlattice exhibit the same effective nonlinear coefficients.  
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5.5 Conclusions 

It was shown that quantum well intermixing can be used to modulate the second-order 

susceptibility of GaAs/AlAs superlattices and thus provide a means for engineering 

QPM structures. Although different reports of quasi-phase-matching in asymmetric 

superlattice structures exist, in this chapter two experiments were presented, both 

demonstrating SHG in symmetric GaAs/AlAs superlattice via exploitation of the large 

bulk-like  nonlinear coefficient. To our knowledge, these were the first reports of 

this kind. 

)2(
zxyχ

The first experiment utilised sputtered silica defect-induced intermixing to achieve 

third-order gratings in a GaAs/AlAs superlattice waveguide. Type I phase-matched 

SHG was demonstrated for fundamental wavelengths from 1480 to 1520 nm, in third- 

order gratings with periods from 10.5 to 12.4 µm. The second harmonic signal spectra 

were found to exhibit spectral narrowing owing to the finite QPM acceptance 

bandwidth. An average power of 110 nW was obtained at the output facet of the best 

waveguide for the second harmonic with an average coupled pump power of ~2.3 

mW, corresponding to an internal efficiency of 0.005 %.     

The second experiment provided results from first-order gratings in a symmetric 

GaAs/AlAs superlattice waveguide, which was realised by use of quantum well 

intermixing induced by As+ ion implantation. In this case, practical second harmonic 

average powers of ~ 7 µW were obtained inside the waveguide through a type I 

process, for ~11 mW of coupled average input power, corresponding to an enhanced 

internal efficiency of ~0.06 %. Further improvement in internal efficiencies is 

expected to be possible through reduction of propagation losses and use of picosecond 

pulses.  
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6. SECOND HARMONIC GENERATION IN GaAs/AlAs 

WAVEGUIDES USING MODAL-PHASE-MATCHING 

6.1 Introduction 

In previous chapters, a number of methods were presented aiming at overcoming the 

phase-matching complications in GaAs structures, thus allowing exploitation of the 

large nonlinear susceptibilities present in this material for second-order frequency 

conversion processes. These methods included SHG in GaAs/AlAs waveguides by 

use of birefringence enhancement through selective oxidation, as well as SHG in 

quasi-phase-matched GaAs waveguide structures with periodic modulation of the 

nonlinear susceptibility via quantum well intermixing.  

Modal-phase-matching (MPM) is a simple alternative solution to the problem of 

phase velocity synchronism in nonlinear conversion processes and has been studied in 

polymer waveguides [1-5]. However, it has been of limited interest in inorganic 

semiconductors because of the poor spatial overlap between the interacting modes. 

Only recently proper waveguide (M-type) designs have been proposed [6-8] to permit 

sufficient increase of mode overlap and result in appreciable effective nonlinearities. 

Since there is no need for oxidation, as is the case with form birefringent waveguides, 

the modal-phase-matched structures can be combined with a laser diode on the same 

chip to provide a wholly integrated semiconductor light source based on nonlinear 

frequency conversion. Such a device could be of interest for a range of applications, 

for example as a source of entangled photons in quantum optics and quantum 

cryptography [9, 10].  

In this chapter, a short introduction of modal-phase matching schemes is presented, 

followed by experimental results of femtosecond SHG in an AlxGa1-xAs structure 

optimised for modal-phase-matching. To our knowledge, this is the first 

demonstration of nonlinear conversion in GaAs-based waveguides using enhanced 

mode overlap based on M-type waveguides.  
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6.2 Modal-phase-matching schemes in semiconductor waveguides 

6.2.1 Modal-phase-matching principles: The case study of the slab waveguide 

Modal-phase-matching makes use of modal dispersion, which is a unique 

characteristic of waveguides, to compensate for normal (chromatic) material 

dispersion and hence phase-match nonlinear interactions [11]. This can be 

demonstrated through the simple case of the symmetric slab waveguide depicted in 

Fig. 6.1, consisting of a core of width w and index ng and cladding layers of index ns. 

Although a detailed study of the slab waveguide is in fact more complicated, a trivial 

geometrical optics model is sufficient to yield the dispersion relationships for the 

various possible modes of propagation. Confinement of light in this kind of 

waveguides is due to total internal reflection (TIR) in the interfaces between the 

higher index core and the lower index cladding layers. This is shown in a ray picture 

in Fig. 6.1, where is the “actual” wavevector along the ray path and  is the 

“effective” wavevector along the waveguide propagaton axis Z., such that: 
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π sin2
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==                  (6-1) 

where n is the effective waveguide refractive index, λ0 is the free space wavelength 

and θi the angle of ray incidence. The dotted line normal to the ray represents the 

plane wavefront. 
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Fig. 6.1 Ray picture shown in a vertical cross-section of a 
symmetric slab waveguide. 

The angles of incidence, reflection and transmission (θi, θr, and θt, respectively) are 

trivially related by Snell’s law:    

ri θθ =  and tsig nn θθ sinsin =  
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Therefore, total internal reflection (θt >900) occurs for angles of incidence exceeding a 

critical value θc, such that: 

g

sc
i n

n
=> θθ sinsin                             (6-2) 

In order for the multiple reflected wave depicted in Fig. 6.1 to be coherent, it is 

evident that the phase difference at points A and C must be zero or equal to an integer 

multiple of 2π, which in turn implies that the following phase relation must hold:  

;2cos221 πθ mwk ig =+∆Φ+∆Φ  m=0,1,2,…              (6-3) 

where ∆Φ1 and ∆Φ2 are the phase shifts upon reflection at the two interfaces and 

ig wk θcos2  is the phase shift contribution due to the extra path length  ABC 1. The 

phase shift at the boundaries depends on the input polarisation and is given by the 

well-known Goos-Hänchen relations, the proof of which can be found elsewhere [12]:   
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Substituting the above relations into Eq. (6-3), after some rearrangement one can 

obtain the modal dispersion expression for the symmetric slab waveguide: 
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where k0 is the free space wavelength, γ =1 for TE and (ng/ ns)2 for TM, and m is the 

mode order.  

Equation (6-4) suggests that the effective refractive index for the different modes 

depends on the dimensions of the high index region and takes values between ng and 

ns. A quantitative representation of the modal dispersion profile for the slab 

waveguide is illustrated in Fig. 6.2 a, where the effective index is shown against the 

normalised film thickness wk0 for the first- and second-order TE and TM modes. Note 

that there is a maximum core width for which the waveguide remains single mode. It 

                                                 
1 It is easy to see that iwABC θcos2=  
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is evident that in the absence of birefringence and assuming normal material 

dispersion (nTE,TM(2ω)>nTE,TM(ω)), phase-matching SHG is not possible with use of 

same order modes. However, the existence of multiple allowed modes with different 

effective indices permits the realisation of suitably designed structures; where phase- 

matching of nonlinear processes is possible by use of different order modes. This is 

illustrated in the indicative Fig. 6.2 b, where a hypothetical phase-matching possibility 

exists, corresponding to the interception point of the TE0 curve for the fundamental 

frequency and the TE1 curve for the second harmonic.   
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Fig. 5.2 Characteristic modal dispersion curves [11] in slab 
waveguides: (a) Effective index as a function of the normalised core 
thickness k0w and (b) Typical guided-mode dispersion curves 
indicating phase-matching capability for TE0(ω)→TE1(2ω) process. 

Based on the preceding principles of MPM, at least two early reports can be found on 

SHG in GaAs-based waveguides. In 1971, Anderson and Boyd [13] reported weak 

phase-matched SHG in a GaAs rectangular waveguide using a CO2 laser fundamental 

near ~10 µm. Shortly after, in 1974, van der Ziel et al [14] demonstrated SHG in a 

slab AlGaAs waveguide with a fundamental at 2 µm. A third report by Wagner et al 

[15] involved SHG in ZnTe waveguides. Since then, MPM in semiconductor 

waveguides has been of limited interest, due to inherent disadvantages associated with 

this technique resulting from difficulties in combining modes that simultaneously 

offer phase-matching capability and sufficient overlap. In the next paragraph, issues 

related to conversion efficiency enhancement by means of overlap increase through 

design of proper structures are addressed.     
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6.2.2 M-type waveguides for efficient nonlinear frequency conversion 

It has been outlined that it is possible to phase-match a lower-order fundamental mode 

with a higher-order second harmonic mode, exploiting modal dispersion to offset the 

natural material dispersion.  It was also pointed out that, contrary to birefrigently and 

quasi-phase-matched guided wave interactions (where modes of the same order are 

used and the overlap integral can be taken equal to one), MPM in conventional 

waveguides results in weak mode overlap and thus limited conversion efficiencies. 

Considerable effort has been devoted to developing waveguide geometries that allow 

optimisation of the mode overlap. This includes the four-layer structure depicted in 

Fig. 6.3 a, in which only one of the two core layers is nonlinear. This design, 

proposed in 1978 by Ito and Inaba [16], avoids negative contribution to the overlap 

integral from regions where the two fields interact destructively. Although this design 

clearly exploits only a fraction of the available input power, the increase in mode 

overlap was such that the authors reported an overall efficiency improvement by a 

factor of 40. 
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Fig 6.3 Proposed geometries for enhancement of mode overlap in 
directly phase-matched waveguides. (a) A two-layered core 
structure consisting of a linear and a nonlinear section, in which the 
area of destructive interference between the fundamental (red line) 
and second harmonic (blue line) is not active. (b) ARROW–type 
waveguide structure, offering novel phase-matching possibilities 
due to the design-dependent modal dispersion and field intensity 
distribution. These figures are based on ref. [11] and [17].     
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A second approach to increasing mode overlap relies on the employment of anti-

resonant reflecting optical waveguides (ARROW) [17-20]. While conventional 

waveguides depend on total internal reflection (TIR) to confine the wave in a high 

index core layer, ARROWs generally consist of a system of cladding layers designed 

to form Fabry-Perot cavities which, operating at anti-resonance (minimum 

transmission), confine the wave in a low index core. The ARROW operational 

characteristics are illustrated in the typical structure of Fig. 6.3 b. This geometry 

comprises a low index core surrounded by air on one side, and an interference 

cladding on the other. In turn, the interference cladding consists of a thin high index 

film (first cladding) and a second cladding layer, which is usually made of the same 

material as the core. In this specific design, light experiences standard TIR in the 

upper core-air boundary. On the other side, the thin high index film acquires the 

transmission characteristics of a Fabry-Perot resonator, so that high reflection is 

attainable at the anti-resonant wavelengths of this Fabry-Perot interferometer. 

Similarly, the lower cladding forms a second cavity in series, which (with proper 

design) may also operate in anti-resonance to enhance the overall transmission. Note 

that, in accordance with the Fabry-Perot transmission characteristics, the critical 

parameter for achieving low-loss guiding at a given wavelength is the thickness of the 

first cladding layer and the refractive indices1 of the different layers. Since the same 

parameters also determine the waveguide dispersion as well as the field profile, 

ARROW-type waveguides offer unique flexibility in designing directly phase-

matched structures with optimised mode overlap.    

A modified version of an ARROW waveguide, of special relevance to this work, is 

the M-type structure shown in Fig. 6.4, acquiring its name from the characteristic M-

shaped refractive index profile. The core index is now slightly higher than that of the 

outer claddings, while the thickness of the inner claddings (often referred to as 

reflectors) is not necessarily anti-resonant. In other words, depending on the 

wavelength and the reflector thickness, M-type waveguides can operate either as: (a) 

an ARROW type waveguides, with the reflector layers used as the interference 

claddings, or (b) a TIR coupler, formed by a higher index “super-core” (consisting of 

the inner core and the reflectors) and two lower index claddings.   

 
1 Recall that transmission as a function of wavelength in a Fabry-Perot interferometer has peaks that 
are separated by ∆λ=λ2/2nd, where d is the mirror separation. Moreover, the width of the peaks 
becomes narrower as the reflectivity increases.  
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M-type waveguides have attracted attention for phase-matching purposes, because it 

is accepted that proper “super-core” design can provide high confinement of the 

wave, while the symmetry of the structure yields a good overlap between the 

interacting mode fields. From an alternative perspective, the coexistence of TIR and 

ARROW modes for a specific design and for different wavelengths yields a 

modulation in the dispersion profile for a set propagation mode in which both steep 

parts (TIR) and flat areas (ARROW) are present, resulting in the appearance of a 

greater number of phase-matching possibilities compared to the case of slab structures 

(see Fig. 6.2).   
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Fig. 6.4 Schematic of an M-type waveguide. 

The first theoretical study on the use of M-type waveguides for optimised MPM was 

carried out by Chowdhury and McCaughan [6] and considered LiNbO3 waveguides. 

The authors predicted conversion efficiency for the proposed structure exceeding 2.5 

% of the efficiency corresponding to QPM waveguides in the same material. Their 

design was based on TIR guiding. Following this initial study, Oster and Fouckhardt 

extended the idea to AlGaAs waveguides [7,8]. They showed that several directly 

phase-matchable geometries exist, including interactions that exploit TIR, ARROW, 

as well as mixed TIR (for ω) and ARROW (for 2ω) guiding. Their numerical results 

indicated that in fact optimised mode overlap is attainable when the structure is 

operated in a TIR fashion. Although these theoretical studies revealed the potential of 

M-type waveguides for nonlinear frequency conversion, such structures have only 

been previously used for demonstration of third-order-mode optically pumped 

semiconductor lasers [9, 10]. In the remainder of this chapter, results are presented 

from what it is to our knowledge the first experimental demonstration of SHG in 

optimised M-type modal-phase-matched GaAs/AlGaAs waveguides.      
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6.3 Optical experiment 

6.3.1 Sample details 

The sample was designed and fabricated by collaborators1 at Thomson CSF. It was 

grown on a semi-insulating GaAs substrate by a MBE machine. The epitaxial 

structure used was 1000 nm Al0.98Ga0.02As / 130 nm Al0.25Ga0.75As / 260 nm 

Al0.5Ga0.5As / 130 nm Al0.25Ga0.75As / 1000 nm Al0.98Ga0.02As / 30 nm GaAs. Optical 

ridges were etched chemically in order to provide two-dimensional confinement. 

Ridge width varied from 3 to 5 µm and the waveguide was initially 3 mm in length.  

This geometry is an M-type waveguide, the refractive index profile of which is shown 

in Fig. 6.5 (recall that the refractive index of AlxGa1-xAs, as well as the nonlinearity, 

decreases with increasing Al concentration). Following simulation results that 

indicated stronger mode overlap for TIR modes, waveguiding in the structure was 

based on standard TIR rather than ARROW modes; that is, light is confined in the 

central, high-index super-core (Al0.25Ga0.75As - Al0.5Ga0.5As - Al0.25Ga0.75As), and 

bounded by the low-index Al0.98Ga0.02As claddings. The structure is expected to 

provide maximum overlap between the TE2 (third-order) mode at the second 

harmonic frequency and mixed TEO / TM0 modes at the fundamental frequency (type 

II interaction). The simulation results with respect to the intensity distribution for 

these propagation modes are also depicted in Fig. 6.5. In fact, the anticipated overlap 

integral in this optimised structure is expected to be lower, by a factor of >5, than in 

birefringent waveguides [21]. Type I phase-matching (TE0(ω) → TM2(2ω)) is also 

allowed by the selection rules of GaAs second-order susceptibility tensor in the case 

of a <1,0,0> growth and a waveguide orientated along the <0,1,1> axis, but lower 

mode overlap and hence efficiencies are expected.  

The phase-matching capabilities in this waveguide are illustrated in Fig. 6.6, where 

the effective refractive index of the structure is plotted as a function of wavelength for 

the first three order modes. These calculations, carried out by collaborators using 

suitable transfer matrix algorithms [22], predict type II phase-matching for a 

fundamental wavelength near 1.5 µm, as well as type I phase-matching at slightly 

shorter wavelengths.  

                                                 
1 A. De Rossi, M. Calligaro, V. Ortiz and V. Berger 
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Fig. 6.5 Waveguide refractive index (upper solid) and intensity 
distribution |E2| for: (a) the TE0 (solid) and TM0 (dotted) mode at the 
fundamental wavelength (1550 nm) and (b) the TE2 (dashed) mode 
at the SHG wavelength (775 nm).   
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Fig. 6.6 Dispersion of the effective indices of the first three modes 
illustrating the principle of phase-matching in this structure: 
chromatic dispersion is compensated by the waveguide dispersion. 
Solid lines indicate TE polarisation and dotted lines TM 
polarisation. The waveguide geometry is such that phase-matching 
is possible near 1.55 µm. Both Figs. 6.5 and 6.6 were provided by 
A. De Rossi of Thomson CSF (THALES).  
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6.3.2 Experimental set-up 

The experimental apparatus is illustrated in Fig. 6.7. The OPO pump source had the 

same operational characteristics as described in section 5.4.1: the system delivered 

near-transform-limited signal pulses of ~250 fs pulse duration and  ~10 nm spectral 

FWHM, tuneable from ~1.35 to ~1.57 µm, with average power levels of more than 50 

mW attainable throughout this band. A set of optics and filters were used to allow 

control over the input polarisation and power. The fundamental wavelength being 

near 1.5 µm allowed the use of a thermal power meter and a spectrometer for input 

beam measurements. The standard end-fire coupling was used comprising a x40 

(input) and a x20 (output) microscope objective. A peltier cooler was added below the 

sample holder to vary the temperature, while a thermocouple was used to monitor the 

relative temperature of the sample. The waveguide output was then passed through a 

cubic polarising beam splitter centred at 750 nm to separate the TE and TM 

components. A semiconductor head power meter with a sensitivity band from 400 nm 

to 1000 nm was used to measure the SHG power. Finally, the output light was 

coupled into an IR spectrum analyser by use of a 1-meter long optical fibre, allowing 

for the resolution of the SHG and transmitted fundamental spectra.   
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Fig. 6.7 Experimental apparatus. 
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6.3.3 Results and discussion 

A number of samples of same design were tested and here results are only presented 

for the best waveguides. A clear growth of second harmonic signal was observed for 

appropriate tuning of the fundamental wavelength for both TE and mixed TE/TM 

input polarisations. For purely TM input the output power reduced to noise levels. At 

first, the selection rules were investigated and it was established that the input-output 

signal polarisations satisfied the type I and II phase-matching conditions: 

TE(ω)→TM(2ω) and TE(ω)+TM(ω)→TE(2ω). 

With the aid of the IR spectrum analyser, the generated second harmonic as well as 

transmitted fundamental spectra were recorded. A selection of such spectra is shown 

in Fig. 6.8 for both types of  interaction. It is evident that type I process takes place at 

~ 1505 nm and type II at ~1540 nm. Note that as the input is tuned within the 

acceptance bandwidth, the second harmonic signal remains spectrally locked (only the 

strength of the nonlinear process changes), indicating that the interaction is indeed 

phase-matched. The SHG spectra present a FWHM spectral width of ~0.5 nm and ~1 

nm for type I and type II geometries, respectively. As has been discussed previously, 

the pump acceptance bandwidth for SHG is twice the second harmonic linewidth. 

Combined with a fundamental spectral FWHM of ~10 nm, this shows that only a 

fraction of the input bandwidth is utilised in the conversion process. This effect can be 

viewed in the temporal domain as only one part of the pump wave packet having 

phase velocity that can be phase-matched at the second harmonic. When the 

conversion efficiency is high enough, the pump experiences a partial depletion 

reminiscent of spectral hole burning. This has indeed been observed in birefringent 

waveguides (see chapter 4). Under the same experimental conditions and with use of 

modal-phase-matched samples, only some incomplete depletion of the fundamental 

for type II process was observed, thus indicating lower conversion efficiency. At 

lower power levels (~200 nW) and for detuned pump wavelength, a non-phase- 

matched signal was detected. Spectra taken for this non-phase-matched signal are 

illustrated in Fig. 6.9. Note that for this non-phase-matched SHG the spectral width of 

the generated signal is ~5 nm (that is, half that of the pump spectral width), while a 

shift in the input wavelength results in a proportional shift in SH wavelength. The 

contrast in behaviour between the generated signals shown in figures 6.8 and 6.9 

provides strong evidence that phase-matched SHG was indeed achieved.  
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Fig. 6.8 Typical transmitted fundamental (top) for type I and II 
interactions, and the corresponding SHG spectra (bottom). The 
vertical axis indicates the relative strength of each process. 
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Further evidence of phase-matching was obtained by measuring the generated SHG 

power as a function of the input power. The expected quadratic dependence was 

confirmed, with typical values of best fit to the slope on a log-log plot ranging from 

1.9 to 2.1. A representative set of such measurements, for the same waveguide and for 

both type I and II interactions, is shown in Fig. 6.10. Strong saturation of gain was not 

observed, in agreement with the observed weak depletion of the pump, although a 

small reduction in the slope could be observed for a number of waveguides and 

average input power levels exceeding ~30 mW. The generated SH power was also 

measured against the central wavelength of the fundamental spectrum for fixed input 

power, as shown in Fig. 6.11. A clear peak was observed at ~1.505 µm (~1.540 µm) 

for type I (II) interaction, while the FWHM of these wavelength tuning curves is ~11 

nm, that is comparable to the input spectral bandwidth.  

Second harmonic spectra were also obtained after intentionally translating the 

waveguide in the direction normal to the input beam. Typical results are presented in 

Fig. 6.12, where the SHG spectrum corresponding to optimal alignment (curve a) is 

compared to spectra collected for  ~ 1 mm of horizontal misalignment to either side 

(curves b and c). It can be seen that independent of the direction of translation, a 

second peak appears at longer wavelengths. This complementary peak is comparable 

in strength to the main SHG peak, and therefore should be attributed to phase-

matched SHG process involving higher-order modes. It has not yet been possible to 

identify the exact interaction that yields this signal. Interestingly, a weak secondary 

peak to the longer wavelength side also seems to appear in the wavelength tuning 

curve shown in Fig. 6.11. The two observations are believed to be related. This has to 

be viewed in combination with the fact that tuning the OPO wavelength to obtain the 

data of Fig. 6.11 is indeed expected to result in a slight change in the angle of the 

signal beam and hence an effective displacement of the waveguide with respect to the 

pump beam. In fact, accounting for a ~1 m distance between the pump source and the 

coupling rig, a change in the angle of the OPO output as small as ~10-2 degrees is 

enough to shift the pump beam by ~1 mm when it reaches the waveguide.  

Since the refractive index of GaAs is temperature dependent [23], it is anticipated that 

the phase-matching wavelength varies with varying temperature. Relative studies 

were carried out and results are presented in Figs. 6.13 and 6.14. Here the sample 
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temperature was varied from ~ 10 to ~ 1500 C and SHG spectra were collected for 

both types of interaction in steps of ~5 degrees. Fig. 6.13 shows a selection of 

recorded spectra, while Fig. 6.14 depicts the overall tuning of SHG wavelength in this 

temperature range. It can be seen that a nearly-linear fine tuning of  >10 nm is 

attainable with ~ 1400 C increase in temperature, resulting in a temperature tuning rate 

of dλ/dT ~0.079 nm / 0 C. In fact, this value is in agreement with theoretical 

predictions carried out by collaborators at Thomson CSF [21] with an accuracy to the 

third decimal.    
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 Fig. 6.10 Second harmonic output average power as a function of 
the fundamental input average power on a log-log scale. 
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Fig. 6.11 Second harmonic average power as a function of the 
fundamental centre wavelength, for a constant input power (~20 
mW). 
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Fig. 6.12 SHG spectra for (a) optimised alignment, and (b), (c) a ~1 
mm lateral displacement of the waveguide with respect to the input 
beam axis for a type I process. 
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Fig. 6.13 Selected SHG spectra as a function of the temperature. 
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Maximum SHG power was measured after cleaving the sample to 1.5 mm, that is half 

its initial length. For type I interaction, up to ~ 2.6 µW of SHG power were obtained 

after the output objective for ~ 80 mW of fundamental power before the input 

microscope objective. For the more efficient (in accordance with the waveguide 

design) type II interaction, the maximum detectable SHG power was ~ 10.3 µW for 

~65 mW of input. That only SHG power was measured in the output was ensured by 

use of appropriate wavelength filters. These values represent an increase of more than 

~ 60 % compared to the available power for the initial 3 mm long waveguides. This 

effect, also observed with birefringent waveguides, is due to the fact that with 

femtosecond pulses the interaction length is limited by group velocity mismatch 

(GVD) to values much shorter than the physical length of the sample. Therefore, a 

longer device tends to have a lower yield because of propagation loss at the second 

harmonic. As discussed in chapter 4, this provides an indirect means of estimating the 

SHG propagation loss, which resembles the cut-back method. Calculating the GVD in 

the M-type waveguides is in fact not trivial, since the model used to obtain dispersion 

curves provides only numerical results. Adopting the calculations for bulk GaAs, 

however, an actual interaction length of ~ 100 µm should be expected. With use of the 

quoted values, an SHG propagation loss greater that ~15 dB/cm can be estimated. 
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Note that loss measurements using the scattering method, and presented in the 

following chapter, indicated a loss of ~ 10 dB/cm for the fundamental wavelength.          
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Fig. 6.15 Output power versus input power measurements at the 
fundamental wavelength, indicating a ~7 % overall transmission.  

 

The maximum external efficiency of the present device, defined as the SHG power 

collected after the output objective divided by the launched power before the input 

objective, is ~0.015% for type II geometry. To estimate the internal efficiency 

(trivially defined as the coupled fundamental power divided by the generated SHG 

power in the waveguide), one has to account for the input objective loss, the input 

facet reflectivity, and the mode-matching factor. Experimental measurements 

presented in Fig. 6. 15 indicated an overall transmission for the pump beam of ~ 7%. 

Combined with an estimated 50% collection efficiency for the zero-order mode and a 

measured transmission of ~70% through 1.5 mm of the waveguide (i.e., 10 dB/cm 

loss), this suggests that the input coupling efficiency was smaller that 30%. It is worth 

pointing that this input coupling efficiency is significantly higher than in birefringent 

waveguides. Furthermore, the collection efficiency for the SHG is estimated to be of 

the order of 30%, that is slightly lower than in birefringent waveguides. Differences 

between modal and birefringent waveguides in fundamental input coupling and SHG 

output collection efficiencies arise from a) the higher numerical aperture of the modal 

waveguides, and b) the use of third-order modes with modal waveguides, resulting in 

an increased modal reflectivity of ~50% (compared to 30% reflectivity for zero-order 

modes) according to the model of reference [24].        
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Therefore, it is estimated that out of the ~65 mW of available input power only less 

than ~20 mW is actually coupled into the waveguide, while ~31 µW of SHG power is 

generated inside the waveguide under type II process. This implies that the internal 

efficiency was in fact greater than 0.15%. That the quoted efficiencies are not over-

estimated is ensured, since the high SHG transmission losses have not been accounted 

for, along with the fact that only a part of the input spectrum contributes to the 

process.  

Evaluation of the normalised internal efficiency, as defined in chapter 4, can be 

carried out by assuming an interaction length of ~ 100 µm, following the standard 

GVD calculations for bulk GaAs. Accounting for the duty cycle of the pump source, 

this results in a normalised internal efficiency for type II process of ~2 %W-1cm-2. A 

direct comparison with the efficiency of the first-order QPM waveguides shows that 

the efficiency of the present scheme is about two times higher. However, it is 

approximately two orders of magnitude lower than the efficiency of the birefringent 

waveguides. The main difference between birefringent waveguides operating on 

fundamental modes and modal waveguides is the overlap integral, which yields a 

difference in efficiency by a factor of ~20. The additional factor of 5 could be 

explained by the poor confinement of the SH wave. Therefore, it is believed that 

further improvement of modal waveguides is possible. A more comprehensive 

discussion on the relative efficiencies achieved with birefringent, first/third-order 

QPM and modal-phase-matching is attempted in chapter 8.   
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6.4 Conclusions 

It has been explained that the modal dispersion, which is a unique feature of 

waveguides, can be used to phase-match nonlinear processes. It was also discussed 

that in the case of modal phase-matching, where generally the interacting fields 

propagate in different-order modes, overlap becomes a critical and (in the case of 

conventional waveguides) limiting parameter. Following recent theoretical research 

that revealed the potential of M-type waveguides for achieving optimised modal 

phase-matching, a properly designed M-type structure was fabricated and tested. 

Second-harmonic-generation in AlGaAs waveguides using modal phase-matching 

was demonstrated. Both type-I and II SHG were observed for fundamental 

wavelengths near 1.55 µm, using femtosecond pulses. Fine SHG tuning was available 

through temperature control, with a corresponding tuning rate of ~ 0.08 nm/0C. 

Practical SHG powers up to 10 µW were obtained with an input power of ~65 mW 

for the most efficient type II interaction. For the present device, this translates into a 

maximum overall device efficiency of ~0.015 %, corresponding to an internal 

efficiency greater that 0.15 %. Furthermore, accounting for a GVD-limited interaction 

length of ~100 µm, an internal normalised efficiency of ~2 %W-1cm-2 was calculated. 
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7. OPTICAL LOSS ANALYSIS IN SEMICONDUCTOR 

WAVEGUIDES  

7.1 Introduction 

Measurement of optical loss represents a vital component in the assessment of 

nonlinear waveguides. Accurate knowledge of this parameter is particularly important 

in the performance evaluation and implementation of resonant devices, most notably 

integrated optical parametric oscillators, where the magnitude of loss can have a 

dramatic impact on the oscillation threshold. In single-pass devices, such as nonlinear 

frequency shifters, wavelength mixers, and harmonic generators, optical loss is also 

vitally important since it sets an upper limit to the maximum attainable conversion 

efficiency.   

Unlike in their organic and inorganic counterparts, losses in semiconductor nonlinear 

waveguides are more difficult to characterize due to the inaccurate knowledge of 

effective refractive indices and facet reflectivities. Over the past few years several 

techniques including the cutback method [1], prism coupling [2,3], photo-thermal 

deflection [4], Fabry-Perot (FP) interference method [5-8], and scattering technique 

[9], [10-14] have been employed for the evaluation of loss. Many of these techniques 

are not universally appealing due either to their complexity or destructive nature. The 

FP interference technique has proved to be the most favourable and successful 

approach for evaluation of losses below 1 dB/cm. However, even though the 

technique is simple, robust, and non-destructive, it has a number of drawbacks 

including stringent requirements for frequency stability of the optical source, accurate 

knowledge of facet reflectivities and precision in the waveguide facet parallelism. On 

the other hand, scattering technique is uncomplicated and does not suffer from 

restrictions with regard to the optical source. This makes the femtosecond scattering 

technique a unique tool of loss analysis for nonlinear frequency conversion as well as 

a variety of other applications for which ultrashort pulses are commonly used.  

In this chapter, the scattering technique is demonstrated for the first time using a 

femtosecond tunable OPO.    
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7.2 Development of a femtosecond scattering technique for 

transmission loss measurements 

7.2.1 Operating principles and experimental set-up 

Three mechanisms are primarily responsible for waveguide attenuation, namely linear 

absorption, Rayleigh scattering and nonlinear (multi-photon) absorption. The former, 

related to inter- and intra-band transitions, is relatively small within the transparency 

range of the structure. Rayleigh scattering at interfaces and waveguide imperfections 

is the dominant loss factor and scales with the inverse of the fourth power of 

wavelength [15-18]. Finally, due to large peak powers of the femtosecond pulses, the 

presence of nonlinear two-photon absorption (TPA), in particular at wavelengths 

close to half-band-gap (below 1.7 µm), should be addressed.  

The basic principle behind the scattering method for measuring optical transmission 

loss in waveguides is based on the fact that the intensity of the light scattered normal 

to the waveguide at a given point is proportional to the intensity of the light inside the 

waveguide at that point. The overall loss coefficient (accounting for all loss 

processes) can then be determined by mapping the decay of scattered light intensity 

along the propagation length of the guide. This decay follows an exponential form 

according to: 

IL = I0e−αL                                                     (7-1) 

where IL is the scattered intensity after a propagation length L through the waveguide, 

I0 is the initial intensity at the start of the path, and α (in cm-1) is the overall loss 

coefficient to be determined. The presence of any defects and inhomogeneities in the 

propagation path would only affect the uniformity of the exponential decay. The 

above equation can be re-written in the form: 

LII L α−= )ln()ln( 0  

The loss coefficient, α, can therefore be readily calculated as the linear slope of the 

naperian logarithm of the scattered intensity plotted against the propagation length. 

Evidently, the loss coefficient translates into a loss per unit length given by: 
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The schematic of experimental set up is shown in figure 7.1. The optical source was 

the OPO described in detail in Chap. 3. The OPO provided more than 50 mW of 

signal and idler pulses with duration of ~250 and ~200 fs, respectively, at ~90 MHz 

repetition rate, tunable over an aggregate range of ~1.30-1.58 µm (signal) and ~1.8-

2.1 µm (idler). A half-wave-plate was used to control input polarisation and a flipper 

mirror to direct the input beam into power and spectral diagnostics. An end-fire 

coupling rig was used for mounting the semiconductor waveguide samples. The input 

pulses from the OPO were focused into the waveguide using a 40Χ microscope 

objective and the transmitted pulses were collected using a second 20Χ microscope 

objective. An infrared camera was used for optimizing the coupled light into the 

waveguide. The scattered light intensity out of the plane of the guide was monitored 

using an imaging system comprising a microscope, an IR camera, a frame grabber 

card and a computer to analyze the data. To increase the resolution, a mask was 

inserted above the sample to block the strong scattering at the input and output facets, 

as well as any residual reflected light from the top surface of the sample in the lateral 

directions. 
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Fig. 7.1 Experimental set-up. 
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7.2.2 Results and discussion 

The set-up was routinely used for loss measurements in a variety of samples. Here, a 

selection of results is presented mainly for 3.5-mm-long oxidised waveguides 

identical to those used for the SHG experiment discussed in Chapter 4. Unless 

otherwise specified, measurements were carried out for TE input polarisation. 
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Fig 7.2 (a) Photograph of a typical image of scattered light in the 
waveguide at 1.5 µm. Light is coupled into the waveguide from the 
left-hand side. Magnified image of the area is selected for loss 
evaluation. (b) Intensity profile of the scattered light inside the 
waveguide at 1.5 µm with a loss of 1.94 cm-1. 

 

Figure 7.2(a) shows a representative scattering profile for a typical waveguide at 1.5 

µm and ~15 mW of input power. The intense profiles observed at the input and output 

extremes correspond to the coupling losses at facets of the waveguide. Other isolated 

areas of non-continuous intensity are due to the scattering from either dust particles or 

defects. The clear streak is the scattered light while propagating through the 

waveguide. A small change in the waveguide position or misalignment of the input 
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beam resulted in the disappearance of the streak, confirming that it corresponded to 

the guided propagation mode only. Measurements of loss were, therefore, conducted 

over this path. As shown in the magnified part of figure 7.2(a), the section of the path 

comprising only the scattered light from the waveguide and devoid of any other 

spurious light is selected for further analysis1. Figure 7.2(b) shows the data for such 

selected portions of the scattered light. The main source of error in the calculation 

arises from the selection of proper region of scattered light and the fitting procedures. 

Numerous waveguides were tested and typical losses of 5-10 dB/cm were measured 

for the best of them at this wavelength as well as at ~ 2 µm, while losses as high as 

~25 dB/cm were obtained for others. Similar tests with non-oxidised samples showed 

reduced loss (as low as ~3.5 dB/cm), indicating that oxidisation adds to the 

waveguide attenuation. Repetition of the measurements several times revealed 

reproducibility to a satisfactory level. The validity of the quoted values is also 

supported by Fabry-Perot measurements carried out independently by collaborators.    

The wavelength versatility of the femtosecond OPO enabled the measurements over a 

wide wavelength range from 1.3 to 2.1 µm. A typical set of such measurements is 

presented in Fig. 7.3. The streak was found to be stronger at shorter wavelengths, 

which could be due to higher losses of the optics and lower sensitivity of the IR 

camera at longer wavelengths. The loss coefficients extracted from the linear fit to the 

data for a typical high quality waveguide were ~1.15-2.55 cm-1, corresponding to 

propagation losses of 5-11 dB/cm, with higher loss observed at shorter wavelengths. 

This is in agreement with the wavelength dependence of all loss mechanisms.   

The variation of loss with power was examined. As the intensity increased, the 

scattering at the input facet also increased, thereby reducing the selected portion of 

waveguide for further analysis. For input power levels exceeding 50 mW, it was 

almost impossible to obtain a clear image. With increasing input power the slope of 

the fit and thereby the overall loss increased systematically. Figure 7.4 depicts the 

variation in loss as a function of input power for specific wavelengths for a high 

quality waveguide. The loss increased from ~1 cm-1 to ~2.5 cm-1 with an increase in 

input power from ~5 mW to ~35 mW. This behaviour, typical for many waveguides 

                                                 
1 Evidently, availability of an efficient section for analysis limits the minimum waveguide length that 
can be resolved using the scattering method. In fact, this is the first time loss was measured via 
monitoring the scattering light in sub-cm waveguides. 
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that were tested, indicates that intensity-dependent nonlinear loss mechanisms add 

more than 1 dB/cm at high power levels. The cumulative effect of loss dependence on 

wavelength and power is shown in Fig. 7.5, where separate measurements of loss 

against wavelength are presented for three different input powers.  

Measurements of loss were performed for different waveguide modes (TE00 and other 

higher-order modes) and typical results as shown in Fig. 7.6 did not reveal any drastic 

variation in the loss coefficients, confirming good confinement within the waveguide.  

Loss measurements were also carried out in a good quality waveguide for different 

polarization configurations of the input beam and it was found that attenuation 

increased with increasing TM polarisation component. Figure 7.7 presents typical data 

for TE, diagonal and TM geometries. A study of the loss dependence on the 

waveguide width was attempted but later abandoned, since no systematic results could 

be obtained. In fact, a clear dependence of loss on the width could have only be 

resolved if waveguides of different width but identical in all other aspects were 

available. This was not possible due to random parameters influencing attenuation, 

such as dust particles, imperfections and so on.     

Finally, a collection of results obtained for three M-type waveguides that were 

modally-phase-matched (Chapter 6) is presented in Fig. 7.8. Here, measurements 

were taken for TE and diagonal polarisation at 1.5 µm and for TE and TM 

polarisation at 800 nm. The input power levels were such that the coupled light 

intensities corresponded to the guided intensities during the SHG experiment (~4 mW 

of fundamental and ~ 10 µW of second harmonic). The Ti:Sapphire laser was used as 

the 800 nm source. Calculations resulted in ~10 dB/cm (15 dB/cm) loss for TE 

(TE/TM) geometry at 1.5 µm and ~5 dB/cm (~4 dB/cm) for TE (TM) configuration at 

800 nm. The lower attenuation at the shorter wavelength in this case is due to better 

confinement in the waveguide and lower power levels, which resulted in negligible 

nonlinear loss. It should be noted that only fundamental modes were accessible in this 

waveguides and therefore the actual loss experienced by the second harmonic 

wavelength in the SHG experiment is expected to be much larger than ~5 dB/cm.    
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Fig 7.3 Loss coefficient for a high-quality waveguide plotted as a 
function of wavelength.  
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Fig 7.4 Loss coefficient for a high-quality waveguide as a function 
of input power (measured before the input objective) at different 
wavelengths: a) 1.45 µm, b) 1.50 µm, c) 1.55 µm, and d) 1.57 µm. 
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Fig 7.6 Intensity profile along propagation length, for the 
fundamental mode (TE00), as well as for a higher-order mode. Inset 
photos depict the spatial profile as sheen in the output.  
Measurements were made at 1.5 µm for a high-quality waveguide.  
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Fig 7.7 Intensity profile along propagation length for a high-quality 
waveguide at 1.5 µm and for TE, TE/TM and TM polarisation. 
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Fig 7.8 Intensity profile for three M-type waveguides at 1.5 µm (a 
and b) and at 0.8 µm (c and d). Input polarisation and power was 
chosen so that measurements correspond to the SHG experiment: 
Transmitted power: 3 mW for (a),(b) and 10 µW for (c), (d).  
Input polarisation: TE (a), TE/TM (b), TE (c), and TM (d). 
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7.2.3 Nonlinear loss studies 

In the previous section the overall loss coefficient, α, was evaluated based on Eq. (7-

1). However, in presence of nonlinear attenuation the transmission of optical intensity 

is best described by: 

),,(),,(),,( 2
0 trzItzrI

dz
tzrdI βα −−=  

The solution of the above equation is conventionally given in bibliography [19-20] 

by: 

0

)1(),0,()1(1

),0,()1(),,(
0

0

α
αβ

α

α

l

l

etrIR

etrIRtzrI
−

−

−
⋅⋅−+

⋅⋅−
=                                                (7-2) 

where α0 is the linear absorption coefficient, β is the two-photon absorption 

coefficient, l is the length of the nonlinear medium, R is the reflectivity of the 

medium, I(r,z,t) is the transmitted irradiance after a path length, z, and a is the modal 

structure factor.  

The coefficient β can, therefore, be extrapolated through data of transmitted 

irradiance as a function of the coupled irradiance. Such measurements were collected 

and are presented2 in Fig. 7.9 for the oxidised sample, TE input polarisation and two 

representative wavelengths.  The peak input and output irradiance were calculated 

from the measured average power taking into account the duty cycle of the source, an 

estimated ~10% coupling efficiency and ~50% detection efficiency. The spot area 

was assumed ~20 µm2. Large uncertainties in the estimate of the spot size and 

coupling/detection efficiencies were the main source of error in the calculations, 

which can only provide indicative values. The solid lines in Fig. 7.9 represent a fit 

according to Eq. (7-2), using values of a ~0.5, R ~0.3 and l=0.35. Furthermore, 

α0 was fixed at ~0.8-1.2 cm-1, corresponding to measurements at low input powers 

(~2 mW), assuming that at such low power levels only linear loss is present. Typical 

                                                 
2 It can be seen from Fig. 7.9 that transmission is of the order of ~10%. In the SHG experiment, a 
transmission of ~80% was estimated. This should not be a source of confusion, since in the present 
studies a) the input wavelength was ~1.5 µm and therefore according to Fig. 7.5 loss is more than twice 
as high as for the fundamental phase-matched wavelength (2 µm) and b) the waveguides used here 
were 3.5 times longer than the ones used for the SHG experiment. 
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values of β ranging from ~10 to ~18 cm/GW were calculated for wavelengths 

between 1.43 and 1.70 µm. In the above calculations, temporal broadening of the 

pulse due to GVD and self-phase-modulation effects have been neglected. The 

magnitude of TPA coefficients obtained in this study matches very well with the 

theoretical values (1-15 cm/GW) of bulk GaAs reported in [21] and those obtained 

experimentally (5-33 cm/GW) for GaAs waveguides in [22]. 
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Fig. 7.9 Nonlinear transmission data for a good-quality waveguide 
plotted as a function of input intensity within the waveguide. The 
scattered points are the experimental data and the solid line is the fit 
given by Eq. (7-2) at (a) 1.48 µm and (b) 1.55 µm.  
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7.3 Conclusions 

Using the scattering technique and femtosecond pulses from the OPO, optical loss 

was evaluated over an extended wavelength range from 1.3 to 2.1 µm.  It was 

established that this technique combined with the wavelength versatility of the 

femtosecond OPO represents a general and simple method for accurate determination 

of waveguide losses across the near- and mid-IR, where few other practical optical 

sources are available. The desirability of this spectral range is evident since it includes 

the telecommunication window (near 1.55 µm), as well as the wavelength regime in 

which these waveguides are proven to be strong candidates for nonlinear frequency 

conversion applications. 

Measurements in oxidised waveguides revealed that typical loss is expected to be ~1 

cm-1 near 2 µm and  ~2-2.5 cm-1 near 1.5 µm. Approximately one half of the loss is 

due to nonlinear two-photon absorption, the contribution of which vanishes for input 

power levels of a few mW. Nonlinear transmission measurements allowed an estimate 

of the β-coefficient, which was fount to be ~10-18 cm/GW in the 1.45-1.55 µm range. 

The dependence of loss on input polarisation and waveguide mode was also studied. 

Finally, loss measurements for the M-type waveguides showed that attenuation is 

significantly higher in these structures.      

Compared to previous reports, this chapter has presented advances of the scattering 

technique arising from: a) use of femtosecond pulses, allowing nonlinear loss 

contribution to be resolved, b) exploitation of OPO tunability, allowing for 

wavelength dependence loss measurements, and c) appropriate instrumentation for 

loss measurements in samples shorter than 0.5 cm.    
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8. GENERAL CONCLUSION 

8.1 Summary of results 

This thesis has presented details of experimental work aimed at the demonstration of 

efficient nonlinear frequency conversion in GaAs-based waveguides. The motivation 

for such a study was outlined in the opening chapter: GaAs offers the opportunity for 

the construction of numerous nonlinear optical devices operating in the near- and mid-

IR, providing that the fundamental problem of phase-matching nonlinear interactions 

in this isotropic medium can be overcome.        

In Chapter 2, a brief introduction to the basic concepts of nonlinear optics was 

attempted. The breaking in the harmonicity of the atomic dipole oscillators was 

shown to give rise to nonlinearities in light-matter interactions and the second-order 

polarisation and susceptibility of matter were introduced. Substitution of these 

quantities into Maxwell equations yielded a wave-motion equation which, in turn, was 

solved to produce the coupled-wave equations that describe the nonlinear interaction 

of three waves in a medium exhibiting second-order response. The coupled wave 

equations also revealed that the strength of a nonlinear process is maximised when the 

phase velocities of the interacting waves are matched (phase-matching). The 

complications in achieving phase-matching in disperssive media were discussed and 

the two established phase-matching methods presented. The first approach to phase- 

matching nonlinear interactions was shown to depend on the natural optical 

anisotropy of a suitable medium (birefringent-phase-matching). It was also shown that 

phase-matching can be engineered through a spatial modulation of the nonlinear 

coefficients (quasi-phase-matching). Finally, a short discussion was permitted to 

expose the effects of the use of beams with Gaussian profiles (at is most commonly 

the case) in a nonlinear interaction. 

Chapter 3 provided details regarding the design, construction and performance of the 

femtosecond optical parametric oscillator (OPO) that was built and served as the main 

experimental tool for the material characterisation. The OPO was based on a 

periodically poled lithium niobate (PPLN) crystal. Following phase-matching and 

group velocity mismatch calculations, the chosen PPLN crystal comprised eight 

evenly spaced grating periods ranging from Λ=20.6 µm to Λ=22 µm and was 1-mm-
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long. The OPO was configured in a semimonolithic, singly resonant (at the signal) 

cavity design. It was synchronously pumped by a self-mode-locked Ti:Sapphire laser 

at a ~90 MHz repetition rate. The device offered continuous coverage over the ~1.28-

1.58 µm and ~1.71-2.28 µm spectral range for the signal and idler, respectively, with 

corresponding average powers exceeding 100 mW (signal) and 50 mW (idler). Output 

signal pulses of ~250 fs and idler pulses of ~ 185 fs duration were obtained, with a 

corresponding spectral FWHM bandwidth of ~10 nm (signal) and ~ 26 nm (idler), 

resulting in a duration-bandwidth product of ~0.33 (signal) and 0.36 (idler), indicating 

near-transform limited pulses. The pump power threshold was ~200 mW with an 87 

% output coupler and typical operation was approximately four times above threshold. 

The device operated in a stable fashion for many hours and major maintenance work 

was not required for periods of many months.                 

Chapter 4 discussed the first approach to solve the phase-matching problem in GaAs, 

that is, by using form birefringence. Results were also presented from what we 

believe is yet the most efficient experimental demonstration of frequency conversion 

in this material. Artificial birefringence was induced by means of embedding native 

oxide layers (Alox) in a GaAs-based waveguide structure. Using femtosecond pump 

pulses at 2.01 µm, efficient type I second harmonic generation was observed in these 

GaAs/Alox waveguides, which had typical measured transmission loss of ~5 to 10 

dB/cm. Useful average SHG powers of ~650 µW were collected, for an available 

average pump power of ~50 mW, resulting in an overall external efficiency of ~1.3%. 

This hybrid set-up had a coupling efficiency of ~10% and a collection efficiency of 

~50%, hence the internal waveguide conversion efficiency was greater than 20%. 

Group velocity mismatch calculations indicated that the interaction length was shorter 

than ~200 µm, allowing for the extrapolation of the normalised conversion efficiency 

which was found to be greater than 1000 %W-1cm-2. This large efficiency value was 

supported by depletion measurements that revealed a pump power depletion of ~40% 

and a spectral depletion greater than 80% within the conversion bandwidth.   

Chapter 5 outlined the principles of quasi-phase-matching in semiconductor quantum 

well waveguides via quantum well intermixing technologies. It also detailed results 

from two experiments that resulted in demonstration of second harmonic generation 

in such waveguides. To our knowledge, these were the first reports of nonlinear 
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frequency conversion in GaAs-based structures using quantum well intermixing 

methods to modulate the large bulk-like nonlinear coefficients. The first of the two 

experiments utilised sputtered silica defect-induced intermixing to produce third-order 

gratings in a GaAs/AlGaAs superlattice structure. Type I SHG was demonstrated for 

fundamental wavelengths from 1480 nm to 1520 nm, using third-order gratings with 

periods varying from 10.5 µm to 12.4 µm. The SHG spectra exhibited spectral 

narrowing due to the finite acceptance bandwidth of the QPM gratings. An average 

SHG power of ~25 nW was collected for an available input pump power of ~80 mW, 

indicating an overall conversion efficiency as low as ~3x10-5 %. Accounting for the 

coupling and collection efficiencies of the set-up, the internal waveguide efficiency 

was estimated to be ~0.005%, while considering a calculated interaction length of 

~100 µm the normalised conversion efficiency was found to be on the order of  ~0.15 

%W-1cm-2. Subsequent efforts to achieve first-order gratings and higher efficiencies 

using this intermixing technique were not successful. Better quality, first-order QPM 

samples were fabricated by means of ion implantation induced intermixing. The 

second experiment presented inhere was based on such an improved sample. In this 

case, useful average SHG power levels up to 1.5 µW were obtained corresponding to 

an overall device efficiency of ~0.002%.  Again, taking into account the coupling and 

collection efficiencies of the set up, as well as the calculated interaction length, it was 

shown that the internal efficiency of the process was ~ 0.06%, while the normalised 

conversion efficiency reached the level of ~1.2 %W-1cm-2.           

Chapter 6 was dedicated to presenting details of the last phase-matching approach, 

which employs modal dispersion to compensate for the material dispersion, along 

with results from the corresponding experiment that demonstrated second harmonic 

generation in an M-type GaAs/AlAs waveguide designed for optimised mode-overlap. 

To our knowledge, this was the first report of frequency conversion in inorganic 

semiconductors by use of modal phase-matching in an optimised M-type structure. 

Type I and II SHG were observed for fundamental wavelengths near 1.55 µm using 

femtosecond pulses. Fine temperature tuning of the output wavelength was 

demonstrated at a rate of ~0.08 nm/0C. Practical SHG powers up to ~10 µW were 

obtained for an available input power of ~65 mW and for the most efficient type-II 

process. This indicated a maximum overall efficiency of ~ 0.015%, corresponding to 

an internal waveguide efficiency greater than 0.15%. Finally, accounting for a group 
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velocity mismatch-limited interaction length of ~100 µm, the normalised efficiency of 

the process was found to be ~ 2 %W-1cm-2.       

Chapter 7 presented the operating principles of, and results from, the femtosecond 

scattering technique used to measure the transmission loss of the waveguides. The 

flexible nature of this method, combined with the wavelength versatility of the OPO 

source, allowed the determination of optical loss over an extended spectral range in 

the infrared, from ~1.3 µm to 2.1 µm. Additionally, this method allowed loss 

measurements under the same experimental conditions as those during the material 

characterisation (e.g. loss measurements using femtosecond pulses), something which 

would have not been possible with alternative loss measurement techniques (e.g. 

Fabry-Perot method). Typical losses of ~5-10 dB/cm were measured in the oxidised 

waveguides, while quasi and modally phase-matched waveguides presented higher 

losses (~20 dB/cm and >10 dB/cm, respectively) in the infrared. Compared to 

previous reports on loss measurements using the same technique, the results presented 

inhere are the first to our knowledge that were carried out using ultrashort pulses, at 

such a broad spectral range and on sub-cm length waveguides.  Power-dependent loss 

measurements were carried out and it was established that at the maximum available 

input power levels approximately one half of the loss was due to nonlinear 

mechanisms (two-photon absorption). Loss measurements were also carried out as a 

function of the input polarisation, waveguide mode and width. Nonlinear transmission 

measurements permitted an evaluation of the β-coefficient, which was found to be 

~10-18 cm/GW in the 1.45 to 1.55 µm wavelength range.     

In the following section a comparative discussion of the different phase-matching 

techniques presented in this thesis is attempted, along with a short review of related 

work carried out in this field by a number of different groups.  
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8.2 BPM, QPM, MPM: A comparative discussion 

To allow for a comparative discussion between the different phase-matching 

approaches investigated in this work, the (device, internal and normalised) 

efficiencies obtained in each case are summarised in Table 8.1. In addition, Table 8.2 

outlines the corresponding measured losses together with the estimated coupling and 

collection efficiencies, as well as the practical SHG powers that were collected at the 

output of the different waveguides.  

 
Device   

efficiency 

Internal   

efficiency 

Normalised 

efficiency 

 

BPM 
 

1.3 % 
 

~20 % 
 

~1000 % W-1cm-2

QPM (1st order) 0.002 % ~0.06 % ~1.2 % W-1cm-2

QPM (3rd order) 0.00003 % ~0.005 % ~0.15 % W-1cm-2

MPM 0.015 % ~0.15 % ~2 % W-1cm-2

 

Table 8.1 Device, internal and normalised efficiencies obtained by the 
different waveguides. 

 Loss    

(dB/cm) 

Coupling 

efficiency 

Collection 

efficiency 

Collected SHG 

power 

 

BPM 
 

~5-10 
 

~10 % 
 

<50 % 
 

~650 µW 

QPM (1st  order) ~20 ~ 18 % ~20 % 1.5 µW 

QPM (3rd order) ~20 ~3 % ~20 % 0.025 µW 

MPM ~10-15 < 30 % ~30 % ~10 µW 

 

Table 8.2 Transmission losses, coupling anc collection efficiencies and 
collected SHG output powers obtained by the different waveguides. 
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Evidently, birefringently-phase-matched (BPM) waveguides resulted in significantly 

higher generated power levels and conversion efficiencies, with estimated SHG 

powers inside the waveguide in the mW-regime. On the other hand, the 3rd order 

quasi-phase-matched (QPM) waveguides resulted in almost negligible efficiencies. 

These waveguides, however, maintain their “historical” value as the first 

demonstrators of quasi-phase-matching in quantum well structures by means of 

quantum well intermixing. The 1st order QPM as well as the modally-phase-matched 

(MPM) waveguides resulted in similar SHG powers (µW power levels) and 

conversion efficiencies, but compare relatively poorly with the oxidised BPM 

samples.  

It is interesting to attempt a qualitative discussion on the factors responsible for the 

differences between the obtained efficiencies. In this context, the measured losses 

should be taken into account as a first priority. As can be seen in Table 8.2, BPM 

samples presented significantly lower transmission losses, while the QPM samples 

exhibited the higher loss amongst all the available waveguides. This difference in 

propagation loss (which should be attributed to process-related factors) is also 

reflected on the resulting efficiencies. When comparing the generated power levels as 

well as the overall device efficiencies1, one should also take into account the 

estimated coupling and collection efficiencies, which varied significantly due to 

differences in the waveguide design (e.g. core size, cladding thickness and refractive 

index, etc). 

A more thorough efficiency comparison can only be carried out in terms of the 

normalised conversion efficiencies, which for the case of guided wave second 

harmonic generation can be expressed as [1-5]: 
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Note that the above definition is identical to the plane wave result that was deduced in 

Chapter 2, with the addition of the mode-overlap integral factor K which accounts for 

the mode profiles of the interacting waves and reads as [1-5]: 

                                                 
1 Evidently, the coupling and collection efficiencies are included as inherent parameters in the internal 
and normalised efficiencies.  
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where propagation is taken along z-axis and Eω, E2ω are the field profiles normalised 

in the following way: 
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It is evident from Eq. 8.1 that in carrying out a theoretical prediction of the expected 

normalised conversion efficiencies for the present samples three factors should be 

accounted for1: 

1. The fundamental wavelength  

2. The effective nonlinearity of the specific heterostructure 

3. The mode overlap integral  

For the effective nonlinear coefficient an averaged value over all layers that constitute 

the waveguide core area should be used. In fact, for a N-layer stack with layer 

thicknesses h1….hN and bulk-nonlinear coefficients d1….dN, the average nonlinear 

coefficient is commonly expressed as [5]: 
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By using the above formula, the average nonlinearity of the waveguides under 

investigation was calculated. Values for the bulk AlGaAs coefficients as a function of 

the Al concentration were obtained from ref. [6], while for the oxidised waveguides 

the nonlinearity of the Alox layers was taken as zero. Note that in the case of the 

QPM waveguides, the spatial Fourier component is also taken into account for the 

calculation of the effective nonlinearity, assuming a 50% duty cycle and the ideal case 

of domain disordering (i.e, γ=0). Table 8.3 presents values for the three factors on 

which the normalised efficiency depends (that is, wavelength of interaction, effective 

nonlinearity and mode overlap integral). It also shows the calculated theoretical limit 

in normalised efficiency that can be achieved with the present samples. In doing that, 

the normalised efficiency of the BPM samples is taken as unity, since these 

waveguides appear to have reached the maximum attainable conversion efficiency (in 

                                                 
1 It has been assumed that the effective refractive indices of all waveguides in the infrared do not vary 
significantly. 
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the femtosecond regime), with nearly full spectral depletion in the acceptance 

bandwidth. 

 λ (µm) deff/dGaAs K/K0 n/nBPM

 

BPM 
 

2 
 

~ 0.93 
 

1 
 

~ 1 

QPM (1st  order) 1.5 ~ (0.74/π) = 0.24 1 ~ 0.12 

QPM (3rd order) 1.5 ~ (0.74/3π) = 0.08 1 ~ 0.01 

MPM 1.5 ~ 0.85 ~0.2 ~ 0.06 

 

Table 8.3 Parameters used to calculate the theoretical limit of the 
normalised efficiency for the different waveguides with respect to the 
efficiency attainable by means of birefringent-phase-matching: (a) 
Wavelength of interaction, (b) averaged nonlinear coefficient 
(normalised to the coefficient of bulk GaAs) and (c) Mode overlap 
integral (normalised to the value K0 for a type I process with 
fundamental guided modes). The last column presents the predicted 
conversion efficiency limit. 

According to the theoretical predictions shown in Table 8.3, one may conclude that: 

1. The 1st (3rd) order QPM waveguides are inherently limited to approximately 

one (two) orders of magnitude lower conversion efficiency than the BPM 

waveguides. However, the experimental results indicated a reduction in 

efficiency of three and four orders of magnitude, respectively, compared to the 

efficiency of the BPM waveguides (see Table 8.1). The modest performance 

of the present QPM samples should be primarily attributed to restrictions in 

current fabrication technology that prohibit large depths of modulation and 

accurate definition of a 50:50 grating period. Therefore, it is estimated that 

improvement in QPM technology could lead to an increase in the observed 

conversion efficiencies by a factor of up to ~100. 

2. The MPM waveguides are by first principles limited to approximately fifteen 

times lower efficiency than the BPM waveguides. Again, the experimentally 

obtained efficiencies (Table 8.1) indicate a reduction by a factor of ~500. This 

additional reduction should be attributed to the poor confinement of the waves 
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inside the waveguide core, which was approximately twice as small compared 

to the BPM waveguides. Hence, significant improvement is believed to be 

possible using modal-phase-matching by further optimising the waveguide 

design.    

To place the results presented in this thesis into a broader perspective, a selection of 

results on frequency conversion experiments, performed by various groups over the 

last decade, in semiconductor, PPLN, and polymer waveguides are summarised in 

Table 8.4. Rafailov et al. [7,8] demonstrated SHG from a first-order QPM 

GaAs/AlGaAs waveguide crystal using periodic modulation of nonlinear coefficient 

and predicted a conversion efficiency of 0.1% near 2.0 µm. Koh et al. [9] devised 

sublattice reverse epitaxy of GaAs/Ge/GaAs and achieved a normalized internal 

conversion efficiency of 2.0 x 10-3 %W-1 near 1.575 µm, which was three orders of 

magnitude lower than the predicted theoretical efficiency of 1.5%W-1. The low 

efficiency was attributed to high waveguide losses that were induced by the 

corrugation of the guide layer. Using all-epitaxially fabricated thick, orientation-

patterned GaAs films, Eyres et al. [10] demonstrated SHG with fundamental near 

10.0 µm and obtained efficiencies close to 4 x 10-3 %W-1. Skauli et al. [11] designed 

quasi-phase-matched orientation-patterned GaAs structures by a combination of 

molecular-beam epitaxy and hydride vapour phase epitaxy and obtained an internal 

conversion efficiency of 33% in their SHG experiment using an uncoated sample with 

nanosecond pulses near 4.0 µm. Yu et al. [12] fabricated low-loss orientation-

patterned AlGaAs waveguides and obtained 2 nW of SHG power, for an input power 

of 10 mW at 1.56 µm, comparable to an estimated output power of 20 nW. The 

transfer of corrugation of the template to the waveguide core resulted in high 

transmission losses for both fundamental and second harmonic. Lallier et al. [13] 

achieved efficient SHG (~24%) of a 10.6-µm, 60-ns CO2 laser pulses with a quasi-

phase-matched diffusion bonded GaAs crystals. Lallier et al. [14] also reported an 

infrared DFG conversion efficiency of 3.4 x 10-4 with diffusion-bonded QPM GaAs at 

11.35 µm using a LiNbO3 OPO. For an input energy of 17 mJ they detected 2 µJ of 

DFG energy (~180 W of peak power).  

Among the various reports of frequency conversion in other waveguides [15-22], only 

LiNbO3 and doped LiNbO3 waveguides have proved marginally more efficient (in 
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terms of recorded output power and internal efficiency) than the reported structures in 

the present study, with a few of the LiNbO3 experiments in the visible range. One of 

the first reports of mid-infrared generation in PPLN waveguides was by Lim et al. 

[23], who reported 1.8 µW of 2.1 µm radiation for 160 mW of 0.81 µm and 1 mW of 

1.32 µm radiation coupled into the waveguide, corresponding to a normalized 

efficiency of ~ 4%W-1cm-2. Very recently, Parameswaran et al. [24] achieved the 

highest normalized SHG conversion efficiency of 150%W-1cm-2 in the 1.5-µm 

communication band in buried waveguides formed by annealed and reverse proton 

exchange in PPLN. Hofmann et al. [15] produced mid-infrared radiation near 2.8 µm 

though QPM DFG in periodically poled Ti:LiNbO3 channel waveguides by mixing 

1.55 µm radiation from a diode laser and 3.391 µm radiation from a He-Ne laser. 

They obtained a conversion efficiency of 105%W-1, corresponding to a normalized 

value of 1.6 %W-1cm-2. Mizuuchi et al [16] achieved a normalized SHG conversion 

efficiency of 1200 %W-1cm-2 in x-cut MgO:LiNbO3 waveguides using QPM and 

Nb2O5 as a cladding layer. They observed 5.5 mW of SHG power for a pump power 

of 42 mW at fundamental wavelength of 0.867 µm. Sugita et al. [19] successfully 

generated highly efficient (1000%W-1) ultraviolet light at 0.386 µm in periodically- 

poled MgO:LiNbO3 waveguides. Sato et al. [20] demonstrated a QPM-DFG device 

for the 1.5-µm band using annealed-proton-exchanged PPLN waveguides with a high-

index cladding layer of As2S3, which enhanced the mode overlap thereby improving 

the efficiency. They observed a normalized SHG conversion efficiency of 790%W-1 

for a fundamental wavelength of 1.533 µm. They also estimated a DFG conversion 

efficiency of –6 dB at 1.528 µm for 30-mW of pump power (1.534 µm + 0.765 µm).  

Amongst an array of polymer waveguides investigated for frequency conversion using 

QPM and MPM techniques, Jäger et al. [25] demonstrated efficient SHG of  14 %W-1 

cm-2 in over-damped polymeric channel waveguides using modal dispersion phase-

matching near 1.55 µm, using of 6-8 ps pulses from a color center laser. Wigres et al. 

[26] obtained efficiencies up to 7%W-1cm-2 with optimized overlap integral for modal 

dispersion phase-matched SHG in new class of polymer waveguides. Jäger et al. [27] 

also reported SHG in poled polymer channel waveguides at 1.5 µm utilizing the QPM 

technique. Using 6-9 ps pulses, they achieved an efficiency of 0.05%W-1cm-2. They 

suggest that in order to utilize the high nonlinearity of polymers, better geometry, 
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poling procedure and materials are critical to realize complete modulation of the 

nonlinearity. The highest efficiency (up to 245%W-1cm-2) in a polymer waveguide 

was achieved by Dai et al. [28] for an interaction length of 36.7 µm, using high- 

repetition-rate 100-femtosecond pulses from a Ti:sapphire laser. 

It is clearly evident from the above discussion, and the values presented in Table 8.4, 

that semiconductor waveguides have excellent performance compared to PPLN and 

polymer waveguides. The present results confirm that these waveguides are highly 

promising for ultra short pulse applications, including telecommunication. It should 

also be noted that the above experiments were all performed at room temperature and 

we could easily couple ~100 mW of 200 fs pulses without any sign of optical damage. 

The waveguides also remained chemically stable over a period of time of typically a 

few months with reproducible results.     

In conclusion, using birefringent, quasi- and modal-phase-matching in GaAs-based 

waveguides, efficient second harmonic generation has been demonstrated and 

practical output powers obtained. Birefringent samples were found to be the most 

efficient among the samples investigated, followed by MPM and QPM samples. By 

employing even better waveguide design, improved coupling efficiency, lower 

fundamental and nonlinear wavelength losses, these waveguides could be pushed 

further into the mW-output power regime. The rapid progress from pW and nW 

output powers, in the initial stages of development of these techniques, to the µW and 

mW range at the present time is highly encouraging for this field, which is still in its 

infancy. 
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Sample Techniq. 
Input 

Power/
Energy 

Output 
Power 

Effici-
ency 

Norm. 
Efficiency 

(%W-1cm-2) 

Source(s) Ref 

AlGaAs/
AlAs 

BPM/ 
DFG 

0.44 
mW2 90 pW - 3.0 cw, 1.32 µm 

+1.0 µm 29 

GaAs/ 
Alox (I) 

BPM/ 
SHG 1.1 mW 2.3 µW 0.21 % 4.5 8 ps, 1.605 µm 30 

GaAs/ 
AlAs 

BPM/ 
DFG 7 mW2 0.12 

µW - 500 cw, 1.32 µm+1.0 
µm 31 

GaAs/ 
Alox (II) 

BPM/ 
SHG 5 mWa 650 µW 1.3 % >1000 200 fs, 2.01 µm 32 

AlGaAs BPM/ P.F. - 4 nW - 1000 cw, 0.95-1.064 
µm 33 

GaAs/ 
AlAs (I) 

QPM/ 
SHG 

2.3 
mWa 25 nW 3 x 10-5 % 0.15 250 fs, 1.48-1.52 

µm 34 

GaAs/ 
AlAs (II) 

QPM/ 
SHG 11 mWa 1.5 µW 0.002 % 1.2 250 fs, 1.534 µm 35 

AlGaAs QPM/ 
SFG 

0.0165 
mW2 0.4 nW - 810 cw, 1.54 + 1.575 

µm 36 

AlGaAs QPM/ 
SHG - - 4.9 %W-1 - cw, 1.466 µm 37 

AlGaAs QPM/ 
SHG - - 15  %W-1 - cw, 1.542 µm 38 

AlxGa1-

xAs 
QPM/ 
SHG - - - 0.02 pm/Vb cw, 1.48-1.62 

µm 39 

MgO: 
LiNbO3

QPM/ 
SHG 

12.3 
mW 1.2 mW - 1000 cw, 0.75-0.84 

µm, 19 

PPLN QPM/ 
SHG - - - 150 cw, 1.5365 µm 24 

Ti: 
LiNbO3

QPM/ 
DFG 

2 +110 
µW - 105 %W-1 1.6 cw, 1.56 

µm+3.39 µm 15 

MgO: 
LiNbO3

QPM/ 
SHG 42 mW 5.5 mW - 1200 cw, 0.867 µm 16 

LiTaO3
QPM/ 
SHG 34 mW 4.5 mW 13 % - Quasi cw, 0.856 

µm 18 

Polymer QPM/ 
SHG - - - 0.05 6 ps, 1.62 µm 27 
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GaAs/ 
AlAs 

MPM/ 
SHG 20 mWa 10.3 

µW 0.015 % 2 250 fs, 
1.505/1.54 µm 40 

Polymer MPM/ 
SHG 

133 
mW 1.2 µW - 39 cw, 0.815 µm 41 

Polymer MPM/ 
SHG - - - 14 6-8 ps, 1.55 µm 25 

Polymer MPM/ 
SHG 4.5 mW 38 µW - 245 95 fs, ~0.8 µm 28 

GaAs/Ge
/GaAs 

OPQPM/ 
SHG - - 0.002 

%W-1 - cw, 1.5761 µm 9 

GaAs/ 
AlGaAs 

PSNQPM/
SHG 1 mW 1 µW 0.1 % - 250 fs, 2.0 µm 8 

AlGaAs CDIc/ 
SHG 475 µW 0.2 nW 1.4      % 

W-1 - cw, 1.5118 µm 42 

GaAs OPQPM/ 
SHG 100 µJ - 33 % - 65 ns, 4.135 µm 11 

AlGaAs OPQPM/ 
SHG 2 nW 10 mW - - 1.564 µm 12 

GaAs 
Diffusion 
Bonding/ 

SHG 
- - 24 % - 60 ns, 10.59 µm 13 

GaAs 
Diffusion 
Bonding/

DFG 
17 mJ 2 µJ 0.034 % - 

60 ns, 
1.95µm+2.34 

µm 
14 

a Estimated coupled power  b Effective nonlinear susceptibility modulation c Crystal 
domain inversion.  

Table 8.4 Review of experiments that demonstrated nonlinear 
frequency conversion in different waveguides using various 
techniques. 
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8.3 Future work 

The promising results obtained in the present work leave open scope for further 

research and development in the area of nonlinear frequency conversion in GaAs-

based waveguides. In close relation to the experiments presented in this thesis, a 

subsequent step forward would involve demonstration of second harmonic generation 

in the same waveguides using picosecond and continuous-wave pump sources. Such 

an effort would result in a better understanding of the dynamics of the process (since 

group velocity related effects would vanish) and thus allow a more accurate 

calculation of the efficiencies. It is also possible that in the picosecond regime larger 

efficiencies are available (despite the lower peak powers), due to the fact that in this 

time scale longer interaction length and complete exploitation of the pump bandwidth 

is expected. Additionally, pulse duration measurements for the generated second 

harmonic signal would be interesting for a deeper insight into the process, although 

such a measurement is non-trivial due to the low power levels available. 

Accessing longer wavelengths in the mid-IR is also possible in these waveguides, 

through difference frequency generation. For example, a tunable mid-IR source 

around ~6 µm could be obtained by means of difference frequency mixing of the 

signal and idler beams from the OPO. However, the ultimate infrared source based on 

GaAs-waveguides is unquestionably an integrated optical parametric oscillator. Two 

main intermediate steps are necessary towards the realisation of such a device: a) 

parametric fluorescence measurements, which are vital for the improvement of the 

available technology by providing information on parametric gain, potential  

conversion efficiency and tuning range, and b) Bragg-mirror deposition on GaAs 

facets. With regard to the latter, the technology developed by collaborators at 

Thomson CSF and Glasgow is achieving improved results and high reflecting Si/SiO2 

mirrors have been demonstrated by use of chemical assisted ion-beam deposition.    

A final task of great interest for the realisation of a truly monolithic device is the 

integration of the nonlinear waveguide with the pump laser source. This is indeed a 

realistic target that would offer a compact, tunable source, which would suffer to a 

lesser extend from the coupling complications and losses that dominate the hybrid 

schemes investigated in the present work.  
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      APPENDIX A.  ULTRASHORT PULSE CONSIDERATIONS 

A.1 Pulse propagation 

Ultrashort (femtosecond) and short (pico- and nano-second) pulses are of great 

interest for a number of applications including the purposes of this thesis. In this 

section, only a brief account of basic concepts related to pulse propagation is given. 

Analytical discussion on the formulation that follows can be found in a number of 

sources [1-3]. We start by considering an optical signal at a central frequency ω0 

enclosed in a pulse envelope, which assumes a Gaussian shape. The signal amplitude 

can then be written as: 

)exp()exp(),( 2 φiiatztE −∝                                                                        (A-1) 

In the simplest case, the total phase is kzto −= ωφ  (where k is the propagation 

constant) and relates to the instantaneous frequency ωi of the sinusoidal signal within 

the envelope by 0/ ωφω == dtdi . This behaviour indicates that no sub-structure 

appears within the envelope and such a pulse is often referred to as unchirped. 

However, it is possible that the total phase has a quadratic (or even more complicated) 

dependence on time given by an equation of the form: 

kzbtt −+= 2
0ωφ                                             (A-2) 

Thus, the instantaneous frequency acquires a linearly varying time dependence: 

btdtdi 2/ 0 +== ωφω                (A-3) 

Such a signal is usually called chirped and b is the chirp parameter. Positive chirp 

(b>0) suggests that the instantaneous frequency increases in time, implying that the 

leading edge of the pulse is red-shifted in relation to the central wavelength and the 

trailing edge is blue-shifted. Negative chirp (b<0) is the opposite situation.   

It has been discussed in Chapter 2 that time-harmonic fields can be represented in the 

frequency domain through a Fourier transform integral. Following a Fourier analysis, 

it can be shown [2] that a pulsed signal with a temporal duration ∆τ has a frequency 

content defined by the spectral FWHM bandwidth ∆ν, which is given by: 

2)/(1 abX +=∆∆ τν                (A-4) 

The coefficients a and b have been defined before and X has a value that depends on 

the exact envelope profile. For example, a Gaussian envelope results in X~0.44, while 
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a sech2 pulse profile gives X~0.31. Clearly, Eq. (A-4) indicates that a specific 

frequency bandwidth supports a minimum pulse duration for b=0. Such a pulse is 

termed transform limited. In presence of pulse chirping (b≠0), a temporally broader 

pulse corresponds to the same frequency bandwidth.   

Due to the large frequency bands that accompany short pulses, a number of effects 

have to be considered to describe the propagation of a pulse in a dispersive medium. 

Dispersion is usually introduced through the definition of the propagation constant: 

)()( ωωω n
c

k =                                  (A-5) 

The physical interpretation of the dispersion-related effects is greatly assisted by 

expanding k in a Taylor series around the central carrier frequency ω0 as: 
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Clearly, for a pulse with “infinitely” small frequency bandwidth –and hence infinitely 

large pulse duration- (monochromatic, continuous wave operation) all terms of the 

expansion but the first can be neglected. This first term is related to the phase velocity 

vφ, which measures the propagation velocity of the central frequency line ω0. The 

exact behaviour of the phase velocity in a specific medium depends on the dispersion 

relation, as this is semi-empirically determined by the Sellmeier equations of the 

medium. Conventionally, when the refractive index n(ω) and its derivative dn(ω)/dω 

increase with frequency dispersion is said to be positive or normal. In the opposite 

situation the system possesses negative or abnormal dispersion. Since different 

frequency lines travel with different phase velocities, for short pulses with large 

frequency bandwidths the group velocity is introduced to measure the propagation 

velocity of the pulse envelope. The group velocity vg appears in the second term of 

the above equation. In presence of positive dispersion both the phase and group 

velocity decrease with frequency1. 

Higher order terms in Eq. (A-6) are connected to higher order dispersion effects. In 

particular, the third term represents group velocity dispersion (GVD), which is 

                                                 
1 This is clear considering the expressions presented in Table 1.  
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responsible for changes in the shape of the temporal pulse envelope. The following 

term represents third order dispersion (TOD) and so forth higher order terms. It 

should be noted that for higher order terms in Eq (A-6) to be significant, larger 

bandwidths are required. In fact, to a first approximation, third and higher order 

dispersion can be neglected for pulses exceeding ~50 fs in duration. Table A1 depicts 

the exact expressions for these quantities. 
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Table A.1 Units and expressions for the phase velocity vφ, group 
velocity vg, group velocity dispersion (GVD) and third order 
dispersion (TOD).  

 

In the context of nonlinear frequency conversion with use of ultrashort pulses, a 

number of issues related to the above quantities have to be addressed. First of all, 

matching the phase velocities of the interacting waves is required for the process to 

build up in useful material lengths. This problem (phase matching) has been discussed 

extensively in Chapter 2. However, even under perfect phase matching conditions the 

interaction length is limited by mismatch of the group velocities of the interacting 

pulses. Evidently, the group velocity mismatch (GVM) between two pulses with 

central frequencies ω1 and ω2 is given by: 

[ ]
)(

1
)(

1/
11 ωω gg vv

msGVM −=                                                                   (A-7) 

The group velocity mismatch (or temporal walk-off) as defined above measures the 

time separation of the two pulses after a unit length of propagation in the dispersive 

medium. This can be used to define the actual interaction length, as the length L over 

which the two pulses of duration ∆τ do not overlap any more: 
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GVM
L τ∆

=                    (A-8) 

In turn, group velocity dispersion is responsible for temporal broadening of the pulse 

by introducing a linear phase chirp across the pulse. This can be understood as 

follows: Form table A.1 it is clear that GVD can be written as: 
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Eq. (A-9) suggests that the value of GVD is positive when the group velocity 

decreases as frequency increases. In this case, blue components travel slower and 

therefore can be found in the trailing edge of the pulse (normal dispersion). Thus, the 

instantaneous frequency increases in time, suggesting that the pulse is positively 

chirped (b>0). Applying similar argumentation, one can easily conclude that in 

presence of negative GVD (abnormal dispersion) the pulse is negatively chirped 

(b<0). The pulse broadening of an initially transform limited, unchirped pulse with 

duration ∆τ, after propagation of length z in a dispersive medium, can be quantified as 

[1]: 

2

2

1
D

z z
z

+⋅∆=∆ ττ                                                                              (A-10) 

where ∆τz is the pulse duration at z and zD is referred to as the dispersion length2 

given by: 

1
2

)(
)2ln(4

−∆
= GVDzD

τ                                                                          (A-11) 

It should be noted that in Eqs. (A-4) and (A-10) the second power of GVD and the 

chirp parameter b are involved. Therefore, a pulse travelling in a dispersive medium 

(irrespectively of the sign of GVD) faces a two-fold effect: a) it experiences temporal 

broadening and b) it departs from the transform limit value of the bandwidth-duration 

product. The effects of third and higher order dispersion will not be further discussed, 

since they are not of special interest for the purposes of this work.          

 

                                                 
2 Clearly from Eq. (A-9) the dispersion length indicates the length of propagation during which the 
pulse is broadened by a factor of 2 .  
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The preceding discussion described phenomena related to the linear refractive index 

profile of materials. Nonlinear polarisation components can also give rise to pulse 

shaping effects, mainly via the χ(3) process known as the optical Kerr effect [4]. In 

particular, the Kerr effect describes the instantaneous change of the refractive index in 

presence of intense fields described by: 

Innn 20 +=                  (A-12) 

The nonlinear refractive index n2 is responsible for the modulation of optical signals 

both spatially (self-focusing) and in the time domain (self-phase modulation). Self-

phase modulation (SPM) denotes the change in the instantaneous frequency across the 

pulse envelope due to the Kerr effect, which according to Eq.(A-12) after propagation 

in a Kerr-type material of length L is given by: 

( ) ⇒−−=−= LInntkzt 2000
2
λ
πωωφ    

dt
dILni 20

2
λ
πωω −=                  (A-13) 

Thus, the carrier frequency is linearly dependent on the negative time derivative of the 

corresponding light intensity. Interestingly, around the peak of the pulse (that is, in the 

area where the pulse’s time profile is nearly parabolic) the intensity derivative can be 

taken as a linear function of time with negative values. In combination with the fact 

that n2 is positive for most materials, this suggests that SPM gives rise to an 

approximately linear positive chirp, equivalent to the chirp produced by propagation 

through material exhibiting positive GVD. Clearly, the linear chirp due to GVD and 

the nearly linear positive chirp due to SPM add up (cancel out) in a positively  

(negatively) dispersive medium. 

It has been shown that group velocity dispersion, third and higher order dispersion as 

well as self-phase modulation set the temporal limit in pulse generation. Of all these 

effect GVD is the dominating obstacle for pulse durations of the order of ~100 fs. In 

the following section available mechanisms for compensating for GVD are presented.     

 

 

 

 

 

 172



APPENDIX A ULTRASHORT PULSE CONSIDERATIONS 
 

A.2 Group velocity dispersion compensation 

A number of designs using pairs of prisms [5], pairs of diffraction gratings [6] and 

chirped mirrors [7] have been proposed to compensate for GVD.  The first scheme is 

of special interest for this work and its working principle will be outlined. The prism 

pair set-up is shown in Fig. A.1. The prism apex angle is cut such that at minimum 

deviation of the centre wavelength (i.e., with incidence angle equal to exiting angle), 

the angle of incidence is the Brewster angle. Thus, the Fresnel reflection losses for the 

correct linear polarization are minimized. In essence, this arrangement creates a 

longer path through the prism material for the red wavelengths compared to the blue, 

introducing a negative dispersion (even though the dispersion of the glass material 

itself is positive). Provided the prism separation, l (defined tip to tip) is sufficiently 

large, the positive dispersion of the prism material can be balanced.  

θ

l

blue

redθ

l

blue

red
 

Fig. A.1 Pair of prism scheme exhibiting negative and controllable 
GVD. 

It can be shown that the double pass total dispersion of the prism pair is given by: 
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GVD =                (A-14) 

In the above, P is the optical path length, L the physical length of the light path and 

the derivative d2P/dλ2 is the following function of angular divergence θ, the refractive 

index of the prism glass n and the apex separation l: 
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Eqs. (A-14), (A-15) suggest that continuous adjustment of dispersion from negative to 

positive values through zero can be achieved by translating individual prisms to vary 

the amount of glass as well as by changing the prism separation.   
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A.3 Pulse duration measurements 

Measuring the exact duration of light pulses is necessary for most of the applications 

they are used for. For instance, knowledge of the pulse duration of the OPO source 

used in the SHG experiments presented earlier is vital, since it is needed to calculate 

the interaction length and the conversion efficiency of the process. It is self-evident 

that to resolve temporally an event, a second event of the same or shorter time 

duration is required. Fast photo-detectors and electron-optical streak cameras can 

provide information for pulses in the picosecond regime. Events with time durations 

of tens or a few hundreds of femtoseconds, however, are “instantaneous” for all 

instruments engineered to this day. Therefore, the only direct way to measure a 

femtosecond pulse is by use of the pulse itself. On this direction, the simplest and 

most widely used pulse measurement is achieved through autocorrelation [8]. More 

recently, less direct time-frequency domain methods have been developed, namely the 

frequency-resolved optical grating technique [9] and sonogram tracing [10]. 
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generator

 

Fig. A.2 Standard autocorrelator arrangement 

The typical autocorrelation arrangement is depicted in Fig. A.2. The incoming train of 

pulses is split into two trains of identical intensity by a symmetric beam splitter. The 

pulses are passed through a Michelson-type interferometer, which delivers spatially 

collinear and temporally overlapped beams on a second-order nonlinear detection 

scheme. One of the two arms of the interferometer is terminated by a mirror that is 

mounted on a translation stage and allows manual control of the optical delay. The 
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other arm uses a mirror mounted on an audio loudspeaker that introduces the 

necessary variable delay τ for autocorrelation tracing. The nonlinear response of the 

detection scheme ensures that the signal observed in an oscilloscope is proportional to 

the degree of overlap of the pulses: when the path lengths for the two replica beams 

are equal, the pulses exactly coincide at the detector and the amount of generated 

signal is maximised. As the speaker changes the delay, the temporal overlap of the 

pulses reduces and the signal drops. Standard detection methods involve second 

harmonic generation (SHG) in nonlinear crystals [8]. Alternatively, the quadratic 

response of a semiconductor device to light wavelengths below the bandgap via two-

photon absorption (TPA) has been demonstrated [11]. TPA autocorrelation has a 

number of advantages over SHG autocorrelation, including low cost, accessibility of 

the mid-IR wavelengths, lack of phase matching complications and was exclusively 

used for the OPO characterisation. 

It can be shown that the second order autocorrelation signal oscillate according to:  
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where the time-dependent electric field E(t) assumes a form similar to Eq. (A-1). At 

zero time delay (τ=0) the signal is maximum and obtains a normalised value of 

g2(0)=8, as Eq. (A-16) indicates. For a delay increment of one-half light period, the 

two fields add with opposite phase resulting in a near-zero signal. Hence, the fringe 

separation in the signal corresponds to one optical period at the centre wavelength, 

providing a direct self-calibration of the measurement. For large delay times (τ→∞) 

the two pulses are no longer overlapping and the intensity of the signal reduces to a 

background level, which according to Eq. (A-16) is equal to g2(∞)=1. Therefore, the 

fringes are expected to have a peak-to-background ratio of g2(0)/ g2(∞)=8:1. This ratio 

may not be satisfied in the case a frequency chirp is present in the pulse. In fact, a 

variation of the instantaneous frequency across the pulse results in a reduced 

interference between the delayed pulses and thus, compromises the fringe visibility.  
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It should be noted that autocorrelation as described above presupposes that the 

detection response time is fast enough to resolve individual fringes3. In turn, this 

requires that the frequency of the loudspeaker is relatively low, so that the mirror 

scans through one fringe within the response time of the detector. This type of 

autocorrelation is referred to as fast or interferometric. With increasing scanning 

frequency, the time average of g2(τ) can be obtained, which can be shown as: 
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This output is known as the slow or intensity autocorrelation. Applying similar 

arguments as before, it is clear that the intensity autocorrelation trace exhibits a 

contrast ration between the signal peak and the background of G2(0)/ G2(∞)=3:1. 

Translating the stationary mirror by a set length, results in a shift of the trace across 

the horizontal axis of the oscilloscope. This shift corresponds to the time needed for 

the light to double-pass the length of translation, providing a means of time-

calibration of the measurement. It should be mentioned that, unlike the interfero-

metric, no phase information is contained within intensity autocorrelations.  

It is practically impossible to retrieve the exact pulse profile from an autocorrelation 

trace. This induces an ambiguity to the measurement, since the actual FWHM pulse 

duration ∆τ is related to the FWHM of the autocorrelation ∆t width via: 

   
k
t∆

=∆τ  

where k is a constant that depends on the pulse shape. Values of k for different pulse 

profiles are given in table A.2  

Intensity Profile Interferometric 
autocorrelation 

Intensity 
autocorrelation 

Gaussian k=1.697 k=1.414 

Sech2 k=1.897 k=1.543 

 

Table A.2 Theoretical conversion factors for interferometric and 
intensity autocorerlation 

                                                 
3 It is common practise to improve the time response of the detector by impedance matching the 
oscilloscope to the detector with a suitable termination resistor.  
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