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ABSTRACT
Automatic Design of Algorithms (ADA) shi�s the burden of algo-
rithm choice and design from developer to machine. Constructing
an appropriate solver from a set of problem instances becomes a
machine learning problem, with instances as training data. An
e�cient solver is trained for unseen problem instances with similar
characteristics to those in the training set. However, this paper
reveals that, as with classi�cation and regression, for ADA not all
training sets are equally valuable.

We apply a typical genetic programming ADA approach for bin
packing problems to several new and existing public benchmark
sets. Algorithms trained on some sets are general and apply well to
most others, whereas some training sets result in highly specialised
algorithms that do not generalise.

We relate these �ndings to features (simple metrics) of instances.
Using instance sets with narrowly-distributed features for train-
ing results in highly specialised algorithms, whereas those with
well-spread features result in very general algorithms. We show
that variance in certain features has a strong correlation with the
generality of the trained policies.

Our results provide further grounding for recent work using
features to predict algorithm performance, and show the suitability
of particular instance sets for training in ADA for bin packing.

KEYWORDS
Automatic design of algorithms; features; bin packing

�is technical report is provided in support of the paper “Re-
latingTraining Instances toAutomaticDesign ofAlgorithms
for Bin Packing via Features” published at GECCO 2018, Ky-
oto, Japan.

1 INTRODUCTION
�e Automatic Design of Algorithms (ADA) seeks to build algo-
rithms, which perform be�er than human designed algorithms.
�e algorithms are trained on one set of problem instances, where
the algorithm undergoes adaptation (i.e. learning), and are then
applied to another set of unseen problem instances. ADA has been
employed to design algorithms for domains such as decision tree in-
duction, probability distributions, scheduling and others [6, 14, 17].
Recent research has shown how features of the problem instances
(e.g. metrics computed over the instance, or results of probing by
heuristics) can be exploited as part of the process to automatically

con�gure existing algorithms [4], select heuristics [21, 24, 38] or
predict runtime for algorithm variants [18, 19].

In practice, ADA is a machine learning procedure, with training
and test instances. It is well known that representative data is
needed if a machine learning algorithm is to generalise well from
the training data. By representative, we mean that the training
data contain enough information to induce an underlying rule that
captures what it means for data to belong to the speci�c problem.

In this paper we investigate the relationship between training
data and ADA, in terms of features of the training instances, for the
well known combinatorial optimisation problem of bin-packing. We
use a typical genetic programming approach to generate packing
policies for several benchmark instance sets. �ese policies are then
applied to all the instances from all the benchmark sets. We compare
the performance of the generated policies across all instances with
the features of the benchmark sets that were used to train the
policies. While standard benchmark problem instances are o�en
employed in the optimisation literature, and o�en for training
and testing in ADA, this paper demonstrates that not all problem
instance sets are equal, at least for bin packing. �erefore one
should choose problem instances which are representative of the
types of problems one is trying to solve.

�e contributions of this paper are:

(1) an analysis of a large number of benchmark instances for
bin packing, used as training data for ADA;

(2) the insight that training sets with more variation lead to
be�er trained packing policies;

(3) the observation that variance in certain bin packing in-
stance features (3, 4, 5, 6 from Table 2 for ��ing to training
data; 2 and 11–21 for generally performing policies) is most
helpful for ADA;

(4) two new sets of benchmark bin packing instances.

We start in Section 2 by summarising related work in bin packing,
ADA and features for optimisation. In Section 3 we describe our
methodology, including our method for automatically designing
packing policies using Genetic Programming (GP), a description
of the benchmark instance sets that we used in our experiments,
and a summary of numeric features calculated for the instances.
In Section 4 we present the results of the study: how the ADA-
generated algorithms performed on the instances; how much the
features varied within each instance set; and connections between
performance and features. Finally, we draw our conclusions in
Section 5 and consider the implications of the work.
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2 RELATEDWORK
2.1 Bin Packing and Metaheuristics
Bin Packing is a well-known combinatorial NP-hard problem, with
applications from dividing resources between physical containers,
to distributing processing tasks in cloud computing. �e goal of
bin-packing is to pack items of various sizes into bins of a �xed
size, using the fewest bins.

Metaheuristics have been used to successfully tackle bin-packing
for some time [7, 12, 13, 26], and has continued to a�ract a�ention.

Sim et al [30] introduce a method inspired by Arti�cial Immune
Systems which learn continuously over time in a lifelong learning
paradigm. As the system develops, it maintains a small set of
heuristics which can adapt to incoming problem instance. Gomez
and Terashima-Marı́n [15] use a multi-objective approach based on
evolutionary computation, minimizing the number of bins used to
accommodate the items, and the total time required to make the
allocations. �ey produce sets of variable length rules representing
hyper-heuristics.

While some papers describe algorithms which operate directly
on items to be packed, other papers employ hyper-heuristics which
operate on the space of rules. �ese rules then operate on the items
themselves. While these rules have been represented using Genetic
Programming, they have also been represented as look up tables
[2]. �is has the advantage that a single look up table (or matrix
as they call it) represents a single rule. However one drawback of
this approach is that there are a large number of gaps in the matrix.
A simpler approach which overcomes this is to use splines [11].
�ese papers are relevant to the automated design of algorithms, as
many of them deliver a competitive algorithm for packing, based
either on components of existing heuristics, or by altering part of
an existing algorithm.

2.2 Features for Optimisation
�e use of features to classify problems and estimate algorithm
performance is currently an active area of research. Considerable
success has been reported in using machine learning combined
with algorithm portfolios to choose e�cient solvers for challenging
combinatorial problems such as SAT [21, 24, 38]. A similar ap-
proach was used to con�gure parameters for an existing algorithm
for continuous black-box optimisation problems [4], and for algo-
rithm runtime prediction [18] for SAT, MIP and TSP. One study has
looked at the use of features for bin packing to analyse algorithm
performance [19]. More general work in estimating problem hard-
ness or di�culty includes [31, 33, 34]; this has also been extended
to evolving new test instances with di�erent properties [32].

For all of these methods to realise their full potential, it is critical
that the relationship between instance features and performance
is understood. �ere is an underlying assumption with these ap-
proaches that instances with similar features have similar proper-
ties: that algorithms good at one instance will be good at another
with similar features. �is is certainly the case for ADA: we make
the assumption that a training set of instances with similar features
will yield an automatically designed algorithm suitable for similar
instances. Consequently our experiments focus on this: automat-
ically designing packing policies using one set of instances, and
testing them on other sets of instances. �e hypothesis is that ADA

trained algorithms will perform similarly well on benchmark sets
with similar distributions of features, and so sets with a wide spread
of features will result in more generally applicable algorithms.

3 METHODOLOGY
In applying ADA to any problem, the goal is to design an algorithm
that performs well on a set of instances. For bin packing, the goal is
to minimise the total number of bins used to pack all items across
all the instances in the training set. In this work we are not seeking
to outperform the state of the art – rather, we are seeking to gain
understanding of the ADA process for a typical approach. We adopt
a straightforward framework in which genetic programming (GP)
is used to evolve a packing policy: a function that gives a score s to
all current bins (including a to-be-used empty bin), given an item
to be placed. �e item is then placed in the bin with the highest
score (a�er excluding bins for which there is not enough remaining
capacity to hold the item). If there is a tie in the scores, the �rst bin
with that score is chosen.

A simple policy might be what is referred to as best-�t. With
this, the score is:

s =

{
0 if i > c

1
1+(c−i) otherwise

where c is the bin capacity and i the item’s size. �at is, choose
the bin with the least capacity remaining a�er the item is placed
in it. An alternative might be worst-�t, which always chooses the
bin which would leave the largest space. �is will always be the
to-be-used empty bin, so will maximise the number of bins used
and hence provide a useful baseline.

We will later refer to scaled-�t, a generalisation of best-�t. Each
scaled-�t policy has a threshold parameter 0 ≤ τ ≤ 1. When �nding
a bin into which to place an item, the score for each bin is equal
to abs(τc − i) where c is bin capacity and i the item’s size. τc is an
ideal remaining capacity to be le� in a bin a�er an item is placed.
So when τ = 0, this becomes best-�t, and when τ = 1 it becomes
worst-�t.

3.1 GP applied to bin packing
Our approach for automatically designing packing policies used
the GP terminals and operators speci�ed in Table 1. Within this
framework, the three simplest programs that GP can �nd are:

constant (the constant might be either a Real value, or BinCap,
with bin capacity for the instance) this means all bins score
the same, which corresponds to another simple policy �rst-
�t: always choose the �rst bin in the list of bins into which
the item �ts

RemCap bins are scored according to remaining capacity, which
is equivalent to worst-�t

constant-RemCap bins are scored inversely to remaining capac-
ity, which is equivalent to best-�t

�e �tness score to be minimised targeted policies that �nd the
minimal number of bins while avoiding bloat. �e integer part of
the �tness score was the total number of bins used by the policy to
pack all items across all instances in the training set. �e fractional
part was the number of nodes in the GP tree, normalised to (0,1).
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Table 1: Terminals and operators used in GP

Name Description
Multiply Product of 2 child nodes
Add Sum of 2 child nodes
Subtract Le� child node minus right child node
Max2 Maximum of 2 child nodes
Min2 Minimum of 2 child nodes
Square Single child node squared
DoubleERC Randomly generated constant (0-1)
RemCap Remaining bin capacity if item is added
BinCap Bin capacity

Our experiments were in two stages. Stage (1). For each training
set, the GP was repeated 30 times, generating 30 packing policies
tailored to that training set. Stage (2). �e evolved policies from
stage (1) were each applied to all 3581 instances from all benchmark
sets in the study. �e number of bins required by each policy on
each instance was recorded. Unlike stage (1), application of the
packing policies to instances is deterministic, so stage (2) did not
require multiple repeats.

Evolution in Stage (1) was performed using the EpochX [25]
library. �e population size was 1000, and evolution was termi-
nated a�er 100 generations. Otherwise the GP parameters were as
per the EpochX defaults. Some empirical exploration was used to
determine these parameters (in particular, longer runs with smaller
populations were tried), and these were found to yield reasonable
results. Extensive parameter tuning was not deployed since the
focus here is on the e�ect of the training sets, not the GP algorithm.

3.2 Benchmark Instances
A wide range of benchmark instances were selected from the lit-
erature to be used as training and test data for this study. �ese
were: 2cbp [1]; Augmented irup, Augmented non-irup and Random
[10]; bw-2bp [5]; falkenauer-t and falkenauer-u [12]; hard28 [27];
mv-2bp [20]; orlib [3]1; scholl 1, 2 and 3 [28]; schwerin 1, 2 [29]; and
waescher [37]. We also devised two new sets of benchmarks, de-
scribed in Section 3.3. Where instance sets were for 2-dimensional
bin packing, the second dimension was ignored .

3.3 Stirling Instances
We also introduced a new set of benchmark instances that we will
collectively refer to as the Stirling Instances. �ese were intended
to provide varying levels of di�culty by allowing items to take
sizes in bands de�ned as a fraction of the bin capacity. Some of the
instances allow a wide spread of item sizes, from zero up to the
full bin capacity; others allow only very small items or very large
items. �e largest ones always require n bins, serving as a useful
benchmark for which all algorithms will perform equally well (at
least, in terms of the number of bins used: how e�ciently they �nd
this solution will of course vary).

�ese instances were generated in a similar fashion to [8]. Each
instance is parametrised by a bin capacity c , number of items n,
and lower/upper bounds on the item sizes l and u. Item sizes are
1It is worth noting that orlib instances are actually a combination of falkenauer-t and
falkenauer-u

Table 2: Instance features

Feature Description
1. All item sizes in the instance are integers (rather than

fractional): True/False
2. Number of items in the instance
3. Mean item size divided by the bin capacity
4. Standard deviation in the item sizes divided by bin

capacity
5. Information entropy in the item sizes, divided by bin

capacity
6. Maximum item size divided by bin capacity
7. Minimum item size divided by bin capacity
8. Median item size divided by bin capacity
9. Maximum item size divided by minimum item size
10. Compression ratio for the list of item sizes (applying

gzip to the string representation of the list)
11-21. �e scaled-�t “performance features”, with τ increas-

ing from 0 to 1 in 0.1 increments

sampled uniformly at random in this range. In generating our
instances, we used two bin capacities: 100 and 150. �e la�er was
following [8], the former so that the item size bands reached the
bin capacity. For both bin sizes, (lower bound, upper bound) for
item sizes were: 0,100; 0,50; 51,100; 0,25; 26,50; 51,75; 76,100. We
refer to the sets as stirling generated binCapacity lb ub.

3.4 Instance Features
Our experiments consider the distributions of values for features
over the instances in benchmark sets, and how these distributions
relate to the performance of algorithms built by ADA.

�e features we used are listed in Table 2. We refer to features
1-10 as static features; features that are constant with respect to
a given bin packing instance (an instance being a bin capacity,
and a list of items to be packed). Most of these static features were
taken from [19], where they were used for constructing a regression
model to estimate algorithm performance.

In several other works using features to estimate algorithm
performance for other combinatorial problems (e.g. [24]), the be-
haviour of some simple local search or other heuristic methods
was used for some features. We refer to features of this kind as
performance features. In our experiments, these were the number
of bins found when applying scaled-�t policies with τ values from
0 to 1 inclusive, in 0.1 increments.

�ese features can be used to visualise the sets of instances,
following the well-known work of Smith-Miles et al [32, 34]. We
use the non-linear dimensionality reduction technique called t-
Distributed Stochastic Neighbor Embedding (t-SNE) [35] to plot
the instances in two dimensions. �is technique has become fairly
popular, especially for machine learning datasets, because, in gen-
eral, it is able to preserve much of the local and global structure of
the data, it is not limited to linear relationships like the more tradi-
tional Principal Components Analysis and it scales well on larger
datasets. t-SNE minimises the divergence between the distribution
that measures pairwise similarities of high-dimensional points and
the one that measures pairwise similarities of the corresponding
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low-dimensional points. �e la�er distribution is computed as a
normalised Student-t kernel with a single degree of freedom. Since
the normalized Student-t kernel has heavy tails, this allows for dis-
similar points to be modelled by low-dimensional counterparts that
are also far apart. �is creates more space to accurately model small
pairwise distances, or local structure, in the low dimensional space.
Since the features span a number of types and domains, dissimi-
larity between points is measured using the Gower distance [16]
which is a linear combination of appropriate distance metrics for
each data type and scaled to fall between 0 and 1.

Our later analysis will focus on statistical analysis of the results
to draw our conclusions, but these illustrations serve as a helpful
guide to the overall distribution of the instances in terms of their
features (i.e. in feature space). Figure 1 shows all 3581 instances
from the sets we studied, rendered using t-SNE over the features
listed in Table 2. At a high level we can observe that some sets
have a wide spread of features among their instances (e.g. Scholl
1 and Scholl 2); some have very li�le variation in their features
(e.g. Schwerin 1 and Schwerin 2); and some have tight clusters of
instances, with the clusters spread out over most of the feature
space (e.g. Falkenauer-t, Falkenauer-u and the Stirling instances
we generated). �ese �gures aggregate the 21 features in to 2
dimensions, but as part of our study we computed the standard
deviation for each feature over all the instances in each benchmark
set and the variation seen in the �gures does indeed carry over to
the raw data.

It is worth noting that not every feature has the same importance
[36]. Consequently, considering each feature as equally important
can cause misleading similarity/diversity analysis. In [23] authors
incorporate latent (hidden) features extracted from performance
data to address this issue. In [22], a similar approach to our own was
performed to deliver instance set analysis across di�erent problems
including bin packing. �e results showed that even instances from
totally di�erent problems can be closer in terms of features than
the ones from the exact same problem domain. Much broader work
building on the present study could analyse the characteristics of
the training sets beyond pre-determined features or �xed instance
sets (e.g. training on Falkenauer-u assuming that they are similar).
Here, we focus on �xed training sets as a logical �rst step in our
strand of analysis.

4 RESULTS AND DISCUSSION
For each training set, the GP was repeated 30 times, generating 30
packing policies tailored to that training set. �ese evolved policies
were each then applied to all 3581 instances and the number of bins
required by each policy recorded. Unlike the GP stage, application
of the packing policies to instances is deterministic, so this stage
did not require multiple repeats.

4.1 Algorithm Footprints
A�er running every policy on every instance, the footprint for each
policy was determined. �e concept of an algorithm footprint was
introduced by [9] and developed by [31], and is the set of instances
on which a particular algorithm is known to perform well. We
de�ne the algorithm footprint for our bin-packing problems as
the set of instances for which a policy (the ‘algorithm’) found a

solution using the minimal known number of bins (so, the instances
for which that policy found an optimal solution).

For comparison, we also computed the footprint for the scaled-
�t policies spanning from best-�t to worst-�t. �e footprint for
best-�t 2338 instances (65% of all instances), and the footprint for
worst-�t is 121 instances (3% of all). Analysing the features for the
instances in these footprints, best-�t has a footprint covering much
of the feature space; worst-�t only performs well on a narrow set of
instances (the Stirling instances for which the optimal solutions had
one item per bin). �e scaled-�t policies between 0 (best-�t) and
1 (worst-�t) have footprints gradually increasing between these
two extremes. As our GP approach to the problem is relatively
simplistic, it is no surprise that it struggles to beat best-�t on many
instances. �ese will fall into two categories: very hard instances
that need a more sophisticated approach than either our GP or
best-�t, and very easy instances for which both approaches work
well. �e 1243 instances on which the GP approach outperformed
best-�t (i.e. using fewer bins than best-�t) fall in between these
extremes, and so are of particular interest. In the remainder of the
paper, we focus our analysis on these instances (referred to as the
�ltered instances), and on the impact that their spread of features
have on generating policies via GP. �ese are illustrated in Figure 2.

4.2 Footprint Metrics
We now analyse the footprints of the policies generated by GP
using each set of training instances. Table 3 shows the following
metrics for the footprints among the �ltered instances. Each row
corresponds to one set of training instances, and the 30 policies
generated using that set. �ese a�empt to summarise the perfor-
mance of the policies trained using each instance set. We will draw
comparisons between these performances and the features in the
instance sets in Section 4.3.

T �e number of instances in the training set a�er �ltering
F �e footprint size: i.e. the number of instances in the footprint.

�e mean m and standard deviation sd over the 30 policies is
given.

Fr �e fraction of the 1143 �ltered instances that contained in the
footprint. �is is intended to measure how general the trained
policies are. If Fr is near one, the footprint includes many in-
stances so can be said to be general. If Fr is near zero, the footprint
is small and specialised to a narrow set of instances.

TF �e number of instances in both the training set and the foot-
print. �is serves as a sanity check in the training process. Given
that the training focuses on generating a policy tailored to the
training instances, we would expect to have generated a policy
that �nds the optima for some of the training instances, making
TF non-zero.

T1 �e fraction of the footprint comprising instances from the
training set. �is is intended to measure how well the trained
policies generalise beyond the training set. If T1 is near zero, the
footprint includes many instances that were not in the training
data: the policy has generalised well to unseen instances. If T1
is near one, the footprint is mostly the training instances, so
the policy has not generalised beyond the training data (it has
over��ed). Note this �gure is a�ected by training set size: two
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Figure 1: All instance sets rendered in feature space

policies with the same footprint will have di�erent T1 if one has
a larger training set than the other.

T2 �e fraction of the training set instances in the footprint. �is
shows how well the policies have ��ed to the training instances,
similar in intent to R2 for a regression model.

P Summarises the 30 evolved policies for each training set. c rep-
resents a program comprising of a single constant, which will
score all bins equally and so revert to “�rst-�t”. r represents a
program comprising only of the remCap terminal, which corre-
sponds to “best-�t”, and c − r corresponds to a constant minus
remCap. * represents any program more complex than any of
these. Where two symbols are given, there was a roughly equal
balance between two types of policies.

�ere are several observations to make from these results before
we move on to the relationship with instance features.

Evolved policies. Within each of the training sets, although
the speci�c policies evolved in each GP run were di�erent, they
were similar in qualitative terms. Some sets se�led exclusively on
policies consisting of a �xed constant (equivalent to �rst-�t) or just
the remCap variable (equivalent to best-�t); for most of the others

GP found trees with 20-30 nodes, combining most of the operator
and terminal types.

Generality. Overall, most of the policies generalise to unseen
instances: T1 is generally below 0.2 meaning that most of the foot-
prints are made up of unseen instances rather than those from the
training set. Exceptions are 2cbp and orlib, for which 0.95 and 0.38
of the footprint comprises training instances. However, T1 is in�u-
enced by the size of the training set: for the very small sets, a policy
will only need to do well on a small fraction of the unseen instances
for those to outnumber the training instances. In contrast, Fr is
always below 0.1: although the footprints include unseen instances,
they only cover a small subset of all instances.

Success on training set. �ere is considerable variation in the
success of policies on the instances used to train them. T2 varies
between 0.00 and 0.64: meaning that in some cases it was rare
for any training instances to appear in the footprint. However, by
chance, these policies were still able to �nd the optimal solutions
for other, unseen, instances.

Performance for policies trained on Stirling instances. �e
Stirling instances were designed with tightly controlled structures

5
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Figure 2: �e subset of instances for which it was possible to improve on bestFit using ADA, rendered in feature space

(i.e. narrow bands of item sizes) to simplify identi�cation of pat-
terns in the trained policies. Set 100 26 50 yields policies that are
highly specialised. �ese over��ed policies are in�uenced by ran-
dom noise and so result in widely varied footprints across the 30
evolved policies and do not generalise well (with relatively small
average footprint sizes).

Figures 3 and 4 have been added to illustrate the training sets and
the footprints in qualitative terms, so that as well as the size of the
sets/footprints, some insight can be made into the kinds of instances
in them (at least in terms of their spread of features). Figures 3a and
4a show that the instances in the Falkenauer-u and Schwerin 1 sets
have high and low variation in their features respectively. Figure 3b
shows the footprint for the policies trained on Falkenauer-u. �is
footprint had a high Fr metric, meaning it cover a large number of
instances: the illustration shows that these are also spread out over
a wide range of features and instance sets. It also had a relatively
high F2, re�ected by many of the training set instances featuring
in the footprint. By way of contrast, Figure 4b shows the footprint
for Schwerin 1. Its Fr metric is relatively low, re�ected by a much
smaller footprint (which is also less spread out, indicating a lower

spread of features in the instances the policy is successful on). Its F2
metric is zero, re�ected in there being none of the training instances
in the footprint.

4.3 Variation in features
We now consider how the features for our bin packing instances
(listed in Section 3.4 related to the success of the trained policies. In
order to capture the variation in features for each instance set, we
computed the standard deviation for each feature within the set’s
instances. �ese are shown in Table 4. Only the orlib instances
showed any variation in Feature 1 (integer/fractional object sizes)
within the set. Features 2, 4 and 5 (metrics on the instance sizes) had
negligible variation among the Stirling instances, as a result of their
design. �e variation in Features 11-21 (the performance features)
was similar across the training sets. �at is, among the instances of
Falkenauer-u, orlib, augmented irup/non-irup and scholl 1/2 these
features showed large variation; these features varied much less
among the instances of the other sets. Given that these make up
half the features, this is visible when the 21 features are projected
into 2 dimensions: note the Falkenauer-u instances have a much
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Table 3: Footprint metrics for each training set (see text for detailed explanation). Set: Training Set; T: number of instances
in training set; P: summary of the 30 policies generated for the training set by the repeat GP runs; F: number of instances in
the footprints of the 30 policies; F: fraction of all instances in the footprint; TF: number of instances in both the training set
and the footprint; T1: fraction of the footprint in the training set (over�tting to training set); T2: fraction of the training set
in the footprint (�t to training set). For all,m is mean, sd is standard deviation. Omitted points result from division by zero.

Set T F Fr TF T1 T2 P
m sd m sd m sd m sd m sd

1 2cbp 182 87 27 0.07 0.02 19.90 13.54 0.21 0.13 0.11 0.07 *
2 augmented irup 0 54 0 0.04 0.00 0.00 0.00 0.00 0.00 c
3 augmented non irup 0 54 0 0.04 0.00 0.00 0.00 0.00 0.00 c
4 bw 2bp 167 67 15 0.05 0.01 62.07 4.59 0.95 0.11 0.37 0.03 *
5 falkenauer-t 80 101 61 0.08 0.05 21.20 23.71 0.16 0.20 0.27 0.30 c*
6 falkenauer-u 72 120 63 0.10 0.05 27.90 25.06 0.17 0.15 0.39 0.35 c*
7 hard28 0 54 0 0.04 0.00 0.00 0.00 0.00 0.00 c
8 mv 2bp 63 63 12 0.05 0.01 2.03 3.37 0.03 0.04 0.03 0.05 c-r
9 orlib 149 113 25 0.09 0.02 41.63 11.57 0.38 0.10 0.28 0.08 *

10 random 4 54 0 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 c
11 scholl 1 138 64 15 0.05 0.01 0.90 3.06 0.01 0.03 0.01 0.02 c-r
12 scholl 2 127 57 11 0.05 0.01 0.47 0.82 0.01 0.02 0.00 0.01 c
13 scholl 3 10 60 23 0.05 0.02 0.60 2.28 0.01 0.02 0.06 0.23 c
14 schwerin 1 20 54 0 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 c
15 schwerin 2 81 58 23 0.05 0.02 2.70 14.79 0.02 0.08 0.03 0.18 c
16 waescher 0 54 0 0.04 0.00 0.00 0.00 0.00 0.00 c
17 Stirling generated 100 1 100 25 58 15 0.05 0.01 3.90 2.87 0.07 0.05 0.16 0.11 *
18 Stirling generated 100 1 25 0 58 0 0.05 0.00 0.00 0.00 0.00 0.00 c-r
19 Stirling generated 100 1 50 8 65 13 0.05 0.01 5.13 0.51 0.08 0.02 0.64 0.06 *
20 Stirling generated 100 26 50 30 61 36 0.05 0.03 9.07 5.54 0.19 0.15 0.30 0.18 *
21 Stirling generated 100 51 100 0 38 25 0.03 0.02 0.00 0.00 c
22 Stirling generated 100 51 75 0 34 26 0.03 0.02 0.00 0.00 rc
23 Stirling generated 100 76 100 0 41 23 0.03 0.02 0.00 0.00 c
24 Stirling generated 150 1 100 21 68 14 0.05 0.01 5.93 1.46 0.09 0.04 0.28 0.07 *
25 Stirling generated 150 1 25 2 54 3 0.04 0.00 0.20 0.55 0.00 0.01 0.10 0.28 c
26 Stirling generated 150 1 50 4 50 12 0.04 0.01 2.00 0.00 0.04 0.02 0.50 0.00 *
27 Stirling generated 150 26 50 30 94 41 0.08 0.03 14.27 4.61 0.17 0.11 0.48 0.15 *
28 Stirling generated 150 51 100 30 87 52 0.07 0.04 7.30 1.18 0.13 0.11 0.24 0.04 *
29 Stirling generated 150 51 75 0 54 0 0.04 0.00 0.00 0.00 0.00 0.00 r
30 Stirling generated 150 76 100 0 36 26 0.03 0.02 0.00 0.00 c

wider spread in Figure 3a than the Schwerin 1 instances in Figure 4a
(in fact, Schwerin 1 showed li�le variation in any of the features).

We now draw a comparison between the variation in features
for each instance set, and the performance of the policies that
were generated when the sets were used as training data. We
measure performance in terms of the footprint metrics given in the
previous section. Table 5 gives the statistical correlations between
the metrics for the footprints, with the standard deviation in the
features across the instances of the corresponding training set.
�e variation in Features 2 (number of items to pack) and 11-21
(performance features) has a strong positive correlation with the
Fr metric. �is metric measures each policy’s footprint size, which
captures how generally applicable the policy is. It is logical that
features 2 and 11-21 have somewhat similar in�uence: with feature 2
being the number of items to pack and features 11-21 being number
of bins required using di�erent heuristics we would expect them to
be correlated. We conclude two things from this result:

(1) that the amount of variation in the number of items among
the instances (feature 2) is a strong indicator of how general
the policies trained on it will be. If all the instances in a set
have the same number of items, the policies generated for
them will be much less likely to perform well in general.

(2) the amount of variation in the performance of the scaledFit
policies (features 11-21) is also a strong indicator of general
performance for the resulting ADA-generated policies.

In contrast, li�le can be said about the relationship between
variation in features and the F1 metric, as all these correlations are
weak. �is is speci�cally targeted to measure how well the policy
performs on instances outside the training set.

On a qualitative level, Figure 3b shows how the well spread
out training set (Falkenauer-u) leads to general policies with a
widely spread footprint, whereas Figure 4b shows how a training
set with a narrow range of features leads to policies with a small,
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(a) Instances: Black points are instances in the set, grey are all others
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(b) Footprint: Black shows the instances which appear in more than half of the 30 footprints for the policies
generated for Falkenauer-u

Figure 3: Feature-space locations of the instances for Falkenauer u and the footprints for the policies trained on that set
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(a) Instances: Black points are instances in the set, grey are all others
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generated for Schwerin 1

Figure 4: Feature-space locations of the instances for Schwerin 1 and the footprints for the policies trained on that set
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Table 4: Set & std dev for each feature. Features 12-20 omitted to save space but have broadly the same distribution as 11 & 21

Set 1 2 3 4 5 6 7 8 9 10 11 21
1 2cbp 0.0 67 0.0050 0.0024 0.000 0.253 0.056 0.138 0.082 0.110 28.3 67.2
2 augmented irup 0.0 284 0.0005 0.0004 0.000 0.002 0.001 0.015 0.094 0.007 94.5 283.6
3 augmented non irup 0.0 284 0.0005 0.0004 0.000 0.002 0.002 0.016 0.093 0.007 94.5 283.6
4 bw 2bp 0.0 28 0.0064 0.0037 0.003 0.311 0.034 0.171 0.334 0.118 16.3 28.3
5 falkenauer-t 0.0 170 0.0019 0.0004 0.000 0.004 0.000 0.007 0.000 0.079 64.5 170.5
6 falkenauer-u 0.0 339 0.0011 0.0004 0.000 0.002 0.002 0.013 0.001 0.071 136.7 338.5
7 hard28 0.0 16 0.0002 0.0001 0.000 0.050 0.010 0.024 0.268 0.007 7.5 16.3
8 mv 2bp 0.0 28 0.0089 0.0039 0.001 0.065 0.047 0.218 0.344 0.116 22.4 28.4
9 orlib 0.5 292 0.0016 0.0004 0.000 0.085 0.058 0.049 0.007 0.070 122.9 292.0

10 random 0.0 0 0.0009 0.0005 0.000 0.053 0.052 0.054 0.037 0.023 3.1 0.0
11 scholl 1 0.0 175 0.0035 0.0015 0.000 0.135 0.104 0.099 0.342 0.118 94.2 174.7
12 scholl 2 0.0 175 0.0017 0.0006 0.000 0.142 0.073 0.086 0.007 0.108 43.6 174.7
13 scholl 3 0.0 0 0.0000 0.0000 0.000 0.001 0.000 0.005 0.000 0.004 0.5 0.0
14 schwerin 1 0.0 0 0.0000 0.0000 0.000 0.000 0.000 0.002 0.000 0.005 0.0 0.0
15 schwerin 2 0.0 0 0.0000 0.0000 0.000 0.000 0.000 0.002 0.000 0.004 0.1 0.0
16 waescher 0.0 51 0.0013 0.0008 0.000 0.151 0.004 0.085 0.045 0.061 5.4 51.1
17 (anon) generated 100 1 100 0.0 0 0.0002 0.0001 0.000 0.009 0.007 0.036 0.271 0.005 4.7 0.0
18 (anon) generated 100 1 25 0.0 0 0.0000 0.0000 0.000 0.002 0.000 0.010 0.002 0.004 1.0 0.0
19 (anon) generated 100 1 50 0.0 0 0.0001 0.0000 0.000 0.006 0.003 0.022 0.063 0.004 2.4 0.0
20 (anon) generated 100 26 50 0.0 0 0.0000 0.0000 0.000 0.002 0.000 0.010 0.000 0.004 1.2 0.0
21 (anon) generated 100 51 100 0.0 0 0.0001 0.0000 0.000 0.006 0.003 0.022 0.000 0.006 0.0 0.0
22 (anon) generated 100 51 75 0.0 0 0.0000 0.0000 0.000 0.002 0.000 0.010 0.000 0.004 0.0 0.0
23 (anon) generated 100 76 100 0.0 0 0.0000 0.0000 0.000 0.002 0.000 0.010 0.000 0.004 0.0 0.0
24 (anon) generated 150 1 100 0.0 0 0.0001 0.0000 0.000 0.006 0.005 0.024 0.181 0.005 3.0 0.0
25 (anon) generated 150 1 25 0.0 0 0.0000 0.0000 0.000 0.001 0.000 0.007 0.001 0.004 0.7 0.0
26 (anon) generated 150 1 50 0.0 0 0.0001 0.0000 0.000 0.004 0.002 0.015 0.042 0.004 1.5 0.0
27 (anon) generated 150 26 50 0.0 0 0.0000 0.0000 0.000 0.001 0.000 0.007 0.000 0.004 0.7 0.0
28 (anon) generated 150 51 100 0.0 0 0.0001 0.0000 0.000 0.004 0.002 0.015 0.000 0.006 4.2 0.0
29 (anon) generated 150 51 75 0.0 0 0.0000 0.0000 0.000 0.001 0.000 0.007 0.000 0.004 0.0 0.0
30 (anon) generated 150 76 100 0.0 0 0.0000 0.0000 0.000 0.001 0.000 0.007 0.000 0.004 0.0 0.0

narrowly spread footprint (which does not even include the training
instances).

T2 is positively correlated with features 3, 4, 5, and 6, features 5
and 6 being strong correlations. T2 measures how well the policies
were ��ed to the training instances. Features 3–6 relate to the
distribution of item sizes within each instance. �e strong positive
correlation shows that if this distribution changes greatly between
instances, it is (perhaps counter-intuitively) easier to �nd a policy
which will perform well on them. We hypothesise that this is
because there is enough variation between the instances to force
the generated policy to be more general, so still performing well on
all training instances rather than a small subset of them. Testing
this will be considered in future work.

All �gures from these experiments, including those omi�ed here
to save space, are available from [url to be con�rmed], along with
the full table of standard deviations in the features.

5 CONCLUSION
It is well known that, in machine learning, not all data sets are equal.
�is paper shows that, in the context of automatically designing
optimization algorithms for bin packing, this is still the case.

More interesting is that these results indicate that instance sets
that are tightly packed in feature space (that is, with homogeneous
instances) lead to evolved policies that fail to generalise well. In
fact, these sets are so di�cult that GP fails to �nd a policy that even
performs well on the training data. �e conclusion that algorithms
trained on narrow training data do not generalise is unsurprising,
but does at least con�rm intuition. In contrast, policies with a
broad spread of instances in feature space lead to be�er evolved
policies. �is is important to understand as we shi� towards using
machine e�ort rather than human e�ort to develop e�cient solvers
for new, unseen, problems. For ADA to work successfully, it is
critical that the training instances are well-balanced and matched
to the instances that the new solvers will ultimately be applied to.
Again, this is analogous to the situation in machine learning.

Our experiments also revealed which particular features for
bin packing should be widely varied to achieve good performance
for ADA. High variation in Features 3, 4, 5, 6 (all connected with
variation in item sizes) is a strong indicator for good ��ing to
the training instances. Variation in Feature 2 (number of items)
and features 11-21 (performance features) are strong indicators for
instance sets that will lead to generally performing policies.
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Table 5: Correlations for stats vs feature SDs for each set

Feature Correlation feature SD with
(F) (T1) (T2)

1 0.46 0.08 0.26
2 0.70 0.01 0.14
3 0.09 −0.16 0.52
4 0.02 −0.12 0.56
5 −0.01 0.15 0.90
6 0.02 −0.11 0.72
7 0.04 −0.39 0.20
8 −0.09 −0.20 0.44
9 −0.22 −0.06 0.36
10 0.30 −0.21 0.39
11 0.72 0.03 0.18
12 0.73 0.03 0.19
13 0.73 0.04 0.20
14 0.73 0.04 0.20
15 0.73 0.05 0.20
16 0.72 0.05 0.18
17 0.71 0.02 0.15
18 0.71 0.03 0.15
19 0.71 0.03 0.14
20 0.70 0.02 0.14
21 0.70 0.01 0.14

It will be interesting to consider more general concepts of al-
gorithm footprint in future work. Other footprint de�nitions that
might be interesting to consider could be based on the performance
relative to average or median performance. Furthermore, this study
has only considered broad training groups of instances derived
from existing benchmark sets. It will be interesting to consider the
trade-o� between instance spread and performance or algorithm
generality, using much more tightly controlled groups of instances.
It would also be useful to consider adding complementary results
using an approach that uses a varied training set (rather than pre-
existing training sets in the present study) by taking instances from
di�erent classes to improve generality.
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