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Abstract 

This paper implements and compares eight American option valuation methods: binomial, trinomial, explicit 

finite difference, implicit finite difference and quadratic approximation methods. And three Monte Carlo 

methods: bundling technique of Tilley (1993), simulated tree (ST) of Broadie, Glasserman, and Jain (1997), and 

least square regression method (LSM) of Longstaff and Schwartz (2001). Methods are compared in terms of 

computation efficiency and price accuracy. The findings suggest that binomial is the best performing numerical 

method in terms of accuracy and efficiency. LSM beats the other two simulation methods in terms of efficiency, 

accuracy and number of discrete exercise opportunities.  

Keywords: American options, numerical methods, binomial tree, simulation method, least square regression 

method 

1. Introduction  

American option pricing problems have been extensively studied over past two decades. Many numerical and 

analytical methods have been developed and most standard problems in American option pricing literature have 

been solved. However, research in this area is far from end. Recent development in financial engineering has 

introduced a variety of new American option whose payoff contingent on multiple source of uncertainty. Pricing 

these options, which have sophisticated payoff structures, are computationally costly. Existing pricing methods 

have not provided a satisfactory answer. Some numerical methods are readily capable of pricing these options, 

but their efficiency and accuracy may need further improvements.  

This paper evaluates five popular numerical methods and three simulation methods which are widely used for 

pricing American option. Each method is compared based on its computational efficiency and price accuracy. 

Results in the paper show that each method has its advantage and disadvantage, depending on the actual 

application. As higher efficiency usually comes with a cost – lower accuracy, a method could be very efficient 

but not very accurate. For example, to value a large number of short-term options, quadratic method is the best 

fit as the method is very efficient and accuracy for short-term option is also good. Overall, the most flexible 

method is binomial tree, where users can pre-specific the number of tree steps based on available hardware and 

desirable accuracy. So any level of accuracy can be achieved. Simulation methods are generally not very 

efficient, as early exercise has to be calculated forward in time but option values can only be evaluated 

backwards in time. As the result shows, the most efficient simulation method, LSM, is about 40 times slower 

than binomial method with comparable accuracy. However, this is expected as simulation methods are most 

suited to value American options with multiple uncertainties.   

The rest of the paper is outlined as follows: section 2 review American option pricing literature. Section 3 

provides descriptions of each method. Section 4 compares efficiency and accuracy of each method. Section 5 

concludes and summaries findings.  

2. Literature Review 

Development of American option pricing is more dramatic than its European counterpart. Unlike European 

options where closed form pricing formula are available, pricing of American options are complicated by its 

exercise contingency. Closed form solutions are usually rare. The only case where a closed-form solution to 

pricing an American option exists is an American option with no dividend. Numerical methods hence needed to 

be employed for all other American options. Early attempts made to price American options are the binomial 

lattice model of Cox, Ross, and Rubinstein (1979). And the finite difference methods of Schwartz (1977) and 
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Brennan and Schwartz (1977). The methods are simple and easy to implement, they still remained the best ways 

for pricing American styled options. Binomial model has been extended by Boyle (1986) in which a middle price 

jump was incorporated in the price tree. The result trinomial model converges to true option values quicker than 

that of binomial model. As later discussed in Broadie and Detemple (1996) that trinomial model dominate 

binomial model in terms of both speed and accuracy. Horasanlı (2007) also reached the same conclusion that 

trinomial model have a faster convergence rate.  

The two alternative finite difference methods have been compared in Geske and Shastri (1985) and they 

concluded that explicit finite difference methods with log-transformation was the most efficient approach when 

large numbers of stock options are being evaluated. To compensate explicit finite difference‟s instable problem 

(not always converges), Hull and White (1990) proposed modified version of explicit finite difference which 

always converge. They also discussed the possibility that efficiency of explicit finite difference could be largely 

improved by imposing a fixed mesh ratio between time and price jumps. Its model had also applied to higher 

dimensional interest rate options.  

Geske and Johnson (1984) presented an exact analytic solution to the American put problem. However their 

formula is an infinite series that can only be evaluated approximately by numerical methods. Based on this exact 

formula, MacMillian (1986) proposed a quadratic approximation of American put option. Few months later, 

Barone-Adesi and Whaley (1987) generalised this method to American call options and proposed quadratic 

approximation. It is still the fastest way for American option pricing. However, quadratic method suffered a 

shortcoming that it is not convergent. There is no parameter in the model that can be increased to give arbitrarily 

high accuracy. And quadratic approximation results for long maturity American option are less satisfactory, this 

will be demonstrated in the next section.  

Also based on Geske and Johnson (1984), Carr and Faguet (1994) proposed improvements to methods of lines, 

which they call analytic method of lines. As shown in Broadie and Detemple (1996), analytic method of lines of 

Carr and Faguet (1994) has a quicker convergent rate than binomial method. Kim (1990) developed another 

analytical solution for American option. The American option value is represented by an integral equation where 

the exercise boundary is implicitly defined. So a computationally intensive recursive numerical procedure can be 

performed to solve for the exercise boundary and option price. 

Binomial method is very simple and has huge success in single state context. However, its success in higher 

dimensions where American option price depends on more than one underlying assets is limited. First theoretical 

extension of such model have been carried out by Boyle (1988), he proposed a procedure for valuing options 

when there are two correlated state variables. In a three dimensional space, the original binomial tree expanded 

to a pyramid where its top is the initial price. A year later, Boyle, Evnine, and Gibbs (1989) generalised Boyle 

(1988) work to account for more than two correlated underlying state variables. However, their model has not 

been applied to American options. Kamard and Ritchken (1991) subsequently showed that the convergence rate 

of Boyle, Evnine and Gibbs (1989) can be improved by incorporating horizontal jumps in the price movements. 

Although their work can easily apply to American pricing problem, their focus is on European options. And most 

other works carried out in 80s also concentrated on the price of European option.  

Although theoretical multinomial model have been developed, its practical use in higher dimensional problem 

proved to be very difficult. This difficulty has to do with data storage requirements. Increasing dimensions make 

the lattice methods and finite differences computationally prohibitive. 

The only known solution to the dimensional problem is Monte Carlo method since its simulation convergence 

law only depends on the variance of the price population, not on the number of stochastic dimensions of the 

population. The first attempt made to apply simulation for American option is by Tilley (1993) where he 

proposed a bundling technique to replicate the backward induction algorithm. However, Tilley method had not 

provided a satisfactory solution to the dimensionality problem. As Broadie, Glasserman, and Jain (1997) had 

pointed out that Tilley‟s method was not easy to be generalized to higher dimensions. Broadie, Glasserman and 

Jain (1997) also offered a non-recombining binomial simulation approach. But their method suffered 

computational problems as simulated tree does not recombine. Number of nodes in the tree increase 

exponentially with time steps. It quickly becomes unmanageable as the number of exercise opportunities grows. 

This method can only effectively handle American options that have four or less discrete exercise opportunities. 

Broadie, Glasserman and Jain (1997) thus provided some enhancement to this method. They proposed a pruning 

technique to reduce computation burden and other variance reduction technique to increase precision. They also 

demonstrated the results with some higher dimensional problems. After this extension their method was a very 

promising technique for American option with finite exercise opportunities. Broadie and Glasserman (1998) 
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designed stochastic mesh method for high-dimensional problems. The primary advantage of this method is that 

computational effort increases quadratically with the number of mesh points and linearly with the number of 

exercise opportunities. However, this method as demonstrated in their paper is not generally useful for extremely 

accurate results. And they suggested that problem specific variance reduction technique would improve 

applicability of the method.  

The first definite breakthrough in pricing early exercise derivatives by Monte Carlo was done by Longstaff and 

Schwartz (2001). Their least square Monte Carlo (LSM) method is computationally efficient and converges to 

the true value and can be readily extended to high dimensions. Its superior performance have attracted much 

attentions in the academic, many improvements have been proposed. Stentoft (2003) has explored theoretical 

foundation of LSM and property of its estimator. He also proved that the LSM approximations converge to the true 

expectation functions under general assumptions. Stentoft (2004) provided another detailed analysis of LSM and 

he shows LSM is computationally more efficient than existing numerical methods. He also demonstrated that the 

LSM method can be implemented easily for dimensions as high as ten or more.  

3. American Option Valuation Techniques  

In this section, five numerical techniques and three Monte Carlo techniques for American option pricing are 

discussed. The five numerical techniques are binomial method of Cox, Ross, and Rubinstein (1979), trinomial 

method of Boyle (1986), quadratic approximation of Barone-Adesi and Whaley (1987), implicit and explicit 

finite difference methods of Schwartz (1977). The three Monte Carlo methods are bundling method of Tilly 

(1993), simulated random tree of Broadie, Glasserman and Jain (1997), and least square method of Longstaff and 

Schwartz (2001). These methods are chosen because they have huge success in American option pricing 

literature and they are relatively simple to implement. 

3.1 General Framework 

This section defines the option pricing framework that would be used throughout the paper. The assumption used 

here are standard in the literature and there are consistent with those introduced by Black-Scholes (1973). The 

underlying price S follows geometric Brownian motion. The price process is: 

dZdtqr
S

dS
 )(  

Z is a standard wiener process. Interest rate r and dividend q are continuous and constant throughout the maturity 

unless stated otherwise. Variance 2  of the underlying process is also constant for whole maturity.  

3.2 Binomial Tree Method 

Binomial method is one of the most successful numerical techniques. The method‟s major advantage is its 

simplicity. Anyone with excel installed can easily implement this method. 

Introduction about this method are kept minimum since it has already been covered in many books and papers. 

The basic intuition behind binomial tree model is simple – by constructing a dense tree that capture all possible 

future prices, American option value can be evaluated via a backward induction from the end of the tree to the 

initial node. Both Hull (2004) and Global Derivatives (Note 1) provide detailed description of such methods.  

Implementation is fairly straightforward. Firstly, computing the jump parameter u and its associated probability p 

then the downward jump parameter is 1/u with probability 1 – p. Secondly, building the tree based on the four 

parameters and the convergent parameter n – number of time steps. Finally, the terminal option value are defined 

by their payoff function, then option values in all n – 1 nodes are evaluated as maximum of its intrinsic value and 

its corresponding discounted expected payoff. 

3.3 Trinomial Tree Method  

This is a major modification of CRR‟s binomial tree method in previous section. This method is also simple and 

efficient. Its only difference with binomial method is that a horizontal jump was incorporated and the horizontal 

jump always has a probability of 2/3. Its main improvement over binomial method is that it converges quicker 

given the same number of time steps. This result should be intuitively expected since for every time step 

trinomial tree has more price nodes. 

Details of the method is not discussed either since this is also a commonly known technique. Implementation is 

very similar to that of BT. The only difference is in the construction of tree to include the middle jump.  

3.4 Quadratic Approximation  

It is widely accepted that American option price is equal to sum of an equivalent European option and the early 
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exercise premium: 

),(),(),( TSTScTSC                                   (1)
 

),( TS is the early exercise premium. BAW assumed that ),()(),( TSfTKTS  . So that the premium will 
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The last term in above equation is assumed to be approximately zero for short maturity options. Then the new 

approximated second order differential equation can be solved for f(S,T). The resulting function f(S,T) are then 

bring back into equation (1) so that we have: 

),()(),(),( TSfTKTScTSC                                  
(3) 

Under the smooth pasting condition of Merton (1973) American option is optimally exercised when price S* is 

reached such: 

XSTSC  *)*,(                                      
(4) 

With the known early exercise premium function the equation can be write as: 

)*,()()*,(* TSfTKTScXS                
               (5) 

With this equation, the optimal exercise price can be solved iteratively.  

The major advantage of quadratic approximation is speed, BAW have even proposed a very quick approximation 

method to solve early exercise price. Implementation of this method is fairly easy, the boundary price can be 

solved using Newton‟s method which involves differentiate right hand right side of equation (5) with respect to 

S*. 

3.5 Finite Difference Methods 

Finite difference methods were first introduced by Schwartz (1977) and Brennan and Schwartz (1977) for 

American option pricing. They approximated the Black-Scholes partial differential equations by using discrete 

estimates of changes in the options values for small changes in time and the underlying stock price. The resulted 

approximation difference equation then can be evaluated to solve American option value. There are two major 

ways of estimating change‟s in option value with respect to time and the stock price: forward and backward, 

respectively they represent implicit and explicit finite difference methods.  

Implicit finite difference has the advantage that its convergence is stable, but has the disadvantage of inversing 

matrices. Explicit finite difference is more computational friendly as it is only a replication of multiple trinomial 

trees. Its only disadvantage is that convergence is not always ensured. Hull and White (1990) mentioned that a 

fix ratio between time increment and price increment could ensure convergence. Hull (2006) then suggested it is 

numerically most efficient to set tZ  3 , where Z  is the log-transformed price increment.  

Both methods are specified as follow: firstly, the higher boundary for underlying price is determined to be 3 

times of exercise price (e.g. )3log( X , where X is the exercise price). Although 2 times of exercise price is fairly 

large to cover all possible initial prices, there are some extreme cases where underlying price climbed to a very 

high level (as demonstrated in later sections when early exercise boundary is examined under extreme 

parameters). Secondly, the lower boundary for underlying is 1 (e.g. 0log ), because both methods are implemented 

under log-transformed specification. Thirdly, for explicit finite difference methods the ratio between Z
2
 and t 

are fixed at Z
2
=3tσ

2
 to ensure convergence. In computation t will be given as the convergence parameter, Z 

is then computed according to the expression. After implementation variety of input parameters was tested, as 

expected the explicit finite difference always converge (however, accuracy is not tested in these cases). 

Option prices that line between two nodes will be approximated using linear extrapolation by assuming option 

value function between the two nodes is a straight line. Such approximation will not significantly compromise 

accuracy if the grid is very condensed. 

3.6 Bundling Method of Tilley  

It is the first attempt made to apply Monte Carlo method for American option pricing problem. Although later 
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literature have pointed out that bundling estimator are biased, next section demonstrates that this algorithm still 

approximate the option price with fairly good accuracy. The intuition behind bundling is that it groups paths 

whose stock price are similar to obtain an estimate of the one period ahead option value, then this procedure are 

carried out recursively until time 0.  

Implementation of algorithm is as follow: 

1) Reorder the stock price paths by stock price, from lowest price to highest price for a call option or from 

highest price to lowest price for a put option. Reindex the paths from 1 to R according to the reordering. 

2) For each path k, compute the intrinsic value I(k, t) of the option. 

3) Partition the set of R ordered paths into Q distinct bundles of P paths each.  

4) For each path k, the option‟s “holding value” H(k, t) is computed as the following mathematical expectation 

taken over all paths in the bundle containing the path k: 




 
),(

1 )1,()(),(
tkPj

tjVPtrExptkH  

V(k, t) is fully defined in step 8 below. At time N (the terminal step), V (k, N) = I (k, N) for all k.  

5) For each path, compare the holding value H(k, t) to the intrinsic value I(k, t) and decide “tentatively” 

whether to exercise or hold. Define an indicator variable x(b, t) as follows: 










I(k,t)H(k,t)

tkHt)kI
x(b,t)

 if   0

),(,( if   1
 

6) Examine the sequence of 0‟s and l‟s. Determine a “sharp” boundary between the hold decision and the 

exercise decision as the start of the first string of l‟s the length of which exceeds the length of every 

subsequent string of 0‟s. Let k*(t) denote the path index (in the sample as ordered in step 1 above) of the 

leading 1 in such a string. The “transition zone” between hold and exercise is defined as the sequence of 0‟s 

and l‟s that begins with the first 1 and ends with the last 0.  

7) Define a new exercise or hold indicator variable y(k, t) that incorporates the sharp boundary as follows: 













(t)
*

kk

tkk
y(b,t)

 if  0

)(
*

 if   1
 

8) For each path k, define the current value V (k, t) of the option as follows: 










0t)y(k, if  ),(

1),y( if   ),(

tkH

tktkI
V(k,t)  

After the algorithm has been processed backward from time N to time 0, the indicator variable z(k, t) for t < N is 

estimated as follows: 

 
otherwise  0

 allfor  0 and 1),y( if  1



 


tsy(k,s)tk

z(k,t)  

The American option value is then defined as: 


 


R

k

N

t

tkItkDtkzRValue
1 1

1 ),(),(),(  

Where D(k,t) is path specific discount factor. In the paper it is assumed that D(k,t) is equal to )( trExp   for 

all path k and for all t. 

3.7 Simulated Random Tree  

In contrast to the Tilley‟s approach, in the simulated random tree algorithm the evolution of stock prices is 

simulated using random trees rather than just sample paths. In the tree each node generates b number of branches, 

where b is called the branching parameter. As price jump is completely random and in any directions, the tree 

will not recombine. Each node in the tree is generated from its prior node using the equation: 

 11

2

1 ))(2/(   iiiiii ttZttqrExpSS   

Z is a standard normal random variable. For simplicity, the time increment ti-ti-1 is assumed to be equal to t over 

the whole tree for every price jump.  
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The simulated tree then can be used to derive two estimators, one biased high and one biased low. The high 

estimator at time t as defined in Broadie, Glasserman and Jain (1997) is the maximum of its intrinsic value and 

the average of the discounted high estimators from its successor nodes at t+1. The high estimator at T (maturity) 

is defined as option‟s intrinsic value. The low estimator at t for any node A is defined as the average of “decision 

value” from its successor nodes at t+1. The “decision value” in each t+1 successor node is defined as its 

discounted option intrinsic value if the average of the rest b-1 intrinsic values is greater than intrinsic value of 

node A; or the decision value is intrinsic value of A if the average is smaller. Confidence interval of true option 

value and a point estimate can then be computed based on the two estimators. The low estimator at T (maturity) 

is defined as its intrinsic value. 

Formal definition of both estimators is outlined below,  
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where   and   denote the high estimator and the low estimator respectively. Lt is the option value if 

immediately exercised. b is the branching parameter, each node at time t will generate b new nodes at t+1. dt is 

the discount factor, for simplicity, it is always equal to Exp(-rt). And tjiii
t

...21  is the „decision value‟ as 
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3.8 Least Squares Simulation Method 

This method signals a definite breakthrough in American option pricing using Monte Carlo simulation. Its 

general intuition is that using cross sectional data to estimate options continual value. For every discrete exercise 

point, linear regression was performed to estimate option‟s continual value function. So the „decision‟ exercises 

or continues can be made, this procedure is then carried out backward to time 0. Detailed methodology is not 

discussed and it can be found in Longstaff and Schwartz (2001).  

The specifications used in this paper are: for single underlying asset, the basis functions are underlying price and 

squared underlying price. For two underlying assets, there are four basis functions which are underlying prices 

and squared underlying prices of both assets. For options with five underlying assets, there are two specifications: 

firstly, LSM is valued using five basis functions – first five Weighted Laguerre polynomials. Secondly: LSM is 

rerun using 11 basis functions – first five weighted laguerre, the product of the highest and the second highest 

value, second highest and third highest, etc and finally the product of all five values. In addition, LSM basis 

function specifications are further tested in section 6.2. 

4. Comparisons of Valuation Techniques 

In this section detailed comparisons will be performed for each methods outlined in last section. Since all Monte 

Carlo methods implemented in last section only have discrete exercise opportunities, comparisons of valuation 

techniques are divide into two subsections: first subsection compares numerical methods and second subsections 

compare simulation methods.  

4.1 Comparisons of Numerical Methods 

In this section we compare all the numerical methods described in section 3. Comparisons are based on two 

criteria: computation speed and results accuracy. Speed of computation is measured using average computation 

time per option. Accuracy of results is measured using Roots Mean Square (RMS) relative error. It is defined as, 

i

ii
i

m

i

i
C

CC
ee

m


 



ˆ
   re       whe,

1
RMS

1

2  

Where Ci is option true value. This measure is also used in Broadie and Detemple (1996). Options true values are 

computed using binomial method with 5000 time steps. This is the maximum number of time steps the PC (Note 
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2) under Visual Basic environment can effectively handle. It is worth noting that different hardware has different 

processing power. Such physical limitation is thus case specific. 

Table 1 below compares speed and accuracy of the five methods for five call-option values. These parameters are 

identical to column 4, table 1 of BAW (1987). The results are discussed as follow: Firstly, the fastest method is 

quadratic approximation. Its average computation time per option is effectively 0. The internal clock under 

Windows XP environment is accurate to every millisecond (Note 3). However such accuracy is not sufficient to 

measure computation time for quadratic approximation, it is simply too fast. But it also has the largest error. 

(RMS reported are based on more significant digits than are shown in the tables) This is well expected. Secondly, 

binomial method is the second fastest with only 0.308 seconds to compute every option. Trinomial method has 

the longest computation time of 1.047 seconds per option. But it is also the most accurate method with the 

smallest error. This is also well expected since trinomial method has more nodes than that of binomial method 

for a given time steps. With the extra nodes generated, trinomial method is computationally more expensive and 

also more accurate. Thirdly, explicit finite difference dominates implicit finite difference in terms of both speed 

and accuracy. 

 
Table 1. American call option values       T=0.5, X=100, r=0.08, q=0.12, σ =0.2 

S Binomial Trinomial Explicit Implicit Quadratic True 

80 0.215 0.215 0.215 0.216 0.229 0.215 

90 1.361 1.360 1.361 1.361 1.387 1.360 

100 4.709 4.707 4.713 4.709 4.724 4.710 

110 11.000 10.997 11.002 10.994 10.955 10.998 

120 20 20 20 20 20 20 

Time 0.328 1.047 0.541 0.572 0.000  

Error 4.5E-04 3.3E-04 1.8E-03 2.0E-03 2.9E-02  

1) Binomial and Trinomial methods are based on n=500 time steps. 

2) Explicit Finite Difference method is based on n=500 time steps. m, number of steps in stock price, is then computed using Z2=3tσ2.In this 

case m=520 price steps. 

3) Implicit Finite Difference method is based on n=500 time steps and m= 520 price steps. 

4) Time is in seconds. It is average time spend in calculating above 5 option values.  

5) Error is RMS as defined in the above paragraph. 

6) The true value column is based on the binomial methods with n=5,000 time steps. 

 

To make comparison meaningful, convergent parameters for implicit finite difference method is specifically 

chosen. Explicit finite method in table 1 has 500 time steps and according to the fixed ratio between Z
2
 and t, 

it has 520 price steps. Convergent parameters for implicit method are then set to 500 time steps and 520 price 

steps. As shown in the table, explicit method has both less computational time and lower relative mean error. 

Such result is consistent with Geske and Shastri (1985) which observed that explicit method is more efficient 

than implicit method.  

Table 2 shows values of equivalent American put options. Results in table 2 are very similar to that of table 1. 

But some very interesting results are observed. All methods are less efficient in computing put option values 

except implicit method. As the computation time has shown, all three methods Binomial, Trinomial and Explicit 

need longer time to compute each option value. However small the time difference is, it will be very substantial 

if a large number of options are being valued. This is again consistent with previous literature. Merton (1973) 

showed that exercise boundary for put options must be checked at every instant, but call options may be 

exercised only at the ex-dividend dates. Geske and Shastri (1985) also showed that approximation techniques are 

more efficient for call options than for put options. 

 

Table 2. American put option values        T=0.5, X=100, r=0.08, q=0.12, σ =0.2 

S Binomial Trinomial Explicit Implicit Quadratic True 

80 20.957 20.957 20.958 20.958 20.982 20.957 

90 12.634 12.634 12.634 12.635 12.645 12.633 

100 6.365 6.364 6.371 6.368 6.372 6.367 

110 2.650 2.649 2.652 2.648 2.650 2.648 

120 0.918 0.918 0.920 0.922 0.919 0.918 

Time 0.341 1.068 0.553 0.531 0.000  

Error 4.0E-04 2.9E-04 1.3E-03 1.9E-03 9.8E-04  

Note. All methods specification are identical to that of Table 1. 
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Surprisingly, implicit method shows shorter computational time for valuing put options. Such shorter 

computation time may be due to other factors (e.g. other operations that are running in the PC when options are 

valued) rather than the algorithm itself. Interestingly, running the programmed algorithm in other PCs (with 

variety of input parameters) showed that this relative time difference tends to disappear when large number of 

options are valued. When less than three options are valued, the method is still more efficient for put options. But 

checking computation time for each Visual Basic command line reveals that the timing difference is due to 

procedure that involves solving systems of equation. And the procedure for both call and put are exactly identical. 

This leaves with the only conclusion that internal clock of PC has small random errors every millisecond and it 

only accurate up to a certain point. Visual Basic Timer function may also have small random error every 

millisecond. When valuing only five options or less, these errors are quite substantial (since high level of 

accuracy is needed). But when many options are valued together, such random errors tend to be offset and 

disappear. 

Another interesting finding in table 2 is that quadratic approximation shows accuracy that is even higher than 

that of finite difference methods. But this is somewhat expected, as already discussed in BAW (1987) that 

quadratic approximation has the highest accuracy for half year or less maturity. 

Given results presented in table 1 and 2, it is quite clear that binomial method has relative advantage. It is 

computationally efficient and has relatively low error. But does these results stands for other input parameters?! 

Table 3 shows option values for many varieties of input parameters. Table 4 shows long maturity option values. 

Generally, results from both tables are consistent with Table 1 and 2. All techniques are less efficient for put 

options. The advantage of fixing the ratio between Z
2
 and t for explicit method is strongly demonstrated from 

Table 3. Explicit method has the second shortest computing time per option (see Table 3 second last row) with 

relatively good accuracy. However, this relative computation efficiency is not sustained for longer maturity 

option as shown in Table 4. 

Secondly, results from both Table 3 and 4 shows binomial dominate trinomial method in terms of both accuracy 

and speed. All relative errors and time are in favor of binomial method. This result is inconsistent with many 

previous literatures which state that trinomial converges quicker. This result may largely due to the accuracy of 

the true option value. In fact, the true option value based on n=5,000 may simply not sufficiently accurate. It is 

well known that convergence of a binomial option price to the true price is not monotonic, but oscillatory in the 

step size. The “true value” reported therefore tends to favourably biased toward binomial method.  

 

Table 3. American option values                        T=1.5,  X=100 

 

 

Call Options 

 

Put Options 

Param S Binomial Trinomial Explicit Implicit Quadratic TRUE 

 

Binomial Trinomial Explicit Implicit Quadratic TRUE 

 

80 1.500 1.499 1.503 1.498 1.548 1.500 

 

24.260 24.260 24.262 24.259 24.268 24.260 

r=0.02 90 3.834 3.832 3.834 3.830 3.886 3.833 

 

17.170 17.170 17.172 17.168 17.174 17.169 

q=0.05 100 7.809 7.806 7.818 7.806 7.835 7.811 

 

11.537 11.536 11.541 11.540 11.545 11.541 

σ=0.2 110 13.573 13.565 13.577 13.562 13.531 13.570 

 

7.406 7.398 7.403 7.401 7.405 7.403 

 

120 21.037 21.032 21.035 21.030 20.939 21.035 

 

4.560 4.559 4.561 4.559 4.559 4.558 

 

80 10.237 10.235 10.248 10.230 10.455 10.239 

 

33.824 33.827 33.830 33.820 34.078 33.826 

r=0.05 90 14.614 14.606 14.618 14.603 14.838 14.614 

 

29.155 29.157 29.168 29.150 29.396 29.158 

q=0.1 100 19.723 19.711 19.740 19.714 19.941 19.727 

 

25.131 25.128 25.143 25.131 25.362 25.139 

σ=0.5 110 25.528 25.504 25.534 25.506 25.707 25.523 

 

21.699 21.680 21.692 21.680 21.897 21.693 

 

120 31.945 31.923 31.944 31.920 32.078 31.937 

 

18.745 18.733 18.739 18.722 18.925 18.738 

 

80 4.201 4.196 4.203 4.195 4.308 4.199 

 

26.012 26.008 26.018 26.007 26.163 26.010 

r=0.05 90 7.538 7.534 7.537 7.530 7.656 7.536 

 

20.174 20.172 20.181 20.168 20.308 20.171 

q=0.08 100 12.052 12.047 12.064 12.047 12.162 12.055 

 

15.406 15.405 15.424 15.409 15.528 15.412 

σ=0.3 110 17.723 17.720 17.720 17.712 17.790 17.723 

 

11.630 11.633 11.642 11.628 11.727 11.632 

 

120 24.462 24.453 24.455 24.447 24.463 24.456 

 

8.699 8.695 8.701 8.690 8.771 8.693 

Time 

 

0.330 1.051 0.203 0.526 0.000 

  

0.349 1.070 0.222 0.526 0.000 

 Error 

 

2.2E-04 5.0E-04 7.4E-04 7.0E-04 1.4E-02 

  

3.0E-04 3.2E-04 4.4E-04 3.6E-04 6.6E-03 

 Note. All methods specification are identical to that of Table 1. 
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Table 4. Long maturity american option values                     X=100 

 

 

Call Options 

 

Put Options 

Param S Binomial Trinomial Explicit Implicit Quadratic True* 

 

Binomial Trinomial Explicit Implicit Quadratic True* 

T=3 80 14.730 14.712 14.727 14.711 15.378 14.728 

 

38.154 38.147 38.123 38.096 39.107 38.150 

r=0.08 90 19.391 19.366 19.363 19.363 20.077 19.383 

 

34.464 34.450 34.383 34.367 35.449 34.452 

q=0.12 100 24.581 24.555 24.569 24.561 25.296 24.584 

 

31.223 31.214 31.134 31.101 32.244 31.228 

σ=0.5 110 30.304 30.274 30.250 30.270 31.000 30.297 

 

28.411 28.402 28.234 28.216 29.420 28.404 

 

120 36.498 36.458 36.443 36.459 37.160 36.487 

 

25.921 25.906 25.681 25.647 26.917 25.910 

T=5 80 23.201 23.138 22.258 22.980 24.135 23.200 

 

51.522 51.509 50.448 50.408 53.051 51.519 

r=0.05 90 28.517 28.442 27.295 28.226 29.489 28.517 

 

48.900 48.880 47.448 47.403 50.486 48.899 

q=0.1 100 34.192 34.117 32.652 33.827 35.188 34.197 

 

46.535 46.525 44.649 44.602 48.173 46.543 

σ=0.6 110 40.220 40.136 38.304 39.755 41.206 40.218 

 

44.422 44.400 42.008 41.962 46.069 44.416 

 

120 46.562 46.470 44.220 45.989 47.521 46.553 

 

42.490 42.468 39.488 39.449 44.145 42.475 

T=5 80 0.040 0.039 0.039 0.040 0.037 0.040 

 

41.977 41.981 41.982 41.962 42.068 41.974 

r=0.02 90 0.340 0.333 0.335 0.338 0.304 0.342 

 

35.963 35.968 35.969 35.948 36.034 35.961 

q=0.1 100 2.178 2.151 2.154 2.165 2.053 2.182 

 

30.073 30.078 30.080 30.059 30.131 30.073 

σ=0.1 110 10.000 10.000 10.000 10.000 10.000 10.000 

 

24.451 24.455 24.456 24.439 24.501 24.454 

 

120 20.000 20.000 20.000 20.000 20.000 20.000 

 

19.275 19.279 19.280 19.273 19.323 19.283 

Time 

 

0.329 1.054 0.153 0.522 0.000 

  

0.347 1.070 0.170 0.527 0.000 

 Error 

 

2.9E-03 1.3E-02 3.0E-02 9.5E-03 5.1E-02 

  

2.2E-04 2.5E-04 2.9E-02 2.9E-02 2.7E-02 

 Note. All methods specification are identical to that of Table 1. 

*True values are computed based on binomial method with n=4,000, this is due to PC memory limitation. 

 

To achieve a better estimation of true option value, extrapolation technique may need to be employed. So that 

physical limitation of PC memory problem can be handled and option true values are estimated with greater 

accuracy.  

Thirdly, by comparing results in table 3 and 4, it is very clear that when pricing long maturity option using finite 

difference methods more time steps and price steps are needed to ensure convergence. Since both methods have 

errors that only marginally smaller than that of quadratic approximation.   

Fourthly, for explicit method it is very intriguing that the longer the maturity, the shorter the computation time. 

Closer look into the algorithm shows that fixed ratio between Z
2
 and t is no longer efficient for long maturity 

options. Given 500 time steps and 5 year maturity then price steps is computed to be only 50. This certainly will 

not result convergence. In fact, fixing ratio will not result satisfactory convergence if there are extreme 

parameters. (E.g. volatility greater than 1, interest rate near 0 etc.) Purely increasing time steps in this case will 

not solve the problem. Both time steps and price steps have to be separately specified to ensure convergence.  

To sum up, all methods have their advantages. Quadratic approximation is superbly fast. Its computation time is 

effectively indifferent from zero. While it also shows good precision when maturity is short. Binomial method is 

the simplest to implement, it provides good accuracy and speed tradeoff. Advantage of trinomial method, 

however, is not so well demonstrated from the results because of the problems with the “true value”. Explicit 

finite difference show very attractive efficiency when grid ratio is fixed, it also solved its inherent instability 

problem and always converge. However fixing grid ratio has difficulty when option parameters are extreme. 

Implicit finite difference can easily solve the extreme parameter problem by increasing grid density. But it is 

relatively slow because of inverting matrices. 

4.2 Comparisons of Monte Carlo Methods 

In this section, three simulation methods will be compared for a variety of parameters. Before proceeding to 

comparison, first let‟s look at the random number generator. Throughout this paper standard normal random 

numbers are generated using Box-Muller transformation. This choice is largely due to its simplicity. Although 

Box-Muller is computationally expensive, it will not significantly influence speed since valuing any single 

American option usually needs no more than 500,000 random numbers. Implementation of the generator follows 

directions from Steele and Douglas (2005). Testing of generator is not performed since it is comprehensively 

tested in Steele and Douglas (2005). 

Table 5 shows values of seven American call options based on the three simulation methods. option parameters 

used here are identical to those in table 1 of Broadie, Glasserman, and Jain (1997). Quick glance at Table 5 

reveals that all three methods can approximate option value quite tightly. And standard errors are fairly small for 
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most initial asset prices. Standard errors are highest for options with initial price 110. But computation time for 

bundling method is extensively long.  

 

Table 5. American call option values using simulation       T=1, X=100, r=0.05, q=0.1, σ =0.2 

 Bundling  LSM  Simulated Tree (ST)   

S Value s.e.  Value s.e.  Value High s.e. Low s.e.  True 

70 0.121 0.013  0.124 0.006  0.123 0.124 0.005 0.122 0.005  0.121 

80 0.669 0.031  0.677 0.014  0.677 0.683 0.018 0.671 0.018  0.670 

90 2.296 0.058  2.299 0.026  2.324 2.360 0.042 2.288 0.041  2.303 

100 5.732 0.096  5.749 0.040  5.792 5.882 0.096 5.703 0.094  5.731 

110 11.203 0.126  11.341 0.051  11.372 11.708 0.125 11.036 0.177  11.341 

120 20.000 0.000  20.000 0.000  20.213 20.426 0.085 19.883 0.142  20.000 

130 30.000 0.000  30.000 0.000  30.061 30.185 0.064 29.916 0.102  30.000 

Time 2274.112  66.560  47.302   

1) Options only have four exercise opportunities at times 0, T/3, 2T/3 and T. 

2) Bundling method is computed with 100 independent samples of 4,900 paths each using a partition of 70 bundles by 70 paths per 

bundle. 

3) LSM is computed with 100 independent samples of 50,000 paths. 

4) Simulated tree is computed using 100 independent estimation of both high and low estimators, b=50. 

5) Time is averaged computation time per option, it is in seconds. 

6) True values are based on binomial methods with n=1,200. Exercise opportunities are adjusted accordingly. 

 

It takes about 2274 seconds to compute a single option value. That‟s roughly 40 minutes. Computing Bundling 

column of Table 5 took about five hours. Checking computation time for each command line shows that the 

problem lies mainly on paths reordering. Bundling method reorder price paths every time when there is an 

exercise opportunities. Reorder a single string of prices is simple task that can be done within millions fraction of 

a second, however the method requires reorder of all the paths that are related to the price. This is a two 

dimensional sorting procedure. Unless a quick algorithm is introduced or accuracy is not an important issue, 

using bundling method for American options valuation is practically impossible or at least cumbersome.   

On the other hand, both LSM and Simulated Tree show splendid speed. With roughly one minute to compute 

each option. It is worth noting that ST will become computationally impossible if exercise opportunities are too 

large. If exercise opportunities increase to five, ST will not be able to price American option. This is largely due 

to data storage limit in the computer. Furthermore, computation time of ST grows exponentially with exercise 

opportunities. On the other hand, data storage requirement and computation time of LSM is not exponentially 

related to exercise opportunities. It can readily handle options with more than 100 exercise opportunities. LSM‟s 

advantage over the other two methods is obvious. It also has the lowest standard error for options valued.  

Some more comparisons are reported in Table 6. To make table easy to read, standard errors are not reported. 

Error measure RMS is reported again for all options valued in the table. Average computation time per option is 

also reported. The first serial of option parameters in the table is identical to that of Tilley (1993), but option 

values are different from his because there are only four exercise opportunities. The results can be generally 

summarised as follow: Firstly, simulated tree is the fastest method with average computation time of only 48 

seconds per option. However, its accuracy is not so satisfactory (RMS is greater than 1%).This is very strange 

result since branch parameters and numbers of independent samples used for ST computation are identical to that 

of Broadie, Glasserman and Jain (1997). Using 200 independent samples and compute option values (not 

reported) in the table again, the estimation error persists. 

 

Table 6. American option values using simulation       X=40 

  Call     Put    

 S Bundling ST LSM True  Bundling ST LSM True 

T=3 30 5.295 5.227 5.258 5.256*  10.000 10.088 10.000 10.000 

r=0.07 35 8.244 8.312 8.272 8.27*  6.890 6.969 6.890 6.889 

q=0 40 11.748 11.655 11.798 11.79*  4.912 4.851 4.946 4.947 

σ=0.3 45 15.665 15.516 15.704 15.70*  3.558 3.478 3.569 3.568 

 50 19.953 19.798 19.895 19.90*  2.606 2.616 2.592 2.593 
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T=3 30 4.132 4.156 4.191 4.196  16.927 16.968 16.970 16.968 

r=0.07 35 6.106 6.173 6.142 6.152  15.096 15.239 15.087 15.091 

q=0.14 40 8.350 8.546 8.437 8.441  13.485 13.480 13.482 13.482 

σ =0.5 45 10.950 10.895 11.028 11.041  12.012 12.109 12.097 12.101 

 50 13.513 13.980 13.895 13.904  10.904 10.926 10.897 10.900 

T=1.5 30 0.175 0.178 0.177 0.177  11.888 11.882 11.868 11.870 

r=0.07 35 0.775 0.746 0.768 0.769  8.350 8.350 8.324 8.327 

q=0.14 40 2.220 2.283 2.227 2.227  5.436 5.440 5.431 5.430 

σ=0.2 45 5.000 5.081 5.000 5.000  3.285 3.309 3.308 3.307 

 50 10.000 10.011 10.000 10.000  1.891 1.893 1.895 1.895 

T=1.5 30 1.839 1.835 1.814 1.814  14.758 14.886 14.728 14.727 

r=0.02 35 3.357 3.337 3.387 3.389  11.884 11.982 11.867 11.868 

q=0.1 40 5.515 5.634 5.538 5.544  9.521 9.529 9.487 9.487 

σ=0.4 45 8.168 8.133 8.251 8.260  7.582 7.521 7.545 7.546 

 50 11.252 11.423 11.464 11.473  5.996 5.887 5.980 5.981 

Time  904.8 48.3 71.1       

Error  0.008 0.012 0.001       

Note. All specification are the same with Table 5 except Bundling method is computed with 10 independent samples of 10,000 paths each 

using a partition of 100 bundles by 100 paths per bundle. Error is measured in RMS as defined previously.  

*True values are computed using Black-Scholes. 

 

It seems that ST has relatively low precision when valuing option with maturity longer than one year. Other 

variance reduction techniques may be implemented with the method in order to achieve better estimates.  

Secondly, Tilley‟s bundling method is still the slowest with roughly 15 minutes for each option. Though the 

results are not conclusive as discussed previously, the problem lies in the implementation. Speed could be 

improved if a more efficient reordering algorithm is introduced. (Using a more advanced programming language 

could also significantly increase speed, but here only relative speed matters.)  

Finally, least square method has stunning accuracy. For most option valued, it is accurate up to 2 decimal places. 

Not only it has superior accuracy, it is also speedy. Its average computation time is 71 seconds per option, a little 

longer than ST, but with much greater precision. Application of LSM to higher dimensional problem is also 

straightforward, as discussed in later section.  

To sum up, bundling method is a little complex to implement and its efficiency can only be improved with a 

quicker reorder mechanism. ST is fast but can only handle options with no more than four exercise opportunities. 

And its accuracy over long term options is relatively poor. LSM is the most promising technique with decent 

speed and superb accuracy, its speed and accuracy can be even better with some simple modification.  

5. Conclusion  

Most results and findings presented in this paper are consistent with previous literature. There are a few technical 

implementation problems where results contradict to previous findings. For example, advantage of trinomial 

method is not so strongly presented because possible biases in the option true values, which needs to be 

estimated with greater accuracy. And also the low efficiency of bundling method could be significantly improved 

if an alternative optimization procedure is implemented.  

It is also worth noting that implementations can be further improved. For finite difference methods, price grid is 

recomputed every time a new option is valued. But not stored in the memory so that next option price can be 

simply retrieved from the grid. Efficiency of tree methods can also be improved by utilizing trees previously 

computed rather than re-computing whole tree again. If such improvements are implemented, conclusions 

reached may be different. But given the resources and time constraint, the results are most likely to be right for 

small investors who do not have to price large number of options every few hours. It may also be right for small 

companies which do not have a full department of computer programmers working on every aspects of 

computation optimization.  

Overall the findings can be summarized as follows: Binomial are simple and efficient. Trinomial compensate 

efficiency with accuracy (Through not in second test). Explicit finite differences methods are very attractive 

when the grid ratio is fixed. Quadratic approximation is very fast but for long maturity option accuracy becomes 

a huge problem. Simulations are relatively slow even when dimensions are low. Among the three Monte Carlo 
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methods, LSM shows the best performance. Simulated tree is also very efficient, but its accuracy for long 

maturity options is disappointing. It is very difficult for simulated tree to price options with more than five 

exercise opportunities. Bundling methods can approximate option value with very good accuracy but not in an 

efficient way. Its computation time is about ten times that of LSM. 

Although this paper examined some of the most popular American option pricing methods, there are still many 

research questions that are not explored or not explored in sufficient details. Many areas are worth further 

research: Firstly, code implemented may not be the most efficient. There are many areas that optimization is still 

possible, which could substantially change conclusions in the paper. For example, bundling method could be 

implemented with more efficient sorting procedure which can significantly improve efficiency. Finite difference 

methods could be implemented in a way that price grids are pre-stored, computation of option price only need to 

choose the right node from the stored grid. Tree methods can also be improved by utilizing trees previously 

computed rather than re-computing whole tree again. LSM can be implemented using matrix algebra for the 

cross sectional regressions rather than rely on Excel function “Linest”.  

Secondly, variance reduction techniques could be employed for simulation methods. Techniques that can 

increase precision of estimates are quite important. Some possible variance reduction techniques of ST method 

have already been introduced in Broadie, Glasserman, and Jain (1997). 
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Notes 

Note 1. Available at: http://www.global-derivatives.com/index.php?option=com_content&task=view&id=14 

Note 2. With 2.80-GHz Pentium 4 CPU. 

Note 3. See „About PC Clocks‟. Available at 

http://www.greyware.com/software/domaintime/technical/accuracy/pcclocks.asp 
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