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Abstract—In this work, a novel deep learning approach to
unfold nuclear power reactor signals is proposed. It includes a
combination of convolutional neural networks (CNN), denoising
autoencoders (DAE) and k-means clustering of representations.
Monitoring nuclear reactors while running at nominal conditions
is critical. Based on analysis of the core reactor neutron flux, it is
possible to derive useful information for building fault/anomaly
detection systems. By leveraging signal and image pre-processing
techniques, the high and low energy spectra of the signals were
appropriated into a compatible format for CNN training. Firstly,
a CNN was employed to unfold the signal into either twelve or
forty-eight perturbation location sources, followed by a k-means
clustering and k-Nearest Neighbour coarse-to-fine procedure,
which significantly increases the unfolding resolution. Secondly, a
DAE was utilised to denoise and reconstruct power reactor signals
at varying levels of noise and/or corruption. The reconstructed
signals were evaluated w.r.t. their original counter parts, by way
of normalised cross correlation and unfolding metrics. The results
illustrate that the origin of perturbations can be localised with
high accuracy, despite limited training data and obscured/noisy
signals, across various levels of granularity.

Index Terms—deep learning, convolutional neural networks,
clustering trained representations, denoising autoencoders, signal
processing, nuclear reactors, unfolding, anomaly detection.

I. INTRODUCTION

The monitoring of nuclear reactors while running at nominal

conditions is crucial and advantageous. In fact, by analysing

measured fluctuations of process parameters, such as the

neutron flux, it is possible to gather valuable insight into the

functionality of the core and subsequently the detection of

anomalies at an early stage ([1], [2]). These fluctuations are

generally referred to as noise and can be denoted as in (1),

where X(r, t) represents the signal and X0(r, t) its trend.

Both are a function of two variables: r which is the spatial

coordinate, i.e. location in the core, and t, the time.

δX(r, t) = X(r, t)−X0(r, t) (1)

Causes for these fluctuations are multiple and can relate

to mechanical vibrations of internal reactor components, the

turbulent character of the flow within the core, the coolant

boiling, and to a smaller extent, the stochastic character of
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Fig. 1. Illustration of a CORE SIM simulation related to the thermal energy
group. The sub-plots at the top are exemplary of the radial (a) and axial
(b) positions of the noise source within the reactor core. The sub-plots at
the bottom are exemplary of the radial (c) and axial (d) distributions of the
amplitude of the corresponding induced neutron noise.

nuclear reactions. In order to model how the fluctuations affect

the neutron flux, dedicated core simulators can be employed

to perform simulations either in the time or frequency domain.

These models accept as input information related to physical

perturbations, the probabilities of neutron interactions within

the core, along with the description of the geometry of the

reactor. Once this data are known/given, the reactor transfer

function can be calculated. Consequently, the neutron noise

induced by the applied perturbation can be estimated such that

the so called forward problem can be solved. Conversely, the

backward problem refers to the localisation of the fluctuation/s

origin, and can only be retrieved if the reactor transfer function

can also be inverted. The latter is also known as the process

of unfolding. Nevertheless, solving the unfolding problem

(hereafter shorted as unfolding) is non-trivial as it would
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Fig. 2. Thermal (top three rows) and fast (bottom three rows) group response to an in-core Dirac’s like perturbation. The twenty-six layers of the reactor
are unrolled into a two-dimensional image. For each point, the height of the spike is representative of the induced noise measured in that particular point. a:

Signals phase. b: Signals amplitude. (a) is shown in log10 scale.

require measurements of the induced neutron noise at every

position inside the reactor core. This is not possible as in

reality, reactors have a limited number of in- and out- core

sensors able to measure fundamental parameters.

Considering the scarcity of previous research, in this work

a novel method to unfold, denoise and reconstruct the signal is

proposed. This is achieved by introducing appropriate signal

analysis techniques and using Deep Neural Network (DNN)

architectures to localise the origin of perturbations in reactors.

II. RELATED WORK

Few studies can be found in academic literature addressing

the problem of fault detection in nuclear reactors. Current work

follows either model-driven or data-driven approaches. Most

notably, in [3], auto-associative kernel regression and sequen-

tial probability ratio tests were combined to monitor sensors’

conditions. If an anomaly was detected, the system would

be able to reconstruct the measurements of faulty sensors.

An anomaly detection framework based on symbolic dynamic

filtering and associated pattern classification was proposed in

[4]. This was optimised by appropriate partitioning of sensor

time series. In [5], critical heat flux was predicted by means of

an Adaptive Neuro-Fuzzy Inference System. In [6], artificial

neural networks were implemented to diagnose transients,

based on reactor process parameters. In [7], a combination of

principal component analysis and fisher discriminant analysis

was proposed for fault detection in nuclear reactors.

Given the outburst in popularity of deep learning, a vast

amount of research has recently been published presenting

new techniques ([8]–[12]). In [13], a Convolutional Neural

Network (CNN) and Naı̈ve Bayes data fusion scheme was

proposed for the detection of fractures in plant components

by way of the analysis of individual video frames.

To the best of the authors’ knowledge, this is the first study

in which a deep learning based system is utilised to solve

the unfolding, denoising and reconstructing of signals repre-

sentative of the core responses to perturbations at different

frequencies. This is based on the analysis of the thermal and

fast groups of the neutron flux responses.

III. THE EXAMINED SCENARIO

Core simulators are able to perform simulations in both

time [14] and frequency domains [2]. Former simulations

provided a description of how a nuclear core behaves as a

function of time, at all possible locations throughout the core

and also for the in- and out- core neutron sensors. Although

the information extends to a defined but flexible period of

time, such tools were not primarily developed for modelling

the effect of very small perturbations (i.e. noise). The latter, on

the other hand, were specifically designed to model the effect

of small stationary fluctuations, and have the ability to describe

the distribution of the induced neutron noise within the whole

core reactor. In this study, data relating to an absorber of

variable strength in the frequency domain have been used. This

data, representative of a scenario where the neutron noise is

induced in a Pressurised Water Reactor (PWR), was generated

by means of CORE SIM [2]. During the forward problem, the

reactor transfer function thoroughly captures the response of

the neutron flux, which is induced by the known distribution of

perturbations. If the perturbations reduce to a Dirac function

applied to the point (rp) at a given angular frequency (ω), then

the transfer function is the Green’s function of the system ([1],

[15]). Considering that the effect of the perturbation can be

assessed from any spatial point r, the induced neutron noise

can be measured as in (2), where V refers to the volume of

the reactor core.

∂φ(r, ω) =

∫
V

G(r, rp, ω)dS(rp)drp (2)

From (2), it can be perceived that when the neutron flux

is measurable at any single location throughout a reactor

core, the Green’s function, depicted in (2), gives a one-to-

one relationship between every possible location of a Dirac-

like perturbation and every single position where the induced

neutron noise can be measured. The estimation of the Green’s

function thus represents an ideal case of unfolding, since there

are as many possible locations of the noise source as possible

locations of the induced noise.
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Fig. 3. a: Thermal group response to a Dirac’s like perturbation. b: The same
signal of (a) is affected by the noise at SNR = 1. For each point, the height
of the spike is representative of the induced noise measured in that particular
point.

A. Simulated Data Generation

Absorber of Variable Strength in the Frequency Domain:

In this study, CORE SIM was used to estimate a spatially-

discretised Green’s function in the frequency domain (2) [16].

CORE SIM applies diffusion theory to perform a low-order

approximation of the angular moment of the neutron flux,

which the scalar neutron flux and net neutron currents can

be determined from. Regarding the discretisation of energy,

a two-energy group formulation was used: one with a high

energy spectrum, hereafter referred to as the fast group, and the

other with a low spectrum, i.e. the thermal group. Moreover,

based on linear theory, the calculations of the induced neutron

noise were carried out using a first-order approximation of the

neutron noise.

Given a spatial discretisation of the reactor core in three

dimensions, CORE SIM computed the Green’s function (2).

In this scenario, the noise source is defined as the perturbation

of the thermal macroscopic absorption cross-section, which

characterises the ability of a material to absorb thermal neu-

trons (see Fig. 1). Further calculations were computed for all

possible sources of noise within the core, to determine the

spatially-discretised form of the Green’s function. In each set,

three different frequencies were used: 0.1, 1 and 10Hz. The

PWR adopted in this work consisted of a radial core of size

15× 15 fuel assemblies, in which axial and bottom reflectors

were also explicitly taken into account. A volumetric mesh

with voxels of dimension 32 × 32 × 26, with nodes of size

∆x = 10.75 cm, ∆y = 10.75 cm and ∆z = 15.24 cm was

utilised for calculations. For more details related to CORE

SIM, please refer to the official user’s manual ([2], [16]).

B. Data Pre-processing

The output of CORE SIM is a 3D representation of the

induced neutron noise. It can be considered as an ideal

scenario where a detector (sensor) and thus the noise signal

is avaliable at each voxel of the core volume. Moreover, the

calculated output can be seen as a clean signal that carries only

the information related to the noise produced by a Dirac’s like

perturbation. The simulation output consists of the fast and

the thermal neutron responses. Specifically, these are complex

signals distributed in the form of a three-dimensional array

of size 32 × 32 × 26, with each complex signal containing a

perturbation at differing coordinate points i, j, k (considered

the label) within the volume. The dataset is comprised of

Fig. 4. Volumetric splitting used to generate the twelve and forty-eight
unfolding labels. The 32×32×26 volume was compartmentalised into twelve
and forty-eight volumetric subsections by a factor of 2×2×3 and 4×4×3
respectively.

19552 instances per frequency (0.1, 1 and 10Hz). For the

purpose of learning a meaningful representation from the data,

a conversion procedure was devised to unroll each volume into

a two-dimensional form. This conversion was independently

repeated for the amplitude and phase of each signal. Lastly, the

values were rescaled conforming to a range between 0 and 255.

Fig. 2 depicts the thermal and fast group response to an in-core

perturbation. The signal measured in each layer of the reactor

(from the bottom moving upward in the core) is unrolled in

a two-dimensional image where the height of the spikes is

representative of the induced noise measured in that particular

point. To make the signal more realistic, it was processed and

corrupted by adding disturbing noise. Additionally, to be more

representative of the fact that in reality, fewer in-core sensors

are available, parts of the signal were also obscured.

1) Noise Addition: White Gaussian noise (WGN) was

added to the signal at two distinct signal-to-noise ratios

(SNR = 1 and SNR = 3) producing two versions of noisy

data. To ensure that the perturbation was influenced by the

introduction of the noise, this was added individually to each

slice (depth-wise) of the core volume. Figure 3 depicts how

the signal is affected by the noise (SNR = 1) and in fact, the

relatively larger amplitude of the induced noise in the vicinity

of the perturbation on the left-hand side of the image is no

longer easily discernible.

2) Obscuring Signals: Two versions of obscured data were

produced, and for each of them, three thresholds of data

maintenance were adopted (25%, 50% and 75%). In the first

version, for each output volume of the CORE SIM simulation,

a random 25% (50%, and 75% respectively) of the values were

maintained and the remaining were set to zero. In the second

version, 25% (50%, and 75% respectively) of the sensors were

randomly selected and their signal kept. Conversely to the

former, in the latter version, the active sensors were randomly

selected only once at the beginning of the experiment, and the

measurements from these same sensors were kept all across the

dataset. An identical data-obscuring procedure was likewise

applied to the signals to which noise of SNR = 1 and

SNR = 3, was previously added.

IV. THE PROPOSED APPROACH

In the following section, the proposed deep learning ap-

proach for detection of the induced neutron noise in the above

reactor environments is presented. Firstly, the desired network



Fig. 5. Depiction of the DAE architecture assembled to solve the corrupted signal reconstruction problem. From left to right, the input image is fed into the
first convolutional layer, consisting of 32 (3×3) filters, same padding and ReLU activations. The resulting volume of dimensions 300×300×32, is then fed
into a max pooling layer with a kernel size 2× 2 and same padding, resulting in a 150× 150× 32 compressed volume. This process is repeated using the
same layer parameters, until the first upsampling layer, where both the volume rows and columns are instead repeated by a factor of 2. The final convolutional
layer consists of 3 (3× 3) filters, same padding and a sigmoid activation function. The output is a volume of the same dimension as the original input image.

outputs are defined and obtained through volumetric splitting

of the complex signals. Subsequently, a CNN is trained to

perform the unfolding, also introducing a novel hierarchical

clustering approach of CNN derived representations. Lastly, a

DAE approach to reconstruct and unfold corrupted signals is

proposed.

A. Volumetric Splitting

Given the measurements of the induced neutron noise within

the reactor, it was possible to localise the source of each

perturbation inside a well defined region. Specifically, the

32× 32× 26 signal volume array was compartmentalised into

either twelve volumetric subsections by a factor of 2×2×3 or,

forty-eight subsections by a factor 4× 4× 3. Each subsection

was then utilised to generate labels for the experiments (see

section V). Fig. 4 is exemplary of the label splits. Through

splitting we illustrate the proposed coarse-to-fine unfolding

approach, which could also be extended to provide finer

unfolding resolutions.

B. Convolutional Neural Networks

CNNs take as input three channelled images and perform

automatic feature extraction through a series of volume-wise

convolutions and feature routing. To create an appropriate

dataset to be fed into a CNN, the two-dimensional transfor-

mation of the data, as described in section III-B, was stacked

into three channels (RGB). The amplitude and phase of both

the thermal and fast groups were concatenated to preserve the

integrity of the data, as these groups are the components in

which the signal spectrum was discretised by CORE SIM. The

first two channels are identical and contain the amplitude of

the thermal and fast groups concatenated. The third channel

consists of the phase of the two groups concatenated.

The CNN architecture of choice was Inception-V3 [17], due

to its high capability to trainable parameters ratio when com-

pared to other architectures such as InceptionResNetV2 [17] or

VGG19 [18]. Furthermore, it is important to note that given the

modest size of the dataset, a larger network is more likely to

overfit as it contains more trainable parameters. For a detailed

description of the Inception-V3 architecture, please refer to its

original paper [17].

It was of particular interest to firstly conduct transfer

learning and assess the adaptability of pre-trained Inception-

V3 Imagenet weights on the dataset. Specifically, each three

channelled transformed image was fed through the network up

until the last pooling layer, where a 2048 vector representation

was extracted for each instance. The 2048 dimensional vectors

were then used as input to a new series of fully-connected

layers and a softmax classification layer of either twelve

or forty-eight classes depending on the experiment. Prior to

training, the dataset underwent one more pre-processing step

in which the images were zero-padded to the target dimension

of the CNN (299 × 299 × 3). This ensured that the integrity

of the signal was preserved whilst accommodating the CNN

convolutional layer parameters and arithmetic.

In order to optimise the performance of the new fully-

connected layer network to be trained on the problem at hand,

a series of architectural decisions were made through exper-

imentation. The best performance was achieved with a fully-

connected network consisting of two 2048 unit hidden layers

with Rectified Linear Unit (ReLU :→ f(x) = max(0, x)) ac-

tivations. Furthermore, Dropout [19] was used as an effective

regulariser, with the probability of keeping individual neurons

(n : 6= 0) in each hidden fully-connected layer (l[1] to L − 1)

set to P (n) = 0.5. To preserve more information in the input

layer (l[0]) of the network and thus aid learning [19], the keep

probability was instead set to P (n) = 0.8.

In view of the unbalance present when splitting the signal

volumes into forty-eight classes, it was advantageous to use

weighted categorical cross entropy as a loss function (3), to

encourage the model to focus on under-represented classes. In

(3), the term ωj (4) is a weight coefficient computed for the

jth of all classes J as a function of the proportion of instances

Nj compared to the most densely populated class; x and x̂ are

ground-truth and predicted source respectively.

L (x, x̂) = −
J∑

j=1

ωx log(x̂) (3)
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Fig. 6. t-SNE visualisation of k-means (k = 4) of the seventh block. The
obtained training set clusters are (a-b) and the test set predictions are shown
in (c-d). Each point is a lower dimensional projection of 2048 dimensional
vector representations of signals, and each colour indicates a different cluster.
Images on the left hand side are 2D visualisations, and those on the right the
relative 3D visualisations.

ωj =
max({Ni}i=[1:J])

Nj

(4)

C. Increasing Resolution through Clustering

The generation of labels for the dataset, which involved

volumetric splitting (see section IV-A), requires a sufficient

amount of perturbation examples per class to be trained and

classified. Intuitively, by increasing the granularity of the

volumetric splitting, one is effectively reducing the number

of training instances per class (volumetric subsection). It is

therefore prudent to retain as much training data as possible,

albeit at the cost of decreased prediction origin granularity.

Granting that in a real scenario it is in-feasible to have suffi-

cient measurements per every individual point in the volume,

an optimal solution is one which maximises class granularity

whilst maintaining an adequate amount of instances per class.

With that in mind, a methodology was devised to ar-

tificially increase the resolution of a given prediction by

way of clustering instances belonging to individual blocks.

Formally, given extracted N [L−1]-dimensional activations

(~x1, ~x2, ..., ~xn), from the last fully-connected layer L− 1 (of

L total layers), as latent variable representations of n total

input images, the objective function in (5) clusters them into

k sets C = {C1, C2, ..., Ck} as to minimise within-cluster L2

norms.

arg min
C

k∑
i=1

∑
x∈Ci

||x− µi||
2 (5)

To achieve this, the first step was to utilise the CNN previously

trained on the unfolding, in order to extract 2048 dimensional

vector representations from the final average pooling layer.

This vector is a compressed, but useful representation obtained

through the forward propagation of each image through an

already trained network. Therefore, rather than unrolling each

original 299 × 299 × 3 image into a long vector, it was

TABLE I
SETTINGS AND RESULTS OF THE UNFOLDING EXPERIMENTS.

CNN Unfolding

Classes Sensors Signal Train/Dev/ Accuracy
(%) Test (%) Pretrained Scratch

12

100 clean 75-10-15 97 99.9
100 SNR=3 75-10-15 88.7 99.9
100 SNR=1 75-10-15 84.2 98
25 clean 50-20-30 93.7 99.9
25 clean 25-15-60 93.4 98.4
25 SNR=1 50-20-30 76.6 94.1

48

100 clean 75-10-15 92.3 99.9
100 SNR=1 75-10-15 72.9 92.5
25 clean 50-20-30 90.3 97.8
25 clean 25-15-60 85.1 91.1
25 SNR=1 50-20-30 65.2 82.3

advantageous to utilise the above representations learnt by the

network during training, for clustering. Let us consider the

task of increasing resolution from twelve to forty-eight classes.

Each training image was first fed to the above trained CNN

to compute the respective 2048 dimensional representation.

Then, each derived representation referring to a corresponding

noise perturbation location in one of the twelve original

classes, was included in one out of four clusters generated

per original class, through the use of the k-means algorithm.

Lastly, the centroids of all these forty-eight sub-clusters were

calculated. During testing, all data were fed to the trained

CNN and their respective representations were classified using

a nearest-neighbour method to one of the forty-eight centroids.

The result of this classification procedure, is essentially the

unfolding at a finer resolution - one fourth of that obtained

by the CNN network on twelve classes. This procedure can

be extended, or continued, to perform the unfolding at finer

resolutions. The implementation of the k-means algorithm fol-

lowed the k-means++ seeding strategy. Rather than randomly

sampling initial centroids from available points, k-means++
employs a heuristic/probabilistic approach which leads to

improvements in running times and better final solutions [20].

For visualisation, t-Stochastic Neighbour Embedding (t-SNE)

was used as it provides accurate structure revealing maps of

high-dimensional data [21] in lower dimensions, such as in

2D or 3D.

D. Denoising Autoencoder

An autoencoder is a type of network designed to copy its

input to the output, rather than mapping it to a particular label.

Like autoencoders, DEAs are comprised of an encoder and a

decoder network. The encoder is responsible for the compres-

sion and encoding of a corrupted input f(x̂). The decoder then

upsamples the encoding back to the input dimensions, and this

procedure forces the network to learn useful properties of the

data. During training, a loss function such as mean squared

error (6) is minimised by penalising the reconstructed input

g(f(x̂)) relative to how similar it is to the original input x.

mse =
1

n

n∑
i=1

(xi − g(f(x̂i)))
2 (6)
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In pursuance of learning useful properties from data, a

Denoising Autoencoder (DAE) was utilised as a means of

reconstructing a corrupted input signal. The fundamental dif-

ference between a traditional autoencoder and a DAE is that

the former learns the identity function of the input whereas the

latter is forced to learn a denoising function w.r.t the input. It

was therefore evident that this property of DAEs is especially

useful for learning to reconstruct signals which are either

noisy or have been obscured. In all cases, the pre-processing

and signal transformation stages discussed in section III-B

were used. The signals are treated as three channelled two-

dimensional images, as to allow for convolution operations

in order to retain valuable spatial information, rather than

unrolling each image into a vector.

A concrete depiction of the architectural parameters can be

seen in Fig. 5. The network is comprised of five convolutional

layers, four of which have 32 (3 × 3) filters and ReLU

activations. The final convolutional layer includes 3 filters of

size 3 × 3 and a sigmoid (σ) activation function in order to

reconstruct an image of identical dimensions to the input.

Moreover, two max pooling layers of filter size 2 × 2
were used to reduce the representation and finally produce

a 75× 75× 32 encoding layer. The decoder follows the same

pattern but in reverse, as to upsample the encoding volume

back to the input size. Lastly, same padding was implemented

throughout to retain the spatial dimension of the volumes

after convolving, also known as flat convolution. Lastly, the

autoencoder was trained to minimise the mean squared error

(mse) presented in (6) along with Adaptive Moment Estima-

tion (Adam) optimisation to include adaptive learning rate,

momentum, RMSprop and bias correction in weight updates,

which helps to obtain faster convergence rate than normal

Stochastic Gradient Descent with momentum [22].

V. EXPERIMENTAL STUDY

Two sets of experiments were carried out. In the first

set, the CNN and the proposed clustering methodology were

employed to solve the unfolding problem. In the second, the

proposed DAE was utilised to reconstruct a complete clean

signal starting from obscured signals, and to filter out noise.
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Fig. 8. Reaching a very fine unfolding resolution through a k-Nearest
Neighbour (k = 6) algorithm utilising the L2 norm as a distance metric.

Post DAE training, the reconstructed signals were predicted

by the CNN for unfolding.

The experiments were run under different

train/validation/test data split configurations: 75-10-15%,

50-20-30% and 25-10-15% respectively. The motivation

was that in a real scenario, one would never have complete

quantitative information regarding the noise induced in the

core, and so by limiting the amount of training data, it is

possible to mitigate learning from an unrealistic dataset. As a

direct implication, the DNN should inherently have the ability

to learn from a limited number of recorded instances, and be

able to predict the induced noise in the occurrence of unseen

scenarios. The implementation was based on MATLAB [23],

Keras deep learning framework [24] and Tensorflow numerical

computation library [25]. The experiments were conducted

using a server with an Intel Xeon(R) E5-2620 v4 CPU, eight

GPUs and 96GB of RAM.

A. CNN-based Unfolding

This experiment included two subsets, namely unfolding the

signal to identify twelve and forty-eight possible perturbation

sources respectively. Several further tests were performed,

each of them involving different input data - as reported in

Table I. The highest performance achieved on the twelve class

test, by utilising pre-trained weights, with clean and complete

signal input was 97% accuracy. On the other hand, the CNN

trained from scratch performed better, achieving 99.9% in both

the twelve and forty-eight classes experiments. Despite the

reduction of the signal available (25% of the sensors active),

training from scratch proved to be highly accurate in unfolding

the signal to forty-eight classes regardless of the size of the

training set. It achieved 97.8% and 87.3% accuracy when the

training set consisted of half and a fourth of the entire dataset

respectively. In the presence of noisy signal (SNR = 1), with

25% of active sensors, the accuracy achieved was 94.1% in

twelve classes and 82.3% in forty-eight. Conversely, when

retaining 100% of active sensors, the performance increased

up to 98% and 92.5% for the twelve and forty-eight classes

problem respectively. In continuation, as previously discussed

in section IV-C a k-means clustering approach was devised,



TABLE II
SETTINGS AND RESULTS OF THE DAE EXPERIMENTS

Deep-CNN Autoencoder

Sensors Signal Train/Test
Normalised Cross-Correlation
Clean vs Clean vs
Corrupted Reconstructed

75% clean 25/75% 0.77 0.995
50% clean 25/75% 0.57 0.995
25% clean 25/75% 0.37 0.993
25% SNR=1 25/75% 0.36 0.991

based on extraction of activations from the last fully-connected

layer of the trained CNN. Figure 6 depicts 2D and 3D t-

SNE visualisations of k-means (k = 4), belonging to the

seventh of the twelve blocks. Each point corresponds to a

2048 dimensional vector representation of the original signal

and each colour represents a different cluster. A respective test

set prediction accuracy of 95.3% was achieved, indicating that

very good results were obtained when increasing the unfolding

resolution from twelve to forty-eight classes, either through

CNN re-training or through the clustering approach.

In an extension of this study, a k-NN based approach was

devised to perform the unfolding up to the original resolution

of 32× 32× 26 (see Fig. 7). Firstly, 2048 dimensional CNN

representations were split into two separate sets (train/test)

containing no overlapping perturbation locations (labels) be-

tween the sets. The perturbation location of each data point

in the test set was then predicted by computing the mean µ

of each triad of coordinates (w.r.t the original signal volume)

belonging to its k nearest neighbour representations within

the train set. Figure 8, shows that for k = 6, the unfolding

procedure produced an excellent perturbation location (i, j, k)

estimation accuracy, with the average error of just over 1
coordinate point in the reactor.

B. DAE-based Signal Filtering and Unfolding

In this experiment, signal denoising and reconstruction were

performed. Table II lists the input data to the DAE for

each test. The percentage of volume-wise maintained sensors

accounted for 25-50-75% of the total; whereas the signal was

either clean or corrupted with SNR = 1.

A further study was carried out to evaluate the performance

of a combination of the DAE followed by a CNN classifier as

described previously. Starting from the partially obscured and

disturbed signals, the aim was to unfold the induced neutron

noise to either twelve or forty-eight sources. The work-flow

consisted of a denoising and reconstruction step performed

by means of the DAE, and subsequent classification of the

reconstructed signals. For the latter, a CNN model previously

trained on the forty-eight classes problem with clean signals

was utilised.

To ensure a superior generalisation of signal reconstruction

in the experiments, the DAE training set size was limited to

only 25%. In effect, this forced the autoencoder to learn to

generalise to a much bigger test size proportion. Fig. 9 is

exemplary of the reconstruction of a signal starting from 75

(left column), 50 (middle) and 25 (right column) % of the

sensors. These depict the clean (top), corrupted (middle) and

reconstructed (bottom) signals. The metric employed to mea-

sure the precision of the reconstruction was normalised cross-

correlation (ncc, (7)), as it provides sub-pixel image matching

evaluation precision [26]. Given two three-channelled images

A and B, we can quantify their similarity per channel as

ncc =

∑
i,j(ai,j − µA)(bi,j − µB)

[
∑

i,j(ai,j − µA)2
∑

i,j(bi,j − µB)2]0.5
(7)

where ai,j and bi,j refer to each pixel in A and B with

µA and µB as their mean pixel intensities per channel. The

final ncc is the average of the three channels (RGB), and is

a R ∩ [−1, 1] computed solely on the portion of the image

containing the signal, disregarding zero value padding. Table II

reports the similarity of the reconstruction to the original

signal. The average ncc of the reconstruction was in the

worst case 0.991. In the cascade experiment, reconstructed

signals were predicted by a previously trained CNN on the

original (clean) signals. Given that the ncc coefficients of the

reconstructed signals compared to the original were very close

to 1, the CNN classification performance on the reconstructed

signals was almost identical to the original results, as reported

in table I.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel method to solve the unfolding,

denoising and reconstruction of signals with induced neutron

noise in a pressurised water reactor. The data consisted of the

core thermal and fast group responses to perturbations applied

within the reactor, at differing frequencies 0.1, 1 and 10Hz,

and comprising the knowledge of the noise signal at each voxel

of the core volume.

The proposed solution was based on the coupling of a

deep convolutional neural network with clustering of internal

representations extracted from the trained CNN, combined

with appropriate signal analysis methodologies. A very high

accuracy was achieved in the unfolding throughout the exper-

imental study, including the originally generated signals, as

well as their respective noisy and obscured counterparts.

Moreover, very good results were also obtained through the

proposed clustering of CNN extracted representations method

to increase unfolding resolution. k-means based unfolding

achieved 95.3% accuracy for four-way subdivisions of blocks

belonging to the twelve classes. Furthermore, unfolding up

to a very fine resolution was successfully achieved through

the proposed k-NN based coarse-to-fine approach, reaching

an average error of only 1 neighbouring coordinate point in

the original 32× 32× 26 reactor dimensions.

A Deep-CNN Denoising Autoencoder was also developed

to denoise and reconstruct noisy reactor signals. Several

experiments were successfully conducted, and comparatively

evaluated using a Normalised Cross-Correlation coefficient

criterion. It was shown that the reconstructed signals were very

close approximations of the originals, and were thereafter used

for unfolding of noisy and obscured data.



(a) (b) (c)

Fig. 9. Three examples (a-c) of the reconstruction performed with the DAE when: 75%, 50% and 25% of the sensors were used. For each of these:
Top: Original signal. Middle: Obscured signal. Bottom: Reconstructed signal.

Our future work will extend the experimental study to other

types of perturbations and signals generated in either the

frequency or time domain, and will ultimately lead application

on nuclear reactor data currently generated by the CORTEX

EU Horizon 2020 project [27].
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