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Summary 

This report describes the results of a 1-D gas injection test on compact Mx80 bentonite. The test 

comprises the first dataset for Stage 1A of Task A of the DECOVALEX-2019 programme, which 

has been designed to improve our understanding of the migration of repository gases through clay-

based materials. 

Over the duration of the testing period, pressurised helium gas was applied to the face of the 

injection end of the clay sample, and the gas pressure was increased until the entry pressure was 

exceeded and gas entered the sample. The gas then migrated through the clay and changes in 

porewater pressure, swelling pressure and flowrate were observed by the instrumentation around 

the sample. Gas breakthrough occurred as outflow was recorded by the backpressure pump that 

corresponded with the changes in pressure. The data presented in this study shows that dynamic 

processes operate within the clay causing differing responses to be recorded on the monitoring 

instruments. The recorded response of the clay highlights the spatial and temporal development of 

permeability within the clay sample over the duration of the test. 

 

1 Introduction 

Clay-based engineered barriers are a vital part of the design concept for the geological disposal of 

radioactive waste. The corrosion of metallic canister materials in the subsurface in anoxic 

conditions, as could occur in the KBS-3 disposal concept, radiolysis of water and radioactive decay 

of the waste could all cause the production of gas. The accurate understanding of the processes 

governing the movement of repository gases through engineered barriers is therefore of importance 

in understanding their long-term performance and integrity. The migration of gas through the 

engineered barrier may occur either by diffusion alone or a combination of advection and diffusion. 

If the gas production rate is greater than the diffusion rate through the material, gas will accumulate 

as a free phase (Weetjens and Sillen, 2006; Ortiz et al., 2002; Wikramaratna et al., 1993) and the 

pressure will rise until the gas can advect through the material. The advection of gas will be 

influenced by the layout of the radioactive waste repository, therefore a consideration of the 

advection of gas in a repository will have an impact on both its design and layout. 

Recent work has shown that plastic clays, such as bentonite, idealised two-phase flow through a 

porous medium often does not adequately explain experimental observations (Horseman et al., 

1996, 2004; Harrington and Horseman, 1999; Angeli et al., 2009; Harrington et al., 2009). Further 

work is required to understand such processes as gas entry, gas breakthrough, gas flow, flow path 

homogeneity and pathway sealing, as well as the dilatant mechanisms in the clay that control them. 

In addition, the gas permeability is likely to be a time- and location-dependent variable rather than 

a material property because it relies on the quantity, size and connectivity of pressure-induced 

pathways through the material (Horseman and Harrington, 1997). It is also unclear what effect 

previous gas flow through a clay will have on any subsequent gas flow; the first incidence of gas 

flow may reduce the effectiveness of the barrier against further gas migration. 

Task A of the DECOVALEX-2019 programme has been designed to address these questions, and 

to improve understanding of the advection of repository gases through clay-based materials. A 1-

D gas injection test performed on compact Mx80 bentonite has been conducted at the British 

Geological Survey. This test represents the first test dataset for Stage 1A of the DECOVALEX 

Task A; the results of this experiment are presented in this report. 
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2 Experimental Approach 

2.1 SAMPLE PREPARATION 

A 1-D gas injection test has been conducted on a sample of pre-compacted Mx80 bentonite 

supplied by Clay Technology AB (Lund, Sweden). The bentonite had dry and bulk densities of 

1.56 kg/m3 and 1.99 kg/m3 respectively (Table 1). The pre-compacted bentonite was cut into a 

cylinder using a machine lathe yielding an accurately dimensioned sample that formed a snug fit 

with the internal bore of the testing apparatus; the length of the cylindrical sample was cut parallel 

to the compaction direction. The sample was machine lathed without cutting lubrication and care 

was taken to minimise moisture loss by keeping the sample wrapped in plastic packaging wherever 

and whenever possible. A hole at the midplane of the sample with a diameter of 6.35 mm was 

drilled from the backpressure end of the sample to a depth of 64.8 mm, to allow a stainless steel 

tube with a filter at its tip to be inserted into the sample (providing a static measure of gas pressure 

during testing). The hole at the midplane was also drilled using the machine lathe at 200 rpm; the 

drill bit did not clog and no heat was able to build up in the clay during the drilling of the hole. 

The sample was stored in vacuum-sealed packaging when not in use and the sample dimensions 

and weight were recorded prior to testing. X-ray radiography was used to image the fabric of the 

bentonite before the sample was installed into the experimental apparatus and once the test had 

concluded and the sample had been removed from the rig (Figure 1).  

 

 

Figure 1: Post-test X-Ray images of the sample [A] oriented parallel to vertical and [B] and 

oriented parallel to horizontal. The apparent deviation of the end faces of the cylinder from 

horizontal is an optical artefact of the X-Ray image. The small circular depression of the 

material in the end face at the base of the image was created by the pushrod leading to the 

injection-end axial load cell.  

 

 Length (mm) Diameter 
(mm) 

Weight (g) Dry Density 
(kg/m3) 

Bulk Density 
(kg/m3) 

Sample Mx80D 119.88 59.59 671.65 1.56 1.99 

Table 1: Sample dimensions and geotechnical parameters to 2 decimal places. The length, 

diameter and weight were each measured three times and were then averaged. 

[B] [A] 
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2.2 METHOD 

2.2.1 Apparatus 

A constant volume pressure vessel, comprising a custom-built hollow 316 stainless steel cylinder 

and two detachable end-closures, was used for the testing (Figure 2). The pressure vessel was 

instrumented with 2 axial and 3 radial load cells, as well as 3 radial arrays of 4 porewater pressure 

transducers that were positioned regularly around the circumference of the vessel. The name, 

position and measurement type of each instrument used in this test are detailed in Table 2 and 

Figure 3. De-ionised water (DI) was used as the permeant to hydrate the sample prior to gas testing, 

and subsequently, as the backpressure fluid during the gas test. Helium was used as the permeant. 

The fluids were supplied to the sample through sintered stainless steel filters with a 3mm thickness, 

positioned at each end of the sample and over the ports to the porewater pressure transducers. 

 

 

Figure 2: The experimental apparatus and sample assembly 

 

2.2.2 Procedure 

Before installing the sample, the radial filters (Table 2), connecting stainless steel tubing and the 

backpressure filter were flushed with DI to remove any air from the system. The injection filter 

was maintained dry to prevent water from entering the injection side of the sample ahead of the 

gas during the gas testing. The sample was slotted into the pressure vessel, the end-closures were 

fitted and the tubing was connected. The injection axial load cell housing was loosened before the 

injection end-closure was fitted so ensure that the pushrod between the clay and the load cell 

remained free-moving. The caphead screws on the backpressure end-closure were tightened first 

and to their maximum extent so that the end-closure was flush with the body of the vessel. The 

caphead screws on the injection end-closure were subsequently tightened to an approximate torque 

of 8 Nm, resulting in a gap of 1.89 mm between the end-closure and the vessel body and the 

application of an initial pre-stress on the axial faces of the sample of 3127 kPa (injection) and 5145 

kPa (backpressure). These pre-stresses dropped to 2566 kPa and 3680 kPa respectively before 

increasing again as the clay hydrated. 

 

 

 

Pressure vessel 

containing 

sample 

 

Valves controlling 

flow into and out of 

the sample 

Interface vessel 

(IV) 

Pump controller 
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Array Sensor name Axial distance 
from 

backpressure 
face (mm) 

Rotation around 
bore of vessel 

(degrees) 

Axial stress Injection load cell 120 90 

Radial stress Radial load cell 1 104.8 0 

Radial stress Radial load cell 2 60 120 

Radial stress Radial load cell 3 15.2 240 

Axial stress 
Backpressure load 

cell 
0 30 

Radial porewater array 1 

Radial 1 81.4 330 

Radial 2 81.4 60 

Radial 3 81.4 150 

Radial 4 81.4 240 

Radial porewater array2 

Radial 5 60 330 

Radial 6 60 60 

Radial 7 60 150 

Radial 8 60 240 

Radial porewater array 3 

Radial 9 38.6 330 

Radial 10 38.6 60 

Radial 11 38.6 150 

Radial 12 38.6 240 

Midplane filter Middle 60 0 

Table 2: Relative positions of load cells and porewater pressure filters. Axial distance is to 

the centre point of each sensor. Angular rotation is anti-clockwise with the zenith taken 

vertically at the top of the vessel at the radial load cell 1 position (see also Figure 3). Radial 

porewater sensors 1 to 4 comprise radial porewater array 1, radial sensors 5 to 8 form radial 

porewater array 2 and radial porewater array 3 comprises radial sensors 9 to 12. 

 

Volumetric flow rates were controlled or monitored using a pair of Teledyne ISCO-100DM, Series 

D, syringe pumps operated from a single digital control unit. The position of each pump piston 

was determined by an optically encoded disc graduated in segments equivalent to a change in 

volume of 4.825 nL. Movement of the pump piston was controlled by a microprocessor, which 

continuously monitored and adjusted the rate of rotation of the encoded disc using a DC-motor 

connected to the piston assembly via a geared worm drive. This allowed each pump to operate in 

either constant pressure or constant flow modes. A programme written in LabVIEWTM elicited 

data from the pump at pre-set time intervals. Testing was performed in an air-conditioned 

laboratory at a nominal temperature of 20 ºC ±2 °C.  
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Figure 3: Above: Cut-away diagram of the pressure vessel showing the apparatus 

components and instrumentation. Below: image of the sample showing the relative positions 

of the load cells and pore pressure filters. Figure from Harrington and Tamayo-Mas, 2016. 

 

 

Figure 4: A simplified schematic diagram showing the fluid pathway and connections 

between the syringe pumps, interface vessels (IVs) and the sample assembly in the pressure 

vessel. The instrumentation of the vessel (porewater pressure transducers and axial and 

radial load cells) is not shown. The IV on the left contains the helium, which is topped up 

through the valve at the top of the vessel. The valves are represented by circles. 
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Helium was supplied to the sample from an interface vessel (IV) located between the ISCO pump 

and injection face of the sample (Figure 4). To compress and displace the gas, water from the 

ISCO pump was injected into the base of the IV. In this way, the gas was water saturated and thus 

would not have a drying effect on the clay and the gas pressure could be increased or controlled 

depending on the needs of the test. The test comprised two stages: hydration of the sample (Stage 

1) followed by gas testing (Stage 2). After gas breakthrough and a period of gas flow through the 

sample, the injection pump was stopped whilst the swelling pressures (stresses) and porewater 

pressures were continuously monitored. The test ran for a duration of 265 days.  

 

2.3 SAMPLE HYDRATION: 

After installation, the sample was allowed to equilibrate with the water in the radial filters and 

backpressure end-closure filter for a period of 7.3 days. There was no air in these filters; the 

injection filter however was dry and no water was present in the tubes to the midplane filter. At 

the start of the test, the porewater pressure was at atmospheric pressure. During this hydration, the 

porewater pressure in each array and axial backpressure filter was monitored (Figure 5), as was 

the development of the swelling pressure (Figure 6).  

 

 

Figure 5: Swelling pressure measured by the axial and radial load cells, injection pressure 

and backpressure. 

 

At day 7.3 active hydration of the sample began by pressurisation of the backpressure and radial 

filter arrays using DI water. To this end, the backpressure pump was initially set to 500 kPa. Next, 

the 3 radial arrays were pressurised using the backpressure pump, while a helium gas pressure of 

1 MPa was generated in the injection filter (using the injection pump). Backpressure in the axial 

and radial arrays was then increased over the space of 2 minutes in 100 kPa steps to 1 MPa. The 

sample was allowed to hydrate for the following 32 days (Figure 5 and Figure 6). The gas pressure 

in the injection filter was maintained constant at 1000 kPa to prevent water ingress from the 

hydration systems into the injection filter. 
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Date Test Day Pump Volume 

Before 

Pump Volume 

After 

Comment 

10/03/16 0 47.97 ml  Pump A starting volume 

10/03/16 0 102.99 ml  Pump B starting volume 

17/03/16 7 300 ml  Starting IV volume of 

He at 845 kPa 

17/03/16 7 102.99 ml 49.72 ml Pump B vol. decrease to 

raise IV He pressure to 

1000 kPa 

18/04/16 39 20.45 ml 101.42 ml IV refilled with He at 

3000 kPa 

03/05/16 54 6.25 ml 102.15 ml Pump A refilled with 

water 

10/05/16 61 40.75 ml 100.88 ml IV refilled with He at 

8715 kPa 

10/05/16 61 34.8 ml 6.58 ml Pump B drained 

16/05/16  85 ml 14 ml Pump B drained 

17/05/16  72.7 ml 9.7 ml Pump B drained 

17/05/16  40 ml 11.7 ml Pump B drained 

18/05/16  71 ml 9.5 ml Pump B drained 

18/05/16  39 ml 9.1 ml Pump B drained 

19/05/16  70.9 ml 8.9 ml Pump B drained 

19/05/16  40 ml 6.8 ml Pump B drained 

20/05/16  71.3 ml 7.2 ml Pump B drained 

27/06/16  89.40 ml 25.76 ml Pump B drained 

Table 3: Dates and pump volumes recording the addition of helium to the left-hand IV, water 

added to the injection pump, or gas removed from the backpressure pump. 
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Figure 6: Axial and radial porewater pressure for the first 40 days. The small deviation in 

the radial porewater data between days 8-11 was due to using the incorrect pump set point 

and was quickly rectified. 

 

3 Gas testing 

3.1 BEFORE GAS BREAKTHROUGH 

Gas testing began on day 39. Additional helium was added to the IV to increase pressure to 3 MPa 

(Table 3). Gas pressure was then held constant for a further 7 days to allow the system to 

equilibrate with the DI water in the IV. At day 46, the injection pump was set to a constant flow 

rate of 500 L/h. The injection pressure gradually increased for the next 8 days from 3 MPa to 5 

MPa whilst the volume of fluid in the injection pump decreased from 102.7 ml to 6.25 ml. Data 

from the axial and radial load cells and the porewater pressure sensors is presented in Figure 7 and 

Figure 8. At day 54, the DI water in the injection pump was refilled by 95.9 ml to 102.15 ml and 

the flow rate was reduced to 375 L/h to create a consistent ramp of pressure following an increase 

in volume (see Figure 8). 

At day 46, as the gas pressure ramp was initiated, and the pressure registered by the transducer 

attached to the injection end-closure filter showed an immediate increase in pressure (Figure 7). 

This is in contrast to the radial porewater pressures, which initially decreased, and in the case of 

arrays 1 and 2, then slowly increased again. The midplane porewater filter however, showed no 

obvious change between the start of gas testing and gas breakthrough; its value remained just 

below zero for the whole of this first part of the test. Althoughnot able to measure an accurate 

value of suction, the small negative values demonstrate that there is a suction at this point with 

water being drawn from the filter into the clay. Detailed inspection of the data in Figure 7 shows 

that the porewater pressure in radial array 1, closest to the injection end of the sample, increased 

most quickly as gas breakthrough approached. The cause for this rise is unclear and may relate to 

a hydrodynamic effect as the gas acted against the injection face of the clay. In contrast, the rate 

of change in porewater pressure of radial array 3, closest to the backpressure end of the sample, 

showed a steady decrease between days 46 and 61, followed by a slight increase until gas 

breakthrough, indicating that the sample was not in hydraulic equilibrium at the start of gas testing. 
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Figure 7: Porewater pressures up to gas entry at 63 days. 

 

 

Figure 8: A 3 MPa gas pressure was applied at the injection end of the sample. The flow rate 

was set to 500 L/h and the swelling pressures remained constant. At day 54, the injection 

pump was refilled with DI water and the flow rate was reduced to 375 L/h. The injection 

system (pump and IV) was refilled again at day 61. At this point, 60.13 ml of DI water was 

drawn back from the IV into the pump and the IV was refilled with helium at a gas pressure 

of 8715 kPa. Gas entry occurred at day 63. 

 

At day 61, further helium was added to the IV to ensure there would be sufficient gas to complete 

the experiment (Table 3). This was done before the pressure in the injection filter reached the 

breakthrough pressure and gas started to flow through the sample; after breakthrough, it would not 

have been possible to provide additional helium to the IV without disrupting the flow of gas 
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through the sample. Therefore, at day 61, just before gas breakthrough occurred, approximately 

an additional 0.21 mol helium gas was added to the IV, causing the injection pump volume to 

increase from 40.75 ml to 100.88 ml (Table 3). 

 

3.2 GAS ENTRY, GAS BREAKTHROUGH AND SHUT-IN BEHAVIOUR 

Gas entry occurred at 63 days, and the injection pressure at this point was 10.5 MPa. After gas 

entry, the porewater pressure in arrays 2 and 3 rose sharply to a value close to the injection gas 

pressure (Figure 9 [A] and Figure 10 [A]). Interestingly, despite beginning to increase first, the 

increase in pressure in radial array 1 (closest to the injection face) lagged behind that of the other 

two arrays by just over 0.2 days, which could indicate that the gas flow was non-uniform. 

Alternatively, the gas pathway may have carried gas to the edge of the sample, pressurising arrays 

2 and 3 more quickly. After a small drop in porewater pressure around day 64.5 (Figure 7 and 

Figure 9 [A]), porewater pressures then generally tracked the gas pressure for the following 11 

days, with small deviations in the pressure traces probably reflecting changes in the stability, 

aperture and/or configuration of the pathways. At day 71, the injection pump was stopped. 

Between day 71 and day 76, the injection pressure decreased very slightly, whilst the porewater 

pressures decreased substantially (Figure 10 [A]) with porewater pressure in radial array 1 

continuing to fall until day 81.  

Examination of the axial and radial load cell data during gas entry and breakthrough (Figure 9 [B] 

and Figure 10 [B]) indicates that the swelling pressure (stress) within the sample increased at the 

same time as gas breakthrough was occurring in the backpressure filter. The largest increase in 

radial stress was observed in load cell 3. This, supported by the porewater pressure data above, 

indicates a rapid increase in porewater pressure around this location in the sample. Following gas 

breakthrough, the system approached a quasi-steady state as gas pressure tended towards an 

asymptote and flow out of the sample more closely matched the gas flow into the sample (Figure 

9 [B]). The outflow reached a level that was just lower than the inflow, and it is possible that this 

discrepancy could have been caused by a very slight leakage. The continued increase in the stresses 

measured by the axial and radial load cells after the gas breakthrough event had occurred, 

mirroring the increase in injection pressure, suggested that the sample was not in complete 

hydraulic equilibrium at the start of the test and a redistribution of the fluid in the sample caused 

the clay to continue to expand. 

At day 79, the injection pressure began to reduce at a slightly faster rate than it had been between 

days 71 and 79, the pressure in the three radial porewater pressure arrays and at the midplane 

started to increase again. This may suggest that another breakthrough event to the filter array was 

occurring. Alternatively, the increase in pressure measured by the midplane filter may be an 

artefact of the starting test conditions. If a filter is full of water, when gas reaches it at pressure an 

instant change in the pressure is observed, whilst if a filter is full of air, more gas is required at 

that filter to change the pressure. Radial filters 1-3 were filled with water at the start of the test, 

whilst the midplane filter was filled with air. Gas may therefore have been reaching the midplane 

filter since day 63 but the change in pressure recorded at that location would have been initially 

very small. Thereafter, the porewater pressure traces from each radial array continued to track the 

injection pressure response.  

The dip in porewater pressure between days 71 and 81 also corresponded with a dip in swelling 

pressure and a reduction in outflow to zero (Figure 10 [B]). Radial load cell 3 shows a decrease in 

pressure most clearly over this time interval. This event appears to occur close to the cessation of 

pumping. However, by day 81, porewater pressures had rebounded suggesting the cessation of 

pumping was not the cause for the spontaneous change in porewater pressure.  
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Figure 9: [A] Injection pressure, backpressure and radial porewater pressure transducer 

data from  day 61 to day 75. [B] Stress measured on the 3 radial and two axial load cells 

(dashed lines) from day 61 to day 75. Injection pressure (red line) inflow (dark green line 

and outflow (light green line) are shown over the same time interval. The increase in outflow 

at 63.8 days signifies gas breakthrough. 

 

Following gas breakthrough, the stress measured by the load cells and the porewater pressure 

transducers appeared to be integrally linked to the gas pressure within the clay; both the stress and 

outflow show a similar form as the gas pressure (Figure 9), which was not the case prior to 

breakthrough. This continued following the cessation of pumping, as gas pressure, porewater 
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pressure (Figure 10 [A]) and swelling pressure (Figure 10 [B]) began to decay. After day 81, the 

outflow was sporadic with positive fluctuations and spikes, despite the continued reduction in the 

injection pressure, suggesting new gas pathways continued to open and close. Some of these 

outflow events correlated with observed changes in the swelling pressure and porewater pressure, 

while others did not. The fluctuations in outflow are not related to changes in temperature (Figure 

11). This suggests a dynamic process was operating within the clay, governing the local 

development of permeability. 

 

 

 

Figure 10: [A] Injection pressure, backpressure and radial porewater pressure transducer 

data from day 61 to day 121. [B] Swelling pressure (stress) measured on the 3 radial and two 

axial load cells (dashed lines) from day 61 to day 121. Injection pressure (red line) inflow 
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(dark green line and outflow (light green line) are shown over the same time interval. The 

increase in outflow at 63.8 days signifies gas breakthrough. 

 

 

 

Figure 11: [A] Temperature and pressure data from the injection pump and the 5 load cells 

for the complete gas stage. Minor fluctuations in the load cell data correspond with small 

changes in temperature, however the temperature has not affected the trends observed in 

the test. [B] Temperature and flow rate data over the same time interval. 
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4 Summary 

A 1-D gas injection test on compact Mx80 bentonite has been conducted and the results have been 

presented. The test has comprised two stages: an initial hydration of the sample with DI water 

from the backpressure end, and a gas-testing phase. The hydration was conducted at 1 MPa, with 

a helium pressure of the same magnitude applied to the injection end of the sample to prevent the 

injection filter from becoming wet. Over the duration of the testing period, the gas pressure applied 

to the injection end of the clay sample and a pressure ramp was created to steadily increase the gas 

pressure, until the gas entry pressure was exceeded and gas entered the sample. The gas migrated 

through the clay and changes in porewater pressure, swelling pressure and flowrate were observed 

by the instrumentation around the sample. The porewater pressure showed a marked and almost 

instantaneous increase in pressure from about 1 MPa to about 10 MPa at 63.8 days, coinciding 

with a sudden spike in the outflow from the sample.  

The data presented in this study shows that different recording instruments are required to provide 

a fuller picture of gas migration through bentonite because they show different features of the test 

at different times. The continued increase in the stresses measured by the axial and radial load cells 

after gas breakthrough mirrored the increase in injection pressure; this suggested that, at the start 

of the test, the sample was not in complete hydraulic equilibrium and a redistribution of the fluid 

in the sample caused the clay to continue to expand through the test 

At day 71, the injection pump was stopped and the injection pressure was allowed to slowly decay. 

The outflow dropped to zero at this point, and no outflow was observed until day 81. After this 

point, the outflow was sporadic, occurring in fluctuations and spikes and suggesting that new gas 

pathways continued to open and close as the test progressed. The test has shown that there are 

dynamic processes were operating within the clay that will govern the spatial and temporal 

development of permeability within the sample. 
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