NERC Open Research Archive

Article (refereed) - postprint

Chiwa, Masaaki; Sheppard, Lucy J.; Leith, Ian D.; Leeson, Sarah R.; Tang, Y. Sim; Cape, J. Neil. 2018. Long-term interactive effects of N addition with P and K availability on N status of Sphagnum. *Environmental Pollution*, 237. 468-472. <u>https://doi.org/10.1016/j.envpol.2018.02.076</u>

© 2018 Elsevier Ltd

This manuscript version is made available under the CC-BY-NC-ND 4.0 license <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

This version available http://nora.nerc.ac.uk/id/eprint/519794/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

NOTICE: this is the author's version of a work that was accepted for publication in *Environmental Pollution*. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in *Environmental Pollution*, 237. 468-472.

https://doi.org/10.1016/j.envpol.2018.02.076

www.elsevier.com/

Contact CEH NORA team at noraceh@ceh.ac.uk

The NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.

2	
3	Long-term interactive effects of N addition with P and K
4	availability on N status of Sphagnum
5	
6	Masaaki Chiwa ¹ , Lucy J. Sheppard ² , Ian D. Leith ² , Sarah R. Leeson ² , Sim
7	Tang ² , J. Neil Cape ²
8	¹ Kyushu University Forest, Kyushu University, 394 Tsubakuro, Sasaguri, Fukuoka,
9	811-2415, Japan
10	² Centre for Ecology & Hydrology (CEH) Edinburgh, Bush Estate, Penicuik, EH26 0QB,
11	UK
12	
13	Correspondence: Masaaki Chiwa, tel. +81-156-25-2608, fax +81-156-25-3050, e-mail:
14	mchiwa@forest.kyushu-u.ac.jp
15	

16 Abstract

Little information exists concerning the long-term interactive effect of 17nitrogen (N) addition with phosphorus (P) and potassium (K) on Sphagnum N status. 18This study was conducted as part of a long-term N manipulation on Whim bog in south 19Scotland to evaluate the long-term alleviation effects of phosphorus (P) and potassium 20(K) on N saturation of Sphagnum (S. capillifolium). On this ombrotrophic peatland, 21where ambient deposition was 8 kg N ha⁻¹ yr⁻¹, 56 kg N ha⁻¹ yr⁻¹ of either ammonium 22(NH₄⁺, N_{red}) or nitrate (NO₃⁻, N_{ox}) with and without P and K, were added over 11 years. 23Nutrient concentrations of Sphagnum stem and capitulum, and pore water quality of the 24Sphagnum layer were assessed. The N-saturated Sphagnum caused by long-term (11 25vears) and high doses (56 kg N ha⁻¹ vr⁻¹) of reduced N was not completely ameliorated 26by P and K addition; N concentrations in Sphagnum capitula for Nred 56PK were 27comparable with those for Nred 56, although N concentrations in Sphagnum stems for 2829N_{red} 56PK were lower than those for N_{red} 56. While dissolved inorganic nitrogen (DIN) concentrations in pore water for Nred 56PK were not different from Nred 56, they were 30 lower for Nox 56PK than for Nox 56 whose stage of N saturation had not advanced 31compared to N_{red} 56. These results indicate that increasing P and K availability has only 32a limited amelioration effect on the N assimilation of Sphagnum at an advanced stage of 33 N saturation. This study concluded that over the long-term P and K additions will not 3435 offset the N saturation of Sphagnum.

36

Keywords: Manipulation experiment; N deposition; peatland; *Sphagnum*; phosphorus
and potassium interaction

39

40 Capsule: Over the long-term P and K additions will not offset the N saturation of

- 41 Sphagnum.
- 42
- 43

44 Introduction

There has been widespread concern over the effects of increasing N 45deposition on peatland ecosystems which are adapted to low nutrient inputs and 46therefore sensitive to increased N deposition (Bobbink et al., 1998). Sphagnum moss, a 47keystone peatland species, is especially sensitive to increasing N availability because of 48its efficient interception of incoming N (Van Breemen, 1995; Bobbink et al., 1998). 49Field (Lamers et al., 2000; Bragazza et al., 2005; Limpens et al., 2011; Harmens et al., 502014) and manipulation studies (Berendse et al., 2001; Nordbakken et al., 2003; 51Granath et al., 2009; Sheppard et al., 2013; Chiwa et al., 2016b) have been conducted to 52evaluate the effects of increased N deposition on Sphagnum in bog peatlands. It has 53been found that increases in N deposition enhanced tissue N concentration in Sphagnum 54(Berendse et al., 2001; Heijmans et al., 2001; Nordbakken et al., 2003; Tomassen et al., 552003; Granath et al., 2009; Fritz et al., 2012; Chiwa et al. 2016b) and eventually led to 5657N saturation of *Sphagnum*, defined as an excess of N supply over N demands of plants, resulting in increased inorganic N leakage to the rizosphere (Limpens et al., 2003; 58Bragazza and Limpens, 2004; Limpens et al., 2004; Limpens & Berendse, 2003; Chiwa 59et al., 2016b; Manninen et al., 2016). 60

61

Many studies have documented that N deposition can induce P limitation in

62	forests (Gress et al., 2007; Braun et al., 2010; Blanes et al., 2013; Chiwa et al., 2016a;
63	Li et al., 2016) and wetlands (Bragazza et al., 2004; Limpens et al., 2004; Li et al.,
64	2016). Phosphorus (P) and potassium (K) availability is a major factor determining the
65	impact of N deposition on Sphagnum growth in bogs (Hoosbeek et al., 2002; Limpens
66	et al., 2004), as it can enhance growth leading to growth dilution of nutrients. Therefore,
67	we need to understand how elevated N deposition interacts with P and K availability to
68	affect the nutrient status of Sphagnum.
69	In many N manipulation studies, however, little information exists concerning
70	the interactive effect of N with the availability of other growth limiting nutrients such as
71	P and K. Previous studies, based on < 3 years of treatment, have shown that P and K
72	addition can alleviate the adverse effects of elevated N deposition on Sphagnum's
73	physiological status, and can have positive effects on N assimilation (processing and
74	incorporation of N leading to decreased inorganic N leakage to the rhizosphere)
75	(Limpens et al., 2004), growth (Limpens et al., 2004; Carfrae et al., 2007; Lund et al.,
76	2009; Kivimäki, 2011; Fritz et al., 2012) and cover (Pilkington et al., 2007). However,
77	the long-term interactive effects of P and K on the N status of Sphagnum have not been
78	examined for N manipulation sufficient to cause N saturation. Xing et al (2010)
79	examined the effects of 64 kg N ha ⁻¹ yr ⁻¹ (NH4NO3) with additional P and K for 7 years,

80	but not without P and K addition. Therefore, long-term P and K effects on the
81	alleviation of N saturation of Sphagnum exposed to high levels of N deposition need to
82	be clarified. In addition, since N deposition contains two forms of mineral N in varying
83	proportions (Stevens et al., 2011), we also need to understand the respective effects of
84	reduced (NH_4^+) versus oxidized (NO_3^-) N with P and K addition on the alleviation of the
85	N saturation of <i>Sphagnum</i> moss. The alleviation by P and K addition may vary with N
86	form.
87	The objective of this study is to evaluate the alleviation effects of P and K
88	availability on N saturation of Sphagnum (S. capillifolium) in response to increasing
89	availability of oxidized and reduced N chemical forms. In addition to N, P and K are
90	also limiting in these peatland ecosystems (Sheppard et al., 2004). We therefore
91	hypothesized that supplementing N additions with these potentially growth limiting
92	nutrients would reduce the likelihood of N accumulation, reduced growth and
93	associated phytotoxicity.
94	
95	2. Materials and methods
96	2.1. Study Site

This study was conducted at Whim bog (282 m a.s.l., 3°16'W, 55° 46'N)

97

98	located in the Scottish Borders, 30 km south of Edinburgh, Scotland where a
99	fertilization experiment on 3-6 m of deep peat using N, P, and K has been conducted
100	since 2002. Calluna vulgaris, Eriophorum vaginatum, Sphagnum capillifolium, Hypnum
101	jutlandicum, Pleurozium schreberi and Cladonia portentosa are the most common
102	species on this bog and are representative of similar habitats through the northern
103	hemisphere (Gore, 1983). There has been no active management for at least 70 years.
104	Detailed information on meteorological parameter and atmospheric N deposition at this
105	study site were given in Chiwa et al. (2016b).

107 *2.2. Treatments*

The five different treatments (NH4⁺, NH4⁺ + PK, NO3⁻, NO3⁻ + PK, and control) have 108 been applied on each of five 12.8 m² circular plots. Four replicates were conducted for 109each of the five treatments. Background N deposition is *ca*. 8 kg N ha⁻¹ yr⁻¹ (Leith et al., 110 2004; Sheppard et al., 2004). NH4Cl and NaNO3 were used as NH4⁺ (referred to as Nred) 111 and NO3 $^{-}$ (referred to as Nox) treatments, respectively. The dose was 56 kg N ha $^{-1}$ yr $^{-1}$ 112and solution concentration was 4.0 mM. Potassium hydrogen phosphate (K₂HPO₄) was 113supplied in a 1:14 and 1:5.5 mass ratio for P and K, respectively to N was used as P and 114K treatments (4 kg P ha⁻¹ yr⁻¹ and 11.5 kg K ha⁻¹ yr⁻¹ for P and K, respectively). 115

116	Rainwater only was provided as a control. The current maxima are around 40 kg N ha ⁻¹
117	yr ⁻¹ based on measurements in China (Song et al., 2017), up to 50 kg N ha ⁻¹ yr ⁻¹ (Wang
118	et al., 2013) or even up to 100 kg N ha ⁻¹ yr ⁻¹ (Pan et al., 2012). Historically, N
119	deposition was significantly higher than now, especially in Europe. Examples can be
120	found up to 44 kg N ha ⁻¹ yr ⁻¹ (Stevens et al., 2010), 40-80 kg N ha ⁻¹ yr ⁻¹ (van Breeman
121	and Dijk, 1988), and up to 75 kg N ha ⁻¹ yr ⁻¹ (Dise and Wright, 1995). However, all of
122	these refer to measurements made in relatively unpolluted conditions, and do not reflect
123	N deposition close to point sources (e.g. feedlots) where ecological effects are likely,
124	and N deposition is much greater. P and K these were added in a 1:14 ratio to N, as
125	found in amino acids to ensure sufficiency for growth (Speppard et al., 2004), rather
126	than simulate their levels in deposition.
127	The mist treatments of fine rain droplets were supplied from a central
128	spinning disc on a plot. To avoid contamination from adjacent plots, plots were 3 m
129	apart. To simulate real world conditions, treatments (ca. 120 applications yr ⁻¹) were
130	supplied automatically when air temperature > 0 °C and wind speed < 5 m s ⁻¹ (Sheppard
131	et al., 2004).

133 *2.3.* Sphagnum *pore water*

134	Mini rhizon suction samplers (Rhizon MOM, Eijkelkamp Agrisearch
135	Equipment, Wageningen, The Netherlands) attached to a 20 mL plastic syringe were
136	used to collect pore water samples from the open Sphagnum moss layer. The sampler
137	was inserted into the Sphagnum layer (5cm depth) to evaluate how active the living part
138	of Sphagnum was at removing nutrients. In August 2013, one collector was placed in
139	each plot. Aluminium foil wrapped the syringe and connectors attached to the rhizon
140	samplers to avoid light penetration into collected pore water. The location of the
141	collector for Sphagnum pore water was fixed until October 2013. Collection was made
142	weekly during the period from August 2013 to October 2013.
143	The collected pore water samples were immediately transported back to the
144	nearby laboratory and were filtered through a 0.45 μ m membrane filter (Puradisc TM ,
145	Whatman Inc., NJ, USA). The filtered samples were stored in the dark at 4°C until
146	chemical analysis. NO_3^- and NH_4^+ were analysed by ion chromatography (CH-9101,
147	Metrohm, Herisau, Swizerland) and Ammonia Flow Injection Analyser (AMFIA, ECN;
148	Wyers et al. 1993), respectively. Dissolved inorganic N (DIN) concentrations were
149	calculated as the sum of NO_3^- and NH_4^+ .
150	

152	Sphagnum vegetation samples were collected at the beginning of December
153	2013 to diagnose the nutrient condition of Sphagnum treated over 11 years. A few
154	shoots per plot were collected from where the pore water was sampled and combined to
155	give one composite sample per plot. The litter on the collected Sphagnum was
156	thoroughly removed using tweezers. The samples were separated into capitula (0-1 cm)
157	and stem (>1 cm) fractions and were dried at 70 °C for 72 h. Total N content in capitula
158	and stem of Sphagnum were measured using a CN analyzer (CN corder MT-700,
159	Yanaco Co., Ltd., Tokyo, Japan). To analyze total P, the dried samples were burned at
160	550 °C for 2 hr and then digested using potassium peroxodisulfate (K ₂ S ₂ O ₈). Total P
161	concentration in digested solution was measured using molybdenum blue (ascorbic
162	acid) spectrophotometric method (UV mini-1240, Shimadzu, Kyoto, Japan). To ensure
163	accuracy within 5% of known N and P concentrations, standard reference material
164	(NIST 1515 Apple Leaves, National Institute of Standards and Technology, Maryland,
165	USA) was analyzed along with Sphagnum samples.

167 2.5. Calculation and statistical analysis

168 Student's t-test was used to assess differences in tissue nutrient and pore water 169 quality of the *Sphagnum* layer between treatments with and without P and K. The

170	Mann-Kendall test was performed to evaluate annual trends in the capitulum N
171	concentrations. All statistical analyses were carried out using SPSS 22.0J (SPSS Japan
172	Inc.).
173	
174	3. Results and Discussion
175	3.1. Alleviation effects of long-term P and K addition on N status of Sphagnum
176	Previous studies have indicated that P and K addition alleviates the adverse
177	effects of short-term N addition on Sphagnum physiological status, with positive effects
178	on assimilation N (Limpens et al., 2004), growth (Limpens et al., 2004; Carfrae et al.,
179	2007; Lund et al., 2009; Kivimäki, 2011; Fritz et al., 2012) and cover (Pilkington et al.,
180	2007). In an earlier study at the same site Carfrae et al. (2007) reported that P and K
181	additions reduced N accumulation (decrease in tissue N concentration) for N_{red} plots
182	after only one year of treatment. The reduction in N accumulation (decrease in tissue N
183	concentration) of Sphagnum capitula (22% decrease) and stems (20% decrease) can also
184	be seen over 4 and 5 years treatments (Fig. 2c). Kivimäki, (2011) also showed that
185	adding P and K increased shoot extension (16-27 mm) compared to 'N only' treatments
186	(13-17 mm) after 5 years of treatments at this study site.
187	This long-term study, however, showed that P and K additions will not offset

188	the detrimental impacts of long-term high N deposition. P and K additions did not affect
189	capitulum N concentrations for reduced N treatments (P=0.95, Fig. 1a) but tended to
190	cause lower stem N concentrations (P=0.066, Fig. 1b). The N saturation of Sphagnum
191	was caused by adding wet deposition of 56 kg N ha ⁻¹ yr ⁻¹ of reduced N over 11 years
192	(Chiwa et al., 2016b). The P and K additions over 11 years did increase capitulum and
193	stem P concentrations (Fig. 1cd) causing subsequently lower N:P ratios (Fig. 1ef)
194	suggesting that the P dose exceeded growth requirements. The lower stem N
195	concentrations with P and K (Fig. 1b) indicate some growth enhancement was induced,
196	providing some amelioration from the excess N. However, capitulum N concentrations
197	remained consistently high for N_{red} 56PK over 11 years, similar to those for N_{red} 56 (Fig
198	1a, Fig. 2c), indicating that P and K addition only partially alleviate N saturation of
199	Sphagnum exposed to N addition over 11 years.

The results suggest that in the short term, the high dose does not saturate *Sphagnum*, thereby allowing the effect of P and K, probably via growth enhancement, to lower N concentrations. In support of this view, when stem N concentrations of *Sphagnum* for N_{red} 56 over the first 5 years remained low, capitulum N concentration was reduced by P and K addition (Fig. 2c). Addition of P and K has a different effect over time on the N content of stem and capitulum, implying differences in metabolism

For oxidized N plots, P and K additions did not affect either capitulum or stem 208N concentrations (Fig. 1ab). In addition, although the alleviation effects by P and K 209 addition were found for short-term addition of reduced N (Fig. 2c), the effect was not 210211found for oxidized N even for short-term as well as long-term manipulation. Stem N concentration of Sphagnum for Nox 56 was not affected for oxidized N even over the 212long-term (Fig. 2b). These results indicate that the alleviation effects by P and K 213214addition for oxidized N are smaller than for reduced N. The reason remains unclear, but could be related to the difference of growth response of Sphagnum to P and K addition. 215Sphagnum production exposed to Nred 56 over 5 years (82 g m⁻² yr⁻¹) increased to 198 g 216m⁻² yr⁻¹ (N_{red} 56 PK), whereas the increase in the productivity of Sphagnum exposed to 217Nox 56 over 5 years (73 g m⁻² yr⁻¹) was smaller (86 g m⁻² yr⁻¹ for Nox 56PK) (Kivimäki, 2182192011).

220

3.2. Alleviation effects of long-term P and K addition on N assimilation of Sphagnum
Limpens et al. (2004) has shown that P addition (3 kg P ha⁻¹ yr⁻¹) improved N
assimilation capacity of *Sphagnum* exposed to N (40 kg N ha⁻¹ yr⁻¹), over 4 years.

224	However, adding Nred significantly increased DIN concentrations in pore water from
225	within the Sphagnum layer cf controls (Fig. 3) but adding P and K made no difference
226	(P=0.29) and average DIN concentrations for N _{red} 56 +/- PK remained above 100 μ mol
227	l^{-1} (Fig. 3). Thus adding P and K hardly influenced mineral N retention by alleviating N
228	saturation of Sphagnum in this study. The difference could be caused by the difference
229	of manipulation duration. These two studies suggest any amelioration effect of P and K
230	on N retention changes over time, probably depending on the stage of N saturation.
231	In contrast to N_{red} , there was a significant difference between DIN ($P=0.034$)
232	and NO ₃ ⁻ (P =0.019) concentrations for N _{ox} 56 and N _{ox} 56PK. (Fig. 3). Thus, the
233	alleviation effects of P and K addition on N assimilation of Sphagnum were observed
234	for oxidized N, which could be related to the stage of N saturation of Sphagnum. Chiwa
235	et al. (2016b) found that the effect of oxidized N on advancing N saturation was lower
236	than that of reduced N and that the stage of N saturation of Sphagnum exposed to $N_{\text{ox}}56$
237	over 11 years had not advanced compared to that for N_{red} 56. NO_3^- uptake by <i>Sphagnum</i>
238	caused DON leaching from Sphagnum that enables Sphagnum to delay N saturation of
239	Sphagnum (Chiwa et al., 2016b).

241 *4. Conclusions*

242	This study concludes that long-term additions of P and K have no major ameliorating
243	effects on a Sphagnum moss subjected to continuous high N inputs. There were
244	different minor effects depending on the form of N, with some lowering of N
245	concentrations for reduced N, but for oxidized N the chemical effects were small even
246	though the detrimental effects on Sphagnum cover were massive. These results show
247	that P and K additions will not offset the N saturation of Sphagnum, and in some cases,
248	where N deposition is predominantly in the oxidized form, may exacerbate any effects
249	of N alone.

251 Acknowledgements

252 This study was financially supported by NERC (CEH project NEC04591, Defra (CPEA

18), the EU projects NitroEurope IP (017841 (GOCE)) and ÉCLAIRE (FP7-ENV-2011

254 Grant 282910), and JSPS KAKENHI (JP26450198 and JP17H03833).

255 **References**

- 256 Berendse F, Van Breemen N, Rydin H, Buttler A, Heijmans M, Hoosbeek MR, Lee JA, Mitchell E,
- Saarinen T, Vasander H, Wallén B (2001) Raised atmospheric CO₂ levels and increased N deposition
 cause shifts in plant species composition and production in Sphagnum bogs. Global Change Biology
 7(5): 591-598
- Blanes MC, Vinegla B, Merino J, Carreira JA (2013) Nutritional status of *Abies pinsapo* forests along a
 nitrogen deposition gradient: do C/N/P stoichiometric shifts modify photosynthetic nutrient use
 efficiency? Oecologia 171(4): 797-808
- Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species
 diversity in natural and semi-natural European vegetation. Journal of Ecology 86(5): 717-738
- Bragazza L, Limpens J (2004) Dissolved organic nitrogen dominates in European bogs under increasing
 atmospheric N deposition. Global Biogeochemical Cycles 18: GB4018
- Bragazza L, Limpens J, Gerdol R, Grosvernier P, Hajek M, Hajek T, Hajkova P, Hansen I, Iacumin P,
 Kutnar L, Rydin H, Tahvanainen T (2005) Nitrogen concentration and delta¹⁵N signature of
 ombrotrophic *Sphagnum* mosses at different N deposition levels in Europe. Global Change Biology
- 270 11(1): 106-114
- Bragazza L, Tahvanainen T, Kutnar L, Rydin H, Limpens J, Hajek M, Grosvernier P, Hajek T, Hajkova P,
 Hansen I, Iacumin P, Gerdol R (2004) Nutritional constraints in ombrotrophic *Sphagnum* plants under
 increasing atmospheric nitrogen deposition in Europe. New Phytologist 163(3): 609-616
- Braun S, Thomas VFD, Quiring R, Fluckiger W (2010) Does nitrogen deposition increase forest
 production? The role of phosphorus. Environmental Pollution 158(6): 2043-2052
- 276 Carfrae JA, Sheppard LJ, Raven JA, Leith ID, Crossley A (2007) Potassium and phosphorus additions 277 modify the response of *Sphagnum capillifolium* growing on a Scottish ombrotrophic bog to enhanced
- 278 nitrogen deposition. Applied Geochemistry 22(6): 1111-1121
- 279 Chiwa M, Ikezaki S, Katayama A, Enoki T (2016a) Topographic influence on plant nitrogen and 280 phosphorus stoichiometry in a temperate forested watershed. Water, Air, and Soil Pollution 227(1): 6
- 281 Chiwa M, Sheppard LJ, Leith ID, Leeson SR, Tang YS, Cape JN (2016b) Sphagnum can 'filter' N
- deposition, but effects on the plant and pore water depend on the N form. Science of the Total Environment 559: 113-120
- 284 Dise NB, Wright RF (1995) Nitrogen leaching from European forests in relation to nitrogen deposition.
- Forest Ecology and Management 71: 153-161.
- 286 Fritz C, van Dijk G, Smolders AJ, Pancotto VA, Elzenga TJ, Roelofs JG, Grootjans AP (2012) Nutrient
- additions in pristine Patagonian *Sphagnum* bog vegetation: can phosphorus addition alleviate (the
 effects of) increased nitrogen loads. Plant Biol (Stuttg) 14(3): 491-499
- 289 Gore, AJP (Ed.) (1983) Ecosystems of the World 4A Mires: Swamp, Bog, Fen and Moor. Elsevier
- 290 Scientific Publishing Company, Amsterdam.

- Granath G, Wiedermann MM, Strengbom J (2009) Physiological responses to nitrogen and sulphur
 addition and raised temperature in *Sphagnum balticum*. Oecologia 161(3): 481-490
- Gress SE, Nichols TD, Northcraft CC, Peterjohn WT (2007) Nutrient limitation in soils exhibiting differing nitrogen availabilities: What lies beyond nitrogen saturation? Ecology 88(1): 119-130
- Harmens H, Schnyder E, Thoni L, Cooper DM, Mills G, Leblond S, Mohr K, Poikolainen J, Santamaria J,
- 296 Skudnik M, Zechmeister HG, Lindroos AJ, Hanus-Illnar A (2014) Relationship between site-specific
- 297 nitrogen concentrations in mosses and measured wet bulk atmospheric nitrogen deposition across
- 298 Europe. Environmental Pollution 194: 50-59
- Heijmans MMPD, Berendse F, Arp WJ, Masselink AK, Klees H, De Visser W, Van Breemen N (2001)
- Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the
 Netherlands. Journal of Ecology 89(2): 268-279
- Hoosbeek MR, Van Breemen N, Vasander H, Buttler A, Berendse F (2002) Potassium limits potential
 growth of bog vegetation under elevated atmospheric CO₂ and N deposition. Global Change Biology
 8(11): 1130-1138
- Kivimäki SK (2011) Changes in carbon and nitrogen dynamics in *Sphagnum capillifolium* under
 enhanced nitrogen deposition. In. University of Edinburgh.
- Lamers LPM, Bobbink R, Roelofs JGM (2000) Natural nitrogen flter fails in polluted raised bogs. Global
 Change Biology 6: 583-586
- 309 Leith I, Sheppard L, Fowler D, Cape JN, Jones M, Crossley A, Hargreaves K, Tang YS, Theobald M,
- Sutton M (2004) Quantifying dry NH₃ deposition to an ombrotrophic bog from an automated NH₃ field
 release system. Water, Air, and Soil Pollution: Focus 4(6): 207-218
- Li Y, Niu S, Yu G (2016) Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Global Change Biology 22(2): 934-943
- Limpens J, Berendse F (2003) Growth reduction of *Sphagnum magellanicum* subjected to high nitrogen deposition: the role of amino acid nitrogen concentration. Oecologia 135(3): 339-345
- 316 Limpens J, Berendse F, Klees H (2003) N deposition affects N availability in interstitial water, growth of
- 317 Sphagnum and invasion of vascular plants in bog vegetation. The New phytologist 157: 338-347
- 318 Limpens J, Berendse F, Klees H (2004) How phosphorus availability affects the impact of nitrogen
- deposition on *sphagnum* and vascular plants in bogs. Ecosystems 7(8): 793-804
- 320 Limpens J, Granath G, Gunnarsson U, Aerts R, Bayley S, Bragazza L, Bubier J, Buttler A, van den Berg
- 321 LJ, Francez AJ, Gerdol R, Grosvernier P, Heijmans MM, Hoosbeek MR, Hotes S, Ilomets M, Leith I,
- 322 Mitchell EA, Moore T, Nilsson MB, Nordbakken JF, Rochefort L, Rydin H, Sheppard LJ, Thormann M,
- Wiedermann MM, Williams BL, Xu B (2011) Climatic modifiers of the response to nitrogen deposition
- in peat-forming *Sphagnum* mosses: a meta-analysis. The New phytologist 191(2): 496-507
- 325 Lund M, Christensen TR, Mastepanov M, Lindroth A, Strom L (2009) Effects of N and P fertilization on
- 326 the greenhouse gas exchange in two northern peatlands with contrasting N deposition rates.

- 327 Biogeosciences 6(10): 2135-2144
- Manninen S, Kivimäki S, Leith ID, Leeson SR, Sheppard LJ (2016) Nitrogen deposition does not
 enhance Sphagnum decomposition. Science of the Total Environment 571: 314-322
- 330 Manninen S, Woods C, Leith ID, Sheppard LJ (2011) Physiological and morphological effects of
- long-term ammonium or nitrate deposition on the green and red (shade and open grown) *Sphagnum capillifolium*. Environmental and Experimental Botany 72(2): 140-148
- Nordbakken JF, Ohlson M, Hogberg P (2003) Boreal bog plants: nitrogen sources and uptake of recently
 deposited nitrogen. Environmental Pollution 126(2): 191-200
- PanYP, Wang YS, Tang GQ, Wu D (2012). Wet and dry deposition of atmospheric nitrogen at ten sites in
 Northern China. Atmos. Chem. Phys. 12(14): 6515-6535
- Phuyal M, Artz RRE, Sheppard L, Leith ID, Johnson D (2007) Long-term nitrogen deposition increases
 phosphorus limitation of bryophytes in an ombrotrophic bog. Plant Ecology 196(1): 111-121
- 339 Pilkington MG, Caporn SJ, Carroll JA, Cresswell N, Lee JA, Emmett BA, Bagchi R (2007) Phosphorus
- supply influences heathland responses to atmospheric nitrogen deposition. Environ Pollut 148(1):191-200
- Sheppard LJ, Crossley A, Leith ID, Hargreaves KJ, Carfrae JA, van Dijk N, Cape JN, Sleep D, Fowler D,
 Raven JA (2004) An automated wet deposition system to compare the effects of reduced and oxidised N
 on ombrotrophic bog species: Practical considerations. Water, Air, & Soil Pollution: Focus 4(6):
- 345 197-205
- Sheppard LJ, Leith ID, Leeson S, Mizunuma T, Bakker R, Elustondo D, Garcia-Gomez H (2013) PK
 additions modify the effects of N dose and form on species composition, species litter chemistry and
 peat chemistry in a Scottish peatland. Biogeochemistry 116(1-3): 39-53
- 349 Sheppard LJ, Leith ID, Mizunuma T, Leeson S, Kivimäki S, Neil Cape J, van Dijk N, Leaver D, Sutton
- 350 MA, Fowler D, Van den Berg LJ, Crossley A, Field C, Smart S (2014) Inertia in an ombrotrophic bog
- ecosystem in response to 9 years' realistic perturbation by wet deposition of nitrogen, separated by form.
 Global Change Biology 20(2): 566-580
- Song, L, Kuang F, Skiba U, Zhu B, Liu X, Levy P, Dore A and Fowler D (2017) Bulk deposition of
 organic and inorganic nitrogen in southwest China from 2008 to 2013. Environmental Pollution 227:
 157-166
- 356 Stevens CJ, Duprè C, Dorland E, Gaudnik C, Gowing DJG, Bleeker A, Diekmann M, Alard D, Bobbink
- R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB (2010) Nitrogen
 deposition threatens species richness of grasslands across Europe. Environmental Pollution 158(9):
 2940-2945.
- 360 Stevens CJ, Manning P, van den Berg LJ, de Graaf MC, Wamelink GW, Boxman AW, Bleeker A, Vergeer
- 361 P, Arroniz-Crespo M, Limpens J, Lamers LP, Bobbink R, Dorland E (2011) Ecosystem responses to
- 362 reduced and oxidised nitrogen inputs in European terrestrial habitats. Environmental Pollution 159(3):

- 363 665-676
- 364 Tomassen HBM, Smolders AJP, Leon PML, Roelofs JGM (2003) Stimulated growth of Betula pubescens
- and *Molinia caerulea* on ombrotrophic bogs: role of high levels of atmospheric nitrogen deposition.

366 Journal of Ecology 91(3): 357-370

- 367 Van Breemen (1995) How *Sphagnum* bogs down other plants. Trees 10: 270-275
- 368 Wang X, Wu Z, Shao M, Fang Y, Zhang L, Chen F, Chan PW, Fan Q, Wang Q, Zhu S and Bao R (2013)
- 369 Atmospheric nitrogen deposition to forest and estuary environments in the Pearl River Delta region,
- 370 southern China. Tellus B 65
- Wyers GP, Otjes RP, Slanina J (1993) A continuous flow denuder for the measurement of ambient
 concentrations and surface fluxes of ammonia. Atmospheric Envrionment 27A: 2085-2090.
- 373 Xing Y, Bubier J, Moore T, Murphy M, Basiliko N, Wendel S, Blodau C (2010) The fate of 15N-nitrate in
- a northern peatland impacted by long term experimental nitrogen, phosphorus and potassium
- 375 fertilization. Biogeochemistry 103(1-3): 281-296
- 376 van Breemen N, van Dijk HFG (1988) Ecosystem effects of atmospheric deposition of nitrogen in The
- 377 Netherlands. Environmental Pollution 54: 249-274.

378

	379	Figure	Captions
--	-----	--------	----------

380	Fig. 1. Sphagnum tissue N concentration of a) capitulum and b) stem; tissue P
381	concentration of c) capitulum and d) stem, and N:P ratio of e) capitulum and f) stem
382	without P and K (white bar) and with P and K (grey bar). Bars represent standard error
383	(n = 4). Asterisk indicates significant differences at <i>P</i> <0.05. Background N deposition is
384	<i>ca.</i> 8 kg N ha ⁻¹ yr ⁻¹ (Leith et al., 2004; Sheppard et al., 2004).
385	
386	Fig. 2. Annual trends in capitulum and stem N concentrations of Sphagnum on Whim
387	bog in south Scotland. N concentration 0, 2, 4, 5 and 7 years after N manipulation
388	started were taken from Sheppard et al. (2004), Carfrae et al. (2007), Phuyal et al.
389	(2008), Kivimäki (2011), and Manninen et al. (2011) respectively.
390	
391	Fig. 3. Sphagnum pore water concentrations of dissolved inorganic nitrogen (DIN, NO ₃ ⁻

- 392 + NH4⁺). Bars represent standard error (n = 4). Asterisk indicates significant differences 393 at *P*<0.05.
- 394
- 395

Fig. 1 Chiwa et al.

Fig. 2 Chiwa et al.

Fig. 3 Chiwa et al.