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1. Introduction

Resetting is the action of interrupting a continuously evolving process and
instantaneously bringing it back to a predetermined state to allow the process to
restart. When applied stochastically such an action may represent a wide variety of
phenomena. For example, in the search for a lost object, after an unsuccessful period
of search one often spontaneously returns to the start position and restarts the search
from there. Beyond the search strategies similar notions of stochastic resetting are also
found in: population dynamics, where a random catastrophic event can cause a drastic
reduction in the population, resetting it to some previuos value [1, 2]; economics, where
a financial crash may reset the price of stocks assets to some predetermined value [3];
biological contexts, where organisms use stochastic resetting or switching between
different phenotypic states to adapt to fluctuating environments [1, 4, 5].

The Brownian particle with stochastic resetting to an initial position is an
archetypal realization of a resetting process[6]. In the absence of a resetting mechanism
the motion is purely diffusive and position of a Brownian particle has a Gaussian
distribution with a variance that grows linearly in time, implying the absence of a
steady state on an infinite system. In the presence of resetting, the diffusive spread
is opposed by the resetting leading to confinement around the initial position and a
nonequilibrium stationary state (NESS) is attained. In this NESS probability currents
are non-zero and detailed balance does not hold—a non-vanishing steady-state current
is directed towards the resetting position.

The study of NESS is of fundamental importance in statistical physics [7, 8].
Generally, the existence of currents allows a broader range of phenomena than in
equilibrium. For example boundary-induced phase transitions and generic long-
range correlations The resetting paradigm furnishes a simple way of generating a
non-equilibrium state by keeping the system away from any equilibrium state by
the constant reset to the initial condition. Thus, the resetting paradigm provides
a convenient framework to study the properties of non-equilibrium states. In
more general non-equilibrium contexts resetting has also been studied in fluctuating
interfaces [9, 10], and in a coagulation-diffusion process [11] and in reaction processes
[12]. The large deviations of time-additive functions of Markov processes with
resetting is considered in [13] and the thermodynamics of resetting processes far from
equilibrium in [14]. A universal result for the fluctuations in first passage times of an
optimally restarted process is obtained in [15].

A number of generalisations of simple diffusion with resetting have been made:
the d-dimensional case has been considered in [16], spatial resetting distributions and
spatially-dependent resetting rates are studied in [17]. The properties of the non-
equilibrium steady state have been studied in the presence of a potential [18] and
in a bounded domain [19]. The dynamics of reaching the NESS was studied and a
dynamical phase transition was found in [20]. In the context of random walks, resetting
in continuous-time random walks [21, 22], in Lévy flights [23], in random walks with
exponentially distributed flights of constant speed [24] have been considered

In all of these works the resetting mechanism occurs through an external
mechanism, modelled in the continous time case as a Poisson process. That is,
resetting occurs when an external bell rings generating an exponential distribution of
waiting times between resets. Some generalisations to non-Markovian processes where
the waiting time between resets is non-exponential have been considered [25, 26, 27],
a deterministic resetting for multiple searchers is studied in [28] and a generalisation
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to where the reset position depends on the internal dyanamics such as to the current
maximum of a random walk [29] or to a position selected from a resetting distribution
[17] have been studied. However the source of resetting has always remained external.

In this paper we seek to extend the field of study by introducing resetting that
is triggered by the internal dynamics of a system. Instead of using a constant rate,
or using any predetermined waiting time distributions between resetting events, the
resetting is triggered through interactions between the constituent particles.

In order to study such an interaction-driven resetting mechanism we propose in
this work a toy model that consists of two Brownian particles in one dimension subject
to mutual attraction and resetting to the initial position every time they are about
to collide. Thus the two particle system contracts stochastically then sudden dilation
to the intial configuration occurs when the particles are adjacent. This resetting
mechanism is essentially different from all the previous studies. Our toy model is
simple enough to allow an exact solution yet rich enough to yield a non-trivial NESS.
In particular, our solution allows study of the effective resetting rate induced by the
interactions.

The paper is organised as follows. In Section 2 we define our toy model
of two random walkers with a hard-core interaction that triggers resetting. In
Section 3 we present a solution of the master equation for the time-dependent
probability distribution using a self-consistent initial value Green function technique.
In section 4 we determine the stationary state. In section 5 we go on to compute
the time-dependent probability distribution and induced resetting rate, presenting
approximations accurate in different regimes. We conclude in section 6.

2. The Model

We start with a lattice model to make clear the resetting mechanism, then we take the
continuous limit and study the model in this limit. The lattice model consists of two
asymmetric random walkers moving on a one-dimensional lattice, the left walker has
a higher probability to jump to the right and the right walker a higher probability to
jump to the left, the walkers are also subject to a resetting mechanism which relocates
both walkers in their initial positions when they are about to collide.

Let xL(t) and xR(t) denote the position of the left/right walker at step t,
xL(0) = −l and xR(0) = l, l ∈ N are the initial positions of each walker.

The positions xL(t) and xR(t) evolves with time via the following stochastic
dynamics: At any given time step t, if the position xR(t)−xL(t) > 2, then in the next
time step the right walker moves to the left with probability 1/2 + ε and to the right
with probability 1/2−ε and the left walker moves to the right with probability 1/2+ε
and to the left with probability 1/2− ε. If the position xR(t)− xL(t) = 2 then in the
next step the walkers moves right or left or both reset to their initial positions. This
dynamics can be interpreted as two attracting random walkers with resetting, and is
defined by the following evolution rules:

if xL − xR > 2

(xL, xR)→


(xL+1, xR+1), with probability 1/4− ε2,
(xL−1, xR−1), with probability 1/4− ε2,
(xL+1, xR−1), with probability (1/2 + ε)2,
(xL−1, xR+1), with probability (1/2− ε)2,

(1)
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Figure 1. (a) Space-time trajectory for two one-dimensional Brownian particles
with interaction triggering resetting mechanism (b) trajectory in the yz-plane in
the new coordinates system equations (3).

and if xL − xR = 2

(xL, xR)→


(xL+1, xR+1), with probability 1/4− ε2,
(xL−1, xR−1), with probability 1/4− ε2,
(−l, l), with probability (1/2 + ε)2,
(xL−1, xR+1), with probability (1/2− ε)2.

(2)

Since we have xR > xL, it is convenient to define two new variables:

y = (xR + xL)/2, z = (xR − xL)/2. (3)

Here we may think of y as the centre-of-mass of the pair of particles and z represents
(half) the separation. In terms of y and z, the dynamics in equations (1, 2) are
translated into:

if z > 1

(y, z)→


(y, z+1), with probability (1/2− ε)2,
(y, z−1), with probability (1/2 + ε)2,
(y−1, z), with probability 1/4− ε2,
(y+1, z), with probability 1/4− ε2.

(4)

and if z = 1

(y, z)→


(y, z+1), with probability (1/2− ε)2,
(0, l), with probability (1/2 + ε)2,
(y−1, z), with probability 1/4− ε2,
(y+1, z), with probability 1/4− ε2.

(5)

Let P (y, z, t) denote the joint probability distribution of (y, z) at the t-th time
step. Evidently, P ((xR + xL)/2, (xR − xL)/2, t) = Q(xL, xR, t) where Q(xL, xR, t) is
the joint probability distribution of the positions (xL, xR). Using the dynamics in
equations (4) and (5), it is easy to write down the master equation for P (y, z, t) as

P (y, z, t) = (1/2 + ε)
2
P (y, z + 1, t− 1) + (1/2− ε)2

P (y, z − 1, t− 1)

+
(
1/4− ε2

)
(P (y + 1, z, t− 1) + P (y − 1, z, t− 1))

+ (1/2 + ε)
2
δy,0δz,l

∑
k

P (k, 1, t− 1) . (6)



Interacting Brownian Motion with resetting 5

In the continuous time and space limit, i.e. changing the time step to ∆t and the
lattice size to ∆x, we obtain the following Master equation

D∇2P (y, z, t) + v
∂P (y, z, t)

∂z
+ f(t)δ(y)δ(z − l) =

∂P (y, z, t)

∂t
(7)

where ∇2 = ∂2

∂y2 + ∂2

∂z2 , v = lim∆x,∆t,ε→0
2ε∆x
∆t , D = lim∆x,∆t→0

(∆x)2

4∆t and

f(t) = D

∫ ∞
−∞

∂P (y′, 0, t)

∂z
dy′. (8)

In (7) the terms on the first term on left hand side represents the diffusive behaviour
of both centre-of-mass y and half-separation z; the second term represents the drift in
z due to particle moving toward each other with a bias v and the third term represents
resetting to z = l , y = 0 with rate f(t). Thus f(t) is the effective resetting which is
due to the diffusive probability current into the line z = 0. The rate is determined
by the integral of the derivative of P at z = 0 (8). Assuming ε > 0 implies that
the bias v > 0; if v < 0 there is no stationary state for this problem, since the two
walkers tends to walk apart. With the change of variables to (y, z) the two attracting
Brownian particle with resetting problem reduces to that of a 2-d Brownian particle
with an absorbing boundary and a time-dependent source term.

3. Green Function Solution

To obtain the solution to (7, 8) we use a Green function approach. The first step is
to find the initial value Green function for the homogeneous problem

D∇2G(y, z, t) + v
∂G(y, z, t)

∂z
=
∂G(y, z, t)

∂t
(9)

subject to the initial condition and boundary conditions:

G(y, z, 0) = δ(y)δ(z − l), G(y, 0, t) = 0. (10)

Then the full time-dependent solution of (7) can be written down as

P (y, z, t) = G(y, z, t) +

∫ t

0

G(y, z, t− t′)f(t′)dt′ (11)

where the resetting rate f(t) given by (8) is obtained self-consistently as we shall detail
below. The first term in (11) is the contribution from trajectories where no resetting
has occurred and the second term is contributions where the last reset occurred at
time t′.

To obtain the Green function we take the Laplace-Fourier transform of (9) with
respect to t and y,

G̃(y, z, s) =
1√
2π

∫ +∞

−∞
eiky

∫ ∞
0

e−stG(y, z, t)dtdy (12)

to obtain the following equation

D
d2G̃(k, z, s)

dz2
+ v

dG̃(k, z, s)

dz
− (Dk2 + s)G̃(k, z, s) = −G̃(k, z, 0)(13)

where G̃(k, z, 0) = δ(z−l)√
2π

. The homogeneous solution of equation (13) is

G̃h = Aeλ
+z +Beλ

−z (14)



Interacting Brownian Motion with resetting 6

where

λ± = − v

2D
±
(
v2

4D2
+
Dk2 + s

D

)1/2

(15)

and a particular solution of the inhomogeneous equation (13) is

G̃i =
H(l − z)
2ΛD

√
2π

(
e−λ

+(l−z) − e−λ
−(l−z)

)
(16)

where H(z) is the Heaviside function

H(z) =


0, z < 0

1

2
, z = 0

1, z > 0

(17)

and Λ =
√

v2

4D2 + Dk2+s
D . Since λ+ > 0 the only way to ensure that G̃ remains finite

when z →∞ is to put A = 0 , and to obey the boundary condition G̃(k, 0, s) = 0 we
obtain

B = exp

(
vl

2D

)
sinh(Λl)√

2πΛD
(18)

and the solution is given by

G̃(k, z, s) =


e
v

2D (l−z)
(

e−Λ(l−z) − e−Λ(l+z)

√
8πΛD

)
, z < l

e
v

2D (l−z)
(

e−Λ(z−l) − e−Λ(l+z)

√
8πΛD

)
, z ≥ l.

(19)

Inverting the Laplace transform we obtain

L−1
{
G̃(k, z, s)

}
=

e
v

2D (l−z)
√

8π2Dt

(
e−

(z−l)2
4Dt −ct − e−

(z+l)2

4Dt −ct
)

(20)

where c = v2/4D + Dk2. Finally, inverting the Fourier transform we obtain the
solution of (9,10)

G(y, z, t) =
1

4πDt

[
exp

(
− (z − l + vt)

2
+ y2

4Dt

)

− exp

(
− (z + l + vt)

2
+ y2

4Dt

)
exp

(
vl

D

)]
. (21)

One can understand the second term in (21) as representing the “image” contribution
to the solution, the drift velocity of the image need to be in the same direction as that
of the original particle, and the additional exponential factor in the image term is to
ensure that the boundary condition G(0, y, t) = 0 is obeyed.

4. Stationary State

Due to the drift of the particles towards each other (drift in the z direction) and
the resetting mechanism (the jump from the boundary z = 0 to the position (0, l))
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a stationary state of (7) is expected to exist for this system. Now G(y, z, t) → 0 as
t→∞ so the stationary state of (11) is given by

Pst(y, z) = lim
t→∞

∫ t

0

G(y, z, t− t′)f(t′)dt′ . (22)

In the stationary state the function f(t), given by (8), must be independent of t so to
obtain the stationary state we need only solve the problem for a constant N in place
of the function f(t), where this constant should be N = limt→∞ f(t). In this way the
stationary solution is given by

Pst(y, z) = lim
t→∞

N

4πD

∫ t

0

τ−1e
v

2D (l−z)− v2τ4D

(
e−

(z−l)2+y2

4Dτ − e−
(z+l)2+y2

4Dτ

)
dτ . (23)

Using the following change of variables

a∓ =
(z ± l)2

4D
+

y2

4D
; b =

v2

4D
, u =

a±
τ

(24)

where a+ is used in the first integral and a− in the second, we obtain

Pst(y, z) = lim
t→∞

N

4πD
e−

v(z−l)
2D

 ∞∫
0

exp

(
−u− ba+

u

)
du

u
−
∞∫

0

exp

(
−u− ba−

u

)
du

u

−
a+/t∫
0

exp

(
−u− ba+

u

)
du

u
+

a−/t∫
0

exp

(
−u− ba−

u

)
du

u

 . (25)

Taking the limit t→∞ we obtain

Pst =
N

2πD
e−v(z−l)/2D

[
K0

( v

2D

√
(z − l)2 + y2

)
−K0

( v

2D

√
(z + l)2 + y2

)]
(26)

where K0 is the zero-order modified Bessel function of the second kind and N is to be
determined self-consistently. This can be done through the conservation of probability∫
Pst(y, z)dydz = 1 and one obtains N = v/l.

In what follows it will be useful to define the Péclet number

Pe = vl/2D (27)

which characterizes the relative importance between diffusion and convection in a
biased diffusive process.

Figure 2 shows the stationary probability for two different values of the Péclet
number. We observe in Figure 2-b that for large Peclet number the steady state is
quite asymmetric with respect to z (the half-separation) which reflects the fact that the
drift is strong and after resetting to the initial value of z, z tends strongly to decrease.
Also due to the absorbing boundary condition at z = 0 there is a sudden variation
of the probability density next to the y axis, creating a kind of boundary layer. On
the other hand, for small Peclet number where the drift is weak the stationary state
is almost symmetric around the resetting point. We can see in Figure 2-d that for
small Peclet number the maximum of the probability density, for example in the cross
section y = 4, can occur at values of z greater than the resetting point which is at
z = 3 in this case.
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Figure 2. Stationary probability density for different Péclet numbers, (a)
Pe = 0.3, (b) Pe = 3. Cross section of the probability density (c) for y = 0 ,
(d) for y = 4 for different Péclet numbers.

We also note from formula (26) and Figure 2 that there is a logarithmic singularity
in the distribution at z = l, y = 0 (the resetting point). Explicitly, if we set y = 0 and
z = l + ε then for |ε| � 1

Pst(0, l + ε) ∼ N

2πD
ln

(
4D

v|ε|

)
(28)

where we have used

K0 (x) ∼ − ln
(x

2

)
− γ, for 0 < x� 1. (29)

It is interesting to compare the singularity in (28) with results for simple diffusion
with resetting. As we have seen the present model reduces to a two dimensional
walker (in the y–z plane) with resetting when the walker reaches the line z = 0. The
simple diffusion with stochastic resetting at constant rate has a curious behaviour:
the stationary probability density has a cusp at the resetting point for all dimension
d except for d = 2, where the probability density diverges logarithmic at the resetting
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point [16]. Therefore the logarithmic singularity that we obtain is consistent with this
two-dimensional behaviour.

We can also see what happens in a problem similar to ours but in one dimension,
i.e. a Brownian particle with a drift towards the origin and this particle is resetting to
the initial position when approaching the origin. The master equation for this problem
is given by

D
∂2P (x, t)

∂x2
+Dδ(x− l)∂P (0, t)

∂x
+ v

∂P (x, t)

∂x
=
∂P (x, t)

∂t
(30)

and the stationary state solution of equation (30) is a simple exercise, and is given by

Pst(x) =

{ 1
l

(
1− e−

vx
D

)
, 0 < x ≤ l

1
l e
− vxD (e

vl
D − 1) x > l

(31)

We observe the existence of a cusp in x = l instead of a logarithmic divergence observed
in equation (26) when (y, z)→ (0, l) so the change from a cusp in one dimension to a
logarithmic divergence in two dimensions is also observed in our model.

4.1. Small v and Scaling Limit of Stationary State

It is of interest to explore the limiting cases where diffusion dominates the resetting
process. We shall consider two limits: small bias v → 0 and a scaling limit v → 0,
z →∞ with vz constant.

The small v regime of the stationary state is obtained using the small argument
approximation for the modified Bessel function (29). Keeping

√
(z ∓ l)2 + y2 finite

and making v → 0 in equation (26) we obtain using the approximation (29),

Pst(y, z) =
v

2πlD
ln

(√
(z + l)2 + y2√
(z − l)2 + y2

)
(32)

in particular for y = 0 we have

Pst(0, z) =
v

2πlD
ln

(
z + l

|z − l|

)
(33)

in the inset of Figure 3 is possible to see that this approximation is accurate near the
resetting point.

Looking in the scale where vz = 2Dξ, in the limit of small drift, v → 0, and large
distances, z → ∞ but keeping the product vz = 2Dξ constant. The stationary state
for y = 0 given by equation (26) can be rewritten as

Pst(0, z) =
v

2πlD
e−ξ+Pe [K0 (ξ − Pe)−K0 (ξ + Pe)] (34)

using the fact that K0(ξ±Pe) ∼ K0(ξ)∓K1(ξ)Pe, for Pe → 0 we obtain in this scaling
regime,

Pst(0, z) ∼
2eξξ2K1(ξ)

z2
. (35)

Thus we see that z2Pst(0, z) is given by a non-trivial scaling function.
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Figure 3. The line is the stationary solution Pst for y = 0 and the dashed line
is the approximation given by Eq. (33)

5. Relaxation to the Stationary State

We now turn to the full time-dependent solution equation of the Master equation (11).
The task is determine f(t) in (11) self-consistently. Substituting (11) in equation (8)
we obtain

f(t) = k(t) +

∫
k(t− t′)f(t′)dt′ (36)

where

k(t) =

∫ ∞
−∞

D
∂G(y′, z, t)

∂z

∣∣∣∣
z=0

dy′ =
l√

4Dπt3
exp

(
− (tv − l)2

4Dt

)
(37)

(we note in passing that this expression is equivalent to the distribution of first passage
time to the origin for a biased diffusion in one dimension starting at l [30]). Taking
the Laplace transform of equation (36) we obtain

F (s) =
K(s)

1−K(s)
(38)

where K(s) is the Laplace transform of k(t) given by

K(s) = exp

(
l
(
v −
√

4Ds+ v2
)

2D

)
(39)

since K(s) < 1, for s > 0, we can use the sum of the geometric series to obtain

F (s) =

∞∑
n=1

exp

(
nl
(
v −
√

4Ds+ v2
)

2D

)
. (40)

Inverting the Laplace transform term by term we find

f(t) =

∞∑
n=1

nl√
4πDt3

exp

(
− (tv − nl)2

4Dt

)
=

∞∑
n=1

fn(t) . (41)
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Thus we obtain the full time-dependent solution of (7) as

P (y, z, t) = G(y, z, t) +

∫ t

0

G(y, z, t− t′)
∞∑
n=1

fn(t′)dt′ (42)

where G(y, z, t) is given by (9) and fn(t) is given by (41).

5.1. Analysis of the resetting rate

We have determined the resetting rate f(t) to be sum of contributions (41). Each
term of this sum is equal to first passage time probability to the origin for a biased
diffusion in one dimension starting at nl. Thus each term n in the sum corresponds
to reaching z = 0 at time t after n− 1 previous resets.

In the extreme case D → 0 and v finite, which is the deterministic limit, the
function f is just a sum of delta functions spaced by a time interval l/v which is the
time necessary for the particle to reach the origin from the initial (and relocation)
position l. On the other hand in the limit v → 0 we expect purely diffusive behaviour.
The function f(t) interpolates between these two limits.

In the following we shall obtain approximations to the resetting rate f(t) in the
regimes of small and large Péclet number given by (27).

5.1.1. Large Pe: For large Péclet number (small D/large v) an approximation for
the sum (41) is obtained using the identity

√
s ϑ3(πa, e−πs) =

∞∑
n=−∞

exp

(
−π(n− a)2

s

)
(43)

where ϑ3 is a Jacobi Theta function [31]. Differentiating this formula with respect to
a we obtain
∞∑

n=−∞

nl√
4Dπt3

exp

(
− (tv − nl)2

4Dt

)
=
v

l
ϑ3

(
πvt

l
, exp

(
−4Dπ2t

l2

))
+

2Dπ

l2
ϑ′3

(
πvt

l
, exp

(
−4Dπ2t

l2

))
. (44)

For t > 0 and large Pe the contribution of the negative values of n in this sum is small
so that

∑∞
1 fn(t) '

∑∞
−∞ fn(t) and we obtain the following approximation for f(t)

f(t) ' v

l
ϑ3

(
πvt

l
, exp

(
−4Dπ2t

l2

))
+

2Dπ

l2
ϑ′3

(
πvt

l
, exp

(
−4Dπ2t

l2

))
. (45)

We now use identity [31]

ϑ3(z, q) = 1 + 2

∞∑
n=1

qn
2

cos(2nz) (46)

since q = exp(−4π2Dt/l2) � 1 for large Dt we can keep only the term n = 1 in the
sum to obtain the large time behaviour. After some simple trigonometric indentities
we obtain

f(t) ' fl(t) =
v

l

{
1 + 2R exp

(
−4π2tD

l2

)
cos

(
2πvt

l
+ φ

)}
(47)

where R =
√

1 + (4Dπ/vl)2 and φ = arctan(4Dπ/lv). Thus, in the large Peclet
Number regime and for large Dt we have arrived at an approximation for the effective
resetting rate that is a simple function of time: a damped harmonic oscillation deaying
to constant rate v/l.
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5.1.2. Small Pe: On the other hand, in the small Péclet number regime the
approximation

∑∞
1 fn(t) '

∑∞
−∞ fn(t) does not hold, but instead a good

approximation can be obtained by replacing the sum
∑∞
n=1 fn(t) by an integral∫∞

0
fn(t)dn:

f(t) ' fs(t) =

∫ ∞
0

fn(t)dn =
v

2l
+
v

2l
erf

(
v

2

√
t√
D

)
+

√
D

l
√
πt

e−
tv2

4D . (48)

In this case f(t) has no oscillatory behaviour and fs(t) approaches the stationary value
v/l monotonically from above. It is interesting to note that the decay rate depends
on v, in contrast to the large Péclet number limit where the decay of the amplitude
of the oscillation in (47) does not depend on v.

In figure 4 we show the behaviour of the function f for small and large Péclet
number, together with the approximations given by equations (47) and (48). The
function f(t) characterizes the relaxation to the stationary state, which in all cases is
the limiting value v/l.

(a) (b)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  50  100  150  200

t

f(t)

fl(t)

v/l

Figure 4. (a) The self consistent solution of f and the approximation given
by equation (48) for Pe = 0.03, (b) The self consistent solution of f and the
approximation given by equation (47) for Pe = 7.5

6. Conclusion

In this work we have considered a simple toy model where resetting to the initial
configuration is interaction driven. That is, the resetting rate is not predetermined
externally but is instead determined self-consistently through the internal dynamics.
The toy model comprises two Brownian particles biased to move towards each other.
When the bias is strong and diffusion weak the resetting becomes deterministic with
fixed period however when the bias is weak the resetting is dominated by diffusive
effects.

Through a Green function technique, we have obtained an exact expression for
the non-equilibrium stationary state (26) (NESS). This yields a non-trivial example
of a NESS with a probability current driven by internal resetting. Furthermore, we
have obtained an exact expression for the full time-dependent distribution (42). This
expression involves a function f(t) (41) which describes the effective resetting rate.
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The function f(t) characterizes the relaxation to the stationary state of the system at
large times: it is oscillatory in the high Péclet number regime where diffusive effects
are weak but monotonic in the small Péclet number regime where diffusive effects
are strong. We have developed simple distinct approximations to f(t) in these two
regimes.

It would be of interest to extend the toy model we have studied beyond a two
particle system to a many particle system and to higher spatial dimension. It would
also be of interest to consider interaction-driven resetting in the context of search
strategies of teams of searchers.
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