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Summary 
 

Lameness in piglets is a major animal welfare and economic problem in pig production. 

Following observation of a high incidence of a leg weakness syndrome in a commercial pig 

lines, a variance components approach was used to assess the genetic basis of the condition. 

The results suggested a monogenic recessive mode of inheritance, and homozygosity mapping 

was used to identify a region associated with the leg weakness syndrome on SSC15. Whole 

genome resequencing of cases and controls identified an outstanding candidate mutation in 

this region which results in a premature stop codon within exon 3 of the porcine MSTN locus. 

Myostatin (MSTN) is a transforming growth factor-β family member that is a critical regulator 

of skeletal muscle development. Mutations in the MSTN gene lead to muscle hypertrophy and 

are responsible for the ‘double muscling’ phenotype observed in several mammalian species, 

and is a common target for gene editing experiments in farm animals. The candidate causal 

mutation in MSTN was in Hardy-Weinberg equilibrium at birth, but significantly distorted 

amongst animals still in the herd at 110 kg weight. In heterozygous form, the MSTN mutation 

was associated with a major increase in muscle depth and decrease in fat depth, explaining 31 

and 18 % of the genetic variation respectively. MSTN ablation by gene editing in pigs is 

associated with problems of low piglet survival and lameness. Thus, in the current population, 

it is likely that this MSTN mutation was deleterious for piglet survival, but was maintained 

due to selection for increased muscle associated with heterozygous animals. The association 

between this MSTN mutation and fitness traits (leg weakness, survival) has clear implications 

for the potential use of gene editing of the porcine MSTN locus for increased meat production, 

and provide a plausible explanation for the lack of disrupting MSTN mutations in pigs despite 

intense selection for lean growth and their relatively high frequency in other species. 

 

Keywords: pigs, leg weakness, MSTN, growth traits 

 

Introduction  
 

Leg weakness is a major cause of lameness in piglets which has major negative animal 

welfare and economic impact in pig production. While leg weakness is a heterogeneous 

condition, notably high heritability estimates in certain pig breeds (up to 0.61) suggest a 

strong underlying genetic basis in some cases (Jørgensen & Vestergaard, 1990). Further, 
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genetic correlations between leg weakness traits and other production traits (such as growth 

and muscle depth) have previously been found (Jørgensen & Vestergaard, 1990). In the 

current study, the genetic basis of a leg weakness syndrome was characterised in a commercial 

line of Large White pigs with a high incidence of this syndrome. Variance component 

analyses were used to assess genetic parameters and the mode of inheritance for the syndrome. 

Homozygosity mapping was applied to identify possible regions associated with the 

phenotype, after which whole genome resequencing of affected and control animals was used 

to identify a candidate causative mutation for further testing. 

 

Material and methods 
 

Phenotype description 

 

 The data used were from a Large White commercial line of piglets from a genetic 

nucleus unit reared under standard commercial conditions. The data comprised 19,006 piglets 

phenotyped since the leg weakness syndrome was first noticed in 2007. Since the condition 

seemed to affect muscle and tendons, resulting in the piglet not being able to straighten the 

legs to stand, the animals were then visually classified as normal or affected (0/1). A subset of 

affected piglets were video recorded to characterise the features of the syndrome. The full 

pedigree comprised 26,908 animals over seven generations with 262 sires mated to 1,583 

dams. These data were used to characterise the mode of inheritance and genetic parameter 

estimates. All samples were collected on a commercial nucleus farm as part of normal 

husbandry and management procedures in the nucleus flock and complied with conventional 

UK red tractor farm assurance standards (https://assurance.redtractor.org.uk/) where sick or 

injured livestock that do not respond to treatment are promptly and humanely euthanized by a 

trained and competent stockperson. 

 

Genetic parameter estimates 

 

Initially the data were analysed with the leg weakness treated either as a continuous or 

as a binary trait fitting a logit link function using ASREML software (Gilmour et al., 2009). 

Models explored random effects due to the animal, sire, dam and their combinations. Other 

non-genetic random effects fitted were the permanent environmental effects due to the sow 

and litter effects. Environmental effects fitted included month and year of birth, and sow 

parity as fixed effects, with numbers born alive or dead included as covariates. The data were 

also explored using complex segregation analyses (Walling et al., 2002), implemented using a 

Gibbs sampler to formally investigate the major gene hypothesis. 

 

Homozygosity mapping 

 

Our hypothesis was that the leg weakness syndrome is caused by the effect of a single 

mutation with the deleterious allele exhibiting a recessive mode of inheritance. If this is true, 

then all affected individuals would be homozygous for the deleterious allele and the 

homozygosity status would extend to the area closely linked to the mutation. Hence, 

homozygosity mapping identifies a candidate region where all affected individuals are 

homozygous for the same haplotype (and the controls are not) (Charlier et al., 2008). To test 

this hypothesis DNA samples were collected from 10 cases (putative homozygotes for the 
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causative allele) and 10 unaffected littermates (heterozygous or homozygous wild-type). 

Animals were genotyped using the Illumina PorcineSNP60 SNP chip (Ramos et al., 2009). 

After quality control, candidate regions were found by identifying regions with all affected 

individuals sharing the same runs of homozygosity status. 

 

Whole genome resequencing 

 

To discover candidate causative mutations, six ‘cases’ from the original piglets were 

pooled and used to define the homozygous segment and six separate putative heterozygous 

dams were sequenced on an Illumina HiSeq2500 platform by Edinburgh Genomics.  The 

dams were sequenced at an average depth of ~10x, and the pool of piglets to a depth of ~20x. 

The DNA-sequencing output comprised ~1.3 billion paired-end reads. The piglets had an 

average of 48 million paired-end reads per sample, while the dams had on average 157 million 

paired-end reads per sample. Quality filtering and removal of residual adaptor sequences was 

conducted on read pairs using Trimmomatic v.0.32 (Bolger et al. 2014). Only reads where 

both pairs had a length greater than 32 bp post-filtering were retained, leaving a total of ~1.2 

bn paired-end reads (92%). Whole genome resequencing was followed by alignment to the 

published pig genome assembly (Sscrofa10.2, GCF_000003025.5; (Groenen et al. 2012)) 

using Burrows-Wheeler Aligner with default parameters (Li & Durbin 2010). Variant calling 

was performed using Genome Analysis Toolkit (GATK) HaplotypeCaller after read 

recalibration (DePristo et al. 2011). 

 

Validation of SNP 

 

A kompetitive allele specific PCR (KASP) was designed and performed by LGC 

Genomics (UK) to enable genotyping of the MSTN mutation in large numbers of animals. A 

population of 686 piglets was genotyped at birth, of which 381 pigs had performance test data 

recorded at 110 kg (i.e. slaughter weight) and were used to validate the candidate causative 

SNP variant. Their pedigree comprised 1,107 animals with 178 sires mated to 439 dams.  

The genotype patterns were assessed by testing Hardy-Weinberg equilibrium (HWE) at 

the two sampling time points (i.e. birth and 110kg), under the hypothesis that a causative 

mutation (or closely linked marker) should be in HWE at birth, but then significantly different 

from HWE due to an absence or near-absence of homozygous recessive genotypes in the 

performance test samples. An association analysis was conducted to investigate the effect of 

the mutation and the performance traits including days to 40 kg, days from 40-110 kg, weight 

at start of test period (average 85 days), weight at end of test period (average 138 days), 

muscle depth and fat depth. The fixed effects accounted for in the linear mixed model 

included year, sex, parity, age and SNP, with animal fitted as a random effect.  

 

Results and discussion 

 
A high estimate of heritability (0.70 ± 0.16) was obtained fitting a logit transformed 

mixed linear sire model. In this model, low estimates of 0.17 ± 0.02 and 0.11 ± 0.02 were 

observed for permanent environmental effects due to the dam and litter respectively. There 

was no direct comparison for this particular leg weakness syndrome reported in literature 

(http://omia.angis.org.au/OMIA000585/9825/). The overall prevalence of leg weakness was 

6.3%. The mean proportion of affected piglets, summing across all piglets in affected litters, 
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was 23% ± 0.7. The results from the complex Bayesian segregation analysis allowing for 

dominance, suggested almost all the variation could be explained by a single gene with 

virtually no polygenic or environmental variation. Results from the Bayesian segregation 

analysis gave a mean estimate of the additive effect of 0.50 ±0.001 and mean dominance 

effect of -0.50 ± 0.001, which is in agreement with the recessive gene model hypothesis. 

Homozygosity mapping based on the Illumina PorcineSNP60 SNP genotypes of cases 

and controls revealed a region with the longest homozygous segment in all cases that was not 

homozygous for the same alleles in controls of ~8.5Mb containing 62 SNPs from the SNP 

array on pig chromosome (SSC)15. This was assumed to represent a selective sweep that is 

likely to contain the underlying causative mutation. 

Whole genome resequencing followed by alignment to the published pig genome 

assembly resulted in the identification of 40 SNPs and 10 InDels within the homozygosity 

region, which co-segregated with the phenotype under the assumption of a single causative 

mutation. Functional annotation of these variants identified an outstanding candidate 

functional mutation in the third exon of the MSTN locus that resulted in t a stop codon at 

position 274 (p.Glu274*), which would results in a MSTN protein missing the last 101 amino 

acids, which is a highly conserved region across many animal species. This mutation had not 

previously been reported in pigs. No other polymorphisms with discernible function were 

identified. 

The results of all 686 piglets sampled at birth in our population for the MSTN mutation 

showed that this mutation was in HWE at birth (p=0.79, q=0.21, χ2=0.01, P > 0.05)  but 

significantly deviated from HWE in the subset of animals present at slaughter weight (p=0.80, 

q=0.20, χ2=23.55, P<0.05), with most of the homozygous mutant animals dying within a week 

and none present at slaughter. 

Few pleiotropic major genes have been identified that control both production and 

fitness traits. Mutations in the myostatin gene (MSTN) have been reported to cause muscle 

hypertrophy and are responsible for the exceptional ‘double muscling’ phenotype observed in 

several mammalian species, most famously in Belgian Blue cattle (McPherron & Lee, 1997). 

MSTN is a member of the transforming growth factor beta (TGF-β) superfamily, is highly 

conserved across species, and is typically expressed in developing and mature skeletal muscle 

as a key regulator of muscle growth (McPherron & Lee, 1997). The structure of the gene 

comprises three exons and two introns in all livestock species studied, and mutations in exon 

3 cause the double-muscled phenotype in cattle (e.g. McPherron & Lee, 1997). The causal 

relationship between the MSTN mutations and double-muscle phenotypes in cattle was 

initially inferred from the phenotypes of mice in which the MSTN gene had been knocked-out. 

More recent experiments in cattle and sheep in which the MSTN gene was disrupted by gene 

editing technology have supported this inference of causality (Proudfoot et al., 2015; Wang et 

al., 2016). Whilst the homozygous MSTN double-muscle phenotype in cattle presents some 

challenges including a frequent requirement for caesarean deliveries, the MSTN mutation 

homozygotes are viable. 

Gene editing has been used to disrupt the porcine myostatin gene, and an increase in 

muscle mass has been reported in edited pigs (Kang et al., 2014; Wang et al., 2015; Bi et al., 

2016; Rao et al., 2016; Tanihara et al., 2016; Kang et al., 2017),. However, a number of 

problems, including leg weakness, have been reported for the pigs carrying these artificial 

MSTN mutations (Kang et al., 2014; Rao et al., 2016; Xing et al., 2017).  

The impact of the natural porcine MSTN mutation observed in the current study (in 

heterozygous form) on performance traits was assessed in 381 pigs using an association 
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analysis. A significant association of the MSTN genotype with muscle depth and fatness traits 

was observed, with MSTN explaining 18 and 31 % of the genetic variation in fat and muscle 

depth respectively (P < 0.001) when assuming additivity. The heterozygous animals had on 

average 5 mm increased muscle depth, and 1.7 mm decreased backfat depth. The selection 

index applied in this population significantly benefited animals with positive muscle depth 

EBVs and negative fat depth EBVs. Therefore, it is plausible that the allele frequency of the 

MSTN mutation has been increased by selective breeding due to its favourable effect on 

muscle depth and fatness. Conversely, its association with piglet leg weakness and survival in 

homozygous form may explain the lack of naturally occurring major MSTN mutations 

reported in domesticated pigs to date, despite intense selection for lean growth.  

 

Conclusions 
 

A leg weakness syndrome was found to be highly heritable and controlled by a single 

major gene with a recessive mode of inheritance. Homozygosity mapping identified a single 

region of approximately 8.5 Mb on SSC15. The single most plausible candidate causative 

mutation causes a premature stop codon in exon 3 of the myostatin locus. A survey of 

commercial pigs shows the mutation in HWE at birth and complete absence of the 

homozygous mutant genotype at full market weight in these data. Pigs that were heterozygous 

for the mutation exhibited highly significantly increased muscle depth, and reduced fatness 

compared to wild-type animals. This implies that the mutation underlies a major QTL for 

these production traits. The pleiotropic effects of this naturally occurring nonsense myostatin 

mutation may explain why such mutations have not previously been reported in pigs, and are 

consistent with data from MSTN gene edited animals that suggest developmental problems 

associated with some of the genetically engineered MSTN genotypes in pigs under commercial 

farm conditions.  
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