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One of the greatest challenges in biophysical models of translation is to identify coding sequences
features that affect the rate of translation and therefore the overall protein production in the cell.
We propose an analytic method to solve a translation model based on the inhomogeneous totally
asymmetric simple exclusion process, which allows us to unveil simple design principles of nucleotide
sequences determining protein production rates. Our solution shows an excellent agreement when
compared to numerical genome-wide simulations of S. cerevisiae transcript sequences and predicts
that the first 10 codons, which is the ribosome footprint length on the mRNA, together with the
value of the initiation rate, are the main determinants of protein production rate under physiological
conditions. Finally, we interpret the obtained analytic results based on the evolutionary role of
codons’ choice for regulating translation rates and ribosome densities.

PACS numbers: 87.16.aj, 87.10.Mn, 05.60.-k

Translation is one of the major steps in protein biosyn-
thesis. During this process, the nucleotide sequence of a
messenger RNA (mRNA) is translated into a functional
protein. Each nucleotide triplet, called codon, codes for a
specific amino acid, the proteins’ building block. There
is experimental evidence that the rate at which a cer-
tain mRNA is translated depends on its specific codon
sequence [1–4], especially in the case of eukaryotes. Iden-
tifying sequence features that determine protein produc-
tion rate, also commonly referred to as translation rate
or efficiency, is a fundamental open question in molecular
biology [1, 3].

Translation is performed by molecular motors called ri-
bosomes, which move unidirectionally along the mRNA.
The amino acids are delivered to the ribosome by
molecules called transfer RNAs (tRNAs), which are spe-
cific to the codon and the amino acid they deliver (Fig. 1).
The dwelling time of a ribosome on a specific codon de-
pends primarily on the abundance of the corresponding
tRNA [5, 6]. Understanding how codon sequences de-
termine protein production rates can potentially unlock
many synthetic applications [7, 8].

The standard biophysical model of translation is
known as the totally asymmetric simple exclusion pro-
cess (TASEP), which captures the concurrent motion of
ribosomes on the mRNA [9, 10]. In this model ribo-
somes progress along the mRNA codon by codon, pro-
vided that the codon a ribosome moves onto is not occu-
pied by another ribosome. The protein production rate
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FIG. 1: Sketch of the mRNA translation process involving
initiation (a), elongation consisting of tRNA delivery (b) and
translocation (c), followed by termination (d). We emphasise
that this is an oversimplified scheme of the process and that
actual ribosomes cover ` = 10 codons. At each elongation
step, the ribosome receives an amino acid from a tRNA that
matches the codon occupied by the A-site of the ribosome (the
“reading” site). After the amino acid is added to the growing
polypeptide, the ribosome translocates one codon forward,
and the process is repeated.

can then be identified as the ribosomal current of this
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driven lattice gas. Due to the net current, TASEP is
not in equilibrium and its steady state is only known
for a few special cases [11, 12]. Unfortunately, most
biologically relevant variants of TASEP can be studied
only numerically [13–15], and efficient methods of ex-
ploring a large number of parameters are lacking. The
steady state of the TASEP with non-uniform hopping
rates is a long outstanding problem in nonequilibrium
statistical physics [15, 16]. An analytic prediction of pro-
tein production rates is also needed in order to interpret
recently developed ribosome profiling experiments that
are capable of monitoring ribosome positions along the
mRNA [17]. Such analytical prediction is missing in pre-
vious models of ribosome dynamics implicitly or explic-
itly based on the TASEP [1, 2, 19, 20, 22], and it is key
to decipher sequence determinants of protein production
rates.

In this Letter, we develop a versatile analytic method
to solve TASEP-based models of translation. Our an-
alytic approach, integrated with simulations and experi-
mental data, allows us to efficiently identify the main fea-
tures of mRNA codon sequence that determine the rate of
protein production. The genome-wide comparison of our
analytic predictions with numerical simulations shows an
excellent agreement for the model organism S. cerevisiae
(baker’s yeast).

Stochastic model of mRNA translation. We focus on
the model for translation introduced in [1, 23, 24]. The
mRNA is represented by a one-dimensional lattice con-
sisting of L discrete sites (codons), where site 1 designates
the start codon. Ribosomes are represented by particles
that occupy ` = 10 lattice sites, which is the ribosome
footprint length measured in ribosome profiling experi-
ments [17]. We identify the position 1 ≤ i ≤ L of a
ribosome with the position of its A-site, which is located
d = 5 lattice sites from the trailing end of the ribosome
(Fig. 1a). A ribosome that waits for a tRNA at position
i is labelled by 1i and a ribosome that has already re-
ceived the correct tRNA and is ready to move is labelled
by 2i. The set of labels of all translating ribosomes on
the lattice is called a configuration C of the system. For
example, C = 11213 denotes a lattice with 2 ribosomes,
one at site 1 waiting for a tRNA and another one at site
13 that has already received the correct tRNA.

Ribosomes initiate translation at rate α by binding to
the mRNA so that their A-site is at the start codon,
provided the sites 1, . . . , `−d+ 1 are empty (Fig. 1a). A
ribosome at site i makes the transition 1i → 2i at rate ki
dependent on tRNA abundances (Fig. 1b) and moves one
site forward at rate γ (Fig. 1c). Due to steric interactions
between particles, the particle at site i can move only if
there is no ribosome at site i + `. Termination occurs
when the particle at site L receives the last amino acid,
releases the final protein and detaches from the mRNA,
which we integrate into a single step occurring at rate β
(Fig. 1d).

Our main goal is to compute the rate of protein pro-
duction as a function of the parameters of the model,
which are α, β, γ and ki for each of the L codons used.
We assume that translation takes place under steady-
state conditions, so that the ribosomal current is con-
stant along the mRNA and is equal to the rate of protein
production, which in turn is equal to rate at which ri-
bosomes load onto the mRNA and initiate translation.
To this end we define the codon occupation number τi to
be equal to 1 if the i-th codon is occupied by an A-site,
and 0 if otherwise. By definition, the exact steady-state
ribosomal current J then reads

J = α
∑
C

[∏̀
i=1

(1− τi(C))

]
P (C), (1)

where τi(C) denotes the i-th codon occupation number
for configuration C, P (C) denotes the steady-state prob-
ability that the lattice is in configuration C, and the sum-
mation goes over all configurations C. Other quantities of
interest that we compute are the local and total particle
densities ρi = 〈τi〉 and ρ = (1/L)

∑L
i=1 ρi, respectively.

Series expansion method for computing P (C). In order
to find P (C) one has to solve the steady-state master
equation MP = 0, where P is a column vector whose N
elements are the steady-state probabilities P (C) of being
in configuration C, and N denotes the total number of
configurations. The transition rate matrix MC,C′ is given
by WC′→C for C 6= C ′ and −e(C) for C = C ′, where
WC′→C is the transition rate from C ′ to C and e(C) =∑
C′′ 6=CWC→C′′ is the total exit rate from C. The exact

solution of the master equation can be formally written
as

P (C) =
detM (p,p)∑N
q=1 detM (q,q)

, (2)

where p is the position of configuration C in the column
vector P and detM (p,p) is a determinant of the matrix
obtained by removing p-th row and p-th column from M
(see Supplemental Material for details). Unfortunately,
calculating this determinant is feasible only for unrealis-
tically small system sizes.

To circumvent this problem, we exploit the fact that
detM (p,p) is a multivariate polynomial in the variables α,
k1, . . . , kL, β and γ [25]. In the biological literature it is
often assumed that the initiation rate α is a major lim-
iting step of the translation process, mainly determined
by the presence of secondary structures [26, 27]. For this
reason we use α as an expansion parameter and we as-
sume that α� γ, β, k1, . . . , kL. By collecting terms with
the same power of α, we can rewrite P (C) as an uni-
variate polynomial f(C) in the variable α with unknown
coefficients fn(C)

P (C) =
f(C)∑
C f(C)

, f(C) =

K(C)∑
n=0

fn(C)αn, (3)
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where the coefficients fn(C) depend on the transition
rates k1, . . . , kL, γ and β (in order to ease the notation,
we leave out the explicit dependence on those parame-
ters). Since we expect that f(C) can be well approxi-
mated by the first few terms, the value of K(C) in Eq. (3
is irrelevant in our study.

In order to find the unknown coefficients fn(C), we
insert Eq. (3) into the master equation MP = 0, col-
lect all the terms with the same n-th power of α and
equate their sum to zero. For a given power n, the re-
sulting equation is similar to the original master equation
in which P (C) is replaced by fn(C) unless the coefficient
multiplying P (C) is α, in which case P (C) is replaced by
fn−1(C). Starting with n = 0, we note the equations for
the coefficients f0(C) have the same form as the original
master equation, but with α = 0, leading to the trivial
solution f0(C) = 0 if C 6= ∅. Since the terms f(C) are
not normalized, we have the freedom to choose any value
for f0(∅), which we set to 1.

For n ≥ 1, the equation for fn(C) reads

e0(C)fn(C) + fn−1(C)
∑
C′

IC,C′ =
∑
C′

IC′,Cfn−1(C ′)

+
∑
C′

(1− IC′,C)WC′→Cfn(C ′) , (4)

where IC,C′ = 1 if WC→C′ = α and is 0 otherwise, and
e0(C) =

∑
C′(1−IC,C′)WC→C′ is the total exit rate from

C excluding the rate α.
A key observation in our analysis is that fn(C) = 0

whenever the number of particles in C is larger than
n. This follows from the result f0(C) = 1 (0) if C = ∅
(C 6= ∅) in conjunction with the hierarchical structure
of Eq. (4), which connects configurations differing in the
number of particles by no more than one (a proof for
n = 1 is presented in the Supplemental Material). This
allows us to write Eq. (4) taking into account configura-
tions with only one particle and discarding all the others,
which yields

f1(11) =
1

k1
f0(∅), f1(1L) =

β

kL
f1(2L) (5a)

f1(1i) =
γ

ki
f1(2i−1), 2 ≤ i ≤ L, (5b)

f1(2i) =
ki
γ
f1(1i), 1 ≤ i ≤ L− 1. (5c)

The solution to Eqs. (5) is given by

f1(1i) =
1

ki
, f1(2i) =

{
1
γ i = 1, . . . , L− 1
1
β i = L

(6)

The equations for f2(C) involving configurations with
one and two particles are presented in the Supplemen-
tal Material.

Once we determine the coefficients fn(C) up to a de-
sired order n, we can compute the steady-state average

of any observable O(C) by inserting P (C) from Eq. (3)
and expanding 〈O〉 around α = 0,

〈O(C)〉 =

∑K
n=0

∑
C O(C)fn(C)αn∑K

n=0

∑
C fn(C)αn

=

∞∑
n=0

cnα
n. (7)

For example, the first three coefficients c0, c1 and c2 are
given by

c0 =
a0
b0
, c1 =

a1 − c0b1
b0

, c2 =
a2 − c1b1 − c0b2

b0
, (8)

where an and bn are defined as

an =
∑
C

O(C)fn(C), bn =
∑
C

fn(C). (9)

Notice that the expansion in Eq. (7) is slightly different
for the current J due to an extra α in Eq. (1) and is
given by J =

∑∞
n=0 cnα

n+1. Using the expressions for
fn(C) and fn(C) computed earlier yields

J = α

[
1−

∑̀
i=1

(
1

ki
+

1

γi

)
α+O(α2)

]
, (10)

ρ =
1

L

L∑
i=1

(
1

ki
+

1

γi

)
α+O(α2), (11)

ρi =

(
1

ki
+

1

γi

)
α+O(α2), (12)

where γi = γ+(β−γ)δi,L. These equations constitute our
main result. Equation (10) shows that if the initiation
rate α is small compared to k1, . . . , kL and γ, than the
protein production rate J depends predominately on the
initiation rate, along with the translocation and elonga-
tion rates of the first 10 codons, corresponding to the ri-
bosome footprint `. The importance of the first 10 codons
is a direct consequence of the excluded volume interac-
tions: any ribosome already present in that region will
prevent a new ribosome from binding the mRNA. It is
also important to emphasize that (10)–(12) are exact se-
ries expansions around α = 0; the approximation is made
only when the series is truncated.
Independent Particle Approximation (IPA). Interest-

ingly, the excluded volume interactions between particles
have no effect on the first two terms in the series expan-
sion of J . This motivates us to ask how the expansion
in Eq. (10) would look like if we assumed that all parti-
cles are independent, i.e. not experiencing any exclusion
interaction. In our model, the IPA amounts to replacing
P (C) with

P IPA(C) =
1

ZL

N(C)∏
j=1

w1(θX(j)), (13)

where N(C) is the number of particles in a configuration
C, θ is one of the two particle states 1 and 2, X(i) is
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the position of the i-th particle on the lattice and ZL
is the normalization constant. The weights w1(1i) and
w1(2i) for i = 1, . . . , L are obtained by solving the master
equation for a single particle and are given by α/ki and
α/γi, respectively. The corresponding expressions for the
current J and local density ρi read

J IPA =
α∏`

i=1(1 + pi)
, ρIPAi =

pi
1 + pi

, (14)

where pi = α(1/ki + 1/γi). We will use these results
later in order to determine the importance of ribosome
collisions in real genetic sequences. We also note that
the IPA in (13) provides a good approximation to fn(C)
for n = N(C) when the particles in C are far apart from
each other.

Application to mRNA translation in yeast. We now
apply our results to the transcriptome of S. cerevisiae
using realistic model parameters. The values of α in the
range 0.005− 4.2 s−1 with the median value of 0.09 s−1

have been previously estimated in Ref. [1] using genome-
wide experimental values of the ribosomal density. We
assume that the rates ki are mainly proportional to the
gene copy number of tRNAs delivering the corresponding
amino acid [28]; the rates are normalized so that the av-
erage codon translation rate is equal to the experimental
value of 10 codons/s [3]; the estimates of all elongation
rates along with the distribution of α is presented in the
Supplemental Material. The translocation rate γ is fixed
to γ = 35 codons/s [29], and termination is assumed to
be fast and comparable to translocation [3], β ≈ γ, so
that γi = γ ∀i in Eqs. (10)-(12).

In total, we analyzed 5836 gene sequences; for each
gene we calculated J , ρ and ρi for 1 ≤ i ≤ L up to and
including the second order of the perturbative expansion
at the corresponding physiological value of α. The re-
sults were then compared to the exact values obtained
numerically with stochastic simulations using the Gille-
spie algorithm [31] by calculating the percent error ε.

For the protein production rate J , with the zeroth or-
der of the perturbative expansion (predicting that J = α)
we obtain an error of ε < 5% for only 11% of the genes.
Remarkably, that percentage jumps to 80.7% when the
first-order coefficients in Eq. (6) are taken into account
(Fig. 2). Including the second-order coefficients (com-
puted numerically from Eq. (4)) does not significantly
improve results, due to a large value of α ' 0.15 s−1

in about 20% of the genes. Since the coefficients in Eq.
(7) typically alternate in sign, truncating the series will
ultimately lead to a wrong result when the value of α is
large enough. On the other hand, the IPA does not suffer
from this problem and leads to an error ε < 5% in 94%
of genes, whereby only 1% of genes have ε > 20%. The
success of the IPA also suggests that ribosome collisions
and traffic jams have a minor effect on the rate of trans-
lation, which is in accordance with recent experimental
evidence [26, 32]. This is also apparent from the density
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FIG. 2: (a): Histogram of the percent error ε measuring the
discrepancy between the protein production rate obtained by
stochastic simulations and the perturbative expansion includ-
ing the independent-particle approximation (IPA). (b) and
(c): Ribosomal density profile obtained by stochastic simula-
tions (black) compared to Eq. (12) (red) for two values of the
initiation rate α, one close to the median value ≈ 0.09 s−1

(gene YAL045C, b) and the other that is close to the 90th
percentile value ≈ 0.23 s−1 (gene YGL034C, c).

profile ρi, which is very well approximated by the linear
approximation in Eq. (12), even for larger values of α
(Fig. 2 b and c).

Identifying determinants of mRNA translation. Our
analytic prediction allows us to decompose the contribu-
tions from initiation and elongation to the rate of trans-
lation J , thereby addressing a long-standing question
about main determinants of protein production rate. Re-
markably, the expressions for the current obtained with
both the first-order and the independent particle approx-
imation involve only the first ` = 10 codons. This result
therefore strongly indicates that, together with the ini-
tiation rate, the first 10 codons of the mRNA are the
key determinants of the protein production rate by pre-
venting a new ribosome from binding which effectively
decreases the initiation rate.

If we assume that the cell maximizes the rate of pro-
tein production, given the above result, we would ex-
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FIG. 3: Histogram of ηJ (yellow) and ηρ (blue) for the S.
cerevisiae genome.

pect to find a signature in the genome for selecting ef-
ficient fast codons at the beginning of each gene. We
test this hypothesis by computing the ribosomal current
for the fastest (JF ) and the slowest (JS) set of first
` synonymous codons for each gene, using the IPA. A
score ηJ = (J − JS)/(JF − JS) is then assigned to each
gene, which is 1 (0) when the sequence corresponds to
the fastest (slowest) codon sequence. On the other hand,
one might assume that the cell not only tries to maximize
protein production rates, but at the same time it tries
to minimize the ribosome density ρ on mRNAs. This as-
sumption is motivated by the fact that ribosomes are lim-
iting [22, 33] and highly costly in terms of cellular energy
resources [34], and therefore ribosome queues are to be
avoided. Hence, we also compute ηρ = (ρ−ρS)/(ρF−ρS)
for each gene, where ρF and ρS denote the ribosome den-
sity for the fastest and slowest set of synonymous codons,
respectively.

Figure 3 shows the histogram of ηJ (yellow) and ηρ
(blue) computed for 5836 genes of S.cerevisiae. Both his-
tograms show an average of 0.7 suggesting the selection
of fast codons near the start codon to maximize J , as well
as an overall selection of fast codons along the mRNA to
minimize ρ. However, the width of the distribution of ηρ
is substantially smaller than the one of ηJ . This might
indicate that the optimization of protein production rate
is strongly dependent on the particular gene, since dif-
ferent proteins are needed at different concentrations. In
contrast, the minimization of the number of ribosomes
on mRNAs could be a more general constraint.

Conclusions. We have presented an analytic method
that allows us to quantify sequence determinants of pro-
tein production rates, using a model for translation that
is based on an inhomogeneous exclusion process. Our
results demonstrate that the rate of protein production
is largely determined by the initiation rate and the elon-
gation rates of the first 10 codons (the ribosome foot-
print length on the mRNA), which control how fast ribo-
somes load onto the mRNA, whereby ribosome collisions
and queues have a minor effect under physiological con-
ditions.
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Supplemental Material to:
Deciphering mRNA Sequence Determinants of

Protein Production Rate

EXACT SOLUTION OF THE STEADY-STATE MASTER EQUATION

The exact solution, Eq. (3) in the main text, pertains to any ergodic Markov jump process with a finite number of
states. In order to derive the exact solution, let us write again the steady-state master equation in a matrix form

MP = 0, (S1)

where P is a column vector whose elements are steady-state probabilities Pi, the N states are indexed by i = 1 . . . ,N
and the N ×N matrix M is given by

Mij =

{
Wjk i 6= j

−
∑
k 6=iWik i = j,

(S2)

where Wij is a transition rate from a state i to j. We note from Eq. (S2) that the sum of all elements in each column
of M is zero

N∑
i=1

Mij =

N∑
i=1
i6=j

Wji −
N∑
k=1
k 6=j

Wjk = 0. (S3)

Consequently, the sum all row vectors of M is zero, which means that the vectors are linearly dependent and thus the
determinant of M is equal to zero,

detM = 0. (S4)

Combining Eq. (S4) with the Laplace expansion of a determinant yields

0 = detM =

N∑
i=1

MijCij =

N∑
j=1

MijCij . (S5)

Here Cij is a cofactor of M defined as Cij = (−1)i+jdetM (i,j), where the matrix M (i,j) is obtained from M by
removing i-th row and j-th column . Inserting Eq. (S2) into (S5) gives

detM =

N∑
i=1
i6=j

MijCij +MjjCjj =

N∑
i=1
i6=j

MijCij −
N∑
k=1
k 6=j

MkjCjj

=

N∑
i=1
i6=j

Mij(Cij − Cjj) = 0, (S6)

from which we conclude that

Cij = Cjj , (S7)

for any i and j, i.e. the cofactor Cij does not depend on the state i. Inserting Eq. (S7) back into Eq. (S4) gives

N∑
j=1

MijCjj = 0, (S8)

which is precisely the starting steady-state master equation, Eq. (S1). We thus conclude that

Pi =
Cii∑
j Cjj

=
detM (i,i)∑N
j=1 detM (j,j)

. (S9)
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ARGUMENT FOR f (n)(C) = 0 WHENEVER THE NUMBER OF PARTICLES IN
A CONFIGURATION C IS LARGER THAN n

As noted in the main text, a key observation in our analysis is that f (n)(C) = 0 whenever the number of particles
in C is larger than n. We present here the argument for the case of n = 1; a similar argument applies to higher orders.
For n = 1, using Eq. (5) in the main text we obtain

f (1)(C) =
1

e(C)

[∑
C′

IC′→CδC′,∅ +
∑
C′

(1− IC′→C)WC′→Cf
(1)(C ′)− δC,∅

]
. (S10)

Consider C to be one full lattice configuration with all N = b(L − 1 + `)/`c particles in state 1. The first term on
the right hand side of Eq. (S10) is zero because there is no direct transition from the empty configuration ∅ to C.
The second term on the right hand side is also zero, because C can only be accessed through the transition rate α.
Finally, the third term on the right hand side is clearly zero. Hence, f (1)(C) = 0. Now, it is easily seen that all full
lattice configurations C ′ that can be accessed only from C will fulfil f (1)(C ′) = 0. Iterating further this procedure
to the configurations that can be accessed from those, it becomes clear that all full lattice configurations C have
f (1)(C) = 0. This argument can be further extended to all configurations with N − 1, N − 2, N − 3, ..., 2 particles,
resulting in f (1)(C) = 0 for all of them.

The situation changes when we consider configurations with only 1 particle on the lattice, since then there is a
direct transition from the empty configuration ∅ to one of those configurations, leading to f (1)(C) 6= 0. The rest of the
coefficients f (1)(C) for 1-particle configurations will depend on each other, and hence, they do not vanish. Therefore,
we can conclude that only 1-particle configurations have non-vanishing f (1)(C). For n = 1, this key observation allows
us to write Eq. (5) taking into account configurations with only one particle and discarding all the others, which
yields Eqs. (6a)-(6c) in the main text.

EQUATIONS FOR THE SECOND-ORDER COEFFICIENTS f (2)(C)

As stated in the main text, all second-order coefficients f (2)(C) whereby a configuration C has more than two
particles are equal to zero. The equations for the non-zero coefficients f (2)(C) are presented below, where we use the
the notation γj = γ for 1 ≤ j ≤ L− 1 and γL = β.

First, we look at configurations with one particle at site i = 1 and the other at site j = i+ l, . . . , L:

f (2)(111j) =
1

k1 + kj

[
f (1)(1j) + (1− δ1+l,j)γj−1f (2)(112j−1)

]
(S11a)

f (2)(112j) =
1

k1 + γj

[
f (1)(2j) + kjf

(2)(111j)
]

(S11b)

f (2)(211j) =
1

(1− δ1+l,j)γ1 + kj

[
k1f

(2)(111j) + (1− δ1+l,j)γj−1f (2)(212j−1)
]

(S11c)

f (2)(212j) =
1

(1− δ1+l,j)γ1 + γj

[
k1f

(2)(112j) + kjf
(2)(211j)

]
. (S11d)

where we used the Kronecker delta to account for the excluded volume interaction. Next, we look at configurations
with particles at sites i = 2, . . . , L− l and j = i+ l, . . . , L.

f (2)(1i1j) =
1

ki + kj

[
γi−1f

(2)(2i−11j) + (1− δi+l,j)γj−1f (2)(1i2j−1)
]

(S12a)

f (2)(1i2j) =
1

ki + γj

[
γi−1f

(2)(2i−12j) + kjf
(2)(1i1j)

]
(S12b)

f (2)(2i1j) =
1

(1− δi+l,j)γi + kj

[
kif

(2)(1i1j) + (1− δi+l,j)γj−1f (2)(2i2j−1)
]

(S12c)

f (2)(2i2j) =
1

(1− δi+l,j)γi + γj

[
kif

(2)(1i2j) + kjf
(2)(2i1j)

]
. (S12d)
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Finally, the equations for configurations with only one particle are given by

f (2)(11) =
1

k1

[
γLf

(2)(112L) + f (1)(∅)
]
, (S13a)

f (2)(21) =
k1
γ1
f (2)(11) +

γL
γ1
f (2)(212L), (S13b)

f (2)(1i) =
1

ki

[
γi−1f

(2)(2i−1) + θ(L− l + 1− i)γLf (2)(1i2L)− f (1)(1i)
]
, i = 2, . . . , L (S13c)

f (2)(2i) =
1

γi

[
kif

(2)(1i) + θ(L− l + 1− i)γLf (2)(2i2L)− f (1)(2i)
]
, i = 2, . . . , L (S13d)

where θ(n) = 0 for n < 0 and 1 for n ≥ 0.
The equations (S11)-(S13) can be easily solved numerically by iteration. We first solve Eqs. (S11) for i = 1, j = l+1.

We then iterate the recursion relation in Eqs. (S11) for fixed i = 1 and j = 2 + l, . . . , L. We then solve equations
(S12) for fixed i = 2 and j = l+3, . . . , L and repeat this procedure until i = L− l and j = L. Finally, we calculate the
coefficients f (2)(1i) and f (2)(2i) for the single-particle configurations using f (2)(1i2L) and f (2)(2i2L) that we solved
in the previous steps. We note that the only unknown that we cannot determine is f (1)(∅), but it turns out that all
terms containing f (1)(∅) will cancel out later when we calculate the coefficients in the series expansions (11)-(13) in
the main text.

ESTIMATES OF THE CODON ELONGATION RATES

The total translation rate ωi of the codon i is:

1

ki
+

1

γ
=

1

ωi
, (S14)

where the translocation rate γ is set to 35s−1 as mentioned in the main text. The codon elongation rate ki, which
represents the average arrival and recognition time of the cognate tRNA, is determined by following the procedure
introduced in [1], which we report here.

For each of the 41 tRNAs types j we consider their gene copy number (GCN), which allows us to provide a first
estimate of the rate kj :

kj = r
GCNj∑41
j=1GCNj

, (S15)

where GCNj is the gene copy number of the tRNA of type j with j = 1, . . . , 41, and r is a proportionality constant.
These rates were then adjusted to take into account experimental evidence suggesting that the translation rates of
codons using the G-U wobble are reduced by 39% compared to their G-C counterparts; analogously, codons using the
wobble I-C and codons using the wobble I-A are reduced by 36% relative to their I-U counterparts [2]. To calculate
the proportionality constant r, we used the experimental value of 10 codons/s for the average codon translation rate
〈ωi〉 defined as

〈ωi〉 =

61∑
i=1

(
kiγ

ki + γ

)
ni
n

(S16)

where ni/n is the relative abundance of all different codon types in the cell, ni is total number of codons in the cell

of exactly type i, and n =
∑61
i=1 ni (the three STOP codons are excluded) [1]. Table I summarises the resulting

elongation rates ki for 61 codons.
The estimates provided are valid in physiological conditions, when amino acids are not limiting. In case of amino

acid starvation the rates of the codons affected should be modified (the elongation rates depend on the abundance of
tRNAs charged with the correct amino acid).

DISTRIBUTION OF THE TRANSLATION INITIATION RATES

The translation initiation rates α were estimated for each gene in Ref. [1] by matching the average ribosome density
predicted by the model with the experimental value of the ribosome density obtained in Ref. [3]. The resulting values
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tRNA anti-codon codon GCN ki [1/s]

Ala1 IGC GCU 11.00 18.34

Ala1 IGC GCC 11.00 11.74

Ala2 UGC GCA 5.00 8.34

Ala2 UGC GCG 5.00 8.34

Arg1 CCU AGG 1.00 1.67

Arg2 ICG CGU 6.00 10.01

Arg2 ICG CGC 6.00 6.40

Arg2 ICG CGA 6.00 6.40

Arg3 UCU AGA 11.00 18.34

Arg4 CCG CGG 1.00 1.67

Asn GUU AAU 10.00 10.17

Asn GUU AAC 10.00 16.68

Asp GUC GAU 15.00 15.26

Asp GUC GAC 15.00 25.01

Cys GCA UGU 4.00 4.07

Cys GCA UGC 4.00 6.67

Gln1 UUG CAA 9.00 15.01

Gln2 CUG CAG 1.00 1.67

Glu3 UUC GAA 14.00 23.35

Glu4 CUC GAG 2.00 3.34

Gly1 GCC GGU 16.00 16.28

Gly1 GCC GGC 16.00 26.68

Gly2 UCC GGA 3.00 5.00

Gly3 CCC GGG 2.00 3.34

His GUG CAU 7.00 7.12

His GUG CAC 7.00 11.67

Ile1 UAU AUA 2.00 3.34

Ile2 IAU AUU 13.00 21.68

Ile2 IAU AUC 13.00 13.87

Leu1 UAG CUA 3.00 5.00

Leu1 UAG CUG 3.00 5.00

tRNA anti-codon codon GCN ki [1/s]

Leu3 CAA UUG 10.00 16.68

Leu4 UAA UUA 7.00 11.67

Leu5 GAG CUU 1.00 1.02

Leu5 GAG CUC 1.00 1.67

Lys1 CUU AAG 14.00 23.35

Lys2 UUU AAA 7.00 11.67

Met CAU AUG 5.00 8.34

Phe GAA UUU 10.00 10.17

Phe GAA UUC 10.00 16.68

Pro1 UGG CCA 10.00 16.68

Pro1 UGG CCG 10.00 16.68

Pro2 IGG CCU 2.00 3.34

Pro2 IGG CCC 2.00 2.13

Ser2 IGA UCU 11.00 18.34

Ser2 IGA UCC 11.00 11.74

Ser3 GCU AGU 4.00 4.07

Ser3 GCU AGC 4.00 6.67

Ser4 UGA UCA 3.00 5.00

Ser5 CGA UCG 1.00 1.67

Thr1 IGU ACU 11.00 18.34

Thr1 IGU ACC 11.00 11.74

Thr2 CGU ACG 1.00 1.67

Thr3 UGU ACA 4.00 6.67

Trp CCA UGG 6.00 10.01

Tyr GIA UAU 8.00 8.14

Tyr GIA UAC 8.00 13.34

Val1 IAC GUU 14.00 23.35

Val1 IAC GUC 14.00 14.94

Val2 UAC GUA 2.00 3.34

Val2b CAC GUG 2.00 3.34

TABLE I: Elongation rates ki considering supply (gene copy number of tRNAs) and wobble base-pairing.

for 5836 genes that we analyzed in the main text are in the range 0.005− 4.2 s−1 with the median value of 0.09 s−1.
The histogram of the rates is presented in Figure S1, showing that the initiation rate α for the majority of genes is
indeed much smaller than the smallest elongation rate, which has the value of 1.02 codons/s for the CUU codon (see
Table I). The list of all translation initiation rates can be found in the Supplemental Material of Ref. [1].
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FIG. S1: Histogram of the estimated initiation rates for 5836 genes from the S. cerevisiae genome. The 95th percentile value of
α is ≈ 0.3, which is much smaller that the smallest elongation rate, which is 1.02 codons/s for the CUU codon (vertical dashed
line). Only 15 genes have α larger than mini{ki} = 1.02 codons/s.


