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Abstract 

In this work, we report the formation of heterojunctions comprising of graphene quantum dots 

(GQD) decorated ZnO nanorods (NR) and its use as efficient photocatalysts for environmental 

remediation. The heterojunctions has been designed to be active both in the UV and visible 

light regions and anticipated utilize the maximum part of the solar light spectrum. In this view, 

we examined the photocatalytic performance of our heterojunctions towards the degradation 

of colored pollutant (methylene blue (MB) dye) and a colorless pollutant (carbendazim (CZ) 

fungicide) under sunlight irradiation. Compared to bare photocatalyst ZnO and GQD, the 

heterojunction with 2 wt% of GQD (ZGQD2) showed the best photocatalytic activity by 

effectively degrading (about 95%) of organic pollutants (MB and CZ) from water within a short 

span of 70 min. The superior photocatalytic activity of these ZnO-GQD heterojunctions could be 

attributed to efficient charge carrier separation lead suppressed recombination rate at 

photocatalyst interfaces. In addition to the enhanced light absorption from UV to visible region, 

the high specific surface area of ZGQD2 heterojunction (353.447 m² g-1) also imparts strong 

adsorption capacity for pollutants over catalyst surface, resulting in high photoactivity. Based 

on the obtained results, band gap alignment at ZnO-GQD heterojunction and active species 

trapping experiments, a plausible mechanism is proposed for photocatalytic reaction. The 

excellent photostability and recyclability of the ZnO-GQD heterojunctions fostering as 

promising photocatalyst candidate for environmental remediation applications. 
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1. Introduction 

 Over the past few decades, the demand of clean energy and pollution free environment 

(water and air) has increased worldwide due to rapid industrialization and population growth 

[1-3]. Different industries such as cosmetic, textile, paper, leather, pharmaceutical and fertilizer 

produces huge amount of pollutants in the water bodies, which are highly toxic and 

carcinogenic to human life even in trace concentration [4, 5]. Therefore, environmental friendly 

technique has to be developed to treat the water pollutant which does not produce further 

adverse effect to the environment. In this context, solar energy based water treatment  has 

received much attention as is renewable, pollutant-free and abundance in nature [6]. 

Semiconductor based photocatalysis has emerged as economic, environmental benign 

technology because of its potential to solve the growing concerns of water pollution [7, 8] using 

sunlight irradiation. Nevertheless, photocatalytic performance of most of semiconductors have 

been limited for practical applications due to inadequate visible light utilization in solar 

spectrum, fast recombination of photoinduced charge carriers and thus affect the catalysis rate 

of pollutant degradation[9]. Therefore, to design the efficient photocatalytic materials which 

harvest high amount of light photons from solar energy spectrum, cost effective, and earth 

abundant is arduous task to scientific community. Among various semiconductors, TiO2 and 

ZnO have been widely explored as promising materials for environmental remediation for the 

removal of organic pollutants from water [10-12]. In addition, carbon based material such as, 

graphitic carbon nitride (g-C3N4) has gained immense attention due unique optical, electrical 

and physiochemical properties and has been widely explored for energy generation and 

environmental remediation applications [13-16]. Owing to the simple synthesis routes, 

excellent chemical stability, non-toxicity and favorable band edge position for water oxidation, 

the metal oxide semiconductors have emerged as promising candidates for photocatalytic 

applications [17-19]. However ZnO has been considered as relatively better photocatalytic 

candidate compare to TiO2 because of high life time of photoinduced charge carriers, rapid 
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electron transfer,  crystallization at low temperature and anisotropic growth [20]. In addition 

ZnO exhibits two fold high electron mobility of 200-300 cm2 V-1 s-1 than that of TiO2 and 

facilitated  photocharge carrier in photocatalytic reaction [20]. Moreover, the less refractive 

index of ZnO (2.0)  compare to TiO2 (2.5), scarcely scatters light, thereby making it colorless and 

boosting its transparency [21].  

ZnO is a very interesting group II-VI metal oxide with direct band gap of ~ 3.37 eV and 

large exciton binding energy of 60 meV [22]. Furthermore it absorbs a large portion of UV 

spectrum and more light quanta, which is highly beneficial to achieve high photocatalytic 

activity for polluted water treatment [22]. Besides these advantages, ZnO have major challenge 

in implementing solar light driven photocatalysis reaction as it inevitably obstructing the visible 

light utilization, which constitutes ~43% of solar energy spectrum. In addition, fast 

recombination of photoinduced charge carriers, particle aggregation during photocatalytic 

reaction and photocorrosion are main drawbacks which limits their utilization in large scale 

[22]. To overcome the aforementioned issues, various strategies have been proposed such as a) 

surface modification by noble metals [23], b) heterojunction formation with carbonaceous 

materials [24, 25] and c) coupling with narrow band gap semiconductors [26-30]. Among these 

approaches, the heterojunction formation through coupling narrow band gap semiconductors 

has been proved as potential strategy to enhance the lifetime of photoinduced charge carriers 

by effective charge separation [26]. With narrow band gap semiconductor heterojunctions, the 

efficient down potential (electrons) and up-potential (holes) transfer from conduction band 

(CB) and valence band (VB) of ZnO, respectively at interface have proved to enhance the 

corrosion resistance of ZnO during photocatalytic reactions [7]. For instance, our group recently 

reported the heterojunction of N-doped ZnO with a narrow band gap semiconductor (MoS2)as 

efficient photocatalyst for degradation of pharmaceutical pollutant, tetracycline under visible 

light irradiation [26]. In this heterojunction, MoS2 played dual role by enhancing the 

photocatalytic activity of ZnO and preventing photocorrosion by managing the photoholes 

transfer.  Kundu et al. [31] demonstrated photocatalytic activity of CdS/ZnO nanorod based 

heterojunction in dye removal from water under natural sunlight. The CdS heteropartner 

promote the photocatalytic activity of ZnO nanorods through enhanced visible light absorbance 
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as well as effective charge separation at hetero-interfaces. It implies that heterojunction based 

photocatalyst is superior than single photoabsorber.  

Graphene has attracted great attention since its discovery in 2004 because of its 

fascinating physical properties and has been explored intensively for photocatalysis [32, 33]. 

Being a zero band gap semiconductor, no optical luminescence is observed in graphene. 

However, band gap can be introduced by downsizing the dimension from 2D to zero dimension. 

In this lime,  graphene quantum dots (GQD) is a new class of graphene derivative with band gap 

energy  due to quantum confinement and edge effects [34]. Recently, GQD have attracted 

tremendous attention due to excellent photostability, biocompatibility, high specific surface 

area and abundance of raw materials [35]. GQD have a sp2-hybridized two-dimensional (2D) 

honeycomb lattice structure with excellent electrons accepting and shuttling properties along 

with stable photo luminescence [35]. Thus the integration of GQD with wide band gap 

semiconductors is driving the research to new class of nanoscale functional materials suitable 

for photocatalytic applications. Recently, Pan et al. [36] have reported nanoscale amine 

functionalized GQD-TiO2 heterojunction by molecular fusion and hydrothermal method. This 

heterojunction was exploited for the degradation of methyl orange (MO) dye under visible light 

irradiation with enhanced photocatalytic performance and photostability. The band gap energy 

of GQD is tunable and relay on the size and functionalization of its edge sites, which determines 

the visible light photon harvesting. In addition, the GQD based heterojunctions have been 

widely investigated as promising catalysts with enhanced charge separation and transfer for 

photocatalytic applications [37-40].  

Some previous reports from our group have focused on nanocomposites of ZnO with 

narrow band gap materials (MoS2, CdS) and two dimensional (2D) carbonaceous material 

(reduced graphene oxide) for the removal of organic pollutants from water [22, 26, 32]. In this 

work, we focus on heterojunction formation using ZnO and GQD, which can be robust and 

promising catalyst compare to their individual components. Recently, Guo et al. [41] explore 

the feasibility of GQDs decorated ZnO nanorod based electrode in photoelectrochemcial water 

splitting. In addition, ZnO-GQD nanocomposites have been widely explored for various 

applications such as, lithium ion batteries [42], white light emitting diodes [43, 44] and solar 
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cells [45]. However, to the best of our knowledge, the heterojunction of GQD with ZnO NR has 

not yet been reported for photocatalytic environmental remediation application. Therefore, in 

this work we design GQD decorated ZnO nanorods (NR) through hydrothermal method and 

demonstrate their photocatalytic degradation functionality in color (methylene blue (MB)) and 

colorless pollutant (carbendazim (CZ)) under sunlight irradiation. In order to explore the role of 

GQDs, different amount of  GQD loading  1 wt%, 2 wt% and 3 wt% in ZnO NR  and optimize the 

best G QDs loading quantity. The ZnO-GQD heterojunction displayed efficient photoinduced 

charge separation, enhanced light absorption and excellent stability as compared to bare 

catalysts for removal of the pollutants from water. The strong interfacial interaction between 

ZnO NR and GQD has been investigated in detail. Therefore, such encouraging results with 

these heterojunctions can strongly underpin the importance of semiconductor-GQD 

heterojunctions for promoting photocatalytic activity by directly harvesting solar energy. 

 

2. Experimental Section 

2.1. Materials  

For the synthesis of   ZnO nanorods, GQD and ZnO-GQD nanocomposites, all the chemicals used 

were of analytical grade were used as received. Zinc chloride (ZnCl2), sodium hydroxide (NaOH), 

pyrene (C16H10), triethanolamine (TEA), benzoquinone (BQ) which were purchased from Merck, 

India. Isopropanol (IPA) and nitric acid (HNO3) were obtained by Fisher Scientific. Methylene 

blue (MB) and carbendazim (CZ) were supplied by Sigma Aldrich. Deionized water (18.2 MΩ-cm) 

used in synthesis was obtained from double stage water purifier (ELGA PURELAB Option-R7). 

 

2.2. Synthesis 

2.2.1. Synthesis of ZnO nanorods 

ZnO nanorods (NR) were synthesized by hydrothermal method [26]. In a typical experiment, 

about 2 mL of 15 mL of ZnCl2 solution (0.2 M) in ethanol was added drop wise to 15 mL of NaOH 

solution (0.5 M) and stirred for 2 h. Later this solution was treated at high temperature (180oC) 

for 12 h in a Teflon-lined stainless steel autoclave, sealed tightly. Finally, the obtained white 

precipitates were washed thrice with ethanol and water before drying in heating oven at 60oC. 
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2.2.2. Synthesis of graphene quantum dots 

Graphene quantum dots (GQD) were prepared by using a previously reported synthesis method 

[36]. In brief, 0.5 g of pyrene were refluxed in HNO3 (40 mL) for 12 h under continuous stirring 

to form 1,3,6-trinitropyrene. After reaction time, it was allowed to cool down naturally to room 

temperature and then diluted with 250 mL of deionized water. Subsequently, the solution was 

filtered to obtained 1,3,6-trinitropyrene as first product. In the second step of reaction, 0.5 g of 

1,3,6-trinitropyrene was subjected to ultra-sonication in 0.2 M NaOH solution for its dispersion.  

Finally the suspension was transferred into Teflon-lined stainless steel autoclave, sealed tightly 

and maintained at 200°C for 12 h. Once the reaction mixture cooled down naturally to room 

temperature, the product was filtered through a 0.22 m microporous membrane to remove 

insoluble carbon products and further dialyzed in a dialysis bag (retained molecular weight: 

3500 Da) for 2 days to remove sodium salt and unfused small molecules. After dialysis, the 

brownish colored GQD were obtained as final product. 

 

2.2.3. Synthesis of ZnO-GQD nanocomposites 

The composites were prepared by using hydrothermal synthesis method. In this method, the as 

prepared ZnO NR was added to the GQD solution in water, with constant stirring for 2 h at 

room temperature to obtain a homogeneous suspension. After stirring, the suspension was 

transferred into a Teflon-lined stainless steel autoclave, sealed tightly and maintained at 150°C 

for 4 h. After that we collected the white precipitate by centrifugation and dried in a vacuum 

oven at 80°C overnight. By varying the amount of GQD as 1 wt% (0.002 g), 2 wt% (0.004 g) and 

3 wt% (0.006 g) in 0.198 g, 0.196 g and 0.194 g of ZnO NR, three heterojunctions were prepared 

and labelled as ZGQD1, ZGQD2, and ZGQD3, respectively.  

 

2.3. Materials characterization 

X-ray diffraction (XRD) measurements were performed using Rigaku Smart Lab 9kW rotating 

anode x-ray diffractometer with Ni-filtered Cu Kα irradiation (λ = 0.1542 nm) at 45 kV and 100 

mA in 2θ ranging from 10o - 80o with a scan rate of 2o per minute with stepping size of 0.02o. 
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Fourier transform infrared (FTIR) spectra were collected by using Agilent K8002AA Carry 660 

instrument. Raman spectroscopic measurements were performed using Horiba LabRAM high 

resolution UV-VIS-NIR instrument using 633 nm laser. Morphology of the samples was 

characterized by using field emission scanning electron microscope (SEM), FEI Nova Nano SEM-

450 and transmission electron microscope (TEM), FEI Tecnai G2 20 S-twin microscope operating 

at 200 kV. Energy dispersive x-ray spectra (EDAX) and elemental mapping were obtained by 

using the same TEM instrument. X-ray photoelectron spectroscopic (XPS) measurements were 

performed using a high resolution PREVAC photoemission spectrometer having Al Kα (1486.6 

eV) dual anode as the source operating at 12 kV anode voltage and 23 mA filament current. The 

XPS data was collected with pass energy of 50 eV at 6.1 X 10-10 m bar vacuum using Scienta 

R3000 electron energy analyzer. As an internal reference for the absolute binding energy, the C-

1s peak (284.5 eV) was used. Initially the XPS unit was calibrated using Fermi edge of Ag (KE 

1482.544). Optical properties were analyzed by UV-vis diffuse reflectance spectroscopy (DRS) 

using Perkin Elmer UV/VIS/NIR Lambda 750 spectrophotometer in which polytetrafloroethylene 

(PTFE) polymer was employed as internal reflectance standard. The Brunauer–Emmett–Teller 

(BET) surface areas and nitrogen adsorption–desorption isotherms were measured at 77 K on a 

Quantachrome Autosorb-iQ-MP-XR system. The UV-visible absorption spectra of the samples 

were recorded using Shimadzu UV-2450 spectrophotometer in the wavelength range 200 to 

800 nm. All the photoluminescence (PL) spectra were recorded on Agilent Technologies Cary 

Eclipse fluorescence spectrometer. 

 

2.4. Photocatalytic activity 

The photocatalytic activity of bare ZnO, GQD and ZnO-GQD heterojunctions was evaluated by 

monitoring the decomposition of methylene blue (MB) dye and carbendazim (CZ), a colorless 

fungicide under natural sunlight irradiation. Briefly, 20 mg of catalyst was suspended in 

pollutant solution (50 mL, 1 x 10-5 M). Before illumination, the suspension was continuously 

stirred for 30 min under darkness to attain the adsorption-desorption equilibrium between 

pollutants and catalyst. During photocatalysis experiments, 1 mL of photocatalytic suspension 
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was collected and centrifuged at regular intervals of time and analyzed in UV-visible 

spectrophotometer. The degradation efficiency can be calculated as: 

                       
  

  
       

Here, Ct and Co represent pollutant concentration at time t and 0, respectively. The intensity of 

sunlight was measured by a using a LX-101A digital luxmeter.  

 

3. Results and Discussion 

3.1. Synthesis and structural studies 

The ZnO nanorods decorated with GQD in varying compositions and the control samples were 

synthesized by a facile hydrothermal route using appropriate precursors. In this work, GQD 

amount in ZnO NR was varied from 1 wt% to 3 wt% to prepare the semiconductor 

heterojunctions. To decipher the crystal structure and heterojunction formation between ZnO 

and GQD, x-ray diffraction (XRD) measurements were performed and presented in Figure 1. 

XRD patterns of ZnO in Figure 1(a) shows the presence of characteristic diffraction peaks, which 

are positioned at 2θ values of 31.5o, 34.4o, 36.3o, 47.3o, 56.4o, 62.9o, 66.3o, 67.9o and 69.1o and 

could be indexed to (100), (002), (101), (102), (110), (103), (200), (112) and (201) lattice planes 

of hexagonal Wurtzite structure, respectively (JCPDS no. 36-1451) [26]. Figure 1 (b) presents the 

XRD pattern obtained for GQD exhibit broad peak, which is centered on 2θ value around 24o 

and could be attributed to (002) lattice plane of carbon skeleton with hexagonal phase (JCPDS 

no. 75-1621), while the presence of a small diffraction peak around 30o signifies the few layered 

GQD [46]. The broad diffraction peak of GQD reveals the low crystallinity and small size. The 

ZnO-GQD heterojunction retained all characteristic diffraction peaks of ZnO with weakened 

diffraction intensity with increasing GQD amount. This decrease in intensity and appearance of 

no diffraction peak due to GQD could be attributed to the weak diffraction intensity and low 

amount of GQD in heterojunction as previously reported in literature [37].  
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Figure 1. (a) XRD patterns of ZnO, ZGQD1, ZGQD2 and ZGQD3 heterojunctions; (b) XRD pattern 

of GQD. 

 Figure 2(a) shows the FTIR spectra of GQD, ZnO, ZGQD1, ZGQD2 and ZGQD3 

heterojunctions, which reveal the presence of C=O (1727 cm-1), C=C (1630 cm-1), COOH (1382 

cm-1) and C-O (1020 cm-1) functional groups in GQD, which are consistent with literature [47]. 

The peak at 1505 cm-1 corresponds to the N-H vibration, while broad band in 3500-3000 cm-1 

range could be attributed to the O-H stretching vibrations of adsorbed water molecules in GQD 

[36]. FTIR spectra of ZnO NR (Figure 2e) exhibit the peaks at 925 cm-1 and 658 cm-1 

corresponding to Zn-O stretching vibrations [22], while the peaks due to their bending 

vibrations can be seen in the 500-400 cm-1 range. It can be seen clearly that, characteristic 

vibrational peaks of GQD and ZnO are present in all three heterojunctions confirming the 

successful formation of ZnO-GQD hybrid. 

 Raman spectroscopy was used to obtain additional structural information on ZnO NR, 

GQD and the ZGQD heterojunctions. Raman spectra of control samples and heterojunctions 

have been presented in Figure 2(b). Pure ZnO exhibit the characteristic Raman peaks at 332 cm-

1, 375 cm-1 and 435 cm-1, which correspond to A1, E2 and A1 (TO) vibrational modes of hexagonal 

structure, respectively. GQD shows presence of two Raman peaks at 1353 cm-1 and 1586 cm-1 

which can be assigned as D-band (disordered sp2 carbon) and G-band (ordered graphite), 

respectively. The intensity ratio of D-band to G-band (ID/IG = 1.01) is a measure of disorder in its 

lattice structure associated with grain boundaries, vacancies and amorphous carbon. It is 

noteworthy to mention that the vibrational modes of ZnO can also be seen in ZGQD1, ZGQD2, 
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and ZGQD3 heterojunctions along with two additional Raman bands which corresponds to GQD 

confirming the presence of both the components.    

 

Figure 2. (a) FTIR spectra and (b) Raman spectra of ZnO, GQD, ZGQD1, ZGQD2 and ZGQD3 

heterojunctions.. 

 

3.2. Morphological and compositional studies 

The morphological studies of all photocatalysts were carried out by scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM) analysis. SEM micrographs have 

been presented in Figure S1, which reveals the rod-like morphology, uniform distribution and ~ 

1 µm length of ZnO NR (Figure S1 (a)). Same morphology of NR was retained after 

heterojunction formation with GQD as presented in SEM images of ZGQD1, ZGQD2, and ZGQD3 

heterojunctions (Figure S1 b, c, d). More detailed insights on the morphology of bare catalysts 

and heterojunctions have been revealed by TEM measurements presented in Figure 3. From 

Figure 3, the uniform distribution of GQD implies that GQD are in homogenous in particle size 

which is less than 5 nm (Figure 3a, 3b, 3c). While, ZnO shows rod like morphology 

complementing the SEM results (Figure 3d). Interestingly, in the heterojunctions the GQD can 

be clearly visible on the surface of ZnO NR to form intimate contact between them, which can 

facilitate charge transfer across heterojunctions (Figure 3e). In addition to this, HRTEM images 

of ZGQD2 (representative sample) has also been provided in Figure 3(f) and Figure S2 (refer 

supporting information) to confirm the successful decoration of GQD on ZnO NR. Lattice fringes 
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with d-spacing of 0.21 nm corresponding to (002) crystal plane of GQD could be evidenced from 

the high magnification images. Furthermore, the lattice fringes with d-spacing of 0.26 nm can 

be assigned to the (002) plane of hexagonal ZnO. The intimate contact between lattice fringes 

of GQD and ZnO confirms the heterojunction formation.  The elemental mapping of ZGQD2 

shown in Figure 3(g) confirms the coexistence of all elements of the heterojunction. Energy 

dispersive x-ray spectroscopy (EDAX) measurements of ZnO and ZGQD2 heterojunction were 

recorded to confirm the presence of constituent elements (Zn, O, C in ZGQD2 and Zn, O in ZnO) 

as can been seen in Figure S3 (refer supporting information).  

 

Figure 3. TEM images of (a, b, c) GQD; (d) ZnO NR; (e, f) TEM and HRTEM images of ZGQD2; (g) 

elemental mapping showing the presence of Zn, O and C in ZGQD2 heterojunction. 

The surface composition and chemical states of constituent elements of ZGQD2 

heterojunction as representative photocatalyst has been investigated by using x-ray 

photoelectron spectroscopy (XPS) in the binding energy range of 0-1400 eV. Figure 4(a) 

presents the survey spectrum of ZGQD2 heterojunction, the presence of Zn-2p, O-1s and C-1s 

peaks can be observed in full spectra. Figure 4(b) shows the C-1s spectra of ZGQD2 with four 
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binding energy peaks. First binding energy peak at 284.4 eV could be assigned to the C-C bonds 

in graphitic structure of GQD. While binding energy peaks at 286.4 eV, 287.8 eV, and 288.9 eV 

corresponds to the oxygen containing functional groups such as C–O (epoxy and alkoxy), C=O 

(carbonyl), and –COOH (carboxylic) groups, respectively. Therefore, the C-1s spectrum of 

ZGQD2 confirms the heterojunction formation between ZnO and GQD.  The high resolution XPS 

spectra of Zn-2p of ZnO NR and ZGQD2 are shown in Figure 4(c) and 4(d), respectively. The ZnO 

NR exhibit two binding energy peaks at 1021.6 eV (Zn-2p3/2) and 1044.4 eV (Zn-2p1/2), which 

correspond to the Zn2+ state. It is noteworthy to mention here that, Zn-2p of ZGQD2 

heterojunction shows binding energy peaks at 1021.3 eV (Zn-2p3/2) and 1044.5 eV (Zn-2p1/2). 

This slight shift of Zn-2p binding energy peaks could be attributed to the strong interfacial 

interactions between ZnO and GQD. Figure 4(e) and 4(f) show the high resolution O-1s spectra 

of ZnO NR and AGQD2, respectively. The ZnO NR exhibit two binding energy peaks at 530.2 eV 

and 531.9 eV, which signify non-stoichiometric oxygen atoms and the lattice oxygen 

contribution from ZnO, respectively. While the binding energy peaks of O-1s of ZGQD2 

heterojunction appears at slightly higher binding energy (531.2 eV and 532.9 eV), which could 

be attributed to the electronic interactions in heterojunction as previously reported [1]. The 

above XPS results further confirmed the successful combination of ZnO and GQD to form highly 

efficient heterojunction which anticipated to enhance charge transfer across hetero-interface, 

which will support to increase the photocatalytic activity.  
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Figure 4. XPS spectra: (a) survey spectrum of ZGQD2 heterojunction, (b) C-1s (ZGQD2), (c) Zn-2p 

(ZnO), (d) Zn-2p (ZGQD2), (e) O1s (ZnO) and (f) O1s (ZGQD2). 

 

3.3. Physical properties studies  

The optical properties of ZnO-GQD heterojunctions and bare catalysts were evaluated by UV-

visible diffuse reflectance spectroscopy (DRS). Figure 5(a) depicts the UV-visible absorption 



  

Page 14 of 36 
 

spectra of ZnO, ZGQD1, ZGQD2, and ZGQD3 heterojunctions with different amount of GQD on 

ZnO NR. It is clear that ZnO shows distinct absorption in UV region and exhibit absorption edge 

around 386 nm due to electrons promotion from VB to CB and no absorption in visible region (λ 

> 400 nm) was observed. The corresponding band gap energy obtained for this absorption 

wavelength is 3.21 eV which is in good agreement with literature reports [22, 26]. Red shift in 

the absorption edge from 386 nm to 392 nm, 398 nm and 402 nm, with increasing absorption 

intensity, can be seen clearly as the amount of GQD increases to 1 wt%, 2 wt% and 3 wt%, 

respectively in ZnO-GQD heterojunctions. This implies the increased visible light absorption in 

400-800 nm range upon GQD loading. Similar observations to enhance the visible light 

absorption on TiO2-GQD nanocomposites have been recently reported by Min et al. [37] . Figure 

S4 (refer supporting information) shows the band gap values of the heterojunctions obtained 

from Kubelka-Munk plot and found to be 3.16 eV (ZGQD1) , 3.11 eV (ZGQD2) and 3.08 eV 

(ZGQD3) which were lower than bare ZnO NR (3.21 eV). Therefore, it is inferred that the 

heterojunction formation between ZnO and GQD extends the absorption towards visible region 

which expected to improve the visible light activity when illuminated under natural sunlight. 

Surface area of nanomaterials is critical for their functional properties and applications 

such as photocatalysis related to their contact interfaces. To investigate the specific surface 

area, Brunauer-Emmett-Teller (BET) (SBET) gas physisorption measurements were performed. 

The nitrogen adsorption-desorption isotherm of ZGQD2 heterojunctions (representative 

photocatalyst) at 77 K obtained using multipoint BET method is presented in Figure 5(b). The 

isotherm present a characteristic type IV curve with a pronounced hysteresis loop. The ZGQD2 

heterojunction exhibits high surface area, which was estimated to be 353.447 m² g-1. Such high 

value of specific surface area has been well reported in literature for GQD based 

nanocomposites [48]. This large surface area of heterojunction is highly desirable to provide 

more interfacial contact region between the two components for photoinduced charge 

transport and abundant exposed edge sites to adsorb more pollutants.  
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Figure 5. (a) UV-visible diffuse reflectance spectra of ZnO, ZGQD1, ZGQD2 and ZGQD3 

heterojunctions, (b) N2 adsorption-desorption isotherms of ZGQD2 heterojunction. 

 

3.4. Photocatalytic activity studies 

The photocatalytic performance of all the prepared catalysts were studied by evaluating the 

degradation of MB (colored pollutant dye) and CZ (colorless hazardous fungicide) under natural 

sunlight irradiation having an intensity of 9.2 X 104 lux. The successive time dependent UV-vis 

absorption spectra of degradation of MB are presented in Figure 6. Prior to the sunlight 

irradiation, the incubation period of 30 min in dark condition lead to the adsorption-desorption 

equilibrium between the dye molecules and the catalysts. The photocatalysts reached their 

saturated adsorption as presented in Figure S5 (refer supporting information), which reveals 

nearly same adsorption of pollutant over catalyst surface in 30 min and 60 min. The major 

absorption peak of MB at 663 nm diminishes gradually indicating the decomposition of MB dye 

under sunlight irradiation in the presence of catalysts. The photolysis degradation of MB 

(without photocatalyst) was also tested for the identical duration (70 min) and negligible 

degradation was observed (Figure 6a). For more understanding of photocatalytic degradation 

experiments of MB with bare ZnO and GQD were also carried out under sunlight irradiation. 

The experimental results presented in Figure 6(b, c) shows that in presence of ZnO and GQD 

catalysts, the concentration of MB decreases meagerly even after 70 min of illumination. While, 

the successive time dependent UV-vis spectra of MB degradation over ZGQD1, ZGQD2 and 

ZGQD3 heterojunctions, presented in Figure 6 d, 6e, and 6f show significant degradation of MB 
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in 70 min of sunlight irradiation. The improved photocatalytic activity of ZnO-GQD 

heterojunctions is ascribed to the better dye pollutant adsorption as well as photosensitization 

effect of ZnO by GQD. The later effect enable the catalyst to utilize the maximum fraction of 

visible light from sunlight as previously reported in literature [41, 49, 50] . As a result ZGQD2 

heterojunction, showed high photocatalytic degradation rate than bare ZnO and GQD. It is 

clearly advocate that GQD loading over ZnO NR significantly enhances the photocatalytic 

activity of the heterojunctions due to improved charge separation across ZnO-GQD interface 

and their fast transfer to reaction sites over catalyst surface. Overall comparison, the highest 

photocatalytic activity was achieved with ZGQD2 heterojunction, it reveals that the optimum 

loading of GQD is 2 wt%. Because under the optimized GQD loading results in fine interfacial 

contact for efficient charge transfer, homogenous dispersion and abundant reaction sites to 

degrade the dye pollutant. However in the case of high loading of GQD (more than 2 wt%) 

decreases the photocatalytic rate, which might be attributed to the following factors: (i) higher 

amount of GQD is prone to the self-aggregation weakening the heterojunction contact interface 

and decreases the photocatalytic activity and (ii) poor light adsorption by the heterojunction 

resulting in lesser photoinduced charge generation, which hamper the photocatalytic activity. 

This justifies the best photocatalytic activity of the optimized heterojunction, ZGQD2 and 

decreased activity with heterojunction having 3 wt% of GQD. The kinetic curves of the MB 

degradation over all catalysts under sunlight irradiation have been presented in Figure 7(a, b), 

which shows the degradation follows pseudo first order kinetics as per following equation: 

ln (C/C0) = -kt 

Here, C0 and C are MB concentration at time 0 and t, respectively and k is rate constant (min-1) 

of reaction. Furthermore, the histogram in Figure 7(c) presents comparative photocatalytic 

degradation rate (%) of all catalysts, which follows the order as ZGQD2 (95%) > ZGQD3 (92%) > 

ZGQD1 (88%) > ZnO (28%) > GQD (8%). Hence, the corresponding rate constant (k) values for 

MB degradation with GQD and ZnO were 0.0011 min-1 and 0.0051 min-1. While, rate constant 

calculated for ZGQD1, ZGQD2 and ZGQD3 were 0.0302 min-1, 0.0439 min-1 and 0.0376 min-1, 

respectively revealing enhanced photocatalytic performance of heterojunctions as compared to 

bare catalysts (Figure 7d). The rate constant of ZGQD2 is superior (8 folds) than bare ZnO. These 
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experimental findings demonstrate the synergistic effect of optimal loading of GQD on to ZnO 

and the heterojunction formation boosts the photocatalytic activity in removal of organic 

pollutant from water. 

 

Figure 6. Successive time dependent UV-vis absorption spectra of MB dye (1 x 10-5 M) 

degradation: (a) without catalyst, (b) in presence of GQD, (c) ZnO, (d) ZGQD1, (e) ZGQD2, and (f) 

ZGQD3 under natural sunlight irradiation. 
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Figure 7. (a) Kinetic curves for degradation of MB, (b) -ln(C/C0) vs. time curve for degradation of 

MB, (c) histogram showing comparative degradation rate (%) of MB with the photocatalysts 

under natural sunlight irradiation and (d) bar graph showing the values of the rate constants for 

all the photocatalysts. 

 In order to ensure the degradation of dye pollutant is solely due to photocatalytic 

nature of the heterojunctions and not contributed from photosensitization of the MB dye, we 

demonstrate similar photocatalytic dye degradation experiments using colorless pollutant CZ. 

CZ is a benzimidazole fungicide, which is very stable under natural environmental conditions 

and detected in surface waters. It has been identified as one of the most hazardous pollutants 

as its exposure is highly toxic to human beings and aquatic life [22]. Therefore, the elimination 

of CZ from water by a facile process is of great significance. The photocatalytic degradation of 

CZ was studied by monitoring its main absorbance peak at 285 nm and corresponding time 

dependent UV-visible spectra have been presented in Figure 8. Figure 8(a, b and c) presents the 

UV-vis spectra of photocatalytic degradation of CZ without catalyst, bare GQD and ZnO, 
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respectively. While the diminishing of main absorbance peak of CZ in presence of ZGQD1, 

ZGQD2 and ZGQD3 heterojunctions can be seen in Figure 8 (d, e and f). Kinetic plots for CZ 

degradation over various catalysts have been presented in Figure 9 (a, b) revealing the pseudo 

first order kinetics of the degradation reaction. The calculated degradation rate (%) of was GQD 

(13%), ZnO (40%), ZGQD1 (76%), ZGQD2 (94%) and ZGQD3 (91%) as displayed in Figure 9 (c). 

While, the  corresponding rate constants for CZ degradation was 0.0032 min-1, 0.0076 min-1, 

0.0198 min-1 , 0.0362 min-1 and 0.0356 min-1 over GQD, ZnO, ZGQD1, ZGQD2 and ZGQD3, 

respectively (Figure 9d) showing the superior photocatalytic activity of ZGQD2 heterojunction in 

this case as well. All these experimental results demonstrate the ZnO-GQD heterojunctions as 

efficient catalysts for removal of variety of pollutants from water using sunlight irradiation.  
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Figure 8. Successive time dependent UV-vis absorption spectra of CZ solutions (1 x 10-5 M) 

degradation (a) without catalyst, (b) in presence of GQD, (c) ZnO, (d) ZnO-GQD1, (e) ZnO-GQD2, 

and (f) ZnO-GQD3 under natural sunlight irradiation. 
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Figure 9. (a) Kinetic curves for degradation of CZ, (b) -ln(C/C0) vs. time curve for degradation of 

CZ, (c) histogram showing comparative degradation rate (%) of CZ with the photocatalysts 

under natural sunlight irradiation and (d) bar graph showing the values of the rate constants for 

all the photocatalysts. 

 

3.5. Photoluminescence studies 

The recombination of photoinduced charge carriers decreases the activity of the photocatalyst. 

Therefore, to study the effect of GQD loading on recombination probability of photoinduced 

charge carriers, the photoluminescence (PL) spectra was recorded for all prepared 

photocatalysts and presented in Figure 10.  Figure 10 (a) presents UV-vis spectra of ZnO NR 

with strong absorption band at 372 nm, which was taken as excitation wavelength to record the 

PL spectra at room temperature.  The higher PL emission intensity indicate the high 

recombination rate of photoinduced charge carriers [1]. It can be seen clearly from Figure 10 (b) 

that ZnO NR exhibit PL emission peaks at 440 nm and 490 nm and 510 nm. These PL emission 
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bands originated from recombination of photoinduced charge carriers, zinc interstitial defects 

and oxygen vacancies in pure ZnO, as previously reported [1, 26]. The violet emission band at 

440 nm could be attributed to the zinc interstitial defects, while blue emission band at λ=490 

nm and the green emission band at λ=510 nm could be attributed to surface states and oxygen 

vacancies in the ZnO NR [1, 51]. Interestingly, the emission intensity of ZGQD1, ZGQD2 and 

ZGQD3 heterojunctions decreases as compared to bare ZnO, which indicate the decreased 

recombination of photoinduced electron-hole pairs, which is highly beneficial for photocatalytic 

activity. Very importantly, the ZGQD2 heterojunction exhibits notably decreased PL emission 

intensity among all the photocatalysts. It infers that the effective separation of photoinduced 

charge carriers at heterojunction sample could prolongs minority carrier lifetime and thus boost 

interfacial transfer for enhanced photocatalytic activity under sunlight. It is noteworthy to 

mention that, the GQD shows absorption in UV-vis region and fluorescent properties.  The 

characteristic absorption band of GQD in UV range corresponds to the π→π* transition of C=C 

of graphene structure (Figure S6a in supporting information) [52] . When excitation wavelength 

was 340 nm, then GQD exhibit green fluorescence with PL emission band in 500-600 nm (Figure 

S6b in supporting information). The inset in Figure S6 (a) shows photographs of GQD aqueous 

solution under white light and under UV light (365 nm) with green fluorescence. The PL 

emission of GQD depends on excitation wavelength and can be correlated with size 

polydispersion of quantum dots [52]. It is worth to mention here that, GQD do not exhibit any 

absorption band in infrared region (refer Figure S6 in supporting information). 

 

Figure 10. (a) UV-vis absorption spectrum of ZnO NR, (b) photoluminescence spectra of ZnO, 

ZGQD1, ZGQD2 and ZGQD3 heterojunctions. 
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3.6. Mechanism of photocatalytic activity 

The active species trapping during photocatalytic degradation of MB with ZGQD2 

heterojunction has been investigated by adding different scavengers and corresponding results 

can be seen in Figure 11. In this regard, triethaonlamine (TEA) was used as hole (h+) scavenger, 

isopropanol (IPA) as hydroxyl radical (*OH) scavenger and benzoquinone (BQ) as superoxide ion 

radical (O2
-*). As it can be seen from Figure 11 that the photocatalytic degradation of MB has 

decreases to 26% by addition of TEA advocate the key role played by h+ in degradation. 

However, the photocatalytic degradation rate has drops to 48% with IPA as scavenger, which 

reveals the active role of *OH for pollutants removal under natural sunlight irradiation. On 

contrary, the photocatalytic degradation was slightly influenced by the presence of BQ 

indicating that O2
-* are not generated during photocatalytic reaction.  

 

Figure 11. Effects of scavengers on photocatalytic degradation efficiency (PCD) of MB by using 

ZGQD2 heterojunction under natural sunlight irradiation. 

Based on the above results, the underlying mechanism of photocatalytic degradation of 

pollutant (MB/CZ) over ZnO-GQD heterojunctions under sunlight irradiation is proposed in 

Scheme 1. It has been previously reported in the literature that GQD acts as photosensitizers to 

semiconductors and are responsible for the enhanced absorption in visible region, which 
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eventually increases the photocatalytic performance by generation of more photoinduced 

charge carriers [37, 50]. Some of the previous studies have reported the conduction band (CB) 

position of GQD around -3.0 to -3.5 eV vs vacuum energy level, which is more negative than CB 

position of ZnO (-4.19 eV vs vacuum energy level) [36, 50]. The position of CB and valence band 

(VB) of ZnO NR can be calculated by applying following equations reported in literature, 

ECB = X - Ee - 1/2Eg 

ECB = EVB - Eg 

Here, ECB and EVB are the conduction band and valence band edge potentials, X is the 

electronegativity of the semiconductor (ZnO is 5.79 eV [53], Ee is the energy of free electrons on 

the hydrogen scale (4.5 eV); and Eg is the band gap energy of the semiconductor (ZnO is 3.21 

eV, as calculated form DRS data). By applying the above mentioned equation, ECB and EVB 

obtained for ZnO was determined to be -0.31 eV and 2.89 eV, respectively which correspond to 

the -4.19 eV and 7.39 eV vs vacuum energy level. When photocatalytic reaction mixture was 

subjected to sunlight, the photoexcitation of both ZnO (by UV photons) and GQD (by visible 

light photons) takes place, which leads to electron-hole pairs’ formation. The strong interfacial 

contact between ZnO and GQD leads to the photoexcited electrons transfer from more 

negative CB of GQD to less negative CB of ZnO.  Meanwhile, the photoinduced holes move up-

potential from VB of ZnO to VB of GQD, which triggers the photoinduced electron-hole 

separation efficiently across the heterojunction [37]. The transferred electrons from CB of ZnO 

cannot produce O2
-* from dissolved oxygen due to more positive CB potential of ZnO (-0.31 eV 

vs NHE) as compared to the reduction potential of -0.33 eV vs NHE (O2/ O2
-*) [26]. However, 

these electrons can produce H2O2 by reacting with O2 and H+ ions due to more positive 

reduction potential of O2/H2O2 (0.695 eV vs NHE). Furthermore, the highly oxidizing species, 

*OH radicals were produced by degradation of H2O2 molecules in the presence of light energy 

and photoinduced electrons [22, 26]. These *OH radicals results in the mineralization of 

pollutants (MB/CZ) into CO2 and H2O. In contrast, the photoinduced h+ from VB of GQD also 

degraded pollutants directly as they cannot produce *OH from OH- and H2O due to more 

positive reduction potential of OH-/*OH (2.38 eV vs NHE) and H2O/*OH. The entire 

photocatalytic reaction mechanism can be proposed as follows: 
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ZnO-GQD + h (sunlight) → ZnO-GQD (h+ VB + e- CB) 

GQD (e- CB) → ZnO (e- CB) 

ZnO (h+ VB) → GQD (h+ VB) 

ZnO (e- CB) + H+ + O2 → H2O2 

H2O2 + e- + h → *OH + OH- 

*OH + h+ + pollutants → Degradation products 

Therefore, it can be inferred that the formation of *OH and h+ as active species over 

photocatalyst surface oxidizes the organic pollutants and results in enhanced photocatalytic 

performance. Moreover, better solar spectrum utilization from UV to visible region, fast charge 

transfer across heterojunction and high specific surface area of GQD contributes towards high 

photocatalytic activity by harvesting solar energy. Furthermore, Table 1 shows the superior 

photocatalytic activity of our ZnO-GQD heterojunction as compared to similar materials based 

on ZnO and GQD. 

 

Scheme 1. Schematic illustration of energy band diagram and a proposed mechanism of the 

charge carrier transitions in ZnO-GQD heterojunction towards photocatalytic pollutant 

degradation under natural sunlight irradiation.  
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Table 1. Comparison of photocatalytic activities of ZnO and GQD based nanocomposites for 

degradation of various pollutants. 

Sl. 

No. 

Photocatalyst Synthesis Route  Irradiation 

Source 

 

Pollutant and 

Concentration 

Tcompletion  Ref. 

1 GQD  Pyrolyzing citric acid 

method 

visible light NF (20 mg L−1)  110 min [49] 

2 GQD-TiO2 Molecular fusion and 

hydrothermal 

350 W Xe lamp  MO (10 mg L-1) 120 min [36] 

3 GQD-TiO2 NTA Impregnation method UV light (6 W) MB (20 mM)  180 min [54] 

4 ZnO-CQD Hydrothermal xenon arc lamp Rh B (5 × 10−6 M) 105 min [55] 

5 ZnO-GR Solvothermal halogen lamp MB (20 mg L-1) 90 min [56] 

6 ZnO-GO Chemical route xenon arc lamp Cv 80 min [57] 

7 ZnO-RGO Microwave assisted 500 W Hg lamp MB (5 mg L-1) 260 min [58] 

8 GQD-ZnO Hydrothermal Sunlight MB (1.0 X 10-5 M) 

 

70 min This 

work 

GQD-graphene quantum dots; NF- new fuchsin; NTA- nanotube arrays; MO-methyl orange; MB-

methylene blue; CQD-carbon quantum dots; Rh B- rhodamine b; Cv- crystal violet; GR-

graphene; GO-graphene oxide; RGO-reduced graphene oxide. 

 

3.7. Reusability of the photocatalyst 

The reusability of best catalyst (ZGQD2) was investigated for four recycles of photocatalytic 

degradation of CZ and the corresponding results are presented in Figure 12(a). After each 

catalytic recycle, the catalyst was recovered by centrifugation, washed with deionized water to 

remove residual CZ content and finally dried before using for next cycle. All recycling 

experiments were carried out under same experimental conditions as that of first cycle. It can 

be seen clearly from Figure 12 (a) that no significant loss in the photocatalytic activity was 

observed even after 4 recycles and still the removal rate of CZ was 91%. This small loss of 

photocatalytic activity (from 95% to 91%) after four recycles could be attributed to the loss of 

photocatalyst during each recovery process. Hence, these results demonstrate ZGQD2 

heterojunction as a stable photocatalyst for the removal of organic pollutants from water.  

Moreover, the recycled ZGQD2 heterojunction was characterized by XRD to confirm its crystal 
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structure and the obtained patterns are depicted in Figure 12 (b) alongside with the 

heterojunction before the photocatalysis process. All the characteristic diffraction peaks of 

ZGQD2 heterojunction have been retained in the recycled catalyst, which confirms its excellent 

photostability.  

 

Figure 12. (a) Recyclability of ZGQD2 heterojunction for photocatalytic degradation of CZ and 

(b) XRD patterns of ZGQD2 heterojunction before and after photocatalytic reaction. 

 

 4. Conclusions 

In this detailed study, we have designed and developed GQD loaded ZnO NR heterojunctions by 

using a facile hydrothermal synthesis method and demonstrated them as effective 

photocatalysts for removal of organic pollutants (MB and CZ) in water using sunlight. TEM 

images showed the uniform decoration of GQD over ZnO NR to form heterojunction with 

intimate interfacial contacts. Moreover, XPS and UV-visible DRS studies indicate the strong 

interactions between ZnO and GQD, and the extended light absorption of heterojunction 

towards visible region, beyond the fundamental absorption of ZnO. Upon sunlight irradiation, 

ZnO-GQD heterojunctions exhibit remarkably enhanced photocatalytic activity for degradation 

of colored (MB) and colorless (CZ) pollutants as compared to bare ZnO and GQD. 

Heterojunction with 2wt% of GQD showed the highest photocatalytic activity, which was eight 

times higher than bare ZnO. The superior photocatalytic performance of ZnO-GQD 

heterojunctions could be attributed to the enhanced solar spectrum utilization, effective 

separation of photoinduced electron-hole pairs across the ZnO-GQD interface, facilitated 
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electrons transfer and high specific surface area with abundant reaction sites. Active species 

trapping experiments reveals the generation of *OH and h+ during photocatalytic reaction, 

which are responsible for the degradation of the organic pollutants. Hence, present study 

provides new insights into development of GQD and semiconductors based heterojunctions as 

efficient photocatalysts for water purification. 
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Research highlights 

* Heterojunctions with ZnO nanorods decorated with GQD were prepared by facile 

hydrothermal method 

* ZnO with 2wt% of GQD exhibits highest photocatalytic activity for removal of pollutants 

* Enhanced light absorption and efficient separation of photoinduced charge carriers boosts 

the photoactivity 

* Plausible mechanism for superior photocatalytic activity has been proposed based on the 

investigations 
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