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ABSTRACT

The aims of this thesis were to: (i) increase understanding of the biomechanical and 
motor control processes that underpin proficient fast bowling performance using 
dynamical systems theory and ‘complex’ analyses; and (ii) demonstrate the application 
of dynamical systems theory and the utility of ‘complex’ analyses to performance- 
oriented sports biomechanics research using cricket fast bowling as a representative task 
vehicle.

Prior to analysing within- and between-bowler differences in coordination 
patterns at different levels of analysis and their relationship to ball release speed, the 
suitability of manual coordinate digitising for analysing intra- and inter-individual 
variability was examined. Both the reliability of time-discrete and time-continuous 
kinematic variables was considered. Of the 33 time-discrete kinematic variables 
examined, 31 exhibited between-participant variances and re-digitisation variances that 
accounted for the largest and smallest portions of total variance, respectively. 
Furthermore, re-digitisation variance accounted for less than 5% of total variance in 29 
of these variables with 15 of these exhibiting less than 1%. For the 45 time-continuous 
kinematic variables, measurement error accounted for 17.2% of movement variability 
(range 4.3-41.0%). When considered together, these results indicated that manual 
coordinate digitising was sufficiently sensitive to reliably measure differences in 
technique within and between bowlers.

Kohonen Self-Organising Maps (SOMs) were used to analyse coordination 
patterns in cricket fast bowling at a global whole-body level of analysis. Qualitative 
differences in SOM trajectories between bowlers signified participant-specific 
coordination patterns, which were attributed to differences in organismic constraints and 
intrinsic dynamics. A theoretical argument against the common optimal movement 
pattern concept was constructed and the utility of SOMs was evaluated. Several issues 
currently limiting their practical application, including the difficulty in linking the SOM 
trajectory to aspects of technique and the inability of biomechanists to identify optimal 
sports techniques, were highlighted.

A combination of ‘complex’ analytical techniques was then applied to quantify 
intersegmental coordination among key limb and torso segments. Cross-correlation 
functions showed that moderate (0.5+) to very strong (0.9+) coupling relationships 
existed for the four segment couplings (NBA vs. FL, BA vs. NBA, BA vs. FL, UT vs.
P) with the majority of these moving in synchrony. Statistically significant mean 
differences in both cross-correlation coefficients and average coupling angle for the four 
segment couplings throughout (0-100%), and during different phases (0-24%, 25-49%, 
50-74%, 75-99%) of, the delivery stride provided further evidence of participant- 
specific coordination patterns. However, no associations between coupling relationships 
and ball release speed could be identified either within or between bowlers. This study 
further highlighted the difficulties in making associations between technique and 
outcomes.

It was concluded that, based on the reported research findings, dynamical 
systems theory and its associated ‘complex’ analyses could make a substantive 
contribution to the enhancement of knowledge of cricket fast bowling techniques and 
also advance applied sports biomechanics research more generally. Further 
investigations into cricket fast bowling performance, focusing on the link between 
technique and outcomes using a combination of kinetic, energetic and coordination 
analyses, were identified as a research priority.
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Chapter I 

Introduction



1.0 Historical Background

Sport and exercise science is often considered to be a relatively new field of study. 

Indeed, higher education institutions around the world have only been offering 

undergraduate degrees in this discipline since the 1960s. In reality, however, scholarly 

investigations into sport and exercise have been going on for at least the last 2,500 

years. It could be argued that two of the first sport and exercise scientists were 

Hippocrates (c. 460-370 b .c .) and Galen (c. a .d . 129-216). The former was interested in 

the prophylactic and therapeutic benefits of exercise and was involved in the training of 

athletes who competed in the ancient Olympic Games, and the latter, who is regarded by 

some (e.g., Snook, 1978) as the father of the related field of sports medicine, was 

appointed by Emperor Marcus Aurelius to provide surgical and medical support to the 

gladiators and assist with the planning of nutritional and training programmes (Porter, 

1999).

Although the methods and technologies used in the delivery of sport science 

support to professional athletes are obviously far more advanced these days, the 

composition and structure of contemporary sport science support is, in many ways, 

similar to that provided during the Hellenic and Roman periods. Now, top athletes and 

professional sports teams in most developed countries around the world have access to 

state-funded elite sports academies and centres of excellence, and are supported by 

multidisciplinary teams of sport scientists who routinely implement strategically- 

designed support programmes to help boost performance and reduce injury risk.

Cricket, in particular, has benefited greatly from this support structure and provision. 

One of the reasons touted for the success of the great Australian teams of the past two 

decades was the creation of the Australian Cricket Academy in 1987, which was 

developed through a joint initiative between the Australian Institute of Sport and the 

Australian Cricket Board. Similarly, the National Performance Centre in the UK, 

formerly the National Cricket Academy, has been identified as one of the reasons 

behind the current success of the England cricket team.

1.1 Focus of this Thesis

The fast bowler is widely regarded to be one of the most important members of a cricket 

team and potentially one of the most influential in determining the outcome of a match. 

However, they have also shown to be at the greatest risk of injury (e.g., Stretch, 2003), 

with their lower back being most susceptible to both traumatic and overuse injury (e.g.,

1



Weatherley, Hardcastle, Foster & Elliott, 1996), forcing them to endure more time away 

from the game than any other category of player (e.g., Orchard, James, Alcott, Carter & 

Farhart, 2002). The realisation of these factors has led to the formation of specialist fast 

bowling academies in various countries around the world (e.g., the MRF Pace 

Foundation in Chennai) to promote and encourage the use of safe and effective fast 

bowling techniques among aspiring young fast bowlers. Most Test-playing nations now 

also employ the services of a full-time fast bowling coach to assist in refining the 

techniques and enhancing tactical awareness of fast bowlers who are being introduced 

to the international game at an increasingly younger age.

Despite the increased interest in fast bowling from a coaching perspective, 

scientific research into this important facet of the game has been much slower to 

develop. Since the pioneering investigations into the biomechanics of fast bowling 

techniques by researchers at the University of Western Australia approximately a 

quarter of a century ago (e.g., Elliott & Foster, 1984; Foster, John, Elliott, Ackland & 

Fitch, 1989; Elliott, Hardcastle, Burnett & Foster, 1992), progress has been limited to a 

relatively small, but steadily increasing, number of studies published in academic 

journals. Many of these investigations have attempted to build upon the research by 

Elliott and colleagues and establish causative associations between bowling technique 

and lower back injuries (e.g., Burnett, Elliott, & Marshall, 1995; Burnett, Barrett, 

Marshall, Elliott & Day, 1998; Portus, Mason, Elliott, Pfitzner & Done, 2004). Indeed, 

recent research has indicated that a combination of contralateral side flexion and 

ipsilateral axial rotation of the lumbar spine, not counter-rotation of the shoulder axis as 

previously thought, is likely to be instrumental in the development of abnormal 

radiological features, such as spondylolysis, spondylolisthesis, pedicle sclerosis and 

intervertebral disc degeneration (e.g., Ranson, Burnett, King, Patel & O’Sullivan, 2008; 

Glazier, 2010b; Stuelcken, Ferdinands, & Sinclair, 2010).

There have been even fewer scientific studies focusing on the factors that 

contribute to proficient fast bowling performance. Although many of the investigations 

published in the literature have provided some useful insights into the biomechanical 

factors that contribute to a high ball release speed and bowling accuracy (e.g., Glazier, 

Paradisis & Cooper, 2000; Portus, Sinclair, Burke, Moore & Farhart, 2000; Loram, 

McKinon, Wormgoor, Rogers, Nowak & Harden, 2005; Salter, Sinclair & Portus, 2007; 

Wormgoor, Harden & McKinon, 2008), it could be argued that they have generally 

failed to make a substantive contribution to the enhancement of knowledge. In many
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respects, these investigations have suffered from the same issues that have plagued 

performance-oriented sports biomechanics research, more generally, for the past three 

decades—that is, they have generally failed to move beyond the descriptive phase to a 

more analytical one, they have typically not made reference to motor control theory, the 

universal principles of biomechanics, or the fundamental laws of physics and biology 

that govern them, and they have tended to be product-driven rather than process-driven 

(e.g., Baumann, 1987; Norman, 1989; Zatsiorsky & Fortney, 1993; Bartlett, 1997). The 

recent emergence of dynamical systems theory in human movement science, however, 

appears to hold much promise, not only in resolving some of the issues inhibiting 

progress in research on fast bowling performance, but for applied sports biomechanics 

research more generally (see Glazier, Davids & Bartlett, 2003; Glazier, Wheat, Pease & 

Bartlett, 2006; Davids & Glazier, 2010). The focus of this thesis is, therefore, on the 

application of dynamical systems theory and its associated ‘complex’1 analyses to 

enhancing knowledge on fast bowling performance and its wider application to 

performance-oriented sports biomechanics research.

1.2 Research Question

Can dynamical systems theory and ‘complex’ analyses be used to help understand the 

biomechanical and motor control processes underpinning proficient fast bowling 

performance?

1.3 Aims and Objectives

This thesis has two aims:

(i) to enhance understanding of the biomechanical and motor control processes that 

underpin proficient fast bowling performance using dynamical systems theory 

and ‘complex’ analyses;

(ii) to demonstrate the application of dynamical systems theory and the utility of 

‘complex’ analyses to performance-oriented sports biomechanics research, more 

generally, using cricket fast bowling as a representative task vehicle.

1 Following Hamill, Haddad and van Emmerik (2006), ‘complex’ is used here to collectively describe 
analytical techniques that enable the interaction of two or more joints or segments to be analysed as 
opposed to ‘simple’ analytical techniques that allow only a single joint or segment to be analysed in 
isolation.
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To successfully meet these aims, the following objectives will be fulfilled:

(i) Provide a detailed theoretical analysis of how dynamical systems theory can be 

applied to integrate the sub-disciplines of biomechanics and motor control, and 

enhance performance-oriented sport biomechanics research

(ii) Establish whether manual coordinate digitising can reliably measure differences 

in time-discrete and time-continuous measurements both within and between 

bowlers.

(iii) Use Kohonen Self-Organisation Maps (SOMs) to measure differences in 

coordination between bowlers at a whole-body, global level of analysis and 

establish whether a ‘common optimal movement pattern’ exists

(iv) Apply various ‘complex’ analyses (i.e., cross-correlation and vector coding) in a 

multiple single-participant design to analyse intersegmental coordination of 

upper and lower extremity during delivery and establish any relationships with 

ball release speed.

1.4 Structure of this Thesis

The remainder of this thesis is comprised of the following chapters:

Chapter II critically reviews and summarises the main empirical studies 

published on fast bowling performance, specifically ball release speed. Key findings 

from these investigations, along with any inherent limitations, are highlighted. It is 

concluded that, for substantive progress to be made in understanding the processes of 

coordination and control underpinning proficient fast bowling performance, the 

reductionist, nomothetic (inter-individual), product-oriented approach typically used in 

sports biomechanics research needs to be superseded by a holistic, idiographic (intra­

individual), process-oriented approach in conjunction with an appropriate theoretical 

framework. Dynamical systems theory is identified as being one such theoretical 

framework that appears to be particularly well-suited to this research endeavour.

Chapter HI provides a theoretical development of the biomechanics-motor 

control nexus. It begins with an overview of key concepts from dynamical systems 

theory, such as self-organisation and constraints, and how they relate to the formation of 

what Turvey (1990, p. 940) described as the “ ... most primitive independently 

governable actuator of movements”—the coordinative structure or functional motor 

synergy. The ramifications for sports biomechanics of conceptualising the human
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movement system as a complex, non-linear neurobiological system (dynamical systems 

perspective) rather than a deterministic, information-driven machine finitely controlled 

by a capacity-limited microcomputer acting as the brain (information processing 

perspective) are discussed, specifically the implications for: hypothesis generation 

(Davids & Glazier, 2010); research design (Glazier et al., 2003); experimentation 

(Glazier et al., 2006); inverse dynamics analyses (Glazier & Davids, 2009a); forward 

dynamics analyses (Glazier & Davids, 2009b); the use o f ‘complex’ analyses (Glazier et 

al., 2003; Wheat & Glazier, 2006); and interpretations of movement variability (Glazier 

et al., 2006). To conclude, a case is made for not moving beyond the kinematic level of 

analysis based on the theoretical arguments presented in this chapter.

Chapter IV provides a detailed account of the methods used to acquire and 

condition the kinematic data used in the empirical studies described in Chapters V, VI 

and VII. The characteristics of the study sample, and the experimental protocol, data 

collection, data reconstruction and data processing procedures adopted during, and 

subsequent to, this session are outlined in this chapter. These procedures are justified 

with recourse to existing technical notes and methodological papers published 

previously in the biomechanics literature.

Chapter V assesses the suitability of manual coordinate digitising for analysing 

intra- and inter-individual movement variability. Generally speaking, experimental 

errors and their consequences have not been well-evaluated in applied biomechanical 

research studies. Indeed, Bartlett, Stockill, Elliott and Burnett (1996) argued that future 

kinematic studies of fast bowling techniques need to evaluate experimental errors much 

more rigorously than in previous investigations. Recently, there has been some 

conjecture in the literature about the suitability of manual coordinate digitising for 

analysing movement variability (see Bartlett, Bussey & Flyger, 2006). Given the need 

for sports biomechanists analysing cricket fast bowling techniques to be able to reliably 

measure differences within and between bowlers at specific instances during, and 

throughout the course of, the delivery stride, both the reliability of time-discrete and 

time-continuous kinematic measurements is considered.

Chapter VI examines the application of SOMs to the analysis of cricket fast 

bowling techniques. Although they have been frequently used in biomechanical 

analyses of gait, SOMs have been used only sparingly in kinematic analyses of sports 

techniques and have yet to be applied to cricket fast bowling. In this chapter, differences
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in the topology2 of fast bowling techniques between bowlers are analysed and a 

theoretical argument against the ‘common optimal movement pattern’ or ‘idealised 

motor template’ concept (Brisson & Alain, 1996) is constructed. The origins of these 

topological differences are discussed and the utility and practical application of SOMs 

to performance-oriented sports biomechanics research, more generally, is considered.

Chapter VII examines the relationship between intersegmental coordination and 

ball release speed in cricket fast bowling. Whereas Chapter VI analysed coordination at 

a whole-body global level, this chapter considers coordination at a more local level 

using several different ‘complex’ analytical techniques (i.e., cross-correlation functions 

and vector coding) derived from dynamical systems theory. It has previously been 

suggested that coupling relationships between the bowling arm and the non-bowling 

arm, the non-bowling arm and the front leg, and the bowling arm and the front leg 

might be related to ball release speed (Davis & Blanksby, 1976b; Lillee, 1977; Pont, 

2006), but as of yet, these associations have not been empirically-verified. A multiple 

single-participant research design was adopted to enable coordination strategies that 

were individual-specific and those that were generalisable to the group to be identified.

Chapter VIII summarises the main empirical findings to emerge from Chapters 

V, VI and VII and discusses the practical implications for fast bowling coaching and 

talent identification. The potential contribution of adopting a dynamical systems 

theoretical approach to performance-oriented sports biomechanics research and other 

related areas of sports science, such as the emerging sub-discipline of performance 

analysis (Glazier, 2010a), are also highlighted. To conclude, several recommendations 

for future research are made.

2 Bernstein (1967) used the term ‘topology’ to refer to the “... whole o f qualitative characteristics o f  space 
configurations and of the form of movements in contrast to the quantitative, metric ones” (p. 42).
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Chapter II

Review of the Literature: 
Biomechanics of Fast Bowling Performance



2.0 Introduction

In Chapter I, it was noted that there has been a relative paucity of scientific 

investigations into the factors that underpin proficient fast bowling performance (i.e., 

ball release speed and accuracy) (Bartlett et al, 1996; Bartlett, 2003). Much of the early 

research on fast bowling performance was based on the observation and expert 

evaluation of cine film footage (e.g., Penrose, Foster & Blanksby, 1976; Davis & 

Blanksby, 1976a,b) and descriptive kinematic and force platform analyses (e.g., Elliott 

& Foster, 1984; Elliott, Foster & Gray, 1986; Mason, Weissenteiner & Spence, 1989) of 

successful fast bowlers. Latterly, surface electromyography was used to determine the 

sequential and temporal patterning of muscle activity in collegiate fast-medium bowlers 

(e.g., Burden & Bartlett, 1991). Subsequent empirical studies attempted to establish 

statistical associations among kinematic variables, anthropometric parameters, physical 

capacities and ball release speed (e.g., Burden & Bartlett, 1990a,b; Stockill & Bartlett, 

1992a; Glazier et al, 2000; Portus et al, 2004; Loram et al, 2005; Salter et al, 2007). 

More recently, inverse dynamics analyses (e.g., Ferdinands, Marshall, Round & 

Broughan, 2003; Ferdinands & Marshall, 2004) and forward dynamics simulations (e.g., 

Ferdinands, Broughan & Round, 2002) have been used to examine forces and torques 

that contribute to the generation of ball release speed.

There have been far fewer studies that have focused on bowling accuracy. 

Devlin, Fraser, Barras and Hawley (2001) reported that moderate exercise-induced 

hypohydration impaired bowling accuracy but not ball release speed in sub-elite 

standard fast-medium cricket bowlers. Taliep, Gray, St Clair Gibson, Calder, Lambert 

and Noakes (2003) found that there was no change in bowling accuracy over the course 

of a 12-over bowling spell but there was a decrease in ball release speed, particularly 

after the 6th over. Petersen, Wilson and Hopkins (2004) showed that training with 

overweight and underweight cricket balls over a 10-week period decreased bowling 

accuracy but only slightly increased ball release speed. Duffield, Carney and Karppinen 

(2009) indicated no decrease in ball release speed or bowling accuracy during two 6- 

over bowling spells interspersed by a 45-minute period of light physical activity. 

Phillips, Portus, Davids and Renshaw (2012) revealed that national and emerging fast 

bowlers were better able to bowl to different targets, with greater consistency, and at 

greater speeds than junior fast bowlers. None of these studies, however, analysed the 

movement dynamics responsible for producing these outcomes or how different task 

(e.g., different weighted balls) and organismic constraints (e.g., fatigue) might have
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influenced those movement dynamics. To date, only one biomechanical study by Portus 

et a l  (2000) has attempted to link bowling accuracy and technique but, as discussed 

below, this investigation was not without limitation.

In the following sections, key empirical studies examining the biomechanical 

factors associated with a high ball release speed (section 2.1) and bowling accuracy 

(section 2.2) are reviewed and the key findings to emerge from these investigations are 

highlighted along with any deficiencies in the methods used.

2.1 Biomechanical Factors Associated with Ball Release Speed

In the first documented account of fast bowling to appear in a scientific journal, Penrose 

et a l (1976) used high-speed cinematography to calculate and compare ball release 

speeds among international fast bowlers in the test match between Australia and the 

West Indies at the W.A.C.A. Ground, Perth on 12-16 December, 1975. It was reported 

that Jeff Thomson, Andy Roberts, Michael Holding, Dennis Lillee, Keith Boyce and 

Gary Gilmore released the ball at 44.3 m.s'1, 41.6 m.s'1, 41.0 m.s"1, 38.4 m.s"1, 37.9 m.s"1 

and 37.0 m.s’1 respectively, and that the ball tended to decelerate 15.5 percent by the 

time it reached the batsman at the opposite end of the pitch. Penrose et a l (1976) also 

noted marked differences in the run-up speeds and technique styles of the world-class 

express fast bowlers in the sample. Thomson’s approach run peaked at 5.0 m.s*1, which 

was considerably slower than Lillee, Roberts and Holding, who peaked at 9.3 m.s"1, 8.0 

m.s'1 and 7.8 m .s'1, respectively. Thomson’s slower run-up speed enabled him to adopt 

a more side-on position at back foot impact with more backward body lean than the 

other three bowlers. Thomson then pivoted over a straight front leg, as did Holding, 

enabling them both to release the ball from a greater height than Lillee and, more 

noticeably, Roberts who tended to collapse their front knees during delivery. Given the 

apparent performance benefits afforded by Thomson’s javelin-style technique, Penrose 

et a l (1976) conjectured whether his idiosyncratic style might become ‘the’ fast 

bowling action of the future or whether it would remain unique to him.

Davis and Blanksby (1976a) tested 17 proficient bowlers from cricket clubs in 

Western Australia with the aim of establishing the respective contribution of different 

body segments to ball release speed. Each bowler was asked to deliver the ball under 

five experimental conditions: (i) from a standing position with their weight initially on 

their back foot before transferring laterally to their front foot; (ii) from the same 

standing position but with a restraint on the wrist of the bowling hand to prevent wrist



flexion and extension; (iii) from an upright position with a restraint on the legs and hips 

to prevent hip rotation and extension and leg action; (iv) from the same upright position 

but with an additional restraint on the chest to prevent all movement except for arm 

action; and (v), normally without restraint from a full run-up. A high-speed cine camera 

operating at 100 Hz was used to calculate ball release speeds for the different 

conditions. Davis and Blanksby (1976a) calculated the run-up to contribute 19% to the 

release speed, leg action and hip rotation 23%, trunk flexion and shoulder girdle rotation 

11%, arm action 42% and hand flexion 5%. These findings, however, need to be treated 

with caution since the joint immobilization or restraint paradigm adopted presupposes 

that the restriction of one or more joints will not alter the coordinated action of the 

unaffected body segments, which is, at best, a tenuous assumption (Miller, 1980).

In a follow-up study, Davis and Blanksby (1976b) compared the bowling 

techniques of the six fastest bowlers (fast group) with the six slowest bowlers (slow 

group) from the sample of 17 that featured in their previous study. They reported only a 

marginal difference between the two groups in the length and angle of the run-up with 

the fast group having a run-up some two metres longer than the slow group. Both 

groups decelerated sharply during the final stride of the run-up, thus facilitating a 

change of body orientation to a more side-on position during the pre-delivery stride. 

However, the fast group were found to be more side-on at back foot impact and the four 

fastest bowlers all looked over the lateral aspect of their front arm whereas the three 

slowest bowlers looked inside the medial aspect. During the delivery stride, the fast 

group tended to adduct their front more abruptly and further in towards their ribs than 

the slow group. In contrast, the slow group brought their front foot down faster than 

those in the fast group. The front leg in the fast group was found to be 15% straighter at 

the point of delivery than in the slow group and wrist flexion was far greater and 

occurred closer to the instant of release in the fast group. There was no difference 

between groups for the range of trunk motion in the sagittal plane between back foot 

impact and ball release. However, the range of motion of the shoulder axis between 

back foot impact and ball release in the transverse plane was greater in the fast group. 

Finally, the alignment of the delivery stride was similar between groups with 67% of all 

bowlers directing their front foot towards the target.

Elliott and Foster (1984) provided the first full biomechanical analysis of the 

fast bowling action. The aim of this investigation was to compare the kinematics and 

kinetics of side-on and front-on fast bowling techniques (see Figure 2.1). The study
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sample consisted of four Australian international fast bowlers: Jeff Thomson, Terry 

Alderman, Geoff Lawson and Ian Callen. Each bowler was required to bowl three 

maximum effort deliveries with their normal action, three maximum effort deliveries 

using a more side-on action and three maximum effort deliveries using a front-on 

action. Two high-speed cine cameras were situated laterally (200 Hz) and overhead 

(100 Hz) to film each delivery for subsequent digitisation and a force platform was 

situated at the location of front foot impact to collect ground reaction force data. A 

simple linear scaling procedure was used to generate two-dimensional displacement 

data for joint centres in the link segment system. These data were then smoothed and 

differentiated to obtain velocity and acceleration data. As Alderman was the only 

bowler capable of altering his bowling action, only the kinematics and kinetics of his 

side-on and front-on techniques and the normal techniques of the other bowlers were 

reported. This study showed that run-up speeds of bowlers using a side-on action were 

less than those using a front-on action (3.9 m.s'1 vs. 4.5 m .s'1). Interestingly, these data 

are substantially lower than those reported by Penrose et al. (1976) for other 

international fast bowlers indicating methodological problems in that study. Also, the 

peak vertical velocity of the elbow of the non-bowling arm in bowlers using a side-on 

action was greater than in those using a front-on action (-3.2 m.s'1 vs. -2.4 m .s'1). This 

study did not produce any evidence to suggest that the side-on action is superior to the 

front-on action in terms of having the potential to generate greater ball release speed. 

However, it was concluded that the side-on action might be a more effective method of 

generating a high ball release speed as side-on bowlers can run-up slower, make better 

use of their non-bowling arm, and can more precisely time hip and shoulder rotations, 

resulting in a more effective summation of body forces while minimising stress imposed 

on body segments and joints.

Elliott et al. (1986) used an identical experimental setup to collect kinematic and 

kinetic data from 15 Western Australia first-grade or international fast-medium (30.6 ±

2.0 m.s'1) bowlers. This investigation showed that the bowlers analysed tended to adopt 

an open shoulder alignment at back foot impact (231.8 ± 17.6°), which the authors 

suggested might have restricted the maximum ball release speed because the effective 

ranges of hip and shoulder rotations are reduced with this type of bowling action. 

Similar to Davis and Blanksby (1976a), Elliott et al. (1986) also attempted to quantify 

the contributions of different body segments to ball release speed. However, instead of 

attempting to immobilise limb and torso segments with restraints, Elliott et al. (1986)
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simply calculated the difference between peak resultant velocities of adjacent joint 

centres in the link segment system and expressed this difference as a percentage of the 

ball release speed. They calculated that the run-up and hip action contributed 15% of 

ball release speed, shoulder action 13%, arm action 50%, and hand and finger action 

22%. These results contrast markedly to those reported by Davis and Blanksby (1976b). 

For example, the run-up and hip action combined in that study contributed 42% of ball 

release speed, 27% more than calculated by Elliott et a l (1986). Furthermore, Davis and 

Blanksby (1976a) calculated the total arm action contributed 47% of ball release speed, 

whereas Elliott et a l (1986) calculated it to contribute 72% of ball release speed. The 

reason for these discrepancies in percentage contributions is unclear although it is likely 

to be an artefact of the method of calculation.

A further descriptive biomechanical study was undertaken by Mason et al.

(1989) to develop an ‘optimal’ model of the bowling technique (i.e., one that maximises 

ball release speed but minimises the likelihood of injury), which was to be used as a 

basis for teaching young fast bowlers. Fifteen fast-medium bowlers (x = 32.4 m .s'1) 

from the Australian Institute of Sport Cricket Academy were filmed from the front and 

side using two phase-locked high-speed (100 Hz) cine cameras. A force platform 

measured ground reaction forces at front foot impact, a series of light gates positioned 

four metres apart down the length of the bowler’s run-up was used to determine 

horizontal speed during different intervals of the run-up and a radar gun was used to 

measure ball release speed. The trial performed by each bowler yielding the highest 

release speed was selected for analysis. The results of this study indicated that 14 of the 

bowlers analysed adopted side-on actions and only one bowler adopted a front-on 

action. Although the exact classification criteria were not disclosed, this finding seemed 

to contradict the previously reported results of Elliott et a l (1986) indicating that fast 

bowling techniques were increasingly becoming more front-on. The mean run-up speed 

during the 16-12 metre, 12-8 metre, 8-4 metre and 4-0 metre intervals before the 

popping crease was 6.1 m .s'1, 6.1 m.s'1, 5.7 m.s'1 and 5.6 m .s'1, respectively, indicating 

a slight decrease in speed as bowlers prepared to deliver the ball. Mason et a l  (1989) 

emphasised several technical characteristics (angles, orientations and rotations of joints 

and body segments) at arbitrary instances during the delivery stride (initiation of hip 

rotation, front foot impact, peak ground reaction force and ball release) that they 

thought were important in proficient fast bowling but did not elaborate on how these 

related to ball release speed. In fact, hardly any kinematic data about specific elements
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of the bowling action were reported with the authors relying almost exclusively on 

subjective evaluation of stick-figure animations as the basis for their analysis.

In the first of a series of papers to emerge from the National Cricket Association 

Sport Science Support Programme ‘Fast Bowling Project’, Burden and Bartlett (1990a) 

reported the results of a kinematic investigation of 17 international and county fast (>

36 m.s'1) and fast-medium (< 36 m.s'1) bowlers, including Patrick Patterson, Graham 

Dilley and Ian Botham. A high-speed cine camera, operating at 200 Hz and situated 

laterally on the boundary edge along the line of the popping crease, was used to record 6 

deliveries from each bowler during 6 county championship matches of the 1989 season. 

The fastest delivery bowled by each of the bowlers was selected for two-dimensional 

kinematic analysis. This study reported a low correlation between run-up speed and ball 

release speed (r = 0.21, P > 0.05), although, curiously, run-up speed appeared to be 

measured at the point of ball release, not at back foot impact as is customary, which is 

likely to account for some of the unusually low run-up speeds reported. A moderate 

correlation (r = 0.41, P > 0.05) was also shown to exist between front knee angle at ball 

release and ball release speed, although those bowlers who flexed their front knee 

between front foot impact and ball release were shown to have a lower ball release 

speed. This study was notable because it was the first to attempt to establish formal 

associations between aspects of technique and ball release speed via the application of 

inferential statistical analyses. It was also the first scientific study on fast bowling to 

move beyond description and make explicit reference to key underpinning 

biomechanical principles (i.e., the kinematic chain).

In a follow-up study, Burden and Bartlett (1990b) compared the kinematics of 

nine collegiate fast-medium bowlers with the kinematics of the seven elite fast bowlers 

who featured in their previous study. The results of this study indicated that the faster 

ball release speeds of elite fast bowlers compared with those of the collegiate fast- 

medium bowlers (37.0 ±1 .0  m.s'1 vs. 28.2 ±1.1 m.s'1) could be attributed to the slightly 

higher run-up speeds of the former than the latter (5.5 ± 0.5 m.s'1 vs. 4.8 ± 0.7 m .s'1) 

and the progressively greater differences in peak linear speed of joint centres 

comprising the kinematic chain (hip: 6.1 ± 0.5 m.s'1 vs. 5.4 ± 0.8 m.s'1; shoulder: 9.6 ± 

0.6 m.s'1 vs. 8.1 ± 0.4 m.s'1; wrist: 24.5 ± 0.8 m.s'1 vs. 20.9 ±1 .0  m .s'1; middle knuckle:

27.3 ± 0.8 m.s'1 vs. 23.4 ±1.2  m.s’1). The higher angular velocity of the bowling arm in 

the elite fast bowlers compared with those of the collegiate fast-medium bowlers (29.7 

rad.s'1 vs. 26.6 rad.s"1) was suggested to be primarily responsible for the greater increase
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in peak linear speed of the wrist joint compared to the shoulder joint in the elite group 

compared to the collegiate group. A rapid flexion of the fingers closer to the moment of 

ball release was also hypothesised to account for the greater increase in peak linear 

speed of the ball release speed compared to the middle knuckle in the elite group 

compared to the collegiate group. Perhaps the most distinct difference between the two 

groups was the action of the front knee. The elite fast bowlers hardly flexed their front 

leg during the phase between front foot impact and ball release, whereas the front knee 

of the collegiate fast-medium bowlers underwent a period of flexion and generally 

failed to extend again before ball release.

Building on the project’s earlier two-dimensional studies, Stockill and Bartlett 

(1992a) performed the first three-dimensional kinematic analysis of fast bowling 

techniques. The participants in this study were 17 first-class and international fast (> 

35.8 m.s'1) and fast-medium (< 35.8 m .s'1) bowlers, including Curtly Ambrose, Allan 

Donald and Waqar Younis. Two high-speed cine cameras operating at 200 Hz situated 

laterally and behind the bowler were used to collect film footage of deliveries bowled 

during test matches, county championship fixtures and net sessions of the 1991 season. 

The footage was subsequently digitised and reconstructed using a direct linear 

transformation algorithm to convert two-dimensional image-coordinates to three- 

dimensional object-space coordinates. Although the results of this study tended to focus 

on alignments of the back foot, hip axis and shoulder axis at key instances during 

delivery with less emphasis on the biomechanical factors related to ball release speed, 

Stockill and Bartlett (1992a) reported a positive correlation (r = 0.55, P < 0.05) between 

run-up speed and ball release speed. However, as the unusually high average run-up 

speed (6.8 ±1.7 m.s'1) might be attributable to extrapolation errors associated with 

reconstruction points lying beyond of the calibration volume, the authors advised 

caution when interpreting these results. In another write-up of this study that appeared 

in the ‘Cricket Coach’, the journal of the Association of Cricket Coaches, Stockill and 

Bartlett (1992b) noted the degree of front knee flexion at ball release was inversely 

related to ball release speed. Although no data were provided, it was reported that faster 

bowlers tended to have a more extended or, in some cases, hyperextended front knees at 

ball release.

In a follow-up study, Stockill and Bartlett (1994) compared the kinematic and 

temporal characteristics of junior and senior fast bowling actions to establish the most 

important technique parameters associated with producing a high ball release speed.
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Two phase-locked cine cameras operating at 100 Hz, and two gen-locked video cameras 

operating at 50 Hz, were used to capture movement sequences for 12 fast senior 

international bowlers and 12 fast-medium junior international bowlers, respectively.

The footage was subsequently digitised and reconstructed using a direct linear 

transformation algorithm to convert two-dimensional image-coordinates to three- 

dimensional object-space coordinates. The results of this study showed that the ball 

release speeds of senior international fast bowlers were greater than junior international 

fast bowlers (38.1 ±1 .4  m .s'1 vs. 32.1 ±1 .9  m .s'1) as were the peak linear speeds of the 

right hip, seventh cervical vertebra, right shoulder, right wrist and right middle knuckle. 

Furthermore, the timings of these peak linear speeds occurred closer to ball release for 

seniors than the juniors. However, when these timings were expressed as a percentage 

of delivery stride duration, these temporal differences disappeared. Stockill and Bartlett 

(1994) concluded that differences in ball release speed might be attributable to higher 

run-up speeds, slightly higher angular velocities for the trunk and bowling arm and 

greater upper limb lengths, as it was argued that the longer bowling arm lengths of the 

seniors will produce higher ball speeds for a given angular velocity.

To investigate the influence of kinematic and anthropometric variables on ball 

release speed, Glazier et a l  (2000) performed a three-dimensional kinematic analysis on 

nine collegiate fast-medium bowlers (31.5 ± 1.9 m.s'1). Two gen-locked video cameras 

operating at 50 Hz, situated in the same horizontal plane with their optical axes 

orthogonal to one another, were used to film 6 deliveries bowled by each participant. 

The fastest delivery, as measured by a radar gun previously validated by Glazier, 

Paradisis and Cobner (1999), was digitised and subjected to kinematic analysis. 

Anthropometric lengths, including shoulder-elbow, elbow-wrist and hand length, were 

also measured according to the guidelines described by Martin, Carter, Hendy and 

Malina (1988) and Ross and Marfell-Jones (1991). The results of this study showed a 

relationship between run-up speed during the pre-delivery stride and ball release speed 

(r = 0.728, P = 0.026). This finding agrees with those of Stockill and Bartlett (1992a) 

and can be explained by the majority of bowlers analysed used techniques that exhibited 

a front-on body position at back foot impact and, therefore, could transfer linear 

velocity generated during the run-up to ball release more effectively (Elliott & Foster,

1984). Relationships were also found between shoulder-wrist length and ball release 

speed (r = 0.626, P = 0.036) and total arm length and ball release speed (r = 0.583, P = 

0.050), thus concurring with the suggestions of Stockill and Bartlett (1994). Using a 

similar method to Elliott et al. (1986), the relative contribution of the run-up to ball
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release speed was 16%, hip rotation 2%, trunk action 6%, arm action 62%, and hand 

and finger action 14%. These results were broadly similar to Elliott et a l (1986) but 

somewhat different to Davis and Blanksby (1976a). Further evidence of proximal-to- 

distal sequencing was provided by Glazier et a l (2000). However, as only peak linear 

speeds of joint centres in the upper body kinetic chain were reported, the interaction or 

coupling relationships among body segments could not be established.

Portus et a l (2004) examined the bowling actions of 42 high performance male 

fast bowlers at the Australian Institute of Sport between 1996 and 1999 to establish the 

biomechanical factors most related to ball release speed and lower trunk injury. Three- 

dimensional kinematic data were generated by manually coordinate digitising 

movement sequences captured on film at 100 Hz in 1996 and on video at 50 Hz 

between 1997 and 1999. Two force platforms, operating at 1000 Hz and positioned at 

the location of back foot impact and front foot impact, were used to collect 

simultaneous ground reaction force data during every data collection session throughout 

the 4-year period. The results of this study showed relationships between front knee 

extension during the phase between front foot impact and ball release and ball release 

speed (r = 0.37, P = 0.02), peak braking force at front foot impact and ball release speed 

(r = 0.43, P < 0.01), time to peak braking force at front foot impact and ball release 

speed (r = -0.32, P < 0.05), and time to peak vertical force at front foot impact (r = - 

0.65, P < 0.01) and ball release speed. These findings indicate that bowlers who had 

higher braking forces, and developed their peak braking and vertical forces more rapidly 

at front foot impact, presumably through the use of a more extended front leg, recorded 

higher ball release speeds. Also, relationships were found between timing of the 

maximum hip-shoulder separation angle and ball release speed (r = 0.34, P = 0.05) and 

the range of shoulder axis rotation and ball release speed (r = 0.30, P = 0.05). Portus et 

a l (2004) argued that these findings suggested that an optimal sequence of hip and 

shoulder rotations is likely to exist, which would utilise more effectively the elastic 

energy created in the torso musculature through the delaying of shoulder axis rotation, 

ultimately resulting in an increased ball release speed.

Hanley, Lloyd and Bissas (2005) conducted a further three-dimensional 

kinematic analysis of 13 fast bowlers of varying standard (3 international seniors, 6 

first-class seniors and 4 county juniors) to establish relationships between kinematic 

variables and ball release speed. Of the 74 variables analysed, only 5 were shown to be 

related to ball release speed. Most notably, run-up speed (r = 0.592, P < 0.05), trunk
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angular displacement (r = 0.642, P < 0.05) and shoulder angular displacement (r =

0.636, P < 0.05) exhibited medium to large correlations with ball release speed. Owing 

to the large number of independent variables analysed, however, it would appear that 

the “shotgun” approach was adopted in this study. This approach, where the selection of 

independent variables is a largely arbitrary process (Lees, 1992), is typically not 

recommended and should be abandoned in favour of other more rational approaches, 

such as hierarchical or deterministic modelling (Lees, 1999).

Loram et al. (2005) attempted to identify the anthropometric, strength and 

kinematic parameters most related to ball release speed in a group of South African 

schoolboy fast-medium bowlers and then attempted to predict ball release speeds using 

those parameters as predictor variables in a multiple linear regression analysis. Each of 

the 12 bowlers studied were filmed performing 3 deliveries by a high-speed digital 

video camera operating at 250 Hz, which was situated perpendicular to the plane of 

performance. Anthropometric lengths and girths for torso and limb segments were 

measured by a trained anthropometrist and an isokinetic dynamometer set at an angular 

velocity of 1.05 rad.s'1 was used to measure peak concentric knee and shoulder torque 

and the angle at which these peak torques occurred. This study reported positive 

correlations between ball release speed and front knee angle at front foot impact (r = 

0.72, P = 0.009) and ball release speed and front knee angle at ball release (r = 0.71, P =

0.011). In contrast to the suggestions of Stockill and Bartlett (1994) and the findings of 

Glazier et al. (2000), no relationships were found between limb lengths and ball release 

speed. Although no relationship existed between any of the shoulder and knee strength 

parameters and ball release speed, the angle of peak internal and external rotation 

torques of the shoulder were included in the multiple regression model, presumably 

because they were the only other independent variables not to exhibit colinearity, along 

with knee angle at front foot impact and ball release. The adjusted coefficient of 

determination (R2) of 0.85 reported in the regression analysis indicated that 85% of the 

variance in ball release speed could be accounted for by the predictor variables. 

However, caution must be applied when interpreting these results as the response 

variable to predictor variable ratio was only 3:1, which is considerably less than the 

ratio of 20:1 considered to be ideal by Vincent (2005). This oversight is likely to limit 

the generalizability of the regression equation beyond this study.

Salter et al. (2007) conducted a preliminary investigation into the efficacy of 

different research designs when studying fast bowling performance. They compared the
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results of single-participant and group-based analyses of the biomechanical factors most 

related to ball release speed. In the single-participant analysis, 20 deliveries bowled by a 

semi-open (defined as having a shoulder alignment of 210-240° at back foot contact) 

high-performance English academy fast bowler (37.5 ±1 .0  m.s'1) in a competitive 

match were filmed by two synchronised high-speed video cameras operating at 250 Hz 

situated on the boundary edge. The movement sequences were subsequently digitised at 

125 Hz and reconstructed using a direct linear transformation algorithm. In the group- 

based analysis, 20 semi-open high performance Australian academy fast bowlers (34.2 

±1.6 m.s'1) each bowled a single delivery, which was captured by an 8-camera Vicon 

system and reconstructed for subsequent analysis. A selection of kinematic performance 

parameters reported previously in the scientific and coaching literatures formed the 

basis of this analysis. The results of this study showed no relationships between any of 

the selected performance parameters and ball release speed in the group-based analysis, 

but relationships were found between 8 of the 11 performance parameters and ball 

release speed in the single-participant analysis. Four of these performance parameters 

(centre of mass velocity at back foot impact, maximum angular velocity of the bowling 

arm, vertical velocity of the non-bowling arm and stride length) were then entered into a 

multiple regression model to predict ball release speed. It was shown that 87.5% of the 

variation in ball release speed could be attributed to changes in these predictor variables. 

The stepwise introduction of independent variables into the multiple regression analysis 

also showed how previously high correlation coefficients between independent 

variables and ball release speed can be misleading, especially if colinearity exists 

among the independent variables. This finding provides further evidence that the 

“shotgun” approach adopted by Hanley et al. (2005) is ill-advised and that greater 

diligence and sound rationale needs to be applied when selecting independent variables.

In the most recent biomechanical investigation of fast bowling performance, 

Wormgoor et al. (2008) analysed 28 premier club fast-medium bowlers (34.0 ±1.3  

m.s'1) from South Africa to identify the kinanthropometric, strength, and technique 

parameters most related to ball release speed. Each participant bowled six deliveries that 

were captured using six digital video camcorders operating at 50 Hz and the fastest 

delivery, as measured by a radar gun, was digitised and reconstructed using a three- 

dimensional direct linear transformation algorithm. In contrast to Stockill and Bartlett 

(1994) and Glazier et al. (2000), but in agreement with Loram et al. (2005), no 

relationship between limb lengths and ball release speed was found in this study. 

However, positive correlations were reported between the relative shoulder extension
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strength and ball release speed (r = 0.392, P = 0.039) when the isokinetic dynamometer 

was set at an angular velocity of 1.05 rad.s'1, relative concentric shoulder intemal- 

rotation strength at a mid-range position of 20° external rotation and ball release speed 

(r = 0.428, P = 0.023), and front knee angle at release and ball release speed (r = 0.517, 

P = 0.013). These results indicate that greater shoulder strength and a straighter front 

leg at ball release may result in higher ball release speeds, respectively. The change of 

knee angle during the phase between front foot impact and ball release exhibited a 

negative correlation with ball release speed (r = -0.466, P = 0.013) as did shoulder 

alignment in the transverse plane at front foot impact and ball release speed (r = -0.466, 

P = 0.013). Wormgoor et al. (2008) reasoned that the adoption of a more side-on 

shoulder alignment at front foot impact enabled bowlers to move their shoulder axis 

through a larger arc leading up to ball release, thereby increasing ball release speed. In 

fact, despite the well-documented injury problems caused by counter-rotation of the 

shoulder axis, this study encouraged the use of mixed bowling techniques where this 

parameter is the distinguishing feature.

2.2 Biomechanical Factors Associated with Bowling Accuracy

As noted earlier in section 2.0, there has been only one empirical study that has 

attempted to link fast bowling technique and bowling accuracy. Portus et al. (2000) 

examined the inter-relationships between selected physical capacities, technique, ball 

release speed and bowling accuracy of 14 first-grade or higher fast-medium bowlers 

(32.1 m.s'1). In this study, each bowler was required to complete an 8-over bowling 

spell under simulated match conditions, of which the sixth ball of overs two, five and 

eight was recorded by two video cameras, one mounted overhead and the other mounted 

laterally, for digitizing purposes. An APAS image-based motion analysis system (Ariel 

Dynamics Inc.) was then used to digitize each of the recorded trials to obtain kinematic 

data describing the alignment of the back foot at back foot impact, the alignment of the 

shoulder axis throughout the delivery stride and the angle of the front knee between 

front foot impact and ball release. To obtain an objective measure of bowling accuracy, 

a cotton sheet marked with three rectangular scoring zones of various dimensions was 

suspended immediately in front of the batsman’s stumps at the other end o f the pitch. 

Each delivery of the 8-over bowling spell was awarded 25, 50, or 100 points depending 

on which scoring zone the ball struck. The number of points awarded to the bowler 

provided an indication of the accuracy of each delivery based on where the ball would
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have passed the stumps with more points being awarded for good length, well-directed 

deliveries. A radar gun was also used to measure the ball release speed of each delivery.

The results of this study revealed substantially more variation in bowling 

accuracy than ball release speed, although the mean bowling accuracy score did not 

change significantly during the 8-over bowling spell. However, Portus et al. (2000) 

reported an increase in the amount of counter-rotation of the shoulder axis for the group 

of fast bowlers between overs 2 and 8 (44 ± 15.8° vs. 48 ± 16.3°; F  = 4.20, P = 0.026). 

When the fast bowlers were grouped according to the type of bowling technique they 

were adopting (1 side-on, 5 front-on and 8 mixed), only the group of front-on fast 

bowlers exhibited an increase in the amount of counter-rotation of the shoulder axis 

during the 8 over bowling spell (30 ± 7.2° vs. 37 ± 8.1°; F  = 10.9, P = 0.006). Pearson’s 

product-moment correlation coefficients indicated an inverse relationship between total 

accuracy scores and the mean counter-rotation of the shoulder axis throughout the 

bowling spell (r = -0.469; P = 0.071). Moreover, an inverse relationship emerged 

between total accuracy scores and the amount of counter-rotation the shoulder axis 

between overs 5 and 8 (r = -0.542, P = 0.045). From these results, one may speculate 

that fast bowlers exhibiting a mixed bowling technique are likely to be less accurate 

than fast bowlers adopting side-on or front-on techniques. However, front-on fast 

bowlers may become less accurate during a prolonged bowling spell because of their 

tendency to increase the amount of counter-rotation of the shoulder axis when fatigued.

Although Portus et al. (2000) provided a useful insight into fast bowling 

accuracy, it failed to contribute significantly to our understanding of the biomechanical 

and motor control processes underpinning bowling accuracy. A major limitation of the 

research design used by Portus et al. (2000) was that only the 6th ball bowled by each 

fast bowler during overs 2, 5 and 8 (i.e. 3 out of 48 deliveries) was selected for 

kinematic analysis. The rationale for using this protocol was based on a similar study by 

Burnett et al. (1995), which examined the effects of a 12-over bowling spell on selected 

physiological and biomechanical variables in a group of nine potentially elite fast 

bowlers. In this study, Burnett et al. (1995) reported no difference between selected 

kinematic variables of the fifth and sixth deliveries bowled by each fast bowler during 

overs one, six, ten and twelve, thus suggesting that the use of a single trial to represent 

technique at each of these intervals during the spell of bowling was acceptable. 

However, considering the amount of variability in the accuracy scores reported by 

Portus et al. (2000), and the assumed causal relationship between technique and
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accuracy score, their results might simply be an artifact of the research design owing to

low statistical power.

2.3 Summary of Key Research Findings

The following general conclusions can be drawn from the research reviewed above on

the biomechanical factors associated with fast bowling performance:

• The ‘optimum’ run-up speed appears to be individual-specific but is typically in

the range of 4.0-6.0 m.s"1. The majority of studies suggest that higher run-up 

speeds produce higher ball release speeds (Burden & Bartlett, 1990b; Stockill &

Bartlett, 1992a; Stockill & Bartlett, 1994; Glazier et al., 2000; Hanley et al., 

2005; Salter et al., 2007).

• There is some evidence to suggest that side-on bowlers have a slower run-up 

than front-on bowlers, which enables them to change orientation better during 

their pre-delivery stride (Penrose et al., 1976; Elliott & Foster, 1984).

• Side-on bowlers tend to rely on hip and shoulder rotation to generate ball release 

speed whereas front on bowlers appear to use more of the linear velocity 

generated during the run-up (Elliott & Foster, 1984).

• There is no evidence to suggest that the side-on action is superior to the front-on

action in terms of generating ball release speed, although a number of studies 

(Davis & Blanksby, 1976b; Elliott et al., 1986; Stockill & Bartlett, 1992a; Portus 

et al., 2004; Hanley et al., 2005; Wormgoor et al., 2008) have shown that a 

greater range of motion of the hip and shoulder axes in the transverse plane 

might be related to the production of greater ball release speeds. This finding 

might explain why some fast bowlers counter-rotate their shoulder axis between 

back foot impact and front foot impact (i.e., so they can move their shoulder axis 

through a larger arch leading up to ball release).

• A straight, or even hyper-extended, front leg at ball release appears to be related

to greater ball release speeds (Davis & Blanksby, 1976b; Burden & Bartlett, 

1990b; Stockill & Bartlett, 1992b; Portus et al., 2004; Loram et al., 2005;

Wormgoor et al., 2008), although there is some conjecture about whether

landing with a straight front leg at front foot impact produces higher ground 

reaction forces and loading rates than a flexed front leg (Elliott & Foster, 1984; 

Elliott et al., 1992; Portus et al., 2004).
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• The ‘optimum’ front leg action is considered to be one that lands extended or 

slightly flexed followed by a phase of flexion to absorb shock and then vigorous 

extension up to release (e.g., Bartlett, 1992; Bartlett etal., 1996). However, 

several studies have shown that bowlers exhibiting flexion of the front knee 

between front foot impact and ball release are likely to have lower ball release 

speeds than those who do not (Burden & Bartlett, 1992a; Wormgoor et al.,

2008).

• The use of the non-bowling arm appears to be more important in side-on bowlers 

where it is used to more effectively summate segmental velocities (Elliott & 

Foster, 1984).

• The action of the bowling arm has consistently shown to be the most significant 

contributor to ball release speed (Burden & Bartlett, 1990a,b; Davis & Blanksby, 

1976b; Elliott et al, 1986; Glazier et al., 2000), which is hardly surprising given 

that linear speed is a product of radial length and angular velocity and that the 

bowling arm represents the longest lever in the upper extremity link segment 

system.

• There is a sequential proximal-to-distal increase in the linear speed of joint 

centres comprising the kinematic chain (Elliott et al., 1986; Burden & Bartlett, 

1990a,b; Glazier et al., 2000). Faster bowlers tend to have higher joint linear 

speeds than slower bowlers (Stockill & Bartlett, 1994) and this difference 

appears to be more marked in more distal joint centres (Burden & Bartlett, 

1990b).

• There is mixed evidence about the role of anthropometric variables on ball 

release speed (Stockill & Bartlett, 1994; Glazier et al., 2000; Loram et al., 2005; 

Wormgoor et al., 2008). From a purely mechanical standpoint, considering that 

the bowling arm is constrained by the laws of cricket to act as a quasi-rigid 

lever, an increase in the radial length would lead to a greater linear velocity of 

the end-point for a given angular velocity. However, because the moment of 

inertia of the lever would increase proportionally, greater torque would need to 

be generated at the shoulder. This suggestion is supported by some evidence 

showing a relationship between various shoulder strength variables and ball 

release speed (Loram et al., 2005; Wormgoor et al., 2008).
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• A mixed action might be less accurate than side-on and front-on actions with

greater shoulder counter-rotation leading to greater inaccuracies (Portus et al., 

2000).

2.4 Limitations of Existing Studies and Opportunities for Further Research

The empirical investigations reviewed in sections 2.1 and 2.2 and summarised in section

2.3 provide some useful insights into the biomechanical factors that contribute to 

proficient fast bowling performance. However, it could be argued that this information 

amounts to little more than what is already known in the coaching literature and serves 

only to reinforce, rather than extend, this body of knowledge. This lack of advancement 

might be attributable, at least in part, to these studies being too descriptive, relying too 

heavily on anecdotal evidence, lacking a sound theoretical rationale, being plagued by 

methodological issues, and generally not showing good use of statistical analysis 

techniques or an awareness of their underlying assumptions. The almost exclusive focus 

on group analyses, where the emphasis has been on the pooling of performance 

parameter data to examine central tendencies and dispersions, has tended to mask 

differences between fast bowlers. The obscuring of individual differences is an 

important issue that requires attention given that individuality of fast bowling 

techniques has become a ‘hot topic’ in the coaching literature recently (e.g., Cooley, 

2003, 2005). Moreover, the emphasis on the quantitative analysis of outcome variables 

(e.g., ball release speed, peak joint speeds, segment angles and alignments) has 

generally precluded insights from being made into the qualitative3 aspects of technique 

(i.e., coordinative movement patterns), which has restricted the application of this 

research in a practical context. Further research is required to understand the causative 

mechanisms and processes producing these outcome measures, but if this aim is to be 

realised the reductionist, nomothetic (inter-individual), product-oriented approach 

habitually used in sports biomechanics needs to be superseded by a more appropriate 

research strategy. The holistic, idiographic (intra-individual), process-oriented approach 

advocated by proponents of dynamical systems theory appears to be particularly well- 

suited to this research endeavour.

3 The term ‘qualitative’ is used here to refer to geometric properties o f movement as disclosed, for 
example, by the application of topological dynamics (see McGinnis & Newell, 1982) not the analysis o f  
human movement via the observation and subjective evaluation of video sequences as is traditionally 
used in biomechanics (see Knudson & Morrison, 2002) and applied to cricket fast bowling, for example, 
by Hurrion and Hamer (2003).
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Chapter III

Theoretical Development of the 
Biomechanics-Motor Control Nexus



3.0 Introduction

In the final section of Chapter n, it was concluded that future empirical research into the 

biomechanics of fast bowling performance requires an alternative approach to those 

used previously if substantive progress is to be made. The holistic, idiographic (intra­

individual), process-oriented approach advocated by dynamical systems theorists was 

identified as having much promise both for enhancing our understanding of the 

biomechanics and motor control of fast bowling performance and performance-oriented 

sports biomechanics research more generally. Although a dynamical systems approach 

has been adopted in biomechanical studies previously, these investigations have 

typically been injury-oriented (e.g., Hamill, van Emmerik, Heiderscheit & Li, 1999; 

Stergiou, Jensen, Bates, Scholten & Tzetzis, 2001) and the wider implications for sports 

biomechanics of conceptualising human movement systems as non-linear dynamical 

systems has seldom received coverage in the literature. Following an introduction of the 

main tenets of dynamical systems theory and their application to human motor control, 

learning and performance, the wider implications for sports biomechanics are discussed 

in some detail in this chapter.

3.1 Movement Systems as Dynamical Systems

Broadly speaking, non-linear dynamical systems are those physical, chemical, 

biological or social systems that exhibit many independent component parts or degrees 

of freedom which are free to vary over space and time. These complex systems are 

typically ‘open’ systems that operate under conditions that are said to be far-from- 

thermodynamic equilibrium—that is, they are capable of interacting with the 

environment and are in a constant state of flux owing to changes in internal and external 

energy flows (e.g., Kugler & Turvey, 1987; Thelen & Smith, 1994; Wallace, 1996). 

Despite the potential for disorder, complex non-equilibrium dynamical systems can 

exploit these energy flows and the surrounding constraints to form orderly and stable 

relationships among the many degrees of freedom at different levels of the system (e.g., 

Kugler, 1986; Kaufmann, 1993; Clark, 1995).

In the human movement system, dynamical systems theorists suggest that 

functional coordinative states, or attractor states in dynamical systems parlance, are not 

an artefact of a motor program, plan, or schema stored in the higher regions of the brain 

as proposed by information-processing theorists, but, rather, they are an emergent 

property of generic processes of physical self-organisation that are ubiquitous in
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physical and biological complex systems and constraints that limit and define the 

operational boundaries of the system (e.g., Newell, 1986; Clark, 1995; Kelso, 1995; 

Thelen, 1995). At the level of muscular-articular links, the number of biomechanical 

degrees of freedom to be regulated can effectively be reduced by the spontaneous 

formation of functional muscle synergies (Bernstein, 1967; Gelfand, Gurfinkel, Tsetlin 

& Shik, 1971) or coordinative structures (Greene, 1972; Turvey, 1977). Tuller, Turvey 

and Fitch (1982) defined a coordinative structure as “ ...a  group of muscles often 

spanning several joints that is constrained to act as a single functional unit” (p. 253) 

with sets of coordinative structures being functionally, rather than mechanically, 

combined to provide action sequences. A characteristic of a coordinative structure is 

that, if one of the component parts introduces an error into the common output, the other 

component parts automatically make compensatory adjustments to minimise the effect 

of the original error (Turvey, 1990; Latash, Scholz & Schoner, 2002). Furthermore, the 

‘soft assembly’ of coordinative structures affords great flexibility and adaptability as 

individual muscles can participate in different coordinative structures on different 

occasions (Kugler & Turvey, 1987; Kay, 1988). These task-specific structural units can 

be modulated or tuned by perceptual information to accommodate sudden, unforeseen 

changes in task demands (Fitch, Tuller & Turvey, 1982; Bingham, 1988).

As noted above, the formation of coordinative structures is dependent not only 

on processes of self-organisation but also the constraints imposed on specific movement 

systems. The constraints concept has a rich tradition in theoretical physics, evolutionary 

and theoretical biology, and mathematics. Broadly, constraints are internal or external 

boundaries, limitations or design features that restrict the number of possible 

configurations that complex systems can adopt (Sparrow & Newell, 1998). In their 

founding paper, Kugler, Kelso and Turvey (1980) underscored the importance of 

constraints in emergent, rather than prescriptive, explanations of human movement by 

stating that: “... the order in biological and physiological processes is primarily owing to 

dynamics and that the constraints that arise, both anatomical and functional, serve only 

to channel and guide dynamics; it is not that actions are caused by constraints it is, 

rather, that some actions are excluded by them” (p. 9). Newell (1986) extended this 

initial theorising and outlined a theoretical model in which three categories of 

constraint—organismic, environment and task—coalesce to channel and guide emergent 

patterns of coordination4 and control5 produced by the movement system (see Figure

4 Coordination is the relationship between either the movements of limb segments of the same limb (intra­
limb coordination) or the relationship between the movements of different limbs (inter-limb
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3.1). It is important to note, however, that these categories of constraint identify the 

source, rather than the actual nature, of the constraint (Newell, van Emmerik & 

McDonald, 1989).

Task

Coordination
&

Control

Environment Organism

Figure 3.1. Newell’s theoretical model of interacting constraints (reproduced from 
Newell, 1986).

Newell (1986) considered organismic constraints to be those constraints that are 

internal to individual movement systems. Organismic constraints can be subdivided into 

structural and functional constraints. Structural organismic constraints tend to be 

physical constraints that remain relatively constant over time and include: stature, body 

mass and composition; genetic make-up; anthropometric and inertial characteristics of 

the torso and limbs; the number of mechanical degrees of freedom and ranges of motion 

of articulating structures; fast- and slow-twitch fibre composition; angle of pennation, 

cross-sectional area, activation and fatigue characteristics of skeletal muscle; and so on 

(e.g., Jensen, 1993; Carson & Riek, 1998; Shemmell, Tresilian, Riek & Carson, 2004; 

Wagenaar & van Emmerik, 2000). All of these structural organismic constraints, 

especially anthropometric characteristics and the proportion of fast twitch muscle fibres

coordination). Intra-limb coordination defines the topology of the movement of a single limb, whereas 
inter-limb coordination defines how two or more limbs maintain a temporal and spatial relationship to 
each other (Sparrow, 1992).

5 Control refers to the absolute magnitude of the limb or limb segment movement. For example, the 
amplitude, velocity, acceleration, or force of the movement would dictate the degree of control. The goal 
of the task specifies an optimum or target value o f one o f these variables and a ‘well-controlled’ 
movement is one which satisfactorily approximates the optimum or target outcome. Furthermore, if 
kinetic or kinematic measures over time are used as dependent measures they are still indicative of 
control because they do not specify directly the pattern of limb or limb segment movements. They should 
not, therefore, be referred to as measures of coordination (Sparrow, 1992).
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(Lillee, 1977; Hook, 1990; Glazier et al., 2000), are important in cricket fast bowling. 

Functional organismic constraints that have a greater rate of change, on the other hand, 

tend to vary quite considerably over time and can either be physiological or 

psychological. Important functional organismic constraints include intentions, emotions, 

intelligence, perception, decision-making and memory. Obvious functional organismic 

constraints in fast bowling are muscle fatigue and cognitive anxiety. Perhaps the most 

prominent and influential organismic constraint that can shape movement coordination 

is the intentions of the specific individual under scrutiny (Kelso, 1995).

Environmental constraints, by contrast, are those constraints that are external to 

the movement system. They tend to be non-specific constraints that pertain to the spatial 

and temporal layout of the surrounding world or the field of external forces that are 

continually acting on the movement system. Environmental constraints are typically 

more challenging to manipulate during experimentation. Examples of environmental 

constraints include ambient light and temperature, altitude, acoustic information, 

ubiquitous gravitational forces and the reaction forces exerted by terra firma and other 

contact surfaces and apparatus. Newell (1986) originally made the distinction between 

environmental constraints that are general or ambient and those that are task specific. 

However, Newell and Jordan (2007) argued that it is much cleaner in a definitional 

sense not to force this distinction and they modified the definition of an environmental 

constraint to encompass any physical constraint beyond the boundaries of the organism. 

Any implements, tools or apparatus, which were originally categorised by Newell 

(1986) as being tasks constraints, are now classified as environmental constraints.

Task constraints are those constraints that are specific to the task being 

performed and are related to the goal of the task and the rules governing the task. They 

are not physical constraints but, rather, implied constraints or requirements that must be 

met within some tolerance range so that performance is successful (McGinnis &

Newell, 1982). The constraints of the task operate as an umbrella over all other 

constraints in influencing what patterns of coordination and control are produced 

(Newell, 1986; Higgins, 1985; Clark, 1995). The relative impact of task constraints on 

the movement system is largely dependent on the motor activity being performed. For 

example, in cricket, the laws of the game state that the bowling arm must remain quasi- 

rigid and that it may not be extended during the course of delivery. Also, there is often 

the need to vary where the ball is to be pitched and the speed at which the ball is 

released. However, unlike in some other sports (e.g., gymnastics and swimming), the
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task constraints do not specify the coordination pattern that must be used by the fast 

bowler and, consequently, a variety of techniques can be used against the backdrop of 

organismic, and to a lesser extent, environmental constraints.

One of the most profound, and possibly contentious, conceptual implications of 

Newell’s (1986) model of constraints is that optimal patterns of coordination and control 

are borne out of, or emerge from, the unique confluence of constraints impinging on 

individual movement systems through a process referred to as ‘self-organizing 

optimality’. This concept is tantamount to the ‘constrained optimization’ concept 

advanced in the theoretical and evolutionary biology literatures by, amongst others, 

Maynard Smith (1978) and Staddon and Hinson (1983). Constrained optimization states 

that the behaviour of a biological system at any time will always be optimal for the 

specific confluence of constraints acting on the system, or as Mazur (1983) put it, the 

system will “always do the best it can” (p. 977). Therefore, even though the pattern of 

coordination and control produced by the movement system might be optimal in 

relation to the immediately imposed constraints, the performance outcome could still be 

suboptimal or unsuccessful with regard to some externally defined criterion.

As the constraints imposed on an individual movement system can fluctuate 

continuously over time, the optimal pattern of coordination and control for any given 

motor activity can change accordingly. Furthermore, as the conscious and subconscious 

interpretation of these constraints is dependent on the intrinsic dynamics (i.e., preferred 

states of coordination and control based on movement system architecture, previous 

task experience, emotions, etc.) of each individual under scrutiny, optimal patterns of 

coordination and control for any given motor activity will always be individual-specific 

(Newell, 1986; Newell et al, 1989). Inter-individual, and even intra-individual, 

variations in coordinative movement patterns over different timescales may, therefore, 

be interpreted as adaptive behaviour as each individual movement system attempts to 

exploit surrounding constraints to shape the functional, self-sustaining patterns of 

behaviour that emerge in specific performance contexts (Newell, Mayer-Kress & Liu,

2001). Clearly, these theoretical insights have important implications for sports 

biomechanics from a number of standpoints, which are discussed in some detail in the 

following sections.
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3.2 Implications of Dynamical Systems Theory for Sports Biomechanics

Conceptualising human movement systems as complex, non-linear neurobiological 

systems (dynamical systems perspective) rather than information-driven machines 

finitely controlled via integrated sensory feedback loops by a capacity-limited 

microcomputer acting as the brain (information processing perspective), has significant 

ramifications for sports biomechanists studying them. Specifically, the idea that patterns 

of coordination and control are emergent properties of self-organising processes and the 

confluence of constraints impinging on the performer rather than a motor program, plan 

or schema containing a prescription of the desired movement response, including details 

about the duration, magnitude and relative timing of muscle activation characteristics, 

has important implications for: hypothesis generation (Davids & Glazier, 2010); 

research design (Glazier et al., 2003); experimentation (Glazier et al, 2006); inverse 

dynamics analyses (Glazier & Davids, 2009a); forward dynamics analyses (Glazier & 

Davids, 2009b); the use of ‘complex’ analyses (Glazier et al, 2003; Wheat & Glazier, 

2006); and interpretations of movement variability (Glazier et al, 2006).

3.2.1 Hypothesis Generation

Recently, Gregor (2008) argued that the development of hypothesis-driven research 

must continue to improve in biomechanics, presumably because the hypothetico- 

deductive approach has been the most effective strategy over the years for providing 

new insights in biological research (e.g., Shephard, 1998) and because it is strongly 

advocated in core research methods textbooks in kinesiology and physical education 

(e.g., Thomas, Nelson, & Silverman, 2005). Contrary to this view, Winter (1987) 

argued that formal hypotheses had limited value in biomechanics and motor control 

research because of the great complexity of the human movement system and the 

associated difficulties with accurately predicting motor behaviour. Consistent with this 

perspective, dynamical systems theory suggests that accurate prediction of human motor 

performance for a given task at a given time is far from straightforward because of the 

existence of complex, non-linear, interactions between the many independent 

component parts of the human movement system at different levels of the system. In 

principle, small-scale changes at a more microscopic level of the system (e.g., 

molecular, cellular, neuromuscular) can have a large-scale impact at a more 

macroscopic level (e.g., behavioural, biomechanical, psychological) (e.g., Newell, 1996; 

Newell & Morrison, 1996). Furthermore, as implied by Newell’s (1986) constraints
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model, not only is the current state of the human movement system important, the 

immediate environmental conditions and the specific requirements of the task being 

undertaken are also influential in shaping coordinative movement patterns.

As an alternative to formulating and testing rigid hypotheses, Winter (1987) 

suggested that a more insightful approach might be for investigators to “... perturb 

certain obvious variables and see what changes result” (p. 277). This approach is 

somewhat reminiscent of the strategy outlined by Kelso and colleagues (e.g., Kelso, 

Schoner, Scholz, & Haken, 1987; Kelso & Schoner, 1988) who, following Bernstein 

(1967), argued that greater understanding of persistent and transitory behaviour in the 

human movement system would be gained through the development of general 

organisational principles rather than attempting to discover hard-wired neural 

mechanisms. Their approach, termed the ‘synergetic strategy’, involves the scaling of 

non-specific ‘control’ parameters (internal or external variables that alter the 

organisational state of the system) and observing changes in ‘order’ parameters 

(collective variables that capture and define the organisational state of the system). 

However, as the identification of control parameters through theoretical analysis is not 

always possible in the movement system, a more efficacious method, according to 

Kelso (1995), might be to perturb the system and observe the changes in order 

parameter dynamics. This strategy has proven very effective in motor control, learning 

and development research at providing insights into the self-organising processes within 

and between levels of the movement system (e.g., Scholz & Kelso, 1989; Clark & 

Phillips, 1993; Thelen & Smith, 1994) and could turn out to be a viable alternative 

experimental paradigm for sports biomechanists. Indeed, a variation of this approach 

has been successfully applied by Hamill et al. (1999) in their investigation of lower 

extremity running injuries.

3.2.2 Research Design

Traditionally, cross-sectional, group-based research designs have been used in 

performance-oriented sports biomechanics research largely because the aim of many 

investigations has been to make inferences about the wider population from which the 

study sample was drawn in an effort to develop generalisable laws and principles that 

govern action (James & Bates, 1997). Two basic research designs have generally been 

adopted—the correlation approach and the contrast approach (Hay, Vaughan, & 

Woodworth, 1981). In the former, associations between the performance criterion
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(independent variable) and the underlying performance parameters (dependent 

variables) derived from a single homogenous group of athletes are formally examined 

using relationship statistics (e.g., interclass correlation coefficients). In the latter, 

differences in the mean values of key performance parameters derived from two or 

more heterogeneous groups of athletes are formally compared using mean difference 

statistics (e.g., t-test, ANOVA). The majority of scientific investigations into fast 

bowling performance have used either the contrast (e.g., Stockill & Bartlett, 1994) or, 

more notably, the correlation (e.g., Glazier et al, 2000; Portus et al., 2004; Loram et al.,

2005) approach and, in almost all of these studies, a single ‘representative’ or ‘best’ trial 

performed by each participant has typically been analysed.

Despite the widespread use of group-based research designs in sport science 

research, they do have several pitfalls that need to be taken into consideration by sports 

biomechanists. One of the main issues is that the traditional approach of pooling group 

data to analyse central tendencies and dispersion (i.e., reporting group means and 

standard deviations) often masks differences between individuals (Gregor, 1989; 

Michaels & Beek, 1996; James & Bates, 1997). A good example of this statistical 

anomaly was provided by Dufek, Bates, Stergiou and James (1995). They reported the 

results of two experiments investigating individual and group responses during normal 

and perturbed landing and running trials. Irrespective of the movement examined, the 

group models produced data that were not representative of any of the individual 

performers that comprised that group. Similarly, Dufek and Zhang (1996) reported that 

group predictions for forefoot and rearfoot landing forces were not representative of any 

of the seven volleyball players analysed. By using pooled group data, the focus is very 

much on establishing the ‘average’ response for the ‘average’ individual, which has the 

effect of de-emphasising the individual performer (Bates, 1996). With this in mind, it 

has been recommended that the responses of different individuals should only be 

grouped after verification of any similarities or trends in the data, as similarities are 

likely to prove to be exceptions given the ever-changing confluence of constraints on 

performance (Bates, Dufek & Davis, 1992).

To enable individual differences to be explored more fully, it has been suggested 

that sports biomechanists need to implement more longitudinal, single-participant 

research designs (e.g., Bates, 1996; James & Bates, 1997; Bates, James & Dufek, 2004). 

This approach has not featured prominently in the biomechanics literature to date 

mainly because of issues relating to a lack of generalizability, but as Bates et al. (2004)
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pointed out: “It is important to note that single-subject analysis does not imply ‘case 

study’ investigation. Rather, it is an experimental technique that invokes an in-depth 

examination of individuals in order to better understand what unique movement 

characteristics, if  any, they have in common” (p. 5). In other words, just because 

multiple trials performed by an individual participant are analysed, it does not mean that 

they cannot or should not be compared with multiple trials performed by other 

participants. Indeed, Reboussin and Morgan (1996) argued that many investigations 

described as single-participant analyses are, in actual fact, multiple single-participant 

analyses. By enabling commonalities and differences to be established both within- and 

between-participants over repeated trials, multiple single-participant research designs 

can overcome some of the criticisms regarding generalizability often directed at single­

participant research designs. A number of biomechanical investigations have 

successfully adopted multiple single-participant research designs previously, including 

those by Hreljac (1998), Dixon and Kerwin (2002), Wheat, Bartlett, Milner and 

Mullineaux (2003).

3.2.3 Experimentation

To avoid the arbitrary selection of independent variables in performance-oriented sports 

biomechanics research, the development of a theoretical model of performance for a 

given sports action is often recommended prior to data collection (e.g., Coleman, 2002). 

These performance models—introduced originally by Hay, Wilson and Dapena 

(1976)—have become known variously as ‘deterministic models’ (Hay & Reid, 1988), 

‘factors-results models’ (Adrian & Cooper, 1995), ‘hierarchical models’ (Bartlett, 1999) 

and ‘qualitative models’ (Sanders, 1999), and have been applied to a range of sports 

skills, including gymnastics vaulting (e.g., Takei, 1998), water polo (e.g., Sanders, 

1999), ice skating (e.g., Marino, 1983) and, most notably, track (e.g., Mann & Herman,

1985) and field (e.g., Young & Li, 2005) athletics. They are usually presented in the 

form of a block diagram and are similar in structure and composition to the one shown 

in Figure 3.2.

The first stage of constructing a deterministic model is to identify the result or 

outcome of performance—otherwise known as the performance criterion—which 

should be entered at the top of the model. The next stage of construction is to identify 

the mechanical factors—more commonly known as performance parameters—that
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RESULT

Figure 3.2. Basic format, structure and composition of a deterministic model 
(reproduced from Hay & Reid, 1988).

account for all the variance in the performance criterion. These performance parameters 

are then entered into the second tier of the model. The third stage is to identify the 

performance parameters that account for all the variance in the performance parameters 

in the second tier and enter these in the third tier of the model. This process is repeated 

until all relevant performance parameters are identified. According to Hay and Reid 

(1988) there are two main rules for constructing deterministic models: (i), where 

possible, performance parameters should be measurable mechanical quantities; and (ii), 

each performance parameter should be completely determined by those performance 

parameters that appear directly below it. The advantage of having a rigorously 

developed deterministic model of performance before data collection is that the 

selection of performance parameters can be justified on sound theoretical grounds 

(Bartlett, 1997; Lees, 1999). This approach, therefore, can be considered superior to the 

somewhat arbitrary ‘shotgun’ approach as the theoretical model helps to ensure that all 

the truly important variables are included and all the trivial ones are omitted (Hay,

1985; Lees, 1992; Yeadon & Challis, 1994).

Despite the widely accepted view that deterministic models can help identify 

faults in technique, their use has been surprisingly sparse. A number of reasons have 

been cited in the literature for their lack of utility (see Lees, 2002, for a review) but 

perhaps the most serious issue precluding the widespread use of deterministic models in 

performance-oriented sports biomechanics research is that they are models of 

performance not models of technique—that is, they are able to identify factors relevant 

to performance, but not necessarily aspects of technique relevant to these factors (Lees,

2002). In the hierarchical model of cricket bowling shown in Figure 3.3, for example, 

one of the most important performance parameters is release speed. Although some 

information about isolated aspects of technique that might be related to release
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Wickets

Accuracy

Release speed

Torque impulse applied by working muscles

Speed generated in run-up and pre-delivery stride

Force impulse applied to the cricket ball

Aerodynamic factors

Release speed

Release angle

Body position at front foot impact

Hip, shoulder and trunk rotations

Sequence of muscle activation

Figure 3.3. A simple deterministic or hierarchical model for cricket fast bowling. 
Although this model does not strictly conform to the criteria set out by Hay and Reid 
(1988) for constructing these performance models, it does provide an indication of the 
mechanical factors that are likely to be related to performance.

speed are provided, the model does not specify what movement patterns or, more 

precisely, coordination patterns that should be used to produce a high ball speed at the 

moment of release. Furthermore, it appears that the efficacy of such models is 

challenged because individual athletes scale and parameterise aspects of technique 

according to interacting organismic, environmental and task constraints impinging on 

performance (Newell, 1986). As a range of coordination patterns could be used to 

generate the same set of performance parameter values for any given motor skill (e.g., 

Bernstein, 1967; Arutyunyan, Gurfinkel & Mirskii, 1968; Marasso, 1981), sports 

biomechanists need to devote more attention to the causative mechanisms and processes 

underpinning performance.



3.2.4 Inverse Dynamics Analyses

In section 3.2.3, it was argued that sports biomechanists need to dedicate more attention 

to examining the causative mechanisms and processes underpinning performance. When 

attempting to establish the physical causes of motion, sports biomechanists typically use 

inverse dynamics analyses. Here, algebraic equations derived from Newtonian and 

Euler mechanics, combined with a link-segment model of the human body, are used to 

calculate joint torques and reaction forces, mechanical work and power transfers from 

kinematic data and participant-specific anthropometric (geometric and inertial) 

parameters for torso and limb segments acting as inputs (Zajac & Gordon, 1989). These 

kinetic analyses have provided a useful insight into what Winter (1989) termed the 

“final common mechanical pathway” (p. 338) in normal and pathological human motor 

functioning. Indeed, the general perception in biomechanics is that joint torques occupy 

an important role in obtaining a complete understanding of the human movement 

system, so much so, in fact, that Vaughan (1996) described them as the “holy grail” (p. 

427). However, despite their apparent promise and potential contribution to enhancing 

performance and reducing injury, inverse dynamics analyses are still comparatively 

scarce, particularly in sports biomechanics.

There appears to be several reasons why inverse dynamics analyses have seldom 

been implemented in biomechanics research, including: the adequate complexity of 

models of the human movement system (e.g., Hatze, 2002); noise-contamination of 

displacement data and the subsequent propagation of errors as the signal undergoes 

numerical differentiation (e.g., Hatze, 1990); and errors in force magnitude and centre 

of pressure location when external force measurements are used (e.g., McCaw &

Devita, 1995). However, the main issue has been one of indeterminacy in human 

movement system and the fact that inverse dynamics analyses belong to a class of 

‘incorrectly’ or ‘ill-posed’ problems, that by definition, do not possess a unique (i.e., 

one and only one) solution. This issue was nicely demonstrated in a computer 

simulation by Hatze (2000) who showed that, for some motions, individual muscle 

forces may be perturbed to a considerable extent without significantly affecting the 

observable motions of the torso and limbs.

As it is currently not possible to measure individual muscle forces non- 

invasively with any degree of precision, a common ploy has been to reduce all muscle, 

bone and ligament forces crossing a joint together to a single vector (Vaughan, 1996). 

However, this approach does not provide any information about the contribution of
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agonist and antagonist muscle action around a particular joint nor does it enable the 

contribution of an individual muscle within a particular group of muscles to be verified. 

From a dynamical systems perspective, being only able to measure the net or resultant 

joint torque precludes any substantive insight into coordinative structures beyond what 

has already been demonstrated, for example, by Winter (1984) and, therefore, it could 

be argued that the applicability of inverse dynamics analysis, in its current form, is 

limited in terms of its capacity to enhance knowledge on flexible and adaptable normal 

human motor functioning.

It is clear that biomechanists urgently need to improve their measurement 

techniques so that the contribution of individual muscles and groups of muscles to 

resultant joint torques can be established. This problem is not new and has previously 

been highlighted as one, if not the main, issue inhibiting progress in biomechanics 

research (Norman, 1989). As the movement system is inherently stochastic (Riley & 

Turvey, 2002), it is likely that the specific contribution of individual elements of 

coordinative structures over iterative performances of the same motor skill will range 

from being random to largely deterministic. By improving measurement methods, 

sports biomechanists will be able to investigate, and gain a better understanding of, the 

ubiquitous processes of physical self-organisation that underpin the formation of 

coordinative structures and the confluence of organismic, environmental and task 

constraints that determine the exact morphology of these task-specific structural units 

(e.g., Kugler et al, 1980; Newell, 1986; Kelso, 1995).

3.2.5 Forward Dynamics Analyses

A  major challenge facing sports biomechanists is that of identifying optimal techniques 

for the performance of a wide range of motor activities. In tackling this challenge, sports 

biomechanists have typically resorted to forward dynamics analyses or computer 

simulations, where sets of ordinary differential equations derived from Newtonian and 

Langrangian mechanics are used to calculate optimal movement solutions (Miller,

1979). In a forward dynamics analysis, the input parameters are typically the applied 

forces or net joint torques acting on the movement system and the calculated output 

parameters are kinematic data describing the motion of the component parts (i.e., torso 

and limb segments) of the movement system. Although the accuracy and validity of 

these output parameters is largely dependent on the complexity of the mathematical 

model used to represent the movement system, it could be argued that, from a
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dynamical systems perspective, the utility of this modelling approach in terms of its 

capacity to generate optimal movement solutions for specific individuals in specific 

performance contexts has been restricted because of the limited number of constraints 

that have been incorporated into these mathematical models. Indeed, as Newell (1985) 

highlighted: “... optimisation modelling has been largely confined to a consideration of 

mechanical constraints. However, mechanical constraints are clearly not sufficient 

criteria for optimisation in biological systems, although they represent an important 

beginning to this effort” (p. 305).

Owing to increased computer processing power, the number of constraints (or 

parameters as they are more commonly known in the biomechanics literature) that can 

be incorporated into mathematical models of the human movement system has grown 

steadily in recent years. For example, organismic constraints have been included in the 

form of individual-specific anthropometric (geometrical and inertial) parameters (e.g., 

Jensen, 1978; Yeadon, 1990), strength parameters (e.g., King & Yeadon, 2002; Yeadon, 

King & Wilson, 2006), soft tissue movement (so-called ‘wobbling’ masses) (e.g., 

Gruber, Ruder, Denoth & Schneider, 1998; Gittoes & Kerwin, 2006) and limits to joint 

ranges of motion (e.g., Wilson, Yeadon & King, 2007). Environmental constraints have 

also been included in the form of aerodynamic forces (e.g., Muller, Platzer & 

Schmolzer, 1996), contact surfaces (e.g., Wright, Neptune, van den Bogert & Nigg, 

1998), apparatus (e.g., Hiley & Yeadon, 2005) and time-to-contact perceptual 

information of approaching projectiles (Beek, Dessing, Peper & Bullock, 2003). Task 

constraints have generally not been included in mathematical models of the human 

movement system but, rather, during the simulation process, typically in the form of an 

optimality criterion or specific cost function that must be maximised or minimised. 

These objective measures describe either the task goal or an aspect of performance that 

is strongly related to the task goal. Whereas other optimality criteria or cost functions, 

such as smoothness, accuracy, speed, minimum fatigue and minimum sense of effort 

have been used (e.g., Engelbrecht, 2001; Prilutsky & Zatsiorsky, 2002; Todorov, 2004), 

energy consumption or, more precisely, energetic efficiency, has typically been the 

chief optimality criterion or cost function in the biomechanical modelling of human 

motion (Sparrow, 2000).

From the preceding analysis, it would appear that, although the number of 

constraints incorporated into mathematical models of the human movement system has 

dramatically increased in recent years, claims that the complete optimisation of human
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motion has already been realised (e.g., Hatze, 1976) might be premature, at least from a 

dynamical systems theoretical standpoint. Further work is needed to incorporate more 

organismic, environmental and task constraints into forward dynamics analyses 

because, as Newell (1985) argued, “ ... these constraints will determine the optimal 

coordination and control for a given individual in a given activity” (p. 305). Owing to 

the dynamic nature of sport, however, establishing generalised movement solutions for 

specific individuals in specific tasks is unlikely to be sufficient, especially for ‘open’ 

motor skills. The habitual use of a single optimality criterion in forward dynamics 

analyses has typically only enabled the optimal technique for a very narrow set of 

constraints for a given activity to be identified. For example, consider orienteering 

where the aim is to navigate to different locations across diverse and usually unfamiliar 

terrain in a short a period of time as possible. An optimisation model for orienteering 

might use energetic efficiency as its main overarching task constraint or optimality 

criterion given that the maximisation of mechanical work per unit of energy has been 

shown to be a fundamental principle governing human movement (Sparrow & Newell, 

1998). However, the orienteer is continuously confronted by fluctuations in organismic 

(e.g., the onset of local muscle fatigue), environmental (e.g., changes in surface 

compliance, the topography of the landscape, changes in ambient temperatures) and task 

(e.g., reading a map) constraints. It is quite conceivable that these ‘nested’ constraints 

could preside over the optimality criterion at certain times during performance and, as 

such, movement patterns would be altered accordingly (e.g., Millett, Divert, Banizette 

& Morin, 2010).

Although orienteering is very much at the ‘open’ end of the ‘open and closed 

continuum’ for skill classification and a rather extreme example of how constraints on 

performance can fluctuate over different timescales, it is an effective task vehicle for 

illustrating some of the problems currently surrounding biomechanical optimisation 

modelling. The incongruency often found between the constraints used in the 

mathematical model of the human movement system or during the simulation process 

and the constraints of the performer-environment system, ultimately limits the 

effectiveness of biomechanical modelling in an applied context (e.g., when attempting 

to generate individual-specific movement templates to help identify faults in technique 

and direct remedial action). It could be argued, therefore, that from a dynamical systems 

theoretical standpoint, biomechanical optimisation not only needs to incorporate more 

organismic, environmental and task constraints in mathematical models of the human 

movement system and during the simulation process, but the relative impact of these
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constraints needs to be varied according to the specific demands of the performance 

context. Only then will biomechanical modelling overcome the frequently made 

observation that it is merely an academic exercise with limited practical relevance and 

be able to justify its ‘bio’ prefix (e.g., Baumann, 1987).

3.2.6 ‘Complex’ Analyses

Given the methodological issues currently inhibiting inverse and forward 

dynamics analyses (see section 3.2.4 and 3.2.5, respectively), which have taken on 

greater significance with the emergence of dynamical systems theory, it would appear 

that the efficacy and validity of moving beyond the kinematic level of analysis at the 

present time is questionable. Perhaps a more effective and amenable strategy given the 

current state of the art would be for sports biomechanists to use the analytical tools of 

dynamical systems theory to examine processes of coordination and control at the 

kinematic level of analysis. By using these so-called ‘complex’ analyses (Hamill etal.,

2006), sports biomechanists can effectively measure and describe coupling 

relationships between joints and limb segments. The subsequent application of 

principles and concepts from dynamical systems theory, such as self-organisation and 

constraints, can then be used to explain stability, variability and transitions among 

coordinative states and how these relate to the successful attainment or otherwise of the 

performance outcome.

A number of ‘complex’ analyses have been used in empirical studies of human 

movement, including:

Continuous relative phase (Kelso, 1995; Hamill, Haddad & McDermott, 2000; Kurz 

& Stergiou, 2004): Continuous relative phase measures the relative phase (the spatial 

and temporal coupling) of a pair of joints throughout the entire movement cycle. The 

relative phase angle can be obtained by calculating the four-quadrant arctangent phase 

angle from a phase-plane plot of each joint (Hamill et al., 2000). Having normalized the 

time histories of the displacement and velocity data obtained from each joint, 

continuous relative phase can be calculated by subtracting the phase angle of one joint 

from that of the other joint at corresponding time intervals throughout the entire cycle. 

Providing that all the underlying assumptions are satisfied (see Kurz & Stergiou, 2002; 

Peters, Haddad, Heiderscheit, van Emmerik & Hamill, 2003), continuous relative phase 

can provide an indication of the type of relationship (in-phase or anti-phase) between 

the pair of joints and the relative amount of in-phase and anti-phase.
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Cross-correlations (Amblard, Assaiante, Lekhel & Marchand, 1994; Li & Caldwell, 

1999; Derrick & Thomas, 2004): Cross-correlations are based on the assumption that 

linear relationships exist between two sets of kinematic time series data (e.g., pairs of 

joints) but do not assume that these variables change in synchrony during the movement 

(Mullineaux, Bartlett & Bennett, 2001). By introducing time lags between data sets and 

calculating the corresponding correlation coefficients, researchers can obtain an 

indication of the type of relationship between body segments (in-phase or anti-phase), 

the degree of linkage between body segments, and the stability of coordination patterns 

when applied to repeated trials (Temprado, Della-Grasta, Farrell & Laurent, 1997). 

However, it is possible that similar cross-correlation coefficients can result from pairs of 

time series that have quite different relationships. Therefore, it may be prudent to 

interpret cross-correlation coefficients in conjunction with its time lag and qualitative 

measures such as angle-angle plots. Also, because cross-correlations measure linearity 

between time series, they are not particularly useful in determining the degree of linkage 

between body segments that have a non-linear relationship (Sidaway, Heise & 

Schoenfelder-Zohdi, 1995). In such circumstances, alternative techniques such as vector 

coding may be more informative.

Vector coding (Whiting & Zernicke, 1982; Sparrow, Donovan, van Emmerik & Barry, 

1987; Tepavac & Field-Fote, 2001): Vector coding techniques are based on the chain- 

encoding technique devised originally by Freeman (1961). This procedure involves 

using a superimposed grid to transform the data curve from an angle-angle plot or a 

position-time plot into a chain of digital elements. Each of the digital elements that 

comprise the chain is given a weighting based on the direction of the line formed by the 

frame-to-frame interval between two successive data points. The chain of digital 

elements can then be cross-correlated with a chain of digital elements obtained from 

another angle-angle plot or position-time plot to obtain a recognition coefficient, which 

is the peak value of the cross-correlation function. The recognition coefficient can then 

be interpreted in much the same way as the cross-correlation coefficient outlined 

previously. A limitation o f Freeman’s (1961) chain-encoding technique is that it 

requires the data points to be equally spaced (Sparrow et al, 1987). Moreover, this 

technique converts ratio scale data to a nominal scale, which limits the type of statistical 

analyses that can be applied and, therefore, may mask important information (Tepavac 

& Field-Fote, 2001). However, the recent introduction of a revised ratio scale, vector- 

based coding scheme to quantify relative motion data (see Tepavac & Field-Fote, 2001) 

appears to provide a satisfactory solution to these problems.



Kohonen Self-Organizing neural networks (Kohonen, 2001): The Kohonen Self- 

Organizing neural network has emerged in the movement sciences as a method for 

analyzing the global nature of movement patterns. Kohonen neural networks effectively 

compress high dimensional input data, such as three-dimensional kinematic data from 

multiple body segments, on to neurons located on a low dimensional topological map 

(Kohonen Self-Organizing Map) using a series of non-linear weighting vectors. Instead 

of visualising the ‘distance’ between performances in the high dimensional input space, 

the neighborhood preservation properties of self-organizing maps enable the 

investigator to visualise more effectively the ‘distance’ between performances in the 

low dimensional output space. A cluster analysis algorithm can then be used to 

categorize performances in terms of their topology, which can be determined by the 

amount o f ‘distance’ between trials, where less ‘distance’ is thought to represent greater 

similarity (stability) and, therefore, lower levels of variability. Kohonen Self- 

Organizing neural networks have already been successfully applied to analyses of 

discus throwing (Bauer & Schollhom, 1997), javelin throwing (Schollhom & Bauer, 

1998), soccer kicking (e.g., Lees & Barton, 2005) and, most notably, to gait analysis to 

evaluate walking patterns (e.g., Schollhom, Nigg, Stefanyshyn & Liu, 2002; Barton, 

Lees, Lisboa & Attfield, 2006; Janssen, Schollhom, Lubienetzki, Foiling, Kokenge, & 

Davids, 2008).

There are several reasons why the utilisation of these ‘complex’ analyses in 

conjunction with a dynamical systems theoretical framework could benefit 

performance-oriented sports biomechanics research:

1. ‘Complex’ analyses could be considered a suitable intermediary between ‘simple 

analyses’ habitually used by sports biomechanists, where the focus is typically 

on time-discrete kinematic data acquired from isolated joints, and inverse 

dynamics analyses. Although ‘complex’ analyses do not allow the forces and 

torques that cause movement to be quantified, they do at least allow the analysis 

of the interaction of joints and segments, which may, in turn, provide clues about 

the effectiveness of energy and momentum transfer along upper and lower 

extremity kinematic chains or the potential for injury from dysfunctional 

coordination patterning (e.g., Hamill et al., 2006).

2. By using ‘complex’ analyses in conjunction with an experimental strategy that 

manipulates to their extremes, either singularly or in combination, a broad range 

of organismic, environmental and task constraints, it is possible to establish the
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relative impact of different constraints on performance. The establishment of a 

hierarchy of constraints for specific individuals in specific activities could prove 

to be a valuable precursor to biomechanical optimisations (Glazier & Davids, 

2009a).

3. It has been shown that athletes and coaches use relative motion information 

about the limbs and torso when making judgements about sports techniques 

(e.g., Sparrow & Sherman, 2001). When one also considers that athletes and 

coaches are unlikely to be able to relate well to concepts such as ‘net joint 

torques’ and ‘mechanical power transfers’, the analysis of coordination patterns 

at the kinematic level of the analysis appears to be a much more appropriate 

strategy on which to base applied work.

4. Many kinematic investigations featuring in the applied sports biomechanics 

literature have been criticised for being too descriptive and lacking a sound 

theoretical rationale (e.g., Norman, 1989; Bartlett, 1997; Hatze, 1998). Given its 

excellent pedigree in science and its focus on emergent pattern formation among 

the very many degrees of freedom that comprise complex systems (e.g., human 

movement systems), it could be argued that dynamical systems theory is a highly 

appropriate and applicable theoretical framework for performance-oriented 

sports biomechanics research.

5. It has frequently been suggested that biomechanists need to collaborate with 

scientists from other sub-disciplines of human movement science (e.g.,

Cavanagh & Hinrichs, 1981; Gregor, Broker & Ryan, 1992; Zatsiorsky & 

Fortney, 1993). Given its multidisciplinary focus, it would appear that dynamical 

systems theory could provide an effective platform for this collaborative work, 

especially among biomechanists and motor control theorists as advocated, for 

example, by Davids, Handford and Williams (1994) among others.

3.2.7 Interpretations o f Movement Variability

As alluded to at the end of section 3.1, movement variability has great theoretical and 

operational significance in dynamical systems accounts of human movement. Indeed, 

Newell and Slifkin (1998) conjectured that “... contrary to traditional wisdom, it may be 

that the variance of movement dynamics is as revealing, or more revealing than, the 

invariance in terms of unpacking the nature o f system organisation” (p. 157). However, 

despite the growing recognition of its importance, movement variability has not
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typically featured high on the research agendas of sports biomechanists (although see 

Hatze, 1986, for early coverage) and only in the last decade has it been more widely 

acknowledged as an important topic worthy of research attention in its own right (see 

James, 2004; Bartlett, Wheat & Robins, 2007; and Bartlett, 2008, for recent reviews). 

There appears to be a number of inter-related reasons why researchers have generally 

overlooked this aspect of human motor performance:

First, biomechanical analyses examining the kinematics of human motion have 

typically been inhibited by the design of motion analysis equipment and the inefficiency 

of data reduction techniques. The main problem has been the time consuming, labour- 

intensive nature of manual coordinate digitising, which has typically restricted 

kinematic analyses to a single performance trial (normally the ‘best’ or a 

‘representative’ trial in terms of performance outcome) (see also section 3.2.2). 

Furthermore, there has been some conjecture surrounding manual coordinate digitising 

and whether it is sufficiently sensitive enough to reliably detect differences in the 

kinematics of iterative performance trials of the same task (Bartlett et al., 2006). These 

two factors combined have generally precluded analysis of intra-individual movement 

variability in sports biomechanics research.

Second, an implicit assumption held by many sports biomechanists is that 

movement patterns exhibited by skilled performers are invariant (Schmidt, 1985), or, at 

least, show a conspicuous tendency towards invariance (Heuer, Schmidt & Ghodsian, 

1995). This assumption appears to have been perpetuated by the motor program concept 

that has dominated the movement sciences for the past three decades (e.g., Keele, 1968; 

Schmidt, 1982) and the implicit or explicit adoption of an information processing 

theoretical framework (e.g., Marteniuk, 1976) by sports biomechanists. Consequently, 

any intra-individual movement variability over iterative performance trials of the same 

task has typically been deemed to represent ‘noise’ or ‘error’ and, therefore, disregarded 

because it has been interpreted as having negligible practical significance. On the 

premise that movement patterns are highly consistent over repeated trials, the analysis 

of a single performance trial has been justified on the grounds that it is more or less 

‘representative’ o f a performer’s normal technique. With the recent emergence o f 

dynamical systems theory, however, there has been growing recognition of the need to 

analyse multiple trials as the validity of using a single performance trial to represent 

generalised performance outcomes has been shown to be questionable (e.g., Bates et al., 

1992; Dufek, Bates & Davis, 1995).
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Third, another implicit assumption often held by sports biomechanists is that a 

common optimal movement pattern exists for a given motor skill. In other words, it is 

believed that there is a single most efficient and effective way of performing a motor 

skill for the majority of the population (Brisson & Alain, 1996). On the basis that highly 

skilled performers are likely to be in closer proximity to this template technique than 

their lesser skilled counterparts, pooled group data from the respective groups are 

typically compared using inferential statistics to establish ‘normative’ or ‘soil’ values 

(Schollhom, 2003) that may be used to characterize a hypothetical ideal technique or 

motor template. However, as noted in section 3.2.2, when pooling group data to analyse 

central tendencies and dispersions, inter-individual variability tends to get obscured. In 

effect, by using inferential statistics in this capacity, sports biomechanists are attempting 

to establish an ‘average’ response for an ‘average’ participant even though the ‘average’ 

individual might not exist (Bates, 1996). As Kelso (1995) noted: “Because each person 

possesses his or her own ‘signature’, it makes little sense to average performance over 

individuals. One might as well average apples and oranges.” (p. 161). Sports 

biomechanists must, therefore, apply caution when adopting group-based research 

designs and be more amenable to alternative research designs and methodologies, such 

as multiple single-participant research designs and ‘complex’ analyses, where 

differences within and between individual performers are the main focus.

Fourth, the habitual use of deterministic or hierarchical performance models as a 

basis for applied research has encouraged sport biomechanists to adopt a reductionist 

approach as they seek to establish statistical associations between performance 

parameters and the performance criterion. However, as noted in section 3.2.3, these 

performance parameters provide little, if any, information about the underlying 

movement patterns that generate these performance parameters (Lees, 2002). By 

focusing almost exclusively on outcomes, sports biomechanists have been unable to 

analyse the often functional role that movement variability occupies in producing 

consistent and stable outcomes (e.g., Bernstein, 1967; Arutyunyan et al., 1968;

Marasso, 1981). In some respects, the deterministic or hierarchical modelling approach 

habitually used in sports biomechanics shares many of the problems that have 

traditionally plagued empirical studies in motor behaviour research (i.e., they have 

typically been product-driven rather than process-driven). It is instructive to note, 

however, that motor control theorists are increasingly resorting to biomechanical data 

collection and analysis methods to analyse the movement dynamics of multiarticular 

actions in their natural environment rather than relying on the outcome or error scores
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obtained from small and simple laboratory-based paradigms (e.g., see Davids, Renshaw 

& Glazier, 2005, for cricket-related examples). Sports biomechanists urgently require a 

similar shift of emphasis towards analysing processes rather than focusing 

predominantly on outcomes.

Fifth, any observed variability in kinematic time series data has invariably been 

treated as random measurement errors, which are independent of, and additive to, the 

signal representing the movement (van Emmerik, Hamill & McDermott, 2005). To 

avoid the amplification and propagation of these errors during derivative calculations, it 

has been customary for biomechanists to remove measurement error from time series 

data using recognized data filtering and smoothing techniques (e.g., Wood, 1982). 

However, in doing so, some of the dynamical noise, which is generated by underlying 

non-linearities in the system and is an integral part of the signal (van Emmerik et al, 

2005), is likely to have been removed inadvertently, therefore, distorting the moment- 

to-moment structure of variability in the time series. Although there are apparently 

analytical procedures that enable measurement noise to be distinguished from 

dynamical noise (e.g., Siefert, Kittel, Friedrich & Peinke, 2003), these appear to be non­

trivial and have not been incorporated into biomechanics research. Instead, some 

researchers (e.g., Buzzi, Stergiou, Kurz, Hageman & Heidel, 2003) have recommended 

not using any data smoothing or conditioning techniques to avoid omitting important 

data, whilst other (e.g., Hamill et al., 1999) have applied digital filters but have used a 

higher cut-off frequency than is typical in biomechanics, presumably to avoid removing 

some of the dynamical noise content. Sports biomechanists need to be more mindful of 

the presence of dynamical noise in time series data and preserve it where possible.

3.3 Summary

Adopting a dynamical systems approach in biomechanics, until now, has typically 

meant the analysis of intra-limb and inter-limb and torso coordination or coupling 

relationships (e.g., Hamill et al., 1999; Stergiou et al., 2001). However, based on the 

information presented in this chapter, it would appear that this interpretation is too 

narrow and that adopting a dynamical systems theoretical framework has much wider 

ramifications for a range of contemporary issues related to performance-oriented sports 

biomechanics research. As noted above, conceptualising movement systems as non­

linear dynamical systems questions the need for rigid hypotheses, emphasises an 

idiographic (intra-individual) rather than an nomothetic (inter-individual) approach,
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necessitates the analysis of underlying causative processes rather than describing 

outcome effects, and requires a greater consideration of the theoretical and operational 

significance of movement variability.

In terms of the connotations for this thesis, the methodological problems 

associated with forward and inverse dynamics analyses indicate that moving beyond the 

kinematic level of analysis, at the present time, is questionable. Given that inverse 

dynamics analyses cannot currently be used to measure the contribution of individual 

muscle forces and, therefore, provide very little additional information about 

coordinative structures, and the fact that forward dynamics analyses cannot currently 

identify individual-specific optimal movement solutions, focusing on the stability and 

variability of coordinative movement patterns at the kinematic level of analysis in 

cricket fast bowling might be a more profitable strategy. When one also considers the 

applied theme of this thesis and the fact that research has shown that athletes and their 

coaches make judgements about technique based on the relative motion of limb and 

torso segments (e.g., Sparrow & Sherman, 2001), this line of enquiry has sound 

rationale.
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Chapter IV 

Methods



4.0 Introduction

This chapter provides a detailed account of the methodological procedures used to 

acquire and condition the kinematic data used in the empirical studies described in 

Chapters V, VI and VII. The demographics of the study sample, and the experimental 

protocol, data collection, data reconstruction and data processing procedures adopted 

during, and subsequent to, this session are outlined in sections 4.1,4.2, 4.3,4.4 and 4.5, 

respectively. The data analysis techniques specific to the individual chapters are 

analysed therein.

4.1 Participants

Eight male fast bowlers from the Cardiff-Glamorgan University Centre of Cricketing 

Excellence and the Glamorgan County Cricket Academy were recruited for this study 

(see Table 4.1). These bowlers were selected on their ability to release the cricket ball at 

speeds classified as either fast-medium (27.0 -  36.0 m.s’1) or fast (36.1 -  40.5 m.s"1) 

according to criteria laid out by Abemethy (1981). All bowlers had represented their 

respective counties at junior level and/or university in the premier division of the British 

Universities Sports Association’s cricket competition. Each bowler was required to read 

and sign informed consent proformas (see Appendix A) prior to data collection as 

recommended by the British Association of Sport and Exercise Sciences (Payton & 

Bartlett, 2008). A verbal explanation of the testing procedures was provided where 

necessary. Ethics clearance was obtained from the local university ethics committee.

Table 4.1. Characteristics of the study sample.
Bowler Age (yrs) Stature (m) Mass (kg) Mean Ball Release 

Speed (m .s1) Classification

1 22 1.85 91.3 33.72 Fast-medium
2 16 1.92 75.2 30.18 Fast-medium
3 20 1.84 86.1 32.05 Fast-medium
4 17 1.82 76.0 30.86 Fast-medium
5 21 1.88 92.4 30.93 Fast-medium
6 18 1.73 68.5 31.37 Fast-medium
7 17 1.74 85.6 32.34 Fast-medium
8 20 1.83 83.5 30.06 Fast-medium

Mean 18.9 1.83 82.3 31.44 -

SD 2.17 0.06 8.37 1.23 -

4.2 Experimental Protocol

All testing took place indoors at the Glamorgan National Cricket Centre at Sophia 

Gardens, Cardiff, Wales, on a standard-sized cricket pitch, which had a Uniturf 6 -mm
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synthetic rubber surface with a 12-mm impact-absorbent underlay. The approach run 

area was approximately 30 m in length, which enabled all bowlers to use their full run­

up. The participants were instructed to undertake a cricket related warm-up activity of 

their own choice. Each participant was permitted to bowl 6  practice deliveries to 

facilitate familiarisation with the testing environment before bowling 12  successful 

deliveries at maximum effort. A delivery was deemed to be successful if it struck a 0.3 

x 0.3 m target attached to the top of the off-stump after pitching. All deliveries were 

bowled with a Readers Sovereign cricket ball compliant with MCC specification (mass 

0.156 -  0.163 kg and circumference 0.224 -  0.229 m) (Marylebone Cricket Club, 2009). 

All items of clothing were removed except training shoes and sports shorts in order to 

facilitate the identification of anatomical landmarks. No superficial markers were used 

as this was a three-dimensional study and superficial markers would not necessarily 

have provided an indication of joint centres.

4.3 Data Collection

Two 3-CCD Sony DSR-PD150P digital video camcorders (Sony Corporation, Japan) 

were mounted upon stationary Manfrotto #117 rigid tripods (Vitec Group, Italy) fitted 

with Manfrotto #136 heads (Vitec Group, Italy) to record each trial for digitising 

purposes. Both camcorders were equipped with 6.0 to 72.0 mm zoom lenses and were 

mounted at heights of 1.20 m (measured using a plumb-line). Both were operating at 50 

fields per second with electronic shutters speeds of 1 /1 0 0 0  s to eliminate image smear.

A distance-to-base ratio (i.e., the ratio of perpendicular distance from a mid-camera 

point to participant to the distance between cameras) of 1:2, as recommended by Wood 

and Marshall (1986), was selected so that the optical axes of the camcorders intersected 

orthogonally over the area of performance (see Figure 4.1). Although the direct linear 

transformation (DLT) method can produce acceptable reconstruction accuracy with 

convergence angles ranging from 60° to 1 2 0 °, errors increase as the convergence angle 

deviates away from 90° (Bartlett, 2007). This camera configuration had previously been 

used by Glazier et al. (2000) in their three-dimensional kinematic analysis of bowling 

techniques used by collegiate fast-medium bowlers and was shown to minimise the 

occlusion of upper extremity anatomical landmarks during the delivery stride. The focal 

length of each camera was adjusted to maximise the size of the calibration volume in 

the viewfinder, thereby maximising the potential accuracy of the resulting digitised 

kinematic data.
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Figure 4.1. A plan view of the data collection setup (not to scale).

To obtain scaling data required for camera-digitising system calibration, a 

calibration pole containing three spherical control points (0  = 0 .1  m) was moved 

sequentially through six pre-measured locations around the perimeter of the area of 

performance (see Figure 4.2). Challis and Kerwin (1992) demonstrated that control 

points distributed around the outside, rather than within, the volume to be calibrated 

produced superior reconstruction results. Although only 6  non co-planar control points 

are required in each camera view to generate the 11 parameters required to implement 

the DLT algorithm (Abdel-Aziz & Karara, 1971), additional control points have been 

recommended to increase the accuracy of the resulting data (e.g., Shapiro, 1978). 

Indeed, Chen, Armstrong and Raftopoulos (1994) showed that 16-20 control points are 

necessary for good calibration accuracy when using the DLT method. Another 

advantage of using additional control points is that they can be used to generate the 

extra DLT parameters required to correct linear (symmetrical) and non-linear 

(asymmetrical) lens distortions (Marzan & Karara, 1975). All digitised movement took 

place within the calibration volume measuring 2.3 x 4.0 x 2.1 m (19.32 m3), thus 

avoiding errors associated with extrapolation outside of the control point distribution 

(Wood & Marshall, 1986).
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Figure 4.2. A three-dimensional view of the calibration volume (not to scale).

Ball release speeds were measured using a Stalker Professional Sports Radar 

(Applied Concepts Marketing, Inc., USA) certified accurate to ± 0.05 m-s' 1 by the 

manufacturer. The radar gun was placed on a tripod and situated behind protective 

netting directly in line with the stumps in the position usually occupied by the 

wicketkeeper.

4.4 Data Reconstruction

All video sequences were downloaded to a Sony VGN-A297XP notebook computer 

(Sony Corporation, Japan) via an IEEE 1394 interfaced Sony HVR-M15E digital video 

tape recorder (Sony Corporation, Japan). A Windows®-based Vicon Motus 9.2 

software application (Oxford Metrics, UK) was used by an experienced operator to 

manually coordinate digitise calibration and movement sequences. The zoom function 

in combination with the sub-pixel cursor was used to increase the measurement 

resolution from 768 x 576 to 6144 x 4608.

Prior to digitising the 96 movement sequences (12 trials from 8  participants), the 

centroids of each of the 18 spherical control points were digitised for 1 0  consecutive 

fields. Repeated digitisation of each of the control points helped increase the precision
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of the calibration coordinate data used to calculate the 11 parameters required to 

implement the DLT. A user-defined 15-point, 14-segment spatial model was created to 

represent the human performer (see Appendix B). The centre of the head, the distal end 

of each foot, and the wrist, elbow, shoulder, hip, knee and ankle centres on both sides of 

the body were digitised. The centre of the ball was also digitised. The centre of mass of 

each participant for each trial was also determined using the method of Winter (2005). 

As no superficial skin markers were used, relevant anatomical knowledge was applied 

to estimate joint centres of rotation (Plagenhoef, 1971). For each movement sequence, 

every video field was digitised from 10  fields before back foot impact to 10  fields after 

ball release. These additional digitised fields provided padding data to overcome any 

potential end-point problems associated with data conditioning (Smith, 1989; Vint & 

Hinrichs, 1996). In addition to the 96 movement sequences, one movement sequence 

(trial 2 from participant 7) was randomly selected and re-digitised 12 times to enable 

measurement error to be estimated.

Once digitisation of calibration and movement sequences was complete, the 

two-dimensional image coordinates were converted to three-dimensional object space 

coordinates using DLT. As noted above, the DLT algorithm requires 11 parameters of 

which 6  define the location and orientation of the camera and the remaining 5 define the 

internal characteristics of the digitiser system. The equations for DLT are usually 

presented as follows:

LiX +  L2y  +  L3z +  L* LkX +  L6y +  L7z +  La
u + Au = - 1  p ^  v  + Av = -? ----- ^ ----------------- 2. (4 .1)

L9x +  L10y  +  Ln z +  1 L9x  +  L10y +  L±1z  +  1

where: u and v are the digitised image coordinates; Au and Av are the errors associated 

with the digitised image coordinates; x, y and z are the three-dimensional locations of 

the digitised points; and Li -  Ln are the DLT parameters.

To obtain the three-dimensional object-space coordinates from the digitised two- 

dimensional image coordinates, equation (4.1) can be rearranged to give two equations 

for each camera view relating to the three-dimensional object-space coordinates (x, y, z) 

of each point to its digitised image coordinates:
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where: u' and v' are the digitised image coordinates for the second camera; and L \  -  L'n 

are the DLT parameters associated with the second camera.

Equation (4.2) represents the equations for the four planes Pj each of the form 

ajx + biy + cjz = di (i =1, 2, 3, 4). Each equation is normalised by dividing through by 

Va2 + b 2 + c 2 and a least squares solution (x0, y0, z0) to the system of the four equations 

is obtained for each digitised anatomical landmark. The residuals q of the least squares 

solution took the form:

Ini =
|djXp +  bjy0 +  CjZ0 -  dj\

J a f  +  bf +  cf
(i = 1, 2, 3 ,4) (4.3)

which is the distance of (x0, y0, z0) from the plane Pj. The average RMS residual error 

estimates for the control points were 0.0023 x 0.0015 x 0.0018 m for the x, y, z axes, 

respectively, (see Appendix C).

Since the digital video camcorders had no genlocking facility and, therefore, 

synchronisation of the electronic shutters was not possible, the two sets of two- 

dimensional image coordinates obtained from digitising each view of the movement 

sequence were synchronised using the method described by Yeadon and King (1999). 

Briefly, the root mean square (RMS) distance r of each 3D location from the four planes 

was calculated using equation (4.4):

rf + TV +  r ? +  r}
r  = (4.4)

The RMS distance was calculated for each anatomical landmark digitised in 

each field throughout the whole delivery from back foot impact to ball release. To
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obtain an overall RMS error estimate for each trial over all points and fields the global 

RMS distance R was calculated using equation (5):

R =
y n  y l S  Zjj=i Zii=1 ‘ ij

15 n
(4.5)

where: r  ̂ is the RMS distance r for anatomical landmark i in field j; n is the number of 

video fields; and 15 is the number of digitised anatomical landmarks per video field.

The global RMS distance represents an overall error estimate of the 

reconstruction error of all the digitised body landmarks and will tend to be smallest 

when the digitised data sets are correctly synchronised, since all other errors will be the 

same or similar for different time offsets (Yeadon and King, 1999). Two digitised data 

sets were, therefore, synchronised by varying the time offset between them until the 

global RMS distance was minimised. The global RMS distance for the digitised 

movement sequences ranged from 0.0080 -  0.0122 m (see Appendix C).

4.5 Data Processing

Prior to implementing the various complex analyses, it was necessary to remove the 

errors or noise that had been introduced during data collection and data reconstruction. 

Measurement errors are an omnipresent and unavoidable feature of any kinematic 

investigation and must be minimised before differentiation to avoid propagation. A 

range of smoothing techniques has been cited in the literature including digital filters 

(e.g., Vaughan, 1982), truncated Fourier series (e.g., Hatze, 1981), and splines (e.g., 

Wood & Jennings, 1977). It has been claimed that splines represent the smooth nature 

of human movement while rejecting the normally distributed random noise assumed to 

be present in the reconstructed three-dimensional object-space coordinates (e.g., 

McLaughlin, Dillman & Lardner, 1977). A spline consists of a number of polynomial 

functions that are pieced together at points known as “knots” to produce a continuous 

function with continuous derivatives (Wood, 1982). As they had previously been 

advocated by Zernicke, Caldwell and Roberts (1976) and used by Glazier et al. (2000) 

in their three-dimensional kinematic analysis of collegiate fast-medium bowling 

techniques, cubic splines were selected and applied to the reconstructed three­
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dimensional object-space coordinates. The cubic spline algorithm used placed a knot at 

every data point and polynomial functions were fitted to every three adjacent knots 

throughout the entire time series. Both McLaughlin et a l (1977) and Challis and 

Kerwin (1987) highlighted some anomalies regarding the use of cubic splines, mainly 

when attempting to estimate the second derivative, but as acceleration data were not 

used in the series of empirical studies outlined in this thesis, these issues were 

.considered redundant.

Perhaps more important than the actual type of smoothing technique being 

adopted is the amount of smoothing applied to each individual time series measurement. 

In the past, investigators have used previously published cut-off frequencies (e.g., 

Winter, Sidwall & Hodson, 1974) or fitted by visual inspection (e.g., Vaughan, 1982) 

but these approaches are generally considered to be unsatisfactory because of their lack 

of objectivity. Although a number of different methods have been presented in the 

literature for the ‘optimal’ smoothing of biomechanical time series data (e.g., Hatze, 

1981; Woltring, 1985; Challis, 1999), Giakas and Baltzopoulos (1997) concluded that 

there is not one best all-purpose method. In the series of empirical studies outlined in 

this thesis, the method described by Jackson (1979) was used to calculate the optimal 

number of passes of the cubic spline for each individual time series. This procedure 

involved, firstly, calculating the average residual difference between raw data and the 

smoothed data across the time series. Then, the average residual, expressed as a 

percentage of the range of the original data, was plotted against the number of passes. 

This part of the procedure was computationally similar to the popular residual analysis 

method described by Winter (2005). However, to more accurately identify the optimum 

number of passes for each individual time series, the second derivative of the percentage 

mean residuals versus number of passes plot was calculated. The optimum number of 

passes for each individual time series was determined at the point where three 

consecutive second derivative data points fell below the default prescribed limit (1 0 %).
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Chapter V

The Suitability of Manual Coordinate 
Digitising for Analysing Inter- and Intra- 

Individual Movement Variability



5.0 Introduction

In Chapter III, the rationale for adopting a multiple single-participant research design in 

dynamical systems investigations of human movement was outlined. However, the 

implementation of this type of analysis is only viable when the method of measurement 

used is sufficiently sensitive to reliably detect: (i) differences between repeated trials of 

the same movement performed by the same participant (intra-individual variability); and 

(ii), differences between repeated trials of the same movement performed by different 

participants (inter-individual variability). Although the recent advent of automated 

motion capture systems has reduced the amount of random error in kinematic data, there 

are instances when this technology is not available or its use is precluded (e.g., during 

competition, outdoors, under water, etc.). On these occasions, the only other empirically 

verified and readily available method of obtaining limb and torso kinematics is through 

the use of image-based motion analysis. Here, movement sequences are filmed using 

one (for a two-dimensional analysis) or more (for a three-dimensional analysis) digital 

video cameras, manually coordinate digitised and reconstructed, usually through the use 

of a direct linear transformation routine (see Chapter IV).

Despite the need to establish the reliability of kinematic data generated using 

manual coordinate digitising and also to quantify other sources of variation (e.g., intra- 

and inter-individual variability) contained within this data, there have been few 

systematic investigations that have focused on either of these issues. Salo and 

Grimshaw (1998) analysed the variability of kinematic variables that were considered to 

be related to performance in sprint hurdling. They considered total variance of a single 

variable to be the sum of the variance of three sources: between-participant (3 males and 

4 females), within-participant over repeated trials (n = 8 ) and re-digitisation (n = 8  for 

one male and one female). For the majority of the 28 kinematic variables analysed (15 

and 24 for males and females, respectively), the highest portion of variability was found 

in between-participant variation and the lowest from re-digitising variation. Moreover, 

the mean coefficient of variation (%CV) for the re-digitisations of the male and female 

trial was 9.1% and 9.5%, respectively, with 10 and 13 variables having a %CV of less 

than 1%. It was concluded that, when considered together, these results indicated that 

the operator and motion analysis system combination used in that study produced 

sufficiently reliable values for most kinematic variables used to analyse sprint hurdling.

More recently, there has been some conjecture in the literature about whether 

manual coordinate digitising is suitable for analysing intra-individual movement
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variability, particularly as this aspect of motor performance has become a more 

important research topic in its own right. Bartlett et a l (2006) compared two- 

dimensional kinematic data obtained from an essentially planar motor skill (treadmill 

running) with and without superficial markers across repeated digitisations, repeated 

performance trials and different operators. Using ANOVA and omega-squared to 

partition variance, they reported that, when markers were used, movement variability 

accounted for a substantial portion of the total variance, more so than random error. 

However, when no markers were used, the proportion of total variance accounted for by 

movement variability reduced, mainly because of a concurrent increase in the amount of 

random error introduced. Based on these findings, Bartlett et a l (2006) concluded that 

intra-individual movement variability could not be reliably determined by manually 

coordinate digitising movement sequences without superficial skin markers.

Since the study of Bartlett et al. (2006), several other investigations have 

produced results that seemingly contradict their findings. As a precursor to their 

comparison of single-participant and group-based analyses of cricket fast bowling,

Salter et a l (2007) reported that the variability of repeated digitisations of a single 

performance trial (measurement error) was less than the variability of digitisations of 

repeated performance trials from the same participant (intra-individual movement 

variability), leading them to conclude that manual coordinate digitising was sufficiently 

reliable not to influence the results of their study. This finding was surprising given that 

data collection in their single-participant analysis took place in a competitive match, so 

consistent and unambiguous identification of anatomical landmarks would have 

invariably been compromised by clothing worn by the bowler.

Bradshaw, Keogh, Hume, Maulder, Nortje and Mamewick (2009) also reported 

that measurement error was less than the intra-individual movement variability 

exhibited by golfers of different abilities over repeated trials. However, they 

erroneously calculated measurement error from digitisations of repeated performance 

trials from the same participant not repeated digitisations of the same performance trial 

from the same participant (Glazier, 2011). A further issue with this study is that 

siliconCOACH® Pro (siliconCOACH, Dunedin, NZ) was used to generate kinematic 

data. This semi-quantitative video analysis package not only has a comparatively low 

digitising resolution owing to there being no sub-pixel cursor but also its reconstruction 

routine is based on simple linear scaling, which has been shown to be inferior to direct 

linear transformation procedures (Brewin & Kerwin, 2003). When considered
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cumulatively, these methodological issues call into question the validity of the results of 

Bradshaw et al. (2009).

Owing to the apparent discrepancies in the studies reviewed above and because 

it should be an important aspect of any biomechanical investigation, the purpose of this 

study was to establish the reliability of manual coordinate digitising when quantifying 

intra- and inter-individual variability in cricket fast bowlers. As dynamical systems 

analyses are reliant on time-continuous data sets, the reliability of kinematic 

measurements over the entire time course of delivery was analysed, in addition to time- 

discrete performance parameter measurements that are typically reported in more 

conventional biomechanical investigations.

5.1 Method

The study sample, experimental protocol, data collection, data reconstruction and data 

processing procedures adopted in the studies outlined in this chapter are detailed in 

sections 4 .1 ,4 .2 ,4 .3 ,4 .4  and 4.5, respectively.

5.1.1 Data Analysis -  Time-Discrete Data

The definitions of the time-discrete performance parameters used in this study can be 

found in Appendix D. These performance parameters were selected because they had 

either featured previously in the scientific literature on cricket fast bowling performance 

or had been referred to in the cricket coaching literature. To increase the precision with 

which key performance parameters could be identified, especially those that occurred 

between video fields, each of the linear and angular displacement time series 

measurements were interpolated using a cubic spline to produce continuous time 

histories. The precise identification of these performance parameters was further 

expedited by analysing displacement time series data in conjunction with viewing video 

and stick figure sequences. Mean and standard deviations (SD) for each of the 

performance parameters over the 12  trials performed by 8  bowlers and the 12  re­

digitisations of trial 2 performed by bowler 7 were calculated. Coefficient of variation 

(%CV) was also calculated to establish the reproducibility of the bowlers’ performance 

and the repeatability of the operator-digitising system combination. %CV was 

calculated as follows:
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SD/mean x 100 (5.1)

Summary statistics, including means, SDs, mean %CVs for individual participants and 

re-digitisations, can be found in section 5.2.1 and full data sets can be found in 

Appendix D.

Generalizability theory (Cronbach, Nageswari, & Gleser, 1963) was used to 

quantify different sources of variation in the data. This approach has been used 

previously in exercise science and physical therapy research (e.g., Stamm & Moore, 

1980; Looney, Smith & Srinivasan, 1990; Roebroeck, Harlaar & Lankhorst, 1993) and 

can be regarded as an extension of classical test theory and the intraclass correlation 

coefficient (e.g., Goodwin, 2001). After Salo and Grimshaw (1998), total variance (V) 

was considered to be the sum of three components (or facets as they are more 

commonly known in generalizability theory):

V = eb2 + ew2 + e 2 (5.2)

2 2 where: eb is the variance between participants; ew is the variance with repeated trials

within a participant; and er2 is the variance of the re-digitisations.

The facet variances were estimated as follows:

eb2 = (1/n) • (MSb - MSW) (5.3)

ew2 = MSW (5.4)

e,2 = Vr (5.5)

where: n is the number of trials within a participant (1 2  in this study); MSb is the mean 

square variance (variance of the individual participant means from the grand mean) 

between participants obtained from the ANOVA; MSW is the mean square variance 

(variance of individual scores from the mean score for each participant) within a 

participant obtained from the ANOVA; and Vr is the variance (squared standard 

deviation) for the 12 re-digitisations of trial 2 performed by participant 7.

58



Manual coordinate digitising was deemed to be suitable for analysing movement 

variability if eb2 and ew2 were greater than er2. ANOVA Minitab printouts can be found 

in Appendix F.

5.1.2 Data Analysis — Time-Continuous Data

The smoothed x, y and z displacement data for each of the 15 digitised anatomical 

landmark for each of the 12 trials performed by participant 7 were interpolated and time 

normalised to 101  data points with back foot impact and ball release representing 0 % 

and 100%, respectively. The SD at each of the 101 data points across the 12 repeated 

performance trials for each of the 45 variables was then calculated. The average SD 

across the 101  data points was then calculated for each variable to obtain an estimate of 

intra-individual movement variability. The same analysis procedure was also applied to 

the 12 re-digitisations of trial 2 performed by participant 7 to obtain an estimate of 

measurement error.

5.2 Results

5.2.1 Reliability of Time-Discrete Data

The mean ± SD for 33 time-discrete performance parameters for each participant are 

shown in Tables 5.1 to 5.4 (see Appendix E for full data sets). The mean %CVs for 

performance parameters across the 8  participants ranged from 0.6 to 99.5%. There were 

28 performance parameters that exhibited less than 1 0 % variation of which 2 2  of these 

exhibited less than 5%CV. The remaining 5 performance parameters all exhibited over 

10%CV.

The %CV for the re-digitisations ranged from 0.2 to 108.6% with a mean %CV 

of 6.3% across all 33 time-discrete performance parameters. When potentially 

problematic performance parameters over 1 0 %—caused, at least in part, by low 

denominator (mean) values—were excluded, the mean %CV for the remaining 

performance parameters decreased to 2.1%. There were 27 performance parameters that 

exhibited less than 5%CV in the re-digitisations of which 13 of these exhibited less than 

1%CV.
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When expressed as a percentage of total variance, there were 29 performance 

parameters that exhibited re-digitisation variances of less than 5% of which 15 of these 

exhibited less than 1% (see Figure 5.1). The re-digitisation variance was greater than the 

within-participant variance for the maximum pelvis-upper torso separation angle and the 

within-participant variance was greater than the between-participant variance for the 

maximum pelvis angular velocity. Of the 33 variables, therefore, 31 exhibited between- 

participant variances and re-digitisation variances that accounted for the largest and 

smallest portions of total variance, respectively.

5.2.2 Reliability o f Time-Continuous Data

A comparison of measurement error and intra-individual movement variability 

for each of the 15 anatomical sites in the x, y and z axes is shown in Figure 5.2. The 

range of the average SD for re-digitisations and repeated movement sequences was 1.4- 

6.9 mm and 7.5-44.9 mm, respectively, and the mean average SD across the 45 time 

series was 3.4 mm and 24.5 mm, respectively. When expressed as a percentage of 

movement variability for the same variable, measurement error, on average, accounted 

for 17.2% and ranged from 4.3-41.0%.

5.3 Discussion

The recent application of dynamical systems theory to the study of human motor 

performance has prompted biomechanists to explore alternative research designs and 

methodologies. As this theoretical framework emphasises the need to measure and 

analyse coordination and control both within and between participants over repeated 

performance trials, multiple single-participant research designs are being increasingly 

used. However, for this approach to produce valid results, the method of analysis needs 

to be sufficiently sensitive to reliability detect differences within and between 

participants—that is, it needs to be able to distinguish between inter- and intra­

individual movement variability and measurement error. As it is important that 

researchers implement the appropriate checks prior to their main analysis, the purpose 

of this study was to establish the reliability of manual coordinate digitising when 

quantifying intra- and inter-individual variability in cricket fast bowlers.

Because the analytical tools of dynamical systems theory typically rely on the 

analysis of entire time series measurements, this study examined the reliability of time-
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continuous measurements in addition to the time-discrete measurements that are 

habitually used in many biomechanical investigations. The results from the reliability 

analysis of time-discrete data showed that for the vast majority of performance 

parameters (31 out of 33), between-participant variance accounted for the largest 

portion of total variance and re-digitisation variance accounted for the smallest portion. 

Indeed, only the re-digitisation variance for the maximum hip-shoulder separation angle 

was greater than the within-participant variance. Several studies (e.g., Stockill & 

Bartlett, 1996; Elliott, Wallis, Sakurai, Lloyd, & Besier, 2002) have previously shown 

the accurate determination of this performance parameter to be potentially problematic, 

mainly because of errors introduced into shoulder alignment measurements, even with 

the use of external markers. In this study, however, it appears that the magnitude of 

errors were similar, if not, greater in hip alignment measurements compared to shoulder 

alignment measurements, as exemplified by greater re-digitisation variances and %CVs 

for other performance parameters related to hip alignment (i.e., hip axis range of motion 

and maximum hip axis angular velocity). Because both the shoulder and hip joints are 

large articulating structures, it can be difficult to precisely determine segmental 

alignments throughout delivery, which may have implications for accurately 

establishing causative links between bowling technique and lower back injury (see 

Elliott, 2000). The strategic positioning of additional cameras, as used, for example, by 

Burnett et al. (1995), could help increase the precision of digitised coordinates for 

shoulder and hip joint centres but they would also require proportionally greater manual 

coordinate digitising.

The results from the reliability analysis of the time- continuous measurements 

showed that variability in the re-digitisations of trial 2 performed by participant 7 

(measurement error) for the 45 variables was considerably less than the variability over 

12  repeated trials performed by the same participant (intra-individual movement 

variability). Indeed, when expressed as a percentage of movement variability for the 

same variable, measurement error, on average, accounted for only 17.2%. Interestingly, 

the left shoulder and left hip exhibited the largest amounts of error, which was likely to 

be due to these anatomical landmarks getting occluded from camera view during the 

period between FFI and BR. The increased errors in the left shoulder and left hip are 

likely to be responsible, at least in part, for the greater re-digitisation variances and 

%CVs exhibited in the time-discrete shoulder and hip alignments. These findings 

further support the recommendation made above for the use of additional strategically 

placed cameras, although given that the measurement errors were relatively small in
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comparison to movement variability, the camera configuration and operator-digitising 

system combination used in this study was deemed to be sufficiently reliable to produce 

valid results.

5.4 Conclusion

The results of this study showed that the operator-digitising system combination used 

was sufficiently sensitive to reliably detect differences in kinematics both within and 

between individuals over repeated performance trials for the majority of the 

performance parameters analysed. In terms of the implications beyond this study, this 

finding suggests that manual coordinate digitising might be an appropriate method for 

obtaining kinematic data in multiple single-participant analyses. However, owing to the 

labour intensive nature of the digitising process and the increased likelihood of random 

errors being introduced during the various stages of data collection, data reconstruction 

and data processing, it is advisable to use marker-based automated motion capture 

systems where feasible. Although these systems are not without limitation (see Milner, 

2008), they have been shown to have greater accuracy (e.g., Richards, 1999) and will 

markedly reduce processing time enabling more time-continuous data sets to be 

collected, at a greater temporal resolution, from a greater number of participants.

66



Chapter VI

Analysing Cricket Fast Bowling Techniques 
using Kohonen Self-Organising Maps



6.0 Introduction

Much has been made in the cricket coaching literature recently about preserving 

individuality in fast bowling and not ‘cloning’ fast bowlers to adopt the same, perceived 

‘perfect’, style of bowling technique (e.g., Cooley, 2003, 2005; Pont, 2006). A similar 

argument against the ‘one size fits all’ approach has also been made in the scientific 

literature with some authorities calling for the ‘common optimal movement pattern’ or 

‘idealised motor template’ concept (Brisson & Alain, 1996), which has typically been 

based on the action of a champion performer, an averaged profile, or the technique 

advocated in the coaching literature, to be abandoned (e.g., Davids, Glazier, Araujo & 

Bartlett, 2003; Schollhorn, Beckmann, Michelbrink, Sechelmann, Trockel & Davids, 

2006; Davids, Button & Bennett, 2008; Schollhorn, Mayer-Kress, Newell & 

Michelbrink, 2009; Phillips, Davids, Renshaw & Portus, 2010). Instead, it has been 

argued that individual-specific coordination solutions should be accepted, and even 

encouraged, as each fast bowler attempts to satisfy the constantly-changing confluence 

of organismic, environmental and task constraints impinging on them in the best way 

possible (Newell, 1986).

In this chapter, a study examining individual differences in fast bowling 

techniques at a global whole-body level is described. As noted in Chapters II and III, 

sports biomechanists have not typically analysed the coordinative movement patterns of 

cricket fast bowlers but have tended to focus on time-discrete kinematic variables that 

are thought to be related to the performance outcome. This state of affairs has 

transpired, at least in part, because sports biomechanists have not had access to, or have 

been unable to implement, analytical techniques capable of handling the high 

dimensionality of data required to examine sports techniques. The recent introduction of 

Kohonen Self-Organising Maps (SOMs) in movement science, however, appears to 

provide a solution to this issue as they enable high-dimensional input data to be 

compressed on to a low-dimensional map whilst preserving the topological 

characteristics of the original data (see Figure 6.1). Although this particular artificial 

neural network has been frequently used in analyses of gait (e.g., Schollhorn et al.,

2002; Barton et al, 2006; Janssen et al., 2008; Janssen, Schollhorn, Newell, Jager, Rost 

& Vehof, 2011), it has featured only sparingly in biomechanical investigations of sports 

techniques and has yet to be applied to kinematic analyses of cricket fast bowling 

techniques.

The aims of this study were, therefore, to: (i) establish the magnitude and origin
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Figure 6.1. A schematic showing the compression of high-dimensional input 
kinematics (joint angles) acquired from a cricket fast bowler between back foot impact 
(0 %) and ball release (1 0 0 %) on to a low-dimensional grid of map units or neurons, 
known as a Kohonen Self-Organising Map (SOM). Owing to its non-linear properties, 
the abstract 2D SOM trajectory has removed redundancies in, but retained the essential 
topological characteristics of, the original 3D data set. The SOM displayed in this 
diagram is a simplified version for illustrative purposes.

of individual differences in fast bowling techniques using SOMs against a dynamical 

systems theoretical backdrop; and (ii), further explore the potential of SOMs for 

examining sports techniques at a global whole-body level of analysis using fast bowling 

as a representative task vehicle. Based on the theoretical arguments provided by Newell 

(1985), it was anticipated that there would be broad similarities among, but distinctive 

differences between, the techniques used by individual fast bowlers.
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6.1 Method

The study sample, experimental protocol, data collection, data reconstruction and data 

processing procedures adopted in the studies outlined in this chapter are detailed in 

sections 4.1, 4.2, 4.3, 4.4 and 4.5, respectively.

6.1.1 Data Analysis

In total, data from 96 movement sequences (12 repeated trials from 8 

participants) were presented to the SOM algorithm written in the SOM Toolbox (v. 2.0) 

running on Matlab R2006b (Vesanto, Himberg, Alhoniemi & Parhankangas, 2000). The 

SOM Toolbox is freely available and can be downloaded from the following website 

address: http://www.cis.hut.fi/proiects/somtoolbox/. Matlab input code can be found in 

Appendix G.

Time-normalised, three-dimensional joint angles for the ankles, knees, hips, 

shoulders and elbows from back foot impact (0%) to ball release (100%) were used as 

inputs. These variables were selected because, together, they provided a reasonable 

description of limb and torso movements during delivery (Lees & Barton, 2005) and 

because they were unaffected by variations in anthropometry. Following the generic 

recommendation of Kohonen (2001), all joint angle time series were linearly scaled so 

that the variance of each was equal to one, thus ensuring that the SOM was not 

dominated by a single variable.

To maintain the temporal characteristics of the inputs, data triplets 

corresponding to t, t + 5%, and t + 10% for each of the 10 time series were constructed 

(Barton et al., 2006; Lamb, Bartlett, Robins & Kennedy, 2008). The data triplets were 

entered into the SOM toolbox as follows:

([T im e=l% ], [Time = 6%], [Time =11%])
([Time = 2%], [Time = 7%], [Time = 12%])
([Time = 3%], [Time = 8%], [Time = 13%])

([Time = 90%], [Time = 95%], [Time = 100%])
As each data triplet effectively spanned 10 data points, the number of data samples

acting as inputs was reduced from 100 to 90. In total, 259,000 data points (96 trials x 30

input variables (3 data triplets x 10 joint angles) x 90 data samples) were presented to
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the SOM algorithm, which was a similar number of data points to those used by Lamb 

et a l (2008).

Default parameter settings were used to initialise and train the SOM. Linear 

initialisation was used to organise the weights of the neurons linearly along the two 

dimensions of the map based on the largest eigenvectors of the inputs. The dimensions 

of the SOM were determined automatically based on the ratio between the two largest 

eigenvalues of the covariance matrix of the inputs (Vesanto et al, 2000). For the dataset 

used in this study, the map size was 27 x 17 neurons. A hexagonal local lattice structure 

was applied to define neighbourhoods and connect adjacent neurons.

The batch training algorithm, which calculated the Euclidean distance to all 

neurons for all input vectors simultaneously, was then implemented. Two training 

phases were used -  a rough training phase followed by a fine-tuning phase. In the 

former, a relatively large initial neighbourhood training radius and learning rate were 

used but these were reduced in the latter.

A unified distance matrix or U-matrix was used to visualise the distance 

between adjacent nodes in the SOM and identify clusters. The high values of the U- 

matrix (red and yellow colours) indicate a cluster border. Both individual and average 

SOM trajectories were superimposed onto the U-matrix for each participant. The 

frequency with which individual neurons were activated was also denoted by the 

diameter of each neuron, with a greater diameter indicating a greater number of 

activations.

6.2 Results

U-matrices for each of the 8  participants are shown in Figure 6.2. The narrow white 

lines in each U-matrix represent SOM trajectories for the 12 individual trials, whereas 

the thick white line represents an average SOM trajectory based on the 12 individual 

trials. All SOM trajectories start in the top right-hand quadrant of the U-matrices and 

work their way downwards or anti-clockwise.

Qualitative evaluation of the U-matrices indicate similarities in the overall shape 

and path of the average SOM trajectory between participants 1 and 4, participants 2 and 

3, and participants 6  and 8 .
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6.3 Discussion

6.3.1 Magnitude and Origin of Individual Differences

The results of this study showed marked individual differences in the techniques used 

by fast-medium bowlers who were relatively homogenous in terms of their ball release 

speeds. Although this finding does not prove conclusively that a common optimal 

movement pattern for fast bowling does not exist—one might exist but none o f the 

bowlers that were analysed adopted it—it seems unlikely given the distinctive 

differences in technique between bowlers. These findings are consistent with those 

reported for javelin throwing by Schollhom and Bauer (1998), which has been 

suggested to be biomechanically similar to cricket fast bowling (e.g., Bartlett et al., 

1996). They reported great diversity in the techniques of international javelin throwers, 

more so, in fact, than in the techniques of national javelin throwers.

Although there were similarities between certain participants, the shape and path 

of the SOM trajectories for cricket fast bowling were generally less well-defined than 

those previously reported, for example, by Barton et al. (2006) for walking gait. This 

finding was somewhat surprising given that Newell (1985) argued: “... the natural 

nominal categorization of activities is determined by the invariant characteristics of the 

relative motions of the body and limbs. Indeed, by elaboration, it may be proposed that 

each physical activity is defined behaviorally by a unique set of topological properties 

of relative motions” (p. 298). When the results of this study are considered in 

conjunction with those of other studies published in the literature, it could be argued 

that the relative motion of the limb and torso might be less well-defined in ontogenetic 

activities (i.e., artificial and stylistic skills that tend to be socially- and culturally-driven) 

such as cricket bowling than they are for phylogenetic activities (i.e., those that are 

indigenous and fundamental to the survival of the human species) such as walking and 

running.

Having established that there is unlikely to be a common optimal movement 

pattern for cricket fast bowling, it is necessary to consider the origins of the individual 

differences among the bowlers. As outlined in various sections of this thesis, a central 

tenet of dynamical systems theory applied to motor control, learning and performance is 

that coordination patterns emerge from the confluence of interacting task, 

environmental and organismic constraints that impinge on individual movement 

systems (Newell, 1986). Therefore, as the bowlers performed under approximately the 

same task constraints (bowlers were required to bowl each delivery at a pre-defined
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target at their ‘normal’ bowling speed) and environmental constraints (the atmospheric 

and surface conditions remained constant for each delivery) during data collection, it is 

reasonable to conclude that any individual differences in technique was due to varying 

organismic constraints, including the structural constraints arising from the design and 

architecture of the musculoskeletal system (e.g., Shemmell et al, 2004).

The coordination patterns exhibited by each individual bowler were also likely 

to have been shaped, at least in part, by the intrinsic dynamics that each individual 

bowler uniquely possesses. Intrinsic dynamics were defined by Corbetta and Vereijken 

(1999) as the “... spontaneous coordination tendencies or preferred modes of 

coordination that exist in the movement system at the start of the learning process. In 

other words, intrinsic dynamics capture the initial state of the organism when faced with 

a new learning or developmental task, reflecting the history of the system and prior 

experiences that contribute to form the existing behavioural repertoire” (p. 511). Kelso 

(1995) argued that, rather than acquiring a completely new coordination pattern, motor 

learning involves the moulding and sculpting of pre-existing coordination tendencies 

that define the intrinsic dynamics to match the task dynamics. From this perspective, 

intrinsic dynamics will invariably play a role in shaping coordination patterns, although 

their influence may diminish over time, especially if other constraints, such as 

instructional constraints (e.g., Newell & Ranganathan, 2010) issued by the coach or 

other sociocultural constraints (e.g., Clark, 1995), predominate during the learning 

process.

6.3.2 Utility and Practical Application ofSOMs

The results of this study provide further evidence that SOMs are an effective analytical 

tool for capturing topological differences in sports techniques between individuals, 

which supports the findings of previous studies where SOMs have been used to analyse 

discus throwing (Bauer & Schollhorn, 1997), javelin throwing (Schollhom & Bauer, 

1998), football kicking (Lees & Barton, 2005) and basketball throwing (Lamb, Bartlett 

& Robins, 2010). However, it is necessary to consider the practical application of 

SOMs, specifically how they can be used by sports biomechanists in an applied 

coaching or pedagogical context to help improve technique and performance.

Perhaps the most obvious application, and one that has been alluded to in the 

literature, is using SOMs in a diagnostics (i.e., fault finding or error detection) capacity. 

For SOMs to be used in this manner, however, researchers and practitioners need to be
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able to identify the SOM trajectory that corresponds to the ‘normal’, ‘correct’ or 

‘optimal’ technique so that the SOM trajectories obtained from specific individuals can 

be compared to it. In gait analysis, some researchers have used an averaging process to 

generate baseline normative profiles (e.g., Barton, Lisboa, Lees & Attfield, 2007; 

Barton, Hawken, Scott & Schwartz, 2010). Although this approach might be viable 

when comparing healthy individuals with those exhibiting moderate to severe injury, 

disease or disability, it is unlikely to be appropriate when attempting to evaluate the 

gaits of healthy individuals or the techniques of sports performers. For example, even 

the gaits of normal individuals have been shown to be influenced by emotions and 

music (Janssen et al, 2008). As noted in section 3.2.2, by pooling group data in this 

way, individual differences can get obscured and an average ‘mythical’ profile (i.e., one 

that is not representative of any individual in that group) is often generated (e.g.,

Gregor, 1989; Michaels & Beek, 1996; James & Bates, 1997). Indeed, as Kelso (1995) 

warned: “Because each person possesses his or her own ‘signature’, it makes little sense 

to average performance over individuals. One might as well average apples and 

oranges.” (p. 161).

As the distinctive individual differences reported in this and other studies (e.g., 

Schollhom & Bauer, 1998; Schollhorn et al, 2002; Janssen et al, 2008) indicate that a 

‘common optimal movement pattern’ or ‘idealised motor template’ towards which the 

majority of performers should aspire to achieve is unlikely to exist, it is necessary to 

identify the correct or optimal movement pattern for specific individuals. However, as 

Hay (1983) noted, claims that sports biomechanists can identify optimal movement 

solutions for specific individuals are “science fiction not science fact” (p. 18) and, 

although advancements have been made in optimisation modelling since the 1980s, it is 

still not possible to establish individual-specific coordination solutions for the vast 

majority of sports skills (see section 3.2.5 for an elaboration). This issue would appear 

not only to be a significant barrier to the more widespread application of SOMs in an 

applied context, but also for sports biomechanists, more generally, in their attempts to 

improve performance and reduce injury (Bartlett, 1997). As recommended by Glazier 

and Davids (2009b), further work is needed in optimisation modelling of sports 

techniques to discover optimal movement solutions for specific individuals, which is 

likely to involve incorporating a greater range and uniqueness of constraints in models 

of the neuromusculoskeletal system and simulation process.
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A possible solution to the problem of not being able to identify individual- 

specific optimal movement solutions, at least in the short-term, might be to generate 

SOM trajectories for a best performing trial for specific individuals and use that as a 

basis for detecting faults in technique by comparing all other performance trials to it. In 

this way, each performer has his or her own reference which can be used as a basis for 

technical evaluation and to direct remedial action when performing poorly (Gregor et 

al, 1992). Although not ideal given the amount and often functional nature of intra­

individual movement variability apparent in sport techniques and the fact that the same 

outcome can be produced by different coordination patterns (Davids et al, 2003), this 

strategy appears to be the best option currently available to sports biomechanists. 

However, a further issue that threatens to compromise the effectiveness of SOMs when 

used in this capacity is the difficulty of linking characteristics of SOM trajectories to 

specific aspects of technique. This problem has been identified previously by Lees 

(2002) among others but has yet to be satisfactorily resolved. Indeed, as Bartlett (2006) 

cautioned: “If the mapping rules within these opaque and very non-linear networks 

never come transparent, as some experts in artificial neural networks predict, then 

explicit mappings between specific features of the kinematic time series and the output 

maps may never emerge” (p. 15). Clearly, much work is to be done in this area.

6.4 Conclusion

This study provides further evidence suggesting that ‘common optimal movement 

patterns’ or ‘idealised motor templates’ in sport are unlikely to exist, thus supporting the 

findings from other studies with a similar focus (e.g., Schollhom & Bauer, 1998). It also 

demonstrates that SOMs are an effective tool for capturing individualities in technique 

or movement signatures. However, the utility of SOMs is undermined by the fact that 

optimal coordination patterns and, therefore, optimal SOM trajectories for specific 

individuals performing sports techniques cannot currently be determined. The practical 

application of SOMs is further compromised by the difficulty in linking aspects of 

technique with specific features of the SOM trajectory. These factors, combined with 

their computational and conceptual complexity, may explain why SOMs have not been 

more widely used in biomechanical analyses of sports techniques. Further research is 

required to resolve these issues if SOMs are going to become a more useful and 

versatile tool for sports biomechanists in an applied context.
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Chapter VII

Relationships between Intersegmental 
Coordination and Ball Release Speed: A 

Multiple Single-Participant Analysis



7.0 Introduction

A key theoretical concept, yet to be fully explored in cricket fast bowling, but integral to 

many throwing, kicking and striking activities, is the ‘kinematic chain’ (Atwater, 1979; 

Bartlett & Robins, 2008; Elliott, Alderson & Reid, 2008). This phenomenon is defined 

as a proximal-to-distal linkage system through which energy and momentum are 

transferred sequentially, achieving maximum magnitude in the terminal segment 

(Reisig, Barrentine, Escamilla & Andrews, 1996). Although several studies have 

empirically verified the kinematic chain in fast bowling (e.g., Elliott et al., 1986;

Stockill & Bartlett, 1994; Glazier et al., 2000), it is still unclear how the movements of 

the pelvis, upper torso, bowling arm, non-bowling arm and front leg are coordinated to 

facilitate energy and momentum transfer. This apparent lack of understanding may, in 

part, be due to the methods used by investigators to examine body segment dynamics. 

For example, previous studies have merely described the kinematic chain in terms of the 

peak resultant velocities (Elliott et al., 1986) and the peak horizontal velocities (Glazier 

et al., 2000) of upper extremity body segments endpoints. Although these procedures 

clearly provide evidence of a progressive proximal-to-distal increase in segmental 

velocities, neither study reported the temporal occurrence of peak segment endpoint 

velocities in relation to ball release, therefore, providing an insufficient description of 

temporal sequencing in fast bowling. However, even with the inclusion of 

corresponding time histories as reported, for example, by Stockill and Bartlett (1994), 

identical peak segment endpoint velocities may be generated by completely different 

acceleration profiles, providing little information about segmental interactions and 

energy transfer.

To gain a better understanding of proximal-to-distal sequencing in cricket fast 

bowling and how energy and momentum might effectively be transferred along the 

kinetic chain, it is necessary to examine how body segments interact during delivery. As 

indicated above, an alternative approach to reducing time series data to discrete 

kinematic measurements and their corresponding time histories is required as this 

procedure fails to capture the dynamic nature of the movement (e.g., Baumann, 1992). 

As a precursor to more sophisticated kinetic and energetic analyses, segmental 

interactions could be examined by analyzing sets of time series data obtained from 

adjacent body segments or joints using so-called ‘complex’ analytical techniques that 

have emerged from dynamical systems investigations of human movement (e.g., Hamill 

et al., 2000; Kurz & Stergiou, 2004; Wheat & Glazier, 2006). As noted in section 3.2.6,
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these techniques, unlike inverse dynamics analyses and energetic analyses, do not 

require kinematic data to be combined with body segment inertia parameters or ground 

reaction force data, they make fewer assumptions, and they can be used to quantify 

relative motion information on which athletes and coaches have been shown to base 

their subjective judgements of sports techniques (e.g., Sparrow & Sherman, 2001).

As ‘complex’ analytical techniques derived from dynamical systems theory have 

seldom been applied beyond studies of human locomotion and because coordination in 

cricket fast bowling has yet to be investigated in any form, the aims of this study were 

to: (i) demonstrate the utility and application o f various ‘complex’ analytical techniques 

(i.e., cross-correlation functions and vector coding) to cricket fast bowling by using 

them to quantify the intersegmental coupling relationships between various upper and 

lower extremity body segments; (ii) identify whether any systematic differences in these 

coupling relationships existed between individual fast bowlers; and (iii), establish 

whether there was any association between these coupling relationships and ball release 

speed both within and between fast bowlers.

7.1 Method

The study sample, experimental protocol, data collection, data reconstruction and data 

processing procedures adopted in the studies outlined in this chapter are detailed in 

sections 4.1, 4 .2 ,4 .3 ,4 .4  and 4.5, respectively.

7.1.1 Data Analysis

Angular displacements for the bowling arm, non-bowling arm, front leg, upper torso 

and pelvis throughout the course of the delivery stride were calculated using the 

definitions described in Figure 7.1. Each time series was interpolated using a cubic 

spline and time normalised to 101 data points with back foot impact (BH) and ball 

release (BR) representing 0% and 100%, respectively. Relative motion diagrams or 

angle-angle plots were constructed for the following segment couplings: non-bowling 

arm vs. front leg (NBA vs. FL); bowling arm vs. non-bowling arm (BA vs. NBA); 

bowling arm vs. front leg (BA vs. FL); and upper torso vs. pelvis (UT vs. P). These 

couplings were selected because: (i) they are all either integral to the kinematic chain or 

are likely to be instrumental in facilitating the transfer of energy and momentum along 

the kinematic chain through force coupling; and (ii), because they had previously been
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Figure 7.1. Segment angular displacement definitions for: (a) upper torso and pelvis 
(centred mid-segment); (b) non-bowling arm and front leg (centred on proximal end of 
each segment); and (c) bowling arm (centred on proximal end of the segment).
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identified in the scientific (e.g., Davis & Blanksby, 1976b) and coaching (e.g., Pont, 

2006) literatures on fast bowling as being potentially important in the generation of high 

ball release speeds. The proximal and distal segments comprising each 

coupling—defined functionally in terms of their position in the kinematic chain rather 

than anatomically—were plotted on the abscissa and ordinate axis, respectively (see 

Figure 7.2).

A combination of analytical techniques, as adopted by Pohl and Buckley (2008), 

was used to analyse the data displayed in the angle-angle plots. Cross-correlation 

functions (e.g., Derrick & Thomas, 2004) were used to establish the type of coupling 

relationship, the degree of linkage and the phase relation between the segments 

comprising each coupling. A positive peak cross-correlation coefficient indicated an in- 

phase coupling relationship, a negative peak cross-correlation coefficient indicated an 

anti-phase coupling relationship, and the magnitude of the peak cross-correlation 

coefficient indicated the strength of the coupling relationship (Temprado et al., 1997). 

The phase relation between segments was established by shifting the time series data 

from one segment backward or forward in relation to the time series data of the other 

segment by a given number of data points. As a general rule, Derrick and Thomas 

(2004) recommended n/2 offsets but they suggested that the type (e.g., circular or non­

circular) and length of the time series need to be considered. On visual inspection of the 

time series data comprising each coupling, it was deemed that 2 0  time offsets were 

appropriate. A peak cross-correlation coefficient found at a negative time lag indicated 

that the proximal segment moved before the distal segment, whereas a peak cross­

correlation coefficient found at a positive time lag indicated the distal segment moved 

before the proximal segment. Peak cross-correlation coefficients found at a zero time 

lag indicated that the two segments moved synchronously.

One of the limitations of cross-correlation functions is that they only provide an 

indication of the temporal similarity between, and not the relative magnitudes of, the 

two time series presented in angle-angle plots (Pohl & Buckley, 2008). For example, it 

is possible for two pairs of time series measurements to have similar peak cross­

correlation coefficients but have quite different amplitudes and ratio. To overcome this 

issue, vector coding (Tepavac & Field-Fote, 2001) was also applied to the angle-angle 

plots. This technique involved calculating the angle between the vector adjoining 

consecutive data points on the angle-angle trajectory and the right horizontal (see Figure 

7.2a). This angle, known as the coupling angle (y), ranged from 0 to 360° and provided
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the following information: 0° and 180° indicated that the distal segment was stationary 

while the proximal segment was moving; 90° and 270° indicated that the proximal 

segment was stationary while the distal segment was moving; 45° and 225° indicated 

that the two segments were moving at the same rate and in the same direction (i.e., 

perfectly in-phase); 135° and 315° indicated that the two segments were moving at the 

same rate but in opposite directions (i.e., perfectly anti-phase) (see Figure 7.2b).

BR- 100%

(a)

CD

O)

Q.
85%

♦
O) BFI - 0%

♦♦♦

FFI - 64%

Angular Displacement Proximal Segment (0p)

Figure 7.2. Vector coding applied to an exemplar relative motion diagram or angle- 
angle plot for the UT vs. P coupling. The magnified view (a) indicates how the coupling 
angle (y) was calculated at every percentage point from BFI (0%) to BR (100%). The 
coupling angle compass (b) shows how y was interpreted with the hashed arrows 
indicating equal movement in both segments and the solid arrows indicating movement 
in one segment only.
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As it was rare for coupling angles to lie exactly along the vertical, horizontal and 

45° diagonals, the 360° coupling angle range was further divided into 45° sectors, with 

the boundary of each sector falling 22.5° either side of the vertical, horizontal and 45° 

diagonals (see Table 7.1). The type of coordination was calculated at every percentage 

point during the delivery stride from BFI (0%) to BR (100%). This method was 

previously used by Chang, van Emmerik and Hamill (2008) to analyse rearfoot-forefoot 

coordination in human walking.

Table 7.1. Types of coordination and their coupling angle (y) boundaries.
Coordination Pattern Coupling Angle Definition
Anti-phase 112.5° < y < 157.5°, 292.5° < y < 337.5°
In-phase 22.5° £ y < 67.5°, 202.5° < y < 247.5°
Proximal phase 0° < Y < 22.5°, 157.5° < Y < 202.5°, 337.5° < Y ^ 360°
Distal phase 67.5° < y < 112.5°, 247.5° < Y < 292.5°

7.1.2 Statistical Analysis

To identify whether any statistically significant, systematic differences in coordination 

existed between individual fast bowlers, a one-way analysis of variance (ANOVA) was 

applied to the cross-correlation coefficients and coupling angle data obtained from each 

of the 8  participants over 12 performance trials. Prior to performing these tests, 

however, further manipulations of the cross-correlation and coupling angle data were 

necessary. With the former, all cross-correlation coefficients calculated for the period 

between BFI and BR for each segment coupling were Z-transformed using the formula 

outlined by Fisher (1921). This procedure was necessary because cross-correlation 

coefficients are not normally distributed—that is, the distribution becomes negatively 

skewed as the cross-correlation coefficient increases (Silver & Dunlap, 1987). With the 

latter, the mean coupling angle for each of the four phases (0-24%, 25-49%, 50-74% 

and 75-99%) of the period between BFI and BR for each segment coupling (NBA vs. 

FL, BA vs. NBA, BA vs. FL and UT vs. P) was calculated using directional or circular 

statistics (e.g., Batschelet, 1981).

The Z-transformed cross-correlation coefficients and mean coupling angle data 

were then formally tested for normality and homogeneity of variance using Anderson- 

Darling and Levene’s tests, respectively. Although one-way ANOVAs have been shown 

to be robust when data violate the homogeneity of variance assumption, particularly 

when equal sample sizes are used (e.g., Boneau, 1960), there can be an increase in the 

Type I error rate under these conditions. Therefore, when groups did not exhibit equal 

variances, a Welch’s F  test (Welch, 1951) was used, as recommended by Wilcox
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(1987), as this test increases power and reduces the likelihood of Type I errors. Omega 

squared (co2) was also calculated to provide an estimate of the proportion of total 

variance accounted for by the independent variable (Tolson, 1980). The following 

formulae were used to calculate co2 and adjusted co2 for group comparisons that 

exhibited homogenous (7.1) and heterogeneous (7.2) variances, respectively:

cu2=
SSB- ( k - l ) - ( M S w) 

SST+ MSW
(7.1)

where: SSB is the sum of squares between groups; k is the number of groups (8  in this 

study); MSw is the mean square within groups; and SSt is the total sum of squares.

where: dftet is the number of groups (8  in this study) minus one; F  is the F  statistic 

derived from Welch’s F  test; and N j is the total number of trials across participants (96 

in this study).

Tukey’s HSD and Games-Howell’s post-hoc tests were applied when the 

homogeneity of variance assumption was and was not met, respectively, to make 

pairwise comparisons between individual participant means and identify where 

statistically significant differences, if any, existed. The standardised difference statistic, 

Cohen’s d (Cohen, 1988), was also calculated to determine the meaningfulness of 

statistically significant mean differences between participants (Thomas, Salazar & 

Landers, 1991). The following formula was used:

Mr  M2
* = SD  (73)°  Spooled

where: Mi is the mean of group 1 ; M2 is the mean of group 2 ; and SDp0oied is the pooled 

standard deviation.
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The threshold values proposed by Hopkins, Marshall, Batterham and Hanin (2008) for 

small (0.2), moderate (0.60), large (1.20), very large (2.0) and extremely large (4.0) 

effects were adopted for interpreting magnitude of effect.

To establish whether there were any associations between segmental coupling 

relationships and ball release speed, Pearson product-moment correlation coefficients 

were calculated. The multiple single-participant research design adopted in this study 

enabled both a cross-sectional and a longitudinal analysis to be undertaken. In the cross- 

sectional analysis, the peak Z-transformed cross-correlation coefficients for both the 

best performing trial (the trial that produced the greatest ball release speed) and a mean 

trial (calculated across the 12  trials at each percentage point between 0 - 1 0 0 %) for each 

participant were correlated with their corresponding ball release speeds (average ball 

speed in the case of the average trial) across the 8 participants. In the longitudinal 

analysis, the peak Z-transformed cross-correlation coefficient for each trial was 

correlated with its respective ball release speed over the 12  trials performed for each of 

the 8 participants.

A similar analysis was conducted on the coupling angle data. However, instead 

of correlating ball release speed with the mean coupling angle calculated during the 

period from BFI to BR for each of the 4 segment couplings, the delivery stride was 

divided into phases (0-24%, 25-49%, 50-74% and 75-99%) and the mean coupling 

angle for each phase was calculated. Pearson product-moment correlation coefficients 

were then calculated for each mean coupling angle for the 4 segment couplings for each 

phase and ball release speed. As in the cross-correlation analysis, a cross-sectional 

analysis using both the best performing trial and average trial for each of the 8 

participants, and a longitudinal analysis across the 12  trials performed by each 

participant, was conducted.

As multiple correlation coefficients were calculated for both the cross­

correlation and vector coding analyses, the Bonferroni’s correction procedure (e.g., 

Curtin & Schulz, 1998) was used to adjust the level of significance and decrease the risk 

o f Type I errors. This procedure simply involved dividing the alpha level (a = 0.05) by 

the number of tests, which for the cross-correlation and vector coding analysis was 4 

(adj. a  = 0.013) and 16 (adj. a  = 0.003), respectively. All statistical tests were 

implemented using SPSS v.17 except the Anderson-Darling tests that were implemented 

using Minitab v.16.
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7.2 Results

This results section is divided into three sub-sections. In sub-section 7.2.1, mean 

differences in ball release speed among the 8  participants over the 12  performance trials 

are reported. In section 7.2.2, mean differences in cross-correlation coefficients for the 

four segment couplings among the 8 participants over the 12  performance trials and 

statistical associations between cross-correlation coefficients and ball release speed 

within and between participants are reported. Finally, in section 7.2.3, average 

differences in mean coupling angle among the 8 bowlers over the 4 phases (0-24%, 25- 

49%, 50-74% and 75-99%) of the 12 performance trials and any statistical associations 

between average coupling angle and ball release speed within and between participants 

are report.

7.2.7 Ball Release Speed

The ball release speeds for each of the 8  participants over the 12 performance trials are 

summarised in Table 7.2. Anderson-Darling normality tests showed that 7 out of the 8 

data sets obtained from each participant were normally distributed. However, the 

Levene’s test revealed that the homogeneity of variance assumption was not met when 

testing for differences between participants (P = 0.011). A Welch’s F  test was, 

therefore, applied to determine statistically significant differences among participants 

for ball release speed and an adjusted co2 statistic was calculated to determine how much 

of the total variance in ball release speed could be attributed to differences among 

participants.

The results of the Welch’s F  test revealed that a statistically significant 

difference in ball release speed existed between the 8  participants (Welch’s P 7,37.12 = 

33.85, P  < 0.001, adj. co2 = 0.705). A Games-Howell post-hoc test was used to identify 

where differences in ball release speed between individual participants existed. The 

results of this test, along with Cohen’s d standardised difference statistics for 

statistically significant mean differences, are shown in Table 7.3. Of the 28 unique 

pairwise comparisons, 17 were shown to have significantly different ball release speeds 

(P < 0.05). The mean Cohen’s d standardised difference statistic for statistically 

significant mean differences was 2.92 (range 1.44-5.08). The magnitudes of the 

statistically significant mean differences were interpreted as being large (n = 6 ), very 

large (n = 6 ) or extremely large (n = 5) according to the criteria set out by Hopkins et al. 

(2008).
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7.2.2 Cross-Correlation Analysis

Full datasets for peak phase-lagged cross-correlation coefficients for the 8  participants 

over the 12 performance trials can be found in Appendix H. Mean (SD) peak phase- 

lagged cross-correlation coefficients, and their Z-transformed analogues, calculated over 

the 12  performance trials performed by each of the 8  participants are presented in 

Tables 7.4 and 7.5, respectively.

Table 7.4. Mean (SD) phase-lagged cross-correlation coefficients calculated over the 12 
performance trials performed by each of the 8  participants.__________________________

Mean Lagged Cross-Correlation Coefficient
Participant NBA vs. FL BA vs. NBA BA vs. FL UT vs. P

1 0.991 (0.445) -0.956 (0.078) -0.934 (0.200) 0.806 (0.109)
2 0.972 (0.483) -0.978 (0.098) -0.938 (0.302) 0.792 (0.091)
3 0.647 (0.253) -0.974 (0.140) -0.733 (0.361) 0.922 (0.125)
4 0.920 (0.330) -0.961 (0.061) -0.937 (0.398) 0.735 (0.113)
5 0.612(0.168) -0.978 (0.150) -0.533 (0.162) 0.690 (0.094)
6 0.990 (0.154) -0.975 (0.120) -0.984 (0.149) 0.733 (0.070)
7 0.984 (0.455) -0.938 (0.078) -0.980 (0.238) 0.688 (0.109)
8 0.981 (0.357) -0.973 (0.041) -0.942 (0.214) 0.717 (0.114)

NB. Mean and SD are backtransformed values.

Table 7.5. Mean (SD) phase-lagged Z-transformed cross-correlation coefficients
calculated over the 12  performance trials performed by each of the 8  participants.

Mean Lagged Z-Transformed Cross-Correlation Coefficient
Participant NBA vs. FL BA vs. NBA BA vs. FL UT vs. P

1 2.687 (0.479) -1.892 (0.078) -1.692 (0.203) 1.114(0.109)
2 2.125 (0.527) -2.257 (0.098) -1.721 (0.311)* 1.078 (0.092)
3 0.771 (0.258) -2.174 (0.141) -0.934 (0.378) 1.606 (0.126)
4 1.592 (0.343) -1.954 (0.061) -1.713(0.421) 0.939 (0.114)
5 0.712 (0.170) -2.242 (0.044) -0.595 (0.163) 0.848 (0.094)
6 2.642 (0.155) -2.194 (0.121) -2.415 (0.150) 0.934 (0.070)
7 2.419(0.491) -1.725 (0.078) -2.300 (0.243) 0.843 (0.109)*
8 2.314 (0.374) -2.152 (0.041) -1.753 (0.217) 0.901 (0.115)

Levene’s F P = 0.005** P=  0.004** P=  0.057 P=  0.802
Variance Ratio (H v L) 11.6 :1 11.8 :1 7.9 :1 3 .2 :1
* Not normally distributed, ** Homogeneity of variance assumption violated

Anderson-Darling normality tests showed that 30 out of the 32 Z-transformed 

cross-correlation coefficient data sets obtained from the 8 participants were normally 

distributed. However, the Levene’s tests revealed that the homogeneity of variance 

assumption was not met when testing for differences between participants for the 

following segment couplings: NBA vs. FL (P = 0.005) and BA vs. NBA (P = 0.004). 

The Welch’s F  test was, therefore, applied to determine statistically significant 

differences among participants for these couplings and an adjusted co2 statistic was 

calculated to determine how much of the total variance could be attributed to 

differences between participants.

The Welch’s F  and one-way ANOVA tests of average Z-transformed cross­

correlation coefficients showed statistically significant differences between the 8
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participants for each of the 4 segment couplings: NBA vs. FL -  Welch’s F7,37.05 = 

144.41, P < 0.001, adj. co2 = 0.913; BA vs. NBA -  Welch’s F 7.37.06 = 58.91, P < 0.001, 

adj. co2 = 0.809; BA vs. FL -  F 7,88 = 59.29, P < 0.001, co2 = 0.809; UT vs. P -  F 7,88 = 

68.98, P<  0.001, co2 = 0.832.

Pairwise post hoc comparisons, using Games-Howell’s and Tukey’s tests for 

heterogeneous and homogeneous data sets, respectively, were implemented to identify 

differences in coupling relationships between participants. The results of these tests are 

summarised in Tables 7.6 to 7.9 along with Cohen’s d standardised difference statistics 

for statistically significant mean differences. Of the 28 unique pairwise comparisons for 

the NBA vs. FL, BA vs. NBA, BA vs. FL and UT vs. P segment couplings, 19, 17, 20 

and 17, respectively, were shown to be significantly different (P < 0.05). The mean 

Cohen’s d standardised difference statistic for the NBA vs. FL, BA vs. NBA, BA vs. FL 

and UT vs. P couplings were 4.07 (range 1.12-11.86), 3.49 (range 0.44-8.16), 4.10 

(range 1.71-11.62) and 3.60 (range 1.37-6.86), respectively. Only 4 of the 73 Cohen’s d 

standardised difference statistics calculated for statistically significant mean differences 

were less than the 1.2 threshold figure suggested by Hopkins et al. (2008) to represent a 

large effect.

To establish whether there were any associations between segmental coupling 

relationships and ball release speed within and between participants, Pearson product- 

moment correlation coefficients were calculated for: (i) peak phase-lagged Z- 

transformed cross-correlation coefficient and ball release speed for each participant; (ii) 

the average peak phase-lagged Z-transformed cross-correlation coefficient calculated 

across the 12 deliveries for each participant and average ball release speed; and (iii) 

peak phase-lagged Z-transformed cross-correlation coefficient for the best performing 

trial and corresponding ball release speed for each participant were calculated. The 

results of these statistical tests can be found in Table 7.10. No statistically significant 

correlation coefficients (adj. P > 0.013) for segmental coupling relationships and ball 

release speed could be identified.
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7.2.2 Vector Coding Analysis

Full datasets for mean coupling angles for the 8 participants over the 12 performance 

trials can be found in Appendix I. Average mean (SD) coupling angle calculated during 

the 4 phases (0-24%, 25-49%, 50-74% and 75-99%) of the delivery stride over 12 

performance trials for the NBA vs. FL coupling are reported in Table 7.11.

Table 7.11. Average mean (SD) coupling angle calculated during the 4 phases (0-24%, 
25-49%, 50-74% and 75-99%) of the delivery stride over 12 performance trials for the 
NBA vs. FL coupling._________________________________________________________

Average Mean Coupling Angle for NBA vs. FL Coupling 
________________ (SD in parentheses)________________

Participant 0-24% 25-49% 50-74% 75-99%
1 239.4 (8.5) 258.1 (0.7) 262.7 (3.4) 240.8 (9.0)
2 261.1 (7.5) 264.6 (1.3) 266.8 (2.7)* 248.9 (9.1)
3 292.7 (8.9) 266.6 (2.2) 269.3 (3.8) 219.3 (8.6)
4 247.3 (8.4) 267.7 (0.8) 266.2 (3.0) 246.9 (7.5)*
5 261.2 (2.8) 262.2 (1.3) 277.3 (3.1) 240.7 (16.1)
6 242.4 (3.9)* 252.0 (1.5) 254.4 (1.5) 215.3 (13.0)
7 261.4 (10.7) 258.9 (1.2) 251.5 (3.7) 226.4 (14.3)*
8 252.0 (3.7) 261.6 (1.2) 264.4 (1.5) 251.1 (5.0)

Levene’s F P = 0.012** P=  0.049** P=  0.008** P -  0.008**
Variance Ratio (H v L) 15.1 :1 9.1 :1 6.6 :1 10.2:1
* Not normally distributed, ** Homogeneity of variance assumption violated

Anderson-Darling normality tests showed that 28 out of the 32 mean coupling 

angle data sets obtained from the 8 participants for the NBA vs. FL coupling were 

normally distributed. However, Levene’s tests revealed that the homogeneity of 

variance assumption was not met when testing for differences between participants for 

any of the four phases of the delivery stride: 0-24% (P = 0.012), 25-49% (P  = 0.049), 

50-74% (P = 0.008) and 75-99% (P = 0.008). The Welch’s F  test was, therefore, 

applied to determine statistically significant differences among participants for each of 

these phases and an adjusted co2 statistic was calculated to determine how much of the 

total variance could be attributed to differences between participants.

The Welch’s F  tests of average mean coupling angle showed statistically 

significant differences between the 8 participants for each of the 4 phases of the delivery 

stride for the NBA vs. FL coupling: 0-24% -  Welch’s P 7,36.99 = 60.96, P  < 0.001, adj. 

to2 = 0.814; 25-49% -  Welch’s F 7, 37.33 = 212.64, P < 0.001, adj. co2 = 0.939; 50-74% -  

Welch’s F 7, 37.20 = 109.15, P < 0.001, adj. co2 = 0.887; 75-99% -  Welch’s F 7,37.26 = 

25.75, P < 0.001, adj. co2 = 0.643.

Pairwise post hoc comparisons using Games-Howell’s test was implemented to 

identify differences in average mean coupling angles between participants. The results 

of this test are summarised in Tables 7.12 to 7.15 along with Cohen’s d standardised
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difference statistics for statistically significant mean differences. Of the 28 unique 

pairwise comparisons for the 0-24%, 25-49%, 50-74% and 75-99% phases of the 

delivery stride for the NBA vs. FL coupling, the average mean coupling angle was 

shown to be significantly different (P < 0.05) for 20, 24, 19 and 14 pairwise 

comparisons, respectively. The mean Cohen’s d standardised difference statistic for the 

0-24%, 25-49%, 50-74% and 75-99% phases were 3.52 (range 1.46-7.34), 5.42 (range 

1.85-12.83), 4.59 (range 1.70-9.41) and 2.58 (range 1.42-4.52), respectively. All of the 

Cohen’s d standardised difference statistics calculated for statistically significant mean 

differences were greater than the 1.2 threshold figure suggested by Hopkins et al.

(2008) to represent a large effect.

To establish whether there were any associations between segmental coupling 

relationships and ball release speed within and between participants, Pearson product- 

moment correlation coefficients for: (i) mean coupling angle for the NBA vs. FL 

coupling and ball release speed for each participant; (ii) the average mean coupling 

angle for the NBA vs. FL coupling calculated across the 12 deliveries for each 

participant and average ball release speed; and (iii) mean coupling angle for the NBA 

vs. FL coupling for the best performing trial and corresponding ball release speed for 

each participant were calculated. The results of these statistical tests can be found in 

Table 7.16. Only one statistically significant correlation coefficient (adj. P < 0.003) 

could be identified and that was between mean coupling angle and ball release speed 

during the 75-99% phase of the delivery stride for participant 7.

Histograms of the types of coordination exhibited over the 12 performance trials 

for the NBA vs. FL coupling during the four phases (0-24%, 25-49%, 50-74% and 75- 

99%) of the delivery stride for each participant are shown in Figure 7.3.
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Figure 7.3. Histograms (mean ± SD) of the types of coordination exhibited over the 12 
performance trials for the NBA vs. FL coupling during the four phases (0-24%, 25- 
49%, 50-74% and 75-99%) of the delivery stride for participant 1 (top left) to 8 (bottom 
right).
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Average mean (SD) coupling angle calculated during the 4 phases (0-24%, 25- 

49%, 50-74% and 75-99%) of the delivery stride over 12 performance trials for the BA 

vs. NBA coupling are reported in Table 7.17.

Table 7.17. Average mean (SD) coupling angle calculated during the 4 phases (0-24%, 
25-49%, 50-74% and 75-99%) of the delivery stride over 12 performance trials for the 
BA vs. NBA coupling.________________________________________________________

Average Mean Coupling Angle for BA vs. NBA Coupling 
________________ (SD in parentheses)________________

Participant 0-24% 25-49% 50-74% 75-99%
1 132.7 (8.5) 142.6 (1.6) 132.7 (1.8) 99.4 (1.7)
2 122.5 (5.7) 133.6 (1.3) 126.5 (1.8) 99.9 (2.3)
3 121.5(5.6) 138.3 (1.4) 129.1 (1.5) 102.5 (3.6)
4 126.3 (5.6) 141.7 (2.2) 121.4 (1.4) 102.6 (1.5)
5 130.5 (2.5) 128.0 (1.4) 122.5 (2.1) 96.5 (3.8)
6 132.2(3.0)* 134.1 (1.3) 126.7 (1.8) 100.1 (3.9)
7 128.3 (6.5) 143.5 (1.2) 122.0 (3.0) 96.4 (2.3)
8 133.1 (3.6) 144.5 (1.7) 131.5 (1.2) 106.3(1.7)

Levene’s F P =  0.010** P = 0.608 P =  0.066 P =  0.048**
Variance Ratio (H v L) 11.1:1 3.4:1 6.3:1 6.9:1
* Not normally distributed, ** Homogeneity of variance assumption violated

Anderson-Darling normality tests showed that 31 out of the 32 mean coupling 

angle data sets obtained from the 8 participants for the BA vs. NBA coupling were 

normally distributed. However, Levene’s tests revealed that the homogeneity of 

variance assumption was not met when testing for differences between participants for 

the following phases of the delivery stride: 0-24% (P  = 0.010) and 75-99% (P = 0.048). 

The Welch’s F  test was, therefore, applied to determine statistically significant 

differences among participants for each of these phases and an adjusted co2 statistic was 

calculated to determine how much of the total variance could be attributed to 

differences between participants.

The Welch’s F  tests of average mean coupling angle showed statistically 

significant differences between the 8 participants for each of the 4 phases of the delivery 

stride for the BA vs. NBA coupling: 0-24% -  Welch’s P7, 37.23 = 9.14, P < 0.001, adj. 

co2 = 0.725; 25-49% -  F7,88 = 172.54, P < 0.001, co2 = 0.926; 50-74% -  F7, 88 = 62.22, P 

< 0.001, co2 = 0.817; 75-99% -  Welch’s F 7>37.40 = 27.23, P < 0.001, adj. <o2 = 0.657.

Pairwise post hoc comparisons, using Games-Howell’s and Tukey’s tests for 

heterogeneous and homogeneous data sets, respectively, were implemented to identify 

differences in average mean coupling angles between participants. The results of these 

tests are summarised in Tables 7.18 to 7.21 along with Cohen’s d standardised 

difference statistics for statistically significant mean differences. Of the 28 unique 

pairwise comparisons for the 0-24%, 25-49%, 50-74% and 75-99% phases of the 

delivery stride for the BA vs. NBA coupling, the average mean coupling angle was
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shown to be significantly different (P < 0.05) for 9, 22, 22 and 13 pairwise comparisons, 

respectively. The mean Cohen’s d standardised difference statistic for the 0-24%, 25- 

49%, 50-74% and 75-99% phases were 1.94 (range 1.41-2.48), 5.72 (range 1.43-11.77), 

3.59 (range 1.58-7.84) and 2.60 (range 1.48-4.93), respectively. All o f the Cohen’s d 

standardised difference statistics calculated for statistically significant mean differences 

were greater than the 1.2 threshold figure suggested by Hopkins et al. (2008) to 

represent a large effect.

To establish whether there were any associations between segmental coupling 

relationships and ball release speed within and between participants, Pearson product- 

moment correlation coefficients for: (i) mean coupling angle for the BA vs. NBA 

coupling and ball release speed for each participant; (ii) the average mean coupling 

angle for the BA vs. NBA coupling calculated across the 12 deliveries for each 

participant and average ball release speed; and (iii) mean coupling angle for the BA vs. 

NBA coupling for the best performing trial and corresponding ball release speed for 

each participant were calculated. The results of these statistical tests can be found in 

Table 7.22. No statistically significant correlation coefficients (adj. P > 0.003) for 

segmental coupling relationships and ball release speed could be identified.

Histograms of the types of coordination exhibited over the 12 performance trials 

for the BA vs. NBA coupling during the four phases (0-24%, 25-49%, 50-74% and 75- 

99%) of the delivery stride for each participant are shown in Figure 7.4.
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Figure 7.4. Histograms (mean ± SD) of the types of coordination exhibited over the 12 
performance trials for the BA vs. NBA coupling during the four phases (0-24%, 25- 
49%, 50-74% and 75-99%) of the delivery stride for participant 1 (top left) to 8 (bottom 
right).
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Average mean (SD) coupling angle calculated during the 4 phases (0-24%, 25- 

49%, 50-74% and 75-99%) of the delivery stride over 12 performance trials for the BA 

vs. FL coupling in Table 7.23.

Table 7.23. Average mean (SD) coupling angle calculated during the 4 phases (0-24%, 
25-49%, 50-74% and 75-99%) of the delivery stride over 12 performance trials for the 
BA vs. FL coupling.__________________________________________________________

Average Mean Coupling Angle for BA vs. FL Coupling 
_______________ (SD in parentheses)_______________

Participant 0-24% 25-49% 50-74% 75-99%
1 114.2 (2.7) 105.4 (1.4) 97.8 (3.3) 93.6(1.4)
2 94.1 (2.6) 95.1 (1.3) 92.8 (2.1)* 92.2 (0.9)
3 80.4 (2.6) 93.8 (2.5) 90.2 (2.8) 104.9 (1.9)
4 101.3(2.5) 92.5 (1.0) 92.6 (1.9) 94.9 (2.0)
5 97.9 (2.4)* 96.3 (1.1) 85.8 (1.7) 90.9(1.7)
6 115.1 (2.2)* 107.6 (1.6)* 101.7(1.4) 101.0 (0.6)
7 96.7 (4.7) 104.8 (1.5) 101.4 (1.8)* 95.0 (1.1)*
8 107.1 (3.0) 101.9 (1.6) 95.2 (1.5) 94.1 (1.0)

Levene’s F P = 0.541 P=  0.071 P =  0.002** P =  0.007**
Variance Ratio (H v L) 4.7:1 5.8:1 5.8:1 11.2:1
* Not normally distributed, ** Homogeneity of variance assumption violated

Anderson-Darling normality tests showed that 26 out of the 32 mean coupling 

angle data sets obtained from the 8 participants for the BA vs. FL coupling were 

normally distributed. However, Levene’s tests revealed that the homogeneity of 

variance assumption was not met when testing for differences between participants for 

the following phases of the delivery stride: 50-74% (P = 0.002) and 75-99% (P =

0.007). The Welch’s F  test was, therefore, applied to determine statistically significant 

differences among participants for each of these phases and an adjusted co2 statistic was 

calculated to determine how much of the total variance could be attributed to 

differences between participants.

The Welch’s F  tests of average mean coupling angle showed statistically 

significant differences between the 8 participants for each of the 4 phases of the delivery 

stride for the BA vs. FL coupling: 0-24% = 183.15, P < 0.001, adj. co2 = 0.930;

25-49% -  F7, gg = 174.33, P < 0.001, co2 = 0.927; 50-74% -  Welch’s F7,37.54 = 109.87, P 

<  0.001, CO2 =  0.888; 75-99% -  Welch’s F 7,37.17 =  186.82, P <  0.001, adj. co2 =  0.931.

Pairwise post hoc comparisons, using Games-Howell’s and Tukey’s tests for 

heterogeneous and homogeneous data sets, respectively, were implemented to identify 

differences in average mean coupling angles between participants. The results of these 

tests are summarised in Tables 7.24 to 7.27 along with Cohen’s d standardised 

difference statistics for statistically significant mean differences. Of the 28 unique 

pairwise comparisons for the 0-24%, 25-49%, 50-74% and 75-99% phases of the
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delivery stride for the BA vs. FL coupling, the average mean coupling angle was shown 

to be significantly different (P < 0.05) for 24, 24, 21 and 20 pairwise comparisons, 

respectively. The mean Cohen’s d standardised difference statistic for the 0-24%, 25- 

49%, 50-74% and 75-99% phases were 5.52 (range 1.23-14.56), 5.53 (range 1.31- 

11.41), 4.23 (range 1.55-10.22) and 5.28 (range 1.71-11.45), respectively. All of the 

Cohen’s d standardised difference statistics calculated for statistically significant mean 

differences were greater than the 1.2 threshold figure suggested by Hopkins et al.

(2008) to represent a large effect.

To establish whether there were any associations between segmental coupling 

relationships and ball release speed within and between participants, Pearson product- 

moment correlation coefficients for: (i) mean coupling angle for the BA vs. FL coupling 

and ball release speed for each participant; (ii) the average mean coupling angle for the 

BA vs. FL coupling calculated across the 12 deliveries for each participant and average 

ball release speed; and (iii) mean coupling angle for the BA vs. FL coupling for the best 

performing trial and corresponding ball release speed for each participant were 

calculated. The results of these statistical tests can be found in Table 7.28. No 

statistically significant correlation coefficients (adj. P > 0.003) for segmental coupling 

relationships and ball release speed could be identified.

Histograms of the types of coordination exhibited over the 12 performance trials 

for the BA vs. FL coupling during the four phases (0-24%, 25-49%, 50-74% and 75- 

99%) of the delivery stride for each participant are shown in Figure 7.5.
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Figure 7.5. Histograms (mean ± SD) of the types of coordination exhibited over the 12 
performance trials for the BA vs. FL coupling during the four phases (0-24%, 25-49%, 
50-74% and 75-99%) of the delivery stride for participant 1 (top left) to 8 (bottom 
right).
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Average mean (SD) coupling angle calculated during the 4 phases (0-24%, 25- 

49%, 50-74% and 75-99%) of the delivery stride over 12 performance trials for the UT 

vs. P coupling for Table 7.29.

Table 7.29. Average mean (SD) coupling angle calculated during the 4 phases (0-24%, 
25-49%, 50-74% and 75-99%) of the delivery stride over 12 performance trials for the 
UT vs. P coupling.___________________________________________________________

Average Mean Coupling Angle for UT vs. P Coupling 
_______________(SD in parentheses)_______________

Participant 0-24% 25-49% 50-74% 75-99%
1 277.3 (5.2) 343.0 (7.2) 31.3 (4.1) 74.4 (3.0)
2 279.4 (9.3) 353.0 (7.7) 49.6 (3.0) 80.2 (3.6)
3 245.7 (7.0) 347.1 (23.7) 39.2 (3.4)* 70.6(1.7)
4 270.6 (8.1) 279.6 (12.8) 26.1 (2.5) 72.1 (2.8)
5 279.7 (4.2) 336.5 (8.1) 37.6 (4.3) 78.0 (2.4)
6 265.0 (10.0)* 308.8 (10.1) 28.2 (3.8) 70.6 (1.9)
7 270.7 (4.2) 296.5 (8.0) 18.8 (4.5) 65.8 (3.5)
8 269.1 (4.6) 302.6 (7.1) 28.2 (3.6) 71.2 (2.9)

Levene’s F P = 0.074 P =  0.001** P = 0.964 P =  0.034**
Variance Ratio (H v L) 5.8:1 11.1:1 3.2:1 4.2:1
* Not normally distributed, ** Homogeneity of variance assumption violated

Anderson-Darling normality tests showed that 30 out of the 32 mean coupling 

angle data sets obtained from the 8 participants for the UT vs. P coupling were normally 

distributed. However, Levene’s tests revealed that the homogeneity of variance 

assumption was not met when testing for differences between participants for the 

following phases of the delivery stride: 25-49% (P = 0.001) and 75-99% (P = 0.034). 

The Welch’s F  test was, therefore, applied to determine statistically significant 

differences among participants for each of these phases and an adjusted co2 statistic was 

calculated to determine how much of the total variance could be attributed to 

differences between participants.

The Welch’s F  tests of average mean coupling angle showed statistically 

significant differences between the 8 participants for each of the 4 phases of the delivery 

stride for the UT vs. P coupling: 0-24% -  F 7t 88 = 30.61, P < 0.001, co2 = 0.683; 25-49% 

-  Welch’s F 7,37.55 = 91.45, P < 0.001, adj. co2 = 0.868; 50-74% -  F 7,88 = 79.29, P < 

0.001, to2 = 0.851; 75-99% -  Welch’s F 7.37.49 = 25.84, P < 0.001, adj. co2 = 0.644.

Pairwise post hoc comparisons, using Games-Howell’s and Tukey’s tests for 

heterogeneous and homogeneous data sets, respectively, were implemented to identify 

differences in average mean coupling angles between participants. The results of these 

tests are summarised in Tables 7.30 to 7.33 along with Cohen’s d standardised 

difference statistics for statistically significant mean differences. Of the 28 unique 

pairwise comparisons for the 0-24%, 25-49%, 50-74% and 75-99% phases of the
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delivery stride for the UT vs. P coupling, the average mean coupling angle was shown 

to be significantly different (P < 0.05) for 15, 20, 22 and 18 pairwise comparisons, 

respectively. The mean Cohen’s d standardised difference statistic for the 0-24%, 25- 

49%, 50-74% and 75-99% phases were 2.82 (range 1.01-5.90), 4.32 (range 1.58-7.65), 

3.79 (range 1.51-8.44) and 2.60 (range 1.52-4.09), respectively. Only 1 of the 75 

Cohen’s d standardised difference statistics calculated for statistically significant mean 

differences was less than the 1.2 threshold figure suggested by Hopkins et al. (2008) to 

represent a large effect.

To establish whether there were any associations between segmental coupling 

relationships and ball release speed within and between participants, Pearson product- 

moment correlation coefficients for: (i) mean coupling angle for the UT vs. P coupling 

and ball release speed for each participant; (ii) the average mean coupling angle for the 

UT vs. P coupling calculated across the 12 deliveries for each participant and average 

ball release speed; and (iii) mean coupling angle for the UT vs. P coupling for the best 

performing trial and corresponding ball release speed for each participant were 

calculated. The results of these statistical tests can be found in Table 7.34. No 

statistically significant correlation coefficients (adj. P > 0.003) for segmental coupling 

relationships and ball release speed could be identified.

Histograms of the types of coordination exhibited over the 12 performance trials 

for the UT vs. P coupling during the four phases (0-24%, 25-49%, 50-74% and 75-99%) 

of the delivery stride for each participant are shown in Figure 7.6.
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Figure 7.6. Histograms (mean ± SD) of the types of coordination exhibited over the 12 
performance trials for the UT vs. P coupling during the four phases (0-24%, 25-49%, 
50-74% and 75-99%) of the delivery stride for participant 1 (top left) to 8 (bottom 
right).
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7.3 Discussion

The aims of this study were to: (i) demonstrate the utility and application of various 

‘complex’ analytical techniques to cricket fast bowling by using them to quantify 

intersegmental coupling relationships between various upper and lower extremity body 

segments; (ii) identify whether any systematic differences in these coupling 

relationships existed between individual fast bowlers; and (iii), establish whether there 

was any association between these coupling relationships and ball release speed both 

within and between fast bowlers.

The ‘complex’ analytical techniques selected for use in this study were cross­

correlation functions and vector coding. Cross-correlation functions were used because 

they had been applied, albeit infrequently, to analyses of throwing (e.g., McDonald, van 

Emmerik & Newell, 1989), hitting (e.g., Temprado et al., 1997) and kicking (e.g.,

Chow, Davids, Button & Koh, 2008) skills that have been shown to exhibit similar 

proximal-to-distal sequencing of segmental motion. Vector coding was preferred to 

other ‘complex’ analytical techniques, such as continuous relative phase, because it is 

easier to interpret, it makes fewer assumptions (i.e., data do not need to be sinusoidal) 

and no normalisation is required, thus enabling the true spatial information in the data to 

be maintained (Wheat & Glazier, 2006). Furthermore, vector coding quantifies relative 

motion information that has been shown to be used in the subjective evaluation of sports 

techniques (e.g., Sparrow & Sherman, 2001). Both techniques provided some useful 

insights into the temporal and spatial characteristics of intersegmental coordination not 

previously reported in the scientific literature on cricket fast bowling, which are 

discussed in more detail in sections 7.3.1 and 7.3.2.

7.3.1 Cross- Correlation Analysis

The application of cross-correlation functions enabled the type of coupling relationship, 

the degree of linkage or strength of the coupling, and the phase relation between the 

segments comprising each of the 4 segmental couplings (NBA vs. FL, BA vs. NBA, BA 

vs. FL and UT vs. P) during the period between BFI and BR to be examined. As 

expected, the NBA vs. FL and UT vs. P couplings exhibited in-phase coupling 

relationships, whereas the BA vs. NBA and BA vs. FL couplings exhibited anti-phase 

coupling relationships (see Table 7.4). The segments comprising each of the 4 segment 

couplings for all participants also exhibited either a moderate (0.5+), strong (0.7+) or 

very strong (0.9+) coupling relationship. The BA vs. NBA segment coupling
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consistently displayed the strongest coupling (0.9+) and the UT vs. P segment coupling 

the weakest (0.6+) across participants. The NBA vs. FL and BA vs. FL segment 

couplings exhibited very strong (0.9+) coupling relationships for all participants except 

for participants 3 and 5 who typically only exhibited moderate (-0.6) coupling 

relationships (see Table 7.4).

The majority of segments comprising each of the four couplings moved in 

synchrony except for the UT vs. P coupling (see Appendix H), where it was found that 

the rotation of the P was consistently initiated prior to the rotation of the UT. This 

sequencing of segmental motion has previously been shown to be characteristic of many 

unilateral hitting and throwing actions in sport, where the transfer of energy and 

momentum along the kinematic chain is typically initiated by a rapid rotation of the 

pelvis (e.g., Bartlett & Robins, 2008; Elliott et al., 2008). Interestingly, participants 3 

and 5 exhibited opposite phase relationships for the NBA vs. FL coupling. For 

participant 3, it was shown that the NBA moved prior to the FL, whereas the opposite 

occurred for participant 5. For all other participants, however, the segments comprising 

this segment coupling were shown to move in synchrony.

Despite the majority of participants exhibiting strong or very strong coupling 

relationships for the four segment couplings, there was evidence of differences between 

individual participants. The analysis of pairwise comparisons revealed that, for the four 

segment couplings, there was a statistically significant difference in the mean Z- 

transformed cross-correlation coefficient between each participant and at least three of 

the other participants (see Tables 7.6 to 7.9). Moreover, for the majority of participants 

there were statistically significant differences with most, if not all, of the other 

participants across the four segment couplings. For example, participants 3 ,4  and 7 

exhibited statistically significant differences with all other bowlers for the UT vs. P, 

NBA vs. FL and BA vs. NBA couplings, respectively (see Figure 7.7). In terms of the 

magnitudes of the statistically significant mean differences for the unique pairwise 

comparisons, 15.1% were shown to be large (i.e., >1.20), 39.2% were very large (i.e., 

>2.0), and 39.2% were extremely large (i.e., >4.0), according to the criteria laid out by 

Hopkins et al. (2008).

Having established that there were statistically significant, and meaningfully 

large, differences in coupling relationships for the four segment couplings between 

participants, it was necessary to examine whether there were any associations between 

coupling relationships and ball release speed within and between participants. However,
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no statistically significant associations could be identified between either the coupling 

relationships for the best performing trial and ball release speed across participants, 

between the coupling relationships for an average trial and ball release speed across 

participants, and between the coupling relationships for individual trials and ball release 

speed within participants.

Participant

Figure 7.7. Histogram of statistically significant pairwise differences in cross­
correlation coefficients per participant for the four segment couplings (NBA vs. FL, BA 
vs. NBA, BA vs. FL and UT vs. P).

7.3.2 Vector Coding Analysis

As cross-correlation functions only provided an indication of the temporal similarity 

between the segments comprising each segment coupling (Pohl & Buckley, 2008), 

vector coding was applied to examine the relative magnitudes and excursion ratios of 

the segments comprising the four segmental couplings (NBA vs. FL, BA vs. NBA, BA 

vs. FL and UT vs. P) during the four phases (0-24%, 25-49%, 50-74% and 75-99%) of 

the period between BFI and BR.

An analysis of the histograms summarising the different types of coordination 

exhibited over the 12 performance trials showed that there were clear similarities 

between participants across the 4 segment couplings. The NBA vs. FL coupling was 

exhibited in-phase and, more predominantly, NBA phase movement, particularly 

between 25-74% of the delivery stride. The BA vs. NBA coupling exhibited 

predominantly anti-phase movement between 0-74% and then BA phase movement 

during the 75-99% phase. The BA vs. FL coupling exhibited almost exclusively BA 

phase movement, particularly between 25-99%. Finally, the UT vs. P coupling exhibited 

predominantly UT phase movement during the 0-24% and 75-99% phases, and a 

combination of the 4 different types of coordination between 25-74%. This segment 

coupling exhibited less consistent patterning than the other three couplings, thus
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reflecting the more complex motion and interaction of the UT and P segments. All 

segment couplings produced motions that were broadly consistent with the theory of 

proximal-to-distal sequencing.

Despite clear similarities in the type of coordination exhibited between 

individual participants during the delivery stride, a more fine-grained inspection of the 

mean coupling angle revealed very marked differences between participants. Of the 112 

unique pairwise comparisons for the 4 phases of each of the NBA vs. FL, BA vs. NBA, 

BA vs. FL and UT vs. P couplings, 77, 66, 89 and 75 were shown to be statistically 

significant. Indeed, statistically significant differences were found between each 

participant and at least one other participant with the vast majority of participants 

exhibiting differences with at least four other participants across the four couplings (see 

Tables 7.8 to 7.11). In terms of the magnitudes of the statistically significant mean 

differences for the unique pairwise comparisons, it was found that 15.6% were shown to 

be large (i.e., >1.20), 40.3% were very large (i.e., >2.0), and 44.1% were extremely 

large (i.e., >4.0) for the NBA vs. FL coupling, 21.2% were shown to be large, 42.4% 

were very large and 36.4% were extremely large for the BA vs. NBA coupling, 15.7% 

were shown to be large, 24.7% were very large and 59.6% were extremely large for the 

BA vs. FL coupling, and 18.7% were shown to be large, 48.0% were very large and 

32% were extremely large for the UT vs. P coupling, according to the criteria laid out 

by Hopkins et al. (2008).

These results appear to concur with those of the study reported in Chapter VI 

where it was found that distinct qualitative differences in the global topology among the 

8 participants were reported. However, because the relative motion of all body segments 

were effectively considered simultaneously, the local differences in relative motion 

among pairs of body segments that contributed to differences in global topology could 

not be established. By analysing the motions of pairs of body segments using vector 

coding, it has been possible to identify where these differences might lie.

Having established that there were statistically significant, and meaningfully 

large, differences in the average mean coupling angle for the four segment couplings 

between participants, it was necessary to examine whether there were any associations 

between mean coupling angle and ball release speed within and between participants. 

Although there was one statistically significant association, no systematic trends could 

be identified. Accordingly, there does not appear to be a clear relationship between
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Participant

Figure 7.8. Histogram of statistically significant pairwise differences in coupling per 
participant for the NBA vs. FL coupling.

Participant

Figure 7.9. Histogram of statistically significant pairwise differences in coupling per 
participant for the BA vs. NBA coupling.

Participant

Figure 7.10. Histogram of statistically significant pairwise differences in coupling per 
participant for the BA vs. FL coupling.

Participant

Figure 7.11. Histogram of statistically significant pairwise differences in coupling per 
participant for the UT vs. P coupling.
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coordination patterns and ball release speed, which, from a coaching perspective, is 

problematic.

7.4 Conclusion

The results of this study provide a preliminary insight into the coupling relationships 

between key upper and lower extremity segments during fast bowling. The 

implementation of cross-correlation functions showed that moderate to very strong 

coupling relationships existed between the NBA vs. FL, BA vs. NBA, BA vs. FL and 

UT vs. P segment couplings and that the segments comprising the majority of these 

couplings moved in synchrony. The only segment coupling that was consistently 

asynchronous was the UT vs. P coupling where it was identified that the pelvis rotation 

was initiated before the rotation of the upper torso. Statistically significant mean 

differences in both cross-correlation coefficients and mean coupling angle for the NBA 

vs. FL, BA vs. NBA, BA vs. FL and UT vs. P segment couplings between individual 

participants were also reported, thus providing further evidence of individual-specific 

coordination patterns or movement signatures. However, no statistically significant 

associations between these coupling relationships and ball release speed could be 

establish either within or between individual participants. This study further highlights 

the difficulties faced by sports biomechanists when attempting to identify associations 

between technique and outcomes in sports skills. Clearly, this is an important issue that 

sports biomechanists must address if they are to make a more substantive contribution 

to the enhancement of sports performance.
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Chapter VIII

General Discussion and Recommendations 
for Future Research



8.0 Introduction

The aims of this thesis, as stated in Chapter I, were to: (i) enhance understanding of the 

biomechanical and motor control processes that underpin proficient fast bowling 

performance using dynamical systems theory and ‘complex’ analyses; and (ii), 

demonstrate the application of dynamical systems theory and the utility of ‘complex’ 

analyses to performance-oriented sports biomechanics research, more generally, using 

cricket fast bowling as a representative task vehicle. This chapter summarises the 

research work undertaken, considers the theoretical and applied contributions it has 

made, and provides some recommendations for future research.

8.1 Summary of Research

Based on the review of literature and the theoretical development of the biomechanics- 

motor control nexus provided in Chapters II and III, respectively, the empirical studies 

reported in this thesis focused on within- and between-bowler differences in 

coordination patterns at different levels of analysis and their relationship to performance 

(ball release speed). Prior to these empirical studies, however, a study examining the 

suitability of manual coordinate digitising for multiple single-participant research 

designs was conducted and reported in Chapter V. The main findings of this study were:

• Of the 33 time-discrete kinematic variables examined, 31 exhibited between- 

participant variances and re-digitisation variances that accounted for the largest 

and smallest portions of total variance, respectively.

• Re-digitisation variance accounted for less than 5% of total variance in 29 out of 

the 33 time-discrete variables with 15 of these exhibiting less than 1% of total 

variance.

• For the 45 time-continuous data sets analysed, it was found that measurement 

error, on average, accounted for 17.2% of movement variability in each data set 

with the proportion of measurement error ranging from 4.3 to 41.0%.

Considered together, these findings indicate that the operator-digitising system used was 

sufficiently sensitive to reliably measure differences in kinematics both within and 

between participants over repeated performance trials.

In Chapter VI, fast bowling techniques at a global, whole-body level were 

analysed using Kohonen SOMs. Previously, this particular artificial neural network had 

only featured sparingly in biomechanical investigations of sports techniques and had not
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been applied to kinematic analyses of cricket fast bowling techniques. The main 

findings of this study were:

• Similarities in the shape and path of SOM trajectories existed for participants 1

and 4, participants 2 and 3, and participants 6 and 8.

• However, distinctive qualitative differences were evident between bowlers 

signifying participant-specific coordination patterns.

• These individualities were likely to be attributable to differences in organismic 

constraints and, to a lesser extent, the intrinsic dynamics (i.e., preferred states of 

coordination tendencies that are present at the beginning of the learning process) 

of each of the bowlers.

• Although not conclusive, these empirical and theoretical findings signify that a

common optimal movement pattern for fast bowling is unlikely to exist.

This study also provided further evidence that SOMs are an effective tool for capturing 

topological differences in sports techniques at a whole-body global level of analysis. 

However, their utility and practical application might be compromised because:

• Optimal movement solutions for specific individuals and, therefore, the 

corresponding SOM trajectory cannot currently be determined.

• Identifying features of the SOM trajectory that correspond to specific aspects of 

technique does not currently appear to be possible.

These two limitations, combined with the conceptual and computational complexities of 

SOMs, were identified as significant barriers precluding the more widespread 

application of this artificial neural network in an applied sports context.

In Chapter VII, intersegmental coordination in fast bowling was analysed using 

cross-correlation functions and vector coding in combination with a multiple single­

participant research design. Previously, these ‘complex’ analytical techniques had 

seldom been applied to human movement beyond studies of locomotion and this was 

the first time they had been used to investigate coordination among limb and torso 

segments in cricket fast bowling. The main findings of this study were:

• In-phase coupling relationships were found for the NBA vs. FL and UT vs. P 

segment couplings and anti-phase coupling relationships were found for the BA 

vs. NBA and UT vs. P segment couplings.
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• Cross-correlation functions showed that moderate (0.5+) to very strong (0.9+) 

relationships existed for the four segment couplings (NBA vs. FL, BA vs. NBA, 

BA vs. FL, UT vs. P).

• The BA vs. NBA and UT vs. P segment couplings consistently displayed the 

strongest relationship (0.9+) and weakest (0.6+) relationships, respectively.

• All segment couplings moved in synchrony except for the UT vs. P coupling 

where it was found that the rotation of the P segment was consistently initiated 

prior to the UT segment.

• Statistically significant (P < 0.05) and meaningfully large (>1.20) to extremely

large (>4.0) differences in mean Z-transformed cross-correlation coefficients

existed between each individual bowler and at least three other bowlers for the 

four segment couplings.

• No associations between cross-correlation coefficients for the four segment 

couplings during the delivery stride (0-100%) and ball release speed could be 

identified either within or between bowlers.

• Vector coding showed that: the NBA vs. FL coupling relationship was in-phase 

and, more predominantly, NBA phase between 25-74% of the delivery stride; 

the BA vs. NBA coupling relationship was anti-phase between 0-74% and then 

BA phase during 75-99% of the delivery stride; the BA vs. FL coupling 

relationship was almost exclusively BA phase between 25-99% of the delivery 

stride; and the UT vs. P coupling relationship was UT phase during 0-24% and 

75-99% of the delivery stride, and a combination of the four different types of 

coordination between 25-74% of the delivery stride.

• Statistically significant (P < 0.05) and meaningfully large (>1.20) to extremely

large (>4.0) differences in average mean coupling angle over the four phases of

the delivery stride (0-24%, 25-49%, 50-74%, 75-99%) existed between each 

individual bowler and at least one other bowler with the vast majority of bowlers 

exhibiting differences with at least four other bowlers across the four segment 

couplings.

• No systematic relationships could be identified between average mean coupling 

angle for the four segment couplings and ball release speeds either within or 

between bowlers.

These findings appear to provide further support for the results reported in Chapter VI

and may provide an indication of where differences existed at a local level in that study.
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They also provide further evidence of the difficulties in making associations between 

technique and outcomes.

8.2 Implications for Coaching Cricket Fast Bowling and Other Sports

Techniques

An important aspect of coaching cricket fast bowling techniques, or any other sports 

techniques for that matter, is the identification and elimination of errors with the aim of 

ultimately improving performance. However, the methods by which coaches and 

athletes go about diagnosing and remediating technical faults have been criticised by 

some sports biomechanists for being inefficient and ineffective. For example, Bartlett 

(1999) claimed that: “Much sports technique training evolves essentially through a 

process of trial and error. Theories about the best technique develop in an ad hoc 

fashion, and the participants (coaches, athletes and, sometimes, sports scientists) 

experiment with aspects of the technique and adopt those changes that improve the 

performance. However, at the elite level of sport, this trial and error method of 

establishing an ideal technique is hazardous” (p. 179). He went on to argue that a more 

objective approach to detecting errors in technique was needed and that sports 

biomechanics, particularly theory-driven statistical modelling and optimisation 

modelling, could help to identify theoretically correct, or ideal, techniques in a range of 

sports.

The theoretical analysis provided in Chapter III of this thesis suggests that sports 

biomechanists are currently not well-equipped to identify faults in the techniques of 

individual athletes. Theory-driven statistical modelling based on hierarchical 

performance models provides little information about underlying movement patterns 

that define technique and optimisation modelling cannot currently identify optimal 

movement patterns for specific individuals in the vast majority of sports. The empirical 

analyses reported in Chapters VI and VII indicate that different movement patterns can 

be used to produce similar performance outcomes and that there does not appear to be 

any obvious relationship between technique and ball release speed in cricket fast 

bowling. These findings signify a potential dilemma for coaches and sports 

biomechanists: if fast bowlers can adopt different techniques but still perform 

proficiently, how do we assess technique and identify faults in order to improve it?

It appears that until optimal movement patterns for specific fast bowlers can be 

identified, the use of a best performing trial as a reference, as recommended in Chapter
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VI, might be the best available option. Interestingly, though, several studies in the motor 

learning literature have indicated that, contrary to the views of Bartlett (1999), the 

heuristic approach might be a legitimate strategy for improving technique and 

performance. For example, Vereijken and Whiting (1990) demonstrated that discovery 

learning produced better performances in a ski simulator task than other types of 

learning methods, such as knowledge of results and the use of a criterion technique 

model. From a dynamical systems theoretical perspective, motor learning is considered 

to be a type of ‘search and refinement process’ whereby learners explore and probe the 

boundaries of the ‘perceptual-motor workspace’ to find and develop robust movement 

solutions (e.g., Newell, Kugler, van Emmerik & McDonald, 1989; Newell, McDonald 

& Kugler, 1991; Newell & McDonald, 1992). It has been suggested that augmented 

information, including biomechanical feedback, could be used to help channel the 

search away from dysfunctional movement patterns (i.e., those that lead to poor 

performances or may predispose to injury) and towards more functional, possibly 

optimal, movement solutions for specific individuals (e.g., Hodges & Franks, 2002). For 

sports biomechanists to be an integral part of the skill acquisition process, a research 

priority must be to identify what movement patterns are, and are not, functional for 

individual fast bowlers.

8.3 Concluding Remarks and Recommendations for Future Research

Although dynamical systems theory has been criticised over the years for being 

descriptive rather than explanatory (Rosenbaum, 1998), and that many of the arguments 

made have been “in principle” in nature (Weeks & Proctor, 1991) in that they have not 

been subjected to, or have not been readily amenable to, empirical analysis, the 

theoretical and empirical findings reported in this thesis indicate that it is a theoretical 

framework that is worth persevering with. As technology improves, specifically with 

advancements in 3D markerless motion tracking systems, researchers will become 

better equipped to more accurately measure sports techniques in their natural, dynamic 

performance environments, thus enabling the emergence of coordination patterns under 

a variety of different organism ^ environmental and task constraints to be investigated. 

The ‘complex’ analytical tools of dynamical systems theory could have a useful role to 

play in quantifying the stability and variability of spatio-temporal characteristics of 

these coordination patterns, especially as coaches and athletes have been shown to rely 

on relative motion information when assessing sports techniques (e.g., Sparrow &
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Sherman, 2001). However, researchers need to be mindful of their underlying 

assumptions and diligently check the results they produce to avoid arriving at incorrect 

conclusions.

In terms of recommendations for future research into the biomechanics and 

motor control of cricket fast bowling performance, an important line of enquiry—as it is 

in applied sports biomechanics and performance analysis research (e.g., Lees, 2002; 

McGarry, 2009; Glazier, 2010) more generally—is identifying associations between 

behaviour or technique and outcome. As demonstrated in this thesis, however, this task 

appears to be a particularly challenging undertaking but one sports biomechanists must 

meet if they are to satisfy one of their main aims of enhancing sports performance 

(Bartlett, 1999). As the information provided here and elsewhere suggests, it is unlikely 

that a single coupling relationship, when taken in isolation, is capable of predicting fast 

bowling performance to any satisfactory degree. Indeed, it appears that a complex 

interaction of limb movements with compensatory mechanisms is likely to be 

responsible for determining performance outcome. Future research needs to focus on the 

individual-specific segmental interactions and compensatory mechanisms underpinning 

fast and accurate bowling if it is to be useful in an applied context. The multiple single­

participant research design combined with the analytical tools and concepts of 

dynamical systems theory advocated in this thesis appears to be appropriate for this 

investigative endeavour even though the empirical data reported only partially supports 

this viewpoint. Other methodological techniques, such as inverse dynamics and 

energetic analyses, may also prove useful in future research, especially if power and 

energy flows can be associated to coordination patterns to establish which coordination 

patterns lead to increased transfer of energy and power.
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Appendix A 

Informed Consent Proforma



INFORMED CONSENT PROFORMA

I certify that I am fully coherent with the verbal explanation of the testing procedures 
that I am about to undertake. I believe that my current health status is at a suitable level 
for me to perform maximally if required. I also understand that I am free to leave the 
testing environment, at any time, without prejudice. All data gained from the study will 
be kept in confidence and will be made available to the participants involved post­
testing.

Participant Name (printed):

Date of Birth:

Signature: 

Height (m): 

Mass (kg):

This document has been constructed to the guidelines set out by the British 
Association of Sport and Exercise Sciences (BASES) and the UWIC Ethics 
Committee.



Appendix B

User-Defined Spatial Model of the Human
Performer
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Figure B .l. The user-defined 15-point, 14-segment spatial model used to reconstruct 
the human performer. O  and O  denote a digitised landmark and a virtual marker, 
respectively. Virtual markers for the upper torso (VI) and pelvis (V2) were defined as 
the mid-way point between markers 2 and 5 and 8 and 12, respectively.

Table B.l. Body segment definitions.
Marker Landmark Vector Segment

1 Head V1^1 Head and Neck
2 Right Shoulder V2—>V1 Trunk
3 Right Elbow 5—>2 Upper Torso
4 Right Wrist 12—>8 Pelvis
5 Left Shoulder 2—>3 Right Upper Arm
6 Left Elbow 3—>4 Right Lower Arm
7 Left Wrist 5—>6 Left Upper Arm
8 Right Hip 6—>7 Left Lower Arm
9 Right Knee 8—>9 Right Thigh
10 Right Ankle 9—*10 Right Shank
11 Right Toe 10—>11 Right Foot
12 Left Hip 12—>13 Left Thigh
13 Left Knee 13—>14 Left Shank
14 Left Ankle 14—>15 Left Foot
15 Left Toe

B



Appendix C

Root-Mean-Square (RMS) Calibration and 
Reconstruction Error Estimates



Table C .l. Direct linear transformation RMS error estimates for the individual control 
points obtained from the DLT residuals
Control Point X Y z

1 0.001 0.001 0.001
2 0.005 0.000 0.001
3 0.003 0.001 0.001
4 0.002 0.002 0.002
5 0.002 0.002 0.004
6 0.003 0.002 0.001
7 0.003 0.002 0.002
8 0.002 0.000 0.001
9 0.004 0.002 0.001
10 0.001 0.002 0.001
11 0.003 0.000 0.001
12 0.003 0.002 0.001
13 0.001 0.002 0.001
14 0.004 0.002 0.002
15 0.000 0.002 0.001
16 0.001 0.000 0.003
17 0.001 0.003 0.002
18 0.003 0.002 0.001

Average 0.0023 0.0015 0.0018

Table C.2. Average global RMS error estimates obtained from the four direct linear 
transformation planes over all digitised anatomical landmarks over all video fields. Data 
obtained from:

(a) 12 re-digitisations of trial 2 performed by participant 7;
Re-digitisation RMS (m)

1 0.0123
2 0.0113
3 0.0117
4 0.0120
5 0.0115
6 0.0120
7 0.0122
8 0.0123
9 0.0115
10 0.0116
11 0.0116
12 0.0113

Average 0.0118
SD 0.0004

and (b), digitisations of 12 trials from 8 participants.
Participant

Trial 1 2 3 4 5 6 7 8
1 0.0107 0.0090 0.0099 0.0090 0.0102 0.0091 0.0123 0.0105
2 0.0107 0.0094 0.0102 0.0073 0.0089 0.0092 0.0112 0.0110
3 0.0101 0.0081 0.0119 0.0077 0.0095 0.0094 0.0116 0.0106
4 0.0092 0.0094 0.0108 0.0083 0.0089 0.0107 0.0110 0.0107
5 0.0093 0.0096 0.0103 0.0083 0.0087 0.0093 0.0109 0.0128
6 0.0092 0.0100 0.0121 0.0076 0.0095 0.0134 0.0111 0.0104
7 0.0103 0.0086 0.0104 0.0083 0.0086 0.0098 0.0118 0.0108
8 0.0104 0.0090 0.0107 0.0085 0.0099 0.0100 0.0116 0.0113
9 0.0098 0.0094 0.0101 0.0077 0.0095 0.0108 0.0110 0.0108
10 0.0099 0.0092 0.0108 0.0074 0.0090 0.0097 0.0117 0.0109
11 0.0105 0.0091 0.0102 0.0082 0.0099 0.0100 0.0126 0.0107
12 0.0104 0.0088 0.0100 0.0081 0.0092 0.0111 0.0190 0.0160

Average 0.0100 0.0091 0.0106 0.0080 0.0092 0.0103 0.0122 0.0115
SD 0.0006 0.0005 0.0007 0.0004 0.0005 0.0012 0.0022 0.0016
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Appendix D

Time-Discrete Performance Parameter
Definitions



Key moments

Back foot impact (BFI): The instant when the 
angle between the vector adjoining the right 
ankle joint and the distal end of the right foot 
and the transverse plane defined by the playing 
surface was minimised.

1------►y —

Front foot impact (FFI): The instant when the 
angle between the vector adjoining the left ankle 
joint and the distal end of the left foot and the 
transverse plane defined by the playing surface 
was minimised. LXS-
Ball Release (BR): The instant when the z-y 
trajectories of the wrist joint centre and the ball 
centre started to diverge.

l A
Performance Parameters

Upper Torso Alignment: The angle between 
the vector defining the upper torso segment 
projected onto the transverse plane and the y- 
axis.

| — *Y 90°

x  f
180 o°

270°
(Centred mid-segment)

Pelvis Alignment: The angle between the vector 
defining the pelvis segment projected onto the 
transverse plane and the y-axis.

| — ►Y 90°

270°
(Centred mid-segment)

D



Back Foot Alignment: The angle between the 
vector defining the right foot segment and the 
sagittal plane.

1-----* Y1 90°

1 8 0 ° ( h ^  °°

270°
(Centred on proximal end of segment)

Centre of Mass (COM) Horizontal Velocity:
The instantaneous magnitude of the COM along 
the y-axis.

U

K jO " * - \  n

Trunk Flexion-Extension: The angle between 
the vector defining the trunk segment projected 
onto the sagittal plane and the y-axis. A negative 
angle denotes a lean away from the target and a 
positive angle denotes a lean towards the target. 1 L I
Front Knee Angle: The angle between the 
vector defining the left thigh segment and the 
vector defining the left shank segment. Lx
Trunk Lateral Flexion: The angle between the 
vector defining the trunk projected onto the 
frontal plane and the x-axis.

Lx
D



Non-Bowling Arm to Horizontal: The angle 
between the vector defining the left upper arm 
and the y-axis.

Y

Bowling Arm to Horizontal: The angle 
between the vector defining the right upper arm 
and the y-axis.

Y

Height of Ball Release: The distance between 
the centre of the ball and the playing surface at 
the moment of ball release along the z-axis.

Y

Delivery Stride Length: The distance between 
the right ankle joint centre at BFI and the left 
ankle joint centre at FFI along the y-axis.

Delivery Stride Alignment: The angle between 
the vector adjoining the right ankle joint centre 
at BFI and the left ankle joint centre at FFI and 
the y-axis.

D



Maximum Right Hip Speed: The maximum 
speed of the right hip joint centre along the y- 
axis during the period between BFI and BR. ' JISH-----1

Maximum Right Shoulder Speed: The
maximum speed of the right shoulder joint 
centre along the y-axis during the period 
between BFI and BR.

\ I-......... ►

L - A

Maximum Right Wrist Speed: The maximum 
speed of the right shoulder joint centre along the 
y-axis during the period between BFI and BR.

p ......... ►

u  A

Maximum Pelvis-Upper Torso Separation 
Angle: The maximum difference between the 
alignment of the upper torso and pelvis at any 
moment between BFI and BR.

| ---- ►Y 90°

180° °°

270°
(Centred mid-segment)

Minimum Upper Torso Alignment: The
minimum upper torso alignment angle during 
the period between BFI and BR.

r— *Y 90°

0°

270°
(Centred mid-segment)
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Minimum Pelvis Alignment: The minimum 
pelvis alignment angle during the period 
between B n  and BR.

Maximum Pelvis Angular Velocity: The
maximum rate of change of pelvis alignment 
during the period between BFI and BR.

Maximum Upper Torso Angular Velocity:
The maximum rate of change of upper torso 
alignment during the period between BFI and 
BR.

Maximum Trunk Angular Velocity: The
maximum rate of change of the trunk flexion- 
extension angle during the period between BFI 
and BR.

Maximum Vertical Velocity of the Non- 
Bowling Elbow: The maximum velocity of the 
elbow joint centre of the non-bowling arm in the 
z-axis during the period between BFI and BR.

Trunk Flexion-Extension Range of Motion 
(ROM): The difference between the minimum 
trunk flexion-extension angle and the maximum 
trunk flexion-extension angle during the period 
between BFI and BR.

Pelvis Range of Motion (ROM): The
maximum pelvis alignment angle minus the 
minimum pelvis alignment angle during the 
period between BFI and BR.

D



Upper Torso Range of Motion (ROM): The
maximum upper torso alignment angle minus 
the minimum upper torso alignment angle 
during the period between BFI and BR.

D



Appendix E

Time-Discrete Performance Parameter
Data Sets
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Measurement Error - Trial 2 from Participant 7 (Cont.)
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c
n

0
0

| 183.5 1

| 182.8 |

| 183.7 |
| 1 8 2 .5

| 182.87
| 0.719

Maximum 
Pelvis-Upper Torso 
Separation Angle ( ° )

0
0

o
s

C
N

0
0

O
s

S
O

S
O

oC
N

0
0

C
N

C
N

Oc
n

inO
s

c
n

O
s

r-;

O
s

OC
N

C
N

I 18.46 I
| 6.299 |

Maximum Right 
Wrist Speed 

(m.8-1)

0
0

0
0

r-^

0
0

0
0

0
0

0
0

| 17.93 |
t 17.90 |

| 17.95 |

ino
o

| 17.98 |

| 17.93 |
| 17.95 |

| 17.85 |

c
n

o
o

I 17.90 |
| 0.047 |

Maximum Right 
Shoulder Speed 

(m.s_1)

c
n

S
O

S
O

0
0

inS
O

insoS
O

mSOs
6

oS
O

S
O

mSOSO

0
0

mso’
c

n
mSO

c
n

soSO

c
n

sos
6

c
n

soSO

o
o

inso’ SOsc

| 0.038 |

Maximum Right 
Hip Speed 

(m.8-1)

0
0

C
N

■
ct

inc
n

0
0

C
N

0
0

c
n

c
n

•n-
c

n
c

n
oc

n

nf
oC

N
c

n
c

n
OC

N
c

n
c

n
0

0
c

n

■n-’
CNcn■cr 6900

Delivery Stride 
Alignment (°)

| 173.9 |

1 174.1 |

1 174.1 |
I 173.6 |
| 173.5 |
| 173.6 |

| 173.8 |
| 174.3 |

I 174.3 1
1 174.2 1
1 174.1 I
| 1 7 3 .9

1 173.95 1
0.278

Delivery Stride 
Length (m)

1.283 |
1.273 |
1.279 |
1.287 |
1.292 |

| 1.294 |
1.274 |

1.277 |
1 1.280 1

1 1.275 1

1 1.280 1

1 1.278 1ooCN

0.007

Re-digitisation

-
C

N
c

n
m

so
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0
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o
-

C
N

1 Mean
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Measurement Error - Trial 2 from Participant 7 (Cont.)

O
T

H
E

R
 C

O
N

T
.

Upper Torso 
ROM (°)

| 130.3 |
I 128.2 |
| 129.5 |
| 129.6 |
| 128.3 |OvCN

| 129.0 |
| 130.7 |
| 129.8 1
| 129.5 |
| 129.7 |00oo'CN

I 12938 |
I 0.742 |

Pelvis 
ROM (°)

vqvdoo
inCNO

n
NOOO

CN00
CNON

vq00
CNOv

CNCNO
v

r-;oo
oo00

t";OO00
nt;cnON

I 88.53
| 3.967

Trunk 
Flexion-Extension 

ROM (°)cnm
CN<n

cnCNin
O

n

CNin
oin

vqcnin
vqCNm

vqm
r~-in

cnCNin
in

inCNin

I 52.41 |
| 0.839

Maximum Vertical 
Velocity of 

Non-Bowling Elbow (m.s'1)00vqin
cnNOin

oin
cnin

int"-in
cnini

r-vqini

cninin
inN

O

in
00NOin

00N
O

in'
00NOin

ooNOin
inoo

Maximum Trunk 
Angular Velocity 

(rad.s*1)cnin
CNNOmi

ininin
c-00in

CNONin
00in

vqin
©in

innt;in
r-*nin

ininin
CNNOin

O
N

inin

I 0.235

Maximum Upper 
Torso Angular 

Velocity (rad.s'1)
1 26.55 1
I 25.80 |
| 24.86 |
1 25.51 1
| 25.21 |
| 25.41 |
| 26.32 |
| 25.88 |
| 26.08 |
| 25.88 |
| 24.92 |
| 24.65 |
| 25.59 |

| 0.600 |

Maximum Pelvis 
Angular Velocity 

(rad.s'1)
12.72 1

12.36 |

| 10.71 |
1 12.33 1

| 12.67 |

| 11.37 |

| 13.12 |
| 12.32 |

| 11.96 |-

| 11.25 |
| 11.75 |
I 11.97 |
| 0.741 |

Minimum Pelvis 
Alignment (°)

174.9 |
172.0 |
172.6 |
174.4 |
172.2 |in'r~

| 172.6 |
| 172.3 |
| 174.0 |
I 175.0 |
| 172.0 |
| 169.800ocn.-H

| 1.613

Re-digitisation
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| MeanOcn
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Intra-Individual Variability - Participant 1

B
A

C
K

 FO
O

T
 IM

PA
C

T

Trunk 
Flexion-Extension (°)

V
O

©
CNi CNc

n

v
q

>n
in

O
v

in
f-;n- CN■ "itCN

r-
V

O

o©

| 2.620

COM Horizontal 
Velocity (m-s'1)

V
O

CNin
incnin

00in
c

n

in
CNv

q

in
00inin

in*nin
of-;in

min
■'cfinin

c
n

in
oin

ovpiri

| 0.153 |

Back Foot 
Alignment (°)

| 313.7 |
I 321.1 |
| 316.8 |
| 317.6 |
| 304.3 |
I 315.1 |
| 316.7 |
I 315.5 |
| 320.6 |
I 317.9 |
| 326.8 |
| 307.1 |
I 316.10 |
| 5.981 |

Pelvis 
Alignment (°)

179.4 |00o'00

179.2 |

c
n

00

I 178.6 |r-o00

| 179.7 |
| 182.3 |
| 180.6 |
| 180.9 |
| 183.5 |
| 177.6m•0ooo

I 1.780 |

Upper Torso 
Alignment (°)

| 212.6 |
I 210.9 |
| 205.9 |
| 217.3 1
| 208.6 |
I 209.0 |
| 210.7 |
| 209.7 |
| 214.7 |
| 205.6 |
| 210.6 |
| 205.4 |
I 210.08 |
| 3.619 |

Trial

-
CN

c
n

■'3- in
V

Or~
00

O
N

o
-

cn

| MeanGVi

id
 v

a
ra

 x
o

o
x

 X
D

va

FR
O

N
T

 FO
O

T
 IM

PA
C

T

Bowling Arm 
to Horizontal (°)

O
v

C
N

in
inc

n
C

N

o
o

in
c

n

d
v

q

c
ni

V
O

O
v

in
C

N
C

"

o
i

n
f

c
n

| - 1 0 . 0 0  1
I 4.442 |

Non-Bowling Arm 
to Horizontal (°)

c
n

in
0

0

o
o

'
in

in
C

N
in

inin
c

n

in
O

v

O
v

in
in

00*
t

t

v
q

inV
O

C
N

•n
-'

in
inv

d
in■

I -55.32 |
I 4.475 |

Trunk 
Lateral Flexion (°)inc

n
t

-
O

v
V

O

oC
N

Or*-
0

0

t
-

C
N

C
N

r-
inf

"

C
N

C
N

r-
pr-

0
0

O
v

V
O

c
n

c
n

r~-ot"

I 71.98 |
I 1.629 |

Trunk 
Flexion-Extension (°)

t
-

O
v

O
V

o
C

N
O

v

O
n

©
r-'

C
N

c
n

mo
in

cq
od

oO
v

O
V

O
V

I 1.517 |

COM Horizontal 
Velocity (m.s'1)

c
n

O
v

c
n

c
n

0
0

c
n

r-ot
i-

O
t"
C

N

n
-'

c
n

O
V

O
0

0

c
n

r-O
v

c
n

C
N

o
i>c

n
•̂t

r~o'3-
oorr

I 0.149

Front Knee 
Angle (°)

| 169.9 |
| 171.5 |
| 169.4 |
| 165.9 |
| 168.1 |
I 165.2 |

C
N

OOV
O

| 167.5 |
| 172.4 |
| 164.4 |
| 168.7 |I V£9\ |

| 167.86 |
I 2.899 |

Pelvis 
Alignment ( ° ) 1 VUZ

227.8 |
217.3 |
227.5 |1 vnz

O
N

inC
N

C
N

229.0 |
223.5 |
226.1 |
225.9 |
223.1 |

| 223.7 |
| 222.94 |
I 5.662 |

Upper Torso 
Alignment (°)

\ 190.3 |
| 196.5 |
| 193.0 |
| 191.4 |

0
0

oO
N

| 193.7 |
| 196.4 |^tO

n

| 189.9 |
| 198.6 |
| 195.7 |
| 192.1 |
| 193.57 |
I 2.799 |

Trial
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Intra-Individual Variability - Participant 1 (Cont.)

B
A

L
L

 R
E

L
E

A
SE

Trunk 
Lateral Flexion (°)OC

N
in

vq00
VOOv•̂t

r-oin

O
n

C
N

in

in00
C

N

in

C
N

in
oin

C
N

C
N

in

O
v

in

cn

| 50.52
I 1.724

COM Horizontal 
Velocity (m .s ’1)cnOcn

VOCn

00ocn

incncn

C
N

00C
N

00cncn
pcn

r-~pC
N

OvC
N

n-cn
oovqC

N

oocn
r-ocn

| 0.229 |

Front Knee 
Angle (°)

163.3 |
156.4 |

161.3 |
145.9 |
160.2 |

139.6 |

Or-‘
m

| 147.3 |
| 166.5 |
I 164.5 |
| 161.4 |
| 156.3 |
| 156.64 |
| 8.277

Trunk 
Flexion-Extension (°)cn

inincn
Ovincn

0
0

VO*
cn

Ocn
cn

0
0

vo'
cn

incn
C

N

vdcn
O

v
cncn

C
N

r-~o
o

’
cn

I 36.98 |

I 2.593 I

Height of Ball 
Release (m)

| 1.889 |
| 1.894 |

| 1.837 |
| 1.797 |
| 1.896 |

I 1.765 |
| 1 . 8 6 8  |

I 1.879 |
| 1.898 ]

I 1.833 |
| 1.849 |
| 1.838 |m00

| 0.042 |

Trial

-
C

N
cn

"3-
m

VO
r-

0
0

O
n o

-
C

N

| Mean

QCA

3SV
313H

 T
IV

B

O
T

H
E

R

Minimum 
Upper Torso 
Alignment ( ° )

181.9 |
183.1 |
181.6 |

1 182.7 1

179.7 |
182.6 |

| 182.6 |
| 180.0 |
| 182.0 1
| 180.9 |
| 181.3 |

0
0

o
o

'
r

-

cncnT
t

i-H
001-H

I 1.347 1

Maximum 
Pelvis-Upper Torso 
Separation Angle (°)

c
n

v
d

C
N

0
0

C
N

c
n

v
q

o
o

C
N

C
N

•Ct0
0

C
N

oin’c
n

c
n

c
n

c
n

Oc
n

v
q

c
n

rj-

V
O

O
v

C
N

0
0

C
N

o
o

'
c

n

1 osree I

| 5.722

Maximum Right 
Wrist Speed 

(m.s_1)
19.99 |
19.87 |

I 19.87 |
| 19.22 |
| 19.93 |
| 20.02 |
I 20.54 |1 zvoz I

| 20.29 |
| 20.05 |
| 20.27 |
| 20.32 |
| 20.041 |omcno

Maximum Right 
Shoulder Speed 

(m.8-1)r-00t"-’ oO
V

oooo’ oO
v

l>
C

N
O

v
in00

r~-ooo
c

n
00

r-~p
oooo'

C
N

C
N

00
00p

| 7.984
| 0.115

Maximum Right 
Hip Speed 

(ims'1)

m■̂tin
inO

v

m
' 00o

v

in
oov

d

ot";in
ov

d

oot~;in
c

n
pin

00pin
c

n
pin

minv
d

in00in

I 5.917 |
| 0.265 |

Delivery Stride 
Alignment (°)

170.4 |
171.0 |
170.2 |
170.9 |
170.1 1
172.9 |
170.7 |
168.3 |

| 171.7 |
I 170.3 |
| 173.1 || V691 |

| 170.750 |
| 1.349

Delivery Stride 
Length (m)

1.320 |
1.350 |

| 1.334 |
| 1.365 |
I 1.250 1
| 1.435 |
| 1.324 |
| 1.352 |
| 1.366 |
| 1.332 |
| 1.407 |
| 1.323 |
I 1.347 |
| 0.046

Trial

-
C

N
c

n
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O
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0

0
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o

-
C

N
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Intra-Individual Variability - Participant 1 (Cont.)

O
T

H
E

R
 C

O
N

T
.

Upper Torso 
ROM (°)

123.0
128.8
126.7

1 127.5 1

0
0

C
N

ooc
n

C
N

c
n

C
N

133.7
126.1
124.5
123.8
133.4

126.70
3.802

Pelvis 
ROM (°)

c
n

0
0

oo'0
0

oO
v

C
N

v
d

oo
nfinO

v

0
0

oo
ooO

v

c
n

O
v

0
0

ov
d

O
v

n
t

c
n

0
0

O
v

oO
v

O
v

O
v

Pov00

4.946

Trunk 
Flexion-Extension 

ROM (°)

n
t-

inO
v

c
n

C
N

oo'c
n

oo■'t
c

n

Onr
0

0

C
N

■n-
V

D
C

Nnf
0

0

O
v

c
n

inc
n

nj-
inoo’c

n

0
0

d
inn-

41.27
2.275

Maximum Vertical 
Velocity of 

Non-Bowling Elbow (m.s'1)(N0
0

v
d

oO
v

v
d

oO
V

v
d

r-~0
0

v
d

innj-v
d

c
n

O
v

v
d

C
N

O
O

v
d

oO
V

v
d

ooov
d

inV
O

v
d

c
n

r~v
d

or-v
d

O
v

pV
©1

| 0.139

Maximum Trunk 
Angular Velocity 

(racks'1)

t--
inin' oin

C
N

in
oin' oo

v
ov

q
in

O
V

pin
0

0

nt
0

0
inin

inoin
C

N
Ov

d

onrin
C

-
C

N

id

| 0.361 |

Maximum Upper 
Torso Angular 

Velocity (rad.s'1)
23.05 |
24.08 |

1 22.78 |
| 23.25 |

I IVIZ \

| 22.01 |
| 23.51 |

24.45 |
| 24.32 |
| 21.48 |
| 21.73 |
| 24.29 |
I 23.03 |
| 1.147 ]

Maximum Pelvis 
Angular Velocity 

(rad.s'1)

V
O

O
v

O
v

! 10.67 |
| 11.35 |

0
0

o

| 11.52 |

c
n

O
v

O
v

| 10.24 |
1 11.91 II ZVll |

t-inO
v

| 11.92 |
I 10.89 |
| 0.812 |

Minimum Pelvis 
Alignment (°)

| 179.4 |
I 179.7 |

0
0

r-

| 182.8 |in0
0

C
"

I 180.6 |
| 178.8 |
| 182.3 |od0

0

I 180.9 |
| 180.3 |
| 177.6 |
I 179.93 |
| 1.570 |

Trial
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o
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Intra-Individual Variability - Participant 2

B
A

C
K

 FO
O

T
 IM

PA
C

T

Trunk  
Flexion-Extension (°)CNcn

ino
oi

o
ON

cni
ONd

o
mo

ino'
o

CN■ct
OCN

rHrHVOi-H

COM Horizontal 
Velocity (m.s'1)l>co

ON00■ct
00qun

CNin
•n

oON
inoin

00pin
CNOin

oCOin
CNCOin

O
n

CNin
COrHin

| 09F0

Back Foot 
Alignment (°)

| 349.0 |O00coco

I 339.6 |qcn

| 332.2 |
I 339.2 |
| 343.4 |
| 342.6 |
| 341.2 |
| 328.2 |
| 334.5 |
| 326.4 |
| 338.19 |
| 6.726 |

Pelvis 
Alignment (°)

| 197.6 |oo

| 187.6 |
| 190.6 |
| 190.6 |
I 191.4 |
| 193.0 |
| 192.8 |
| 198.5 |
I 187.2 |
1 191.1 |
| 188.6 |
I 191.34 |
| 3.731 |

Upper Torso 
Alignment (°)

| 218.3 |
| 231.5 |
| 224.0 |
| 233.5 || 223.9 |I 235.8 || 233.6 |
| 230.8 || 225.7 || 224.7 || 231.0 || 228.5 |
I 228.44 || 5.157 |

Trial

<N
cn

m
N

O
0

0
O

n
o-

CN

Mean |ocn
id yam

 xoox H3 va

FR
O

N
T

 FO
O

T
 IM

PA
C

T

Bowling Arm 
to Horizontal (° )vq

CN
■rf
NO

CN
CNco

inO
n

r-
ONCN

vqcnCN
ONin

1 11.442 1

| 5.786 |

Non-Bowling Arm 
to Horizontal (°)vqCNr-i

cn001

cor-‘
00

dr-■

00oo’
t"t

00CNOO

f'r-■

00■O"
00

t-;
inrp

00rp
cn00

inint-~i

1 -79.008 1

| 5.112 |

Trunk 
Lateral Flexion (°)

mO
s

VO

oNO

■ct
oo'
NO

con
o'

NO

NONO
oo'
NO

-'t

NO

oT}-’
NO

NONO

oinNO

CNvdVO
00NO

| 67.150 |
| 1.568 |

Trunk 
Flexion-Extension (°)cn

in
00o

COn
o'

con
o'

001
inO

n

NOoo'
CNO

n

CNo
•noo' 00oo00

I 1.917 |

COM Horizontal 
Velocity (ims*1)

O
s

00vq■Ct

r-NO•ct

o00
coNO'd-

oin
00NO■ct

ONnt-
in

•nin■Ct

00
o

I 4.636 |
I 0.140 |

Front Knee 
Angle (°)

| 152.6 |

I 158.3 |
| 156.0 |
I 161.8 1
| 162.0 |

I 161.6 |
| 158.3 |
| 158.8 1
| 155.4 |

I 157.6 |

| 157.5 |
| 157.5 |
I 158.117 |
| 2.774 |

Pelvis 
Alignment (°)

| 247.3 |
248.2 |

| 247.8 |
253.8 |
244.7 |

246.8 |
251.6 |

252.5 |
247.1 |

253.1 |
256.3 |cninCN

CNTT•'IONCN

| 3.744 |

Upper Torso 
Alignment (°)

| 223.8 |
| 230.9 |
| 224.7 |
| 226.9 |
| 226.6 |

I 232.1 |
| 228.8 ]

235.4 |

226.7 |
| 226.8 1

| 241.3 |
| 227.1 |
| 229.258 |
I 4.992 |

Trial
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-
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Intra-Individual Variability - Participant 2 (Cont.)

B
A

L
L

 R
E

L
E

A
SE

Trunk 
Lateral Flexion ( ° )

O
n

C
N

V
O

pV
O

oC
N

V
O

o'V
O

c
n

v
o
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n

'
V

O

C
N

o'V
O

C
N

O
N

in

C
N

0
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in
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C

N
V

O

r
-

oV
O

I 60.67 |

| 2.219 |

COM Horizontal 
Velocity (m.s'1)

v
q

C
N

O
v

0
0

c
n

O
O

O
N

C
N

Srn

C
N

C
N

c
n

V
O

0
0

C
N

V
O

O
N

C
N

V
O

pC
N

O
n

pC
N

V
O

0
0

C
N

O
O

pC
N

r
-

pC
N

| 2.866 |

| 0.193 |

Front Knee 
Angle ( ° )

| 123.0 |

| 133.9 |
| 129.4 |
| 136.7 |

0
0

c
n

0
0

oo’
c

n

| 133.7 |
| 136.1 |
| 134.9 |

I 136.8 |
| 134.3 |
| 131.5 |
| 133.98 |
| 4.412 |

Trunk 
Flexion-Extension (°)

C
N

0
0

C
N

O
v

C
N

C
N

c
n

C
N

inC
N

C
N

C
N

0
0

v
d

C
N

■'tv
d

C
N

c
n

0
0

C
N

O
N

oc
n

0
0

0
0

C
N

r-oC
N

oo
o

C
N

I 26.24 I

| 3.035 |

Height of Ball 
Release (m)

| 1.885 |

I 1.953 |
| 1.928 |
| 2.007 |
| 1.956 |

I 1.968 |
| 1.918 |
| 1.907 |
| 1.882 |
| 1.907 |
| 1.928 |
| 1.924 |
I 1.930 |

| 0.036 |

Trial

-
C

N
c

n
U-)

V
O

r-
o

o
O

n
o

-
C

N

| MeanQC
/2

3SV
3T

3H
 T

IV
9

O
T

H
E

R

Minimum 
Upper Torso 
Alignment (°)

199.7
200.6
196.2
204.8
199.7
202.5
199.0
200.4

I 193.5 1
1 193.6 1
1 202.0 1
1 198.4 1
I 199.20 1
| 3.405

Maximum 
Pelvis-Upper Torso 
Separation Angle (°)00C

N

inC
M

00idC
N

c
n

00O
n

pidC
N

r-'C
N

C
N

idC
N

v
d

C
N

O
n

C
N

c
n

ov
d

C
N

CN*
C

N

I 26.25 I
| 3.569 |

Maximum Right 
Wrist Speed 

(m.s’1)
18.55 1
18.68 1

I 18.97 1
1 18.69 1

18.70 1
18.82 1
19.02 1

1 19.01 1I ZV61 \

19.87 1
19.05 |
19.20 |

18.998 |
0.369 |

Maximum Right 
Shoulder Speed 

(m.8-1)oC
N

00
C

N
OO

O

oC
N

oo'
00p

oo00
C

N

oo'
C

N
Ooo'

00ooo'
c

n
c

n

00*
inC

N

00*
00p00

c
n

c
n

00*

| 8.134 |
| 0.125 |

Maximum Right 
Hip Speed 

(m.^1)

mov
d

0000id
oov

d

mov
d

oooid
o00id

mpid
inpid

omv
d

inC
N

v
d

ov
d

inC
N

v
d

| 6.048 |
| 0.205 |

Delivery Stride 
Alignment (°)

00

| 171.5 |
I 172.4 |
| 173.9 |
| 171.2 |
| 172.2 |
I 172.7 |
| 171.8 |
| 171.1 |
| 171.2 |00o

00r-

| 171.87 |

CNm00o

Delivery Stride 
Length (m)

| 1.656 |
| 1.511 || IPS'I |

| 1.464 |1 ns'i I

| 1.531 |
| 1.583 |
| 1.500 |
| 1.591 |
| 1.567 |
I 1.543 |
I 1.567 |
I 1.547 |
| 0.050 |

Trial

-
C

N
c

n
in

V
O

r-
00

O
n

o
-

C
N

Mean |GC
/2

R
3H

L
O

E



Intra-Individual Variability - Participant 2 (Cont.)

O
T

H
E

R
 C

O
N

T
.

Upper Torso 
ROM (°)

1 1 0 .7
1 1 2 .6
1 1 5 .8
1 1 7 .6

m
oo

V
O

o
v

1 1 2 .7

O
v

OOCN

V
O

KCN

v
q

CN
inCN

1 1 7 .2 6
6 .2 3 9

Pelvis 
ROM (°)

or-~

00
o>ne'­

0000
V

O
v

d
o■'tr-

ine'­
v

d
r-~

r-~o
’tv

d
e--

ininr-

ooo’
e--

7 5 .9 9
2 .1 3 6

Trunk 
Flexion-Extension 

ROM (°)nfc
n

cn
CN

e
n

oo'
CN

inc
n

C
N

O
v

inCN

O
v

O
v

CN

e
nCN

00CN

’tdc
n

CNO
v

c
n

dCN

CNoc
n

2 8 .1 4

4 .8 1 6

Maximum Vertical 
Velocity of 

Non-Bowling Elbow (ims'1)or-v
d

mv
d

CNCNv
d

mv
o

v
d

omv
d

ov
o

V
O

r—inv
q

or-v
d

c
n

O
V

v
q

or-vq’

c
n

inv
d

c
n

itv
d

1 -6.582 100t"o

Maximum Trunk 
Angular Velocity 

(rad.s'1)m’it
inc

n

inc
n

v
q

c
n

00ntc
n

itc
n

00c
n

c
n

O
v

-t

oc
n

-t

-tq’t

r-■'t
c

n

00t-c
n

1____  3.736 1

| 0.363 |

Maximum Upper 
Torso Angular 

Velocity (rad.s'1)00

I 17.61 |

t—o00

| 19.73 |
| 18.19 |
| 17.97 |

00oo'

| 17.53 |
| 2 0 . 0 0  |
| 20.80 |

I 17.15 |
| 18.83 |
| 18.539 |
| 1.123 |

Maximum Pelvis 
Angular Velocity 

(rad.s'1)o
V

O
V

O
oo’

O
v

v
o

O
V

inv
o

oo'

c
n

O
v

O
v

O
v

r->’
C

N
O

V
oo’

10.30 |00cnO
n

O
v

00O
v

I 13.12 |
| 12.38 |
I 9.593 |
I 1.719 |

Minimum Pelvis 
Alignment (°)

1 191.1 1
186.9 |
187.5 |
190.5 |
190.6 |
191.3 |
190.5 |

| 192.1 |
| 196.5 |
| 186.8 |
1 191.1 |
| 188.6 |

O
v

oO
v

1-H

| 2.674 |

Trial

-
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N
c

n
■
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v
o
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O
v

o
-

C
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Mean |Qxn
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Intra-Individual Variability - Participant 3

B
A

C
K

 FO
O

T
 IM

PA
C

T

Trunk 
Flexion-Extension (°)

C
N

in
oin

C
N

C
N

v
q

C
N

c
n

c
n

c
n

C
N

c
n

C
N

S
O

in
t"-C

N

S
O

o'
o

-13.66
| 1.765

COM Horizontal 
Velocity (m.s'1)

O
S

S
O

in

C
N

C
N

in

cnin

c
n

0
0

in
in

O
n

inin

v
q

in

oS
O

in
in

0
0

in

so0
0

in

0
0

inin

I 5.639 |
| 0.174 |

Back Foot 
Alignment ( ° )

| 341.8 |

I 334.6 |

C
N

n
-

c
n

| 349.9 |
| 340.1 |

I 343.3 |
I 338.6 |
| 339.5 |

I 337.9 |
| 337.3 |
| 342.0 |
1 338.6 1
| 340.65 |
| 3.974 |

Pelvis 
Alignment ( ° )

| 197.1 |

| 195.7 |

I 200.5 |
| 217.1 |
| 197.6 |

I 206.5 |oo'oC
N

| 197.9 |
| 200.2 |
I 201.9 |
| 202.8 |1 vzoz I

| 201.64 |
| 5.696 |

Upper Torso 
Alignment (°)

| 223.9 |
I 217.2 |
| 228.0 |
| 223.6 |I VL\Z |

| 223.6 |
| 217.3 |
| 225.6 |
| 215.7 |
| 220.0 |
| 218.4 |
I 222.3 |
| 221.08 |
I 3.939 |

Trial

-
C

N
c

n
m

V
Or-

0
0

O
s

o
-

C
N

| Mean |QIfl

id
 vara xooa h

d
v

s

FR
O

N
T

 FO
O

T
 IM

PA
C

T

Bowling Arm 
to Horizontal (°)osqIN

0
0

■'3-
O

s

C
N

r-’
0

0
so'

C
N

cn
sdC

N

oin
oo0

0

O
S

cn
os

•<3;0
0

OsC
-;

OS
s-H
oo00

Non-Bowling Arm 
to Horizontal (°)

SOinrp
osoo’0

01

0
0

oo'rp
c

n
oo\

SOSOO
s

inoo’rp
t";
oo'O

s

O
s

so'0
0

SOso'0
0

cnO
s

oo
O

S

oo
qoo'r

-■

1 -85.90 1
7.378

Trunk 
Lateral Flexion (°)in

SOo'r
-

or-
C

NcnV
O

ooinSO
cnr~-

qn-’so
ooC

N
r-

oe'­
inoo'SO

cne'­
cne—

70.01 |
3.794 |

Trunk 
Flexion-Extension (°)ocn

C
N

o
cnC

N
cn

cno
C

N
cn

incn
cnO

en
C

N
enC

N
00o'

SOno

| 2.050 |

COM Horizontal 
Velocity (m.s'1)in

r-C
N

nf-
e'­ennF

O
N

00C
N

Tf
inqn-

inq
O

s
in

00■'t*
t";

cnqin
O

s
in

4.493 |
0.264 |

Front Knee 
Angle (°)

| 150.5 |
| 158.3 |
| 158.8 |
| 159.2 |
I 160.9 |
| 152.5 |
I 157.9 |
| 157.7 |
| 159.6 |
| 159.3 |

154.8 |
159.9 |

157.45 |
| 3.186 |

Pelvis 
Alignment (°)

| 219.5 || V6ZZ |

r-#cnC
N

| 236.3 |
| 241.7 |
I 225.9 |
| 246.2 |
| 225.1 |
I 234.1 |
| 235.8 |
| 221.0 |
| 231.6 |ooCNcnCN

| 8.181 |

Upper Torso 
Alignment (°)

| 209.9 |
| 215.8 |1 V91Z I

| 227.0 |
| 221.6 |
[ 212.6 |
| 231.6 |

214.2 |
218.4 |
217.8 |
208.9 |
213.0 |

217.27 |1 ZZL'9 \

Trial

-
C

N
cn
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O
s

o
-

C
N

Mean |Qm
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Intra-Individual Variability - Participant 3 (Cont.)

B
A

L
L

 R
E

L
E

A
SE

Trunk 
Lateral Flexion (°)cnn

o
-rt

0
0

intJ-
in

o•'fr
q'Cf

O
v

0
0

vo’-n- qw-jn-
CNin

c
n

n-
cnCNn-

O
v

1 45.56 1
| 1.851

COM Horizontal 
Velocity (m.s'1)

O
n

n
o

CN

CNcnCN

N
O

N
O

CN

r-CN

inqCN

V
O

inCN vqCN

CNqCN

V
O

qCN r-~qCN
qCN

minCN

I 2.628 |

| 0.135 |

Front Knee 
Angle (°)

158.7 |
184.2 |
183.5 |

t"o0
0

187.2 |

I 155.8 |
| 183.5 |q0

0

| 186.8 |
| 182.7 |

| 186.3 |

| 181.5 |
| 179.63 || 6S90I |

Trunk 
Flexion-Extension (°)CNincn

cn

0
0

incn

or-‘cn

qc
n

O
n

cn
CNcn

qincn

cnCNcn
qcn

cn
cn

I 34.35 |
I 2.097 I

Height of Ball 
Release (m)

0
0

0
0

I 1.758 |
I 1.770 |

cn0
0

t";
0

0
q

I 1.790 |
I 1.832 |
| 1.799 |
I 1.734 |

| 1.747 |
I 1.766 |
I 1.802 |
I 1.782 |
| 0.029 |

Trial

-
CN

cn
^t m

V
Or~

0
0

O
v

o
-

CN

1 Meanat/2

3SV
333H

 T
IV

a

O
T

H
E

R

Minimum 
Upper Torso 
Alignment (°)

1 190.7 1
1 190.2 1

I 193.1 |
191.5 1
186.1 1

1 191.2 1

191.9 1
193.1 1oo00

193.6 1

| 191.8 |
| 191.6 |

I 191.05 |
| 2.187 |

Maximum 
Pelvis-Upper Torso 
Separation Angle (°)

O
v

incn
00C

N

00O
v

C
N

o'C
N

cncn
00in

inC
N

qin
cn00

inin
00oo’

I 15.59 I
| 3.616 |

Maximum Right 
Wrist Speed 

(m.s’1)
| 20.67 |
I 20.52 |

I 21.05 |
| 20.57 |
| 20.85 |

21.22 |

I 20.75 |
20.60 |

20.77 |
| 20.92 1

I 20.35 |
I 20.87 |
I 20.762 |

| 0.241 |

Maximum Right 
Shoulder Speed 

(ims'1)mq00

cnqoo'

moO
v

cnq00

cn0000

00O
v

oo'

inpO
n

oqoo’

cn00oo

00O
n

m00oo'

inOO
n

I 8.903 |
| 0.161 j

Maximum Right 
Hip Speed 

(ims"1)inqin

00qin’

mcnV
O

00C
N

v
o

'

00C
N

N
O

cncnv
o

C
N

C
N

N
O

Oov
o

’

ooov
d

cncnN
O

ooC
N

v
d

cnO
N

in

I 9ZX9 |

| 0.236 1

Delivery Stride 
Alignment (°)

179.3 |
179.0 |

179.2 |
179.4 |
179.2 |

179.5 |

179.5 |
179.3 |

I l'6Z,l

179.1 |

I 177.3 |
I 179.6 |

I 179.13 |

| 0.603 |

Delivery Stride 
Length (m)

1.476 |

00

I 1.574 |
1.508 |

| 1.626 |
1.614 |

1.589 |
1.520 |

1.600 |
I 1.582 |

I 1.506 |

| 1.562 |

I 1.553 |

| 0.052 |

Trial

-
C

N
cn

Tt
in

V
O

r-~
00

O
v

o
-

C
N

| MeanQ

H
3H

X
O

E



Intra-Individual Variability - Participant 3 (Cont.)

O
TH

E
R

 C
O

N
T.

Upper Torso 
ROM (°)

| 141.3 |
1 145.2 1
1 143.2 1
1 148.7 1
1 138.5 1

138.4
I 143.1 1
1 144.2 1
I 152.5 1
1 146.0 1
1 150.5 1

143.7
1 4 4 .6 1

| 4.349 |

Pelvis 
ROM (°)

vq0
0

m■̂tO
n

0
0

0
0

•'3-N
O

OO
O

n

O
n C"N

O
0

0

c
n

O
N

0
0

0
0

<NO
n

O
N

moO
N

c
n

O
N

0
0

CNO
n

9 0 .4 8
| 3 .6 6 2

Trunk 
Flexion-Extension 

ROM (°)p00*
'3-

O
N

poo'nf
N

O
O

n Oin
<Noo’nt"

O
n

un
pin

0
0

N
O

om
p

00*

48.01 1

2.147 |

Maximum Vertical 
Velocity of 

Non-Bowling Elbow (m.s'1)mO
Nin

m0
0

in
inmN

O

OO
n

N
O

ooO
n

in
0

0
cnN

O

unO
N

un
op•n

ocnN
O

oC
N

N
O

OOp•n
OC

N
v

d

1 -6.145 18o

Maximum Trunk 
Angular Velocity 

(rad.s'1)r}-N
Oin

oN
O

O
n

"cTN
O

OO
n

N
O

•n-cnn
o’

0
0

in
C

N

v
d

oopN
O

O
n

pin
mmN

O

inoN
O

cnv
d

1 6.242 1
| 0.353 |

Maximum Upper 
Torso Angular 

Velocity (rad-s'1)
| 23.69 |
| 23.23 |
| 23.91 |
| 22.83 |
| 22.25 |
| 22.52 |
\ 22.65 |
| 23.20 |
| 22.84 |
| 23.24 |
I 24.07 |
| 23.89 |
I 23.193 |
| 0.596 |

Maximum Pelvis 
Angular Velocity 

(rad.s'1)
10.76 |

I 10.30 |
| 10.68 |

C
N

c
n

O
N

| 11.60 |
| 10.58 |
I 10.37 |I oru |

| 10.33 |pO
N

1 orn |

| 10.02 |
I 10.431 |
| 0.733 |

Minimum Pelvis 
Alignment (°)

| 189.6 |
( 185.5 |
| 190.3 |
| 192.5 1
| 190.4 |

0
0

| 189.4 |

c
n

0
0

| 185.4 |
| 191.4 |
| 192.6 |

0
0

0
0

| 189.16 |1 isvz I

Trial

-
C

Nm
m

N
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0
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O
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N
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Intra-Individual Variability - Participant 4

B
A

C
K

 FO
O

T
 IM

PA
C

T

Trunk 
Flexion-Extension ( ° )OvVO

c
n

CNi
Oini

CNrp

(N0
0

v
q

oo
CNv

q

0
0

in
v

q

in
0

0

CN
Ov•vfr

oin

1 -5.708 1

I 1.912

COM Horizontal 
Velocity (m-s*1)VOc

n

in
in

v
o

inin

VOc
n

in

r~c
n

in
c

n

in
v

q

•n

O
S

■ct
in

c
n

c
n

in
r~in

oinin

Ov•n

1 5.436 1

I 0.149 |

Back Foot 
Alignment (°)

346.8 |
349.8 |

| 345.1 |
| 340.1 |
| 346.1 |1 z/sk 1

| 347.2 |

| 337.3 |

in5c
n

| 342.5 |
| 341.4 |

| 341.0 |
| 343.958 |

| 3.549 |

Pelvis 
Alignment ( ° )

| 191.5 |
| 209.1 |
| 198.4 |

| 195.3 |
| 185.4 |
I 186.4 |

I 189.7 |
| 199.9 |
I 192.4 |

I 206.5 |

I 189.6 |
| 189.8 |

oT
f

O
v

1-H

I 7.587 |

Upper Torso 
Alignment ( ° )

inC
N

c
n

t
J-

CN

I 235.2 |
| 232.7 |
| 235.4 |

I 235.4 |
| 230.6 |
| 238.6 |
| 238.2 |
I 237.2 ]

| 243.3 |
I 234.6 |
I 237.43 |3cn

Trial

-
CN

C
n

in
VO

r
-

00
Ov

o
-

CN

| MeanQ

lo
v

a
m

 x
o

o
x

 n
o

v
a
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O

N
T

 FO
O

T
 IM
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C

T

Bowling Arm 
to Horizontal (°)

O
v

c
n

t";•n1
C

N
OO

rpv
d

o
c

n
O

v

00C
Ni

v
d■

C
N

d
c

n
v

d■
00rp

00as

1 -10.60 I
| 5.221 |

Non-Bowling Arm 
to Horizontal (°)

C
No'r~

V
O

or-i
v

q

rp
O

v

V
O

ooo'v
q

tI-v
q

00rp
C

Nv
q

00rp
O

v
oo'V

O

v
q

C
N

V
O

cnV
O

I -67.50 |orrotT

Trunk 
Lateral Flexion (°)

v
d

v
o

oor-
uninv

o
ocv

o

00oo'v
o

C
N

rV̂
O

v
o

O
v

v
o

O
v

rV̂
O

inc
n

r-
C

N

V
O

OOV
O

C
N

00V
O

I 68.43 |
| 2.043 |

Trunk 
Flexion-Extension (°)ov

d
V

O
o'

O
v

o'
in

cn
ino

ino'
V

O
C

N
C

N
nr

O
v

00o
CNOv

| 1.810 I

COM Horizontal 
Velocity (m.s'1)r-incn

00
Tt

onf
ooO

v
c

n
p

r-cn
00rpc

n

in©
V

O
o-d"

C
N

Oscn

I QZQ’P |

I 0.203

Front Knee 
Angle (°)

162.3 |
161.9 |

| 167.7 |
| 157.5 |
| 160.6 |

| 167.6 |
163.4 |

159.5 |
158.2 |

163.5 |
| 164.0 |

| 161.0 |

I 162.27 |
I 3.236 |

Pelvis 
Alignment (°)

I 234.6 |
| 226.9 |
| 211.9 |
| 223.9 |
| 216.7 |

I 218.9 |
I 219.8 |
| 221.2 |

219.3 |

I 217.1 |
| 221.6 |

| 229.2 |
| 221.76 |
| 6.136

Upper Torso 
Alignment (°)

I 204.2 |1 vzoz

| 196.9 |
| 196.8 |
| 197.3 |
[ 196.2 |

196.8 |

c
n

v
d

O
v

r^O
v

198.4 |

| 198.2 |inO
v

O
V

C
N

OOO
v

tH

| 2.487
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Intra-Individual Variability - Participant 4 (Cont.)

B
A

L
L

 R
E

L
E

A
SE

Trunk 
Lateral Flexion (° )cn

ONoVO

cscn
cnvoT

t
VOVO*

CNin
00

00vo’
in

00'it

inOv
CN

46.98
I 3.996

COM Horizontal 
Velocity (m-s'1)voin

Ov
r-00

cnvq
oin

cnin
CNin

cnin
"tvq

invq
or-;

| 1.613 1
0.115 |

Front Knee 
Angle O

I 172.6 |
| 165.7 |I VZ91 |

| 152.1 |

| 172.2 |
| 162.3 |
| 171.0 |
| 159.5 |

| 143.6 |
| 166.4 |
| 165.1 |
| 164.7 |

I 163.13 |
| 8.394 |

Trunk 
Flexion-Extension (° )

CN
<Nincn

00
ocs

CN
VOr-’
cn

Ovcn
cn

cn

cn
CNr-*cn

inoo’cn

1 39.73 I
I 3.277 |

Height of Ball 
Release (m)

I 1.681 |00o

I 1.627 |

1 1-714 |
| 1.688 |
| 1.648 |
| 1.674 |
I 1.704 |

I 1.773 |
| 1.692 |

I 1.700 |
| 0.041 |

Trial

-
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m

VO
r-

00
OV

o
-

C
N

Mean |QC
/3

3SV
313H

 T
T

V
 9

O
T

H
E

R

Minimum 
Upper Torso 
Alignment (° )

190 .1

ocsOv

I V961 |

1 8 5 .3inin00

csvd00

00oo

csvdoo
00

cnoo00

1 8 7 .6
1 8 7 .8

188.41
3.154

Maximum 
Pelvis-Upper Torso 
Separation Angle (°)VOo

’
cn

Ovincs

vq00
00ovcs

vqCN

invdcs
oo’
cs

cnOvCS

00cncs

00incs
CN

cnCNcn

26.62
| 3.891

Maximum Right 
Wrist Speed 

(ims-1)
1 2 0 .2 9

1 19.70 1
1 20.25 |
I 20.25 |
| 20.50 |

! 20.35 1I OP'OZ \

19.72 1

18.92 1

20.02 1

20.35 1

19.85 1

20.050 |
0.446 |

Maximum Right 
Shoulder Speed 

(ims-1)in00
00vq

in00r-’

VOt";
oOv

int";
00ooo

00t";
cncn

in00r->‘

oo00
00vqr-‘

7.783 |
0.179 |

Maximum Right 
Hip Speed 

(m.s-1)00inin

oo■*t
in

ot";
in

00inin

o'tin

00'tin

o00in

00inin

00cnin

cnc^in

cnvqin

ovqin

5.578 |00cs©

Delivery Stride 
Alignment (°)

pcs00

I 181.7 |
| 182.3 |
| 179.6 |
| 180.2 |

I 180.6 |

r-o
’

00

ooo00

| 180.6 |

00cs'
00

180.6 |
181.2 |

181.09 |
0.933 |

Delivery Stride 
Length (m)

I 1.526 |

I 1.473 |
| 1.528 |
| 1.476 |
| 1.474 |

I 1.500 |
1.490 |
1.489 |
1.496 |

1.528 |OVoo't

1.409 |

1.490 |
0.033 |

Trial

-
cs

cn
in

VO
r-

oo
Ov

o
-

cs

Mean |QC/3

H
3H

L
O

E



Intra-Individual Variability - Participant 4 (Cont.)

O
TH

E
R

 C
O

N
T.

Upper Torso 
ROM (°)

115.8
104.6
113.6
109.7
113.0

1 113.8 I
113.6 | 6'6l I |

101.2
114.2
110.4 I rex i |

111.91
4.967

Pelvis 
ROM (°)

V
O

vdr~
00cs'V

O

c
n

r-
inc

n
V

Or-
O

v
vdr-

O
V

■-t
c

nr-~
V

O
00V

O

t";■'tr-
c

n
O

v
t"

inoo’r-~

73.21
5.552

Trunk 
Flexion-Extension 

ROM (°)ooO
v

inc
n

00vd■<t CSO
v

"t"
O

v
■n-

csvd
c

n
in’•Ct

O
v

t";O
v

c
n"t

cs’"t
vqc

n
•'t

45.48
4.022

Maximum Vertical 
Velocity of 

Non-Bowling Elbow (ims'1)inOvdi
c

n

in
00ovin■

00ovd
oovd

invd
ooV

O
in

inovd
ininin

00vqin
00in

inin

1 -5.873 1
| 0.198

Maximum Trunk 
Angular Velocity 

(racks'1)csr~‘
c

n
vd

O
v

CS
O

v
O

v
o

itr-vd
inc

n
o

t-in
r-~O

v
O

v
O

00<N
ooo

I 0.617 |

Maximum Upper 
Torso Angular 

Velocity (racks'1) I OYQZ |

17.90 |
19.62 |
18.35 |
19.68 |

| 20.56 |
| 20.15 |
| 21.01 |
| 17.77 |
| 20.92 |
| 20.71 |
| 20.63 |

19.808 |
1.175 |

Maximum Pelvis 
Angular Velocity 

(rad.s'1)inO
v

00
O

v
CSoo'

I 10.77 |

10.27 |
10.32 |

I 10.30 |
I 10.94 |int";

O
v

| 10.29 |
| 11.70 |
I 10.73 |

1 11-47 |

I 10.315 |

| 0.968 |

Minimum Pelvis 
Alignment ( ° )

| 190.7 |

I 200.7 n
| 190.8 |
| 194.9 |

185.1 |

v
d

00

| 188.2 |
| 192.7 1

| 190.2 |
| 194.4 |
I 189.4 |
| 189.4 |
| 191.08 |
I 4.193 |

Trial

-
cs

c
n

in
V

O
r~

oo
O

v
o

-
C

N

Mean |Q1/3

1N
O

D
 H

3H
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O

E



Intra-Individual Variability - Participant 5

B
A

C
K

 FO
O

T
 IM

PA
C

T

Trunk 
Flexion-Extension (° )voo

ocn
qcn

00cn
ocn

vqin
cnin

O
V

vo'
Tt

C
N

O
n

V
O

vocnrt

1 .7 5 4

COM Horizontal 
Velocity (m.s'1)00in'

inm
'

voin
in

r-C
Nin

oinin
vqin

inin

inqin

cninin

n
-

CNin

cnin

I 5.395 1
| 0 .1 4 7

Back Foot 
Alignment (°)

| 315.9 1

| 305.0 |
| 317.1 |
\ 314.7 |

312.8 |

313.4 |
311.2 |

310.3 |
318.2 |

n*cn

318.4 |
1 313.4 1
1 313.73 1

3.750 |

Pelvis 
Alignment (° )

I 193.3 |

q0000

cn00

| 190.4 |
| 189.6 |

I 188.2 |

0000

00oo'
00

191.1 |
191.6 |
190.8 |

qO
v

00

| 189.82 |
1.714 |

Upper Torso 
Alignment (°)

| 249.0 |

I 225.3 |

I 245.6 |

| 232.8 |

| 237.0 |

I 237.7 |

I 237.3 |

I 233.7 |

| 242.5 |

O
S

n
-

n
-

C
N

| 239.2 |

I 238.5 |
I 238.63 |
| 6.410 |

Trial

-
(N

cn
in

vo
r
-

00
O

n
o

-
c
s

Mean |

Q1/3

X
D

V
dPV

I xoox x
o

v
a

FR
O

N
T

 FO
O

T
 IM

PA
C

T

Bowling Arm 
to Horizontal (°)

qin

0
0

0
0

qv
d

CNcn
O

n

O
oo

qcs'
0

0

c
n

O
n

cn
qcs'

csin
cs’ 00in

3.013

Non-Bowling Arm 
to Horizontal (°)

incsin

csoV
O

in■

ininin

O
n

cnV
O

v
o

dv
q

oinin

v
q

c
n

in

r
-

c
n

»
n

in

O
V

C
S

v
q

qO
v

in1

-57.67
I 3.786

Trunk 
Lateral Flexion (°)

cs't-"
v

d
c

-
v

d
r

-

qr
-

c
s

c
n

r-
o

o

inf
"

<
s

int"

c
n

C
N

r-
r

-

inc
n

r-~
n

*
r-

I 74.35 |
I 1.251 |

Trunk 
Flexion-Extension (°)ocs'

oc
s’

v
o

O
v

inin

inn
-

c
n

in
in

o
o

C
N

v
d

q0
0

o
o

in
inin

I 2.289 |

COM Horizontal 
Velocity (m.s'1)

c
s

q
■’d’

O
V

cnn-
r-CNn-

O
v

0
0

c
n

O
v

t-"■n-'
C

N

n-’
c

s
c

n

-3-
O

oc
n

n-

I 4.194 |
I 0.132 |

Front Knee 
Angle (°)

| 160.8 |

I 163.8 |
[ 165.9 |

162.4 |
166.9 |
164.2 |
167.2 |
165.8 |
164.4 |

166.7 |
165.3 |

163.7 1

164.76 |

aON

Pelvis 
Alignment (°)

| 238.5 |

I 234.8 |

| 237.9 |
| 236.0 |
| 239.6 |

238.6 |

237.1 |
230.6 |
240.2 |

238.3 |
243.3 |qinc

n
c

s

t-•0mcs

I 3.136 |

Upper Torso 
Alignment (°)

| 203.3 |VI oz

| 200.6 |
| 197.6 |
| 199.8 |

| 200.3 |

docs

| 200.5 |
| 200.9 |
| 197.1 |

1 v\oz 1

| 198.8 |

I 200.18 |
| 1.699 |

Trial

-
C

S
cn

n
-

in
vo

r
-

00
O

v
o

-
c
s

Mean

Q1/3

XDVdPM
I X

O
O

X
 X

N
O

H
X

E



Intra-Individual Variability - Participant 5 (Cont.)

B
A

L
L

 R
E

L
E

A
SE

Trunk 
Lateral Flexion (°)in00m

csin
q00>n inin

V
O

v
o

m
qinin

v
d

m
O

v
in

cninin
Oin

mvo'
in

inin

I 56.74 1
I 1 .5 7 1

COM Horizontal 
Velocity (m-s*1)

O
v

CN
qcs'

V
O

O
v

CS ocn
O

v
CN

'Ctocn
00CN in00CN 00qcs oqcn

V
O

00cs'
O

v
CN

I 2.906 || 6600 |

Front Knee 
Angle (°)

| 130.9 |
| 136.6 |
| 130.9 1I 1*631

1 135.4 1
| 132.9 |
| 136.7 |
| 127.3 |

133.8 |
135.8 |
137.2 |
136.6 |

| 133.60 |

3.353 |

Trunk 
Flexion-Extension (°)

v
o

o'cs ©cs inr~-‘cs
ocs'cs 00C

N
C

N

cnvo’
C

N

inC
N

incs'cs
I> 
c

n
 

C
N

mC
N

00C
N

r-vo'
cs

I 24.41 |
| 2.812 |

Height of Ball 
Release (m)

I 2.003 |
I 1.996 |
| 1.975 |

2 . 0 0 2  |
2.016 |
1.965 |
1.991 |
2.033 |
2.019 |
1.984 |
1.994 |
1.963 |
1.995 |
0.021 |

Trial

-
cs

c
n

"3’ in
V

Or- 00
O

v
o

cs

| Mean |Qcn

a
sv

a
ia

a
 T

iv
a

O
TH

E
R

Minimum 
Upper Torso 
Alignment (°)00*00

o0000
00O

S
00

00oo'
00

1 8 7 .500

188.6 1
1 8 6 .3oooo’

00
q0000

189.1 |000000

| 18833 I
| 0.919 |

Maximum 
Pelvis-Upper Torso 
Separation Angle (°)cn

00incn
cn

cso'
qO

v
cn

cnO
v

cn
cn

cncn

t-"O
v

cn
cs

OC
N

cn

I 3830 |VOoocn

Maximum Right 
Wrist Speed 

(m.s*1)
| 20.20 |I oroz |

| 20.25 |
| 20.40 |I ZO'OZ I

I 20.35 |
20.20 |

1 20.25 1
1 20.07 1
| 20.20 |
| 20.03 |
| 19.97 |00I"-1-H©cs

| 0.132 |

Maximum Right 
Shoulder Speed 

(m.s*1)o00
00q

o00
o00

00ooo

00q
cnq

cn00
00q

00qoo'

o00
oq

o0000

| 0.113 |

Maximum Right 
Hip Speed 

(m.s*1)ocsv
d

ocsv
d

cnqin
inO

V
in

00v
d

oov
d

00ov
d

oqin
ocsv

d

ov
d

o00in
00Ov

d

I 6.052 |
| 0.135 |

Delivery Stride 
Alignment (°)

| 173.6 |

I 173.3 |
| 174.4 |

173.5 |
172.7 |

173.2 |
172.7 |

172.5 |
175.1 |

173.1 |
| 174.5 |
| 173.4 |o•0cn

| 0.795 |

Delivery Stride 
Length (m)

| 1.295 |

I 1.165 |
| 1.363 |
| 1.278 |

| 1.287 |

ooocn

| 1.287 |
1.266 |

| 1.308 |

I 1.306 |

| 1.315 |

| 1.280 |
I 1.288 |
| 0.046 |

Trial

cs
cn

m
V

O
r-~

00
O

V
o

-
C

N

| Mean |QCZ2

H
3H

X
O

E



Intra-Individual Variability - Participant 5 (Cont.)

O
TH

E
R

 C
O

N
T.

Upper Torso 
ROM (°)

o

cn

1 1 0 .2
1 0 5 .4
1 0 8 .6

1 1 4 .9
1 0 6 .4
1 1 0 .4
1 0 3 .4Pino

1 0 9 .2
1 1 3 .20000o

3.618

Pelvis 
ROM (°)

O
N

r-~
ooo

N
O

00r~-
O

N
t"

CNinr-

ooo'
t"

CN00r-
r-

oinr~
oint"-

oCNĈ
poo'
r-

76.90
2.448

Trunk 
Flexion-Extension 

ROM (°)CNrfCN

incnCN

r-n
o'

CN

O
n

CN

CNinCN

N
O

o'cn

CNv
d

(N
CN

pcnCN
O

N
CN

cn00CN

n
o

CN

26.24
2.310

Maximum Vertical 
Velocity of 

Non-Bowling Elbow (m-s'1)inO
N

N
O

CNr-v
d

CN00N
O

oN
O

omN
O

inr-N
O

cnr-v
d

ununv
d

OO
N

N
O

cnOp
oN

O
N

O

mcnN
O

1 -6.715 1661*0 I

Maximum Trunk 
Angular Velocity 

(rad.s1)

O
n

cn

O
n

cn
o00cn

opcn

CNO•'t

00
cnCN

ino
O

n
O

O
n

CNcn

oinnf

1 4.026 1
0.324 |

Maximum Upper 
Torso Angular 

Velocity (rad.s'1)
| 18.70 |

I 21.82 |
| 21.97 |
| 22.97 |
| 21.47 |

I 22.90 |
| 21.07 |
| 21.65 |
| 21.48 |

I 22.15 |
| 21.56 |

1 21.11 |
I 21.571 |
| 1.088 |

Maximum Pelvis 
Angular Velocity 

(rad.^1)inCN

I 10.93 |

O
n

Tt
CNpO

N

r-00oo’
00O

n

CNN
O

00

r"pO
N

inp00

00r-O
n

O
n

r-00

CNcn00

I 9.028 |
| 1.069 |

Minimum Pelvis 
Alignment (°)

| 193.0 |

| 197.9 |cn00

| 190.4 |
| 189.5 1
I 188.2 |

oo'
00

00oo00

| 190.9 |
I 191.6 |
| 190.7 |
I 190.0 1NO•*1oON

| 2.804 |

Trial

-
CN

cn
in

N
O

r-
00

O
N

o
-

CN

Meano

X
N

O
O

 H
3H
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E



Intra-Individual Variability - Participant 6

B
A

C
K

 FO
O

T
 IM

PA
C

T

Trunk 
Flexion-Extension (°)

CN
O

cncn
CN

"3;
v

q
in

v
q

n-
00CNi

OOl

O
v

CNCN

1 ore i- I

| 1.393 |

COM Horizontal 
Velocity (m.s'1)o00

V
O

•'t
V

O
O

N
oCNin

in

O
v

O
v

oCN•n

oin

oCNin
in

O
v

in

CNcnin

| 5.083 |
| 0.172 |

Back Foot 
Alignment (°)

| 342.1 1

I 344.2 || fr'OK |

| 348.5 |
| 336.8 |

I 344.6 |
| 342.1 |
| 336.3 |
| 343.6 |

I 341.7 |
| 336.8 |

| 333.7 |
| 340.90 |

| 4.264 |

Pelvis 
Alignment (° )oo0000

| 205.3 |0000

| 189.3 |
| 188.9 |

I 191.0 |
| 189.4 |
| 190.6 |o•n00

oocnoo

00-d00
n-00

I 189.14 |
I 5.659 |

Upper Torso 
Alignment (°)

| 232.2 1
I 241.3 |
| 238.0 1
| 230.7 |
| 229.4 |
I 242.6 |
| 233.5 |
| 239.7 |
| 229.0 |-dcnC

N

| 238.1 1
I 236.2 |
| 235.43 |
| 4.610 |

Trial

C
N

cn
in

V
O

r"
00

O
s

o
-

C
N

| MeanQC/5

1
3

 V
d

ra
 X

O
O

X
 X

3
V

9

FR
O

N
T

 FO
O

T
 IM

PA
C

T

Bowling Arm 
to Horizontal (°)inin

O
C

N
v

q
O

v
v

d
O

v
r~;
n-'

incn
qO

v
v

d
oin

O
v

O
v

O
O

t";
vd

I 3 .6 2 1

Non-Bowling Arm 
to Horizontal (°)mi>o\

C
N

00

00in00

v
q

00

00•n00
C

N
00

00O
V

00

00oO
v

vov
d

00

00oo

00■

qn-00

| -86.25 |

I 5 .0 0 3

Trunk 
Lateral Flexion (°)cnC

N
ininr-

00r-

inv
d

r-

inr-

oC
N

r-
^tr-

c
n

'dr-

inrtr-
r-

v
d

i>

0
0

c
nr-

I 74.43 |

I 1.328 |

Trunk 
Flexion-Extension (°)

v
o

(N
c

n
ind

v
d

't
C

N
ooo

c
n

oo
O

v
n

-'
qin

| 13.23 !

CNOoCN

COM Horizontal 
Velocity (m.s*1)

C
N

cn

r-incn

m0
0

c
n

C
Nr-̂c
n

V
O

c
n

c
n

n
-'

C
N

c
n

mv
q

c
n

c
n

r-̂c
n

oc
n

00c
n

0000c
n

I 3.743 |

I 0.173 |

Front Knee 
Angle (°)

\ 158.3 |
160.2 |
158.9 |
157.2 |
161.0 |

158.7 |
158.8 |
159.8 |

158.5 |

156.1 |
| 160.2 |

| 162.9 |
I 159.22 j

I 1 .7 7 6

Pelvis 
Alignment (°)

| 233.3 |
I 233.5 |

223.7 |1 i9zz I

| 235.2 |

236.2 |
| 231.2 |

| 224.8 |
232.4 || V6ZZ |

| 229.0 |I V9ZZ |

| 230.10 |

I 4.177 |

Upper Torso 
Alignment (° )

207.8 |

203.6 |
200.2 |

00v
d

O
v

202.7 |
208.8 |
201.5 |

195.7 |
204.3 |

203.7 |

| 199.5 |
| 201.0 |cnrHCNoCN

I 3.912 |

Trial

-
C

N
c

n
■"t

in
V

O
r"

o
o

O
V

o
-

C
N

| Mean

Qcn
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Intra-Individual Variability - Participant 6 (Cont.)

B
A

L
L

 R
E

L
E

A
SE

Trunk 
Lateral Flexion (°)cncnin

o00in

ocsin

incnun

ocs'
in

00cs’
in

VOin

cscnin

incnm

Ocs’
in

pin

■'3-dVO

1 54.36 1
| 2.694 !

COM Horizontal 
Velocity (m.s'1)s

VOin
in

o00
00vq

00
oOv

o00
mov

Ovvq

I 1.738 |
| 0.127 |

Front Knee 
Angle (°)

| 178.9 1
| 181.6 |
| 181.2 |

00

| 181.9 1
I 182.4 |
| 183.9 |
| 183.4 1
| 185.7 |

I 182.3 |

1 184.6 1

■Ct
00

| 182.64
| 1.815

Trunk 
Flexion-Extension (°)

C
N

cno
O

n
cn

Ovv
d

n-

O
n

o
cn

C
N

C
N

in
O

v
cs'
cn

OO•"t

I 42.70 |

I 3.594 I

Height of Ball 
Release (m)

| 1.696 |

I 1.731 |
I 1.678 1
| 1.658 |
| 1.669 |

I 1.705 |
I 1.707 |
I 1.696 |
| 1.647 |
I 1.676 |

| 1.697 |
I 1.684 1
| 1.687 |
| 0.023 |

Trial

-
cs

cn
in

V
O

00
O

v
o

C
N

| MeanQCfl

3SV
313H

 n
v

a

O
TH

E
R

Minimum 
Upper Torso 
Alignment (°)

185.1 1
187.0 1
182.6 1

1 182.6 1
1 186.6 1

189.0 I
1 182.9 1
1 183.6 1

183.5 1CSin00

| 182.7 |

O
v

00

| 1 8 4 .6 4

| 2 .0 5 6

Maximum 
Pelvis-Upper Torso 
Separation Angle (°)mV

O
C

N
oc

n

o-3-'
cs

O
v

O
v

CS
c

n
c

n
cs

00O
v

CS
O

v
oc

n

cs00cs
ov

d
cs

ooc
n

pincs

I 28.47 || 0697 |

Maximum Right 
Wrist Speed 

(m.s’1)
20.90 |
20.52 |
20.82 |1 ZVIZ

I ZVIZ

20.90 |
21.74 |I ZVIZ

I 21.47 1
I 21.67 |
| 21.05 |
| 21.66 |
| 21.224 |
| 0.393 |

Maximum Right 
Shoulder Speed 

(m.8-1)00O
v

inO
v

OC
N

00
ocsoo'

c
n

00
00in00

c
n

inoo
opoo

c
n

00
minoo'

o■poo’
r-~vnoo

| 8.352 |

| 0 .2 2 0

Maximum Right 
Hip Speed 

(m.s’1)o00
c

n
Oin

oO
N

om
'

C
N

C
N

in
minin

opin
c

n
Oin

oin
mcsin

oin
00in

| 5.130 |

| 0.218 |

Delivery Stride 
Alignment (°)

172.2 |
175.0 |
173.8 |00inr-

173.1 |
175.2 |
172.8 |00i"-

172.7 |t"

| 173.9 |
| 175.4 |
| 174.09 |

| 1 .1 9 0

Delivery Stride 
Length ( m )

1.270 |
1.403 |

| 1.373 |
1.354 |
1.328 |
1.386 |

| 1.325 |
1.292 |
1.301 |

I 1.313 |
| 1.379 |
| 1.415 |
| 1.345 |
| 0.047 |

Trial

-
C

N
c

n
in

V
O

t—
0

0
O

v
o

-
C

N

| MeanQ

H
3H

L
O

E



Intra-Individual Variability - Participant 6 (Cont.)

O
T

H
E

R
 C

O
N

T
.

Upper T orso  
ROM (°)

| 123.6 |
I 113.3 |
| 132.9 |
| 134.6 |
| 125.6 |
I 122.3 |OvCN

| 129.9 |
| 133.2 |
I 134.0 |
| 122.8 |
| 112.6 |I 9V9ZI |

Tt00in

Pelvis 
ROM (°)

vqin00
o00

00cn00
oCN00

inOvr~
Ov00OO

00
t";cn00

■<3‘o'Ov
r-Ov

CNOvOO
^tOO

00in00

| 4.520 |

T runk  
F lexion-E xtension  

ROM (°)CNvdin
ininm

ovin
’cfm

vqOvm
cnvdin

VOvdin
ooo'
in

r-inin
oin

in■ci-in
O

n
VOto

| 56.80 |
| 1.340 |

Maximum V ertical 
Velocity o f  

Non-Bowling Elbow (m-s'1)oinin
cncnvd

o00in
cn00in

cnOvd
t—VOvd

cnvqin
cn00in■

00inin' oovd
00ovq

totovo

vo00OVin■
I ZLZ' 0 I

Maximum T runk  
Angular V elocity  

(racks'1)o■ctvd
CN00in

mcnvd
r-r-vd

CNvd
oo

OV00vd
vooovd

CNOvvd
Ov

cnvd
r-VO

I 6.677 1
| 0.395 |

Maximum Upper  
Torso A ngular  

Velocity (rad.s'1)
22.72 |
21.37 |

| 24.74 |
| 25.01 |
| 24.58 |
I 23.49 |
| 24.92 |
I 25.92 |
| 24.15 |
I 24.89 |
| 23.42 |
| 22.30 |
| 23.959 |
| 1.324 |

Maximum Pelvis 
Angular V elocity  

(rad.s'1)
| 10.59 |ot";Ov

■ct00

| 10.69 |00•ctOv

1 om |

| 10.27 |
| 10.94 |00o

I 11.68 |
| 11.05 |o00

I 10.548 |
| 0.949 |

Minimum Pelvis 
Alignment (°)

00

186.5 |
184.5 |
187.9 |
188.6 |
182.3 |ct00

ovd00

| 185.0 |
I 182.9
| 183.8
| 184.7VO•0m00

I ZIO'Z |

Trial

-
CN

co
in

VO
i-~

00
Ov

o
-

CN

Mean |Qc*:

1
N

0
3

 H
3

H
X

O

E



Intra-Individual Variability - Participant 7

B
A

C
K

 FO
O

T
 IM

PA
C

T

Trunk 
Flexion-Extension (° )(N00

(Nd
Ovi

o\o
(Not

CNi

CNi

VOo■

cncn
O

CNcn

1 -10.942
| 1.440

COM Horizontal 
Velocity (m.s'1)VO00cn

VO00cn

O
n

cn

oOvcn

o
Os

©
ino

innt-

CNcn
CN

1 4.051 1

| 0.169 |

Back Foot 
Alignment (°)

| 247.1 |
I 241.6 |

in(N

1 ripz I

| 243.6 |

inCN

| 242.3 |
| 240.1 |
| 246.1 |

| 245.1 |I vipz |

I 236.4 |
1 242.792 1

| 2.967 |

Pelvis 
Alignment (° )

| 177.1 |

I 176.3 |
| 177.6 |
| 172.9 |
| 170.7 |
I 171.7 |00cnr-~

I L'ZLl |

| 175.5 |
I 168.6 |
| 174.6 1
I 170.3 |
I 173.483 |
| 2.848 |

Upper Torso 
Alignment (°)

| 242.0 |
| 241.5 || VIPZ |

| 235.0 |
| 239.0 |

CN

| 240.5 |
| 248.0 |
| 249.6 |
| 247.7 |
I 241.2 1
I 237.6 |
I 242.075 |

CNT
f

cnT
f

Trial

-
CN

Cn
in

VO
r-

00
G

\
O

-
CN

MeanCc«

x
d

v
jim

i xoox X
3

v
a

FR
O

N
T

 FO
O

T
 IM

PA
C

T

Bowling Arm 
to Horizontal (°)t";

d
cn

r-.
d

cnO
CNvd

ovd
CNTf

00d
cnCN

r-vd
md

00d
tT

CNcn

Non-Bowling Arm 
to Horizontal (°)00in

cndin

invdin

ooin

voovin

vqoo’
in

ONm
asasin

asdin■
cnvq

r-;
inin■

ovq

| -57.77 |

OVcncn

Trunk 
Lateral Flexion (°)OvinVO

dVO
inVO

OscnVO

00inVO
cnVO

00VO

CNinVO

vqcnVO

•ct
dvo

inVO

vqCNVO

| 64.79 |

CN

Trunk 
Flexion-Extension (°)vqd

ood
00in

cno\
t";
cn

cn
r-*CN

od
in

inCN
00CN

Ovcn

| 12.74 |

*-H001-H

COM Horizontal 
Velocity (m.s‘1)cnOvCN

cn

oocn

00CNcn

r-cn

00ovCN

CNOcn

Tt-ocn

00cn

incn

CNcncn
OsCN

Osocn

cnl-Ho

Front Knee 
Angle (° )

175.2 |
173.0 |
172.1 |
169.8 |
175.9 |
172.1 |
176.1 |
180.5 |
173.9 |
170.1 |
175.9 |

| 174.4 |
| 174.08 |

VOOVCN

Pelvis 
Alignment (° )

202.4 |
203.0 |
206.7 |
202.8 |
205.9 |
209.8 |
203.7 |
202.6 |I V90Z

208.9 |

q©CN

| 217.0 |
| 205.85 |

mrrd

Upper Torso 
Alignment (°)CNd00

189.6 |
187.2 |
189.4 |
190.3 |
193.2 |

Ovvd00

184.6 |
189.3 |ooo’

00

185.2 |

| 190.9 |

00TT0000

mqCN

Trial

-
CN

Cn
in

VO
r-

00
Ov

O
-

CN

| Mean |Qxn

XDVdFM
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O
O

X
 X

N
O
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X

E



Intra-Individual Variability - Participant 7 (Cont.)

B
A

L
L

 R
E

L
E

A
SE

Trunk 
Lateral Flexion (° )•'3-

o
00oo"

<Nvdn
-

r-
CNin

00
Ov

Ov
vq•'tf

CN00
Ov■'tf

00•n

| 47.43

m00r
i

COM Horizontal 
Velocity (m.s‘1)oVO

r-~in
00r-;

00
vo

Ovin
CN

00cn
cnin

Ovcn
VOvq

Ovvq
V

)
in

mT-Hd

Front Knee 
Angle (°)oo00

00

| 186.7 1
| 177.0 |vd00

I 183.2 |
I 181.6 |
| 185.0 |
| 186.1 |
I 181.5 |
1 191.1 |
1 184.5 1
| 184.18 |in

Trunk 
Flexion-Extension (° )ovcn

cncn
cncn

rt-
c>

r-‘
cn

r-*cn

in00cn

OvOvcn

oo
oOvCn

cnCN
CNcnn

-

| 40.62 Ionc
n

Height of Ball 
Release (m)

| 1.574 |
I 1.689 |
I 1.590 |
| 1.692 |
| 1.724 |

I 1.729 |

| 1.742 |

| 1.761 |

| 1.684 |

I 1.698 |

I 1.605 |

I 1.637 |00vql-H

vooo

Trial

-
CN

cn
Tj-

in
VO

r-~
00

O
n

o
CN

| Mean

QCZ1

asvaaaa xiva

O
TH

E
R

Minimum 
Upper Torso 
Alignment (° )o00

183.1 |
1 178.6 1od00

1 179.9 1

179.5 |
| 181.2 |

| 179.3 |d00

| 182.3 |
| 1 7 9 .1oo00

| 1 8 0 .2 9

| 1 .3 1 5

Maximum 
Pelvis-Upper Torso 
Separation Angle (°)

C
N

00*
C

N

v
q

c
n

C
N

inO
v

incnC
N

oC
N

v
q

inC
N

c
n

00C
N

O
v

dC
N

v
q

O
v

C
N

v
q

C
N

C
N

c
n

| II’SZ I

| 4 .3 6 6

Maximum Right 
Wrist Speed 

(m.8-1)
18.20 |

oo00

| 18.52 |
| 18.35 |

r--

00

O0000

I 18.91 |
| 18.99 |
I 18.96 |
| 19.12 |
| 19.02 |

| 19.29 |

I 18.734 |

I 0.416 |

Maximum Right 
Shoulder Speed 

(m.s'!)00v
q

v
d

inv
q

v
d

00v
q

v
d

ov
d

inr-vd

in00v
d

oO
v

v
d

mO
v

v
d

r-o
oop

o<>

or-'

| 6.876 |

OOrH©

Maximum Right 
Hip Speed 

(ims'1)Oin
00C

N

d

n
-

d

o•n
in

oocnnf

C
N

d

ooind

mv
q

oind

00in
V

O
ind

| 4.512 |

I 0.123 |

Delivery Stride 
Alignment (°)

172.3 |
174.2 |
173.2 |
174.9 |
174.0 |

175.7 |
173.9 |

dr-~

| 176.4 |

| 176.6 |
| 174.3 |

| 175.9 |

| 174.65 |

| 1.300 |

Delivery Stride 
Length (m)

1.352 |

1.326 |
| 1.334 |
| 1.310 |
| 1.314 |

| 1.300 |

| 1.323 |
| 1.327 |
| 1.363 |

I 1.386 |

| 1.355 |
| 1.362 |

| 1.338 |

| 0.026 |

Trial

-
C

N
cn

m
V

O
r-

oo
O

v
o

CN

| MeanQCZ5

H
3H

L
O

E



Intra-Individual Variability - Participant 7 (Cont.)

O
T

H
E

R
 C

O
N

T.

Upper Torso 
ROM ( ° )

| 137.6 |
| 129.3 |
| 136.2 |
| 130.2 |
| 117.9 |
| 123.8 |

O
v

in

I 121.5 1

1 127.7 1

1 135.8 1

133.0

I LVLZl \

| 7.827 |

Pelvis 
ROM ( ° )

C
";

0
0

0
0

ov
d

0
0

oov
d

oo
v

q
O

v
0

0
C

N
a

\

inO
v

0
0

0
0

in0
0

C
N

dO
v

c
n

0
0

0
0

c
n

in0
0

C
N

O
v

0
0

88.48001-HcnCN

Trunk 
Flexion-Extension 

ROM (°)

C
N

in
inCNin

C
N

in
O

v
C

N
in

in
"Cl-oin

C
N

in
V

O
oin

C
N

C
N

m
ooin

o"cl-in
inv

d
m

I 52.26 |
| 2.714 |

Maximum Vertical 
Velocity of 

Non-Bowling Elbow (ims'1)

C
N

0
0

in
ot";in

0
0

O
v

in
inin

r-ooini
inin

0
0

0
0

in■
c

n
o

v
in■

m0
0

in
oC

N
v

d

ov
d

oov
d

I -5.903 I
| 0.148 |

Maximum Trunk 
Angular Velocity 

(racks"1)t"-inin
ininin

•n-C
Nin

ov
d

0
0

in
"ct-v

q
in

r~ooin
0

0
ov

d

0
0

ov
d

OI";in
O

v
•ctin

O
v

v
d

I 5.724 |
| 0.341 |

Maximum Upper 
Torso Angular 

Velocity (racks'1)
| 27.25 |
| 24.86 |
| 26.62 |
| 26.36 |
| 26.10 |
I 24.66 |
| 26.35 |
| 29.24 |
| 26.51 |
I 28.72 |
| 27.29 |I 0V9Z |

I 26.697 |
| 1.330 |

Maximum Pelvis 
Angular Velocity 

(racks’1)
13.68 |
10.71 |
12.71 |
12.29 |
12.86 |
12.53 |
12.89 |

1 13.16 |
| 12.29 |

0
0

| 12.15 |
| 12.74 |
I 12.458 |
| 0.777 I

Minimum Pelvis 
Alignment (°)

176.2 |
172.7 |
177.6 |
172.6 |
166.7 |
171.3 |
172.1 |

| 171.5 |
| 171.5 |
I 168.4 |
| 173.3 |
| 168.8 |
I 171.89 |
| 3.070 1

Trial

-
c

n
in

V
O

0
0

O
v

o
-

C
N

Mean |Q

\LN
O

D
 H

3H
JLO

E



Intra-Individual Variability - Participant 8

B
A

C
K

 FO
O

T
 IM

PA
C

T

Trunk 
Flexion-Extension (° )

C
O

v
d

v
d

inini

o
Ov

di

C
Oi

in
o

oin

o
o\id

\qC
N

1 -16.59
I 1.768

COM Horizontal 
Velocity (m.s'1)

C
O

u
o

C
O

oc
n

c
n

C
n

CO

C
O

C
O

inC
O

C
O

C
O

VOC
N

C
O

C
N

inr
o

C
N

C
O

C
N

C
O

inv
q

c
n

O
N

C
O

1 3.477 1

| 0.182 |

Back Foot 
Alignment (°)

I 282.1 1

291.3 |
292.6 |1 V06Z

| 292.2 |

I 289.0 |

| 287.0 |
| 289.1 |
| 284.9 1
I 286.0 |

t"
;

■
'it

0
0

C
N

I 277.9 |
1 287.24 100O

Pelvis 
Alignment ( ° )

| 176.1 |

0
0

| 177.8 |
| 178.4 |
| 179.1 |

0
0

t—
inr-

0
0

I 174.3 |
| 175.8 |OOr--

| 173.9 |

I 176.86 |
| 2.236 |

Upper Torso 
Alignment (°)

| 237.3 |
234.7 |

| 238.8 |

| 238.9 |
| 235.7 |
I 238.9 |
| 223.8 |
| 238.8 |
| 233.4 |

I 239.7 |

| 229.3 |
| 238.5 |
I 235.65 |
| 4.814 |

Trial

-
C

N
CO

u
ovoC"

0
0

O
v

o
-

C
N

| Mean |QC
/3

x
o

v
a

m
 x

o
o

x
 5iova

FR
O

N
T

 FO
O

T
 IM

PA
C

T

Bowling Arm 
to Horizontal (° )o'

OvCN
00nf

cnCN
COCO

<nCN
f-o

inin
oocn

in
00cn

cnvd
rrf-;
cn

I 5.270 |

Non-Bowling Arm 
to Horizontal (°)00rp

CNr-p

Ovdrp

OOo00

COvd
t)"
00

oo00

Ov00

CNr-~
CN00

invdt—
CNr-i

| -78.48 |

I 3.625 |

Trunk 
Lateral Flexion (°)00CNt—

cnt—

cnr-

CNor-~

CNCNr-

CNOvVO

OVVO

cnor-
OvVO

o00vo
00vo

00or-*

on©t-

I 1 .8 6 0

Trunk 
Flexion-Extension (°)00OV

in
oo

vooo’
ON00

OvOv
nfO

00
Ov

rpoo
VO

i-H00

I 1.709 I

COM Horizontal 
Velocity (m.s'1)cncnCN

CNvqCN

OVCN

r-CN

CNCN
CN

oCN

vocnCN

VOCNCN

CNCNCN

ooCNCN

cnCN

I 2.343 |

I 0.193 |

Front Knee 
Angle (°)

| 155.6 |
| 160.0 |
| 158.5 |
| 160.6 |
| 159.3 |

| 159.8 |
| 152.7 |

| 156.9 || 1391 |

| 162.8 |
| 161.5 |
| 160.3 |
| 159.18 |

I 2.889 !

Pelvis 
Alignment (° )

214.1 |

OvOvOCN

| 222.5 |
220.2 |

208.3 |
220.2 |

208.1 |

222.0 |
211.0 |

I 211.6 |

| 217.3 |
| 218.8 |

mnm1-HCN

I 5 .4 3 2

Upper Torso 
Alignment (°)

| 193.9 ]

| 195.9 |
| 202.9 |

| 203.5 |
| 202.8 |oCN

| 201.4 |

| 203.1 1
| 198.7 1
I 199.4 |1___ VZOZ 1

| 197.8 |
| 200.52 |
I 3.343 |

Trial

-
CN

cn
m

vo
r-~

00
Ov

o
-

CN

1 MeanQ

lo
v

a
m

 xoox x
n

o
h

x

E



Intra-Individual Variability - Participant 8 (Cont.)

B
A

LL R
ELEA

SE

Trunk 
Lateral Flexion ( ° )t";vdin

COO
s

w
o

Ovin
vo"in

<Noo'in
CNVO*in

r-;
inm

vqoo'in
O

;

m

VOvo'w

Ovvdin
Ovin

I 57.34 |
| 1.060 |

COM Horizontal 
Velocity (m.s"1)VOCN

COCN
OvCN

0
0

c
q

OV
in

O
"

r
-

oC
O

c
o

r~
c

q
CN

I 1.228 |

| 0.092 |

Front Knee 
Angle (°)

| 162.0 |
| 156.8 |
| 166.2 |
| 165.7 |
| 168.6 |
| 167.5 |
| 171.6 1
| 169.3 |
I 172.4 1
| 175.9 |
| 171.7 |
| 170.7 |
| 168.20 || ZIVS 1

Trunk 
Flexion-Extension (°)CN©n-

VOC
O

vq0
0

CO
oo'co

CNC
O

OVr
-'

C
O

vq0
0

C
O

C
O

a
s

C
O

0
0

oo’co

oo'
vqOvco

in0
0

C
O

| 38.63 I00

Height of Ball 
Release (m)

mo0
0

1.822 |
1.821 |
1.783 |
1.797 |
1.791 |
1.832 |

I 1.790 1

| 1.821 1

| 1.761 |

| 1.766 |CN0
0

o00

I 0.023 |

Trial

-
cn

co
w

vo
0

0
Ov

o
-

CN

| Mean

Q

3SV
313H

 T
IV

3

O
T

H
E

R

Minimum 
Upper Torso 
Alignment (°)00in00

185.6 |
186.7 |
185.8 |t";oo

182.9 |
184.5 |
185.3 |©00

| 182.6 |
| 186.1 |
| 185.5
| 185.21
| 1.485

Maximum 
Pelvis-Upper Torso 
Separation Angle (°)

V
O

oC
N

00
V

O
oC

N

V
O

v
d

n-v
d

SO
V

O
©O

V
c

n
C

N
C

N
C

N
00

O
v

C
N

I 15.27 |
| 4.990

Maximum Right 
Wrist Speed 

(m.s-1)
19.05 |
18.33 |m0000

19.37 |
18.65 |

I 18.95 |
| 19.00 |
| 19.27 |
| 18.82 |
I 19.60 |
| 19.38 |
| 19.05 |
| 19.027 |
| 0.349

Maximum Right 
Shoulder Speed 

(m.s'1)00o
v

v
d

inO
v

v
d

oo
inO

v
v

d

oV
O

v
d

oo
c

n
00v

d

o
c

n
ot-'

in
in

OC
N

I 6.995

Z9V0 |

Maximum Right 
Hip Speed

(IU.S'1)

c
n

v
q

c
n

ov
q

c
n

c
n

00c
n

mv
q

cn

oinc
n

c
n

v
q

c
n

oc
n

in00c
n

00v
q

c
n

c
n

rqc
n

t-00c
n

c
n

00c
n

| 3.683 |
| 0.146 |

Delivery Stride 
Alignment (°)

167.6 |
169.7 |
168.8 |
167.8 |
167.4 |
168.6 |
167.8 |
165.8 |

| 166.9 |
| 169.1 |
| 168.3 |
| 167.0 |
| 167.90 |
| 1.075

Delivery Stride 
Length (m)

| 1.289 |
| 1.339 |
| 1.357 |
| 1.334 |
| 1.360 |
I 1.357 |
| 1.320 |
| 1.331 |
| 1.324 |
I 1.377 |
| 1.380 |
| 1.324 |
I 1.341 |
| 0.026 |

Trial

-
C

N
c

n
m

vo
00

O
v

o
-

C
N

MeanQ

H
3H

X
O

E



Intra-Individual Variability - Participant 8 (Cont.)

O
TH

E
R

 C
O

N
T.

Upper T orso  
ROM (°)

1 112.9 1
I 104.1 |

1 112.1 |
| 116.6 1
| 111.0 |oov

d

| 113.6 |oo
CN

1 124.9 1

1 121.3 1
1 109.4 1VO•*Tl-Hl-H

| 5.482 |

Pelvis 
ROM (°)

O
v

inV
O

CNO
v

V
O

O
v

t"
O

v

00
r~

int—
c

n
inv

o

O
v

O
v

r-
00r-

'Cj-
v

d
i-~

CN00
CNdV

O

1 74.19 |
| 7.240 |

T runk  
Flexion-E xtension  

ROM (°)inv
d

in
ocnin

CN■ctm
c

n
v

d
m

CNc
nm

F~;
inm

o•ctin
v

q
"Ct
in

n
-"

in
CNin

inv
d

m
CNoV

O

1 55.46 1
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Appendix F 

ANOVA Minitab Printouts



BACK FOOT IMPACT

UPPER TORSO ALIGNMENT 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS
Factor 7 9667.1 1381.0
Error 88 1967.7 22.4
Total 95 11634.8

Level N Mean StDev
1 12 210.08 3. 62
2 12 228.44 5.16
3 12 221.08 3. 94
4 12 237.42 4.39
5 12 238.62 6.41
6 12 235.42 4. 61
7 12 242.07 4.34
8 12 235.65 4.81

Pooled StDev = 4.73

PELVIS ALIGNMENT
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS
Factor 7 7549.8 1078.5
Error 88 1706.8 19.4
Total 95 9256.7

Level N Mean StDev
1 12 180.53 1.78
2 12 191.34 3.73
3 12 201.64 5.70
4 12 194.50 7.59
5 12 189.82 1.71
6 12 189.14 5.66
7 12 173.48 2. 85
8 12 176.86 2.24

Pooled StDev = 4.40

BACK FOOT ALIGNMENT
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS
Factor 7 104291.6 14898.8
Error 88 1866.6 21.2
Total 95 106158.2

Level N Mean StDev
1 12 316.10 5.98
2 12 338.19 6.73
3 12 340.65 3.97
4 12 343.96 3.55
5 12 313.73 3.75
6 12 340.90 4.26
7 12 242.79 2. 97
8 12 287.24 4.39

Pooled StDev = 4.61

F P
6 1 . 7 6  0 . 0 0 0

Individual 95% CIs For Mean 
Based on Pooled StDev

(-*-)
( _ *  — )

(-*-)
( - * - )
(_*_)

(-*-)

(_*__)

216 228 240

F P
55.61 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

( - - * - )

( - *  —  )
(-

( —  *_)  
( „ * _ )
( _ * „ )

( - * - - )

( - - * - )

180 190 200

F P
702.38 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

( * )

(*

( * )
( * )

270  300  33 0

F



CENTRE OF MASS (COM) HORIZONTAL VELOCITY
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor
Error
Total

7
88
95

50.7559
2.3559

53.1118

7.2508
0.0268

270.84 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

Level N Mean StDev — +---------- +---------- +----- ---- +----
1 12 5.4917 0.1530 (*-)
2 12 5.1275 0.1603 (*-)
3 12 5.6392 0.1741 (-*)
4 12 5.4358 0.1487 (-*)
5 12 5.3950 0.1469 (*)
6 12 5.0833 0.1715 (-*)
7 12 4.0508 0.1687 (*)
8 12 3.4767 0.1821 (-*) ____+____
Pooled StDev = 0.1636

TRUNK FLEXION-EXTENSION 
One-way Analysis of Variance

Analysis of Variance

3.50 4.20 4.90 5.60

Source DF SS MS F P
Factor
Error
Total

7
88
95

4340.44
290.89

4631.32

620.06
3.31

187.58 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

Level N Mean StDev ------ +---------- +---------- +- ---------+
1 12 -4.000 2.620 (*-)
2 12 -1.200 1. 611 (*-)
3 12 -13.658 1.765 (*-)
4 12 -5.708 1. 912 (-*)
5 12 4.358 1.754 (*-)
6 12 -13.300 1.393 (*)
7 12 -10.942 1.440 (*-)
8 12 -16.592 1.768 (*-) ________ +
Pooled StDev = 1.818 -14.0 -7.0 0.0 7.0

FRONT FOOT IMPACT

UPPER TORSO ALIGNMENT 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS
Factor 7 14706.1 2100.9
Error 88 1314.5 14.9
Total 95 16020.6

Level N Mean StDev
1 12 193.57 2.80
2 12 229.26 4.99
3 12 217.27 6.72
4 12 198.32 2.49
5 12 200.18 1.70
6 12 202.13 3. 91
7 12 188.48 2.45
8 12 200.52 3.34

Pooled StDev - 3.86

F P
140.65 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

(*-)
(-*)

(-*)
(*-)
(*-)

( - * )
( - * )

(-*)

195 210 225 240

F



PELVIS ALIGNMENT 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS
Factor 7 15380.0 2197.1
Error 88 2500.3 28.4
Total 95 17880.3

Level N Mean StDev
1 12 222.94 5. 66
2 12 249.54 3.74
3 12 232.00 8.18
4 12 221.76 6.14
5 12 237.57 3.14
6 12 230.10 4.18
7 12 205.85 4.45
8 12 215.33 5.43

Pooled StDev = 5.33

F P
7 7 . 3 3  0 . 0 0 0

Individual 95% CIs For Mean 
Based on Pooled StDev

( - * - )

(-*-)
(_*_)

(-*-)
( _ * _ )

( - * - )

( - * - )

( - * - )

210 225 240 255

FRONT KNEE ANGLE 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS
Factor 7 2805.27 400.75
Error 88 659.38 7.49
Total 95 3464.65

Level N Mean StDev
1 12 167.88 2.77
2 12 158.12 2.77
3 12 157.45 3.19
4 12 162.27 3.24
5 12 164.76 1. 92
6 12 159.22 1.78
7 12 174.08 2. 96
8 12 159.17 2.89

Pooled StDev = 2.74 1!

F P
53.48 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

( —  * - )
(_-*-)

(_*__)
( _ * _ _ )

( „ * _ )

( - * - - )
( _ * _ _ )

( - * - - )

.0 162.0 168.0 174.0

CENTRE OF MASS (COM) HORIZONTAL VELOCITY 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS
Factor 7 48.5817 6.9402
Error 88 2.8049 0.0319
Total 95 51.3866

Level N Mean StDev
1 12 3.9975 0.1491
2 12 4.6358 0.1401
3 12 4.4933 0.2643
4 12 4.0200 0.2026
5 12 4.1942 0.1325
6 12 3.7425 0.1726
7 12 3.0908 0.1325
8 12 2.3433 0.1932

Pooled StDev = 0.1785

F P
217.74 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

(*-)
(*-)

(*-)
(*-)

( - * )
( * _ )

(*-)
(*-)

2.80 3.50 4.20

F



TRUNK PLEXION-EXTENSION 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS
Factor 7 1846.48 263.78
Error 88 317.83 3. 61
Total 95 2164.31

Level N Mean StDev
1 12 9. 933 1.517
2 12 8.008 1. 917
3 12 0.358 2.050
4 12 1. 917 1.810
5 12 5.567 2.289
6 12 13.233 2.002
7 12 12.742 1.808
8 12 8.708 1.709

Pooled StDev = 1.900

TRUNK LATERAL FLEXION 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS
Factor 7 959.64 137.09
Error 88 352.95 4.01
Total 95 1312.58

Level N Mean StDev
1 12 71.975 1.629
2 12 67.150 1.568
3 12 70.008 3.794
4 12 68.425 2.043
5 12 74.350 1.251
6 12 74.425 1.328
7 12 64.792 1.271
8 12 70,300 1.860

Pooled StDev = 2.003

NON-BOWLING ARM TO HORIZONTAL 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS
Factor 7 14228.3 2032.6
Error 88 1990.3 22. 6
Total 95 16218.7

Level N Mean StDev
1 12 -55.317 4.475
2 12 -79.008 5.112
3 12 -85.900 7.378
4 1? -67.500 4.040
5 12 -57.667 3.786
6 12 -86.250 5.003
7 12 -57.767 3.393
8 12 -78.475 3.625

Pooled StDev = 4.756

F P
7 3 . 0 3  0 . 0 0 0

Individual 95% CIs For Mean 
Based on Pooled StDev

(-*-)
(-*-)

(-*-)
(-*-)

(-*-)
(-*--)

( _ * _ _ )

(-*--)

0.0 5.0 10.0 15.0

F P
34.18 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

( _ _ * _

( _ _ _ *

66.5 70.0 73.5

F P
89.87 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

(-

( „ * _ )

(--*-)
( „ * _ )

-80 -70 -60

F



BOWLING ARM TO HORIZONTAL
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor 7 5917.9 845.4 33.03 0.000
Error
Total

88
95

2252.3
8170.2

25. 6

Individual 95% CIs For Mean 
Based on Pooled StDev

Level N Mean StDev iiiiiiii+iiiiiiiii+iiiiiiiii+iiiiiii

1 12 -10.000 4.442
2 12 11.442 5.786
3 12 9.792 8.001
4 12 -10.600 5.221
5 12 5.475 3.013
6 12 6.775 3. 621
7 12 4.408 3.213
8 12 3.742 5.270 iiiiiiii+i

— 
i 

i 
i 

i 
i 

* 
i 

i 
i 

i 
i 

i 
i i+iiiiiiiii+iiiiiii

Pooled StDev = 5.059 -8.0 0.0 8.0

BALL RELEASE

HEIGHT OF BALL RELEASE 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor
Error
Total

7
88
95

1.15282
0.12043
1.27325

0.16469
0.00137

120.34 0.000

Individual•95% CIs For 
Based on Pooled StDev

Mean

Level N Mean StDev i i i i i + i i i i i i i i i + i i i i i i — +-----
1 12 1.8536 0.0421 (_*_)1
2 12 1.9303 0.0359 (-*-)
3 12 1.7819 0.0287 (-*-)
4
5

12
12

1.6997 
1.9951

0.0413
0.0214

(-*-)
6 12 1.6870 0.0232 (-*-)
7 12 1.6771 0.0618 (-*-)
8 12 1.8007 0.0233

i i i i i + i i i i i i i i 
— i 
i 

+ 
* 

i 
i 

i ■“
 

i i i i ___+_____
Pooled StDev = 0.0370 1.70 1.80 1. 90

TRUNK FLEXION-EXTENSION 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor 7 3815.18 545.03 74.49 0.000
Error
Total

88
95

643.86
4459.04

7.32

Individual 95% CIs For Mean 
Based on Pooled StDev

Level N Mean StDev i i + i i i i i i i i i + i i i i i i i i i + i i i i i i i i i + i i i i

1 12 36.975 2.593 (--*-)
2 12 26.242 3.035 ( _ _ * _ )

3 12 34.350 2.097 ( _ * _ _ )

4 12 39.733 3.277 (-*--)
5 12 24.408 2.812 (--*-)
6 12 42.700 3.594 ( _ * _ _ )

7 12 40.617 2.300 (--*-)
8 12 38.625 1.158 i i + i i i i i i i i i + i i i i i i i i i + i i 

— i 
i 

i 
* 

i 
i 

i 
i 

i i i + i i i i

Pooled StDev = 2.705 24.0 30.0 36.0 42.0

F



FRONT KNEE ANGLE 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor 7 34614.2 4944.9 121.01 0.000
Error
Total

88
95

3595.9
38210.1

40.9

Individual 95% CIs For Mean 
Based on Pooled StDev

Level N Mean StDev i i i i i i i i i + i i i i i i i i i + i i i i i i i i i + i i i i i i i

1 12 156.64 8.28 (-*-)
2 12 133.98 4.41 (--*-)
3 12 179.63 10.66 (-*--)
4 12 163.13 8.39 (-*-)
5 12 133.60 3.35 (_*__)
6 12 182.64 1.82 (_*_)
7 12 184.18 3.77 (-*-)
8 12 168.20 5.11 iiiiiii+ii

— 
i 

i 
i

* 
i 

i 
i

— 
i i i+iiiiiiiii+iiiiiiiii

Pooled StDev = 6.39 144 160 176

CENTRE OF MASS (COM) HORIZONTAL VELOCITY 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor
Error
Total

7
88
95

45.7904 
1.8846 

47.6750

6.5415
0.0214

305.45 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

Level N Mean StDev iiiiii+iiiiiiiii+iiiiiiiii+i ---+---
1 12 3.0717 0.2291 (*-)
2 12 2.8658 0.1928 (-*)
3 12 2.6275 0.1350 (-*)
4 12 1.6133 0.1149 (-*)
5 12 2.9058 0.0990 (*-)
6 12 1.7375 0.1272 (*)
7 12 1.5458 0.1257 (_*)
8 12 1.2275 0.0921 iiiiii+iiiiiiiii+iiiiiii

— 
i 

i 
i

* 
+ i ___+___

Pooled StDev = 0.1463 1.20 1.80 2.40 3.00

TRUNK LATERAL FLEXION 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS
Factor 7 2638.53 376.93
Error 88 508.99 5.78
Total 95 3147.52

Level N Mean StDev
1 12 50.517 1.724
2 12 60.667 2.219
3 12 45.558 1.851
4 12 46.975 3. 996
5 12 56.742 1.571
6 12 54.358 2.694
7 12 47.433 2.851
8 12 57.342 1.060

Pooled StDev = 2.405

F
65.17

P
0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

(■ •)

( _ * _ _ )

( _ _ * _ )

(--*-)

45.0 50.0 55.0 60.0

F



OTHER

DELIVERY STRIDE LENGTH 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor 7 0.94542 0.13506 76.59 0.000
Error 88 0.15517 0.00176
Total 95 1.10059

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev ----+----------+----------+--------- +—
1 12 1.3465 0.0464 („*_)
2 12 1.5473 0.0502 (--*_)
3 12 1.5534 0.0522 (
4 12 1.4898 0.0325 (-*-)
5 12 1.2882 0.0460 (__*_)
6 12 1.3449 0.0468 (_* — )
7 12 1.3377 0.0258 ( - - * - )
8 12 1.3410 0.0262 (_*__)

Pooled StDev = 0.0420 1.30 1.40 1.50 1. 60

DELIVERY STRIDE ALIGNMENT
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor 7 1553.32 221.90 204.67 0.000
Error 88 95.41 1.08
Total 95 1648.72

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev —+--------- +----------+----- ----+----
1 12 170.75 1.35 (-*)
2 12 171.87 0.85 (_*)
3 12 179.12 0. 60 (-*)
4 12 181.09 0. 93 (-*)
5 12 173.50 0.80 (-*)
6 12 174.09 1.19 (*-)
7 12 174.65 1.30 (-*)
8 12 167.90 1.08 (_*)

Pooled StDev = 1.04 168.0 172.0 176.0 180.0

MAXIMUM RIGHT HIP SPEED
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor 7 65.7192 9.3885 262.19 0.000
Error 88 3.1511 0.0358
Total 95 68.8702

Individual 95% CIs For Mean
Based on Pooled StDev

Level N Mean StDev ------ +----------+----------+- -------- +
1 12 5.9167 0.2652 (*)
2 12 6.0483 0.2048 (-*)
3 12 6.1258 0.2355 (-*)
4 12 5.5783 0.1281 (-*)
5 12 6.0517 0.1350 (-*)
6 12 5.1300 0.2180 (*)
7 12 4.5117 0.1231 (*-)
8 12 3.6833 0.1463 (*)
Pooled StDev = 0.1892 4.00 4.80 5.60 6.40

F



MAXIMUM RIGHT SHOULDER SPEED
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor 7 37.7071 5.3867 207.73 0.000
Error
Total

88
95

2.2820 
39.9891

0.0259

Individual 95% CIs For Mean 
Based on Pooled StDev

Level N Mean StDev iiiiiiiii+iiiiiiiii+iiiiiiiii+iiiiiii

1 12 7.9842 0.1153 (*-)
2 12 8.1342 0.1253 (-*)
3 12 8.9025 0.1609 (*-
4 12 7.7825 0.1791 (-*)
5 12 7.8800 0.1132 (*-)
6 12 8.3517 0.2202 (*-)
7 12 6.8758 0.1812 (-*)
8 12 6.9950 0.1623

i i i —
 

i 
i 

i 
* 

i i + i i i i i i i i i + i i i i i i i i i + i i i i i i i i i

Pooled StDev = 0.1610 7.20 7.80 8.40

MAXIMUM RIGHT WRIST SPEED 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor 7 66.555 9.508 78.48 0.000
Error
Total

88
95

10.661
77.216

0.121

Individual 95% CIs For Mean 
Based on Pooled StDev

Level N Mean StDev iiiiiii+iiiiiiiii+iiiiiiiii+iiiiiiiii

1 12 20.041 0.330 ( _ _ * _ )

2 12 18.998 0.369 ( _ * _ _ )

3 12 20.762 0.241 (--*-)
4 12 20.050 0.446 ( _ _ * _ )

5 12 20.178 0.132 ( _ * _ _ )

6 12 21.224 0.393 ( _ * _ _

7 12 18.734 0.416 ( _ * _ _ )

8 12 19.027 0.349

i i i i i —
 

i 
i 

i 
i 

i 
* 

i 
i 

+ i i i i i i i i i + i i i i i i i i i + i i i i i i i
Pooled StDev = 0.348 19.20 20.00 20.80

MAXIMUM PELVIS-UPPER TORSO SEPARATION ANGLE 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor
Error
Total

7
88
95

5232.7 
1473.1
6705.8

747.5
16.7

44.66 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

Level N Mean StDev iiiii+iiiiiiiii+iiiiiiiii+iiii ----+—
1 12 33.350 5.722
2 12 26.250 3.569
3 12 15.592 3.616 (_*__)
4 12 26.617 3.891
5 12 38.300 3.006 (
6 12 28.467 2.690
7 12 25.108 4 .366
8 12 15.267 4 . 990 iiiii+iiiiiiiii+iiiiiii

— 
i 

i 
i 

i 
+ 

* 
i 

i 
i 

i 
i i ____+__

Pooled StDev = 4.091 16.0 24.0 32.0 40.0

F



MINIMUM UPPER TORSO ALIGNMENT
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor 7 3035.10 433.59 93.38 0.000
Error
Total

88
95

408.60 
3443.69

4.64

Individual 95% CIs For Mean 
Based on Pooled StDev

Level N Mean StDev iiii+iiiiiiiii+iiiiiiiii+iiiiiiiii+ii

1 12 181.43 1.35 (-*-)
2 12 199.20 3.40 (-*-)
3 12 191.05 2.19 (-*-)
4 12 188.41 3.15 (-*-)
5 12 188.33 0. 92 (-*-)
6 12 184.64 2.06 (-*-)
7 12 180.29 1.31 (-* — )
8 12 185.21 1.49

i i + i i i i i i i 
— i 
i 

i 
* 

+ 
i 

i i i i i i i i i + i i i i i i i i i + i i i i

Pooled StDev = 2.15 180.0 186.0 192.0 198.0

MINIMUM PELVIS ALIGNMENT 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS
Factor 7 4635.46 662.21
Error 88 622.20 7.07
Total 95 5257.66

Level N Mean StDev
1 12 179.93 1.57
2 12 190.29 2.67
3 12 189.16 2.45
4 12 191.08 4.19
5 12 190.56 2.80
6 12 185.56 2.01
7 12 171.89 3.07
8 12 176.11 1.42

Pooled StDev = 2. 66

F P
93.66 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

(-*-)
(-*-)

(-*-)
(-*-)

(-*-)
(-*-)( —*_)

(--*-)

175.0 182.0 189.0

MAXIMUM PELVIS ANGULAR VELOCITY 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor
Error
Total

7
88
95

90.26
102.03
192.29

12.89
1.16

11.12 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

Level N Mean StDev iiiii+iiiiiiiii+iiiiiiiii+iiii ----+■
1 12 10.894 0.812
2 12 9.593 1.719
3 12 10.431 0.733 (----*___)
4 12 10.315 0.968
5 12 9.028 1.069
6 12 10.548 0.949
7 12 12.458 0.777 -)
8 12 9.703 1.241 iiiii+iiiiiiiii+i

i 
i 

i 
i 

i 
i 

* 
i 

i 
i 

i 
i 

i 
i 

— 
i + i i i i ____+.

Pooled StDev = 1.077 9.0 10.5 12.0 13.5

F



MAXIMUM UPPER TORSO ANGULAR VELOCITY
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor
Error
Total

7
88
95

549.08
108.48
657.56

78.44
1.23

63.63 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

Level N Mean StDev i + i i i i i i i i i + i i i i i i i i i + i i i i i i----1_.
1 12 23.030 1.147 (-*-)
2 12 18.539 1.123 (-*-)
3 12 23.193 0.596 (-*-)
4 12 19.808 1.175 (-*-)
5 12 21.571 1.088 (-*-)
6 12 23.959 1.324 (-*-)
7 12 26.697 1.330 (-*-
8 12 21.078 0. 920 iiiiii+iiiiiii

— 
i 

i 
i

* 
+ 

i 
i 

 ̂
i i i i i i i i+i --- +.

Pooled StDev = 1.110 18 .0 21.0 24.0 27.0

MAXIMUM TRUNK ANGULAR VELOCITY
One-way Analysis of Variance

Analysis of Variance 
Source DF SS MS F P
Factor 7 118.770 16.967 111.31 0.000
Error 88 13.414 0.152
Total

Level

95

N

132.184

Mean StDev

Individual 95% CIs For Mean 
Based on Pooled StDev

1 12 5.2683 0.3608 (-*-)
2 12 3.7358 0.3632 (-*-)
3 12 6.2417 0.3528 ( - * - )
4 12 7.0000 0.6170 (-*-)
5 12 4.0258 0.3240 (-*)
6 12 6.6767 0.3953 (-*-)
7 12 5.7242 0.3411 (-*-)
8 12 6.1367 0.2733 (-*-)
Pooled StDev = 0.3904 3.6 4.8 6.0 7.2

MAXIMUM VERTICAL SPEED OF THE NON-BOWLING ARM
One-way Analysis of Variance

Analysis of Variance 
Source DF SS MS F P
Factor 7 17.8724 2.5532 48.13 0.000
Error 88 4.6684 0.0531
Total

Level

95

N

22.5408

Mean StDev

Individual 95% CIs For Mean 
Based on Pooled StDev

1 12 -6.7892 0.1385
2 12 -6.5817 0.1781
3 12 -6.1450 0.3226
4 12 -5.8733 0.1984 (•
5 12 -6.7150 0.1992
6 12 -5.9858 0.3725
7 12 -5.9025 0.1485 (~
8 12 -7.0683 0.1720

Pooled StDev = 0.2303 _ -j
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TRUNK FLEXION-EXTENSION RANGE OF MOTION (ROM)
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS F P
Factor
Error
Total

7
88
95

11466.88 
746.07 

12212.94

1638.13
8.48

193.22 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

Level N Mean StDev i i i i i i + i i i i i i i i i + i i i i i i i i i + i i i ------ +
1 12 41.267 2.275 (*-)
2 12 28.142 4.816 (-*-)
3 12 48.008 2.147 (-*-)
4 12 45.483 4.022 (*-)
5 12 26.242 2.310 (*-)
6 12 56.800 1.340 (-*)
7 12 52.258 2.714 (*- )
8 12 55.458 2.042 iii+iiiiiiiii+iiiiiiiii+iiiiii (*-)

Pooled StDev = 2.912 30 40 50 60

PELVIS RANGE OF MOTION (ROM) 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS
Factor 7 4618.9 659.8
Error 88 1732.2 19.7
Total 95 6351.1

Level N Mean StDev
1 12 89.725 4.946
2 12 75.992 2.136
3 12 90.475 3. 662
4 12 73.208 5.552
5 12 76.900 2.448
6 12 85.383 4.520
7 12 88.475 2.318
8 12 74.192 7.240

Pooled StDev = 4.437

F P
33.52 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

77.0 84.0 91.0

UPPER TORSO RANGE OF MOTION (ROM) 
One-way Analysis of Variance

Analysis of Variance
Source DF SS MS
Factor 7 11241.8 1606.0
Error 88 2847.6 32.4
Total 95 14089.4

Level N Mean StDev
1 12 126.70 3.80
2 12 117.26 6.24
3 12 144.61 4.35
4 12 111.91 4. 97
5 12 108.58 3.62
6 12 126.16 7.58
7 12 127.17 7.83
8 12 114.56 5.48

Pooled StDev = 5. 69

F P
49.63 0.000

Individual 95% CIs For Mean 
Based on Pooled StDev

( _ _ * _ )

( _ _ * _ )

( _ _ * _ )

(-*--)
(-*--)

( _ * _ _ )

108 120 132 144

F



Appendix G 

Kohonen Self-Organising Map Matlab Code



% %INTRA-INDIVIDUAL VARIABILITY

newDatal = importdata('C:\Users\Paul\Desktop\SOM_data\AB\AB02.txt') 
data = getTripledData(newDatal.data);

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\AB\AB03.txt') 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\AB\AB04.txt') 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\AB\AB05.txt') 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata(1C :\Users\Paul\Desktop\SOM_data\AB\ABO 6.txt') 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata ( 'C: \Users\Paul\Desktop\SOM__data\AB\AB07 . txt' ) 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata ( 'C: \Users\Paul\Desktop\SOM__data\AB\AB08 . txt' ) 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\AB\AB09.txt') 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\AB\ABlO.txt') 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata(1C:\Users\Paul\Desktop\SOM_data\AB\ABll.txt') 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\S0M_data\AB\ABl2.txt') 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\S0M_data\AB\AB13.txt') 
data = [data;getTripledData(newDatal.data)];

% Bowler AB (1-12)

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\AS\AS01.txt1) 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\AS\AS02.txt') 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\AS\AS03.txt') 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\AS\AS04.txt') 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata ( ' C : \Users\Paul\Desktop\SOM__data\AS\AS05 . txt' ) 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\AS\ASO6.txt') 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C:\Users\Paul\Desktop\SOM_data\AS\AS07.txt') 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata("C :\Users\Paul\Desktop\SOM_data\AS\AS08.txt') 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C:\Users\Paul\Desktop\SOM_data\AS\AS09.txt') 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C:\Users\Paul\Desktop\SOM_data\AS\AS10.txt') 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\AS\ASll.txt')
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data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\S0M_data\AS\AS12.txt' 
data = [data;getTripledData(newDatal.data)];

% Bowler AS (13-24)

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\CY\CY01.txt1 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata ( ' C : \Users\Paul\Desktop\SOM__data\CY\CY02 . txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata(1C:\Users\Paul\Desktop\SOM_data\CY\CY03.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\CY\CY04.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\CY\CY05.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\CY\CY06.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\CY\CY07.txt1 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\CY\CY08.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\CY\CY09.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\CY\CY10.txt' 
data = [data;getTripledData(newDatal.data)] ;

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\CY\CYll.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C:\Users\Paul\Desktop\S0M_data\CY\CY12.txt' 
data = [data;getTripledData(newDatal.data)];

% Bowler CY (25-36)

newDatal = importdata(1C ;\Users\Paul\Desktop\SOM_data\GH\GH01.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\GH\GH02.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C:\Users\Paul\Desktop\SOM_data\GH\GH03.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\GH\GH04.txt' 
data = [data;getTripledData(newDatal.data)] ;

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\GH\GH05.txt1 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C:\Users\Paul\Desktop\SOM_data\GH\GH06.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\GH\GH07.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata(1C :\Users\Paul\Desktop\SOM_data\GH\GH08.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata(1C:\Users\Paul\Desktop\SOM_data\GH\GH09.txt' 
data = [data;getTripledData(newDatal.data)];
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newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\GH\GH10.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\GH\GHll.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\S0M_data\GH\GH12.txt1 
data = [data;getTripledData(newDatal.data)] ;

% Bowler GH (37-48)

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\NB\NB01.txt' 
data = [data;getTripledData(newDatal.data)] ;

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\NB\NB02.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata ( 1 C : \Users\Paul\Desktop\SOM_data\NB\NB03 . txt1 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata ( 'C: \Users\Paul\Desktop\SOM__data\NB\NB04 . txt1 
data = [data;getTripledData(newDatal.data) ] ;

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\NB\NB05.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C:\Users\Paul\Desktop\SOM_data\NB\NB06.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata(1C :\Users\Paul\Desktop\SOM_data\NB\NB07.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\NB\NB08.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\NB\NB09.txt' 
data = [data;getTripledData(newDatal.data)] ;

newDatal = importdata(1C :\Users\Paul\Desktop\SOM_data\NB\NB10.txt' 
data = [data;getTripledData(newDatal.data) ] ;

newDatal = importdata('C:\Users\Paul\Desktop\SOM_data\NB\NBll.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C:\Users\Paul\Desktop\S0M_data\NB\NB12.txt' 
data = [data;getTripledData(newDatal.data)];

% Bowler NB (49-60)

newDatal = importdata(1C:\Users\Paul\Desktop\SOM_data\NS\NS01.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C ;\Users\Paul\Desktop\SOM_data\NS\NS02.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\NS\NS03.txt' 
data = [data;getTripledData(newDatal.data)] ;

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\NS\NS04.txt' 
data = [data;getTripledData(newDatal.data)] ;

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\NS\NS05.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\NS\NS06.txt' 
data = [data;getTripledData(newDatal.data)] ;

newDatal = importdata(1C :\Users\Paul\Desktop\SOM_data\NS\NS07.txt' 
data = [data;getTripledData(newDatal.data)];
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newDatal = importdata('C:\Users\Paul\Desktop\SOM_data\NS\NS08.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\NS\NSO 9.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C:\Users\Paul\Desktop\SOM_data\NS\NS10.txt' 
data = [data;getTripledData(newDatal.data)] ;

newDatal = importdata(1C :\Users\Paul\Desktop\SOM_data\NS\NSll.txt1 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\S0M_data\NS\NS12.txt' 
data = [data;getTripledData(newDatal.data)] ;

% Bowler NS (61-72)

newDatal = importdata ( ' C : \Users\Paul\Desktop\SOM__data\RG\RG01. txt' 
data = [data;getTripledData(newDatal.data)] ;

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\RG\RG02.txt * 

data = [data;getTripledData(newDatal.data)];

newDatal = importdata(1C :\Users\Paul\Desktop\SOM_data\RG\RG03.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\RG\RG04.txt' 
data = [data;getTripledData(newDatal.data)] ;

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\RG\RG05.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\RG\RG06.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata(1C :\Users\Paul\Desktop\SOM_data\RG\RG07.txt' 
data = [data;getTripledData(newDatal.data)] ;

newDatal = importdata('C:\Users\Paul\Desktop\SOM_data\RG\RG08.txt1 
data = [data;getTripledData(newDatal.data)] ;

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\RG\RG09.txt' 
data = [data;getTripledData(newDatal.data) ];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\RG\RG10.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata(1C :\Users\Paul\Desktop\SOM_data\RG\RGll.txt' 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata ( ' C : \Users\Paul\Desktop\S0M_data\RG\RG12 . txt' 
data = [data;getTripledData(newDatal.data)];

% Bowler RG (73-84)

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\RW\RW01.txt' 
data = [data;getTripledData(newDatal.data) ] ;

newDatal = importdata('C:\Users\Paul\Desktop\SOM_data\RW\RW02.txt1 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\RW\RW03.txt' 
data = [data;getTripledData(newDatal.data) ] ;

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\RW\RW04.txt' 
data = [data;getTripledData(newDatal.data) ] ;

newDatal = importdata(1C:\Users\Paul\Desktop\SOM_data\RW\RW05.txt' 
data = [data;getTripledData(newDatal.data)] ;

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\RW\RW06.txt'
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data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\RW\RW07.txt'); 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\RW\RW08.txt'); 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C :\Users\Paul\Desktop\SOM_data\RW\RW09.txt1); 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata('C ;\Users\Paul\Desktop\SOM_data\RW\RW10.txt'); 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata(1C :\Users\Paul\Desktop\SOM_data\RW\RWll.txt'); 
data = [data;getTripledData(newDatal.data)];

newDatal = importdata(1C:\Users\Paul\Desktop\S0M_data\RW\RWl2.txt'); 
data = [data;getTripledData(newDatal.data)];

% Bowler RW (85-96)

%create a structure to use with the SOM 
som_data = som_data_struct(data); 
som_data = som_normalize(som_data,'var');

% create the SOM 
som = som_make(som_data); 
map_rows = som.topol.msize(1); 
map_cols = som.topol.msize(2); 
som_show(som,'umati', 'all')

counter = 1; 
for i=85:96

DataForMean(:,:,counter)=som_data.data(((i-l)*90)+l:((i-l)*90)+90,:); 
counter=counter+l ;

end

[x,y,z] = size(DataForMean); 

for j = 1:z
som_show_add('traj',som_bmus(som,DataForMean(:, :, j ) ) , 'TrajWidth',1);

end

MeanData = mean(DataForMean,3);
som_show_add('traj',som_bmus(som,MeanData), 'TrajWidth',3);
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Appendix H 

Cross-Correlation Data Sets



Table H.l. Peak phase-lagged cross-correlation coefficients for each of the 4 segment
couplings for 12 trials performed by participant 1. Pearson product-moment correlation
coefficients (r) calculated between Z-transformed analogues and ball release speed.

Cross-Correlation Coefficients (+/- Lag)

Trial Ball Release 
Speed (m.s'1) NBA vs. FL BA vs. NBA BA vs. FL UT vs. P

1 33.06 0.996 (0) -0.959 (0) -0.952 (0) 0.788 (0)
2 34.00 0.991 (0) -0.960 (0) -0.935 (0) 0.786 (-2)
3 33.53 0.991 (0) -0.953 (0) -0.941 (0) 0.848 (0)
4 33.14 0.979 (0) -0.955 (0) -0.914 (0) 0.760 (-7)
5 33.47 0.996 (0) -0.951 (0) -0.954 (0) 0.852 (0)
6 34.00 0.977 (0) -0.946 (0) -0.883 (0) 0.796 (-2)
7 34.00 0.997 (0) -0.959 (0) -0.955 (0) 0.775 (0)
8 34.00 0.978 (0) -0.959 (0) -0.902 (0) 0.825 (-1)
9 34.11 0.994 (0) -0.969 (0) -0.959 (0) 0.720 (-5)
10 32.31 0.964 (0) -0.952 (0) -0.871 (0) 0.847 (-1)
11 34.53 0.998 (0) -0.951 (0) -0.944 (0) 0.814 (0)
12 34.53 0.979 (0) -0.947 (0) -0.944 (0) 0.818 (0)

M ± SD 33.72 ± 0.649 0.991 ± 0.445 -0.956 ±0.078 -0.934 ± 0.200 0.806 ±0.109
Range 32.31 /  34.53 0.964/0.998 -0.946/-0.969 -0.871 /-0.959 0.720/0.852
r-value - 0.323 -0.033 -0.386 •0.266
P-value - 0.306 0.921 0.215 0.407

NB. Mean and SD are backtransformed values.

Table H.2. Peak phase-lagged cross-correlation coefficients for each of the 4 segment 
couplings for 12 trials performed by participant 2. Pearson product-moment correlation 
coefficients (r) calculated between Z-transformed analogues and ball release speed.

Cross-Correlation Coefficients (+/- Lag)

Trial Ball Release 
Speed (m .s1) NBA vs. FL BA vs. NBA BA vs. FL UT vs. P

1 29.61 0.778 (0) -0.980 (0) -0.749 (0) 0.747 (-9)
2 30.64 0.978 (0) -0.978 (0) -0.950 (0) 0.777 (-8)
3 29.06 0.919 (0) -0.974 (0) -0.880 (0) 0.814 (-7)
4 29.58 0.995 (0) -0.978 (0) -0.968 (0) 0.745 (-10)
5 29.78 0.987 (0) -0.979 (0) -0.959 (0) 0.846 (-2)
6 29.33 0.991 (0) -0.980 (0) -0.959 (0) 0.740 (-8)
7 30.14 0.982 (0) -0.985 (0) -0.959 (0) 0.779 (-9)
8 30.33 0.980 (0) -0.976 (0) -0.953 (0) 0.815 (-5)
9 31.61 0.956 (0) -0.979 (0) -0.940 (0) 0.828 (-2)
10 31.22 0.974 (0) -0.979 (0) -0.951 (0) 0.785 (-9)
11 29.69 0.964 (0) -0.966 (0) -0.941 (0) 0.801 (-8)
12 31.14 0.936 (0) -0.981 (0) -0.891 (0) 0.803 (-5)

M ± SD 30.18 ±0.817 0.972 ± 0.483 -0.978 ± 0.098 -0.938 ± 0.302 0.792 ± 0.091
Range 29.06/31.61 0.778 /  0.995 -0.966/ -0.985 -0.749/-0.968 0.740/0.846
r-value - -0.104 -0.272 -0.095 0.297
P-value - 0.747 0.396 0.770 0.347

NB. Mean and SD are backtransformed values.

Table H.3. Peak phase-lagged cross-correlation coefficients for each of the 4 segment 
couplings for 12 trials performed by participant 3. Pearson product-moment correlation 
coefficients (r) calculated between Z-transformed analogues and ball release speed.

Cross-Correlation Coefficients (+/- Lag)

Trial Ball Release 
Speed (m.s'1) NBA vs. FL BA vs. NBA BA vs. FL UT vs. P

1 30.11 0.254 (+19) -0.982 (0) -0.309 (0) 0.921 (0)
2 31.75 0.769 (+4) -0.972 (0) -0.875 (0) 0.932 (0)
3 33.06 0.554 (+15) -0.984 (0) -0.579 (0) 0.872 (0)
4 33.11 0.839 (+2) -0.976 (0) -0.921 (0) 0.945 (0)
5 31.31 0.696 (+12) -0.974 (0) -0.754 (0) 0.903 (0)
6 31.92 0.415 (+15) -0.971 (0) -0.432 (+10) 0.932 (0)
7 32.64 0.599 (+17) -0.977 (0) -0.603 (+2) 0.925 (0)
8 32.44 0.753 (+2) -0.971 (0) -0.861 (0) 0.920 (0)
9 32.17 0.669 (+13) -0.969 (0) -0.710 (0) 0.936 (0)
10 32.78 0.717 (+7) -0.965 (0) -0.840 (0) 0.914 (0)
11 30.22 0.606 (+14) -0.960 (0) -0.687 (0) 0.942 (0)
12 33.03 0.629 (+7) -0.982 (0) -0.712 (0) 0.903 (0)

M ±SD 32.05 ±1.041 0.647 ± 0.253 -0.974 ±0.140 -0.733 ± 0.361 0.922 ±0.125
Range 30.11 /  33.11 0.254/0.839 -0.960/-0.984 -0.309/-0.921 0.872/0.945
r-value - 0.490 -0.263 -0.427 -0.289
P-value - 0.106 0.409 0.166 0.362

NB. Mean and SD are backtransformed values.
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Table H.4. Peak phase-lagged cross-correlation coefficients for each of the 4 segment
couplings for 12 trials performed by participant 4. Pearson product-moment correlation
coefficients (r) calculated between Z-transformed analogues and ball release speed.

Cross-Correlation Coefficients (+/- Lag)

Trial Ball Release 
Speed (m.s'1) NBA vs. FL BA vs. NBA BA vs. FL UT vs. P

1 30.56 0.911 (0) -0.965 (0) -0.975 (0) 0.672 (-10)
2 30.33 0.907 (0) -0.960 (0) -0.958 (0) 0.743 (-4)
3 30.22 0.960 (0) -0.959 (0) -0.923 (0) 0.801 (0)
4 31.72 0.937 (0) -0.956 (0) -0.937 (0) 0.760 (-7)
5 31.56 0.932 (0) -0.962 (0) -0.976 (0) 0.707 (-4)
6 31.31 0.975 (0) -0.957 (0) -0.932 (0) 0.711 (-5)
7 31.14 0.908 (0) -0.950 (0) -0.966 (0) 0.771 (-5)
8 30.64 0.904 (0) -0.964 (0) -0.921 (0) 0.714 (-5)
9 30.28 0.763 (0) -0.966 (0) -0.644 (0) 0.668 (-5)
10 30.50 0.774 (0) -0.958 (0) -0.806 (0) 0.819 (-1)
11 31.11 0.958 (0) -0.967 (0) -0.947 (0) 0.667 (-6)
12 31.00 0.918(0) -0.960 (0) -0.960 (0) 0.737 (-8)

M ± SD 30.86 ±0.512 0.920 ± 0.330 -0.961 ± 0.061 -0.937 ± 0.398 0.735 ±0.113
Range 30.22/31.72 0.763 /  0.975 -0.950/-0.967 -0.644/-0.976 0.667/0.819
r-value - 0.458 0.321 -0.453 -0.141
P-value - 0.134 0.308 0.139 0.662

NB. Mean and SD are backtransformed values.

Table H.5. Peak phase-lagged cross-correlation coefficients for each of the 4 segment 
couplings for 12 trials performed by participant 5. Pearson product-moment correlation 
coefficients (r) calculated between Z-transformed analogues and ball release speed.

Cross-Correlation Coefficients (+/- Lag)

Trial Ball Release 
Speed (m.s'1) NBA vs. FL BA vs. NBA BA vs. FL UT vs. P

1 31.47 0.767 (0) -0.987 (0) -0.705 (-17) 0.621 (-17)
2 31.06 0.433 (-20) -0.963 (0) -0.290 (-20) 0.782 (-8)
3 30.50 0.640 (-20) -0.980 (0) -0.579 (-20) 0.616 (-16)
4 31.39 0.479 (-20) -0.980 (0) -0.375 (-20) 0.653 (-14)
5 31.39 0.705 (-9) -0.973 (0) -0.655 (-20) 0.693 (-14)
6 31.39 0.578 (-20) -0.976 (0) -0.497 (-20) 0.716 (-12)
7 31.39 0.595 (-20) -0.979 (0) -0.532 (-20) 0.690 (-12)
8 30.81 0.536 (-20) -0.979 (0) -0.462 (-20) 0.748 (-8)
9 30.92 0.580 (-20) -0.983 (0) -0.520 (-20) 0.668 (-16)
10 30.64 0.633 (-19) -0.983 (0) -0.593 (-20) 0.671 (-15)
11 30.36 0.748 (0) -0.970 (0) -0.620 (-20) 0.693 (-15)
12 29.78 0.533 (-19) -0.968 (0) -0.461 (-20) 0.696 (-11)

M ± SD 30.93 ± 0.530 0.612 ±0.168 -0.978 ±0.150 -0.533 ±0.162 0.690 ± 0.094
Range 29.78/31.47 0.433 /  0.767 -0.963/-0.987 -0.290/-0.705 0.616/0.782
r-value - 0.057 -0.361 -0.083 -0.017
P-value - 0.861 0.249 0.798 0.958

NB. Mean and SD are backtransformed values.

Table H.6. Peak phase-lagged cross-correlation coefficients for each of the 4 segment 
couplings for 12 trials performed by participant 6. Pearson product-moment correlation 
coefficients (r) calculated between Z-transformed analogues and ball release speed.

Cross-Correlation Coefficients (+/- Lag)

Trial Ball Release 
Speed (m.s'1) NBA vs. FL BA vs. NBA BA vs. FL UT vs. P

1 30.75 0.985 (0) -0.968 (0) -0.976 (0) 0.749 (-1)
2 30.83 0.993 (0) -0.984 (0) -0.979 (0) 0.680 (-7)
3 31.19 0.990 (0) -0.970 (0) -0.982 (0) 0.747 (0)
4 31.44 0.987 (0) -0.976 (0) -0.980 (0) 0.747 (0)
5 31.53 0.989 (0) -0.978 (0) -0.988 (0) 0.716 (-4)
6 31.69 0.990 (0) -0.977 (0) -0.976 (0) 0.717 (-6)
7 31.56 0.990 (0) -0.976 (0) -0.986 (0) 0.726 (-3)
8 31.33 0.989 (0) -0.969 (0) -0.990 (0) 0.709 (-4)
9 31.56 0.988 (0) -0.973 (0) -0.987 (0) 0.795 (0)
10 31.56 0.986 (0) -0.966 (0) -0.985 (0) 0.769 (-1)
11 31.33 0.992 (0) -0.978 (0) -0.989 (0) 0.700 (-4)
12 31.67 0.995 (0) -0.983 (0) -0.984 (0) 0.719 (-3)

M ± SD 31.37 ±0.308 0.990 ±0.154 -0.975 ±0.120 -0.984 ±0.149 0.733 ± 0.070
Range 30.75/31.67 0.985/0.995 -0.966/ -0.984 -0.976/-0.990 0.680/0.795
r-value - 0.123 -0.061 -0.316 0.219
P-value - 0.704 0.851 0.25 0.493

NB. Mean and SD are backtransformed values.
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Table H.7. Peak phase-lagged cross-correlation coefficients for each of the 4 segment
couplings for 12 trials performed by participant 7. Pearson product-moment correlation
coefficients (r) calculated between Z-transformed analogues and ball release speed.

Cross-Correlation Coefficients (+/- Lag)

Trial Ball Release 
Speed (m.s'1) NBA vs. FL BA vs. NBA BA vs. FL UT vs. P

1
2
3
4
5
6
7
8
9
10 
11 
12

31.39 
31.44
31.75 
31.31 
32.06 
32.67
32.39 
32.53 
33.28 
33.22
32.75 
33.25

0.996 (0) 
0.969 (0) 
0.968 (0) 
0.998 (0) 
0.983 (0) 
0.988 (0) 
0.979 (0) 
0.967 (0) 
0.992 (0) 
0.986 (0) 
0.941 (0) 
0.970 (0)

-0.939 (0) 
-0.939 (0) 
-0.943 (0) 
-0.937 (0) 
-0.946 (0) 
-0.944 (0) 
-0.927 (0) 
-0.923 (0) 
-0.952 (0) 
-0.946 (0) 
-0.937 (0) 
-0.921 (0)

-0.964 (0) 
-0.991 (0) 
-0.986 (0) 
-0.949 (0) 
-0.983 (0) 
-0.981 (0) 
-0.967 (0) 
-0.983 (0) 
-0.982 (0) 
-0.987 (0) 
-0.977 (0) 
-0.983 (0)

0.732 (-3) 
0.683 (-4) 
0.746 (-2) 
0.726 (-2) 
0.618 (-6) 
0.668 (-3) 
0.711 (-2) 
0.714 (-3) 
0.714 (-3) 
0.509 (-11) 
0.689 (-4) 
0.692 (-12)

M ± SD 
Range 
r-value 
P-value

32.34 ± 0.739 
31.31 /  33.28

0.984 ± 0.455 
0.941 /  0.998 

-0.357 
0.255

-0.938 ± 0.078 
-0.921 /-0.952 

-0.013 
0.969

-0.980 ± 0.238 
-0.949/-0.991 

-0.294 
0.353

0.688 ±0.109 
0.509 /  0.746 

-0.433 
0.160

NB. Mean and SD are backtransformed values.

Table H.8. Peak phase-lagged cross-correlation coefficients for each of the 4 segment 
couplings for 12 trials performed by participant 8. Pearson product-moment correlation 
coefficients (r) calculated between Z-transformed analogues and ball release speed.

Cross-Correlation Coefficients (+/- Lag)

Trial Ball Release 
Speed (m.s'1) NBA vs. FL BA vs. NBA BA vs. FL UT vs. P

1
2
3
4
5
6
7
8
9
10 
11 
12

29.94
28.53
29.72
29.39
29.69
29.31
29.97
30.78
30.64
30.61
30.83
31.25

0.936 (0) 
0.957 (0) 
0.971 (0) 
0.980 (0) 
0.987 (0) 
0.981 (0) 
0.997 (0) 
0.979 (0) 
0.985 (0) 
0.978 (0) 
0.978 (0) 
0.985 (0)

-0.971 (0) 
-0.975 (0) 
-0.976 (0) 
-0.969 (0) 
-0.974 (0) 
-0.973 (0) 
-0.974 (0) 
-0.973 (0) 
-0.973 (0) 
-0.972 (0) 
-0.972 (0) 
-0.977 (0)

-0.880 (0) 
-0.893 (0) 
-0.930 (0) 
-0.926 (0) 
-0.963 (0) 
-0.941 (0) 
-0.966 (0) 
-0.960 (0) 
-0.947 (0) 
-0.935 (0) 
-0.935 (0) 
-0.966 (0)

0.660 (-8) 
0.700 (-4) 
0.701 (-8) 
0.736 (-5) 
0.732 (-1) 
0.682 (-7) 
0.819(0) 
0.707 (-6) 
0.707 (-2) 
0.732 (-3) 
0.772 (-4) 

0.602 (-14)
M ± SD 
Range 
r-value 
P-value

30.06 ± 0.786 
28.53/31.25

0.981 ± 0.357 
0.936/0.997 

0.223 
0.486

-0.973 ± 0.041 
-0.969/ -0.977 

-0.096 
0.766

-0.942 ±0.214 
-0.880/ -0.966 

-0.511 
0.090

0.717 ±0.114 
0.602 /  0.819 

-0.093 
0.774

NB. Mean and SD are backtransformed values.
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Appendix I 

Vector Coding Data Sets
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