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Abstract
Respiration rate is one of the main indicators of an individual's health and 
therefore it requires accurate quantification. Its value can be used to predict 
life threatening conditions such as the child death syndrome and heart 
attacks. The current respiration rate monitoring methods are contact based,
i.e. a sensing device needs to be attached to the person’s body. Physically 
constraining infants and young children by a sensing device can be 
stressful to the individuals which in turn affects their respiration rate. 
Therefore, measuring respiration rate in a non-contact manner (i.e. without 
attaching the sensing device to the subject) has distinct benefits. Currently 
there is not any non-contact respiration rate monitoring available for use in 
medical field.

The aim of this study was to investigate thermal imaging as a means for 
non-contact respiration rate monitoring. Thermal imaging is safe and easy 
to deploy. Twenty children were enrolled for the study at Sheffield 
Children Hospital; the children were from 6  month to 17 years old. They 
slept comfortably in a bed during the recordings. A high resolution high 
sensitivity (0.08 degree Kelvin) thermal camera (Flir A40) was used for the 
recordings. The image capture rate was 50 frames per second and its 
recording duration per subject was two minutes (i.e. 6000 image frames)

A median digital lowpass filter was used to remove unwanted frequency 
spectrum o f the images. An important issue was to localize and track the 
area centered on the tip of the nose (i.e. respiration region of interest, ROI). 
A number of approaches were developed for this purpose. The most 
effective approach was to identify use the warmest facial point (i.e. the 
point where the bridge of the nose meets the corner o f one o f the eyes). A 
novel method to analyse the selected ROI was devised. This involved 
segmenting the ROI into eight equal segments centred on the tip of nose. A 
respiration signal was produced for each segment across the 6000 recorded 
images from each subject. The study demonstrated that the process of 
dividing the ROI into eight segments improves determination o f respiration 
rate. The respiration signals were processed both in the time and frequency 
domains to determine respiration rates for the 2 0  subjects included in the 
study. The respiration values obtained from the two domains were close. 
During each recording respiration rate was monitored using conventional 
contact methods (e.g. nostril thermistor, abdomen and chest movement 
sensor etc). There was a close correlation (correlation value 0.99) between 
respiration values obtained by thermal imaging and those obtained using 
conventional contact method.

The novel aspects of the study relate to the development of techniques that 
facilitated thermal imaging as an effective non-contact respiration rate 
monitoring in both normal and patient subject groups.
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( O n e

1 .Introduction

Respiration rate monitoring is an essential task in routine clinical diagnosis. It 

is used to monitor the progression of illnesses because an abnormal 

respiratory rate is an important marker of a serious illness (Fieselmann et al, 

1993).

There is substantial evidence that alterations in respiratory rate can be used to 

predict potentially serious clinical events such as cardiac arrest or admission 

to an intensive care unit (Subbe et aL, 2003; Cretikos et aL, 2007). These 

studies have shown that respiratory rate information to be even more 

important than other vital measurements, such as heart beat rate and blood 

pressure, in discriminating between stable patients and patients at risk 

(Fieselmann et aL, 1993). Using the changes in respiratory rate measurements, 

patients could be identified as high risk up to 24 hours before an illness with a 

specificity of 95% (Cretikos et aL, 2007).

According to Murthy et aL (2004), there are deficiencies in the current 

respiration rate measurement methods, since the existing devices for 

monitoring respiratory rate only estimate the actual breathing rate. These 

devices can be classified in different ways, depending on the manner in which 

they operate and used.

Respiration rate monitoring devices are classified as either contact or non- 

contact. In the contact type, the instrument makes direct contact with the
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subject's body, causing discomfort and in turn affecting the respiration rate 

value. In some cases the respiration rate is monitored visually by observing 

the patient’s chest or by putting a hand in front of the patient’s free to feel the 

exhaled air. The visual approach is subjective and can be significantly 

erroneous.

However, in non-contact methods, the respiration rate is measured without the 

sensing instrument making any contact with the subject's body. There are 

clear advantages to non-contact respiration monitoring methods. These 

include; inproved patient’s comfort (especially for long term monitoring) as 

the subject is not tied to an instrument, and inproved accuracy as distress 

caused by a contact device may alter the respiration rate. A critical review of 

respiration monitoring approaches (both contact and non-contact) methods in 

medical care is provided in the next chapter.

This study presents the development of a novel respiration rate computation 

approach using thermal imaging. Concerns related to the patient’s recording 

comfort, recording hygiene, and the accuracy of the respiration rate 

monitoring have resulted in a thermal imaging approach.

The devised method was tested in the Clinical Sleep Unit of Sheffield 

Children’s Hospital and its performance was quantitively evaluated against 

the current conventional contact based approaches

This chapter provides an introduction to this research. It is organised as 

follows: Section 1.1 presents the studies’ main aims and objectives; Section

1.2 provides the purpose of the research, Section 1.3 provides the problem 

description of research, Section 1.4 provides contributions of this study. 

Finally, Section 1.5 provides the outline and organisation of the thesis.

1.1 Aim and Objectives

The primary aim of this research was to apply and further develop thermal 

image processing techniques to monitor respiration rate in children. This
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method is assessed against contact respiration methods that require an 

instrument to be attached to the patient.

The objectives of this study were:

L Develop and evaluate a thermal imaging based method of monitoring 

respiration rate in chMrea

ii. Enhance the recorded thermal images to reduce unwanted noise

iii. Develop a tracking algorithm to automatically track the facial area

associated with respiration (Le. the region of interest, ROI).

iv. Devise a method to extract respiration features from the ROI.

v. Devise a method to automatically determine the respiration rate from

the respiration signals using the selected ROI features.

vL Critically evaluate the thermal imaging method by applying it to both 

suitable adults as well as an appropriate number of cMdrea

vii. Compare the effectiveness of thermal imaging with conventional contact 

based methods.

viii. Critically identify the limitations of thermal imaging based respiration 

rate monitoring.

1.2 The Purpose of the Research

The principle behind a thermal imaging based respiration monitoring method 

is that exhaled air causes a rise in the temperature of the tip of the nose and to 

a lesser extent, the upper lip, whilst inhaled air reduces the temperature of 

those skin surfaces. These temperature changes can be recorded as a series of 

thermal images by a suitable thermal camera. The respiration rate can then be 

obtained by a careful processing and analysing of the images.

The study involved a careful evaluation of thermal imaging to monitor 

respiration rate in twenty infants and children. This was achieved in 

collaboration with the Sheffield Children’s Hospital
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13 Problem Description

Although non-contact respiration monitoring techniques provide a more 

appropriate breathing monitoring in children, their implementation is not 

straightforward. The captured thermal images require processing in order to 

fulfil the requirements of the monitoring functioa Among these requirements 

are image enhancement, segmentation, tracking the region of interest (ROI) as 

well as specifying the important features from the images. Another, essential 

requirement of the breathing monitoring system is the ability to produce the 

respiration signal from the ROI. Accuracy in extracting important features is

very important in order to calculate respiration rate.

1.4 Contributions of this Study

Respiration rate monitoring is an essential task in clinical diagnosis. 

Traditionally, measuring respiration requires attaching the sensing device to 

the subjects, causing them discomfort and potentially affecting their 

breathing pattern.

Our research paves the way for novel respiration monitoring in a non-contact 

manner. Methods to enhance the thermal images were employed and then

image processing techniques were utilised to extract the ROI. This region

was partitioned into eight equal segments. A respiration signal was generated 

from each segment and respiration rate was determined from each signal. 

The developed methods were applied to 20 children enrolled for the study at 

Sheffield Children Hospital

The study demonstrated the thermal imaging would allow respiration rate to 

be determined in a non-contact manner.
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1.5 Thesis outline

The following chapters are:

Chapter Two: The Literature Review. This chapter outlines related research 

and work, highlighting and critiquing the current state of knowledge in this 

field related to this study.

Chapter Three: Review o f Image and Signal Processing Techniques Used 

in This Study. This chapter explains the theoretical background for image 

processing and signal processing techniques that are used in this study to 

obtain the respiration rate values.

Chapter Four: Relevant Thermal Imaging Theory. This chapter reviews the 

features of the thermal camera used in the study (A40 FLIR) as well as the 

fimdamental concepts in thermal imaging. It also provides an overview of the 

ThermaCAM™ Researcher 2.9 software which was used with FUR A40 

camera.

Chapter Five: Methodologiesy Developments and Preliminary Results. This 

chapter discusses the System design (Hardware and Software) and the 

methodologies to obtain results.

Chapter Six: Techniques to Segment the Region o f Interest (ROI). This 

chapter presents the analysis of thermal images to segment the region of 

interest (ROI) as well as the shapes and the sizes of this region.

Chapter Seven: Thermal Imaging Based Respiration Rate Monitoring in 

Children. This chapter describes the use of this system in the Sleep Unit of 

the Sheffield Children’s Hospital and compares the results of developed 

thermal imaging method with those of conventional contact methods.

Chapter Eight: Conclusions and Future Work. This chapter presents the 

study’s conclusions, main findings and suggests possible future work.
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2. Literature Review

2.1. Introduction

An introduction to this study is provided in this chapter. It gives background 

information about the research area and the relevant related research. A 

literature review of the publications related to this study is provided.

Respiratory rate is one of the main indicators of an individual's health and is 

the single most important physiological parameter, as it can be used to predict 

various life threatening disorders such as the child death syndrome and heart 

attacks. A number of traditional methods for monitoring respiratory rate already 

exist in hospitals. Additionally, many methods have been proposed due to rapid 

technological development. Yet, these respiration monitoring methods suffer 

from limitations. Most of the methods involve the sensing element being 

connected to the patient’s body, causing them discomfort and also possibly 

affecting their breathing pattern.

Section 2.2 of this chapter provides an overview of respiration rate monitoring. 

An analysis of respiration patterns in children is provided in Section 2.2.1. The 

conventional methods for monitoring respiration rate are described in Sections

2.2.2 and 2.2.3. Section 2.3 provides a literature review of thermal cameras and 

thermal imaging. The following parts deal with detecting the face and the 

extraction of the features related to the human face. Finally image processing 

techniques, including image registration, feature extraction and image 

segmentation, are presented in Section 2.5.
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2.2. Analysis and M onitoring of Respiration Rate

Vital physical signs that indicate a person is alive include respiration rate, heart 

rate, temperature and blood pressure. These signs can be measured and used to 

assess a person's level of physical functioning. Normal ranges of these vital 

signs vary according to the age, sex, weight, exercise tolerance, and body 

conditions (David, 2009).

The present study focuses on the measurement of respiration rate because it is 

an important indicator of an individual's health. Respiration is a human 

physiological task in living organisms. For human, this process results in air 

containing oxygen being inhaled into the kings, where the gas exchange occurs 

with the help of alveoli (Lausted and Jonston , 2006). Carbon Dioxide is 

excreted as a part of the process, in the air released through the nose or mouth. 

Fig.2.1 shows a schematic representation of human respiratory system The 

entire process from the inhalation to exhalation is known as a breathing (or 

respiration) cycle.

Chest wall

Intrapleural
space

Abdominal diaphragm

Fig.2.1: Schematic representation of the respiratory system (Lausted and Jonston,
2006).
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Respiration plays a critical role in the diagnosis and control of respiratory 

diseases, especially in new bom children who have breathing problems (Fei et 

al, 2005). Respiratory failure is difficult to predict and can become life 

threatening in a few minutes; however it can also build up gradually. Moreover, 

it can be used to predict disorders that may threaten life, such as cardiac arrest 

or admission to the intensive care unit or sudden death in infants (Fieselmann et 

al, 1993; Subbe et aL, 2003; Cretikos et aL, 2007).

Respiration is a bodily function consisting of three stages. In the first stage, 

oxygen is taken or inhaled from air into the lungs (inspiration). In the second 

stage, carbon dioxide is taken out of the body (expiration). In the third stage, 

post-expiration occurs when there is equalization of pressures inside and 

outside the lungs, as shown in Fig.2.2 (Murthy et aL, 2004). The breathing 

cycle is defined as the time interval between the beginning of inspiration and 

the end of the post-expiratory pause. The present work lumps together 

inspiration and post-expiratory pause as it gives the same distribution as shown 

in Fig.2.2. Therefore, the respiration stages can be categorised as expiration and 

non- expiration.

—  Enpfatjon
♦  P a u w  
—— lr-*p«'a;K>ri

Fig.2

86—j_________
24 8 24
 ►

Pixel Temperature ,° C

,2 The temperature distributions for the expiration, post-expiratory pause 
and inspiration (Murthy et al., 2004).
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Monitoring of breathing function (or respiratory rate) has its applications in 

polygraphy, sport training, sleep tests, and patient monitoring. It depends on the 

physiological changes in humans that are relevant to the respiration operation 

such as the changes in the volume of the thorax and abdomen and may be 

dependent on the changes of the temperature between expired and inspired 

gases (Ye and Yuji, 1997). The main goal of this research is to develop an 

integrated non-contact respiration monitoring device that is accurate safe, 

reliable and is easy to use.

2.2.1. Analysis Respiratory rate of Children

A study on the respiratory rate of 1007 children which were less than six 

months old by doctors in Australia stated, that children when they are awake 

have an average mean rate of sixty one breaths per minute , with a range of 

forty three to sixty nine (Morley et aL 1990). Sleeping children have a 

significantly lower mean rate than those awake at forty two breaths per minute. 

Children when awake tend to move a lot and breathe irregularly. Children 

breathe much faster when awake, as compared to the periods they are sleeping. 

On the other hand, this study referred also to the sex of child, boys had a 

slightly higher respiration rate when awake than the girls. Boys had sixty one 

breaths per minute while girls had fifty eight breaths per minute. But there were 

no significant differences during sleep. Children who are crying or have tract 

infections had lower respiration rates when awake than healthy children 

(Morley et aL, 1990).

Table (2.1) indicates the average respiration rate in healthy children related to 

their age. Older children have lower respiration rates (The Pennsylvania Child 

Welfare Training Program, 2009).
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TABLE 2.1: Typical respiration rates in healthy children.

Age range Average respiration rates 

(cycles per minute)

Infants 2 5 -6 0

1 - 4  years 2 0 -3 0

5 - 1 4  years 1 5 -2 5

15 or more years 1 1 -2 5

There has been much research conducted on the respiratory analysis of 

childrea Most of these studies observed that there are many variables that 

influence a child’s respiration such as age, sex and his or her physical state 

(Hoppenbrouwers et al 1980; Adamson et aL 1981; Morley et aL 1990). In 

these studies they noted the effect of increasing age with decreasing respiration 

Secondly, the affect of the gender differences in respiration rate. Males 

breathed significantly fester than females in the active awake or sleep. Thirdly, 

the respiration rate and regularity are reported to be lower during a child’s quiet 

sleep than during active sleep (physical movements during sleep) and are 

greatest when the child is awake, except during the first week of life when the 

rates for active sleep and active awake were similar, being higher than the rates 

for quiet sleep (Hoppenbrouwers et aL, 1980). For every type of respiratory 

equipment used, calculations of each breathing count is still obtained through 

counting the cycle of breathing. Every cycle of breathing consists of one 

inhalation followed by one exhalation, or vice versa.

Most of the mentioned respiration rate monitoring methods shares a common 

characteristic; they require the sending device to be connected to the child’s 

body. A strain gauge is placed around child’s chest and abdomen to measure 

the changes of strain of the thorax and abdomen during its expansion (inhaling 

operation) and contraction (exhaling operation). Alternatively a thermistor is 

placed in the child’s nostril to measure temperature changes caused by 

inspiration and expression of air. Both methods are uncomfortable to children 

and may not be applicable because the body of the child is tiny and soft. These 

contact respiration applications were introduced as the first methods for
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estimating respiratory rate. These methods have been proven to be effective and 

are often used to compare the performance of new respiratory monitoring 

devices (Cacioppo etaL 2007).

There have been several studies reporting the developments of various 

techniques for the detection and classification of respiration and other bio- 

physiologieal signals for the purpose of respiration monitoring. A review of 

both contact and non-contact based approaches is provided in the follow 

sections.

2.2.2. Contact Respiratory M onitoring Methods (Conventional 

Methods)

Also known as intrusive monitoring, these techniques require sensors that are 

attached to patient's body. They usually restrain natural motion. The several 

common contact methods of respiratory monitoring are based on measuring one 

of the following parameters: respiratory sounds, respiratory airflow, respiratory 

related chest and abdominal movements, respiratory CO2 emission, oximetry 

probe (Sp02) and actimeter.

These techniques are often used for long term (e.g. over night) respiration rate 

monitoring and only provide an estimate of respiration rate. These techniques 

require contact with the patient. This causes inconvenience to the patient under 

treatment and the critically ill patient may not tolerate any sensor in the nose, 

mouth, or band around the chest. Additionally, these techniques are desirable to 

measure the respiration rate in children but may sometimes affect the 

respiratory pattern activity and give inaccurate measurements (Folke et aL, 

2003; Tobin, 1988).

A summaiy of contact based respiration monitoring studies is provided in 

Table 2.2.
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TABLE 2.2: A summary contact based respiration rate monitoring studies.

Authors Year Summary of the Method

Werthammer et al. 1983
The breathing sounds were detected through an 
electric microphone. The recorded acoustic signal 
reflected respiration rate.

Moody et aL 1986 Respiration rate was derived electrocardiogram 
(ECG)

Storck et al. 1996
Nasal temperature probe (thermistor) was used to 
measure the variation in the air temperature 
produced by inhaling and exhalation process.

Sadeh et al. 1995
using Actimeter , which is a wrist-watch like device 
that uses internal accelerometers to detect activity 
by sensing motion

Larsson and Staun 1999 Fibre-optic humidity sensors to measure respiration 
rate.

Nepal et al 2002
Using the strain gauge is strapped around the 
patient’s chest and measures the changes in thoracic 
or abdominal during the breathing.

Tarassenko et al. 2002

Breathing rate was estimated by measuring the 
changes in the electrical impedance pneumography 
(IP) signal across the chest, and the 
electrocardiogram (ECG) or the changes in light 
absorption which known as photoplethysmogram 
(PPG) across the finger.

Folke et aL 2002 A C02 sensor was used to detect respiration airflow

Folke et aL 2003
Using oral, nasal or oronasal thermistor sensors 
which detect changes in temperature between the 
inspired and expired air.

Mazzanti etal. 2003
Principal component analysis was used to identify 
which ECG lead was most effective to extract the 
respiration rate.

Nam et al. 2005

The patient wears the bio-shirt. This is a set of 
physiological parameters including skin 
temperature, ECG and respiration rate measured by 
using Bio -shirt.

Lee-Chiong 2006 Nasal pressure transducer was used to measure the 
respiration airflow.

James et al. 2006
Probes were placed on the forehead, big toe, 
fingertip or bridge of the nose to detect oxygen 
levels in the blood.

Butkov and Lee- 
Chiong

2007 Transcutaneous C02 was measured to estimate 
respiration rate. This was based on measuring the 
diffusion of gas to the skin.

Corbishley and 
Rordriguez- 

Villegas
2008

A miniaturised, wearable, and battery-operated 
respiration monitoring system was developed. A 
microphone was mounted on the neck to obtain the 
largest signal of breathing whilst eliminate the 
heartbeat signal
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2.2.2.I. Acoustic Based Methods

Respiratory sound can be measured using a microphone placed either close to 

the respiratory airways or over the throat to detect the variation of sound. Then 

a frequency analysis and estimation of the loudness of the sound can be carried 

out (Shneerson, 2005). A microphone can be used to convert the acoustic signal 

generated by respiration to an electrical signal

Werthammer et al, (1983) reported a respiratory sounds measurement system 

to detect sleep apnea1 in infants. The system depended on recording a signal 

derived from breathing sounds from the nose. This method was applied to eight 

premature infants. The acoustic monitor detects breathing sounds through an 

electric microphone. The signals from the microphone were amplifi ed and 

filtered to exclude environmental noise. Detection of the signal as a breath 

depends on the amplitude and duration of the signal. In order to measure the 

changes in breathing patterns they are compared to the integrated signal. 

Although, this method could detect the absence of airflow during obstructed 

respiratory efforts or body movement, it had some limitations when the children 

were snorting loudly, or when the head was moved far from the microphone. 

Additionally, any environmental noises such as speaking, crying, coughing etc 

had a negative effect on the operating of the system. Therefore; the breathing 

signal was corrupted by noise. The sensor was useful only with obstructive or 

absent of breathing

To avoid the limitations of the respiratory s ound measurement method, 

Corbishley and Rordriguez-Villegas (2008) proposed a miniaturised, wearable, 

and battery-operated respiration monitoring system, using a microphone. The 

acoustic sensor is mounted on the neck to obtain the largest signal of breathing, 

whilst eliminating the heartbeat signal. They mounted an omnidirectional 

microphone on an aluminium conical bell and attached it to the skin to measure 

the acoustic breathing signal. They suggested detecting the frequency of speech 

by recording the speech of the patient for ten minutes, while the acoustic sensor

1 Sleep apnea is one of the most common respiratory diseases that causes stop in breathing or
get it very shallow repetitively during sleep. The breath pause takes more than 10 seconds.
These pauses can occur 20 to 30 times or more in an hour (Sleep apnea, 1995).
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was attached to skin on the arm to attenuate other noise sources. The sensor had 

to be put in correct place to avoid any movements; otherwise the recording 

signal suffered interference from the heartbeat signal Also, this approach was 

required to be implemented in electronic circuits as part of a miniature 

breathing detector. The complexity of the algorithm affected the complexity of 

the electronic circuits and hence added more constraints to the power 

consumption of the electronic circuits. Despite the success of this approach in a 

number of patients, there remained some limitations that made it inefficient in 

general measurement of respiration rate.

2.2.2.2. Airflow Based Methods

Airflow can be detected because exhaled air is warmer, has higher humidity and 

contains more CO2 than inhaled air. These variations can be used for indicating 

the respiratory rate. Most airflow-sensing methods need a sensor, attached to 

the airways (Folke et al, 2003). The measurement of the airflow can be 

achieved by using nasal, oral or oronasal thermistor sensors which detects 

changes in temperature between the inhaled and exhaled air. This gives a 

semiquantitative estimate of airflow, but can become displaced.

Storck et aL, (1996) used an airflow-sensing device to measure respiration rate. 

The device contained a nasal temperature probe with a thermoister which 

reacted to the variation in the air temperature. The thermoister was placed in the 

nostril to measure the change of temperature caused by inhaling and exhaling 

air. Although, the thermoister was small easy to place and gave a good estimate 

of airflow in some patients, it is uncomfortable to use in children. They always 

suffered from difficulties in tolerating this method to measure respiration. 

Moreover, children tend to displace the thremistor thus producing errors in 

measurement. The probe also could be used only once for hygienic reasons, (so 

there are cost implications)

Larsson and Staun (1999) suggested using Hygrometer or fibre-optic humidity 

sensors to measure respiration rate. The sensor tends to overestimate the
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respiratory rate by measuring the humidity of respiration, based on the fact that 

the expiration air has higher humidity than inspiration air. This sensor usually 

placed in front of nasal /oral region.

The nasal pressure transducer is another sensor which is already used to 

measure respiration rate. Nasal pressure is a more accurate measure of airflow 

than others as it based on the actual volume of the air exhaled (Shneerson, 

2005; Lee-Chiong, 2006). It can be measured via dual nasal cannulae, 

mouthpiece or facemask. A problem with airflow measurement is that some 

patients may not feel comfortable with the sensor (Tobin, 1988).

Folke et aL (2002) have reported CO2 sensor to measure respiration rate. Their 

study also indicated that subtle design changes in the collecting device could 

introduce large differences in sensor performance.

2.2.2.3. Transcutaneous C02 monitoring

In this measurement technique the recording continuously and non-invasively 

uses a heated electrode (about 42° C) is applied to the skin usually the earlobe. 

This method relies on the diflusion of gas to the skin and provides an overall 

estimate of change in CO2 level rather than minute by minute readings. The 

electrode is automatically calibrated prior to use. The electrode is surrounded 

by a solution to provide conductivity. Care needs to be taken to avoid skin 

burning on sensitive and neonatal skin (Butkov and lee-Chbng, 2007).

2.2.2.4. Chest and Abdominal Movement Detection

Chest and abdominal movements can best be measured by either mercury strain 

gauges or impedance methods. There are two bands; the thoracic band which is 

placed around the top of the thorax, passing under the arm pits and the 

abdominal band which is placed over the abdomen at the level of the umbilicus. 

Normally, the bands should be tight enough to detect the chest and abdominal 

movements. The bands are made from extendible/deformable conducting 

material, either a very fine wire or thin foil such that the conductivity can be 

maintained during the stretching process (Lee-Chbng, 2006; Blom, 2004).
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Normally, the inspiratory thoracic and abdominal expansion is almost

synchronous. However, if the upper airway is partially obstructed, there may be 

a change in the phase angle and timing of the movements of the thorax and 

abdomen. The movements become asynchronous, ie. the thorax moves

outwards, and the abdomen inwards. During expiration, this pattern is then

reversed. These are detectable by movement monitors. The principle of the

strain gauge sensor is based on increasing in the resistance of the conductor 

when the area of the conductor is increased during the respiration process. 

Equation (2.1) indicates how the change of resistance (AR) is converted into the 

measured strain (s).

Where r g is the resistance of the strain gauge without any deformation (Konno 

e ta l, 1967).

The main reason that this method is not desirable for children is because the 

bands are put under the clothes to avoid being pulled off. Therefore it is 

difficult to use this method to measure respiration in children.

Nepal et al (2002) studied the abdominal strain gauge transducer for measuring 

respiration rate. The strain gauge was strapped around the patient’s chest and 

measured the changes in thoracic or abdominal circumference during the 

breathing. This method involved a classification algorithm to separate 

respiratory signals accurately as apnea, respiration, or respiration with motion, 

by using a zero cross algorithm.

2.2.2.5. Oximetry probe (Sp02) Based

Blood-Oxygen saturation (Sp0 2 ) measurement is another technique for 

respiration rate monitoring. This method is based on the fact that saturation of 

oxygen in blood (Sp0 2 ) changes regularly as a result of respiration.

When air enters the lungs, its oxygen binds to the haemoglobin in-the red blood 

cells, the oxygen is then transported throughout the body as arterial blood. A 

pulse oximeter uses the red and infrared light frequencies to determine the
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percentage of haemoglobin in the blood that is saturated with oxygea This 

percentage is called bbod saturatbn or Sp(>2 (Koniea, 2006). A SpC>2 meter 

simultaneously displays the SpC>2 levels as well as the electrocardbgram pulse 

rate.

A re-usable probe or sensor is placed on the forehead, big toe, fingertip or 

bridge of the nose to detect SpC>2 levels and pulse rate. It is secured in place 

with an adhesive tape and a bandage. This method is not perfect because it is 

insensitive in detecting changes in oxygen when it is nearly normal as well as 

inaccurate measurement, if the probe is not properly attached as it may detect a 

variety of noise. It can give an idea about the effectiveness of the person’s 

breathing and how their body is handling oxygen reserves (James et al, 2006).

2.2.2.6. Electrocardiogram (ECG) Derived Respiration Rate

A method for monitoring respiration rate relies on electrocardbgram (ECG). 

This method is based on the feet that respiration is the most important 

modulator of heart rate and the source of short term heart rate variability.

Many studies have demonstrated that respiration signal and its rate can be 

extracted from the ECG. This method is generally referred to as ECG-Derived 

Respiration (EDR) monitoring.

In this approach, ECG electrodes are attached to the subject. The observations 

showed that the body-surface ECG is influenced by electrode motion relative to 

the heart position and changes of the lung volume. By measuring the fluctuation 

in ECG, respiration rate can be derived. This technique is based on a process 

known as sinus arrhythmia, Le. the modulation of ECG by the breathing process 

(Moody et al 1986).

Mazzanti et aL (2003) studied the modification of the EDR monitoring whbh is 

based also on small ECG morphology changes during the respiratory cycb 

caused by movement of the heart position relative to the electrodes and the 

change of lung volume by using principal component analysis to identify which 

ECG lead was most effective before extracting respiration rate (Mazzanti, et al 

2003).
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Another study carried out for this method was suggested by Tarassenko et aL 

(2002). It is based on the changes in the electrical impedance pneumography 

(IP) signal across the chest, and the ECG or the changes in light absorption 

(photoplethysmogram, PPG) across a finger. They estimated breathing rate by 

adding the individual outputs for IP and PPG channels, after applying the 

Kalman filters for both waveforms. The limitation of this method was that 

movement artefact affected the both channels. This estimates of breathing rates 

inaccurate.

Additionally, there are several other studies using EDR based respiration 

monitoring such as Travaglini et aL (1998), Penzel et aL (2002), Park et aL 

(2008) and Zhao et al (2008). However, these methods are relatively high cost, 

which means that they are impractical for long-term monitoring. Besides, they 

are considered as intrusive methods, and so many sensors are attached to the 

subject’s body. Therefore, these methods are not appropriate for children.

2.2.2.7. Actimeter

Another widely used recording device is the actigraph, also known as an 

activity monitor. It is a wrist-watch like device that uses internal accelerometers 

to detect activity by sensing motion. This small lightweight activity-measuring 

instrument can be worn on the wrist or ankle to record physical activity near to 

the Sp02 probe (Sadeh et aL, 1995).

2.2.2.8. Bio-shirts

Another contact method which has recently been used to measure respiration 

rate is the bio-shirt. A set of physiological parameters including skin 

temperature, ECG and respiration rate are measured by using Bio-shirts. 

Sensors are embedded into the bio-shirt. Once the patient wears the bio-shirt, 

the measurement process starts to transmit the measured values to a computer 

for further analysis (Nam et aL, 2005). Fig.2.3 shows the using of the bio-shirt.
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Fig.2.3: Left: bio-shirt inner layer. Right: outer layer (Nam et al., 2005).

In all contact methods, the sensing devices attached to the patient is 

inconvenient for the patient, causing them discomfort and may affect their 

respiration pattern Finally, the most commonly used method of respiratory rate 

monitoring in clinical practice is by visually observing the patient. The 

observation of the abdominal or rib cage movements gives a subjective clinical 

estimation of tidal volume, but there is a tendency to overestimate. This could 

be dangerous at low tidal volume and could give inaccurate estimation of the 

respiration rate (Semmes et al 1985). On other hand, there are several studies 

which introduced non contact measurements for respiration rate. These methods 

will be explained in the following section

2.2.3. Non-Contact Respiratory M onitoring Methods

A critical review of non-invasive respiratory monitoring in medical care was 

provided by Folke et at (2003). Non-contact methods of respiratory monitoring 

are also known as nonintrusive, touch-less or contact free methods monitoring, 

are techniques where no device is used inside the body nor attached to the skin 

surface. There are clear advantages to non-contact respiration monitoring 

methods. These include inproved patient comfort (especially for long term 

monitoring) as the subject is not tied to an instrument and inproved accuracy as 

distress caused by the contact device may alter the respiration rate.

19



The basic principle of these methods is the ability of the tools to detect the 

radiated energy either by ultrasound, laser, infrared or thermal sensors. A 

summary of a number of non-contact respiration monitoring studies is provided 

in Table 2.3.

TABLE 2.3: A summary of the non-contact respiration monitoring methods.

Authors Year Summaiy of the Method

Greneker 1997 In this study a Radar Vital Signs Monitor (RVSM) system 
was used to detect chest’s movements.

Nakai et aL 2000
A thermal camera was used to detect the patient’s chest 
movement during respiration.

Nakajima et 
al. 2001 A static camera was used to detect thorax movements and 

then the respiration rate.

Aoki et al. 2001
Respiration patterns were detected using a Fibre Grating 
(FG) vision sensor and Charge-Coupled Device CCD 
camera.

Folke et aL 2003
An ultrasound sensor was used which emitted a continuous 
waveform toward the chest. The chest movements during 
respiration were measured by using the Doppler radar.

Hsu and Chow 2005 They used a thermo-sensor which was placed on the mask to 
detect the breathing.

Sato and 
Nakajima 2005 Respiration patterns were detected by using a Fibre Grating 

(FG) vision sensor and two CCD cameras.

Zhu et al. 2005

A thermal camera was used to detect the respiration rate 
from the skin surface regions under the nose. These regions 
were selected manually and were tracked using the Mean 
Shift Localization-Based (MSL-based) particle filtering.

Murthy and 
Pavlidis 2006

A thermal camera was used to detect the respiration rate 
from a region of interest (ROI). This region was selected to 
be under the tip of the nose. The method was based on the 
fact that the temperature of exhaled air is higher than the 
typical background temperature of indoor environments 
(such as walls).

Wang et al. 2006
Using infrared video information to recognize the abnormal 
breathing activity when compared with body movement. It 
based on the shape of movements and degree of motion.

Chekmenev et 
al. 2006

A thermal camera consisting of a focal plane array for a 
long-wave infra-red (6-15 pm) sensor was used to measure 
the temperature changes around the neck region, carotid 
vessel complex, and the nasal region.

Wei 2008

Two web cameras were used to monitor the respiration 
operation. This method depended on the principle of 
triangulation to monitor the chest movements. The region of 
interest in this system was either the chest or abdomen 
images.
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TABLE 2.3: A summary of the non-contact respiration monitoring methods (continue).

Authors Year Summary of the Method

Alobaisi 2008 A thermal camera to measure breathing by applied neural 
network.

Ruiz 2008
An ultrasound sensor was used to detect the chest 
movements during the respiration operation. This was based 
on the distance and the time of transmitted and reflected 
wave from the sensor.

Chan 2008 Two ultrasound sensors were used to detect the chest 
movements during the respiration.

Feing 2008 An infrared light sensor was used to detect chest movements 
during the respiration operation.

Pai et al. 2009

A sensors embedded in a chair was used to detect the 
pressure on a cushions which are placed on the back rest of 
the chair at the level of the thorax and the abdomen. The 
respiratory sensing circuit acquires the pressure signal from 
the cushions and converts it into an electrical signal.

Tan et al 2010 Video image processing techniques were employed to 
extract respiration rate from the videos recorded using a 
webcam. The webcam monitored chest movements caused 
by respiration.

Greneker (1997) reported one of the first non-contact respiration rate 

monitoring systems, which was developed by researchers at Georgia Tech 

Research Institute (GTRI). They applied a system to detect human heartbeat 

and respiration rate without any physical connection to the patient. The system 

is called Radar Vital Signs Monitor (RVSM). This system was developed to 

monitor the performance of Olympic athletes at distances exceeding 10 meters. 

The RVSM detects breathing-induced movements of the chest based on the 

Doppler phenomenon. A band-pass filter is used to separate the heartbeat from 

the respiration signals. The limitation of this method was the motion artefacts 

which could corrupt the respiration signals.

While another non-contact measurements technique of respiration rate was 

modified by Aoki et al (2001). They reported a non-restrietive visual sensing 

method to detect the respiration pattern by using a Fibre Grating (FG) vision 

sensor and processor unit. The system consisted of two parts. The first was the 

Fibre Grating projecting sensor. This provided an array of invisible infra-red 

light spots (wavelength 81 Onm). The second part was a Charge-Coupled Device 

(CCD) camera with an optical band- pass filter, as illustrated in Fig.2.4.
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Fig.2.4: Arrangement of the sensing system (Aoki et al., 2001).

Infrared light was used to project a set of bright spots on the subject, while the 

CCD camera was used only to capture the scene of bright spots; image 

processing techniques were used to detect the barycentre of each of the bright 

spots. The detection of the thoracic movements caused shifting the location of 

bright spots. These were detected in each inter image frame using inter image 

subtraction techniques. The moving distances of bright spots in each image 

were extracted and were classified as a respiration (periodic displacement), or 

rolling over (large amount of displacement) of the subject.

The dangerous states were specified if the calculation of respiration rate was 

dramatically different from the typical respiration frequency of a quietly 

sleeping person.

Up to this point, the Fibre Grating vision sensor seemed to be the preferred 

choice. Sato and Nakajima (2005) tried to improve the method by designing a 

system consisting of three units: a fibre grating vision sensor and two CCD 

cameras. The second camera was placed far from the first camera such that the 

sensitivity of the height change detection, or the resolution was increased. The 

same process as the previous method was repeated for both of the CCD 

cameras, where both of them were used to capture the scene of bright spots; the 

amount of movements of the spots between successive frames were obtained. 

The performance of the system was justified by comparison of spirometer’s
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results. In addition, the correlation coefficient between the , results proved the 

accuracy of this method. Although this system was simple and introduced an 

efficient algorithm to estimate the respiration motion by looking at its volume 

change in real time, it still suffered from difficulties in distinguishing 

significant patient's movements from the respiration operation.

To overcome the limitations of these methods Wang et aL, (2006) suggested a 

system to recognize the abnormal breathing activity when compared with body 

movements using infrared video information. This technique was developed as 

a non-intrusive video monitoring for detecting when there were abnormal 

breathing activities, not simply general body movements, without geometric 

constraints and position limitations. This approach was based on the shape of 

movements and degree of motion through analysing human breathing behavior 

and comparing these with general body movements; because there were 

important in going accurate breathing monitoring by camera. Wang et aL 

(2006) analysis depended on observing differences in the features of each 

activity, for example breathing activity was considered to be a relatively slow 

motion as compared to general body movements. During breathing, the 

elements of the entire surface move forward and backward, in contrast with 

body movements where the elements move to different positions.

Another non-contact method was modified by Nakajima et aL (2001). They 

used a static camera to detect thorax movements to determine respiration rate. 

The projection of the surface of the thorax was represented as a region with a 

range of brightness intensities. Respiration was monitored by quantifying the 

variations of the locations of the image intensities over time.

Chest movements caused by respirations can be measured in a non-contact 

manner using Doppler radar. This approach was based on the variation in 

thorax volume occurring during breathing. An ultrasound sensor emits a 

continuous waveform toward the chest. The phase of the reflected signal is 

computed and then the location of the chest is determined using Equation (2.2).
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4*r (2 .2 )

Where x  (t) is the chest location, ^  is the wavelength of the transmitted signal 

and is the measured phase shift of the reflected signal at time (t).

Another non-contact method was reported by Hsu and Chow (2005). They 

reported a thermal sensor based respiration rate monitoring system Their 

device could monitor the temperature change of the breathing airflow and 

detect respiratory frequency. In this approach there was no contact with the 

children’s skin, thus avoiding the possibilities of any skin irritations. The sensor 

could detect temperature changes induced by respiration and then the data were 

analysed simultaneously by a personal computer that can link to the central 

nurse’s room To avoid missing the detection of breathing signals, an ellipsoid - 

shaped mask was made and the thermo sensors were placed on the mask so that 

breathing could be detected when the child’s head turned. The problem with 

this method was that by putting the mask closed to the child's face the children 

could detach the sensors causing the system to malfunction.

Another non-contact method was suggested by Pai et aL (2009). He described a 

respiratory monitoring system which acquired the respiratory signal of a subject 

through sensors embedded in a chair, and then calculated the respiratory rate 

and monitors the respiratory activity. In this approach the mechanical setup 

consisted of a set of inflatable air cushions and a bulb for inflating them to an 

optimum pressure. The cushions were placed on the back rest of a chair at the 

level of the thorax and the abdomen. The inflated cushions were compressed 

due to the respiratory movements and these pressure changes were picked up by 

the respiratory sensing circuit. The respiratory sensing circuit acquired the 

pressure signal from the cushions and converted it into an electrical signal. 

Moreover a mechanical filter could be used before the respiratory sensing 

circuit to further reduce the effects of jerky movements on the respiratory 

signaL This method was unable to deal with significant pressure changes due to 

sudden and jerky movements by the subjects, which resulted in false readings.
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Also the cushions placed at the thoracic level were sensitive to both respiratory 

and jerky movements. In addition this method was not suitable for children 

because of the difficulty of making the children sit properly and regularly on 

the chair.

A number of non-contact methods proposed at Sheffield Hallam University in 

collaboration with the Sheffield Children's Hospital, most of them are either in 

the study phase or in the implementation phase. The major aim of this work was 

to design, evaluate and commercialise a non-contact method of respiration 

monitoring principally for children.

Ruiz (2008), Chan (2008) and Feing (2008) developed non-contact methods to 

monitor respiration rate. These methods focus on investigating how ultrasounds 

waves or infrared light beam are transmitted to the child's chest as shown in 

Fig.2.5. Both approaches were carried out by sensors which calibrated the 

maximum and minimum ranges of a baby manikin's inhaling and exhaling 

positioa

Child breathing causes the chest to move therefore the distance of the sensor to 

the chest was calculated. The time of the transmitted and reflected wave from 

the ultrasound or infra-red sensors to the chest was measured. Since the speed 

of sound differs from the speed of light in air, the measurement of distance can 

be computed after the delay measured as the Equation (2.3)

signal speed x timedelay (2 3)
2

Light velocity is 3*108m/s. while the velocity of sound in air is about 331.3 

nVs.
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Fig. 2.5: The hardware design of the Ruiz approach (2008).

Figs.2.6; 2.7 show the ultrasound and infrared sensors output during manikin's 

breathing respectively.

These approaches were carried out using manikins, which means that there was 

no test on real infants or children It did not have to deal with the noise that 

occur in real life implementation by using an ultrasound or infrared sensor such 

as child movements or environment noise. Also the resolution of these sensors 

was not good enough to accurately detect the movements of child’s chest 

during the inhaling and exhaling process. The results indicated that although the 

infrared sensor was cheaper than the ultrasound sensor, it was less effective and 

least accurate in monitoring respiration rate. It has high sensitivity to optical 

noise; the output voltage did not responed linearly with distance like the 

ultrasound sensor. All the test results indicated that the infrared sensor in its 

current form has not sufficient resolution to monitor respiration rate.
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Fig.2.6: Ultrasound sensor output during manikin’s chest movements (Chan, 2008).
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Fig. 2.7: Infrared sensor output during manikin's chest movements (Feing, 2008).

So far, it has been observed that using an ultrasonic sensor seemed to be more 

suitable than an infrared sensor to measure respiration rate; therefore future 

work is required to improve results.

Another respiration method that detected chest and abdominal movements was 

based on video image processing. The manikin’s chest can be manually

—

—
.

Sensorl
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pumped, making its chest move forward and backward similar to the process of 

respiration. The method was applied only on manikins as a first stage for study. 

This method was improved by Wei (2008) who suggested using two web 

cameras to measure respiration rate. The modification eliminated the need to 

use chest marker and depended also on using the principle of triangulation to 

monitor the chest movements. The region of interest in this system was either 

the chest or abdomen images. The system was able to track and estimate in 3-D 

location of a single salient feature of the cloth worn by the manikin and then 

determine the respiration rate.

A related approach was suggested by Tan et al (2010). Chest movement 

detection was performed by subtracting successive images of the chest recorded 

using a webcam. A typical respiration signal obtained using this approach is 

shown in Fig. 2.8.

Inhaling
Exhaling

Fig.2.8: Schematic plot of respiration rate obtained using a webcam (Tan et al.,
2010).

Two lobes were observed representing the inhalation and exhalation phases. 

The lobe associated with the inhalation is larger. The reason for the shape of the 

respiration signal is that the vertical axis of the plot represents chest and 

abdominal movements. During the exhalation, the chest’s wall initially moves 

slowly inward, its movement increases with time, reaching a peak and then, the
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amount of movement decreases. A similar process occurs during inhalation, but 

this time the chest’s wall moves outward. Fig. 2.9 shows the plot of jc( t )  during 

two respiration cycles. An algorithm was developed to extract the respiration 

rate from the recorded signal in real-time (Tan et al, 2010).

time

Fig.2.9: Plot respiration signal using a webcam (Tan et al., 2010).

There were also several studies for measuring respiration rate by using thermal 

imaging; these are explained in the following section. Non-contact methods 

which have been described above use expensive sensors, or combinations of 

multi-modal sensors, to detect respiration. Additionally, most of them lack 

accuracy in measurement. In some cases they are capable of detecting 

respiration only for a person without movement or are uncomfortable to use it 

with children

23. Thermal Imaging

Thermography2 is the process of using a camera designed to detect heat 

emission by way of Infrared (IR) energy waves. Unlike light waves, IR is 

invisible to the naked eye. Medical infr ared, popularly known as IR - 

thermography has been utilized since the 1960s to measure and map skin

2 Thermography, Digital Infrared Thermal Imaging (DITI), Thermology, Thermal Imaging, 
Thermograms (the images) all these names refer to the same medical imaging 
(Buddharaju et al., 2006).
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temperatures. Interpretation and evaluation of thermographic measurements has 

inproved during the past forty years (Buddharaju et aL, 2006).

Thermal imaging was considered a diagnostic tool for several reasons (Ng and 

Sudharsan, 2000). Firstly, the physiological test equipments are completely 

non-invasive, passive, and harmless. Secondly, they are ideal for detecting hot 

and cold spots, or areas of different emissivities on the skin surface since 

humans skin radiate infrared energy very efficiently. The emissivity of human 

skin is approximately in the range from 0.92 to 0.99. Thirdly, the data can be 

collected, recorded and sent to a computer for processing. Finally, the 

equipment is highly portable, fully self-contained and does not need any sources 

for illumination, thus making day and night imaging possible (Buddharaju et al, 

2006). For these reasons thermal imaging is effective in the field of polygraph 

and for remotely monitoring breathing rate (Murthy and Pavlidis, 2006).

IR thermal imaging is a useful, objective tool for medical and physiological- 

based investigations such as detecting breast cancer, anxiety and illegal 

immigrants, monitoring breathing, face recognition and also lie-detection. The 

details of thermal imaging techniques will be explained in Chapter 4.

Head et al (2000) suggested using infrared imaging to diagnose breast cancer. 

They demonstrated that the use of IR imaging for detection and diagnosis of 

breast cancer was limited by an inability of IR to localize the tumour position. 

Although IR imaging is a completely non-invasive technique and does have an 

important role in screening for breast cancer, there is also a need for 

mammography and physical examination in order to have an early diagnoses of 

breast cancer. Thermal imaging is importance since it is used for research and 

development in the phenomenology of breast cancer detection early, and for 

screening and multimodal diagnosis (Diakides et al, 2006).

Pavlidis et aL (2000) suggested the use of a thermal camera to detect anxiety in 

people. The detection depends on the fact that the fear or anxieties increase the 

blood flow in the Periorbital Region (PR), which causes a sudden change in 

skin temperature; this is readily visible in human faces. The thermal camera can 

sense the variations in face temperature. The infrared imaging has proved its
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potential in deception detection when thermal image analysis was used by 

Pavlidis et aL (2000) to detect fecial patterns at a distance. Although the results 

of this experiment so fer are not sufficient, it does seem promising.

Instead of specifying one region for monitoring, Tsiamyrtzis et aL (2005) 

suggested temperature recordings at two specific parts of the human foce. This 

approach was achieved by using tandem tracking techniques, for two regions of 

interest in the human face, to develop a thermal imaging for lie detection and 

noise suppression. This method depended on the changes of the subject’s 

physiological parameters during investigation, such as blood volume, pulse 

change, respiratory rates, and electrodermal activity. Therefore the skin 

temperature was heavily modulated by superficial blood perfusion as mentioned 

before.

Nakai et aL (2000) proposed using the thermal camera of a focal plane array of 

mid-wave infra-red sensors to monitor respiration rate. The measurement 

techniques used for patients were in real time. The region of interest (ROI) was 

detected around the patient’s chest. The largest change occurring between 

frames was determined by subtraction technique. Respiration rate was derived 

from the observed images (image analysis and interpretation). The optimal 

position of ROI in this method depended on the largest change occurring. 

Therefore the problems can be seen when the patient either left his bed or when 

the patient moved into his bed.

Instead of using the patient’s chest as a ROI, Murthy and Pavlidis (2006) 

suggested detecting the ROI in the background, exactly under the tip of the 

nose as shown Fig.2.10. This was based on the feet that the air is breathed out 

has higher temperature than the typical background temperature of indoor 

environments such as walls. Therefore the particles of the expired air emit at a 

higher power than the background. The classification of the frame as expiratory 

or non-expiratory was achieved based on the statistical modelling for the 

thermal data. A thresholding technique of the colour values were applied to 

segment the skin region from the background and to specify the ROI.
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Fig.2.10: Respiratory airflow profiles with the ROI (Murthy and Pavlidis, 2006).

This approach had several limitations; the ROI was selected manually in the 

background, therefore the respiration rate may be affected by the background 

noise. Also the ROI was affected due to head movements when the subject 

rotated his/her head towards or away from the camera. Also the method was 

specific to measuring respiration rate for the patient when he/she turned his face 

to the side and without any head movements.

To overcome the limitations of the pervious method Zhu et aL (2005) 

developed a non-contact method to monitor respiration rate. They designed a 

tracking algorithm that could follow facial features related to respiration by 

infrared imaging. These features were selected manually from a reference 

image (ie. the first image in the video) by specifying three windows. Two of 

these windows covered the areas between the bridge of nose and the inner 

comer of the eyes (ie. the periorbital regions) and another window was placed 

on the apex of nose. Their algorithm tracked these three windows in the 

following recorded images. The respiration signal was obtained from a 

rectangular region under the nose. This method still suffered from some 

limitations. For example, the tracking method was based on specifying human 

face features manually in the form of three windows in the reference image and 

following them in all the sequent images. This process had a high probability of 

failure or loss in one or more of these areas during significant head movements.
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Additionally the ROI was specified as a rectangle. The limitations of this 

technique is discussed in Chapter 6 .

Instead of using a focal plane array of mid-wave infra-red sensors, Chekmenev, 

et aL (2006) suggested using a thermal camera consisting of a focal plane array 

for a long-wave infra-red (6-15 pm) sensor to measure the temperature change 

around the neck region, carotid vessel complex, and the nasal region. The 

selection of these regions was done manually. A wavelet-based method, kernel 

with second derivative of the Gaussian function, was used to decompose the 

image to a different scale. Three-scale decomposition was used to decompose 

the image. The mean value for each region for all frames was plotted with 

respect to time. A wavelet analysis was developed to extract the heart pulse and 

the respiration rate. Although this method gave good results there were 

obstacles to identifying the region of interest which represented carotid arteries, 

because these were mostly under the muscles of the neck. So this area had to be 

detected manually.

Alobaisi (2008) modified the thermal imaging method to monitor respiration 

rate by using neural network. This technique classified the images either 

breathing in or breathing out to compute the respiration rate. The ROI was 

selected manually as a rectangle in the centre of the first image (ie. the 

reference image).

As mentioned above, there are several studies that described monitoring 

respiration rate by using thermal camera, yet they were limited in their scope of 

investigation. Also they were not applied and evaluated on infants and children.

2.4. Face Detection and Feature Extraction

Face detection is one of the most common biometric authentication 

technologies which is based on physiological characteristics and can be used in 

a wide range of applications such as identity authentication, access control, 

measuring breathing and surveillance (Guo et aL, 2000). Feature extraction 

techniques are the most important and critical step within pattern recognition
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and image processing. The concepts of features extraction is to look for 

significant information in an image (Nixon and Aguado, 2002). These 

techniques will be explained later in Chapter 3.

This section provides a literature review of the face detection and feature 

extraction. The problem of detecting the face and fecial features in images has 

become a popular area of research due to their important applications. There are 

several variables that affect the performance of face detection such as wearing 

glasses, different skin colouring, facial hair and facial expressions. Additionally 

light conditions and the orientation of feces in an image are the most frequent 

and difficult problems (Wong e ta l 2001).

Human face has changeable structures that cannot easily be detected or 

recognised. This feet makes a computer aided recognition or detection system 

very complex (Hjelmas and Low, 2001). One simple solution to this problem 

would be based on matching the test image with a template. This approach was 

modified by Brunelli and Poggb (1993). They suggested detecting the human 

fece based on a template-based approach; by selecting four templates for each 

person, to contain the eyes, nose, mouth and whole face. The recognition 

technique was achieved by comparing the test image with the database images. 

Correlation was computed for each feature template; a vector of matching 

scores for each feature was calculated. The test subject was then classified as 

the subject with the highest score. This approach introduced a significant 

method to store the fece area by discrimination ability (eyes, nose and mouth in 

order). This method succeeded in recognising a number of people, it had some 

limitations because it deals only with the static and frontal images, so it was 

unable to deal with head movements. Additionally the illumination must be 

controlled; the same powerful light was used for the test and data base images.

Another suggestion for fece detection was proposed by Rowley et aL (1998). 

They modified a method to detect a fece region by using a neural network. This 

method was suggested to deal with the light problem in the fece detection 

process. The image was segmented into several regions. The neural network 

was also used to classify the regions into two groups, either face or no fece. 

Pre-processing steps were applied for each region by using a light correction
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algorithm and histogram equalization techniques. The light correction needed a

across the image. While the histogram equalization techniques were used to 

adjust the histogram of the image in a variety of ways either by averaging the 

histogram for an image or enhancing the contrast of image. The light condition 

and skin colour problems remained problems with the fece detection technique.

To solve the problems of the lighting effect and also the orientation of the fece, 

another modification was proposed by Wong et al., (2001) for detecting human 

face and feature extraction. The approach was based on locating the fece region 

and facial features based on the characteristics of eye regions.

Genetic algorithm and the eigenfece techniques were also applied. The genetic 

algorithm is applied to search for possible fece regions in images, while the 

eigenfece is used to determine the fitness of the regions. To reduce the 

searching space, the human eye regions were selected by testing all the valley 

regions in an image using a genetic algorithm The face regions were 

segmented based on a pair of possible eye candidates. The size of human fece 

is proportional to the distance between two eyes ( J  )as in Equation

A possible face region which contains the eyebrows, eyes, nose, and mouth 

was determined, based on this relationship. The fecial features are then 

extracted from the detected fece regions. The fitness value for each fece 

candidate was calculated by eigenfeces. After a number of iterations a good 

candidate region was selected, and then features were extracted from this 

region. The selected fece was then further verified by measuring the 

symmetries and determining the existence of the different facial features. This 

method can achieve a high performance in detecting human feces, and feature 

extractions in complex and simple backgrounds.

statistical analysis for the background colour to be approximately estimated

eye

(2.4)

hface=^~ * ̂  ^eye (2.4)
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Another technique is based on the skin colour. Skin colour can be considered as 

a significant feature that can be used to detect human fece. It has proved 

effective because it gives a fest detection and provides robust results enough to 

perform real-time tracking (Bovik, 2000). This process depends on the cotour 

of the human face which can be tracked and distinguished from the colour of 

other objects in the scene and the colour of the background. However 

significant limitations of this method appeared when there is a wide variety of 

skin colours, light conditions and there are problems with grey level images. 

Sometimes it can be used as a first step in fece detection, but is not suitable for 

high level feature extraction and analysis. A modified method to detect the 

human face in visible domain using the skin colour was proposed by Turkan et 

al, (2006). They also used a skin colour to detect the human face regioa They 

suggested another technique to reduce the effect of significant limitations of the 

skin colour by filtering the selected region using a high-pass filter of a wavelet 

transform to highlight the edges of the regions.

Horizontal, vertical and filter-like projections of the region were used as feature 

vectors. The feature vectors were then classified as fece or non fece by using 

either Dynamic Programming or support vector machine techniques. Dynamic 

Programming is a classification technique which is used for computing the best 

possible match path between the original feature vector and template feature 

vector. The similarity between these two vectors is determined by measuring the 

Euclidean distance. And then the decision fece or no fece is based on 

thresholding the resulting distance. This approach confirmed that the use of the 

support vector machine technique is more accurate, fester and cheaper than 

Dynamic Programming to fece detection process.

Instead of the above methods, Tian and Bolle (2008) developed a method to 

detect fecial expressions for the human fece. Facial expression analysis 

automatically combines a number of tasks which includes face detection, fecial 

features extraction and fecial features represented. Based on this analysis the 

face was classified as Neutral face3 or Non-Neutral. After the face region was 

extracted by using skin -colour technique. Detection and extraction were

3 Neutral face is a relaxed face without the six universal expressions (happiness, sadness,
disgust, anger, surprise, fear) (Tian et al. 2008).
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focused on the six facial point features from the image which were less affected 

by noise than other parts of the images. The features includes: -two pupil 

centers, two eyebrow inner end-points and the two comers of the mouth. The 

distance between these points was calculated. Further, the features of the eyes 

and the mouth were extracted by an ellipse fitting algorithm and the histogram 

technique respectively. All the features were inputted to Neural-Network to 

detect the decision of being Neutral or non- NeutraL This approach was an 

important technique to reduce the error rates for free recognition, because 

universal expressions are one of the important reasons for inaccuracy in the 

recognition process. This approach could detect the face and extract the fecial 

expression and recognition.

Different techniques have been proposed to detect human fece and facial 

features extraction including, principal component analysis (Turk and Pentland, 

1991) neural networks (Rowley et aL, 1998), colour analysis (Bhuiyan et aL, 

2001) and Support Vector Machines (Guo et aL, 2000). The problem of fece 

detection still receives considerable attention among researchers because the 

human fece is a dynamic object and has a high degree of variability in its 

appearance, which makes face detection a difficult problem in computer vision.

2.5. Image Processing Techniques

Image processing techniques refer to the manipulation and analysis of image 

informatba It represents any operation that acts to improve, correct, analyse, 

or in some way change, an images called image processing (Baxes, 1994).

Image registration (alignment) is one of the digital processing advance 

techniques which is based on extracting the features of the images. These 

techniques can be used to correct the geometric difference between two or more 

images, one of them is the reference image and the other is the input image of 

the same scene. This task has become very important in medical imaging. 

Moreover it is useful for comparing images taken of the same structure at 

different times, from different viewpoints, and/ or by different sensors
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(Semmlow, 2004). Image registration techniques can be classified into two 

classes, namely the interactive registration (manual image registration) and the 

unassisted image registration (automatically image registration), the details of 

these techniques are provided in Chapter 3.

Secondly, segmentation is also an image processing technique which is based 

on the features that are extracted from the image. It is a very complex process 

because it uses partitioning of an image into regions representing the different 

objects in the image.

This section contains a review of the literature related to image processing 

techniques, segmentation, registration and other image processing techniques.

A modified approach was suggested by Linh et aL, (2003). They suggested 

registering a medical image in different modalities for the same object. This 

approach was based on acquiring information from two images and low-pass 

filtering and high-pass filtering to improve the quality of images. Histogram 

equalisation processing was used to enhance the images and the contrast was 

adjusted. They segmented the same features in a pair of image manually. These 

features were used to register the second image to the reference one.

Richard and Cohen (2003) reported a registration method for medical images. 

They tried to design an automatic tumour detection system for a computer aided 

diagnosis (CAD) by segmenting a pair of images (mammograms of left and 

right breasts of a women). The registration technique was based on segmenting 

the region of interest (ie., breasts) through a thresholding procedure and 

matching the intensity-based approach for the ROI. This is not applicable/ 

reliable for complicated medical images. Additionally this system is very 

sensitive to the noise of image.

Other significant technique in image processing is segmentation (Banik et aL, 

2009). It also had a role in extracting features and detecting the face from the 

background as well as registration, which was mentioned earlier in Section 2.4. 

Here we will try to refer to the most popular segmentation methods used in the
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medical field such as the thresholding; edge segmentation and region growing. 

These methods are used either separately or collectively.

Mehtre (1993) modified a segmentation method for fingerprint imaging based 

on a thresholding technique. The thresholding technique was used because the 

background regions of the fingerprint image generally exhibit a very low grey

scale variance value than the foreground regions. Therefore, segmentation can 

be achieved by thresholding technique. This technique was applied by dividing 

the image into several blocks and calculating the grey-scale variance for each 

block in the image by using intensity a histogram technique. If the variance was 

less than the global threshold, then the block was assigned to be a background 

region; otherwise it was assigned to be part of the foreground.

Instead of using the histogram to specify the threshold value in segmentation,

Sonka et aL in (1993) suggested basing the thresholding technique on the

concept of minimizing the variance between foreground and background 

elements. Although the method assumes two different grey levels, it works well 

even when the distribution is not bimodaL The approach uses an iterative 

process to find a threshold that minimizes the variance between the intensity 

values on either side of the threshold level. This method was modified by

Semmlow (2004). He suggested improving the determination of the 

thresholding during the histogram. This method was based on calculating the 

histogram techniques after eliminating the edge boundaries of the image. 

Eliminating the edge boundaries can be achieved by using edge detection 

filters, either Prewitt or SobeL The result produces a binary image which 

converts to a boundary mask by inverting the image. And then the 

multiplication operation between the original image and the boundary mask. 

The results of this method showed an improvement in the histogram and 

threshold value.

Various other segmentation approaches have been reported. Clarke et al, (1995) 

suggested the use of the region growing technique for segmenting the image. 

This approach was based for finding the regions that share some common 

characteristic features. Another approach to segment an image was suggested 

by Grau et aL, (2004). They used the watershed segmentation algorithm. This
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algorithm was achieved by dividing the image into several regions and then 

determining the local minima for each regioa

To conclude, respiration is one of crucial human processes and it needs easy 

and accurate monitoring applications. The use of thermal imaging for 

monitoring respiration is promising and could be more convenient for both 

patients and health practitioners. However the use of the captured thermal 

images to monitor breathing is not straightforward and requires further 

processing before applying the measurement techniques. In the next chapter the 

image processing techniques used in this study will be discussed.
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3. A Review of Image and Signal 
Processing Techniques Used in This 
Study

3.1. Introduction

Digital imaging can be defined as the acquisition and processing of visual 

information by computer; it can be categorized into two fields:

• Image Processing

• Computer Vision

These two categories are not totally separate and distinct, since some operations 

which use image processing are also needed as an intermediate processing step 

in computer vision and vice versa.

Image processing can be considered as manipulation of an image in order to 

extract information from the image or to produce an alternative representation of 

the image. Most image processing operations can be categorized into two 

classes, either eliminating unwanted information that is corrupting the image 

such as removing noise, enhancement and threshold etc., or changing the form 

of images to extract more information, such as Fourier Transform, Wavelet 

Transform and Image Compressions. On the other hand Computer vision

41



operations aim to use computer techniques to extract, characterize and interpret 

the information of the images (Gonzalez et al, 2004).

Computer imaging can be integrated by the presence of a mathematical system 

which helps to process images using packages such as Matlab software, thus 

offering ease, consistency, support, and visualisation of the results (McAndrew, 

2004).

Digital Signal Processing (DSP) techniques are also used in this study. These 

techniques are defined as the application of analogue or digital techniques to 

improve the utility of a data stream Signal processing plays an important role in 

biomedical engineering applications because it improves the quality of 

diagnostic information (Jahne and Haubecker, 2000).

In this chapter there is information about various image processing techniques 

and mathematical operations which can be used to extract a respiration signal 

from thermal images, as well as giving a brief review of the concept of the 

signal processing techniques to enhance and calculate respiration rates. Section 

3.2 provides an overview of the types of imaging systems. Image Data Types 

are explained in Section 3.3. Section 3.4 provides the basic concepts for an 

image. Image processing techniques which are used in this thesis are explained 

in Section 3.5. Section 3.6 focuses on Biomedical Signal Analysis techniques 

which are used to analyse the respiration signal.

3.2. Types of Imaging Systems

Imaging systems vaiy and can be defined and categorised according to their 

energy sources. The principle energy source for images is the Electromagnetic 

(EM) spectrum Other important sources of energy include ultrasound, 

acoustic and electronic. Fig.3.1 (a) illustrates the images formed by using 

different types of energy emission in the electromagnetic spectrum Fig.3.1 (b) 

illustrates examples of medical images which cover the electromagnetic 

spectrum (Gonzalez and Wood, 2002). The present work will focus on infrared 

imaging; the details of this type of image will be explained later in Chapter 4.
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Fig.3.1: Medical spectra, (a) The electromagnetic spectrum includes the parts of 
Infrared spectrum, (b) Examples of medical images covering the electromagnetic 

spectrum (Gonzalez and Wood, 2002; NASA, 2007).
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33. Image Data Types

There are different types of image data representation

3.3.1. Binary Images

Binary images are the simplest type of image and can take two values, (0) and 

(1). 0 refers to black and 1 refers to white. A binary image is referred to as a 1 

bit/pixel image because it takes only 1 binary digit to represent each pixeL 

Binary images are often created from gray-scale images via a threshold 

operation, whereby every pixel above the threshold value is turned white (1) 

and those below it are turned black (0) (Pratt,2007).

3.3.2. Gray-scale Images

Gray-scale images are referred to as monochrome or one-colour images. The 

number of bits used for each pixel determines the number of different 

brightness levels available. An image that contains 8 bits per pixel provides 

256 (0-255) different (gray) levels (Pratt, 2007).

3.3.3. Colour Images

Cotour images can be modelled as three-band monochrome image data, 

whereby each band of data corresponds to a different colour. Colour images 

are represented as red, green and blue, and a colour image has 24 bits per 

pixel, ie. 8 bits for each of the three colour bands (R, G, B) ( Pratt, 2007).

3.4. The Basic Concepts of the Image

A computer image is. basically a matrix of pixels (2-dimensional array), where 

each pixel value is relative to the brightness of the corresponding point in the 

scene. The image matrix size is usually M  by N  pixels, where M  is the number 

of rows and A is the number of columns. Therefore, an image can be defined as 

a function f(x,y) where x  and y denote spatial coordinates and /  is the pixel 

value at that point. Therefore, the image can be regarded as a matrix, as shown 

in Fig.3.2 (Bankman, 2009).
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/(0 ,0) /(0,1) f (0 ,N - \ )
/(1,0) / ( U ) /(l,AM )

m -  i,o) /(Af-1,1)

Fig.3.2: Image as a matrix of size M x N  which is defined by function/foy).

3.5. Image Processing Techniques

Image processing can be considered as a tool to change the nature of an image 

by using a computer in order to either improve its pictorial information for 

human interpretation, or to render it more suitable for autonomous machine 

perception (Bovik, 2000). Additionally, these techniques are very important in 

the medical field to improve the diagnostic process. In this section there is an 

explanation of most of the image processing techniques which are related to our 

study such as image enhancement, segmentation, histogram, feature extraction, 

subtraction, as well as image registratioa

3.5.1. Image Enhancement Techniques

Image enhancement techniques are used to emphasize and sharpen image 

features for display and analysis. The principal objective of enhancement 

techniques is to process an image so that the resulting image is more informative 

than the original one. Enhancement techniques are carried out either as a 

preprocessing step to other imaging tasks or as post-processing to create a more 

visually desirable image. However, these techniques cannot be expected to 

insert any additional information that was not originally available.

Image enhancement includes highlighting, sharpening, or smoothing some 

features for display and/or further analysis. Therefore, it can be categorized into 

two general types. The first category is smoothing spatial filters and the second 

category is sharpening spatial filters. Spatial filters can be implemented by using 

a mask of size for example 3x3 ,  5x5  or 7 x 7  (Bankman, 2000).
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3.5.I.I. Smoothing Spatial Filters are used for blurring and noise reductioa

They select low frequency components and reduce, high frequencies. An 

increase in the filter (or kernel) size leads to an increase in blurring of the image. 

Noise reduction can be accomplished by linear or non-linear filters. Smoothing 

filters are also known as low-pass filters (LPFs). Examples of smoothing filters 

are average filters, order statistical filters, and Gaussian filters. Examples of 

statistical filters include Maximum, Minimum and Median filters The filters 

commonly used for enhancing biomedical images are Median, Average and 

Gaussian filters (Bankman, 2009; Hashim et aL, 2002).

3 .5.I.I.I. The Average Filter is a linear filter used to reduce the intensity 

variation between neighbouring pixels. It operates on local groups of pixels 

called neighbours and replaces the centre pixels in these neighbours. This 

replacement is done with a convolution mask such as the following 3x3 mask 

below in Fig.3.3.

This has the effect of eliminating pixel values which are unrepresentative of 

their surroundings. The final value for the pixel at the kennel centre (the one 

being filtered) is obtained by multiplying each of the nine values including the 

pixel itself by 1/9 and summing the result, as indicated by Equation 3.1.

Where g(x, y) is the filtered image, f(x, y) is the original image before being 

filtered, S is the set of coordinating pixels in the neighbourhood of pixelfjc, y) 

including the pixelfjc, y) itself, and /V is the total number of pixels in the

1 1 1

l / 9 x  1 1 1
1 1 1

Fig.3.3: Average filter with the mask3 x 3.

(3.1)
(x,y)eS
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neighbourhood. All pixels included in the filter size are added up and the result 

is divided by the number of pixels (Gonzalez and Wood, 2002).

3.5.I.I.2. The Gaussian filter is a linear filter with a 2-D convolution operator 

that is used to blur images and remove noise by the Gaussian function that is 

expressed as:
2 2

G^ =  e  2CT (3-2>

Where a  is the standard deviation and G(x’ ̂  is the filtered image with the 

Gaussian filter. Gaussian operation is similar to the average filter, but it uses a 

different kernel that represents the shape of a Gaussian. The degree of 

smoothing is determined by the standard deviation of the Gaussian0- . The

Gaussian filter can be selected from 3 .x  3 up to 7 x 7 kernel size. Fig.3.4

illustrates the Gaussian filter with the mask 3x3 (Gonzalez and Wood, 2002).

'1 2 1

l /1 6 x 2 4 2

1 2 1

Fig.3.4: Gaussian filter with the mask3 x 3.

3.5.I.I.3. Order-Statistic Filters are non-linear filters; these filters are based on 

ordering the pixels contained in the image area encompassed by the filter, and 

then replacing the value of the centre pixel with the value determined by the 

ordering result. A Median filter is one of the most popularly used in biomedical 

imaging because it provides excellent noise reduction capabilities for random 

noise (Gonzalez and Wood, 2002). Therefore, it is used to reduce the noise 

rather -than blurring edges. The idea of the median filter is to replace each pixel 

in the image by the median value of its neighbouring pixels. The median is 

based on the size of the kemeL The pixel values are sorted into their numerical 

order and then the considered pixel is replaced with the middle pixel value(s). 

With a kernel size of 3x3 ,  the resulting value is the median, number 5 out of
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the sorted list of 9 (Pratt, 2007). Fig 3.5 illustrates an example of applying the 

median filter to an image.

100 125 140 160 110

121 124 126 127 176

128 120 150 125 155

119 1 115 119 123 144

111 226 133 130 110

Sorted sequences

r
115. 119. 120. 123. 151 125. 126. 127.150

Median value output

Fig.3.5: An example of the basic operation in median filtering.

Shown in Fig.3.5 is as an example of the 3x3 window neighbourhood values 

which includes: 124, 126, 127, 120, 150, 125, 115, 119, and 123. These nine 

values are then sorted. The value in location (9+l)/2 in the sorted list is the 

median. Hence the central pixel value of 150 is replaced with the median value 

of 124.

3.5.1.2. Sharpening Spatial Filters refers to the second type of image 

enhancement techniques that are used to highlight specific features in an image, 

such as edges or boundaries of objects, or for enhancing details which have been 

blurred through errors or an imperfect capturing device (Bovik, 2009). They are 

also used to pass the high frequency components and to reduce or eliminate the 

low frequencies. Image blurring can be implemented by smoothing filters; hence 

sharpening can be implemented by operators that invert smoothing operations.

Sharpening filters are also known as a high-pass filters (HPFs). Examples of

sharpening filters are Sobel, Prewitt, Gradient and Laplacian filters. The filters

commonly used for sharpening biomedical images are Sobel, Prewitt and

Laplacian (Hashim et aL, 2002; Baxes, 1994).
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3.5.I.2.I. The Laplacian Filter is a linear spatial filter which can be selected 

from 3x3 up to 7x7 kernel sizes and uses a second derivative. The Laplacian

of an image f i x ,  ;y) , denoted ^  f  (Xy ̂  is defined as

V 2/ ( ^  > 0  =

2 2 

a f  a f
d x 2 a y 1

(3.3)

2a f
Where f i x ,  y )  is the input image and and are second partial

derivatives with respect to x  and y, respectively.

The second derivative in the x-direction:

2

a  /
dx2

= f i x  + 1  , y) + f i x  - 1, y) -  2 f i x ,  y ) (3.4)

While the second derivative in the y-direction:

2

5  /
d y 2

= /(•*, y + 1) + /(*> — i) — 2 /(x , >>) (3.5)

After the inplantation of the second order derivative in Equation 3.3, is 

calculated as:

V2/(x , y) = [f{x+ l,y) + f ( x - l , y )  + f(x ,y + l)  + f(x ,  y -1)] -  A f i x ,  y) (3.6 )

This expression can be implemented for all points of the image by either of the 
two masks, as in Fig.3.6.

0 1 o' '1 1 1"
1 -4 1 1 - 8  1
0 1 0 1 1 1

Fig.3.6: Two kinds of 3x3 Laplacian operator masks; it is valid to use the opposite 
sign convention (Gonzalez et aL, 2004).
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Enhancement of images using the Laplacian filter is based on Equation 3.7

g ( x , y )  =  / 0 ,  y )  + c \V 2f ( x ,  j ) ]  (3.7)

Where f  (■*> 7  is the input image, g(x,y)is the result of enhancement image

and V 7 0 t, y) is the implementation of the Laplacian operator to the image; the 

value of c is 1 if the centre coefficient of the Laplacian mask is positive, 

otherwise it is - 1.

All points (jc, y )  in an image are convolved with one of the following masks 

(Gonzalez and Wood, 2002).

' 0 -1 o' '-1 -1 -1"
-1 5 -1 -1 9 -1
0 -1 0_ -1 -1 -1_

Fig.3.7: Two kinds of 3x3 Laplacian enhancement smoothing masks; it is valid to 
use the opposite sign convention (Gonzalez et al., 2004).

3.5.1.2.2.The Prewitt Filter is a linear spatial filter, which is used to enhance 

edges in all directions. It is implemented through using one independent 

convolution mask with the image. This filter can be used to emphasise the 

horizontal or the vertical edges by using a 3-by-3 filter. Fig.3.8 shows the two 

Prewitt masks in both horizontal and vertical directions. The details of the Prewitt 

operator will be explained later in Section 3.5.3.2.1.

Row Mask Column Mask

'- 1  -1  - 1' ~ - l  0  1

0 0 0 - 1  o 1

_! 1 1 _ - 1  0  1

Fig.3.8: The masks of Prewitt operator in both horizontal and vertical directions.
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3.5.1.2.3.The Sobel Filter is a linear spatial filter that performs a similar 

operation to the Prewitt filter, though it uses different mask coefficients. This 

filter can be used to emphasise the horizontal or vertical edges by using a 

3x3filter (Gonzalez and Winlz, 1987). Fig.3.9 shows two Sobel masks, in both 

horizontal and vertical directions. The details of the Sobel operator will be 

explained later in Section 3.5.3.2.I.

Row Mask Column Mask

1
1 1 to 1

1 I
1 o

0 0 0 - 2  0 2
1 to 1 i

o1
1

Fig.3.9: The masks of Sobel operator in both horizontal and vertical directions.

3.5.2. H istogram

An image histogram is a plot of the distribution of intensities, or gray level 

values, in an image versus the number of pixels at that value (Gonzalez and 

Wood, 1992). The horizontal axis of this plot in the gray level images is in the 

range [0, L- 1], while the vertical bar represents the number of occurrences of 

each value in the image.

The shape of a histogram provides information about the nature of the image, or 

sub-image, if we are considering an object within the image (Bovik, 2009). In 

other words, a histogram describes the frequency of existence of pixels of the 

same intensity in a whole image, or in a sub-region of the image. The intensity 

of the histograms can be very helpful in selecting threshold values, not only for 

the original image, but for images produced by various segmentation 

algorithms. A thermal image histogram has the same concept, but is slightly 

different. The histogram represents a process which describes the variation of 

temperature in the image instead of the colour values. The intensity of the 

histogram shows the distribution of the temperature in all the entire images 

(Diakides and Bronzino, 2008). Fig.3.10 shows the histogram of a facial thermal 

image.
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Fig.3.10: (a) A thermal image, (b) Its histogram.

3.5.3. Segmentation Techniques

Segmentation can be defined as a process of partitioning an image into regions 

representing the different objects in the image. These techniques are based 

generally on one of two basic properties: discontinuity and similarity.

Discontinuity represents sudden changes between the objects and the 

background in an image, while similarity refers to the homogeneity within an 

object or region in an image (Banik etaL, 2009).

Segmentation is an important tool in medical diagnosis as mentioned in Chapter 

2. It is a necessary process to extract feature measurements and it provides 

richer information than that which exists only in the original image (Bovik, 

2000).

The present study will focus on the segmentation techniques which separate the 

object from the background and also segment regions which are more affected 

than others by the respiration operation in order to calculate the respiration rate. 

There are several methods that can be used in order to perform segmentation 

techniques. The most common techniques used in the present thesis are M a n u a l
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Segmentation and Automatic Segmentation which includes edge-based 

techniques, thresholding techniques and region-based techniques.

3.5.3.1. Manual Segmentation Technique

This technique is commonly used in the medical field for its simplicity and ease 

of implementation. This type of segmentation forces the user to select the 

interesting part of an image manually. This method is based on visual 

observation for the required area and the complexity of the shapes for the 

segmentation process (Banik et aL, 2009). In this study, the region of interest 

(ROI) was initially selected manually to compute the respiration rate, as will be 

explained later in Chapter 6 .

3.5.3.2. Automatic Segmentation Techniques

Automatic Segmentation can be classified into several methods which include 

threshold-based techniques, edge-based techniques, and region-based techniques 

(Banik et aL, 2009). In this study, we focused on using edge-detection as well as 

thresholding techniques to identify the boundaries of the subjects from the 

image background.

3.5.3.2.I. Edge Image Generation Techniques

Edge detection is an automatic segmentation technique that can be defined as a 

process of transforming an input image into an edge maps which can be viewed 

as a line drawing image. The goal of edge detection is to find the boundaries of 

an object. It is based on the idea that the edge information in an image is found 

by looking at the relationship of a pixel with its neighbours (Banik et al, 2009). 

If a pixel’s value is similar to those around it, there is probably not an edge at 

that point. However, if a pixel has neighbours with widely varying values, it 

may represent an edge point. In other words an edge separates two distinct 

objects. Ideally, these techniques are applied to images that have apparent edges 

caused by changes in colour or texture, or by specific lighting conditions being
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present during the image acquisition process. There are many methods for 

conducting edge detection. The most common method for edge detection is to 

calculate the differentiation of an image. The first-order derivatives in an image 

are computed using Prewitt and Sobel; the second-order derivatives are obtained 

using the Laplacian.

•  Prew itt Operator is a first-order derivative edge detection mask that looks 

for the edges in both the horizontal and vertical directions. It combines this 

information into a single metric. Its mask is shown by the image neighbourhood. 

Let the 3x3 area shown in Fig. 3.11 represent the values in a neighbourhood of 

an image. One of the simplest ways to implement a first-order partial derivative 

at point Z5 is to use the following Prewitt cross-gradient operators in Equations 

3.8 and 3.9

Zj Z2 Z3 

^4 Z6 

_Z7 ^8 9̂_

Fig.3.11: A 3x3 area of an image.

Row mask Gx = (Z7 + Z8 + Z9) - (Z1 + Z2 + Z3) (3.8)

Column mask Gy = (Z3 +Z6 +Z9)-(Zj +Z4 +Z7) (3.9)

Fig.3.8 illustrated the two masks for the Equations 3.8 and 3.9 as each one is 

convolved with the image to produce the first order derivatives Gx and Gy. At

each pixel location, there are two numbers: Gx corresponding to the results from 

the row mask and Gy corresponding to the results from the column mask.

The gradient of an image f(x,y) at location (x,y) is defined as the vector
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An important quantity in edge detection is the magnitude of this vector, denoted 

A/y it is computed by Equation 3.11

Edge Magnitude A f  =  -J g * ■+- G * (3.11)

Another important quantity is the direction of the gradient vector; it is computed 

by Equation 3.12 (Gonzalez and Wood, 1992)

Edge Direction a(x, y) = tan 1 — (3.12)

•  Sobel Operator is another first-order derivative edge detection mask that is

similar to the Prewitt, but with different mask coefficients: it looks for the edges 

in both horizontal and vertical directions as in die row and column masks 

represented in Equation 3.13 and 3.14

These Equations are represented by two masks as shown in Fig.3.9.The edge 

magnitude and the edge direction are then found in a similar way to the Prewitt 

operator by using Equations 3.11 and 3.12 (Gonzalez and Wood, 1992).

•  Laplacian Operators The Laplacian of a 2-D function /  (x, y) is a second- 

order derivative as defined in Equation 3.3. They are applied by selecting one

commonly used due to its simplicity and speed. This edge detection mask is

(3.13)

Column mask G, =(Z3 +2Z6 +Z9) - (Z 1+2Z4+Z7) (3.14)



mask and convoluting it with the image. There are two digital approximations 

to the Laplacian for a 3x3 region;

A2/  =  4z 5 — (z 2 + z 4 + Zq + Zg) (3 .1.5 )

Or

A2/  = 8z5 - ( z 1 + z2 + z3 + z4 + z6 + z7 + z8 + z9) (3 16)

Where the Zs are defined in Fig.3.11, masks for implementing these two 

equations are shown in Fig. 3.6.

3.5.3.2.2. Thresholding Techniques

Thresholding is a common region segmentation method which is based on 

selected threshold values Ts that can segment the image into two or more

regions. Several thresholding techniques have been developed. Most of them 

depend on an image histogram; others depend on local properties such as the 

standard deviation or the local gradient. The most popular approach is global 

usually called the normal thresholding technique. This approach can be applied 

when only one threshold value T is selected for the entire image, based on the 

image histogram. This technique is used to convert the image into a binary, Le. 

the pixel value is either one or zero depending on the threshold value selected 

(Russ, 2007; Weszka, 1978).

In this study, thresholding was applied to extract the facial thermal image from 

the background, Le., pixels with a value lower than the threshold (7) represented 

the image background and were set to zero, while the other pixels, with a value 

equal or greater than the threshold, represented'the facial regions. This is shown 

in Equation 3.17.

Zero if f { x , y ) < T  
g{x,y) = \ (3.17)

f ix ,  y) if f (x,  y) >= T
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Where is the thresholded image and f ( x>y) is the original image, T  is the

threshold value. Any pixel with temperature f(x, y)>= T  is assigned as 

foreground; otherwise the pixel is assigned as background.

Another type of thresholding segmentation is the local threshold. This type of 

threshold is applied when both the object and the background vary throughout 

the image. In some cases the global threshold is not very helpful as it will not 

extract the complete image from the background. In such cases focal or adaptive 

thresholding is used by . selecting more than one threshold for the entire image. 

This is achieved by breaking the image into more than one piece and then into 

individual thresholds (Haraliek and Shapiro, 1985).

3.5.4. Subtraction Technique

This is another image processing technique which is based on the mathematical 

subtraction method. This technique is applied to images that have similarities 

between them. It is used either to enhance the difference between two images or 

to remove common background information from images of identical scenes. 

Furthermore it can be used to determine the object motion between two images 

for the same scene. The resulting image contains only the differences between 

images and removes the constant informatfoa Equation 3.18 shows the 

implantation of the subtraction technique to the images.

g(x,y) = Il( x ,y ) - I 2(x,y) (3.18)

Where g(x, y) represents the resulting image of the subtract method between the 

first imageI x(x ,y )and the second imageI 2(x ,y ). Images that have different 

scenes, or are captured in very different conditions or have a significant motion, 

may need to be registered (Baxes, 1994).
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3.5.5. Features Extraction Technique

This technique is applied by selecting the common features from the images by 

folding the relationship between them The concept of features for image 

processing is represented as an interesting part of an image, or can be defined as 

the important information which represents, for example, an edge or corner 

(Nixon and Aguado, 2008). In this technique it is useful to segment the image 

by determining some of its specific properties or features of its pixels (Dhawan 

et aL, 2008). The most difficult and critical steps within the images are 

extracting the features. In this study we used these techniques to find common 

fecial features in order to calculate the respiration rate.

Features can be categorised automatically into three types as follows:

3.5.5.1. Visual Features: which include the known features found by human 

or logical design. This type of feature can be classified into two types:

• Low-level features: this level represents the basic features that can be

extracted automatically from an image without any shape information,

such as Comer detection, pixel, line and curvature.

• High-level features: in this level, the feature extraction concerns either

finding shapes in computer images, such as major facial shapes including 

the eyes, ears, nose and mouth, or can be represented as a basic geometric

shape in the image such as circle, triangle, rectangle or square (Nixon and

Aguado, 2002; 2008).

3.5.5.2. Statistical Features: once the regions are segmented in the image, 

the values of pixels within the region can be used for statistical computation

• Averaging: also called the mean. The image mean is the average pixel 

value of an image. This feature can be applied either to the whole image or 

to certain parts of it by using the Equation 3.19

(3 .19)
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Where jj is the mean value, n represents the number of pixels in the region

or image and x t is the value for each pixel (Nixon and Aguado, 2002; 

2008).

• Distribution: this type of feature can be extracted from either the whole 

image or one or more parts. It can be represented by using histogram 

techniques, as mentioned previously in Section 3.5.2.

3.5.5.3. Facial Physiological Features : A thermal facial image is 

characterized by a particular type of property which makes it different from 

other images. The blood flow in the vessels creates a large, substantial 

convective heat effect that appears in the thermal imagery (Bronzino, 2006)'. 

The variance of blood flow in these vessels creates spatial physical features for 

the facial thermal image which are represented by several hot and cold regions 

in the face. The higher temperature areas of the face are represented by the 

periobital region (the two areas between the bridge of nose and the inner comers 

of the eyes), forehead and the comers of the mouth, while the lower temperature 

areas are represented by the nose, earlobes and cheeks. The reasons for these 

cooler areas are the lower blood supply and also higher exposure to the ambient 

environment allowing a convection effect (Diakides and Bronzino, 2008; 

Pavlidis et aL, 2005; Sheskin, 2004). In this study, once the face region is 

extracted from the rest of the image, features extraction can be applied to extract 

the ROI, the region representing the area between the tip of the nose and the 

upper lip of the mouth.

3.5.6. Geom etric Transformations Techniques

Another image processing technique is Geometric Transformations. This gives 

the facility to change the location of pixels within an image by using a 

mathematical transformation. The pixels are relocated from (x, y) coordinates in 

the input image to the (* ',/)  coordinates in the output image (Baxes, 1994).

These transformations are used for correcting geometric distortion in an image 

as well as being used in image registration techniques. There are two types of

5 9



geometric transformations in the spatial domain, such as Affine Transformation 

and Projective Transformation (Hajnal et aL, 2001).

3.5.6.I. Affine transformations: this type of geometric transformation is 

more commonly used than others. In these transformations the straight lines 

remain straight and parallel lines remain parallel, but the rectangles might 

become parallelograms. These transformations include translation, rotation and 

scaling. This type of transformation needs three points, as shown in Fig.3.12 

(Semmlow, 2004).

1.1 l-N /2

M.l

Fig.3.12: The affine transformation. The solid line represents the three input points in 
the image while the dashed line defines the three output points in the same 
image M and N are indicated in this figure as the row and column of the

image.

3.5.6.2. Projective transformation: this type of geometric transformation 

also includes translation, rotation, and scaling. In these transformations the 

straight lines remain straight but parallel lines converge towards the vanishing 

points (Semmlow, 2004). This type of transformation needs four points, as 

shown in Fig.3.13.
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1.2,151.2,11

1.8,2

Fig. 3.13: The projective transformations. The solid line represented the input 
quadrilateral while the dashed line defines the desired output quadrilateral.

Geometric Transformations can rotate an image, enlarge and shrink it, and move 

it in different directions. The operations that can be introduced are explained in 

the next sections.

• Translation image: translates the image in different directions. An x  value 

defines the amount of up or down direction while a y value defines the amount

of left or right directions. Equations 3.20 and 3.21 illustrate the translation

equations for an image

x ' = x  + Tx (3.20)

y ' = y+ T y (3.21)

Where x  and y represents the coordinates of the input image, and T x specifies 

the displacement along the x  axis, ^specifies the displacement along the y axis, 

while x' and y' represented the coordinates of the output image.

• Scaling image: This enlarges and shrinks an image. An jc value defines the 

amount of x  direction scaling, while a y  value defines the amount of y- direction 

scaling. Equations 3.22 and 3.23 illustrated the scaling equations for an image.

x' = x x S x (3.22)
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y '  = y * s y (3.23)

Where Sx scale factor along x, S scale factor along y.

• Rotation image: spins images about the centre point. The coordinate 

transformation equations for image rotation are

6 Specifies the angle of rotation maximized (Goshtasby, 2005; Zaitova and 

Flusser, 2003).

3.5.7. Registration (A lign m en t) Techniques

Image registration is one of the image processing advance techniques that can be 

used to correct the geometric difference between two or more images. This task 

has become very important in medical imaging; it is useful for comparing 

images taken of the same structure at different times, from different viewpoints, 

and/or by different sensors. The registration geometrically aligns two images 

(the reference and input images). Image registration can be classified into two 

general types (Semmlow, 2004).

The first type is interactive registration (manual image registration) where 

humans help the registration process by selecting Control Points (CP) between 

the image pairs using visually clear features such as line intersections or comers. 

This method has some limitations: it is very time consuming to select the CP, 

and this type of registration needs an operator knowledgeable in the application 

domain to choose the CP in both images. Furthermore it is a repetitive task if 

there are number of images to register.

The second type is unassisted image registration (automatic image registration) 

where an algorithm generates the alignment which can be applied without 

human intervention. This method is more affected to registration number of 

images. Moreover it gives less time to register the images. This method also has

x' = jccos 0  + y  sin 6 (3.24)

y ' = — jts in # +  ycos& (3.25)
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some limitation due to the difficulties in detecting the best way to select the CP 

automatically (Zaitova and Flusser, 2003;Hajnal etaL, 2001).

Image registration procedure usually consists of five steps.

• Pre-processing images to prepare the two images for features extraction. 

This step can be applied by using image enhancement techniques, as 

mentioned in Section 3.5.1.

• Choosing the control points in the images can be applied either manually 

or automatically. This step can represent salient and distinctive features as 

mentioned in Section 3.5.5.

• Feature matching using the correspondence between the features detected 

in the reference and input images. Techniques used for this purpose include 

cross correlations or other statistical measures.

• Determination of the Transformation Function the appropriate 

transformation functions are applied to obtain the transformation coefficients 

such as affine transformation or projective transformation.

• Re-sampling, the last step of image registration, is achieved by using the 

transformation coefficients to transform the input image to the reference 

image in order to obtain the register image.

In general, image registration can be considered as a pair of images, for example 

Mj and M2, and then finding the similarity measures S(M l9M 2) to determine

the optimal transformation T such that S(T(M l,M 2)) is maximized. This helps 

to increase the correlation between M x and M 2 (Goshtasby, 2005; Fonseca and 

Manjunath, 1996). The correlation coefficient ( p ) ,  obtained using Equation 

3.26, for the two images.

P
(3.26)
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The variables x and y  represent the images and x and y are their respective 

means.

In this study we tried to align the images with the reference (the first image in 

the video) to deal with the problem of head movements, and to specify the ROI 

to compute the respiration rate.

3.6. Biomedical Signal Analysis techniques

Biomedical signals emanate from living bodies. These vital signals give much 

information to probe the state of the body. The measurement techniques for 

these signals provide clinicians and researchers with an interpretation for 

significant diagnoses.

The signals detected are commonly affected by noise; therefore it is difficult to 

extract information from a raw signal before it is processed. Signal processing 

techniques are used to remove noise and enhance the signal (Bronzino, 2006). 

Signals can be processed in either the time domain or the frequency domain. 

Some types of information are most evident from the time domain 

representation of a signal, for example, to detect if the signal is periodic or 

random, and also easily to calculate additional values for the signal, such as 

mean, standard deviation or variance. On the other hand, there is other 

information that can be extracted from the frequency domain, such as the 

frequency content of the signal (Stranneby and Walker, 2004).

The data used in the current study analysis is in the time and frequency domain. 

Therefore, the following section gives a brief description of signal processing 

techniques. Signal enhancement in the time domain is provided in Section 3.6.1. 

Section 3.6.2 gives an overview regarding the frequency domain.

3.6.1. Signal Enhancement

An important step in signal processing techniques is cleaning the signal from 

noise without losing important features or distorting the signal. The main types
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of filters which are used to enhance the signal are Low-Pass Filters, High-Pass 

filters and Band-Pass Filters (Madisetti et aL, 1999).

The respiration thermal signal is very weak (Murthy et aL, 2004) and also 

suffers from a high frequency noise component. To process the signal, we used 

Low-Pass Filters (LPF) to reduce these high frequency components. 

Specifically, we used the Butterworth digital filter (Smith, 2003).

The Butterworth filter, also known as a maximally flat magnitude filter, 

meaning that there is no ripple in the passband, is one of the most common 

filters in digital signal processing. Its main advantage is that it has a flat pass 

band and provides a good roll-off (Stranneby and Walker, 2004). Butterworth 

can be implemented by using Equation 3.27

Where, H  ( w )  is the transfer function, n  is the filter order, w  is angular frequency 

and c is the cutoff frequency (Bianchi and Sorrentino, 2007).

The filter used in this study had a cutoff frequency of 1.5 H z  ', its order was 5. 

Fig.3.14 illustrates the magnitude response of this filter.

M  ( w ) 1 (3.27)

T39

Frequency , Hz

Fig.3.14: The Butterworth filter of order 5 and cutoff =1.5.
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3.6.2. Frequency-Time Analysis

Time-frequency analysis is the study of how the frequency of a signal changes 

over time. It is used to detect and extract information related to the frequency of 

a signal and the time; that means it refers to the frequencies present in the signal 

at any given time. A thermal respiration signal is quasi-periodic in nature. 

Therefore this signal can be processed and analysed by this technique.

3.6.2.1. Discrete Fourier Transform (DFT) This operation can be used to 

convert the signal from the time domain into a set of points in the frequency 

domain. The input to the DFT is a set of TV values. This algorithm requires a 

considerable time, and computation, if TV is very large. The DFT algorithm is 

applied to the input signal by using Equation 3.28.

£=! 2;*,-
X(k)  = £x(n )e~  " , k = 0,1,2,.... , N -1  (3.28)

n=0

Where denotes the input signal at time (sample) n, X(k)  denotes the kth

spectral sample (output signal), TV is the number of sample value and T = ̂  is 

the basis for the complex (Smith, 2008). To shorten the duration of the 

computation of the respiration rate in the discrete domain, Fast Fourier 

Transform is used.

3.6.2.2. Fast Fourier Transform (FFT): This is an efficient 

implementation of a discrete (DFT) algorithm to convert a signal from the time 

domain into a set of points in the frequency domain. This algorithm can be

applied if TV is even and can be represented as a power of 2, such as (TV=2M ).

This algorithm is used to reduce the computation time that is needed to convert 

the signal from the time domain into the frequency domain. An FFT algorithm 

gives the same results as the DFT but more quickly. Computing the arithmetical

operations for the DFT takes (TV2) while an FFT can compute the same result in 

only (TV log TV) operations. Therefore, the differences in speed will be evident

when dealing with long data, where TV (the total number of points) is very large
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(Smith, 2008). The periodicity of the FFT signal is caused by its symmetry. 

Eliminating repetition in data can be achieved by taking the first half of the 

magnitude values, which means taking the information from 0  to ̂  /  2

3.7. Conclusion

Image processing techniques play a significant role in medical analysis. At the 

same time, signal processing techniques are useful to integrate the analysis of 

data and medical diagnosis. In this chapter we tried to clarify the details of 

image processing techniques which included enhancement, segmentation, 

registration and features extraction, as well as a brief description of the signal 

processing techniques which are used in the present thesis.
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4. Relevant Thermal Imaging Theory

4.1. Introduction

Thermal imaging is a technique used to convert thermal radiation patterns that 

are invisible to the human eye into visible images. Thermal imaging can be 

considered as passive technique that requires no . external sources of 

illumination. This allows day and night operations. The technique is ideally 

used to detect hot and cold surface, or to detect areas of different emissivities. 

Thermal radiation can penetrate smoke or mist more than visible radiation, and 

allows the visual detection of obscured objects. It can be performed in real time 

and is valuable for remote sensing technique (Bumary et aL, 1988).

Thermography is an emerging and exciting branch of image processing. This 

branch has advanced considerably in the industrial, medical, scientific fields 

amongst others. In this chapter the most relevant thermal imaging techniques 

are described. An overview of the main principles of infrared radiation and the 

type of noise affecting is provided. The chapter finally provides an overview of 

thermal cameras and the ThermaCAM™ Researcher Software which is used to 

analyse thermal videos.

\

4.2. Basic Concepts
Objects are continually emitting infrared radiation at a specific rate and specific 

wavelength. This depends on the object’s temperature (7) and object's spectral 

emissivity (e). Thermal imaging is a conversion of this radiation into visible 

images (Bumary et aL, 1988). The infrared radiation spectrum refers to
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wavelengths from 0.7-14 ym  of the electromagnetic spectrum, as described in 

the Chapter 3. It is one portion of the electromagnetic waves that lies between 

the visible and microwave portions. It is usually divided into four spectral 

regions

• Near infrared light (NIR) is close in wavelength to visible light. This 

corresponds to the wavelengths ranging from the wavelengths ranging from 

0.76 to 1.1 ym.

• Short wave infrared light (SWIR) has wavelengths ranging from 1.1 to 2.5 

ym.

• Middle wave infrared (MWIR). This corresponds to the wavelengths 

ranging from 2.5 to 6.0 yin.

• Long wave infrared (LWIR) is closer to the microwave region of the 

electromagnetic spectrum, the wavelengths is 6 to 14 ym  (NASA, 2007; 

Levi, 2007).

Both NIR and SWIR wavelengths regions rely on reflected solar radiation and 

can only be used in daylight or illuminated conditions (Bumary et aL, 1988). On 

the other hand the two longer wave regions (MWIR) and (LWIR) are where 

thermal imagers detect the thermal emission from observed objects in total 

darkness or daylight. Every object whose temperature is more than absolute 

zero, Le. more than 0 K or more than -237.15 ° C emits radiation that fells in the 

infrared region of the electromagnetic spectrum (Thermal imaging, 2009).

When the thermal radiation reaches another surface (W) it is called the radiosity. 

Part of the radiation energy is absorbed and represents the emissivity of the

surface E)\ another portion is reflected from the surface R), while

another portion is transmitted from the surface ( ^ T) if the body is not opaque.

The total radiation as shown in Fig.4.1 consists of the summation of three 

components which add up to the initial value of radiation that left the source 

and is described by Equation 4.1 (Merchant and Manager, 2009).
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Total radiosity = W E -h W R -+- W r (4.1)

Incident Radiation

Transmission

Reflection

Surface

Fig.4.1 : Total radiation of incident radiation by a surface.

A surface can be categorised into either blackbody or non blackbody (Burney et 

aL, 1988). A blackbody does not mean black in colour but is a term which 

describes an object which can absorb all incident radiation which falls on it. 

Therefore it is a perfect emitter of maximum infrared energy for a given 

temperature. A non blackbody would absorb less energy than a blackbody under 

similar conditions and hence would radiate less infrared energy even though it 

was at the same temperature (Williams, 2009).

The radiative (the number of photons emitted) and the wavelength distribution 

are given by laws of thermal radiation. There are two physical laws (Planck’s 

Blackbody and the Wien’s displacement law) which are used to define and 

measure the emission of infrared energy from a surface (Al-Azzawi, 2007).

T h e  P l a n c k ’s  B l a c k b o d y  Radiation Law (Burney et aL, 1988) gives the level of 

radiation within a body which can be expressed in the mathematical formula 

derived by Plank. It described by Planck’s blackbody radiation law as shown in 

Equation 4.2
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A e ^ - 1
(4.2)

Where M ( A , T )  is the black body radiation emitted at temperature T  (Kelvin), X  

is the wavelength in/ m ,  c x =  3.7411 x 108 [ w a t t  x ja m *  / m2 ] and c 2 =  1.4388 x 104 

[ /z ra  x  , 7" is the temperature of the blackbody cavity [in Kelvin, K ] .  The

distribution of energy across a portion of the infrared spectrum is shown in 

Fig.4.2. The curves in the graph have been constructed using Planks Law.
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Fig. 4.2: Distribution of Radiated Energy from blackbody at various temperatures
(Pandya, 2009).

Fig.4.2 shows that higher temperature of blackbody increases the amount of 

energy emitted at any wavelength. The peak emission values shifts towards the 

shorter wavelengths. The mathematical manipulation of Wien’s law can 

describe the relationship between the wavelength at which peak energy occurs 

for a given object temperature (Al-Azzawi, 2007).

The Wien’s Displacement Law gives the wavelength where the peak radiation 

occurs at a given temperature. Wien’s Law is stated as:
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Whcrc is the wavelength in /Jin at which the maximum energy is emitted

by a black body at temperature T  (Kelvin). B is the Wien’s displacement 

constant has a value of 2897 fim K, and T  represents the surface temperature in 

°K. Wien’s displacement law can be used to calculate the wavelength from any 

object at different temperature (Pandya, 2009).

4.2.1. Sensitivity and Resolution

The two influential parameters in thermal image quality are thermal sensitivity 

and pixel resohitioa Each one has a significant inpact on thermal image 

quality. Good sensitivity sensors can detect temperature differences and 

increase the contrast of the image in the camera. Thermal sensitivity changes 

with object temperature. When the object temperature increases the effect will 

be to increase the signal output of the detector. This is the reason why viewing 

hotter images is easier.

The sensitivity parameter is very important in medical diagnosis because good 

sensitivity gives a better quality image to detect variations in temperature 

caused by tumors or other types of diseases (Dorf, 2006).

The second major parameter that impacts on image quality is the temperature 

resolutioa IR is identical to the number of colours in a computer display or 

colour photograph. The resolution of the camera is determined by the size of the 

image or pixels count. There are three resolution standards; Low Resolution 

160x120 (19,600 pixels), Medium Resolution 320x240 (76,800 pixels) or High 

Resolution 640x480 (307,200 pixels). Just like a digital camera, the greater the 

number of pixels, the better the resolution and the sharper the infrared image 

(Understanding Infrared Camera Thermal Image Quality, 2008). An ideal 

resolution gives the camera the facility to detect difference in temperature. 

Moreover, it gives a significant improvement in image quality and the ability to 

zoom in on a scene while maintaining good image quality. The most popular 

camera in medical diagnosis takes 320x240 pixels; the performance of this type
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of resolution is equal to the performance of a 640x480 resolution and is less 

expensive. The priority in medical field is a camera with good sensitivity as 

well as resolution (Dorf, 2006).

4.2.2. Thermo-graphic Measurement Techniques

The radiation emitted from the object can be considered as a tool to make the 

camera able to detect and display the temperature. However, the radiation 

measured by the camera does not represent the temperature of the object only, 

but the emissivity of the object as welL There are several parameters that affect 

the accuracy of measuring temperature. These include emissivity, atmospheric 

transmission, reflected apparent temperature and distance.

4.2.2.I. Em issivity

An important object parameter for accurate thermal measurement is emissivity. 

It can be defined as a measure of radiation that is emitted from an object, as 

compared to the blackbody at the same temperature. Equation 4.4 defines the 

emissivity.

Radiation Emitted by Target object at Temperature (T)

Radiation Emitted by Black Body at Temperature (T)

The ideal sources of infrared energy are the black body, thus infrared 

thermometers are calibrated in terms of black body radiation. Practically there 

are no ideal emitters of infrared. Although an object has the same temperature 

as the black body, it tends to radiate less energy than a black body. Fig.4.3 

shows the reflected energy when moved toward the surface. Emissivity’s value 

is between [0, 1]. The variance in this value relates to several factors, such as 

the degree of surface roughness, surface shape (cavities and concavities increase 

the value), viewing angle and the temperature itself.
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Fig.4.3: The diagram of emitters of infrared energy for an object (Burnay et aL,
1988).

When an opaque object Emissivity + Reflectivity =1.0. The object that is non 

reflective such as asphalt, would have a high emissivity while in contrast a 

highly reflective material, such as rolled aluminum, would have a low value of 

emissivity. Therefore, there is an inverse relationship between the emissivity 

and reflectivity (Diakides and Bronzino, 2008).

The human skin behaves like a blackbody. The high emissivity value of human 

skin makes it to have the same properties as the blackbody. Observations in 

different studies (Otsuka et aL, 2002; Diakides and Bronzino, 2008) confirmed 

that the emissivity of human skin is approximately in the range from 0.92 to

0.99.

4.2.2.2. Atmospheric Transmission

Infrared radiation from a target surface needs to pass through a transmission 

medium to reach the infrared lenses. When a perfect vacuum is available no 

energy is lost, otherwise the atmosphere attenuates the radiation in two 

processes, scattering and absorption. Scattering is a phenomenon that causes a 

change in the direction of a beam of radiation and is also caused by the 

absorption and subsequent re-radiation of energy by suspended particles.
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Light mist and smoke have a small effect on infrared wavelengths. Infrared

radiation can penetrate mists and smoke better than visible radiation. However, 

rain, fog and aerosols have larger particles and consequently scatter infrared and 

visible radiation to a similar degree (Burney e ta l, 1988).

Some parts of the infrared region of the spectrum are not usable for imaging

systems due to atmospheric attenuation, such as the absorption properties of 

C 0 2 (carbon dioxide), H 20 (water), and 0 3(ozone), which caused poor

transition of infrared radiation as shown in Fig.4.4.
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Fig.4.4: Transmission spectrum of the atmosphere (Thermal imaging, 2009).

Wavelength bands with good atmospheric transmission are in the range 8 to 14 

f i m  (LWIR) which offer very good visibility for most terrestrial objects as does 

in the range of 3 to 6 / i m  (MWIR) with the added benefit of lower ambient 

background noise. While 0.35 to 3 ju m  (visible, NIR and SWIR) rely on 

illumination to provide good imagery of objects at room temperature. Therefore 

the best transmission is between typically 3 to 6 ju m  and 6 to 14 ju m  respectively. 

Ranges of wavelengths are known as a window. Infrared imaging devices are 

designed to operate in one of these two windows (Thermal imaging, 2009; 

Gabbott, 2008).
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4.2.2.3. The Reflected Apparent Temperature

The other important object parameter for accurate measurement is the reflected 

apparent temperature. It expresses all heat sources impinging on the scene we 

aim at, which are reflecting in the direction of camera. In other words it is all 

the reflected temperature from the surrounding objects received by the camera 

and is called Reflected Apparent Temperature as shown in Fig.4.5.

R e f l e c t i o n

E m i s s i o n

Fig.4.5 : The Reflected Apparent Temperature with Emission.

4.2.2.4. Distance

Distance is an important parameter between the object and the front lens of the 

camera. When the radiation from the target is absorbed by the atmosphere, 

because of the effects of atmospheric gases, the greater distance between the 

object and camera, the greater the loss of the energy and error in temperature 

reading (Bumay et aL, 1988).

4.3. Thermal Images

Thermography is the conversion of radiated or reflected heat into real-time 

pictures or images. Thermal imaging is the technique of using a special camera 

designed to detect heat emission by way of Infra Red (IR) energy waves. Unlike 

light waves, IR is invisible to the naked eye. The scale in thermal images shows
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the hotter parts of an object in whiter shades while the darker shades are given 

to the cooler parts. These images can be mapped into pseudo colour where red 

typically refers to the hot regions while the blue refers to the cool regions of the 

objects. This representation can easily be reversed in many devices by reversing 

the setting of the device (Diakides and Bronzino ,2008). If there is no 

temperature difference the infrared image does not show any contrast and there 

is no possible analysis. The temperature value of the pixels gradually increases

or decreases in the same frame of the thermal image means there is no sudden

change in temperature values of the neighboring pixels. Therefore, the boundary 

lines, or the edges of objects, are not greatly visible (Scribner et aL, 2000).

4.4. Noise of Thermal Images

Images generated by a thermal camera are generally low in contrast and are 

sensitive to different kinds of noise, some of which can be corrected while 

others are incorrect able.

The noise in the raw thermal images can be considered as undesired information 

which contaminates the image. The infrared images are corrupted with two types 

of noise sources. These are temporal noise and spatial noise.

The spatial noise is more or less static between frames. It can be seen as a fixed

pattern in each frame and is usually referred to as fixed pattern noise (FPN). 

FPN is the dominant noise source in most infrared systems. The main cause of 

FPN is imperfections in the detectors. Each detector can show significant 

differences in temperature and noise. The differences are caused by the fact that 

individual detector elements respond differently to incoming irradiance which is 

perceived in images as a superinposed pattern, approximately constant from 

frame to frame. A non-uniformity correction (NUC) process can efficiently 

cancel out FPN. This process is one of the tools which improve the image 

quality (Understanding Infrared Camera Thermal Image Quality, 2008).

Thermal imaging suffers mainly from temporal noise, which may change from 

frame to frame, and can be caused by electronic noise. This type of noise includes
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temperature fluctuation noise, background noise or thermal noise, commonly 

known as Johnson noise or Gaussian noise.

Background noise is caused by statistical fluctuations of the radiation inside the 

camera. This noise is independent of the performance of the detector and is not 

correctable.

The fundamental limit is set by temperature fluctuation noise which results from 

the random exchange of energy between the detector and its environment 

(Williams, 2009; Kruse and Skatrude, 1997).

Noise is often modeled by an additive Gaussian (thermal) distributed noise. 

This means that each pixel in the noisy image is the sum of the true pixel value 

and a random Gaussian distributed noise value. As the name indicates, this type of 

noise has a bell shaped probability distribution function, given by

( f > - m y

Where g  represents the gray level, m  is the mean or average of the function and 

o is the standard deviation of the noise. Graphically, its probability distribution 

histogram is represented as shown in Fig.4.6 (Bovik, 2000).

Noise Intensity

Fig.4.6: Probability distribution histogram of Gaussian distributed noise (Bovik,
2000).
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Some detectors are designed to reduce Johnson noise and the temperature 

fluctuation noise. In the final analysis it is unimportant which noise mechanism 

dominates, provided the total noise is the minimum for a given responsively.

The camera used in our study was the ThermoVision A40 that uses an 

amorphous silicon detector 320 x240 pixels focal plane array. The detector has 

two types of NUC tables, gain and oflset. The gain of NUC is factory set and 

the oflset of NUC is recreated continuously with the help of a mechanic shutter 

which goes in front of the detector to recalculate and adjust the oflset for each 

pixel (MoDmann et aL, 2006).

4.5. Thermal Applications

Thermal imaging is one of the traditional sensing technologies that have been 

widely used in various fields. It is mainly used in military and policing 

applications such as target detection, officer safety to prevent ambush or to 

locate hidden suspects and use in law enforcement. It is also used in industrial 

and civil applications such as manufacturing, fire fighting, building integrity 

and moisture detection in wall and roofs and in electrical and mechanical 

pipeline surveys. Environmental applications use thermal imaging, such as oil 

pollution control, and energy conservation (Bumary et aL, 1988). Night vision 

in the automobile industry, security, surveillance and many other applications 

are based on temperature measurements or evaluating temperature differences 

(Jones, 2006).

Finally, thermal imaging plays an important role in medical applications; this 

will be discussed in the following section in order to demonstrate how a thermal 

system assists in medical diagnosis and treatment.

4.5.1. Medical Applications o f Thermography

Thermal imaging for medical applications dates back to the 1960s when Dr 

Browling Barnes developed a thermographic camera aimed at the detection of 

early symptoms of stroke and breast cancer; Later, after 1982 the clinical 

applications of thermography were reported and thermal imaging was accepted

7 9



in breast test to try to differentiate between normal and malignant breast tissues 

(Diakides and Bronzino, 2008).

In general, medical thermography is non-invasive diagnostic techniques that can 

be used to visualise and quantify changes in skin surface temperature. It focuses 

on the measurement of the skin’s temperature, because it can give an insight 

into many physiological problems as the skin represents the interface between 

deeper tissues and the environments and also maintains the deep body temperate 

within fine limit (Bumary et aL, 1988). Thermal imaging uses a device to 

convert infrared radiation, emitted from the skin surface, into electrical 

inpulses that were visualised in colour on a monitor. Today, infrared cameras 

have become one of the most efficient techniques for the study of skin 

temperature. They provide high performance and sensitive diagnostic for many 

types of diseases such as the early detection of breast, skin and lung cancer, and 

vascular disorders such as diabetes. They monitor the changes in overall health 

and detect the causes of back pain, leg pain, and arthritis, rheumatism and in 

surgery (open heart, transplant), and many other applications (Diakides and 

Bronzino, 2008; Houdas and Ring, 1982).

Fig.4.7 illustrates the diagnosis of thermal imaging for different diseases. 

Recently the thermal cameras helped the search for swine flu and other viral 

diseases in airports, hospitals, stations, terminals, etc (FLIR Systems, 2009).

Lung cancer Breast Cancer Pack pain A kidney Early stages of diabetes
infection appears as a glove like 

pattern in the hands.

Fig.4.7: Diseases diagnosed by thermal imaging (Dorf, 2006; Medical Thermal
Imaging, 2009).
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As mentioned before, the changes in skin surface temperature can be detected 

and measured by thermal cameras. The deep tissues conduct the heat energy 

directly to the skin. The quantity of heat which passed through the surface will 

be determined by the thermal conductivity of the intervening structures. For 

example, the bony structures and fat will impede some of the heat transfer and 

will cause cooler skin compared with other areas with higher thermal

conductivity (Bumary etaL, 1988).

There are differences in the temperature found on the skin surface based on the 

fat thickness and the blood perfusion status which in turn are based on several 

factors that may affect the temperature of the skin such as:

• Age is an important factor in determining skin surface temperature; 

younger children have a higher temperature than older people.

• Obesity, the temperature of the skin for the fatty areas appears colder than 

other areas (Bumary etaL, 1988).

• Environment changes in the environmental conditions will affect skin 

temperature. The sun’s heat may increase or decrease the skin temperature 

through sweating and vaporization. Wind may decrease the skin 

temperature and also rain. For these reasons, thermal measurement should 

be made in a temperature-controlled environment (Williams, 2009).

• The psychological state (emotion), this factor refers to the human 

nervous system which responds by increasing the blood flow and thus 

raising the skin temperature (Bronzino, 2006).

• Exercise, the effects of exercise also increase the blood flow in the body 

and raise the temperature of the skin surface.

• Human health sick people have a higher skin temperature than healthy 

people. Furthermore, abnormal parts of the human body appear warmer 

than the rest of the body, making them easily detectable with thermal 

cameras as in the case of breast cancer (Otsuka et aL, 2002).

The change in the skin temperature, for all these reasons, will be affected by the 

measurement performed by thermal camera. Although there are very large
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differences in temperature distributions among individuals, there is usually a 

basic thermal distribution which is less affected by these factors such as facial 

physiological features in humans as mentioned before in Chapter 3. The 

measurement system for the skin temperature will be explained in the following 

section.

4.5.2. Temperature measurement Units
The temperature of an object is a measure of the heat level of that object and is 

expressed in either absolute or relative terms. There are two absolute scales 

called Rankine (English system) and Kelvin (metric system). While the two 

relative scales are called Fahrenheit (English system) and Celsius or centigrade 

(metric system) (Temperature, 2009). Absolute zero in Kelvin is equal to -  

273.1°C and to -459.7°F. The relationships between these are provided by 

Equations 4.6-4.9.

(4.6)

(4.7)

(4.8)

(4.9)

In FLIR (Forward Looking Infrared) camera, Celsius (TCelsius), Kelvin (TKelvin) 

and Fahrenheit (̂ Fahrenheit) 316 supported (Kaplan, 2007; 

ThermoVision™ ,2004).

4.6. The advantage o f Non-contact Thermal Measurements

Although thermal imaging is an expensive technique, it has several advantages 

which make it very useftil as a measurement tool, these include :-

• It is non-contact, fast, non-destructive and reliable equipment for measuring;

• It can be used remotely, and is the only method when the object (target) is 

distance, or inaccessible to, contacting sensors;

• It is an effective method if multiple measurements are required. It will 

measure many points from the same target quickly (Kaplan, 2007).

^ C els iu s  — 5/9 ( -^Fahrenheit ”32) 

^Fahrenheit 9/5 (TCdsiul+32)

■^Rankine =  ^Fahrenheit + 459.7 

■^Kelvin =  -^C elsius+ 273.16

82



• Applicable as part of a surveillance system

• Appropriate with fragile objects, when thin webs, tissues or any delicate 

materials are measured.

• It can detect the objects in the dark regardless of colour, clothing or shadow.

• It can be used to measure through obscuring phenomena such as smoke and 

haze.

• It has low power consumption.

• It operates in real time, enabling very fast scanning of stationary and moving 

targets.

• Completely harmless; using no harmful radiation or chemicals. Therefore it is 

safety for human.

• High range performance.

• It is very sensitive to detecting changes in temperature (Richmond and 

DeWitt, 1985).

All these factors along with the high accuracy make the infrared imaging an 

appropriate method for monitoring skin temperature.

Although IR systems have many advantages for temperature screening, other 

than its cost, there are many variables that can affect its accuracy (Ng and 

Sudharsan, 2001). Ideally, the thermal imager should be operated in a stable 

indoor environment with stable operating ambient conditions. Environmental 

infrared sources such as sunlight and nearby electrical sources can affect the 

accuracy of IR systems and should be minimized. The target should be located 

in an area free from draft and direct airflow. The accuracy of the thermal imager 

is also highly dependent on the skill and knowledge of the operator (Ng and 

Sudharsan, 2001).

4.7. Thermal cameras

An infrared camera, sometimes called a FLIR is a device to measure the emitted 

infrared radiation from an object and convert it as an image.

The radiation can be considered as a tool to enable the camera to calculate and 

display the temperature. However, the radiation measured by the camera, does
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not represent the temperature of the object only, but the emissivity of the object
TM(ThermoVision , 2007). The thermal camera converts infrared radiation into a 

visible image. Moreover it allows the user to visualise a scene more completely, 

even if it is obscured by smoke and other visual disturbances. Several factors 

influence camera selection, including its cost, temperature and wavelength 

range, resolution, sensitivity and accuracy.

The wavelength range for measurements required for our study was 7.5 to 14 

ju m . In our study, respiration rate was determined the FLIR A-40 model camera. 

Fig.4.8 shows the FLIR A40 thermal camera and some of its accessories.

TM
Fig.4.8 : FLIR camera A40 M (ThermoVision , 2007) with its accessories.

The FLIR A40 camera was one of the most appropriate devices for our study. It 

has been used in many applications, including medical, industrial development 

and research and for preventive maintenance (FLIR Systems, 2009). The 

camera captures an image array of 320 x 240 pixels using an uncooled device 

(temperature sensitive electrical resistor called the mierobolometer) for 

measuring the incident radiation. It uses a Focal Plane Array (FPA) detector that 

employs several uncooled microbolometer FPA detectors for thermal imaging. 

The detector has a high thermal sensitivity in the light spectrum wavelength 

range of 7.50-14.00 ju m . This type of camera has a thermal sensitivity of 0.08 K 

at 30 °C with an accuracy of ± 2 °C under normal temperature and pressure
TM(ThermoVision , 2007). The highest speed for capturing images is between
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50-55 frames per second. It provides for image capture control on the camera 

itself, when used with the ThermaCAM™ Researcher pro 2.9 Software, which 

is explained later in this chapter. The camera connects to a Laptop or PC via 

firewire in order to provide data output.

4.7.1. Infrared (IR) Detectors
The most important part of a thermal camera is the detector or detector array. It 

plays an important role in determining the spatial resolution for a given field of 

view (FOV). IR detectors are electro-optical detectors that absorb 

electromagnetic radiation and output an electrical signal proportional to the 

intensity of the incident electromagnetic radiation (irradiance). IR detectors can 

be categorized into two main types, namely thermal and photonic detectors 

(Physics of Electro-optic Detector, 1998).

■ Thermal detectors operate by converting the incoming photon flux to heat. 

The incident radiation causes the thermal detector’s temperature to increase or 

decrease until it comes into quasi-equilibrium with the radiation being absorbed, 

this change in temperature is sensed by a bolometer. The bolometer measures 

the temperature change due to the absorption of radiation by measuring a 

change in resistance in the material. A microbolometer is a specific type of 

bolometer used as a detector in a thermal camera. It is also known as uncooled 

or thermal detector. The microbolometer grid is commonly found in three sizes, 

a 640x480 array, a 320x240 array or less expensive 160x120 array. This type of 

detector is different from others; it does not require exotic and expensive 

cooling methods, such as Stirling cycle coolers and liquid nitrogen coolers. 

These methods of cooling made early thermal imagers expensive to operate and 

unwieldy to move. Also, older thermal imagers required a cool down time in 

excess of 10 minutes before being reusable. In general the thermal detectors are 

slow compared to quantum detectors but have the great advantage that they do 

not require the cooling methods. However, some type of thermal detectors need 

their temperature to be controlled to ensure that they operate under optimal 

conditions (DeCusatis ,1997; Williams, 2009).
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• In Photon (or quantum) detectors, the incident photons interact with the 

material of the detector to produce charge carriers (electronic) that generate a 

voltage across the detector element, or change its electrical resistance 

(Williams, 2009). Generally the mechanism involves converting absorbed 

photon energy into released electrons, as a result moving it from one band 

energy level to another. The change in charge carrier state changes the electrical 

properties of the material. These electrical property variations are measured to 

determine the amount of incident optical power. There are two types of photon 

detectors Photoconductive and Photovoltaic. In general these types of detectors 

provide a higher sensitivity and faster speed than thermal detectors. Hoverer, 

the drawbacks of photonic detectors are that they need to be cooled for accurate 

measurement, which makes them large, expensive and complicated to fabricate 

(Technical information SD-12 Characteristics and use of infrared detectors, 

2004).

4.8. ThermaCAM™ Researcher Software

ThermaCAM™ Researcher 2.9 that is part of the FLIR camera runs under 

Windows XP, 2000, and Vista, The main purpose of this Software is to process 

and visualise live IR images obtained through the camera interface. This 

software allows for high, medium and slow speed thermal event to be captured 

depending on the hardware. This software introduced several features and

benefits such as:

• Analysis of the Temperature

The software supplies fast and extensive temperature analysis during the

measurement such us isotherms, spot measurements, line and area

measurements. Object parameters can be modified, as shown in Fig.4.9,

including emissivity, distance, and reflected temperature by using the software 

package. Moreover, the speed of the video (number of image per second) can 

also be specified using this software.
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• Static Image Analysis

It can analyse static or sequences images stored in the infrared camera, PC or 

Laptop.

• Multiple Camera Connection Using the FireWire Interface

More than one Firewire camera can be connected to the same PC, and each 

camera can be viewed and controlled in its own researcher window.

• Easy Data Export -Automatic Conversion of IR Images to Matlab 

Formats.

This software provides a facility to convert a video into a sequence images and 

then into Matlab format. This software also has the facility to export the image 

or area into a CSV (Comma Separated Values) file, which can be opened to 

Excel or other programmers.

• Full Control of the IR Camera from a PC

When the camera is connected to the PC, its lull control is possible. Focus, span 

adjustment, temperature range adjustment, colour palette, etc. can all be 

controlled from the PC without touching the camera.

• Finally, Compatible with Windows 95, 98, ME, NT, 2000, vista and XP

(ThermoVision™ , 2004).
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Fig.4.9: A thermal image with ThermoVision in FLIR camera.
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4.9. Conclusion

Infrared or thermal imaging is the ability to measure the irradiance variations 

between objects in a scene and to convert them to visible images. This infrared 

(IR) radiation is found between visible light and microwaves in the 

electromagnetic spectrum All objects with a temperature above 0°K emit IR 

radiation. The intensity and wavelengths of the radiation depends on the 

temperature. The higher the temperature the more radiation is emitted ,and the 

shorter the peak wavelength of the emissions. An object that does not reflect 

any incoming radiation is called a blackbody. Thermal imaging is used in many 

applications, with a particullay significant role in medical diagnosis. In this 

chapter the details of thermal imaging, the parameters used to capture the video, 

the details and advantages of the thermal camera were explained. Finally, we 

gave a brief overview of the ThermaCAM™ Researcher 2.9 with the FLIR A40 

camera which is used to capture the videos.

8 8



5. Methodologies, Developments and 
Preliminary Results

5.1. Introduction

Respiration rate plays an important role in the diagnosis of respiratory related 

diseases such as sleep apnea and asthma. In this study, respiration monitoring 

approaches were implemented based on thermal imaging. These were based on 

detecting temperature changes of skin surface centred on the tip of the nose and 

the upper lip. This part of the face is more affected by respiration and is referred 

to here as the region of interest (ROI). Temperature changes in the ROI are 

caused by the difference in the temperatures of inhaled and exhaled air.

The proposed methodologies for monitoring respiration rate are discussed in 

this chapter. The chapter provides an overview of the system setup along with a 

description of the hardware set up. The software designed during the study is 

described. A number of preliminary results are included in this chapter to ease 

understanding of the methodologies.

5.2. Thermal Image Recording System

Both hardware and software aspects of the thermal image recording system are 

explained in this section.
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5.2.1. Hardware Description

A thermal camera FLIR-A40 was used to record temperature changes in the 

ROI. The camera settings were: emissivity=0.92, reflected temperature=15C° 

and relative humidity=50%. The thermal sensitivity of this camera is 0.08 

degrees Kelvin at 30°C which was considered adequate for the task. The image 

capture rate used was 50 frames per second, thus providing 3000 images per 

minute. The recording time was two minutes. This provided sufficient sampling 

for respiration signals as the maximum respiration rate is about 60 cycles per 

minute.

The thermal camera was connected to a personal computer via one of its USB 

ports. The computer used in the study was a laptop Sony VGN-FW48E/H that 

had 3GB of RAM, a 2.1 GHz processor and a 320 GB hard disk. The computer 

was installed with Windows XP, Matlab software and the FLIR software 

(ThermaCAM™ Researcher Pro 2.9). The FLIR software was described in 

Chapter Four. Recording began when the camera was connected and the FLIR 

software (ThermaCAM™ Researcher Pro-2.9) was running. Fig.5.1 shows the 

hardware equipment used and the system setup.

In this setup the patient either sat on a comfortable chair in front of wall or slept 

in a bed. The FLIR A40 camera was fixed on a tripod in front of the subject’s 

face at a distance of about one metre. After the recording was finished, the 

software determined the respiration rate by using the developed image and 

signal processing techniques.
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A-40 Forward looking infrared (FLIR) Camera

y •* m m
m *

Baby a deep

Store Respiration video 
in the software package

PC or L aptop with Matlab 
and ThermaCAM™ Researcher 
Pro 2.9 Software

Fig.5.1: System hardware description.

5.2 .2 . S oftw are D escrip tion

The first step was to capture and record thermal videos using “ThermaCAM™ 

Researcher pro 2.9”. The videos were processed. Different software tools in 

Matlab were designed to track facial motion, localise the region of interest 

(ROI) and to analyse the extracted signal to compute the respiration rate. Each 

of these issues is explained in this section and the following chapter.

The operations involved in respiration rate monitoring were:

1. Converting the recorded thermal videos into separate images.

2. Filtering the thermal images to reduce obscuring noise.

3. Segmenting the region of interest (ROI) from the rest of image.

4. Applying feature extraction to extract the respiration signal.

5. Processing the respiration signal to determine respiration rate.
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5.2.2.1. Converting the recorded thermal videos into separate images

ThermaCAM™ researcher software was used to convert the recorded video into 

individual images, and then each image was ready for processing using the 

Matlab software.

5.2.2.2. Filtering the thermal image

Thermal images, like other types of images, suffer from noise. One of the 

important causes of the appearance of noise is environmental temperature 

variation, as described in Chapter 4.

To improve the quality of thermal images and to reduce the noise, for the 

sequence of images, image enhancement techniques were applied through the 

use of low-pass filters (LPFs) and high-pass filters (HPFs), as mentioned 

previously in Chapter 3.

Fig.5.2 (a) shows a facial thermal image. The video was recorded in a room at a 

temperature of about 30°C. The image in this recording was obscured by 

infrared radiations from the recording environment. This noise caused the 

values for some pixels to be much higher than the person's expected body 

temperature. The distribution of the thermal image pixel values is provided in 

Fig.5.2 (b).

Noisy image

Temperature ,C'

(a) (b)

Fig.5.2 : The original noisy thermal image with its corresponding histogram.



Suitable filtering techniques were necessary to reduce the effect of noise in the 

thermal images. The effectiveness of a number of lowpass filters (LPFs) to 

enhance the images was investigated. These filters are described in detail in 

Section 3.5.1.1 of Chapter 3. They were:

• Average filter using a 3x3 mask;

• Median filter (size =5);

• Gaussian filter using a 3x3 mask.

Figs.5.3, 5.4 and 5.5 illustrate the effect of LPFs in enhancing the thermal 

images.

Fig.5.3 : Thermal image filtered using an Average filter and its corresponding
histogram.
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Temperature ,C

Fig.5.4 : Thermal image filtered using a Median filter and its corresponding
histogram.
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Temperature ,C'

Fig.5.5 : Thermal image filtered using a Gaussian filter and its corresponding
histogram.

Lowpass filtering process managed successfully to reduce the environmental 

noise from the images. The Median filter was more effective in reducing 

unwanted noise and smoothing the images than the other filters.

The effectiveness of several highpass filters (HPFs) in highlighting distinct 

features of the images was also investigated. These filters are described in 

Section 3.5.1.2 of Chapter 3. They were the Sobel filter, Prewitt filter and the 

Laplacian filter. The results produced by applying these filters are provided in 

Figs. 5.6, 5.7 and 5.8 respectively. The results show that the HPFs do not 

enhance the thermal images, as the images are further obscured.

•15 10 -5 0 5 10 15 20 25 >0 55
Temperature .C'

Fig.5.6 : Thermal image processed using the Sobel filter and its corresponding
histogram.
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Fig.5.7 : Thermal image processed using the Prewitt filter and its corresponding
histogram.
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Fig.5.8 : Thermal image processed using the Laplacian filter and its corresponding
histogram.

The results indicated that the LPFs were more suitable than HPFs in enhancing 

the thermal images. Of these, the Median LPF was more effective than the 

others in enhancing the image and removing noise.

In order to further demonstrate the suitability of the Median LPF, thermal noise 

was added to test thermal images. Thermal noise can expressed by Equation 4.5, 

as outlined in Chapter 4. Histograms were also used to provide information 

about the distribution of temperature before and after adding noise as well as 

after filtering. In the present study, thermal noise was produced and added to the 

thermal images by using Equation 5.1
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g ( x , y ) = f ( x , y )  +  n ( x ,  y ) (5.1)

Where f(jt, y) represents the original image, n ( x ,  y ) the thermal (Gaussian) noise, 

g ( x ,  y )  represents the noisy image.

Fig.5.9 shows the facial thermal image for a sleeping child aged nine months.

X X
Temperature .C

Fig.5.9 : The original thermal image and its corresponding histogram.

Fig.5.10 illustrates the image after inserting the thermal noise and the 

corresponding histogram.
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Fig.5.10: The noisy thermal image and its corresponding histogram.

Fig.5.11 shows the effect of the average LPF in reducing the noise from the 

noisy thermal image. Though this filter managed to reduce the noise, it could
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not be considered as the most suitable because significant residual noise 

remained, as shown in the figure.
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Fig.5.11: Thermal image processed using the Average filter and its corresponding
histogram.

Fig.5.12 illustrates the effect of the Median LPF. This filter removed a larger 

amount of the thermal noise than the Average filter. This is illustrated visually 

in the image and its corresponding histogram.

24 26 2S 30 32 34 36
Temperature .C‘

Fig.5.12: Thermal image processed using the Median filter and its corresponding
histogram.

Fig.5.13 illustrates the effect of the Gaussian LPF in reducing the noisy thermal 

image. Its performance in reducing the noise was not as good as the Median 

filter.
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Fig.5.13: Thermal image processed using the Gaussian filter and its corresponding
histogram.

Figs. 5.14, 5.15 and 5.16 show the application of the HPFs, Le. Sobel, Prewitt, 

and Laplacian respectively, to the noisy thermal images. As shown in these 

figures the HPFs caused significant distortion.

133
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Temperature ,C'

Fig.5.14: Thermal image processed using the Sobel filter and its corresponding
histogram.
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Temperature .C'

Fig.5.15: Thermal image processed using the Prewitt filter and its corresponding
histogram.

Temperature .C"

Fig.5.16: Thermal image processed using the Laplacian filter and its corresponding
histogram.

5.2.2.3. Segmenting the Region of Interest (ROI) from the rest of 

image.
Segmentation was carried out after the images had been enhanced by the 

Median LPF. Segmentation extracted the identified ROI from the rest of the 

image. The ROI represents the facial area most affected by respiration. This 

area was the tip of the nose and the upper lip.

Fig.5.17 (a) shows thermal snapshots of the children during inspiration. Lower 

temperatures can be observed around the nasal area. The colour of the nasal area
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tends to be darker, due to the absence of hot expired air during the inspiration 

operation.

Fig.5.17 (b) shows the thermal snapshots of the children during expiration. It is 

observed that the higher intensity of temperature values appear around the nasal 

area. The colour of the nasal area tends to be brighter and indicates higher 

relative temperature. The contrast in the intensity of the temperature values 

around the nasal area during inspiration and expiration was used to measure the 

breathing signal and its rate.

Several approaches were investigated in order to determine the respiration 

region of interest (ROI), including its most appropriate shape and the size with 

different type of head movements. The discussions associated with these are 

included in Chapter 6.

L

(a) (b)
Inspiration Expiration

Fig.5.17: Snapshots of respiration, (a) Inspiration phases, (b) Expiration phases.
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S.2.2.4. Applying Feature Extraction to Extract the Respiration  

Signal.

After selecting the ROI in the previous step, the respiration signal from the ROI 

was obtained. Different processes were applied to extract a suitable signal from 

the ROI. Initially six images per second were captured. The analyses of several 

video recordings showed that the low sample rate at six images per 

second (fps) produced under sampling as the thermal images were obscured.

Therefore the sample rate was increased to fifty images per second. This 

provided a sufficient sample rate for the maximum respiration of 60 cycles per 

minute.

The respiration feature was then extracted from the images as follows:

Method 1: averaging the temperatures which corresponded to the four highest 

values for the frequencies in the histogram of the ROI. The four highest peaks 

were more affected than others by the changes of temperature during the 

respiration process. Equation 5.2 was used to apply this feature to the ROI.

a _  ^1-̂ 1 + ^2-^2 + -̂ 3̂ 3 +^4-^4 /c 0 \
F1 + F2 + F3 + F4 (5-2)

Where 7 ], 7^ , T3, T4 are the temperatures which correspond to the highest 

frequencies, F1,F 2,F3,F 4 respectively, Ay for each region was plotted against 

time. Fig.5.18 (a) shows the plot of the \  values for 6000 images against time, 

namely 120 seconds. This signal was obtained from an adult without head 

movements. Fig.5.18 (b) shows this signal following its filtering by a 5th order 

Butterworth filter (cutoff frequency 1.5 Hz).

101



I I_________I________ I________ I_________I_________
'o 20 4 0 60 80 100 1 20

time, sec

32.5

100 12040
time, sec

Fig.5.18: (a) Respiratory signal for an adult without head movements obtained by 
averaging the temperature corresponding to the four highest frequencies for 

the ROI (b) Its filtered version.

Fig.5.19 shows the plot of the \  values for the same subject but with large 

head movements.

16 S3 5

time, sec

time, sec

Fig.5.19: (a) Respiratory signal for an adult with large head movements obtained by 
averaging the temperature corresponding to the four highest frequencies for the

ROI (b) Its filtered version.

M e t h o d  2 :  The ROI was divided into upper and lower parts. The pixel values 

within each part were averaged to obtain a single value representing each part.
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The justification for this was to compare the temperature in the upper part that 

is less affected by respiration with the lower part, Le.

D suh =  A v e r a g e ^  -  A v e r a g e B (5.3)

Where, A v e r  a g e v  and A v e r a g e B are the average pixel values in the upper and 

lower parts of the ROI respectively. The process was repeated for the 6000 

images (Le. 50 images per second xl20 seconds recording duration) and then 

the value of D suh for each image was plotted against time to represent the 

respiration signal.

Fig.5.20(a) shows the plot of the D suh values for 6000 images against time,

namely 120 seconds. This signal was obtained from an adult without head 

movements. Fig.5.20(b) shows this signal following filtering by a 5th order 

Butterworth filter (cutoff frequency 1.5 Hz).

-1

20 40 80 100

■0.5

-1.5
20 40 80 100©0

time, sec

Fig.5.20: (a) Respiratory signal for an adult without head movements obtained by 
subtracting the upper and lower parts of the ROI. (b) Its filtered version.

Fig.5.21 shows the plot of the D sub values for the same subject but with large 

head movements.
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Fig.5.21: (a) Respiratory signal for an adult with large head movements obtained by 
subtracting the upper and lower parts of the ROI. (b) Its filtered version.

M e t h o d  3 :  To improve the respiration signal for the videos with significant head 

movements, the pixel values within the bottom part of the ROI were averaged 

to obtain a single value. The process was repeated for the 6000 images and 

plotted against time.

Fig.5.22(a) shows the plot of averaged values of the bottom part of the ROI for 

6000 images against time, namely 120 seconds. This signal was obtained from 

an adult without head movements. Fig.5.22(b) shows this signal following 

filtering by a 5th order Butterworth filter (cutoff frequency 1.5 Hz).

tim e.

35

34

33

32

31
20 40 60 80 1000

Fig.5.22: (a) Respiratory signal for an adult without head movements obtained by 
averaging the lower part of the ROI. (b) Its filtered version.
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Fig.5.23 shows the plot of averaged values the bottom part of the ROI for an 

adult with large head movements.
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Fig.5.23: (a) Respiratory signal for an adult with head movements obtained by 
averaging the lower part of the ROI. (b) Its filtered version.

Several technique features were extracted from the ROI to obtain a clear

respiration signal. Most of these were successful in detecting a clear respiration 

signal for the recording without head movements or with small head

movements. However, there were problems during large head movements. From

this point onwards, analysis of the effect of this type of movement on measuring

breathing was investigated.

A recording video was captured which contained only two types of head 

movements. The first part of the recording was 2357 frames when the face was 

turned approximately 45° to the left side from the camera, as shown in 

Fig.5.24(a). The second part of the recording included 3643 frames when the 

face was forward, as shown in Fig.5.24(b). The pixels in the ROI were averaged 

and then plotted against time.
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Fig.5.24: The ROI, (a) During the left head movements, (b) the face in front of the
camera.

Fig.5.25(a) illustrates the respiration signal for the recording of 6000 images 

during 120 seconds with two types of head movement. Fig.5.25(b) shows the 

same signal filtered using the Butterworth filter.

Face turned to tt|e (eft from the can} era

the leftfrom the pamera

title, sec

Face turned

. . .c l : : : : ; : :Fact atfrcmtoftle caniera 
 I_________l _

dtlwcMea j
60 80 100 

time, sec

Fig. 5.25: (a) Respiratory signal for an adult with two types of head movements 
obtained by averaging the ROI. (b) Its filtered version.

As shown in Figs 5.25(a) and 5.25(b) the signal contains two parts. The first 

part of recording is 2357 frames where the face is turned to the left side from 

the camera to approximately 45°. The signal is unclear for two reasons. Firstly, 

the ROI does not represent the desired region although it is placed in the correct 

position, and thus one of the main parts of the nose is lost. Secondly, the camera 

picks up unrelated sections of the face and is unaffected by the respiration
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operation, as shown in Fig.5.24(a). The analysis of this recording showed that 

the temperature decreased more than two degrees when the head turned away 

from the camera. Therefore we suggested segmenting the ROI into 8 parts and 

selecting the clearest part for calculation of the respiration rate.

M e t h o d  4 :  The ROI was partitioned into 8  equal segments, as shown in 

Fig.5.26. The justification for this was to analyse the temperature variation in 

each small section of the ROI and to select the segment that best provided a 

respiration signal.

(a) (b)

Fig.5.26: The ROI partitioned into eight segments, (a) The position of ROI on the 
tip of the nose, (b) The eight segments of ROI.

The pixel values for each segment were averaged. This was repeated for all 

6000 images and the resulting values were plotted against time. Fig.5.27 shows 

the resulting respiration signals for an adult. The recording was carried out with 

the subject sitting in a chair about a metre from the thermal camera. The subject 

was asked to refrain from head movements. The visibility of individual 

respiration cycles in the eight segments differed. Segments 3 and 7 provided the 

clearest signal, segment 1 providing the least clear signal. The specific segments 

that provided clearest respiration cycles varied from subject to subject. This was 

because the respiration pattern and the specific manner it affects the area around 

the nose varies in different subjects. This result indicates that for respiration 

monitoring it is appropriate to partition the ROI and consider each resulting 

segment separately.
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Fig.5.27: Respiration signals obtained using thermal imaging. The signals obtained 
from segments 1 to 8 are shown from top to bottom respectively.

Fig.5.28 shows the signal produced by averaging the pixels from the complete 

ROI. The respiration cycles appear distorted, confirming the need to partition 

and process the different parts of the ROI separately.

33.9

3 3 .8 -

33.7

- 33.6

0  33.5

33.4

33.3

33.1
120100

T im e, sec .

Fig.5.28: Respiration signal obtained by averaging pixel values from the complete
ROI.
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Fig 5.29 shows the histograms of pixel values for the eight segments of the ROI 

of a subject. The two main peaks that are visible in the histograms of segments 

2, 3, 4 5, 7 and 8 indicate the lower temperature (during inhalation) and higher 

temperature (during exhalation) of air. The temperature distributions for the 

segments vary significantly. The segments that have the highest separation of 

these two peaks are the most suitable for extracting the respiration signal and 

respiration rate.

Fig.5.29: The temperature histograms of the ROI segments 1 to 8.

The same process was applied to another person with large head movements. 

Fig.5.30 shows the respiration signals for the eight segments of the ROI. The 

respiration signals from segments 1, 2 and 5 are clearer than those from the 

remaining segments.
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Fig.5.30: Respiration signals obtained using thermal imaging. The signals obtained 
from segments 1 to 8 are shown from top to bottom respectively.

Fig.5.31 shows the plot of average pixel values obtained from full ROI (Le. 

segments 1 to 8 combined). This signal appears distorted as compared with 

those from individual segments of the ROI.
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Fig.5.31: Respiration signal obtained by averaging pixel values from the complete
ROI.
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Fig 5.32 shows the histograms of pixel values for the eight segments of the ROI 

of a subject. The two main peaks that are visible in the histograms of segments 

1, 2, 3 and 5 indicate the lower temperature (during inhalation) and higher 

temperature (during exhalation) of air. The temperature distributions for the 

segments vary significantly. The segments that have the highest separation of 

these two peaks are the most suitable for extracting the respiration signal and 

respiration rate.

Temp.C

Fig.5.32: The temperature histograms of the ROI segments 1 to 8.

5.2.2.5. Processing the respiration signal to extract the respiration 

rate
Respiration is a rhythmic phenomenon characterised by the repetition of 

inspiration and expiration. Figs. 5.33 and 5.34 show examples of clearest 

respiration signals for expiration and inspiration patterns respectively, for the 

same person in a sequence over time. As shown in these figures, there are 

occasional irregularities in the amplitude and general shape of these patterns. 

These characteristics need to be considered when extracting the value of 

respiration rate from respiration signals.
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The expiration pattern from 1000 to 2000 
______________ mages.______________

The expiration pattern from 1 to 1000 
images

The expiration pattern from 3000 to 4000 
mages.

The expiration pattern from 2000 to 3000 
_______________mages_______________

The expiration pattern from . 5000 to end 
images.

The expiration pattern from AOOO to 5000 
______________ images.______________

Fig.5.33: The different patterns of the expiration operation in the same recording.
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The inspiration pattern from 1 to 1000 images.
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The inspiration pattern from /000 to 2000 
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The inspiration pattern from 2000 to 3000 
______________ images.______________

The inspiration pattern from 3000 to 4000 
images.

-  '  ..■■■■■■ , ■=

The inspiration pattern from 4000 to 5000 
images.

w

The inspiration pattern from 5000 to end 
_____________mages._____________

Fig.5.34: The different patterns of the inspiration operation in the same recording.

To obtain a respiration rate from respiration signals, several methods were 

investigated. These methods are explained below:

M e t h o d  o n e  ( F a s t  F o u r i e r  T r a n s f o r m  ( F F T )  m e t h o d ) :  the thermal breathing 

signal is quasi-periodic in nature despite irregularities in the amplitude and 

shape, as shown in Figs 5.33 and 5.34. For this reason it can be analysed 

through the FFT. As discussed in Chapter 3, FFT can be used to convert a 

digital signal from the time domain to a set of frequency harmonics in the 

frequency domain. FFT was applied to the respiration signals after they were 

lowpass filtered with the Butterworth filter (order=5, cutoff frequency=l .5 Hz).

Fig 5.35 illustrates the magnitude frequency spectrum of the respiration signal 

for a subject who was asked not make head movements during recording.
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Fig.5.35: The magnitude frequency spectrum of the respiratory for the clearest
respiration signal in the ROI.

Fig.5.35 shows the maximum peak is 0.30, which represents the number of 

cycles per second. The respiration rate (cycles per minute) is calculated by 

multiplying the number of cycles per second by 60. Therefore the breathing rate 

is 18 cycles per minute.

The same process was applied to the recording with large head movements. 

Fig.5.36 shows typical results obtained. The maximum peak is 0.4 therefore the 

breathing rate is 24 cycles per minute.
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Fig.5.36: The magnitude frequency spectrum of the respiratory for the clearest 
respiration signal in the ROI for the video with large head movements.
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M e t h o d  t w o  ( W i n d o w i n g  m e t h o d ) :  In this method, the number of respiration 

cycles in a fixed time interval was calculated. After a number of experiments, 

the window size was chosen to be 20 seconds, with a 10 second gap to the start 

of the next 20 second window. This process was repeated for the complete 

signal The respiration rate in cycles per minute was then calculated by 

averaging the number of cycles over the selected windows and then multiplying 

the results by 3.

Fig 5.37 illustrates the application of this method to calculate the respiration rate.

Sec

20 §ec

time, sec

Fig.5.37: Windowing method of determining respiration rate.

Fig.5.38 shows an example of the result obtained. The subject has an average of 

8 respiration cycles for every 20 seconds; proving a respiration rate of 24 cycles 

per minute.
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Fig.5.38: Respiration rate monitored over time in a case with no head movement.

The same process was applied to the recording with large head movements. 

Fig.5.39 shows typical results obtained. For this case, the average respiration 

rate is 27 cycles per minute.
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Fig.5.39: Respiration rate monitored over time in a case with large head movements.

The main limitation of this method is that it cannot accurately deal with 

fractions of a cycle within each window considered. For example, it treated a 

half cycle as a complete cycle, as in Fig.5.40.
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Fig.5.40: Error produced as a result of rounding the fraction of cycle to full cycle.

In order to improve respiration rate calculation, the computation was instead 

based on respiration cycles. In this method the time duration of five complete 

successive cycles was determined. The average respiration rate was then 

calculated as

R  =  (5 x 60) / T { i = l . . .  e n d  o f  c y c l e s - 1 (5.3)

Where R  is the number of cycles in 6 0  seconds and T t is the time duration of 

five complete successive cycles. The process was repeated by moving forward 

by one cycle. Fig.5.41 illustrates the application of this method to the signal in 

order to compute the respiration rate.
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Fig.5.41: Respiration rate obtained by considering five complete respiration cycles.
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Fig.5.42 illustrates the results of applying this method to the respiration signal 

for an adult without head movements. The figure indicates that respiration rate 

varies over time. The amount of the fluctuations could hold useful clinical 

information. For this recording the respiration rate is 79 cycles per minute.
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Fig.5.42: Average respiration rate plotted against time.

Fig. 5.43 illustrates the results of applying this method to the respiration signal 

for an adult with large head movements. The figure also indicates that 

respiration rate varies with time. For this case the respiration rate is 26 cycles 

per minute.
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Fig.5.43: Average respiration rate for a case with large head movements.
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M e t h o d  t h r e e  ( I n d i v i d u a l  C y c l e  m e t h o d ) :  The third method of calculating the 

respiration rate was based on the analysis of the pattern of the respiration signal 

Zooming the signal showed that the respiration signal was longer in duration 

when representing breathing out and shorter for breathing in, as shown in 

Fig.5.44(a). The cycle is best represented as breathing out followed by breathing 

in The respiration signal was digitally filtered with the 5 order Butterworth 

filter (cutoff frequency of 0 . 5  Hz). Then, the peak to peak value of each was 

calculated. This represented the respiration period (T). This process is illustrated 

in Fig.5.44(b). The respiration rate (in cycles per minute) was then determined 

by obtaining an average of the values over a time interval

Temperature Temperature
w Breaching out

Time
Time

T

Fig.5.44: The respiration signal, (a) The fluctuations immediately after the signal level 
changes are consistent in pattern in different respiration cycles, (b) Its filtered 

signal indicating the respiration (7).

This method was applied after segmenting the ROI into eight parts. The 

respiration rate was calculated for each segment separately. An example of the 

results was obtained for when it was applied to the respiration signal of 

Figs.5.27 and 5.28. The average respiration rate obtained from each segment of 

the ROI for the images recorded over two minutes without head movements was 

26.0, 22.9, 23.1, 23.0, 23.4, 23.3, 22.9 and 22.9 cycles per minute for segments 

1 to 8 respectively, while the average respiration rate obtained from the 

complete ROI was 25.5 cycles per minute. The average respiration rates 

obtained from segment 1 and the one from the complete ROI were significantly 

different from those obtained from segments 2 to 8, and appear to be less
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accurate. Therefore the respiration rate was approximately 23 cycles per minute 

in the video without head movements.

The same process was applied to the respiration plots of Figs.5.30 and 5.31 

respectively to extract the respiration rate. The average respiration rates 

obtained from each segment of the ROI for the images recorded over the two 

minutes was 21.9, 21.8, 23.4, 22.7, 21.8, 22.8, 22.7and 21.8 cycles per minute 

from segments 1 to 8 respectively, while the average respiration rate obtained 

from the complete ROI was 21.8 cycles per minute.

53. Discussion of findings

The technique described in Section 5.2.2.2 was effective in removing unwanted 

noise. The technique was applied to thirty videos, each video containing 6000 

images. The role of the LPFs in enhancing these images was more significant 

than HPFs. The median LPF filter was more useful than other filters in 

removing noise.

Detecting the ROI from the fecial thermal image was achieved by using several 

techniques. These techniques will be explained in the following chapter.

In Section 5.2.3, four features from the ROI to obtain the respiration signal were 

described. The practical work shows that the respiration signals were obtained 

clearly by partitioning the ROI centred on the tip of the nose, into eight equal 

parts; the pixel values of each of these segments were averaged. This process 

was repeated for all the images recorded from each subject. The resulting values 

were plotted against time to produce the respiration signal This process 

provided an opportunity to analysis each part of the ROI separately and to 

detect the relationship between the signals from different segments.

The study demonstrated that the temperature profiles of some segments in some 

subjects were out of phase with the other segments (see Fig.5.45 for an example 

of this effect).
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Fig.5.45: Respiration signal from segments 1 to 8 (from top to bottom respectively).

A comparison of the respiration signals from the eight segments indicates that 

the respiration signals from segments 2, 3 and 4 are the inverse of those in 

segments 5, 6, 7 and 8. That is, the respiration signals from segments 5, 6, 7 

and 8 are delayed in time as compared with those from segments 2, 3 and 4, as 

shows in Fig.5.46.
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Fig.5.46: Respiration signals, (a) Respiration signals in segments 2 and 7. (b) 
Respiration signals in segments 3 and 6 respectively.
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The cause of this effect could not be established. Three methods were suggested

to determine the respiration rate. During the sleep unit studies these methods

were tested and compared. The results are explained in the following chapters.

5.4. Conclusion

In this chapter a number of methods to calculate respiration rate were

developed. In all these methods, a region centred on the tip of the nose was 

identified and then divided into eight segments. The respiration signal was

obtained by averaging the pixel values in each segment and plotting the result 

against time. It was established that inproved results could be obtained by 

dividing the respiration region into multiple parts and obtaining the respiration 

signal from each part. The respiration rate was obtained either by using a FFT 

method, or by determining the time duration of five cycles (windowing method) 

or time duration of individual cycles (individual cycle method). An analysis of 

the effectiveness of respiration rate measurement methods is provided in the 

following section.
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6.Techniques to Segment the Region of 
Interest (ROI)

6.1. Introduction

In this chapter the techniques developed to segment the region of interest (ROI) 

are described. The ROI represents the facial affected area most affected by 

exhaled air temperature changes. This area is the tip of the nose and the upper 

lip. Segmenting the ROI was considered an important task in monitoring 

respiration by thermal imaging.

6.2. Segmenting the ROI

Segmenting the ROI required a procedure to identify the location of the region 

in the thermal image and then to extract it in a suitable manner. Segmentation 

was carried out after the images were enhanced by the median LPF (the filtering 

operation is explained in Chapter 5). The segmentation process was performed 

either through a manual process or automatically. The descriptions of both are 

included in the following sections.

6.2.1. Manual Segmentation of the ROI

Initially several thermal videos were recorded with subjects not making any 

head movements. The ROI was manually identified in the first image and was 

highlighted by a rectangle. The same region was then automatically extracted 

from the remaining images of the video, as described in Section 3.5.3.1 (Chapter
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3). This manual technique was effective when dealing with cases in which there 

were no significant head movements by the subject, as head movements caused 

misalignment of the selected region.

To deal with image misalignment caused by small head movements, an image 

registration (alignment) technique was applied. This technique was effective in 

correcting the differences in the location of the ROI in successive images due to 

head movements. The approach is described in Section 3.5.7 (Chapter 3). 

Through a number of iterations it produced an optimal aflBne transformation 

which made the alignment of images as close as possible by considering the 

maximum correlations.

The alignment process was applied to the all images in the video recording 

using the reference image (the first image in the video), and then the correlation 

technique was applied to measure the similarity between the alignment images.

Figs. 6.1, 6.2 and 6.3 show examples of this alignment for different types of 

head movements. The correlation values between the alignment images and the 

reference images were calculated as 0.61, 0.79 and 0.72 respectively.

(a) (b) (c)

Fig.6.1: Alignment o f two images (a) The reference image, (b) The image to be 
aligned with the reference image, (c) The aligned image (correlation value

=0.61).
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(b) (c)
Fig.6.2: Alignment of two images(a) The reference image, (b) The image to be 

aligned with the reference image (c) The aligned image (correlation value
= 0.79).

(a)

1A
Fig.6.3: Alignment of two images (a) The reference image, (b) The image to 

be aligned with the reference image (c) The aligned image (correlation
value =0.72).

As shown in these figures, the alignment technique managed to align the images 

and the effectiveness of the operation was quantified by calculating correlation 

technique.

In some cases, despite a large correlation value, the alignment of the images and 

the reference image was not successful because the subject’s head in the 

reference image was not centred on the image, the effect of which was to 

corrupt the correct images (see Fig. 6.4 for an example). Also this technique was 

very time-consuming; therefore it is inefficient for processing 6000 images. In 

addition, this technique could not deal with large head movements.
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(a) (b) (c)
Fig.6.4: Alignment of two images (a) The reference image, (b) The image to be 

aligned with the reference image (c) The aligned image (correlation value
=0.82).

6.2.2. Automatic Segmentation of the ROI

Automatic segmentation the ROI from the images was based on first identifying 

the region and then tracking it. Three methods were developed for this purpose. 

In these methods the identification of the ROI required determining the salient 

features of the human face physiology, consisting of the warmest and coolest 

regions.

The images were initially enhanced using the median LPF, as described in 

Chapter 5. An edge detection algorithm was required to extract the subject from 

the image background. It detected the subject’s boundary in the image. Edge 

detection operators are based on the concept that the edge information in an 

image is found by looking at the relationship a pixel has with its neighbours.

The effectiveness of the Prewitt, Sobel and Laplacian edge detection operators 

was investigated.

The P r e w i t t  operator is basically a neighbourhood-based gradient operator, as 

described in Section 3.5.3.2.I. It searches the edges in both the horizontal and 

vertical directions. Two convolution masks, Gvand G  in the horizontal and

vertical direction, are applied separately on the enhanced facial image by using 

Equations 3.8 and 3.9 respectively. These masks are convolved with each image 

to determine the edges at those points where the gradient of the image is at its
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imximum. A typical result produced by applying the Prewitt segmentation to

the thermal images is shown in Fig.6.5 (a).

The Sobel operator also uses two convolutions masks, G^andG^. They are

applied in the horizontal and vertical directions of the image. The masks are 

shown in Equations 3.13 and 3.14. These masks were convolved with each 

image to return the edges at those points where the gradient of the image is at its 

maximum. A typical result obtained when applying the Sobel segmentation to 

the thermal images is shown in Fig.6.5 (b).

Laplacian is another operator that can be used to determine edges in an image.

It uses Equation 3.15. A typical result produced when applying this operator is 

shown in Fig.6.5 (c).

(a) (b) (c)

Fig.6.5: Identifying the subject's boundary from the image background; (a) Result 
produced when applying the Prewitt operator; (b) Result produced when applying 

the Sobel operator; (c) Result produced when applying the Laplacian operator.

In this study the Prewitt operator was used, as it best identified the boundary of 

the subject in the image than other details.

The ROI was determined as a circle centred on the tip of the nose. The radius of 

this circle is 1/16th of the image rows. In order to identify and track the ROI a
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number of methods were explored. These are described in the following 

sections.

6.2.2.I. First ROI Tracking Method

This method was applied to the images following the application of the Prewitt 

operator. The vertical highest (Xmax) and lowest (Xmin) and the horizontal highest 

(Ymax) and lowest pixel locations of the detected edges were determined,

as shown in Fig.6.6.

m ax

Fig.6.6  : Determined the vertical and the horizontal pixel locations o f the detected
edges.

The centre ( X0, F0 ) was identified by using Equations 6.1.

X  + X  V  - \ - Y_  min max y  _  m in m ax (6 1)

max and m̂in »̂ max represents the outermost pixels in the X  and the Y  

directions respectively.

The circle radius ( R )  was calculated using Equation 6.2

R  =  Y0 - Y ain (6.2)

This enables the face to be enclosed in a circle with radius R.
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The coldest temperature region in the circle was identified. Practically, the 

corresponding location of this region represents the tip of the nose. A second 

circle was placed around the identified tip of the nose; the radius of this circle 

was 1 / 1 6 th of the number of image rows. This circle represented the ROI and 

was used to obtain the breathing rate.

Figs.6.7 shows an application of this method to track the ROI for the recording 

with no significant head movements.

Fig.6.7: Examples of Locating the ROI using the first method.

The first tracking method worked well in cases in which there were no 

significant head movements. It failed when there were significant head 

movements, as shown in Fig.6.8.
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Fig.6.8: Failure in locating the ROI using the first method.

Therefore, a second tracking method to overcome the limitation of the first 

method was developed, as explained in the following section

6.2.2.2. Second ROI Tracking Method

To deal with head movements in tracking the ROI, a modification to the first 

method was carried out. Initially the subject’s boundary in the image was 

determined using the Prewitt operator, then the warmest region within the 

boundary was determined. This area represents one of two areas between the 

bridge of the nose and the inner comer of an eye, as shown in Fig.6.9.
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Fig.6.9 : The warmest area in the human face.

The identified region was marked. In order to extract the second warmest region 

the pixels associated with the first area were set to zero. The process was 

repeated to identify the second warmest region associated with the symmetrical 

region, as shown in Fig 6.10.

Fig.6.10: The second warmest area in the human face.

The coolest region underneath the warmest region was also determined, as 

shown in Fig.6.11. The lowest value within this region corresponded to the tip 

of the nose. A circle was placed around the identified tip of the nose; the circle 

represented the ROI and was used to monitor respiration rate.
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Fig.6.11: The coldest region in the human face.

Fig.6.12 shows examples of applying this approach.

Fig.6.12: Examples of tracking the ROI using the second method.

This method worked well when the subject breathed through the nose (not 

mouth) and the mouth remained closed. An open mouth became the warmest 

facial region, causing the method to fai

Fig.6.13 shows the warmest region (represented by white pixels) in a thermal 

facial image for a subject with his mouth open.
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Fig.6.13: Highlighting the two warmest areas in the human face when the mouth is 
open, the first, warmest, region as a white colour and the second warm 

region as a blue colour.

In order to deal with cases when the subject’s mouth was open, the images were 

classified as an open or closed mouth. In cases where the subject was breathing 

through the nose and the mouth was closed, the warmest facial regions 

corresponded to the regions between the comer of each eye and the bridge of the 

nose. In cases where the subject had opened the mouth, the warmest facial 

regions corresponded to the mouth and one of the areas associated with the 

comer of an eye and the bridge of the nose. The magnitude of the distance 

between these two warmest regions indicated whether the image corresponded 

to an open or closed mouth.

A rectangular area was selected which included the nose, in order to identify the 

minimum region within this area. The left and the right limits of this rectangle 

represented the horizontal lowest (Tw/«) of the first region and the horizontal 

highest ( Y m ax)  of the second region. The upper limit of the rectangle represented 

the vertical bwest ( X m in) of the second warmest region.

The identification of the bottom limit of the rectangular area was based on the 

classification of the image as either an open or closed mouth. When the image 

was classified as a closed mouth, the bottom limit of the rectangular area 

represented the vertical highest ( X m ax) of the first region +100, as shown in 

Fig.6.14 (b). However, when the image was classified as an open mouth the 

bottom limit of the rectangular area represented the vertical highest ( X m a x) of the 

first region, as shown in Fig.6.14 (a).
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(a) (b)
Fig.6.14: Detenriining the search area from the warmest regions, 

(a) When the mouth is open; (b) when the mouth is closed.

The lowest facial temperature region was identified in the rectangular area. 

Fig.6.15 highlights the lowest facial temperature region when the mouth was 

open.

Fig.6.15: Highlighting the coldest region in the human face when the mouth was
open.

The lowest temperature value within this region was identified; it corresponded 

to the tip of the nose. A circle was placed centred on the tip of the nose, as 

shown in Fig.6.16.

This ROI represents the region of best facial temperature changes affected by 

breathing and was used to determine respiration rate.
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Fig.6.16: Tracking the ROI using the second method when the mouth was open.

The second method alb wed successful tracking of the ROI with significant head 

movements, that is with either regular or random head movements, as well as 

solving the problem of an open mouth. On the other hand, this method of 

tracking sometimes failed during some types of random head movements 

because a wrong warmest regbn was identified, as shown in Fig.6.17.

Fig.6.17: Failure of the tracking algorithm to locate the correct warmest areas due to a
large head movement.
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As this method was based on determining the two wannest regions in order to 

find the coldest region, the error in identifying the second region during 

significant head movements led to the failure of this method, as shown in 

Fig.6.16. To overcome the limitation of this method, changes were made in 

order to improve this tracking algorithm, as shown in the following section.

6.2.2.3. Third ROI Tracking Method

To deal with limitations of the first two ROI tracking methods the following 

improvements were made. The images were initially enhanced by the Median 

LPF and then thresholded. Thresholding was needed to separate the head from 

the image background. This technique was performed by considering the facial 

temperature distribution. The temperature of the image background was 

relatively lower than the temperature of the subject’s head. A suitable threshold 

to separate the background from the subject's face was 30°C. Thus the pixel 

values f ( x , y )  in each image were thresholded according to Equation 3.17.

Figs 6.18 and 6.19 show a thermal image before and after the thresholding 

process respectively.

Fig.6.18: Thermal image before thresholding.
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Fig.6.19: Thermal image after thresholding.

The Prewitt edge detection scheme was used to identify the boundary of the 

subjects’ heads in the thresholded images. Detecting the boundary of the 

subject using the thresholding technique and the Prewitt operator aided 

removal of those pixels which were not necessary within the limits of the 

face boundary. These pixels were associated with hair, neck, clothes etc.

Fig.6.20 (a) shows the face boundary extracted from the image background 

by applying only the Prewitt operator. Fig.6.20 (b) shows the face boundary 

extracted from the image background by applying the thresholding technique 

and the Prewitt operator.

(a) (b)
Fig.6.20: Extraction of the subject from the image background: (a) results produced 

when only the Prewitt operator was applied; (b) Results produced when both 
thresholding and Prewittt operator were applied.
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The outline of the human face can generally be described as being roughly 

elliptic in nature. Therefore the face boundary was extracted later from the 

image by selecting an elliptical area which fitted onto the selected boundary 

values. This ellipse enclosed the most important part of the image, Le. the free. 

The edge map after the thresholding technique and Prewitt operator can give a 

good outline of the image containing the face region. The location and size of 

the ellipse were determined by performing the following tasks

• The highest (Xmax) and lowest (Xmin) pixel locations of the head boundary 

in the vertical direction were identified and the centre between these two 

locations (Xo) was determined.

• Centred at Xo, the head boundary points in the horizontal direction were 

identified, providing Ymin and Ymax. Then, the centre (To) between Ymin and 

Ymax was calculated.

• The diagonals of the ellipse (Le. 2a and 2b) which represent the semi

major and the semi-minor axes respectively were determined, where a and

b were calculated from Xo, and Yo to and Ymin respectively.

• Since the aim was to fit an ellipse to the image outlined by its edges, the

position of the ellipse on the filtered images was then determined by using

the ellipse Equation 6.3 (Downing, 2003).

<X' - x 0?  + <y, -y-or =1 (6.3)
ci b

This operation kept the elliptical region containing the human free and 

segmented it from the rest of the image, as shown in Fig 6.21.
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Fig.6.21: The position o f the ellipse superimposed on the filtered thermal image.

Once the subject’s face was enclosed by an ellipse, the remaining parts of the 

image were removed.

The next task was to identify and track a circular region centred on the tip of the 

nose (i.e. the respiration region of interest, ROI). To achieve this, initially the 

image area enclosed by the ellipse was scanned to identify the warmest region.

A scanning operation was carried out inside the selected ellipse. This consisted 

of starting from its top-left corner and averaging the values of the pixels in an 

area of 5 x 5 pixels. This process continued till the scanning operation reached 

the far right corner of the boundary. Then the scanning process was repeated to 

the far-left corner of the image until the full selected area was scanned. During 

each scan, the most recently calculated average pixel value was compared with 

the previous largest average pixel value.

This process allowed the location of one of the two warmest facial regions to be 

detected. This area represented one of the two areas between the bridge of the 

nose and the inner corners of the eyes, as shown in Fig.6.22
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Fig.6.22: The warmest facial area.

The procedure described above was repeated in the image section enclosed 

within the ellipse to locate the coolest region, but this time the scanning was 

performed beneath the identified warmest area so that the coldest area could be 

located. The reason for first identifying the warmest region and then the coolest 

region underneath it was to reduce the possibility of a wrong region being

chosen, especially when there were large head movements. The lowest value

within this region was identified; it corresponded to the tip of the nose. The

circle was centred on the tip of the nose, as shown in Fig.6.23.

Fig.6.23: ROI represented by a circle (mouth closed).
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In this method respiration through the nose with the mouth open was dealt by 

looking for the warmest region on the upper part of the ellipse only, thus 

excluding the mouth region. The scanning was performed beneath the identified 

warmest area and the coldest area was located. The bwest value within this 

region was identified. This corresponded to the tip of the nose. The circle was 

centred on the tip of the nose, as shown in Fig.6.24.

Fig.6.24: ROI represented by a circle (mouth open). 

Fig.6.25 shows the flowchart of the third ROI tracking method.
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Fig.6.25: The flowchart of the third ROI tracking method.
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This method was successful in tracking the ROI with different head movements 

(regular and random head movements), as shown in Fig 6.26 (a) and (b).

The process was repeated for each of the 6000 images (Le. 120 seconds 

recordingx 50 images per second) to determine the ROI as well as calculate the 

respiration rate.



(b)
Fig.6.26: (a) and (b) Examples of third method in tracking the ROI during different

head movements.

6 3 .  R esu lts and D iscu ssio n

In order to determine the effectiveness of the tracking methods for the ROI, 

two types of head movements were considered: regular movements and 

random movements.
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1- Regular movements involved the head turning to the left and right less 

than 45°, as shown in Fig.6.27.

Mid-left Centre Mid-Right

Fig.6.27: Regular Movements.

2- Random movements involved the head turning to random positions to the 

left, right, up and down, as shown in Fig.6.28.

Fig.6.28: Random Movements. 

6.3.1. Analysis of the effect of the shape of the ROI

Initially the ROI was represented as a rectangle. However, this shape proved 

to be unsuitable to allow successful tracking. For the images that had large 

diagonal head movements, the rectangular ROI provided inaccurate 

information, as shown in Fig.6.29.
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Fig.6.29: The rectangular representation of the ROI with large diagonal head
movements.

Also, in some images the nose appeared too close to the edge of the image, as 

shown in Fig.6.30. Therefore, the rectangular area fell outside the boundary of 

the image.

Fig.6.30: A head movement highlighting the nose very close to the edge of the
image.

To deal with the above issues, the ROI was represented by a circle. This dealt 

with the problems of large diagonal head movements as well as the nose 

appearing too close to the edge of the image. Fig.6.31 shows the ROI being 

represented by a circle.
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Fig.6.31: The ROI highlighted by a circle.

6.3.2. Hie Size of the ROI

To investigate the accuracy of the respiration rate measurement according to

the size of the ROI, the circle radius was initially set to

* * * = 1 7 *  AT (6-4>16

Where TV is the number of image rows. Rcircle value was reduced by increasing

the value in Equation 6.4 from 16 to 17, and increased by decreasing the value 

in Equation 6.4, from 16 to 15.

In each case the average pixel value within each circle was plotted against

image number (see Fig.6.32). The results indicated changing the ROI by the

specified amounts does not make a significant change to plots produced as 

they cover the nostrils.

Circle 1 
- 1 Circle 2  

C ircled36.4

36.2'

35.I

35.6

35.4
25001000 1500 2000500

Number of images

Fig.6.32: Average pixel value within ROI represented by different circle sizes.
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Table 6.1 provides an evaluation of the third tracking method. The number of 

images that the ROI had not successfully tracked was visually determined. 

The accuracy of the tracking methods was calculated by determining the 

percentages of images that had not successfully tracked the ROI.

TABLE 6.1: Tracking Analysis Results for Different Head Movements

Subject Number 
of images

%
Failure
(method

one)

%
Failure
(method

two)

%
Failure
(method
three)

Video type

SOI 6000 28 2.63 0 Random  movements

S 02 6004 17.4 4.98 0 Random  movements

S03 6000 35 5.35 0.08 Random  movements

S04 5991 1.67 0 0 Regular movements

S05 5995 0 0 0 Regular movements

S 06 6000 21.3 0.69 0 R andom  movements

S 07 6010 15.8 ' 0.2 0.02 R andom  movements

S08 5999 2.2 0 0 Regular movements

S 09 6000 49 0.16 0 Random  movements

SO10 6010 42 1.73. 0 Random  movements

soil 5999 0.16 0 0 Regular movements

S012 1148 4.6 0.17 0 Random  movements

S013 1150 6.7 0.53 0.17 Random  movements

SOM 1150 0.6 0.13 0 Random  movements

S015 2580 0.34 0.19 0.03 Regular movements

S016 550 6.7 2 0 Random  movements

S017 50 14 4 0 Random  movements

S018 50 8 8.0 4 Random  movements

SO20 39 15 0 0 Random  movements

S022 28 0 0 0 Regular movements

S023 35 51 11.4 0 Random  movements
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The tracking was considered as a failure when the ROI had not been located 

successfully for an image. The proportion of tracking failure was calculated as 

the total number of failures divided by the total number of images in a 

recorded video. Failed tracking was caused either by the subjects in the ROI 

extending too far from the image or by the effect of the environment on body 

temperature. There were some other limitations which will be explained in the 

following chapter.

6.4. Conclusion
A method to track the human free automatically in thermal images was 

developed. The method robustly dealt with static, regular and random head 

movements. During recordings under different head movement types it was 

possible to successfully detect the ROI associated with the respiration process.
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'e v e n

7. Thermal Imaging Based Respiration 
Rate Monitoring in Children.

7.1. Introduction

In this chapter the investigation of thermal imaging for respiration rate 

monitoring is described. The method was evaluated on twenty children admitted 

to the sleep unit of Sheffield Children’s Hospital

All thermal image recordings were carried out in parallel with a number of 

conventional contact-based respiration monitoring methods which already exist 

in the hospital This enabled a comparison to be carried out between the 

approaches.

7.2. Description of Existing Contact-Based Respiration Monitoring 

Systems
The existing instruments for respiration monitoring were:

A. Respiration belt transducer: A band should be tight enough to detect the 

chest and abdominal movements.

B. Nasal Pressure transducer: Dual nasal cannulas are used to measure nasal 

pressure. A sensor is used to measure the airflow based on the actual 

volume of the air exhaled.

C. Thermistor pod; sensors used to measure the temperature from the nose or 

mouth.
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D. Transcutaneous CO2 transducer: A sensor relies on the diffusion of gas to 

the skin and provides an overall estimate of changes in CO2 . It is applied 

to the skin, usually the earlobe.

E. Respiratory sounds transducer (microphone): A sensor is placed either 

close to the respiratory airways or over the throat to detect variation of 

sound.

F. Oximetry Probe (Sp02): A sensor is placed on the forehead, big toe, 

fingertip or bridge of the nose to detect the saturation of oxygen changes 

in blood (Sp0 2 ).

G. Electrocardiogram derived respiration probes: four leads are attached to 

the chest and the ribs of the patent to provide the heart pattern (ECG). The 

respiration signal rate can be extracted from the ECG leads.

These instruments have been explained in Section 2.2.2 of Chapter 2.

Figs.7.1 and 7.2 show the various contact devices used in Sheffield Children’s 

Hospital and their respective placement on a child's body.

Fig.7.1 : The standard contact respiration rate monitoring devices. (A) Respiration belt 
transducer; (B) Nasal Pressure transducer; (C) Thermistor pod; (D) Transcutaneous 
Co2 transducer; (E) Respiratory sounds transducer (microphone); (F) Oximetry Probe 

(Sp02);(G) Electrocardiogram derived respiration probes.
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Fig.7.2 : Placement positions of contact devices on a child's body (The diagram was 
supplied by Sheffield Children’s Hospital).

73. Patients’ Details and Recording Procedure

The thermal imaging system is discussed in Section 5.2. The recordings took 

place in a room in the Sleep Unit of Sheffield Children’s Hospital. Twenty 

infants and children (seven females, thirteen males) were enrolled. The age 

range was six months to seventeen years. Relevant details of the subjects 

included in the study are provided in Table 7.1.
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TABLE: 7.1: Details of subjects included in the study.

Gender Number

Age

Minimum Maximum Mean Standard
deviation

Female 7 1 year 17 years 8 5.59

Male 13 6 months 15 years 7.19 4.64

The patients were appropriately informed of the nature of the study and their 

parents consented for the data to be used in the study. All thermal recordings 

were carried out in parallel with conventional contact-based respiration 

monitoring methods to allow comparisons to be made.

The thermal recordings were performed with the subjects resting comfortably on 

a bed. The recordings did not cause any form of distress or discomfort to the 

subjects. Some patients were awake during the recordings while others were 

sleeping. The recording room temperature was at about 30°C.

The thermal images were recorded using a FUR A40 thermal camera. The 

camera was fixed on a tripod in front of the subject at a distance of about one 

metre. The camera’s emissivity setting was 0.92°. Its thermal sensitivity was 

0.08 degrees Kelvin.

The duration of each data recording was two minutes. This produced 6000 

thermal images (Le. 120 seconds x 50 images). Therefore, the image capture 

rate was adequate for the variations in the images being recorded.

The thermal images were filtered and segmented as described in Chapter 5. The 

respiration ROI in sixteen children was automatically tracked using the 

procedure described in Section 6.2.2.3. The remaining four subjects either 

breathed through the nasal area covered by attached medical instruments or
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breathed through the mouth. A different tracking algorithm (described in a later 

part of this chapter) was used for these four subjects.

The region was partitioned into eight equal segments. This enabled the 

respiration rate from each section to be examined separately. The pixel values 

within each segment were averaged to produce a single thermal feature for that 

segment. A respiration signal was then produced by plotting each segment’s 

feature against time. Respiration rate was automatically calculated by 

determining the number of oscillations in the respiration signals(individual cycle 

method), as described in Section 5.22.5 of Chapter 5.

The clarity (Le. the ease with which the respiratory cycles could be visually 

observed in the respiration signal) produced by each contact method varied in 

different children and therefore the specific method that provided the clearest 

respiration signal for each child was visually selected and used. The contact 

methods only produced a respiration signal (not a respiration rate). In order to 

determine the respiration rate, the number of visually-observed respiration 

cycles had to be manually counted.

73.1. Results and Discussion

The results of applying the thermal imaging based respiration rate monitoring 

method for twenty infants and children are explained in this section. Eighteen 

children breathed through the nose while the other two had mouth breathing. For 

the sixteen children who had nasal breathing the ROI was tracked automatically 

by the method described in Section 6.2.23. A different tracking algorithm 

(described in the next section of this chapter) was used for the two subjects who 

breathed through the nasal area covered by attached medical instruments.

73.1 .1 . Nasal Breathing

An example of a recording was taken of a child, aged 13 years, who was awake 

and who breathed through his nose. The ROI was tracked automatically by the 

method explained in Section 6.2.2.3 and selected as a circle centred on the tip of
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the nose. The ROI was segmented into eight equal segments centred on the tip 

of the nose, as shown in Fig.7.3.

Fig.7.3: Respiration region of interest, its position centred on the tip of the nose.

Fig.7.4 illustrates the plots of the respiration signals obtained by averaging the 

pixel values of each segment of the ROI indicated in Fig.7.3. This figure shows 

the respiration signal after bw pass filtering with a 5th order Butterworth filter 

with cutoff frequency of 1.5 Hz The respiratbn cycles from segments 1, 2, 3, 4 

and 5 are more identifiable than those from the other segments. This is because 

the areas related to these segments were affected by respiration more than the 

other areas. The respiratbn rate was calculated by the individual cycle method 

(method 3) described in Section 5.2.2.5. The process involved determining the 

peak-to-peak duration of each respiration cycle (T, in seconds). The respiratbn 

rate (in cycles per minute) was determined by first producing the average of all 

respiratbn cycles. The reciprocal of this value was divided by 60 to obtain the 

respiration rate in cycles per minute. The respiration rate from segments 1 to 5 

was approximately 17.5 cycles per minute.
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Fig.7.4: Respiration signals obtained using thermal imaging. The signals obtained 
from segments 1 to 8 are shown from top to bottom respectively.

The same process was applied for the sixteen children and infants. The 

respiratbn rates were 23.3, 17.5, 22, 22, 16.8, 15, 15.3, 20.6, 19.5, 18, 19, 34, 

15.5, 27, 24 and 22 cycles per minute respectively.

In order to show the variatbns of respiration rate over time, a moving average 

of respiration rate was also produced using the windowing method (method 2)
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in Section 5.2.2.5 to the clearest signal of the ROI. This involved determining 

the average respiration rate within a window containing five successive 

respiration cycles, and then repeating this calculation by moving the window 

forward by one cycle. The average of the respiratbn signal (fifth segment) by 

this method was calculated to be 17.4 cycles per minute.

Fig.7.5 shows this windowing operatbn performed on the clearest signals of the 

ROI for sixteen children. The average of the respiratbn rate for each child was 

23.3, 17.4, 21.6, 22, 16.7, 15, 15, 20,18.9, 17.9,19, 33, 15.4, 26.7, 24, 22 cycles 

per minute respectively. The figure also indbates that the respiratbn rate varies 

with time. The amount of the fluctuations is useful in monitoring the pattern of 

respiratbn rate.
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The magnitude frequency spectrum of the respiratbn signal shown in Fig.7.4 

(fifth segment) was also produced. This was obtained using the FFT (method 1) 

described in Sectbn 5.2.2.5. The highest peak in the frequency spectrum (i.e. 

the component that contains most energy) occurs at 0.3 Hz. This corresponds to 

a respiratbn rate of 0.3 cycles per second, or 18 cycles per minute. This value is 

cbse to the value obtained directly from the respiratbn signal by determining 

the number of cycles per seconds.

The same method (the FFT method in Sectbn 5.2.2.5) was applied to sixteen 

children. The highest peak in the frequency spectrum for the clearest signal 

occurred at 0.39, 0.3, 0.35, 0.38, 0.28, 0.25, 0.25, 0.3, 0.31, 0.3 , 0.316, 0.64, 

0.26, 0.44, 0.40 and 0.37 cycles per second respectively (see Fig.7.6). This 

corresponds to respiration rates of 23.4, 18, 21.4, 22.8, 16.8, 15, 15, 18, 18.6, 

18,19, 38,15.6, 26.4, 24 and 22 cycles per minute.
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The performance of the thermal imaging respiration rate monitoring method was 

evaluated by comparing it against the values obtained using conventional 

contact-based methods. The clarity of the respiratbn signal obtained using 

contact methods varied in different children; therefore, the clearest signal (Le. 

the signal with best identifiable respiration cycles) was selected visually. Fig.7.7 

shows the respiratory signals obtained using a nasal pressure probe, thoracic belt 

and transcutaneous CO2 for the child in Fig.7.3. The value of the respiratbn rate 

was determined from these signals by manually counting the number of cycles. 

For the signals shown in Fig.7.7, this was 17.5 cycles per minute.

Fig.7.7: Respiration signals obtained using Nasal pressure, thoracic belt and C 02 probe.

The clarity of respiration signals obtained for the sixteen children using contact 

methods was visually selected. The number of manually-counted respiration 

cycles was 23.5, 17.5, 22, 22, 16.5, 15.5, 15, 19, 18, 18, 18.75, 34, 15.25, 27, 

23.75, 21.75 cycles per minute respectively.

The remaining two subjects breathed through a nasal area covered by attached 

medical instruments. A different tracking algorithm was used for these two 

subjects (described in the following section). The ROI was selected as a circle 

centred on the tip of the nose and the ROI was segmented into 8 parts. The pixel 

values of each segment of the ROI were indicated. Then the respiration rate was 

calculated for each segment by using the three methods in Sectbn 5.2.2.5.
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Examples of recordings were taken for children, aged two and eleven years, 

while asleep and awake. The respiration signals were extracted from the clearest 

segment of the ROI. The respiration rate was calculated from the clearest signals 

by using the Individual cycle method (method3) in Sectbn 5.2.2.5; it was 26.8 

and 21 cycles per minute respectively.

In order to show the variations of respiration rate over time, the windows cycle 

method (method 2) described in Sectbn 5.2.2.5 of the clearest signals of the 

ROI was produced, as shown in Figs. 7.8(a) and 7.8(b). The average of the 

respiration signals (clearest signals in the ROI) by this method was calculated; it 

was 26.8 and 21 cycles per minute respectively.

29.?

28.5

g  20

to rto 25.5
'>*L

0 100
T im e . Second T im e . Second

(b)(a)
Fig.7.8: Respiration rates running average for the clearest respiration signal of the ROI 

for the two children breathing through a nasal area covered by attached medical
instruments.

The magnitude frequency spectrum of the respiration signals for the clearest 

respiration signal for the two children breathing through a nasal area covered by 

attached medical instruments is shown in Fig.7.9 (a) and (b). This was obtained 

using the Individual cycle method described in Sectbn 5.2.2.5. The highest 

peaks in the frequency spectrum are at 0.45 and 0.37 Hz respectively. This 

corresponds to a respiration rate of 0.45 and 0.37 cycles per second or 27 and 22 

cycles per minute.
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Fig.7.9 : The magnitude frequency spectrum of the respiratory signals for the clearest 
segments of the ROI of the two children breathing through a nasal area covered by

attached medical instruments.

The respiration rate values obtained using thermal imaging was compared with 

those obtained using conventional contact-based devices. The respiration rate 

obtained from the conventional methods was 26.5 and 21 cycles per minute 

respectively.

7.3.I.2. Respiration Monitoring in Subjects Breathing Through the 

Mouth

The current tracking method to determine the ROI has assumed that respiration 

is performed via the nose. Optimal breathing is achieved via the nose (Janssen 

and Rechelbacher, 2009; Friedman, 2009 and Shneerson, 2005). However, in 

some cases a subject’s respiration is through the mouth. Examples of 

recordings were taken for children aged ten years shown in Fig.7.10 (a) and (b) 

who had mouth breathing.

The method described in this study did not identify the mouth region as the area 

for respiration rate analysis. This is because the algorithm used in this study to 

find the tip of the nose (coolest facial area) first detected the warmest facial area 

and then scanned for the coolest area beneath it. Therefore, in these subjects the 

mouth region was initially tracked manually by using the method described in
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Sectbn 6.2.1 of Chapter 6. However, practical observatbns showed that this 

method was not robust when there were head movements. Therefore, this 

tracking algorithm was modified to deal with its limitatbns

(a) (b)
Fig.7.10: Segmenting the ROI into eight parts for a sleeping child. The ROI is centred

on the mouth.

The procedure to track the mouth region manually started by identifying the 

subject’s boundaiy in each image as an ellipse by using thresholding technique 

and Prewitt operator as described in Sectbn 6.2.2.3. The centre of the mouth 

was determined manually in the elliptical area of the reference image and then 

the distance from this centre to the outermost edge pixel in both the X  and Y 

directions of the elliptic was determined.

The mouth region was extracted from the outermost edge pixel for each image. 

This process was applied to patients of seven and eight who breathed via the 

mouth. A circle was placed centred on the mouth, as shown in Fig.7.10 (a) and

(b). The circled area represents the ROI for extracting the respiratory signal 

This area was divided into eight equal segments and the signal was extracted for 

each part. Then the respiration rate was calculated for each segment by using the 

three methods in Section 5.2.2.5.

Typical respiration signals obtained from the mouth regbn (ROI) for the 

children in Figs. 7.10(a) and 7.10(b) were extracted. The respiration rates were 

extracted from the clearest signals in the ROI segments by the Individual cycle
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method in Section 5.2.2.5. These were 20 and 20.5 cycles per minute 

respectively.

Figs.7.11(a) and 7.11(b) show the variations of respiration rate over time for the 

clearest respiratbn signals for the children shown in Figs.7.10(a) and 7.10(b). This 

was obtained by employing the windows cycle method in Section 5.2.2.5. The 

average of the respiration rates to the respiration signals (clearest signals in the 

ROI) by this method were calculated to be 19.5 and 20.4 respectively.
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Fig.7.11: An examples of respiration rate running average of clearest segments during 

mouth breathing for the children in Fig.7.10(a) and (b).

The magnitude frequency spectrum of the respiratbn signals for both children 

shown in Figs.7.10 (a) and 7.10(b) is shown in Figs.7.12 (a) and 7.12(b). This 

was obtained using the FFT method described in Sectbn 5.2.2.5. The highest 

peaks in the frequency spectrum were at 0.308 and 0.35 Hz respectively. This 

corresponded to respiration rate of 0.308 and 0.35 cycles per second, or 

18.5 and 21 cycles per minute.

165



O ' 4

0 07 «  5.12

0 06

0 08
0 0i
003

0.040 02
0.02OOI

Frequency ,Hz Frequency ,Hz

(b)(a)
Fig.7.12: The magnitude frequency spectrum of the respiratory signals (corresponding to 

the clearest segment of the ROI) for the children in Fig.7.10(a) and (b).

The respiratbn rate values obtained using thermal imaging were compared with 

those obtained using conventional contact-based devices. The respiration rates 

obtamed from the conventional methods were 19.75 and 20.5 cycles per minute 

respectively.

7.3.I.3. Detecting Respiration-Related Illnesses

Conditions such as apnea can be detected by analysing respiration signals. Fig. 

7.13 illustrates an example of the respiration signal for a child who had apnea. 

The clearest signals were obtained from the ROI segments 1, 2, 7 and 8. The 

average respiratbn rate was 34 cycles per minute.
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Fig.7.14 shows the variations of respiration rate over time for the respiration 

signals of Fig 7.13(Individual cycle method). The average respiratbn rate 

obtained from segment 1 was 33 cycles per minute.
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Fig.7 .14: An example of respiration rate running average of segment 1 shown in 
Fig.7.13 for a child who had apnea.

The respiration signals obtained using thermal imaging and those obtained using 

contact methods showed that there was a breathing problem for this child that 

was visible in the signals (between 66 and 79 seconds). The clearest respiration 

signals for contact-based approaches were obtained using the transcutaneous 

CO2 , thoracic belt, and nasal pressure and thermistor methods, as shown in Fig 

7.15. The respiration rate obtained from these conventional methods was 34 

cycles per minute.

THO

60
Fig.7 .15: Detection of apnea in the respiration signal obtained using transcutaneous

CO2 , thoracic belt, and nasal pressure.
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Twenty children were included in this study. The three methods described in 

Sectbn 5.2.2.5 were applied for all the children to extract the respiratbn rate 

from the respiratbn signal.

Table 7.2 shows the respiratbn rate values for these children. The ROI in 

sixteen children was tracked automatically, while the ROI in the remaining 

children was selected manually. The table compares the respiratbn rates 

obtained using the thermal imaging method against those obtained using contact 

methods for each child. The mean respiratbn values across all children using 

the thermal imaging method (BRt ) and the contact methods (BRC) were 20.9 

and 20.7 cycles per second respectively.

The correlation coefficients ( p )  for respiration values obtained using the

thermal imaging methods and contact methods (using Equation 3.27) were 0.97, 

0.92 and 0*99 for methods 1, 2 and 3 respectively. These results indbate method 

3 provided a closer correlation to the contact methods.

TABLE: 7.2 Summary of respiration rate analysis.

Patient
Gender State of 

Patient
Age in

The most 
effective 
contact 

Methods

Respiration 
rate in cycles 

per minute 
using the 
selected  
contact 

method BR
C

Respiration rate in  cycles 
per minute using thermal 

imaging methods BR,

No years

FFT
method

Windows
cycle

method

Individual
cycle

method

PI Male asleep 4

Abdominal belt 
&

transcutaneous
Co2

23.5 23.4 32.3 23.3

P2 Male awake 13

Thoracic belt 
& Nasal 

Pressure & 
transcutaneous 

Co2

17.5 18 17.4 17.5

P3 Female asleep 6
Transcutaneous

Co2 22 21.4 21.6 22

P4 Female asleep 1
Transcutaneous

Co2 22. 22.8 22 22.
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TABLE: 7.2 Summary of respiration rate analysis (continue).

Patient

No
Gender State of 

Patient
Age in 
years

The most 
effective 
contact 

Methods

Respiration 
rate in cycles 

per minute 
using the 
selected  
contact

method

Respiration rate in cycles 
per minute using thermal

D R

imaging methods 1

FFT
method

Windows
cycle

method

Individual
cycle

method

p5 Male asleep 2
Abdominal

belt 26.5 27 26.8 26.8

P6 Male asleep 12
Thermistor &  
transcutaneous 

Co2
16.5 16.8 16.7 16.8

P7 Male
awake &  

Oral 
breathing

10 Abdominal belt 19.75 18.5 19.5 20

P8 Male
awake &  

Oral 
breathing

10 Abdominal belt 20.5 21 20.4 20.5

P9 Female asleep 2

Thermistor 
Abdominal &  

Thoracic belts 
&

transcutaneous
Co2

15.5 15 15 15

P10 Female asleep 11

Thermistor 
Abdominal &  

Thoracic belts 
&

transcutaneous
Co2

15 15 15 15

P ll Female awake 17 Thermistor 19 18 20 20.6

P12 Male asleep 5
Abdominal &  

Thoracic belts
18. 18.6 18.9 19.5

P13 Female asleep 8

Thoracic belts 
&

transcutaneous
Co2

18 18 17.9 18

P14 Male asleep 7 Thoracic belts 18.75 19 19 19

P15 Male asleep 0.5

Thermistor &  
Abdominal &  

Thoracic belts 
&

transcutaneous
Co2

34 38 33 34
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TABLE: 7.2 Summary of respiration rate analysis (continue).

Patient

No
Gender

State of 
Patient

kge in 
years

The most 
effective 
contact 

Methods

Respiration 
rate in 

cycles per 
minute using 
the selected  

contact 
method BR C

Respiration rate in cycles 
per minute using thermal 

imaging methods br

FFT
method

Windows
cycle

method

'ndividual
cycle

method

P16 Male asleep 9

Thermistor &  
Thoracic belts 

&  Nasal 
Pressure

15.25 15.6 15.4 15.5

P17 Female awake 11

Abdominal 
belts &  

rranscutaneous 
Co2

21 22 21 21

P18 Male awake 15 Abdominal &  
Thoracic belts 27 26.4 26.7 27

P19 Male asleep 3
Thoracic belts 

&  Nasal 
Pressure

23.75 24 24 24

P20 Male asleep 3
Abdominal &  

Thoracic belts 21.75 22 22 22

Correlation with conventional methods 0.97 0.92 0.99

A Paired Student’s t-test was used to establish whether a significant difference 

existed between the respiration values obtained using thermal imaging (method 

3) and the selected contact methods. The probability value obtained from the 

test was 0.87, indicating that there was not a significant difference between the 

two sets of values. Fig.7.16 shows a plot of respiration rate values obtained by 

using the thermal imaging method against those obtained from the most 

effective contact respiration rate monitoring method. A close correlation 

between the thermal imaging and contact based respiration rate measurements is 

evident.
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Fig.7.16: A plot of respiration rate values obtained using thermal imaging against 
values obtained using a convention methods.

73.2. Discussion of Respiration Rate Monitoring Issues

A number of issues were encountered in tracking the ROI in children suffering 

from respiratory problems. In some thermal image recordings, the child was 

lying on his/her tummy instead of his back; thus the extraction of the facial 

boundary became inpossible.

Another complication was respiration via the mouth. Most children who had a 

respiration problem breathed through their mouth. These issues were dealt with 

using the method described in Section 7.3.1.2.

The sensors attached to subjects’ feces to monitor respiration affected the local 

skin temperature. For example, the transcutaneous CO2 sensor, which is placed in 

a child’s ear, causes an increase in skin temperature to more than 39.7°C, which 

means the local skin temperature is higher than the normal skin temperature of 

37°C. Fig.7.17 illustrates the effect on extracted facial features of attaching
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sensors to the face. Therefore, the procedure to identify and track the ROI of 

Sectbn 6.2.23 was developed. This involved using a reduced elliptical area to 

identify the face and remove the ear regbns. Then the same procedure was 

applied to identify and track the ROI to extract the respiratbn rate.

■ SP01:38.6

Fig.7.17: The effect of the conventional measurement methods on the child’s skin
temperature.

Another limitation was when the nasal area was blocked by a blanket, toy or the 

child’s hands, as shown in Fig.7.18. In this situation the ROI was not visible. 

Hence, the respiration signal could not be obtained. In these cases recording 

started when the ROI became visible.

Fig.7.18: The child covers the nasal area and oral area with his /her hand.

Putting a mask on the child’s face to provide oxygen obscured the ROI. Glasses 

worn by some children also hindered the tracking algorithm operatbn. In these
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cases the procedure to identify and track the ROI was performed manually as 

described in Sectbn 7.3.1.2.

In some children the respiratbn signals obtained from the eight segments of the 

ROI were not in phase. Fig.7.19 illustrates the segmentation of the ROI for a 

child eight years old. As shown in this figure, the lower part of the ROI 

represented segments 1, 2, and 3. The upper part represented the other segments 

of the ROI.

Fig.7.19: Illustrating the segmented parts of the ROI.

Out of phase relationship of the respiratbn signals between the lower and the 

upper lips is visible in the plots shown in Fig 7.20.
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Fig.7.20: Shows the inverse situation betw een signals, (a) Illustrates the inverse 

betw een S2 and S7. (b) Illustrates the inverse betw een S3 and S6. (c) Illustrates 
the inverse betw een SI and S8. (d) Illustrates the inverse betw een  S2 and S4.

7.4 Conclusions
In this study a non-contact method to monitor respiration rate w as developed  

and its effectiveness w as evaluated b y  applying it to twenty children. In sixteen  

children the R O I w as tracked automatically while for the remaining four the 

RO I w as tracked manually. A  c lo se  correlation existed b etw een  the respiration 

rate values obtained using the thermal imaging m ethods and those obtained  

using contact m ethods. The study indicated that thermal imaging is valuable for 

monitoring breathing as w ell as for detecting breathing problem s such as apnea.
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8. Conclusions and Future Work

8.1. Introduction

Thermal imaging is a means for non-contact respiratbn monitoring. 

Respiratbn monitoring is important in order to monitor health and to 

diagnose various medbal conditions.

This study provided an investigation into approaches to facilitate respiratbn

monitoring using thermal imaging.

8.2. Conclusions

The methods developed to monitor respiratbn rate involved identifying the 

fecial ROI most affected by breathing and then determining variations in its 

skin surface temperature. The ROI was the tip of the nose and the upper lip.

The ROI was identified and tracked in thermal images using a number of

methods.

Initially a number of thermal video recordings were carried out on healthy 

adult volunteers from Sheffield Hallam University. These allowed the 

processing methods to be developed and optimised. The developed method 

was later applied to thermal videos of twenty children recorded at Sheffield 

Children’s Hospital.
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The developed methods allowed the ROI to be automatically identified and 

tracked in sixteen children. Manual tracking was used for the remaining four 

children as in these children the ROI was either obscured by medical 

instruments, the child’s sleeping position made it difficult to record the 

complete fecial area, or they breathed via the mouth. The automatic tracking 

method could not operate well when a child breathed via the mouth. When a 

child wore glasses, the automatic tracking method did not function correctly 

as glass appears as the coldest area in a thermal image.

Respiratbn rate was determined by enhancing the thermal images to reduce 

their unwanted aspects (noise). This was achieved using suitable LPFs. The 

effectiveness of the median LPF to remove thermal noise, as well as smoothing 

the thermal imaging, was investigated. Then the subject boundary was

identified from the image background. This was achieved by employing

thresholding using Prewitt edge detection. The ROI was identified and tracked 

in each image. This was achieved by developing tracking algorithms which 

were based on identifying the physical features of the fece.

In order to separate the subject boundary from the fece, a procedure was

developed that encbsed the fece by an ellipse. The area in this ellipse was

scanned initially to locate the warmest region. This region corresponded to a 

small area between the bridge of the nose and the inner comer of the eye. The 

coolest regbn beneath the identified warmest areas corresponded to the tip of 

the nose. A circle was placed around the identified tip of the nose. The circle 

represented the ROI and was processed to determine respiratbn rate.

In order to examine the different parts of the ROI for respiration rate 

monitoring, the ROI was divided into eight equal segments centred on the tip 

of the nose. The pixel values within each segment of the ROI were averaged 

for each image. This provided the respiratbn rate feature. The number of 

images recorded for each subject was 6000. the  respiratbn feature for each 

segment of each image was plotted against the time to obtain a respiration 

signal.
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The respiration signals were digitally filtered using a 5th-order Butterworth 

filter with a cut-off frequency of 1.5 Hz. The filter smoothed the respiration 

signal, making it ready for determining respiration rate. Respiration rate was 

automatically calculated by individual cycle method to the clearest respiration 

signals.

A window cycle method was used to show the variations of respiratbn against 

time. This involved determining the average respiratbn rate within a window 

containing five successive respiratbn cycles, and then repeating this 

calculation by moving the window forward by one cycle. The results indicated 

that respiratbn rate varies significantly with time.

The magnitude frequency spectrum of the respiration signals was also 

produced by using FFT method. The highest peak in the frequency spectrum 

corresponds to a number of cycles per second. The results indbated that this 

value is close to the value obtained directly from the respiratbn signal by 

determining the number of cycles per second.

Three methods were employed to extract the respiratbn rate from the 

respiration signals. These were applied to all the subjects and the results were 

compared against the values obtained using contact methods for determining 

respiratbn rate, using a correlation coefficient. These results indbated that the 

respiratbn rate values from the three developed thermal methods closely 

matched those obtained using contact methods. The third method gave the 

closest correlation to the contact methods.

The study indicated that thermal imaging is a means for monitoring respiratbn 

rates in a non-contact manner. The process requires accurate focalisatbn and 

tracking of the respiratbn regbn of interest. The existing contact methods of 

monitoring respiratbn rate are contact-based and thus require a sensing devbe 

to be attached to a subject’s body, causing them discomfort. These methods 

only produce a respiratbn signaL The respiratbn rate needs to be calculated 

manually by counting the number of cycles.
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Nevertheless, the thermal imaging method used in this study had a number of

limitations:

• The processing was off-line due to the extent of processing required. It is 

advantageous for the respiration rate to be obtained in real time.

• The thermal imager should be operated in a stable indoor environment 

with a stable operating ambient.

• The current method cannot handle large head movements. When there is a 

large head movement the region associated with respiration moves very 

close to the edge of the image. Therefore, the respiration rate is not 

determined accurately.

83. Scope of Future Work

Improvements can focus on further developments of the tracking algorithms,

ROI segmentation, and analysing the respiration signaL

• Developing an inproved tracking algorithm to handle the images that have 

failed by using our tracking method and deal with cases when the subject 

breathes via the mouth is a further development consideration.

• Developing inproved image processing techniques to facilitate on-line 

processing of images and generation of respiration rates is an essential part 

of future development. The current method produces the respiration rate by 

processing the images off-line.

• Developing a thermal camera to monitor the respiration rate for children 

and infants in hospitals. This can be achieved by installing a thermal 

camera on the flexible stand that is installed in the ceiling above the bed to 

be able to obtain more accurate video recordings of a child during sleep.
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• Currently a sophisticated thermal camera is used for the data recordings. 

The camera has numerous advanced features that are not needed for 

respiration monitoring (such as a temperature range that exceeds 1000° 

Celsius). Replacing the thermal camera with a cheaper, more customised 

device is a significant advantage.

• The effect of environmental conditions while recording (such as recording 

room temperature, air circulation effect etc.) on the accuracy of the results 

should be investigated.

• Twenty children and some adults were enrolled in this study. It would be 

helpful to validate the methods on a larger number of children and adults.

• More extensive digital signal processing could be performed on the 

respiration signals to diagnose respiration-related illnesses, such as apnea, 

pneumonia and asthma.
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