
A machine independent implementation of a data storage
description language.

ZORNER, Anne L.

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20600/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

ZORNER, Anne L. (1987). A machine independent implementation of a data storage
description language. Doctoral, Sheffield Hallam University (United Kingdom)..

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

rMHTK
101 121 901 8

ituEPEN

111

Fines are charged at 50p per hour

1 2 FEB 2008

, r-ltv poWte
S h e ^ ,e

refe

ProQuest Number: 10701247

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com ple te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10701247

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

 fluff
USL CfW ViXfCavL

A MACHINE INDEPENDENT IMPLEMENTATION
OF A

DATA STORAGE DESCRIPTION LANGUAGE

by

Anne Louise Zorner BSc,

A thesis submitted to the Council for National
Academic Awards in partial fulfilment of the
requirements for the degree of Doctor of Philosophy

SPONSORING ESTABLISHMENT: Department of Computer Studies
Sheffield City Polytechnic

January 1987

I

'TH \

c o s n

PREFACE

I would like to dedicate this work to my family and friends without
whose patience and love the production of this thesis would have been
impossible. I would like to thank Dr. J M Kerridge of Sheffield City
Polytechnic and the Science and Engineering Research Council because
of whom the undertaking and completion of this project was feasable.
I would like to thank Jon again for being a friend and excellent
tutor and for not letting go when things were slow and rough. I would
also like to thank colleagues both at Sheffield City Polytechnic and
at the Rutherford Appleton Laboratory for having faith in me and
providing the necessary environment for the completion of this
thesis.

ABSTRACT

A Machine Independent Implementation of a Data Storage Description
Language

Anne L. Zorner

This thesis presents the methods, results and conclusions of a design
and implementation of a Data Storage Description Language (DSDL). The
DSDL chosen was the CODASYL Network DSDL. The design supports storage
independent manipulation, for access and reorganisation of
partitioned schema records, sets and indexes. The production of a
Table Generator to compile the DSDL provided the basic structure and
mechanisms of a run-time system for the support of dynamic
incremental reorganisation. The project developed storage constructs
and techniques for a machine independent Data Storage Description
Language and evaluated these ideas through an implementation.
The particular objectives of the project included the evaluation of
the efficiency of the techniques regarding the criteria of the storage space of tables and records, time for processing, and ease of
reorganisation. By developing a run-time system to control dynamic
reorganisation of a database given a new version of the storage
schema for the same database.

iii

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION .. 1
1.1 Structure of the Thesis .. 3

CHAPTER 2. DATABASE ARCHITECTURES 4
2.1 H i e r a r c h i c a l ".............. 4
2.2 Network .. 5
2.3 R e l a t i o n a l .. 7
2.4 Restructuring and Reorganisation 9

CHAPTER 3. THE CODASYL MODEL 13
3.1 The conceptual f r a m e w o r k 13
3.2 The Data Manipulation Language (D M L) 14
3.3 The Subschema/ Schema DDL 15

3.3.1 The Database Language NDL and Associated D M L 16
3.3.2 The Differences Between DDL and NDL17

CHAPTER 4. THE DATA STORAGE DESCRIPTION LANGUAGE (DSDL) 20
4.1 Historical overview .. 21
4.2 Static Functionality of the DSDL 23

4.2.1 Functional and Syntactical Description 23
4.2.2 Entity-relationship support within the DSDL 24

4.2.2.1 Storage Record organisation 24
4.2.2.2 S e t s ... 27

4.2.3 Indexes ...29
4.3 NDL conformation of the DSDL with the functional changes . . 30
4.4 The DSDL Reorganisation F a c i l i t i e s 31

4.4.1 Mapping 33
4.4.2 Storage A r e a .. 33
4.4.3 Storage R e c o r d .. 33
4.4.4 Storage set .. 34

4.5 The effect of the NDL on reorganisation - its simplifying
factors ..36

CHAPTER 5. THE EXAMPLE ..38
5.1 A Conceptual Photographic Schema 38
5.2 The Photographic Schema 39

iv

5.3 The Photographic Storage Schema 40
5.4 Version 2 of the Storage Schema 49

CHAPTER 6. THE DSDL COMPILER AND TABLE GENERATOR 52
6.1 Lexical Analysis .. 54
6.2 Syntax Analysis 55
6.3 Semantic Analysis .. 57
6.4 Table Generation .. 59
6.5 Version Analysis .. 60

CHAPTER 7. THE EXPERIMENTAL RUNTIME SYSTEM - STRUCTURE AND
I N T E R F A C E S ... 63

7.1 Introduction.. 63
7.2 The DML simulator interface 65
7.3 The DDL Structure and Interface 67
7.4 The DSDL Interface and Structures68
7.5 The Data Dictionary Structure and Interface 68
7.6 The Operating System Structure and Interface.................. 69
7.7 The DBMS s t r u cture ..69

CHAPTER 8. THE RUN-TIME SYSTEM STORAGE MECHANISM AND
REORGANISATION ... 72
8.1 Introduction.. 72
8.2 Storage Structures .. 72
8.3 Storage Mechanisms..81
8.4 Structures to support reorganisation 85
8.5 Mechanisms to support reorganisation 86

8.5.1 Storage Record Reorganisation 88
8.5.2 Set Reorganisation....................................... 89
8.5.3 Reorganisation Triggers 90

CHAPTER 9. THE EFFECTS OF REORGANISATION 91
9.1 Introduction.. 91
9.2 On the E x a m p l e ..91
9.3 On the Storage Structures and Mechanisms at Runtime 96

CHAPTER 10. CONCLUSIONS ... 99

APPENDIX A. THE PHOTOGRAPHIC S C H E M A1-1
A . 1 DDL Example S c h e m a .. 1-1

v

APPENDIX B. VERSION 1 OF THE PHOTOGRAPHIC STORAGE SCHEMA . . . 2-1

APPENDIX C. VERSION 2 OF THE PHOTOGRAPHIC STORAGE SCHEMA . . . 3-1

APPENDIX D. SCHEMA NDL ORIENTED TOKENS IGNORING COMPLICATED SET
SELECTION .. 4-1

APPENDIX E. SYNTAX G R A P H S ...5-1
E.l DSDL Overall Structure Syntax Graphs 5-1
E.2 DSDL Overall Subentry Structure Graphs 5-2

APPENDIX F. SEMANTIC ANALYSIS GRAPHS AND RULES 6-1

APPENDIX G. DML-STORE MODULAR DIAGRAMS 7-1

APPENDIX H. PAPERS WRITTEN BY THE AUTHOR 9-1

APPENDIX I. BIBLIOGRAPHY 10-1

APPENDIX J. DETAILS OF RELATED STUDIES 10-8

vi

LIST OF ILLUSTRATIONS

Figure 1. The Hierarchical model 5
Figure 2. CODASYL Network - Including Many to Many and Cyclic

Relationships .. 6
Figure 3. A CODASYL DBMS Architecture 14
Figure 4. DDL Tetrahedron schema description........................ 18
Figure 5. NDL(1) Tetrahedron schema description.....................18
Figure 6. NDL(2) Tetrahedron schema description.....................19
Figure 7. 1:N Conditional Mapping of schema record Lens............24
Figure 8. Specification of link for a conditional mapping. . . . 25
Figure 9. Conditional placement of Description......................26
Figure 10. Pointer formations of a logical set occurrence 28
Figure 11. A minimum pointer combination set 28
Figure 12. An Ordered by Key Set o c c u r r e n c e 29
Figure 13. An alternative USED clause to that in Version 1 of the

Photographic Storage Schema................................30
Figure 14. Version 1 of the index I n d - m a n 36
Figure 15. An invalid specification for Version 2 of Manufacturer 36
Figure 16. Photographic Entity Diagram 39
Figure 17. Photographic Schema 40
Figure 18. Version 1 of the storage records Film, Process and

C h e m i c a l ...41
Figure 19. Version 1 of the sets Processed-by and Used-in 42
Figure 20. Legend for .. 42
Figure 21. Structure within Storage Area F-ch Version 1 43
Figure 22. Mapping and storage record specifications for Shop. 44
Figure 23. Set Inventory version 1 44
Figure 24. Structure within Storage Area M-s Version 1 45
Figure 25. Mapping Description for Cameras and Lenses Version 1 46
Figure 26. Storage records for Camera and its indexes 47
Figure 27. Structure within Storage Area Equipment.................. 48
Figure 28. Storage Area I t e m s ..49
Figure 29. Mapping for schema record I t e m 49
Figure 30. Version 2 Description of new storage records S-item and

I-item... 50
Figure 31. Version 2 of the sets C-item and L-item 50
Figure 32. New storage key index defined for I-item 51

vii

Figure 33. Version 2 of storage record Chemical 51
Figure 34. The structure of the DSDL compiler........................53
Figure 35. Lexical Analysis Output file structure 55
Figure 36. Syntax analysis Direct Access ouput file structure . . 57
Figure 37. Table Generation Output.................................... 60
Figure 38. The experimental runtime system 63
Figure 39. DML verb STORE block structure interface 66
Figure 40. Pascal block structure for DML verb STORE interface 67
Figure 41. The Storage Structures required during Input and

Output... 74
Figure 42. Physical Page Format 76
Figure 43. Specification of Prefix Map 77
Figure 44. Pointers configurations....................................81
Figure 45. Insertion into a Set Order is PRIOR, supported by

FIRST, NEXT p o i n t e r s 82
Figure 46. The reorganisation of storage record Chemical for

C h e m - 2 ...92
Figure 47. Data as inserted with Version 1 of the storage example

storage schema.. 94
Figure 48. The status of the pointers after the first access to

the L-model storage record................................. 95
Figure 49. Modular Diagram of the DML verb STORE7-1

CHAPTER 1. INTRODUCTION

The concept of the Conference on Data Systems Languages (CODASYL) was
formed during discussions of the Common Business Oriented Language
(COBOL) in 1959. By 1965 with the success of COBOL under its belt
CODASYL was looking to extend its activities; this they did by
creating the List Processing Task Force to develop list processing
capabilities for COBOL. Since the term 'list processing' did not fit
in with the concept of COBOL, the group renamed themselves the Data
Base Task Group (DBTG).

The group's first developments, the Data Description Language (DDL)
and the Data Manipulation Language (DML), the schema for data
description and the language for host access, were presented in an
interim report to the CODASYL Programming Languages Committee in
1969{l6). The revised report{l7) published in 1971 was to form the
basis of what is now known as the network database system model and
has been fundamental to several commercial implementations.

As a result of the interest stirred by the DBTG report, CODASYL, in
late 1971, formed the Data Description Languages Committee (DDLC)
whose initial role was to clarify the functionality of the schema
DDL. Two years later in 1973 the DDLC published the schema DDL as a
Journal of Development{B4}. At this time the Data Base Administration
Working Group (DBAWG), a working group of the British Computer
Society (BCS), were incorporated under the auspices of the DDLC.

It was thought to be desirable to have the description of the data
separate from the description and control of its storage criterion.
Therefore the DBAWG initiated modifications to the schema DDL to
remove those storage related aspects, which were present. The DBAWG
developed these storage constructs into a language for use by the
Data Base Administrator (DBA) which was first published as an
appendix to the 1978 DDLC Journal of Development Schema DDL {B5}.

The Data Storage Description Language (DSDL), into which this
language developed, provides the DBA with the ability to tune the
logical storage capabilities, including indexes, without affecting

the schema, subschema or application programs. The ability to
reorganise on a dynamic incremental basis was provided in the 1981
JOD{B6}. It was the aim of the project reported in this thesis to
show that this functionality was as feasible as it was desirable.

The development of a compiler/processor for the DSDL was seen as the
first aim of the project. Started in 1980 it was hoped to produce
two or more variations on the possible implementations of this
compiler/processor. The first implementation to produce tables to be
stored in some form of 'dictionary', the second as 'assembler' type
code with processors to satisfy the DML requests put to the Data Base
Management System (DBMS). Using these tables and/or code a simulated
run-time system was to be produced to investigate dynamic incremental
reorganisation.

There were various stages to the production of the run-time system.
The design of the data storage and access methods. The design and
implementation of the DBMS, the core of the run-time system. The
specification of methods by which dynamic reorganisation could be
included. Implementation of these reorganisation facilities, and
evaluation of the techniques that were required in the light of
reorganisation. Finally to investigate and possibly simulate the
effect of reorganisation on the storage structures, system structures
and access methods.

Discussions within the DBAWG led to many changes in both the syntax
and semantics of the DSDL. These changes were frequently directly
related to the correctness of the DSDL definition and as such had to
be incorporated in this implementation. This movement in the target
and complexity of functionality implied revision of the time scales
involved. During the latter stages of the compiler development and
the initial DBMS development American National Standards
Institue(ANSI) committee X3H2 produced from the 81 CODASYL DDL what
has become the Network Data Language (NDL) ANSI standard{B2}. The
ANSI version has been adopted by the International Organisation for
Standardisation (ISO) as an International Standard Database Language
NDL{B20}. The decision was taken by DBAWG to develop the DSDL toward
this possible standard. It was felt that the project reported in this
thesis could help in this adaptation if the basis was changed to NDL.

2

However this proved to be an even more mobile target, because of
which a fix was taken on the 1983 version of the ANSI-NDL{b 1}.

l.l Structure of the Thesis

Chapter 2 gives a brief description of the various types of database
model, and their Reorganisation and Restructuring capabilities, with
references to past and present implementations. Presented in Chapter
3 is the functionality of the CODASYL Model including a functional
description of the DML, DDL/NDL and DBMS. The DSDL is described in
Chapter 4 with particular detail paid to the reorganisation
capabilities provided.

The example in Chapter 5 presents the development of an application
through the design of a schema and storage schema using the DDL, and
DSDL, the effect of the NDL changes are considered, together with the
syntactical development of Version 2 of the example.

The Compiler/Table generator is presented in Chapter 6 reflecting on
the effect this detailed investigation had on the DSDL.

The run-time system is split into interface and storage mechanisms in
chapters 7 and 8, with the effect of reorganisation on the example
and run-time system storage structures discussed in-chapter 9. The
conclusions which have developed during the course of this project
are presented in chapter 10.

3

CHAPTER 2. DATABASE ARCHITECTURES

To understand the concept of a 'database' and the term 'dynamic
incremental reorganisation' it is necessary to investigate the
various types of database model. Each model is presented together
with a comparison of their access and storage methods, with
particular reference to implementations. The terms restructuring and
reorganisation are defined together with their relationships to the
models and implementations.

The term database is said to originate in the 1960's in papers
concerning defence systems presented at a symposium sponsored by the
System Development Corporation{B26}. The initial definition of the
term involved files, entries, keys, and data, but has evolved from
simply the means of data retrieval into one which involves storage,
definition, access and manipulation of data, and referential and
integrity constraints. The latter are rarely part of the integral
definition and implementation of a database system.

There are three categories of data model: hierarchical, network and
relational.

2.1 Hierarchical

The hierarchical model can be seen as a special case of the network
model, where the resultant data structure diagram is an ordered tree
or simple set (see Figure 1). Such a restricted data structure
diagram is referred to as a hierarchical definition tree. The root
nodes can be accessed in order of the hierarchical key by scanning or
directly, using either an index or by hashing. From each parent a
child record may be accessed either sequentially or via a pointer
mechanism. The Information Management System (IMS) is an
implementation of such a hierarchical system released in 1968 by
Rockwell/IBM and provides HSAM, HISAM, HIDAM, and HDAM access

4

CITY VILLAGE

COUNTY

TOWN

COUNTRY

Figure 1. The Hierarchical model

Level 3

Level 1

Level 1

methods{2,6,7,12,14,B35}. Other hierarchical implementations include
BDMS{74) and SYSTEM 2000{l2) which uses inverted files{6}.

2.2 Network

The network data model provides additional relationships over the
simple set of the hierarchy: related entity sets, cycles,
multi-participating record to set relationships and the ability to
represent many to many relationships. The representation of many to
many and cyclic relationships was fundamental to the 1981 CODASYL
network model (see Figure 2).

In CODASYL terminology a set type is the definition of the
relationship and a set is an occurrence of the set type. A record
type may participate as a tenant in many set types, but an occurrence
may not participate as a member of more than one occurrence of the
same set type. Each set may be an empty set. A set type may be owned
by the system in which case there is only one set occurrence of that
type. A cyclic relationship is one where a record type acts as owner
and possibly indirectly a member within the same cycle of sets. In
Figure 2 there are two cyclic sets, namely: the PATIENT to PATIENT
and PATIENT, DOCTOR, WARD relationships. There are also two many to
many relationships PATIENT to DOCTOR and DOCTOR to WARD. One of
these the PATIENT to DOCTOR relationship has already been broken down
into two, one to many sets using the link record P-D. Normally in

5

WARD

DOCTOR

P-D

BED PATIENT

t

Figure 2. CODASYL Network - including Many to Many and Cyclic
Relationships

the network model these relationships or set types are given names
such as DOCTORED BY, where PATIENT DOCTORED BY DOCTOR.

There may be many access paths, and the performance of the database
is dependant upon the links maintained. These paths are maintained by
the pointer/key system adopted between the owner and member(s) of the
sets - where owner and member are particular record types. Detailed
expansion of the CODASYL network model follows in Chapter 3.

The predominant disciple of the network model is IDMS {B13,B32,B34},
produced by Cullinane with a second version by International
Computers Limited (ICL). The IDMS architecture follows the CODASYL
1971 report of the DBTG. Cullinane has since upgraded it to meet the
1975 CODASYL specification. ICL upgraded their version to include
some aspects of the storage schema mentioned in the 1978 appendix to
the DDLC JOD, however, it is not known whether this includes any
dynamic reorganisation facilities. Indeed the schema still includes
area specifications, a storage facility removed from the schema to
the storage schema in 1978 as a result of DBAWG representations to

6

the DDLC. Other CODASYL network type implementations include
UNIVAC's DMS1100{B35} (based on the 1969 DBTG report) and BOEING IPAD
{B35}.

2.3 Relational

There are now many books and papers written on the subject of
relational DBMS's and models, some theoretical others performance
related. It is not possible here to develop the total concept of
relational theory merely to give substance to the storage
perspectives which will be described later. Nor can all books and
papers be referenced, however, some of those which either give an
overview of all models or performance between models are referenced,
from which references containing explicit details may be found.

The true relational model has the underlying mathematical concept of
the set-theoretic relation {B34}, which is a subset of the Cartesian
product of a list of domains. A domain is a set of values. The
members of a relation are termed a tuple, a tuple may be represented
by rows of a table, for example SQL/DS{B17} and ORACLE{B24}. All rows
should be distinct on the prime key, however, this is not always
adhered to, as in IBM's SQL/DS{B17}.

A relational DBMS is one which supports a relational model and its
access language may be based on a relational algebra or the
relational calculus. The data represented in the model is access path
independent, which is achieved by the process of normalisation. The
degree of independence is defined by conformity to one of the levels
of normalisation. Codd defined three levels of normalisation,
Boyce-Codd Normal Form is now named as a fourth {12,14}. Formal
definitions of the four normal forms may be found in {Bll}. Basically
a relation is said to have achieved fourth normal form if:

. a. every attribute in a relation is based on a simple domain, i.e.
repeating groups have been removed.

b. each non-prime attribute is fully dependent upon every key.

c. all transitive dependencies of non-prime attributes on keys is
removed.

d. any multi-valued dependencies which are not also functional
dependencies are eliminated.

Third normal form which conforms to the first three points is the
most usually adopted form. There are said to be degrees of relational
systems, conformity of such systems to the relational data model are
categorised explicitly by Schmidt and Brodie {B29} on the work of the
Relational Task Group (RTG) of the American National Standards
Institute (ANSI). Schmidt and Brodie states that a system should not
be called "relational" unless it satisfies the following minimum
subset of conditions:

a. 'All information in the database is represented as values in
tables.

b. There are no user-visible navigation links between these tables.
c. The system supports at least the select, project, and equi-join

or natural join operators of the relational algebra - in whatever
syntax is found convenient, but without resorting to commands for
iteration or recursion, and with the provision that none of these
operators is restricted by whatever..access paths have been
predefined.'

The result of this investigation of the current system functions was
the definition of a language which describes the functionality of a
'tabular relational' database system. This is called SQL after the
IBM relational query language SEQUEL (Structured English Query
Language) and its developed system SQL/DS (VM/CMS), DB2 (MVS). The
language has been produced by the ISO TC97/SC21/WG3 committee as the
International Standard, Database Language SQL{B21}.

Of hardware based database systems there appear to be three: IDM 500
(Briton Lee) {B29,12,94,95}; DIRECT (University of Wisconsin) {ll};
and CAFS (Content Addressable File Store) from ICL. The relation
language of IDM (IDL) resembles QUEL of INGRES.

It is not clear which was the first relational system, however the
Peterlee Relational Test Vehicle (PRTV) {B29,B35,12} was said to have
four versions from 1970 - 78, and must surely have been one of the
first. 1975 had seen the production of RAPID (origins STATPAK)

8

{B29,12} and MRDS/LINUS {B29,12}. Amongst the next wave were ORACLE
{B29,B34,94,95}; PASCAL/R {B29,12,74}; QBE {B29,B34,B36}; ASTRAL
{B29}; MRS {B29,12,94,95}; followed by IDAMS {B29}; IDM
{B29,12,94,95}; NOMAD and NOMAD2 {B29,B34}; RAPPORT {B29,12}; and
SQL/DS{B17} which was based on SYSTEM
R{B29,B32,B34,B35,9,10,12,14,20,67,93,94},

Relational systems use a tuple of a relation like an occurrence of a
record or a row of a table, and a primary key value could be seen as
the owner of a value based set for equivalent foreign keys. The
storage adopted by SQL/DS is not far removed from the CODASYL IDMS
logical representation, but without the set pointers, in that it puts
individual rows in pages in a dbspace, either sequentially or using
an index, where a dbspace is simply a logical collection of logical
pages taken from a storage pool of VM minidisks. The access methods
used are what it terms a relational scan, or a segment scan in System
R{9}, where the entire dbspace is searched for all records of the
table, order is immaterial, or via a user defined INDEX, which is a
b-tree type implementation stored with the table on the same pages.
Access should be, according to relational theory, through the Primary
Key{BIO,B11,B12} however this is not adhered to in SQL/DS where an
INDEX can be created on any column or group of columns, uniqueness is
not enforced and there can be more than one per table. A simpler
implementation by the Science and Engineering Research Council of
R-EXEC{66}, based on G-EXEC an earlier implementation at the NERC
(1973-1974){40}, uses the one table per file structure and predicate
calculus to access tuples from the file, where each file self
describes the table structure.

2.4 Restructuring and Reorganisation

It is common to confuse the meanings of 'to restructure' and 'to
reorganise' {75,80}, therefore it is necessary to define this
terminology in order to provide a basis for the rest of the
discussion. The most common, but most underdeveloped{89} concept is
that of restructuring the logical entities and relationships of the

9

schema. For example changing the logical structure of the schema DDL
by the addition of a column or the redefinition of a table or record
and its set access path mechanisms - in the case of the network or
hierarchical models. Obviously the underlying logical to physical
mapping is also affected as a consequence of such a restructuring.

The aim of reorganisation, however, is to improve performance by
providing hidden mechanisms and storage control to improve the access
and storage of the data. As such it should have no impact on the
logical structure of the schema or associated application programs.

Conversely a restructure implies changes to be made to the schema,
subschemas, application programs and to the storage mapping
specifications. Wilson {89} describes some of the problems latent in
the restructuring of a CODASYL type database and how neither the
structure nor the implementations at the time provided these
capabilities. In fact no implementation achieved the full
capabilities described by the CODASYL system. It was conceivable
that future CODASYL type systems would evolve further restructuring
capabilities, however the development of relational systems has
reduced the desirability of this functionality because of the
necessary complexity of network systems.

Hierarchical and Network based systems such as ICL's IDMS,
Cullinane's IDMS and IBM's IMS {89,B13} still require unloading and
reloading all or part of the database, to implement restructuring.
Restructuring is one of the desirable attributes of a Relational
system, where there are none of the restrictions of set relationships
between the third normal form relations to be maintained. Systems
such as SQL/DS, MRS, NOMAD, PRTV and RAPID all provide the facilities
required to restructure. For example in SQL/DS new tables may be
created at any time, provided the creator has the necessary
permissions, and columns may be added using the SQL command ALTER.
Columns may only be added to the end of a stored row/tuple. There are
no facilities for changing the implied domain of an attribute.

Reorganisation is the collective term by which none logical changes
which improve access and storage of data is termed. There are two
distinct types of change. First, strategy reorganisation which is the
collective term for those changes used to control the allocation of

10

record occurrences and set linkages to the storage media space.
Secondly, physical placement reorganisation which includes garbage
collection of dead space and the re-location of record occurrences to
make retrieval more efficient.

Further reorganisation has been more highly developed for network
systems. Traditionally any reorganisation that systems provided was
statically achieved via the use of unload and reload varying the new
storage criterion, strategy 2 as described by Sockut {80,81}, which
implies a block on all user access of the data. A variation of
strategy 2 is to reorganise in place (strategy 1) which also blocks
user read and update.

An alternative is to reorganise the database dynamically with usage,
which may be achieved in one of two ways. By a background concurrent
utility (strategy 4 of Sockut) which reorganises a finite part of the
database allowing access to the rest of the database. Or
incrementally as structures are referenced by the system maintaining
full user access (strategy 3). The most common functionality provided
by systems is garbage collection, many papers on reorganisation
{32,79,82,83,92} refer primarily to algorithms and modelling
techniques for performance monitoring and improvement of this type of
reorganisation.

Factors which differentiate between the types are based on the
finiteness of operation, the time of stoppage, locking and
journalising requirements and resource usage costs.

Static reorganisation is a clearly defined finite operation it
requires application software to be stopped, potentially for long
periods, however techniques such as sorting{20} may be used to
improve access performance.

Background reorganisation is a clearly defined operation with an
explicit termination point. Applications may be run concurrently as
data is reorganised however the data being reorganised must be locked
from user access, thus requiring enhanced locking and journalising to
control integrity.

11

Incremental reorganisation runs concurrently with applications, data
is reorganised, as necessary, when used, there is no explicit
termination point. This causes the most commonly used portion of the
database to be reorganised first. As will be shown later this can
add a considerable overhead to the application access if not held in
check. However the overall cost may be less than a total background
reorganisation, in overall resource usage. Not all forms of
reorganisation may be incremental, for example new indexes must be
created statically.

12

CHAPTER 3. THE CODASYL MODEL

The main reason for choosing the network architecture was the
association with and close theoretical knowledge of the DBAWG's
network data storage description language, which provided the desired
reorganisation facilities. At no time has a commercial system been
developed which provides the full range of these database
administrator facilities for dynamic incremental reorganisation.

The main elements to the CODASYL architecture are the database
management system (DBMS), the associations in the real world
described by the schema (DDL) and the storage definition (DSDL) of
the entities in the schema.

3.1 The conceptual framework

A rununit is a user activation of an application program. Using DML
statements, the rununit makes a call for data to the Database
Management System (DBMS). The DBMS has access to the information
necessary to process the request via links to the data description
and storage description as can be seen in Figure 3. The DBMS
processes the request, obtaining further information from the schema
DDL and storage schema DSDL, as required.

The DBMS then uses this information to locate the required record.
Physical Input/Output operations executed by the call to the
operating system make available to the DBMS the data required. The
data required is transferred to the User Work Area (UWA) of the
rununit originating the call. The DBMS completes the call by
providing status information on the results to the rununit.
Information may be required by the DBMS of which the rununit has no
knowledge.

13

Application A Application B Application N
Program a Program b Program n

Application program to
Subschema mapping

Subschema A Subschema B

Host Lang + DMLHost Lang
+ DML

Host Lang
+ DML

Subschema
to Schema
Mapping

Schema DDL
t
Schema
to Storage
Schema
Mapping

Storage Schema
DSDL

Operating
System

Storage
Files

Figure 3. A CODASYL DBMS Architecture

3.2 The Data Manipulation Language (DML)

In commercial systems such as IDMS the Data Manipulation Language
(DML) is normally embedded in a host language, such as COBOL. As such
it is used to READY the database, or parts thereof, for access via
the verbs FIND and GET, FETCH, MODIFY, STORE, and ERASE on records or
items and CONNECT, DISCONNECT and RECONNECT on records to sets. The

D B M S

DMCL

14

data used is then COMMITted back to the database, and exited via the
FINISH statement. Access is given to the database error conditions
and keys.

A record is selected by the use of the record selection expressions
within a FIND or FETCH. The selection expressions are used to find
the required record for example the NEXT RECORD IN THE SET. Full
details may be found in {B8) and are described in
{B11,B23,B32,B15,B22}.

3.3 The Subschema/ Schema DDL

The subschema provides the program application view of the database,
which may be the same as the schema view. Conversely it may be a
subset of the overall schema view, where the schema view could take
account of all data which may be held in the future not just that
which is currently required.

The schema DDL is used to describe a logical database, and may be
shared by many programs written in many languages. This description
is in terms of the names and characteristics of the Data Items, Data
Aggregates, Records and Sets included in the database and the
relationships that exist and must be maintained between occurrences
of those elements in the database.

Sets consist of collections of records one of which may be declared
as the owner record type with one or more member record types.

A RECORD is described in terms of data items and data aggregates.
This description is independent of any host language.

A DATA ITEM is the smallest named unit of data and may logically be
of numeric, Boolean, string or implementer defined type. Items can be
further collected into one of two kinds of data aggregate, vectors or
repeating groups. An item's type, description and source may be
specified, details of the clauses may be found in{B5,B6}

15

A vector is a one dimensional sequence of data items, all with
identical characteristics. A repeating group is a collection of data
of differing characteristics which occur more than once. The latter
facility is provided by the use of the level numbers nested within an
occurs clause, the former by the occurs clause on the same level as
the item.

A SET is defined by specifying an owner, an ordering method, error
and access control routines and member information. A set may be
either owned by a record type or the system. A record type may own
any number of sets, but an occurrence of a record, may only own one
set occurrence of a particular set type. A record occurrence may be
a member of only one set occurrence of a set type, but may also be an
owner of a different occurrence of the same set type.

The members of a set may be ordered using any of a number of record
ordering strategies (eg NEXT, PRIOR) or they can be held in a sorted
order{B28}.

Key's in the schema DDL may also be defined for a record type or a
set type with participating records ordered by keys.

3.3.1 The Database Language NDL and Associated DML

The Network Database Language (NDL) is the proposed American National
Standards Committee (ANSC) Network Database Draft Standard{B2} as
devised by the ANSC X3H2 subgroup using the CODASYL 1981 JOD {B5} as
their base document. The NDL has since become the basis for an ISO
International Standard, IS 8907{B20}.

This is based upon the CODASYL network design but the overall
database concepts have changed slightly providing a stricter, more
modular approach for the application programmer. This modularisation

16

may be used to provide an access control tool with a further tool for
transaction control.

Prior to its publication, the DBAWG had removed from the base
document for the standard , all references to storage and physical
device structures and control mechanisms. However the NDL uses the
same fundamental concepts, apart from one or two minor constructs,
and thus requires underlying logical to physical mapping, either by
implementation controls or by using some form of data storage
mapping, such as that provided by the DSDL.

3.3.2 The Differences Between DDL and NDL

During the course of conversion of the DDL into the NDL by the ANSI
X3H2 Technical Committee on Database, many changes were made. Some
'of the more important differences which affect the production of an
NDL related DSDL, rather than one based upon the current CODASYL
DSDL, are: schema record keys, conditional data items, source and
result, data check clause on items, null, level numbers for records,
and set selection. All of which occur in the DDL but are not
supported by the NDL, of these only the removal of set selection,
schema record key, and level numbers removes any real functionality
from the DSDL, although functionality is removed from the schema. The
NDL expanded the idea of sets by including the concept of a
structural set.

The removal of set selection implies that the structural application
programmer must provide the routes through and the logical
maintenance of the network. For a STORE on a record, for example, all
the set occurrences into which the automatic member has been inserted
must be the current ones of the associated set types. The
implementation of the Database Management System (DBMS), using the
DDL guidelines, performed this positioning of the set occurrences
required, obtaining the item values for the set selection clause from
the application work area.

17

The removal of the schema key phrase for a schema record means that
the DSDL can no longer directly provide indexes which support next
and prior searches on the record type. (A duplicates restriction
could also be placed on a record type for this key). However a
similar result can be achieved for the record type, if it is a single
member type in a system owned automatic set, with sorted order on the
same key. A further limitation is that unique keys cannot be
enforced.

The removal* of the level numbers implies that all the items are now
on the same level, removing the data aggregate and repeating group
facility from the schema. Thus enforcing some similarity in data
modelling techniques to the normalisation process for relational data
systems. For example, the following description of the schema record
Tetra, for the entity TETRAHEDRON, can be represented in the DDL by
one record Tetral see Figure 4.

'RECORD Tetral
01 Weight FLOAT 6,2
01 Sides OCCURS 4 TIMES02 Colour CHARACTER 10

02 Length FLOAT 6,2
02 Angle-Elev FLOAT 5,2

Figure 4. DDL Tetrahedron schema description.

In the NDL this can be represented in one of two ways either by a set
type and two record types or one large description. The former
description is given in Figure 5 by the set Atetra and the record
types Tetra2 and Side.

RECORD Tetra2
ITEM Weight FLOAT 6,2

RECORD Side
ITEM Colour CHARACTER 10
ITEM Length FLOAT 6,2
ITEM Angle-Elev FLOAT 5,2

SET Atetra
OWNER Tetra
ORDER FIRST
MEMBER Side

INSERTION MANUAL
RETENTION FIXED

Figure 5. NDL(1) Tetrahedron schema description.

18

The latter description is given in Figure 6 as the large and
cumbersome record type Tetra3.

RECORD Tetra3
ITEM Weight FLOAT 6,2
ITEM Si-Colour CHARACTER 10
ITEM Sl-Length FLOAT 6,2
ITEM Sl-Angle-Elev FLOAT 5,2
ITEM S2-Colour CHARACTER 10
ITEM S2-Length FLOAT 6,2
ITEM S2-Angle-Elev FLOAT 5,2
ITEM S3-Colour CHARACTER 10ITEM S3-Length FLOAT 6,2
ITEM S3-Angle-Elev FLOAT 5,2
ITEM S4-Colour CHARACTER 10
ITEM S4-Length FLOAT 6,2
ITEM S4-Angle-Elev FLOAT 5,2

Figure 6. NDL(2) Tetrahedron schema description.

Before 1981 there existed in the DDL the construct of 'set selection
is by STRUCTURAL constraint' each member used in this way had to have
in its specification a structural constraint clause for equality with
the owner's data items. In December 1980 the DDLC removed this
facility from the DDL. The similar functionality of the structural
set was added to the NDL as part of the INSERTION clause. If
insertion is structural, then the owner record is selected by the
DBMS to have values of specified data items equal to those of the
record to be inserted.

19

CHAPTER 4. THE DATA STORAGE DESCRIPTION LANGUAGE (DSDL)

In general terms the CODASYL Data Storage Description Language (DSDL)
defines how data described in a schema may be organised in terms of
an operating system and device independent storage environment. As
specified by the DBAWG charter, the DSDL is merely a tool for the
Database Administrator and was designed to affect the performance of
an application program but not to alter its results. There is,
however, no direct relationship between the data contained in the
database and the storage schema declarations except that the contents
of a record may affect the storage representation.

This chapter provides an historical and conceptual account of the
CODASYL DSDL and its subsequent associations with the ANSI NDL.

The DBAWG was set up jointly by the British Computer Society (BCS)
and the CODASYL Data Description Language Committee(DDLC). The
historical overview outlines the course of events from 1971 to the
present day; however it must be noted that the major thrust of this
project took account only of these changes that occurred pre-1983.

The major concepts of the DSDL are then described with reference to
the syntactical description of the DSDL which is presented in the
form of syntax graphs in Appendix E. The concepts are enhanced by
reference to non-dynamic objectives by functional categorisation,
followed by detailed discussions on records, sets and indexes. The
effect of the NDL on this functional specification is then described.

To dynamically tune the database the facilities of reorganisation, as
described in Chapter 2 are required, these aids are described with
reference to type and occurrence descriptions.

The chapter is concluded by a discussion on the effect of the NDL on
these reorganisation concepts.

20

4.1 Historical overview

Two conferences were held by the British Computer Society in 1970 and
1971, the former to discuss the 1969 CODASYL Database Task Group
(DBTG) report the latter their 1971 report. As a result of these
conferences several working groups were established by the BCS
Advanced Programming Specialist Group. The forerunner of the DBAWG
investigated "Implementations of the CODASYL DBTG proposals".

Developing these proposals further the group contacted and made
presentations to the CODASYL DDLC and Data Base Language Task Group
(DBLTG). By 1973 the group had turned its attention to the
facilities that must be provided by an implementer but were not as
yet covered. Thus the group became the "Development of the CODASYL
data base proposals". In September of that year the group presented a
paper entitled "Facilities for use by the Database Administrator" to
the DDLC. Later that year the CODASYL DDLC approved the charter{l8}:

"The DBAWG will develop tools for the use of the database
administrator to control the efficient and reliable use of the
database."

for the Data Base Administration Task Group and asked the working
group to become its nucleus. Wishing to preserve their ties with BCS
the group called itself the BCS/CODASYL DDLC Data Base Administration
Working Group (DBAWG).

In June 1975 the DBAWG produced a discursive account{4} on storage
mapping, integrity control, statistics, restructuring and
reorganisation. At this time any references to these constructs were
explicitly defined in the CODASYL Data Description Language (DDL).
The aim was therefore to remove all references to such storage
structures from the DDL.

These structures formed the base definitions of the Device Media
Control Language(DMCL). Which was later renamed the Data Storage
Description Language and published as an appendix to the DDL in
1978{B5}. The reason for the change was because there are two levels
below the schema level :

21

a. The logical description of the data storage comprising the
linkages and structures required to support the schema, provided
by the DSDL, and

b. the actual device area mappings and physical descriptions.

The DMCL provides the mapping between the DSDL descriptions and the
actual physical devices. The DMCL as a concept seen in the 1971
report of the DBTG{17} is still required in conjunction with the
DSDL, however it may be embedded in the database operating system.

The DSDL was first published in 1978 and provided mapping and
fragmentation only, no reorganisation capabilities were presented.
Further enhancements were undertaken to both the DDL and DSDL and
these were published in 1981.

Some of the facilities included in the 1981 DDL were: conditional
expressions, checks for owner and member records, Boolean and
conditional data items. Arithmetic expressions had been added but not
published. Those features which had been removed but encompassed
within the 1981 DSDL are: areas, measurement, picture clause,
structural, tuning from functional and language categories. Also
added to the 1981 DSDL was the concept of reorganisation. Altered but
unpublished is the reformed set entry syntax which eradicates the
conflict between the OWNER and MEMBER clauses. This error was
discovered during the course of this project (see Appendix E.2,F,H).

In 1985 with the demise of the CODASYL DDLC the group dropped the
term CODASYL from its name. Work progresses not only on storage
schemas, but also Access Control, Distributed Databases {45}, and
moving towards the relational arena acting as a primary source of
British comment on the ISO SQL. Storage schemas for a relational
system are also under investigation.

22

4.2 Static Functionality of the DSDL

The storage schema is divided syntactically into the entries of
storage schema, areas, mappings, storage records, sets and indexes as
shown by the syntax graphs in Appendix E. The ordering given to these
entries is shown diagramatically in Appendix E.2.

Entries for mapping, storage records and sets are subdivided into
sub-entries and then all are subdivided into clauses see Appendix E.2
and Appendix F. Functionally the storage schema can be said to be
divided into mapping, storage structures, representation, placement
and resource allocation categories. Some of these categories are
described further through their association with records, sets and
indexes.

4.2.1 Functional and Syntactical Description

The main functions of a storage schema are to control the mapping of
records to storage structure representations, to control placement
and resource allocation of the structures, and maintain the links
supporting access mechanisms. The five entries and the functionality
they provide are described briefly.

The storage schema entry merely defines the link to the schema and
the version of the storage schema. (See 4.4).

A mapping entry defines the relationship between storage records and
schema records. A schema record may be represented implicitly or
explicitly by a 1:1 mapping and / or explicitly fragmented by a
mapping to n storage records. A conditional mapping is one such that
more than one explicit mapping is used depending on some
condition(s). The schema record Lens (see Figure 7) is mapped
conditionally depending on whether it is a macro lens. This figure is
taken from the example system which is to be developed subsequently
in Chapter 5.

23

MAPPING FOR Lens
IF Macro=true THEN

STORAGE RECORDS ARE L-Model/Description,Macro
ELSE

STORAGE RECORDS ARE L-Model,Whole-desc

Figure 7. 1:N Conditional Mapping of schema record Lens.

The storage area entry identifies and defines the characteristics of
a storage area within the database. The size of this area is defined
both by the number and size of a page and whether the area is
expandable. Any type of entity may be defined as placed within an
area.

The storage record entry defines a storage record type, its contents
and the placement criteria of any occurrence of that type.

A set entry specifies how storage records are to be connected to
support a schema set.

An index entry names and specifies the name and type of an index and
its placement within a storage area. The details of storage records,
sets and indexes are now described further.

4.2.2 Entity-relationship support within the DSDL

Entities and relationships are supported in the DSDL by storage
records, sets and indexes.

4.2.2.1 Storage Record organisation

A storage record is the logical representation of the physical
description of all or a part of a schema record. Only those records
which map the whole of a schema record which are said to be mapped
1:1, may be seen to be directly accessible from the schema, however
an intelligent DBMS could identify when a subschema record maps

24

through to a storage record and therefore only return that storage
record not the whole of the schema record.

A storage record is defined in terms of the data items, its links to
other storage records (within a partitioned mapping), its placement
criteria, of, and in the, storage record, and the effects of
reorganisation on and of it.

Data items may be explicitly or implicitly represented in a storage
record, all items in a schema record may be represented implicitly or
explicitly in at least one implicit or explicit supporting record.
The position of a data item is controlled through alignment and the
format controls its representation.

Link pointers are those pointers between storage records
participating in the same multi-mapping. Link pointers are defined by
the LINK clause of the STORAGE RECORD clause. These pointers may be
direct or indirect, when there is a storage key index for the record
pointed to then that pointer is indirect, for details see 4.2.3.
These pointers must provide a closed circuit, that is from any
storage record within a multi-mapping it must be possible through one
or more other storage records to reach any other storage record of
that mapping.

An example of such a link mechanism can be seen by the following
description of the storage records L-model, Description, Macro and
Whole-desc. The mapping of schema record Lens is multi-conditional
to L-model, Description and Macro or L-model and Whole-desc (see
Figure 7)

STORAGE RECORD L Model
LINK TO DescrTption, Macro IS DIRECT
LINK TO Whole desc IS INDIRECT

STORAGE RECORD Description
LINK TO L-Model

STORAGE RECORD Macro
LINK TO L-Model

STORAGE RECORD Whole-desc
LINK TO L-Model

Figure 8. Specification of link for a conditional mapping.

25

The implication of the INDIRECT on Whole-desc is that Whole-desc will
have an index which is used as its storage key index.

Placement of the data items within a record is ordered as within the
storage record definition and specified, justified and aligned
depending on the clauses of the data subentry.

A storage record may be assigned to an area and optionally page tuned
by means of gross placement and fine tuning. The particular strategy
of placement may be chosen to be dependent on values within the
schema record, this is controlled by the surrounding IF (condition)
THEN placement of the Placement Subentry. For example:

STORAGE RECORD Description
LINK TO L-Model
IF Type='ZOOM' THEN

DENSITY IS 2 STORAGE RECORDS PER PAGE
PLACEMENT IS SEQUENTIAL ASCENDING Upper
WITHIN Equipment FROM PAGE 1000 THRU 6000

ELSE
DENSITY IS 6 STORAGE RECORDS PER PAGE
PLACEMENT IS SEQUENTIAL ASCENDING Lower
WITHIN Equipment FROM PAGE 1 THRU 999

Figure 9. Conditional placement of Description.

Placement is calculated subject to the fine and gross placement
criteria subject to the density specifications. However if the fine
adjustments, specified by CALC, CLUSTERED or SEQUENTIAL cannot be
adhered to then placement is subject to the gross placement criteria
of the WITHIN clause. This can occur when there is insufficient
space on the page where the record should have been placed.

CALC placement as specified by the CALC clause is calculated from a
defined or implied routine, for dispersion randomly about the page
range of the WITHIN clause, if specified. This method provides for
the fastest retrieval of ad hoc queries provided all parameters of
the function are known.

CLUSTERED placement as specified by the CLUSTERED clause provides
clustering via a set. If a schema record is the first of its type
within that set occurrence then it is placed near the owner, if NEAR
OWNER was specified, then the storage record chosen is the one which
acts as the destination of pointers. If a storage record of the • same
type already exists as a member of this set occurrence then the

storage record will, if possible, be placed on the same page as
another of the same type representing its closest position in the set
order. Otherwise placement is implementer defined. An ad hoc find on
a clustered record could be very expensive if no occurrence is known.

SEQUENTIAL placement specified within a storage record description
(Figure 9) ensures that within the specified page range subject to
the density specifications any record of that type must be stored in
such a way that the system may retrieve those records in the manner
specified by the ascending/descending key sequence. This storage
method need not be physical but may be kept logically by the system.
To retrieve such a record may or may not prove to be expensive.

In fragmenting a record to allow optimal retrieval, the benefits must
be weighed against the cost required to recombine such a record,
taking into account the efficiency of any optimiser.

4.2.2.2 Sets

Relationships are defined in the schema by sets, which must be
supported by the storage schema. The means to support the order and
content of a set occurrence is defined in a storage set definition by
means of pointers, indexes or identifier values.

Two types of sets may be defined: value based or pointer based sets.
Value based sets are connected only at request time, pointer based
sets are connected by a combination of logical or physical pointers
and indexes.

Such connections may be direct or indirect, where indirect implies
the support of a storage key index. The storage allocation for a
pointer may be fixed or dynamic. Dynamic implies that no physical
record space is retained in anticipation of the record having a set
where as fixed allocation implies that space is created for the
pointer even if the record is not a member of that set type. The
types of pointer are shown in Figure 10.

27

LAST

FIRST

OWNER OWNEROWNER
NEXT NEXT NEXT

PRIOR PRIOR PRIOR
MEMBERMEMBER MEMBER

OWNER

Figure 10. Pointer formations of a logical set occurrence

To support the order of a set occurrence as specified in the schema
DDL (see Chapter 3) at least the minimal set of pointers and indexes
must be defined. One such minimal set for a non-singular set is an
index pointed to by the owner which supports every member record type
and owner pointers for each member (Figure 11)

OWNER h-

INDEX

Member kx Member A. Member Bx

Figure 11. A minimum pointer combination set

The combinations of pointers must be used carefully when supporting
the order of a set, it is possible to provide support which will be
detrimental to the speed of retrieval. For example a set is
completely linked when each member has a prior pointer and the owner
has a last pointer. However if it is used to support a set whose
order is ascending on a key then to find the first member of the set
and follow its sequence requires a highly intelligent system to
perform efficiently. In Figure 12 we see that having found the owner

28

the first record may only be found after passing through the entire
chain. It should be remembered also that this simple pass is further
complicated by fragmenting the schema records into storage records
and the linking provided between them, an expansion of these problems
is provided in Chapter 9.

LAST

PRIOR
MEMBER
KEY=aaa PRIOR

OWNER

MEMBER
KEY=bac PRIOR

MEMBER
KEY=bcc

Figure 12. An Ordered by Key Set occurrence

4.2.3 Indexes

There are two types of schema key: those specified to support a
schema record and those to support the order within a set occurrence,
both types are supported in the storage schema by indexes.

There are three types of indexes; storage key, record key and set
indexes.

Storage key indexes are used to support indirect addressing. A
storage key points directly to the storage record it is defined as
supporting, this index supports only one storage record type. Any
storage record linked indirectly to this storage record will not be
affected should the record be moved.

Record key indexes support schema record keys or keyed access to
schema records using any combination of schema data items, which may
imply some order. The latter two providing extra functionality for
system record retrieval to that provided by the schema.

Set indexes support schema set representation. Options allow omitted
member types, different key types such as the use of sort keys and
search keys. 29

The specification of the USED clause given in Figure 13 is correct
according to the syntax and semantics of the DSDL. As the set
Manufactures is sorted so all the rules defined in the storage schema
(including updates up to December 1980) are adhered to, however after
recent debate with the members of the DBAWG it was difficult to see
whether the format in the figure is correct or desirable.

USED FOR SET Manufactures
MEMBER Camera

KEY Model
MEMBER Lens
MEMBER Film

KEY

Figure 13. An alternative USED clause to that in Version 1 of
the Photographic Storage Schema.

The stored representation of an index is implementer defined however
an index is considered to be a sequence of key/pointer pairs or
pointers only if no key is involved.

4.3 NDL conformation of the DSDL with the functional changes

As stated in Chapter 3 historically the NDL has as its base the
CODASYL DDL, consequently the DBAWG felt it necessary to provide a
DSDL which could support a schema defined in NDL. 3.3.2 discussed
the changes that were made to produce the NDL, these changes are now
discussed as to their affect on the DSDL, and consequently the
changes to the DSDL that were necessary.

Facilities which were removed included: schema record keys, set
selection and level numbers. The structural set was the main
addition.

Schema record keys were supported by the SCHEMA KEY option of the
RECORD option of the USED clause. These keys provided a direct link
between record access and the indexes of the storage schema, any link
between records and indexes for records must now be calculated by an
optimiser.

30

Set selection of the schema provided logical access routes which had
to be maintained by the DBMS. The cascade effect of this automatic
search and selection had a definite effect on reorganisation, this
will be described later in 4.5.

The use of level numbers in the DATA subentry of STORAGE RECORD,
enabled the DBA to specify a part of a hierarchy/repeating group with
or without specifying individual data items, now the specification of
DATA ALL is only at the whole storage record and therefore whole
schema record level.

The initial removal of the structural constraint concept by the DDLC
caused the value based option for a storage set to have a tenuous
place in the storage schema. The rewrite of the syntax rules of SET
for value based sets was not resolved. The replacement of insertion
by structural set in the NDL provided an excellent hook for value
based sets. The main syntax rule specified that value based could
only be used if each MEMBER clause of the set type

a. as a structural specification and

b. has a retention clause for specifying FIXED or MANDATORY.

It is not necessary to have a structural set supported by a value
based rather than a pointer based structure.

4.4 The DSDL Reorganisation Facilities

'Reorganisation' is the ability to alter the physical structure or
access support mechanisms of the database. These changes have already
been categorised in Chapter 2 into two types of reorganisation;
Strategic and Physical Placement and the methods by which these
changes are performed were described as STATIC, DYNAMIC BACKGROUND
and DYNAMIC INCREMENTAL reorganisations.

The specifications of the 1981 CODASYL DSDL have been defined so it
is possible to use strategic reorganisation and each method of

reorganisation as circumstances dictate. The separation into logical
and physical description by schema and storage schema provides the
necessary environment for both static and dynamic reorganisation to
be performed without affecting the logical structure or application
programmes.

The DSDL uses what are termed 'versions' of a storage schema to
enable a system to provide reorganisation. A DSDL has a syntactical
construct called a VERSION clause. A reorganisable object when
initially defined is given a version number which is equivalent to
the current version number of the storage schema via a VERSION
clause. The current version of a storage schema contains all versions
of the object definitions, and the new changed definitions. An
object's definition may not change between versions unless it is
given the new version number. A version of an object may not be
omitted from a storage schema unless all previous definitions are
omitted and there are no objects currently stored using that version.
However, areas must be statically changed as they do not have
versions.

With this version control the DSDL provides the following types of
strategic reorganisation.

a. Changes to the mapping of record types on to storage areas,
including fragmentation, distribution and data item storage
specifications.

b. Changes to the mapping of set types on to storage areas
including, access through the storage structure of a set type and
the ORDER and SORTED clause storage structures.

c. Changes to the mapping of record occurrences and indexes onto
storage areas including, record and index occurrence placement.

d. Changes to the placement of objects relevant to each other.

The DSDL does not provide the means by which garbage collection and
index compaction may be controlled.

32

These changes are now explored by means of the functional
descriptions of the objects: Mapping, storage area, storage record,
set and index, the triggers of reorganisation of objects will be
explored in Chapter 8.

4.4.1 Mapping

MAPPING controls the mapping of storage records to schema records. A
new mapping may be an extension of an old mapping or a replacement.
Unconditional may become conditional, simple one to one may be
fragmented. Any new storage record participating in a mapping must be
defined as the object of a storage record entry. The new mapping may
also cause new versions of; sets for which this record is a member,
indexes used for this schema record, and any storage record which now
participates in a more complicated mapping.

4.4.2 Storage Area

A change to a storage area must be incorporated immediately, this is •
a static reorganisation, but may be done in background (strategy 4 of
Sockut) provided it is defined before population.

4.4.3 Storage Record

There are three types of change for a storage record which leads to
reorganisation; changed linkages, placement and data storage
description. If a storage record now participates in a group or
enhanced group mapping then links have to be defined to complete the
group -linkage. Any indirect pointers to new storage records would
require the definition of new storage key indexes. The number of

pointers reserved may change should the number of pointers declared
as "allocation dynamic" be altered.

There are no restrictions other than the normal DSDL static rules
that a change of placement must abide to. Changes may be to either or
both of the gross or fine placement strategies/ for example a
different area or SEQUENTIAL changed to CALC. Unconditional placement
may become conditional to relieve storage pressure points.

Data storage description is also only limited to schema definition
restrictions, in that a record could include more or less all of,
specify transformations for and include filler space between the
items. The space occupied by the record could change, thus implying
a change in placement.

All the types of change to a storage record, basically imply a
re-calculation of the storage record, unless complicated
pre-optimisation is performed.

4.4.4 Storage set

The definition changes to a storage set are based around the linkage
mechanisms adopted and the storage records that are used as the
containers of the pointers. A set may be changed from value based to
hard linkage based, the linkages may be all pointers or a mixture of
index(es) and pointers. The storage records which act as the
destination and location of the pointers may be changed to others of
a mapping or replaced entirely. Whether the pointers always occupy
space is dependant on the allocation method specified for each
POINTER clause. If the destination record pointer type is changed to
indirect a storage key index specification is required.

There are four parts to an index specification; the naming clause,
PLACEMENT clause, USED clause and WITHIN storage area clause. The
rules for reorganisation state that any new version of an index must
contain an identical USED clause (see 3.7.1 INDEX Syntax Rule for
Reorganisation 4{B6}), the other clauses may all be changed. Only

those indexes used for a non-singular set may be reorganised
dynamically, all other forms must be reorganised statically or in the
background.

Fine placement changes may be specified for indexes used to support a
non-singular set. The Gross placement within an area (and optional
page range) may be specified for all types of indexes, but only those
used to support a non-singular set may specify STORAGE AREA OF OWNER.

The necessity for an identical USED clause to be specified has some
unforeseen implications, for example any storage record which
participates as a destination record for a DIRECT POINTER from an
index used for RECORD, may not later be changed to be the destination
of indirect pointers from anywhere.

Those records which have an index with the option USED FOR RECORD
specified may not be changed to a new mapping, unless a method of
removing indexes is provided. This is because an object cannot be
removed from the storage schema until there are no occurrences using
that version's description, and an index once created can merely have
new versions which for example have a different placement strategy.

Let us take a schema record Shop and map that onto two storage
records Gen-det and S-addr. A schema key Shop-code for Shop can be
supported by the index Ind-shop, with direct pointers to the storage
record Gen-det. In version 2 another set named Inventory needs
reorganising and may well require the owner record Shop to be moved
about. For this purpose a storage key index is defined for Gen-det.
This would then imply that pointers to Gen-det in the schema key
index Ind-shop would have to be changed to be indirect, a possibility
not allowed for in the rules which govern the USED clause.

To show another example of this inflexibility let us say that in
version 1 we have a default mapping for the schema record
Manufacturer and an index which is USED FOR RECORD Manufacturer as in
Figure 14 The default MAPPING is MAPPING FOR Manufacturer STORAGE
RECORD Manufacturer.

35

INDEX Ind-man
USED FOR RECORD Manufacturer

SCHEMA KEY Manu-code
WITHIN M-s

Figure 14. Version 1 of the index Ind-man

For Version 2 we try to create a new mapping for Manufacturer
(Figure 15) using the storage records Man-addr and Man-det and then
change the index to point to the new storage record Man-addr.

MAPPING VERSION 2 FOR Manufacturer
STORAGE RECORD NAME Man-addr,Man-det

INDEX Ind-man VERSION 2
USED FOR RECORD Manufacturer

SCHEMA KEY Manucode
POINTER TO Man-addr

Figure 15. An invalid specification for Version 2 of
Manufacturer

However this has involved changing the USED clause to include a
POINTER part, which according to the rules of reorganisation is not
allowed, however recent discussions of the DBAWG agreed that this
inflexibility was not desirable and that merely the type of index
should not be changeable. For example Ind-man created to be used to
support the schema key Manucode could not be changed to be USED FOR
STORAGE KEY on Manufacturer.

4.5 The effect of the NDL on reorganisation - its simplifying
factors

As was described in 4.3 the changes required of a DSDL to support the
NDL rather than the DDL were few. The effect of the NDL on the
reorganisation facilities provided by the DSDL was merely
consequential, in that the removal of set selection from the NDL
removed the automatic search criterion for the current set. When a
system has to provide navigation through the sets to find the current

set then there was the possibility of providing set reorganisation of
the pointers involved, which could cascade through all the records of
the set occurrences in question. One of the reasons for this is the
necessity for preserving the connectivity of the set occurrences.
Therefore one of the ways in which reorganisation could be
detrimental to an insert command is removed. Detail of the trigger
effect one reorganisation may have on another is provided in Chapter
8.

37

CHAPTER 5. THE EXAMPLE

5.1 A Conceptual Photographic Schema

It is hoped that by providing an example of sufficient complexity the
major facilities, together with their advantages and disadvantages
may be demonstrated. The wish of the author is that the unusual
nature of the example, a pet subject, should not deter a reader from
understanding the complexities but provide an interesting background.
The nature of the example has been adapted to demonstrate the
facilities of the DSDL, but not to describe a complete application
development.

There are many entities which could be included in an example based
upon photographic supplies and suppliers. The entities; Camera, Lens,
Film, Chemical, Manufacturer and Shop have been chosen to best
demonstrate the features and capabilities of the DSDL. However, all
possible relationships between the entities have not been fully
developed as this would only confuse.

Lenses may have different Mounts which allow them to be used on
different Cameras. Processability of Films by Chemicals is dependant
only on manufacturers' specifications as to suitability for example
colour slide films of the E-6 type should be processed only by
chemicals of the E-6 process.

All these items form part of the inventory of at least one shop.

All Items are produced by a single Manufacturer, but a Manufacturer
may produce a variety of Items.

These entities and relationships together form the photographic
schema which is represented in the Figure 16 and expanded into the
specification of the schema DDL given in Appendix A.

38

Shop

Film ChemicalCamera Lens

Manufacturer

Figure 16. Photographic Entity Diagram

5.2 The Photographic Schema

In order to map the photographic entity diagram in Figure 16 onto a
network schema each many to many relationships must be converted to a
one to many relationship. Each relationship may then be represented
by a set.

The environment from which this example is taken includes many other
entities and relationships, these include such entities as
distributors and sub-manufacturers. Some manufacturers often produce
the same items but under different labels. These relationships are
ignored here. In addition not all relationships between entities
present in the schema are mapped. The relationships which are present
in the conceptual schema are represented as sets in the specification
of the Photographic Schema (Figure 17)

39

Shop
Supplied-by

Inventory
Item

C-item L-item F-item Ch-item
Camera Lens Film Chemical Supplier

used-inused-on
processeduses

Mount Process

manufactures
Manufacturer supplies-to

Figure 17. Photographic Schema

There are factors other than the representation of entities and
relationships which affect the specification of the DSDL. These
include the specification of schema keys for records and order on
members of a set. Set selection however may be simulated by
occurrence driven selection, and since it has been removed from the
NDL we will not consider it in this example. Schema keys for records
have also been removed from the NDL but these are a feature it was
felt necessitated inclusion here, in order to provide simple direct
keyed access. The ordering and key types for sets have been chosen
with the specific intent of enabling a full description of the
complexities and effect of reorganisation to be demonstrated.

5.3 The Photographic Storage Schema

It is envisaged that a storage schema could be designed in order to
improve the access times for queries, or the storage of records, or

40

both. However the time required to store records might be sacrificed
to improve retrieval times. Let us say that for this example we wish
to provide a.retrieval oriented database. Some of the queries could
be :"What chemicals can I use to process this film?" "What can I
purchase in that shop?"; "What lenses can I buy for this camera?".
These queries could be refined using item values for selection
criteria.

Let us first examine the query "What chemicals can I use to process
this film?" In order to find the chemicals we need first to locate
the record which details which type of film it is that we wish to
process. The records Film, Process and Chemical are simple records
for which we will default the mapping of each onto its default
storage record. The entry is through the Film and therefore we will
use CALC placement for quick retrieval of the record Film. To ensure
that the Process records are near by that can be used on this film,
we use set CLUSTERING near owner via the set Processed-by, and store
the Chemical records so that they may be found through the set
Used-in or scanned using the SEQUENTIAL order of Type and Make.

STORAGE RECORD Film
DENSITY ONE STORAGE RECORD PER 3 PAGES
PLACEMENT CALC USING ASA
WITHIN M-s FROM 1 THRU 4999
DATA ALL

STORAGE RECORD Process
DENSITY 3 RECORDS PER PAGE
PLACEMENT IS CLUSTERED VIA SET Processed-by
NEAR OWNER
WITHIN F-ch FROM 1 THRU 4999
DATA ALL

STORAGE RECORD Chemical
PLACEMENT IS SEQUENTIAL ASCENDING Type, Make
WITHIN F-ch FROM 5000 THRU 9999
DATA ALL

Figure 18. Version 1 of the storage records Film, Process and
Chemical

If the query had merely requested the process by which this film
could be developed, then the query should be answerable from the
Process record without recall to the Chemical records.

The records within the set Processed-by are stored in the default
order with the simplest link mechanism of FIRST and NEXT pointers.

41

The details of the Chemical is then found by retrieving the owner of
the set that this Process is Used-in.

SET Processed-by
OWNER

STORAGE RECORD Film
POINTER FOR FIRST MEMBER
STORAGE RECORD Process
POINTER FOR NEXT

SET Used-in
OWNER

STORAGE RECORD Chemical
POINTER FOR FIRST

MEMBER
STORAGE RECORD Process
POINTER FOR NEXT

Figure 19. Version 1 of the sets Processed-by and Used-in

The storage area mapping then looks like that depicted in Figure 21
in the storage area F-ch, where all Films, Chemicals and the linking
Process are stored. The legend given in Figure 20 identifies the
characters used to define the pointers for the storage records in the
figures. Figure 21, Figure 24, and Figure 27 detail the storage of
records within the areas as defined for version 1 of the example
storage schema(see Appendix B). The storage area is depicted by the
large box inside the figure, in which each schema record is depicted
by a box internal to the storage area. A mapping to the schema
record, is then represented internally by its constituent storage
records and the links between them. At this stage no record is
divided across storage areas. Set linkages are represented by FIRST,
LAST, NEXT and PRIOR pointers or the destination record for all OWNER
pointers. Those pointers which are across storage areas are named
externally to the storage area box but internal to the figures.

0 - Owner
F - First N - Next
L - Last P - Prior

I - Index
D - destination

Figure 20. Legend for Figure 21 Figure 24 Figure 27

42

F-ch 10000 Pages
Film

-♦F-item
-♦F-item
— F-item-♦•Manufactures
-♦Manufacturer
— Manufactures

Processed-byProcessed-by
Process

Used-in
Chemical

-♦Ch-item
— Ch-item -♦Manufactures
-♦Manufacturer
— Manufactures

CLUSTERED N
Processed-by

SEQUENTIAL F

CALCASA

Process

Chemical

Film

Figure 21. Structure within Storage Area F-ch Version 1

Let us examine the necessary criterion for a storage schema which
supports the query "What items can be purchased in that shop?".
Another way of looking at the query is to say "What is that shop's
inventory?". Let the query be supported by access from the Shop
record but that all the necessary information for this query can be
satisfied by access to the Item records in the set Inventory. This
should just produce a list of the items but no details. The details

43

may be found by locating the owners, the actual Items, through the
sets F-item, C-item, Ch-item and L-item.

The shop could be found either through its Town or Chainname by
splitting the record into two storage records, Gen-det and S-addr.
Let Gen-det hold the general information such as the chainname of the
shop and the VAT number, and S-addr all the address information.

MAPPING FOR ShopSTORAGE RECORDS ARE C-model,Mod-det
STORAGE RECORD NAME IS Gen-det

LINK TO S-addr IS DIRECT
PLACEMENT IS CALC Chain USING Chainname
WITHIN M-s FROM 500 THRU 999

. 01 Chainname

STORAGE RECORD NAME IS S-addr
LINK TO Gen-det
PLACEMENT IS CALC Town USING Town
WITHIN M-s FROM 500 THRU 999
01 Address

DATA ALL

Figure 22. Mapping and storage record specifications for Shop.

Both storage record types are placed in M-s, the area that holds the
information on Manufacturers, Shops and Inventory information.

Having found the Shop, using the CALC key Chainname, the set
Inventory is searched. The set can be searched in Item-code order,
the defined order as specified in the schema, either ascending or
descending because a full pointer specification in the storage schema
can be specified as in Figure 23

SET Inventory
OWNER

STORAGE RECORD Gen-det
POINTER FOR FIRST,LAST MEMBER
DESTINATION OF DIRECT POINTERS

MEMBERSTORAGE RECORD Item
POINTER FOR NEXT,PRIOR TENANT
DESTINATION OF DIRECT POINTERS

Figure 23. Set Inventory version 1

A similar query "Which shops does a Manufacturer supply?" has the
same format, although this time a different placement strategy has
been used. The intermediate record Supplier must be used to fulfil

44

the many to many mapping between Manufacturer and Shop. The resultant
storage area configuration is then given in Figure 24.

M-s 1000 Pages Expandable
Manufacturer
Manufacturer

SEQUENTIAL

tt
Supplies-to

Supplier
Supplier

Man-index

Ind-man
Manu-code

Supplies-to

CLUSTERED NO
Supplies-to

NP

Supplied-by
Shop
S-addr 4,4,

CALC L
Town

Gen-det u
CALC F

ChainnameFL

Item
Inventory

Item

tt

Supplied-by

Ind-shop

Shop-code

CLUSTERED
Inventory

NP
NP

-♦Manufactures
-Manufactures

-♦■F-item
F-item

-♦CameraC-item
-♦L-item
-♦Lens
L-item

-♦Ch-item
Ch-item

Figure 24. Structure within Storage Area M-s Version 1.

45

For our last query we will examine the query "What lenses can I buy
for this Camera" in order to discover whether Tamron produce a Lens
to fit my Camera. The link between Camera and Lens as shown in
Figure 16 is many to many and had to be replaced in Figure 17 by the
two sets Uses and Used-on, where Camera Uses Mount and Lens is
Used-on Mount. The set name Used-on is required to represent both
fixed and separate mounted lenses. It is likely that many types of
query will require entry through Cameras and Lens', to this end each
has a complicated mapping allowing storage and possible retrieval
using CALC keys via Mode or Model for Camera and via Model or Min-max
for Lens.

MAPPING FOR Camera
STORAGE RECORDS ARE C-model,Mod-det

MAPPING FOR Lens
IF Macro= 'TRUE1THEN STORAGE RECORDS ARE L-model,Description,Macro
ELSE STORAGE RECORDS ARE L-model,Wholedesc

Figure 25. Mapping Description for Cameras and Lenses Version 1

To enable this multi-mode retrieval, multiple mappings were used (see
Figure 25). In Figure 26 the storage records and indexes that are
required to support the mapping of Lens are shown.

46

STORAGE RECORD C-model
LINK TO Mod-det
PLACEMENT IS CALC Mode USING Mode
WITHIN Equipment FROM 1 THRU 499
01 Brand-name
01 Model
01 Mode OCCURS
01 Rec-retail-prc

STORAGE RECORD Mod-det
LINK TO C-model
DENSITY IS 5 STORAGE RECORDS PER PAGE
PLACEMENT IS CALC Model2 USING Model
WITHIN Equipment FROM 499 THRU 998
01 Model
01 ASA-range

DATA ALL
01 Speed-range

DATA ALL
01 Flash-sync-speed OCCURS
01 Rec-Retail-prc

INDEX Cit-index
PLACEMENT IS NEAR OWNER DISPLACEMENT 2 PAGES
USED FOR SET C-item LINK TO OWNER
WITHIN STORAGE AREA OF OWNER

INDEX Ind-cam
USED FOR RECORD Camera

SCHEMA KEY C-name
POINTER IS DIRECT TO Mod-det

WITHIN Equipment

Figure 26. Storage records for Camera and its indexes

If a similar exercise is done for schema records Mount and Lens
producing the syntax as in Appendix B, then we could represent the
resulting structure of the storage area Equipment and the object
placement within it as in Figure 27.

47

EQUIPMENT 9000 Pages
Camera

-♦Manufactures
-►Manufacturer
— Manufactures

Cit-index
-►C-item
— C-item

Ind-cam

UsesUses
Mount

Used-onUsed-on
LENS

Lit-indexL-model
-►L-item
— L-item
-►Manufactures

■Wdesc-indWhole-desc

SEQUENTIAL

-►Maufacturer— Manufactures
-►Manufacturer
— Manufactures

Macro 4-

St key

C-name

CALC
Min-max

CALC
Model2

CLUSTERED
Uses

SEQUENTIAL

CALC FD
Models

CALC
Model

Mount N

Mod-det 4̂-

C-model

Figure 27. Structure within Storage Area Equipment.

48

5.4 Version 2 of the Storage Schema

Let us now investigate the syntax change requirements for two types
of performance tuning. The first is that storage area M-s has become
overcrowded, the second that the access time required to find where a
particular chemical can be bought is too great.

The former requires that some record type, or part of, be removed
from the area M-s. From Figure 24 we can see the possible records and
indexes that could be involved. Since the other areas are possibly
full enough we will create a new storage area. Let this storage area
be named Items, with the definition as specified in Figure 28

STORAGE AREA Items
INITIAL SIZE IS 1000 PAGES

EXPANDABLE
PAGE SIZE IS 256 WORDS

Figure 28. Storage Area Items

In order to populate this area and relieve the pressure within M-s,
the record type Item was chosen for reorganisation. However this
record has close links with the schema record Shop through the set
Inventory. It was therefore decided to create a new multiple mapping
for Item(see Figure 29).

MAPPING VERSION 2 FOR Item
STORAGE RECORDS ARE S-item, I-item

Figure 29. Mapping for schema record Item

The two storage records S-item and I-item are defined so that S-item
stays near the Shop and I-item is placed in the new area. Neither
could be left to default, since by default all items would be in each
storage record, and this would not relieve the space. The definitions
for the two storage records are given in Figure 30.

49

STORAGE RECORD S-item VERSION 2
LINK TO I-item IS INDIRECT
PLACEMENT CLUSTERED VIA SET Inventory

NEAR OWNER
WITHIN M-s
S-name
S-code-no
S-price

STORAGE RECORD I-item VERSION 2
LINK TO S-item IS DIRECT
PLACEMENT IS

CALC Calclcode USING Item-code
WITHIN Items
Item-type
Item-code

Figure 30. Version 2 Description of new storage records S-item
and I-item.

The definition of the mapping of Item requires that some set
definitions require redefining. This is due to the explicit use of
the destination of set pointers being defined in storage record Item
version 1. Any new record of the type Item to be stored will be
stored as the 2 storage records S-item and I-item, where I-item has a
storage key index associated with it. The destination clauses of the
affected sets must therefore be changed to point to S-item or I-item
either implicitly or explicitly. The implicit record is S-item, which
is the record first in the list in the mapping set. The new sets for
C-item and L-item are specified in Figure 31 and implicitly, similar
alterations for the sets Ch-item and F-item as for C-item.

SET C-item VERSION 2
OWNER

STORAGE RECORD C-model
POINTER FOR INDEX Cit-index
DESTINATION OF DIRECT POINTERS

MEMBER
STORAGE RECORD S-item

POINTER FOR INDEX Cit-index, OWNER
SET L-item VERSION 2

OWNER
STORAGE RECORD L-model

DESTINATION OF DIRECT POINTERS
POINTER FOR INDEX Lit-index

MEMBER
STORAGE RECORD I-item

DESTINATION OF INDIRECT POINTERS
POINTER FOR INDEX Lit-index, OWNER

Figure 31. Version 2 of the sets C-item and L-item

The set Inventory has the minor change for Version 2 to point to the
new destination record S-item. The storage key index defined for
I-item is specified in Figure 32. 50

INDEX lit-indUSED FOR STORAGE KEY I-item
WITHIN Items

Figure 32. New storage key index defined for I-item

The latter type of reorganisation, that was required to improve the
access search time of the schema record Chemical arises due to the
only applicable access method being via a sequential search in
storage area F-ch from pages 5000 thru 9999. This was not thought to
be a popular enquiry.

Any change which includes the definition of multiple storage records
might require changes to the sets Used-in, Ch-item, and Manufactures.
Let us assume that the only change we wish to make is to define a new
placement criteria to Chemical, that of CALC within the new storage
area Items. The method used to do the CALC requires as input the name
of the chemical process. The resulting change is simply a new version
of the storage record Chemical(see Figure 33).

STORAGE RECORD Chemical VERSION 2
PLACEMENT IS CALC Codes USING Code
WITHIN Items FROM PAGE 500 THRU 1000
DATA ALL

Figure 33. Version 2 of storage record Chemical

The consequences of these changes will be explored in Chapter 9.

51

CHAPTER 6. THE DSDL COMPILER AND TABLE GENERATOR

The models which provide the format for a database system to
incorporate dynamic incremental reorganisation have been described in
chapters 3 and 4, the example which will be used to demonstrate a
systematic course through dynamic reorganisation was introduced in
chapter 5. Chapter 6 introduces the implementation part of this
project describing the DSDL implementation undertaken as the first
part in the production of a system to support the network database
languages.

Given the DSDL (B5) the primary target was to design a three pass
compiler, using standard compiler techniques{B16}. However due to
hardware and software limitations, in particular no universal lexical
or syntax analyser like LEX or YACC{5l) , and the quantity of
intricate semantic rules required the three passes became four:
Lexical Analysis, Syntax Analysis, Semantic Analysis and Code/Table
generation. For reorganisation it was seen that the structure of the
output of the Code/Table generation needed to be finalised before the
historical checking required for version analysis could be processed.
Version analysis therefore formed a fifth pass. The comparison of
the current storage schema and that proposed requires that the two
must be of comparable format to this end the current tables are
required together with the symbol tables from the dictionary.
Code/Table generation and version analysis formed a macro-processor
because like Pascal P-code{l,36} once the intermediate language is
obtained from the syntax analysis phase it is possible to create any
type of code or table generator as required.

The output from the version analysis becomes on initialisation into
the runtime system the new storage schema provided the reorganisation
rules were followed.

Each process does not begin unless the previous pass was error free.
Errors in lexical, syntax and semantic analysis do not call a halt to
the pass merely note their presence and find the next continuation
point. Table generation will have no errors other than of capacity.

52

Version analysis reports errors pertaining to reorganisation and
ensures that the new storage schema cannot be used.

ERROR
PRINTOUT*-

ERROR
PRINTOUT*-

ERROR
PRINTOUT*-

IF ZERO ERRORS PROCEED

IF VERSION > 1
PROCEED

ERROR
PRINTOUT

SCHEMA
TABLES

SCHEMA
TABLES

SYNTAX
ANALYSIS

SEMANTIC
ANALYSIS

LEXICAL
ANALYSIS

PRESENCE
COUNTERS

TABLE
GENERATION

PREVIOUS-VERSION-
TABLES

ANALYSIS
VERSION

SYNTAX TOKENS &
IDENTIFIER TABLES

DSDL tables
IDENTIFIER TABLES

LEXICAL TOKENS &
IDENTIFIER TABLES

SEMANTIC TOKENS &
IDENTIFIER TABLES

Storage Schema
Text

L J
KEY

PASCAL PROGRAM

j | INPUT / OUTPUT
_MACRO PROCESSOR

Figure 34. The structure of the DSDL compiler.

53

6.1 Lexical Analysis

The input to Lexical Analysis is for example the file of characters
which form the text for the example Photographic Storage Schema in
Appendix B. There were two ways in which to approach the design of
lexical analysis one to enforce type dependence on variables the
other type independence.

The latter ignores at the lexical analysis stage the types of the
identifier, adopting one symbol table where the type of an identifier
and its duplicity are realised in syntax analysis. Since a name may
be used to represent more than one type, the syntax checking for such
a symbolic language would be more complex. Names may also be used
before they are defined (by juxtaposition) as being of a particular
type.

The former adopted view required a symbol table for each identifier
type, this method solved the need to repeat the syntax/lexical
checking for duplicate names in syntax analysis. Simple syntax
juxtaposition was required to identify the types of each identifier.

The initial representation of the internal symbol code was to consist
of integers, negative for reserved words, positive for identifier
types which were followed by the symbol table code.

The numeric representation had to be changed to an internal symbol
set representation due to Pascal case statement requirements. The
types of table considered for the symbol table were hash, binary and
b+-trees{5}. At this stage it was decided that a binary tree system
would be the simplest to implement, since it was not a requirement,
it was thought, to delete symbols from the tree. The numeric symbol
of a name was created from its depth and breadth within the tree.

The output of lexical analysis was therefore the reserved word and
identifier trees, and the symbol stream.

54

PAGES

1 Startpage : Description of contents of file

2 Lexical analysis output code

N

N+l Reserved word tree
(for syntax analysis error production)

M

M+l Identifier trees
P

Figure 35. Lexical Analysis Output file structure

6.2 Syntax Analysis

Syntax analysis checks the symbol stream and produces a syntactically
correct reduced symbolic representation of the DSDL source text. It
requires as input a file which contains the symbols, reserved word
tree and identifier trees, and produces as output a file containing
the representation of the DSDL and the identifier and reserved word
trees.

The file is direct access and controlled via the first page where the
internal structures of the file are described.

The input symbols are of the form described as output from lexical
analysis. They are passed through a syntax checker, constructed from
the syntax of the DSDL grammar. Tables were produced to check that
the grammar was LL(1), with a few suggestions to DBAWG of alterations
this was achieved, and the results passed as papers (Appendix H) to
the DBAWG.

55

The syntax of the DSDL can be seen from the graphs (Appendix E,F) to
be logically divided into entries, subentries, clauses and or
phrases. Once these entries had unique starting points (from LL(1)
derivation) they provided the structure for the syntax analyser.

The main routine is simply :

Storage Schema Entry;
Mapping Entry;
starters = first in storage area entry
CASE symbol in starters

area: storage area entry (starters);
record: storage record entry (starters);
set: set Entry (starters);
index: index entry (starters)

end;

The starters are those reserved word or identifier symbols which
represent those words which are valid next in the syntax. The graphs
(see Appendix E) were used in conjunction with LL(1) grammar theory
to obtain the possible starters, for example those following mapping
entry were different to those following an index entry. The starters
were therefore controlled on exit from an entry.

In places within the symbol stream are structures called conditions
they have the same formulae throughout the DSDL, and were treated as
a separate routine. The syntax for a condition was changed for the
DDL in 1980 to include arithmetic expressions. The resulting syntax
was not LL(1) and therefore required an intermediary rollback
facility. Implementation of the checking of this syntax was via a
stack.

The reserved word and identifier trees required by lexical analysis
were passed to syntax analysis for use in error analysis, they then
form part of the output to semantic analysis.

The output file is of very similar structure to the input file except
that conditions and subscripts are now kept as separate tables within
the file.

56

t

FIRST PAGE

Literals for within sets

The Condition Table

The pages containing
the Identifier Trees

Idtreej 3

Figure 36. Syntax analysis Direct Access ouput file structure

Literal page
Block number
Idtrees Block

numbers

Subscript Table

DSDL
Pseudo Code

Literal page

Condition Page

Idtreej

6.3 Semantic Analysis

As has been described in Syntax Analysis the structure of the input
file is formed from a string of integers which are mapped to form, a
first control page, the syntax and identifier trees, the condition
and subscript table and the symbol stream itself. Also required as
input to semantic analysis are the schema tables. These may be
accessed via internally declared routines or else by the use of the
DBMS routines. To simplify the procedure, since the DBMS routines had
not been defined it was decided to keep the routines internal but
such that they could easily be replaced by calls to the DBMS since

57

apart from these externally defined controlled tables the first three
passes form a machine independent macro processor, it is not
significant how the tables or code would be defined and stored. But
the same guidelines of syntax were used to simulate the DDL tables by
inputting a stream of integers with integer references to a list of
identifiers, and storing them in internal tables, in this way the
syntax and semantics of the schema had to be assumed to be correct.

The semantic rules were obtained from the syntax and general rules
for each entry, clause and so forth. To enable some of the rules to
be fulfilled temporary Pascal structures were created which simulated
the structure so that the connections between entries could be
checked. For example 3.5.6 LINK Syntax Rule l{B6} and rule 35 in the
graphs in Appendix F.

"Storage-record-name-1 must appear in the same STORAGE clause in a
Mapping Subentry as the storage record specified in the STORAGE
RECORD clause to which this clause is subordinate"

As has been stated in Chapter 4 and can be seen from the basic syntax
structure of the DSDL{B6}, there is no forced ordering on the
entries. For where indexes and sets are concerned, the only rule is
that no storage records may be defined after an index entry. This
forces the check of 3.7.3 USED Syntax Rule 7{B6} to be at the end.
The rule states that:

"An Index Entry defined with the SET option must be specified for
each index type named in a Set Entry POINTER clauses for the set type
named by schema-set-name-3."

It may be implemented by storing the names of those set types and the
index name required, and then when an index used for SET for that
index name is found a flag is set to say that the index was found.
The list may at the end be traversed to check that all the required
indexes were declared.

During the plotting of the rules to the syntax it was noted that some
rules of a fundamental nature were missing, others such as the Member
Ambiguity(Appendix H) were more inherent to the correctness of the
semantics.

The output of the semantic analyser is the unchanged input file.
58

6.4 Table Generation

The fourth pass produces the final form of the tables and or code in
the format required by the DBMS. Checking of the reorganisation
criteria is omitted until the fifth pass Version Analysis.

Table Generation requires as input the output file from semantic
analysis and the schema tables. The schema tables are required for
direct substitution of subscript to definition of a schema record as
defined in the schema and so that default mappings and storage
records may be defined in the storage schema tables. Initially two
forms of output were designed, tables and code since tables correlate
closer to the design of the language, it was decided to develop a
version of table generation. Another factor in the decision was the
suitability of storing the information in a type of data dictionary.
The tables are set up containing pointers to link across the tables.
These are changed to integer array references for output. The reason
for the change is the none transportability between programs of
Pascal pointers.

59

Literal page block number
Idtrees

Start_bln
No_ids_in_tree
Treename

Cond_array_blno
DSDL_table_blno
Cond index
SStaEle
Filler

Literal page

FIRST PAGE

Literals for within sets

Idtrees;

Cond Array

DSDL table

The Condition Table

Figure 37. Table Generation Output.

The output is therefore tables arranged as an array of array
structures and mapped onto a two dimensional array from a file of
integers. Integers are used here because only tokens are held in the
tables, real data is held in the identifier trees, condition and
subscript tables.

6.5 Version Analysis

Similar in structure to semantic analysis this pass is completely
dependant on the form of the output from table or code generation.
The output from table generation and the previous version of the

60

storage schema compilation are compared according to the rules of
reorganisation specified in the DSDL. The input is of code or table
orientation for both the current version and the previous version of
the storage schema. This pass is only applied to storage schemas of
version 2 or more.

The rules of reorganisation are of 2 types - the syntax rules for
reorganisation which control the creation, alteration and deletion of
the elements, and the general rules for reorganisation, most of the
general rules apply to the actions of the DBMS, however one set state
that:

"it is an error to remove an 'object' version from a storage
schema if the database contains pointers to 'objects' of that
version."

If the counters are supplied, of the current state of the contents of
the database, to version analysis then this error can be checked at
compile time rather than run-time.

This pass therefore performs a simple presence check for all objects
both for old definitions and new definitions in the proposed storage
schema. Counters relating to each object and the versions used are
provided as output from the runtime system. All an objects versions
prior to the current version must be in the new storage schema or
else their counters must be zero. If an objects version is removed
then all previous versions must also be removed from the proposed
storage schema as well as all their counters being zero.

Required also is the USED clause check, mentioned previously in
section 4.4, this should check that the format of a used
specification does not change between versions of that index.
Discussions which have taken place recently show that although that
was the letter of the rule it was not the intention, and that this
check should be replaced in version analysis by a simpler one. In
that only the type specified; storage key, record key, or set should
not be allowed to change.

The idea of a compiler making reference to output from a previous
compilation and checking the relationship is understood to be totally
novel, no reference has been found of a similar occurrence.

61

To simplify the comparison between versions, the new identifier
symbols had to be converted to be comparable with the old symbols. If
access to the DBMS is available then use of the system symbols would
be most beneficial, thus avoiding a double conversion of the symbols.

62

CHAPTER 7. THE EXPERIMENTAL RUNTIME SYSTEM - STRUCTURE AND INTERFACES

7.1 Introduction

The DML verb is used as the basis in formulating the system response.
The DML rules which call upon the DDL and DSDL table information
which form the bases of the run-time system.

Pascal Program

Schema
Accessor

DML BLOCK

DDL
Tables

DATA DICTIONARY

Storage
Schema
Accessor

DSDLTables

USER WORK AREA

Get/Put Page
Functions

SYSTEM BUFFERS

DBMS

SYSTEM
WORK
AREA

ACTIVE
PAGES
BUFFERS

OPERATING
SYSTEM

Storage Storage Storage
Areaj Area2 Area
File! File2 File

Figure 38. The experimental runtime system

63

The diagram(Figure 38) shows how the tables developed during the
table generation phase are used from the run-time system via the
Storage Schema Accessor. The run-time system will also be
instrumental in achieving dynamic reorganisation. During access to
records the run-time system will automatically convert existing
storage records to the latest version. No such functionality
currently exists in any commercially available software.

The application passes to the system details of the DML verb it
requires to be executed, together with a pointer to an area
containing information to support the request. The system processes
this request, converting it to a request for information from the DDL
and DSDL tables. The system uses this information to send an
appropriate request to the GET PAGE routine to obtain the required
page, via the operating system, from storage. This could have
required other pages, for example index or associated pages through
pointers.

At the time when this run-time system was designed the facilities for
intercommunication between virtual machines in a VM environment were
not provided. After further investigation it was decided that the
complexities involved in locking and 2 phase commit were too complex
to be undertaken here. Without these facilities the production of a
multi-user system would have no meaning. Rollback, although more
complicated for a multi-user system, should also be provided for any
single user system. However without some form of logging this proved
difficult.

Therefore the system was designed as a single user system consisting
of a series of modules, the schema tables and storage schema tables
being resident in memory, but the run-time DML routines had to be
overlayed. This chapter describes the interfaces, exposing the
relationship between the run-time system; the DML, the Schema Table
Accessor, the Storage Schema Table Accessor, and the operating
system.

64

7.2 The DML simulator interface

In order that a DML compiler/analyser did not have be written,
because of time constraints, a solution was adopted which involved
designing what could have been the output block description of a DML
analyser. This block description was then used by a Pascal module
which performed calls to the run-time system modules in the guise of
DML calls.

The DML verbs perform the following groups of actions

a. Retrieve a record by some access path

b. Store a record by means of the criteria specified in the DDL and
DSDL.

c. Change the contents of one or more data items in a schema record.

d. Alter set criterion.

e. Commit or Rollback changes.

The DML verbs used to retrieve a record are FIND, and FETCH, FIND
merely locates the record, FETCH makes the values available to the
application. The access path to the record is initialised by the type
of record selection expression used.

For example a record selection expression of the form "ANY recordname
USING idlist", is of the 'adhoc' type form. This is shown by the
example in Chapter 5 for finding a particular shop record in order to
find out what it sells. If there is no schema key for this idlist
then it is hoped that the list fulfills the placement value criteria.

The record selection expression "PRIOR recordname WITHIN setname"
indicates that we have a current pointer on that set and we wish to
find or fetch the record PRIOR in the set order. The efficiency of
this request will depend on whether the set is stored with PRIOR
pointers or an index which can be so used.

65

If the record selection expression had specified NEXT instead of
PRIOR then we could use it to complete the example referenced above
by finding all the Items in the set Inventory, using NEXT calls, that
this Shop sells.

Let us now examine the basic structure of the DML verbs in order to
define the structure of the run-time system. For example the verb
STORE has the structure:

STORE recordname [RETAINING RECORD
setname

CURRENCY]

Analysis showed that the block structure in Figure 39 was all that
was necessary to support this and any other DML verb and was
therefore defined using the Pascal block structure given in
Figure 40. @Workarea(Figure 39) points to the area into which either
the retrieved record was placed, or, in the case of a store, where
the data to be stored was put by the application program.

In order to obtain values of the identifiers specified in the record
selection expressions, the structures that mirror the schema records
must also exist in the user work area. The values are then used to
fulfill the record selection criterion. It is these values which must
be used to satisfy any chosen storage access path.

Record Name

Record I/O

Number of Sets

§Workarea

Figure 39. DML verb STORE block structure interface

66

DML-stblock = RECORD
DML-RecName INTEGER;
DML-RecordF BOOLEAN;
DML-SetNo INTEGER;
DML-SetName ARRAY (.1..10.) of INTEGER;FILLER ARRAY (.1..15.) of INTEGER;
DML-WAptr DB-PtrWorkAreaEND

Figure 40. Pascal block structure for DML verb STORE interface

7.3 The DDL Structure and Interface

The Data Description Language looks very similar to the DSDL(Appendix
A.1). The resultant description after compilation by a compiler, it
was thought, could be either code or tables, as for the DSDL. It was
envisaged that if the DSDL was held as tables, then to hold the DDL
as anything other than tables would complicate their access. In order
that a compiler did not have to be produced a compilation simulation
was done, for the example by hand(Appendix A.l), to obtain what could
have been the output of such a compilation. This output was
envisaged to be in a similar format to that produced by the DSDL
semantic analyser. A table creator was then produced which creates
the same sort of table structure as that for the DSDL in table
generation. As was mentioned in Chapter 6 this DDL table structure
was also required as input into both semantic analysis and table
generation of the DSDL. The schema table accessor routines were used
as the means of accessing the the DDL by these DSDL compilation
routines. The schema accessor contains routines which ask for
information from the schema tables, such as

a. Given the record type, has it got a schema key defined with
duplicates NOT allowed. It would return a boolean for schema key
found, the schema key name, and a boolean for duplicates NOT
allowed.

b. Given a record type, find all those sets for which this record is
an automatic member and their ordering criteria. It would return

67

a pointer to a linked list which contains the names of the sets
and their ordering criteria.

7.4 The DSDL Interface and Structures

The DSDL table’on input to the run-time system is extended to include
direct pointers to the schema tables and further to include
identifier within record offset specifications. The access
mechanisms developed to create the tables in table generation and to
support the verification performed in version analysis in the DSDL
compiler were extended by including retrieval of these offsets to
create the DSDL table accessor. The storage schema accessor returns
information such as

a. Given the schema key name and the record name find the index that
is used for this record for this key. It returns a pointer to
this definiton and the possible location of the index.

7.5 The Data Dictionary Structure and Interface

The data dictionary defined here was merely a repository for the data
identifiers and their symbols from the identifier trees as output
from storage and schema compilation. Access to these facilities
could be provided to the DSDL as mentioned in Chapter 6. The more
common desirablity of the Data Dictionary is that it should contain
all meta-data and relationship representation as in the DDL and DSDL.
These tables would therefore be part of the data dictionary.
Maskell{59) describes the LEXICON Data Dictionary system as providing
just that sort of interface. It would be possible to build up this
system to include the validation of the DSDL and DDL.
Reorganisational checking could be made part of the transitionary
part of the system, or as an add-on version analyser. However the
structure of the database system may change with connections to the
data dictionary being via the application program. Such a system

68

configuration would probably be undesirable, since then the data
dictionary would not be the integral part of the run-time system as
was desired.

7.6 The Operating System Structure and Interface.

All input and output to the files that make up the storage areas is
through the GET and PUT functions. These functions form the interface
between the operating system and the DBMS. The operating system
should not simply be that provided by any computer operating system,
but be one devised as performing the DMCL style procedures as
mentioned in Chapter 4. The operating system performs garbage
collection and page optimisation through buffer management, retaining
the most frequently used pages in the buffers. It was recently stated
at a DB2 (an IBM SQL product) user group meeting that the future of
Input/Output reduction would be by providing extended storage memory
for these buffers{64}.

7.7 The DBMS structure

The DBMS as shown in Figure 38 is central to the runtime system. A
call to the DBMS is made from the application program via the DML
verbs using the DML block and passing with it a pointer to the user
work area. The data required to satisfy the DML verb are copied from
the user work area and placed in the system buffers.

The DML verb then acts as the construct around which the actions of
the DBMS are formed, obtaining information as required from the DDL
and DSDL tables. The data dictionary is accessed only when the string
that is an identifier's name is required.

The actual storage structures and mechanisms provided by the DBMS
will be enlarged upon in Chapter 8, but here we will develop further
the action taken by the DBMS around the DML verbs.

69

For example let us investigate the actions that are required to STORE
or FETCH a record.

For a STORE, the schema record is created by the application in the
user work area. The data is then transferred with the DML call to the
system buffers. Information is then obtained from the schema tables
and storage schema tables so that the constituent storage records can
be defined. Once the storage records have been found, a . list is
formed from the schema tables for which this schema record is an
automatic tenant. Then for each set: a check is made that there is an
appropriate occurrence exists; that no duplicate if DUPLICATES NOT
ALLOWED is specified; and an owner pointer is created.

Then if all the sets can be satisfied we start to construct the
storage record and its prefix information. The creation of the blank
prefix for a storage record is described in Chapter 8, this includes
creating blank pointers for links and sets.

The data of the storage record must then be concatenated with the
prefix in the system work area in order to evaluate the size of each
storage record. Once the storage record is constructed the system can
initiate finding its placement, and the page upon which to place the
record. If there is not enough room on the page specified by the
placement criteria then an alternate page is found according to the
overflow techniques specified for each type of placement. Before the
records can be LINKed together all indirection must be fulfilled,
thus locking the required index postions. The link pointers are then
completed for each prefix. The structure for the set pointers created
during prefix compilation can be now filled in with the pointers to
the destination records for set memberships. These records for which
insertion is via the CURRENT for their types and sets will already be
in the system work area and their pointers may also be updated. This
allows for sets whose ordering must be found prior to completing set
pointers.

Once all sets and indexes have been fulfilled all storage records and
their prefixes which have changed must be placed or replaced onto the
pages of the active system pages. All CALC set pointers and page
footer values must also be updated. At commit time all changed pages

70

are PUT via the operating system to the files. Details of the pages'
before images are kept in the log so that rollback may be performed.

For FIND or STORE parts of the underlying routines must obviously be
similar. However the main difference is the means by which a system,
given the placement criteria defined and the system structures
supported, may find a storage record. In a parallel processing
environment, a multiply mapped record could have a processor per
storage record or even per legal placement criteria. The placement
retrieval mechanisms will be described in Chapter 8.

Once any one storage record has been retrieved, the optimiser having
hopefully used the optimum route, it becomes a simple job to recreate
the schema record as in the case of a FETCH or for a FIND to stop
there having found one or more of the storage records.

71

CHAPTER 8. THE RUN-TIME SYSTEM STORAGE MECHANISM AND REORGANISATION

8.1 Introduction

Chapter 7 described the structure of the run-time system by means of
its actions which supports DML requests and the interactions with its
interfaces. The interfaces developed were those between the DBMS and
the DML, DDL, DSDL, Data Dictionary and Operating System. Chapter 8
further develops the structures of the run-time system by means of
the storage structures and mechanisms which fulfil the standard
picture of a DBMS. The structures and mechanisms required to support
the reorganisation facilities, as referred to in chapter 4, are
described together with their triggers. The chapter concludes with
discussion on when and how far to cascade reorganisation.

8.2 Storage Structures

There are two types of storage structure that are required by a
database system, namely those structures that are defined for the use
of the system and those required to contain and access the data
stored by the system.

The former describes such structures as the Currency pointers, the
User and System Work areas, the System Buffers, the Active Page list,
and the Page Buffers. The latter are an interpretation of the
requirements that are necessary to store the data of such a system.
These requirements are the different types of indexes, the Data
Dictionary, the Page Description, the Prefix and Record descriptions.

The former are shown diagramatically in Figure 41. This gives detail
of an example situation showing the current state of some of the
pointers, the constructs of which will now be described.

72

The Currency Pointers are those defined in the DML as being required
to be maintained for access to all records that are current for the
set types and record types defined as local to the run unit. The set
of Currency Pointers is maintained from within the schema tables, and
data dictionary. The information held includes: a pointer to the next
block, the record type, a pointer back to the schema table that holds
the definition of that type,a pointer to the storage schema record
mapping which is dependant on the version number and condition
specification, a pointer to the Current Record Array (see Figure 41)
and information as to the index usage. The difference between record
and set currency pointers is simple: the extra pointers to the set
definitions as provided by the schema and storage schema tables, and
an indication as to whether the record is the owner or a member of
the set.

73

CURRENCY
POINTERS

USER WORK
AREA

■RECORD

CURRENT
RECORD
ARRAY

SYSTEM
BUFFERS

STORAGE
RECORD
LIST

RECORD

SYSTEM
WORK
AREA

ACTIVE
PAGE
LIST

ACTIVE
PAGE
BUFFERS

6INTO
-►ACTIVE PAGE
-►BUFFERS VIA
ACTIVE

-►PAGE LIST

-> FILEj. FILE2

Figure 41. The Storage Structures required during Input and
Output.

As stated in Chapter 7 the User Work Area (UWA) is an array which can
be mapped by bytes or words, to be used by the application as the
depository for values to be required as input to the run-time system,
and as the depository of schema records that have been retrieved by
the run-time system for the application. The record is copied to and
from the UWA to the System Buffers.

The Current Schema Record Array is used by the system to maintain
pointers to the schema records in the System Buffers and the storage

74

records in the System Work Area via the Storage Record List. The
Current Record Array is a structured array, where each structure
contains information similar to that defined for the currency
pointers. This is because of the obvious requirement that not every
schema record currently local to the run unit will be the current of
that record or set type. The structure also points to the location
in the Storage Record List of the first storage record in a mapping.

The System Buffers and the System Work Area are of the same structure
as the User Work Area, that is, an array mapped by directly
accessible bytes or words.

The Storage Record List is a linked list of linked list structures.
A header record is required as the first element and it then points
to a list of storage record details. The Storage Record List contains
details for each storage record currently known by the run-unit that
resides in the System Work Area. Examples of the details required are
the start and finish pointers to the prefix and storage record, and
pointers to the storage schema tables from where all information for
the blank prefix is obtained. When known it will also contain
details of which active page in the page list the record is or will
be stored. A similar structure is also required for the indexes that
are to be stored in pages.

The Active Page List may contain pointers to the pages either holding
storage records or index records. It contains information on the file
the page comes from, the storage area the file represents, the page
number of the page within the area, the page number within the file
and points to the Storage Schema details of the area.

The Active Page List and the Active Page Buffer Stack are controlled
by the operating system part of the DBMS.

The Active Page Buffer Stack is represented by an array of
structures. A Page is described by an array of structures. The Page
described in Figure 42 also maps onto this structure, and is mapped
by fullword, halfword and byte arrays, so that information may be
obtained and stored directly to the word, halfword or byte.

75

•ilNTJS] p r::or pointerSPACElGE NEXT PiNUMBERlGE

EETYPE
INDSTAR'

PQS NEXTP

LenRECORD Map
CNo

VnoSTORAGE Vno!XT CALi
StRStRRECORD n a m: Map:t tr

of ofOFFSET NoSPLIT No
Links LINKSSetsPageN::nd ptr

IETS

STORAGE sp
OffsetRECORD

Id

lGEFil Prf REORGANISED HEADERLIRECORD
NUMBERLENGTHRECORD SPAiLenLENGTH

COiPOSI ION

Figure 42. Physical Page Format

The Page Description in Figure 42 gives the structure that is
required to store the user data. The physical page format is 256
words, where a word boundary is defined by the heavy lines, a half

76

word boundary by the medium lines, and the fine lines define the
intermediary byte boundaries.

The first 4 words represent the header for each page which consists
of the Page Number(1 word), the Page Type(i word), the amount of the
Free Spaced word), and for those records which are CALCed onto the
page, the Next and Prior Calc set pointers. For an index page the
Next Pointer is replaced by the Index Start word consisting of a
pointer to the start* of the Index and a pointer to the next page for
this Index.

The last 2 words of the page known as the footer consists of 1 byte
for the line space count, 1 byte for the header length and 1 word for
the page number.

The basic page format takes as its basis the description of the page
used in ICL's IDMS{B9}. However where the CALC set in IDMS was not
definable by the user, the CALC set here contains all those records
which have been placed on this page via the CALC procedures. It is
possible that many different sorts of records could be placed here if
this page is in the range specified by the WITHIN clause for the
record's placement strategy.

Next Calc Set Pointer
Prior Calc Set Pointer
Storage Record Name
Version No of Mapping
Mapping Choice No
Version No of Storage Record
Length of Record Segment

word
word
word
byte
byte
byte
byte

offset within prefix
0 (word map)1
2
12 (byte map)
13
14
15(in bytes) (used for when the record is split)

- - - 4
5

Storage Key Index
Split (page,offset)
No of Links=m
No of Sets =n

Links
Sets - Set namePointer Types

Version No
No of Pointers=p

Pointers

word
word
word
word
word
word
word
byte
byteword

12 (half word map)
13.m 7 + (m-1)

m+2p*(n-1)
m+2p*(n-1))*2
m+2p*(n-l))*4 +2
m+2p*(n-l))*4 +3

7 +
7 +
(8 +
(8 +
(8 +

Figure 43. Specification of Prefix Map

A line index is used to define where on the page a record and its
prefix are to be found. There is one line index per record, which is

77

either on this page or has overflowed onto some other page. The first
line index is placed adjacent to the Line Space Count, each
subsequent line index is placed on decreasing sets of 3 words on the
page(see Figure 42). The line index consists of: the Storage Record
Identifier(i word); the displacement offset of the prefix in relation
to the start of the page(in words) (i word); the length of the entire
record(prefix and storage record)(i word), a byte filler, the prefix
length (1 byte) and 1 word to be retained for reorganisation.

As has been stated previously, a stored record, consists of a prefix
and a data part. Within the prefix are details pertaining to the
definition of the storage record and also to the logical linkages
that are maintained for the database.

The prefix is described by the Prefix Map in Figure 43, the minimum
size of a prefix is 5 words where the mapping of a schema record to
storage record is one to one and it is not defined as being a tenant
of an set. Dynamic set pointers are not maintained for this system.

The parts referring to version numbers will be described later in
this chapter under the heading Reorganisation Structures.

If a record is defined as being a tenant of a set then the set
linkage is maintained by the structure consisting of a setname,
pointer types (bit flags), the number of pointers and the actual
pointers. The bit flags indicate what sort of pointer each pointer
represents, in the same order for all sets. The possible pointers for
each set are for the owner: FIRST, LAST and INDEX and for the
member: NEXT, PRIOR, INDEX and OWNER. Where the lowest bit is 0 for
owner and 1 for member set pointers, and the next 3 or 4 bits
respectively, represent 0 for pointer absent and 1 for pointer
present. •0101' represents an owner record with pointers for FIRST
and INDEX.

If a record cannot fit onto the same page as its prefix then the
split page number gives the offset number of pages that page resides
from this page and Offset gives the line index number which contains
the details of where the record has been placed on that page.

78

The storage for an index on a page does not take into account what
type of index it holds. Logically, as described in Chapter 4, there
are 3 types of index: storage key, record key and set indexes.

A storage key index has one occurrence per index description in the
storage schema. It is basically used by the system to speed retrieval
and help to protect storage records from others which are undergoing
movement of some form, in that they are used to support indirect
addressing.

A record key index is one which was either defined in the storage
schema, or to be used to support some schema record order, or for the
use of the system to provide hidden fast access to a record. There is
one occurrence per storage schema specification where each element
points to just one of the storage records that might be supporting
the schema record. It may be implemented as either explicitly holding
the key, or else the key may be obtained from access to the storage
record(s).

A set index provides the linkage mechanism and supports the order
within a set. It may contain keys either implicitly or explicitly.
There is one occurrence per occurrence of the set type that has been
defined as using the index.

There has been much discussion on the different types of index that
can be created. B-tree, B+-tree, AVL tree, linked lists, inverted
index are examples of such types.

Comer{21} describes the B-tree and B*-tree, making much use of IBM
VSAM facilities. They indicate that a balanced, multiway B-tree is
efficient, versatile, simple and easily maintained, while the B+-tree
also allows efficient sequential processing of the file. A B+-tree is
defined as one where all keys reside in the leaves. Of interest to
this thesis is the discussion on optimal pagination of B-trees with
variable-length items{27} because of the obvious necessity for an
index to be able to cope with values other than the integers used in
most other examples. It is suggested that for a B+-tree the roadmap
contains a prefix of the key which is of sufficient characters to
distinguish the key from its neighbour to the right. This type of
tree is termed a prefix B+-tree.

79

Arnow{3} compares B—trees, compacted B-trees and multiway trees,
stating that compact B-trees degrade with insertion,and therefore are
best for static data. Multiway trees are storage inefficient at high
orders, whereas compact B-trees use significantly less storage than
B-trees. Compact B-trees have faster retrieval but slower insertions
and that for database implementation the B-tree provides the best
overall performance. For indexes which are to be maintained in main
memory, only output occasionally, Dewitt{25} compares AVL with
B+-trees, to find that the B+-tree is of more use because AVL trees
are too highly main memory tuned for keyed access. Dewitt
concentrates on keyed access to tuples but it is surmised that the
same results would be obtained for storage records.

Bell and Deen{5} compare a form of hash key over primary key tree
indexing, and state that where there is high activity of insertions
and or deletes an H-tree performs better than a B-tree. For a level
greater than 2 B-tree, direct access to a storage record is more
costly than through an H-tree.

If this discussion on trees had to conclude on the requirements for a
concurrent manipulation of B-trees then the results of Rung and
Lehman{48} would require further investigation as the details
describing the locking mechanisms within Binary search trees would be
very pertinent.

However the conclusions which were drawn from this somewhat small
investigation were that there are many ways in which indexes can be
created and maintained. It would also appear that some forms of
indexes are better than others for larger numbers of records. If this
was an investigation into the effects of the structures used in a
database rather than the effect of reorganisation, then the following
is true. If the records are read only then a different type of index
may be used. By specifying a relationship between numbers of records
and the storage structure of an index, reorganisation could be used
to improve the performance of the index.

The result obtained from this investigation was that since only a
minimal number of records would be likely to be stored, therefore the
types of indexes would not prove critical. However, a simplistic
approach would seem to be the better course of action. Therefore it

80

would be better to use simple linked lists for set indexes, and
provide B-trees for storage key indexes and record key indexes. Where
the root node for each storage key index and record key index would
be maintained in memory, updates to the database as well as to the
root node would be required.

To complete this discussion on the storage structures required by the
DBMS we take a look at the different types of pointer as defined by
the DSDL. There are 3 types of pointer; link pointers, set pointers,
and index pointers, where each may be DIRECT or INDIRECT.

All direct pointers have the form;
Area Number 1 byte
Line Index 1 byte
Page Number 2 bytes

All indirect pointers have the form;
Storage key name 1 byte
A negative value 1 byte
The storage key i word

Figure 44. Pointers configurations.

Only the storage key index cannot contain indirect pointers. The only
difference between the pointer types is that for set pointers, the
first part is negated when the destination is the owner of the set.

8.3 Storage Mechanisms

As for the storage structures, the mechanisms supporting the storage
of data in a database can be regarded as of two types, those
mechanisms which control the access paths and those directly related
to the storage of the data. The former include insertion and
maintenance of the order within sets, fragmentation, control of
pointers, and the control of the placement strategies. The latter
includes such mundane aspects such as efficiency and garbage
collection as well as logging and the creation and placement of the
prefix and storage record.

81

Most of the mechanisms will be common among most types of network
database systems. In some form or another we will therefore
concentrate on those particular to the support of the newer DSDL
functions, such as cyclic sets, and then follow this by the support
required for reorganisation. The storage schema also provides extra
mechanisms through which sets can be supported, for example set
indexes.

The simplest linkage within a set is for the owner to have a FIRST
and the members to have NEXT pointers as in Figure 45. However if the
set was sorted on a descending key, then to obtain a particular
record according to its key could involve a search in ascending
order, if both FIRST, NEXT and LAST, PRIOR pointers are not
supported. The search would then have to retrieve each record, on the
way looking at the data item values that make up the record. The
problem is further complicated if the record is fragmented.
Especially if the destination record does not contain all of the key.

Owner

New
N

t
CURRENT

New.Next = Old.First
Old.First = (NEW)

Figure 45. Insertion into a Set Order is PRIOR, supported by
FIRST, NEXT pointers

The search algorithm is as follows:
Follow the pointer

: fetch the storage record
: if the key is not in the storage record

: then fetch all the storage records
: find the key
: if its less than the required key

: then find the next pointer for this set type
: repeat.end

82

It is not possible to have prior knowledge of which destination
record version this could be, since there could be many mappings and
many versions. If there are not then this could be one of the many
optimising points.

'Fetch all the storage records' is another way of completing a
mapping, which could arise when a record is fragmented. If
fragmentation has been used it must be remembered that not only may
we be providing many different ways of recovering the record but that
for each storage record, the placement strategy is made more complex.
For ad hoc queries rather than those using the network, a record must
be found using the placement strategies. For multi-version storage
schemas, a decision must be made as to the version number at which to
start using the definitions, and then to follow it by other versions
until all possible choices are negated.

For example, consider the ad hoc query "What items can be purchased
in that shop?" from the discussions on the example in Chapter 5. It
is first necessary to locate which shop it is. If we said any shop,
then we could look in the storage schema to see that both types of
storage record Gen-det and S-addr are placed within M-s, pages 500 to
999. Using this information the system would proceed with a
sequential search through the pages. Since both placements were of
type CALC there are two possible search methods. One follows CALC
set pointers for each page until a record of the particular type is
found. The other uses the line index to locate each record in turn on
the page. Both use the prefix to discover the identity of the storage
record. Alternatively if the shops Chainname had been mentioned then
using the CALC routine Chain a storage record for that Chain could be
located from the CALC set. If no record of the type exists, the first
query will have searched all occupied pages in the range; the latter
only the pages of the CALC set.

The order in which pointers are updated is very important, especially
when cyclic sets are involved, otherwise members of sets or even
whole sets could be lost, or retained when cascade deletion is
required.

In considering the mechanisms to support the storage of data, we
first consider the activity of garbage collection, if only to discard

83

it/ as being a part of the DMCL, which most systems provide, if not
all that efficiently.

The logging adopted here is simply used to retain a before image for
all pages accessed by the current logical unit of work. A rollback
merely ensures that the database has not been changed for these
pages.

As stated previously in this chapter, mechanisms are required to
control the creation and placement of the prefix and storage record.
From the data in the storage schema, in particular, the data subentry
of the current storage record, if it exists, or from the data
description of the schema record, a map is created which will be used
to obtain from or place values in the storage record. The complicated
mappings of identifiers to storage types are ignored by the system.

At this stage the blank prefix, as described earlier in this chapter,
must be created, this is done by obtaining data from the current LINK
clauses and finding all necessary set information from the storage
schema. The LINK clause count returns the number of links required
to be maintained and the order that they must be in, represented in
the storage schema tables by their associations. The sets in the
storage schema table are searched for those which the current schema
record is a tenant. A linked list of all of these sets is then
formed for each whether this record is the owner, member automatic,
member ordinary, or both and link them into either an owner list, a
member list, a member ordinary list or a tenant list.

The main list contains back pointers to the storage schema tables,
and indicates the version number used for the set. This will be
discussed later. Before the pointers can be filled and mapped into
the prefix, any indexes into which the(se) record(s) are to be placed
must be positionally locked. From the storage key indexes the
indirect pointers can be obtained. It is now possible to fulfil all
pointers in the prefixes for a schema record's storage records. When
a record is placed in a page the CALC set is updated for those
records to be stored CALC. A line index is also created for each
storage record. If the record is split because it did not fit onto
the page, then the overflow procedures take over, updating the prefix
Split pointer to point to the chosen overflow page. The chosen page

84

is implementer defined within the bounds of the DENSITY and WITHIN
clauses.

So completes the discussion on the structures and mechanisms provided
by the run-time system to control the storage of data in a network
database system that provides a user definable storage schema. The
following sections will try and complete the picture by describing
those structures and mechanisms that are required extra to the basic
system, in order to support dynamic incremental foreground
reorganisation.

8.4 Structures to support reorganisation

Discussions on the structures reported previously in this chapter
have omitted the facilities required to support reorganisation, and
these will.now be described. There are however, no grand structures
necessary to support reorganisation. The storage required is very
small. It is the mechanisms that have greatly increased, and these
will be described in the last part of this chapter.

The structures required for reorganisation are merely extensions of
the original structures. For example, we consider the structures
required for input and output, and the page and prefix structures.

The former requires an increased mechanism in order to control the
additional 'update' of records or set pointers to their current
versions. It is also possible that an extension of the storage schema
table to include object version combination counts could alleviate
the problem of the removal of an object's definition from the storage
schema. The only object not so relieved would be an index. To remove
an index requires extra functionality not provided in the DSDL, that
of dynamically dropping an index. The currency pointers, it was
stated in the first part of this chapter contain information which
points to the storage schema tables. Any pointer to the storage
schema must take into account the version number and therefore
version definition of the object. Similarly for all other storage
schema table information where versions are involved.85

The physical page format(see Figure 42) was described in the first
part of this chapter. It described, a header, a footer, a line index,
the prefix, and the storage record. The header for a record type
page makes no reference to any versions and did not require any
modification to support reorganisation. For an index however the
version number of the structure is maintained as the 13th byte on
the page. The footer also required no modification.

The line index is that part of a storage record's placement that
resides in situ even if the storage record has been moved during
reorganisation. The Reorganised Record Position details the location
of the real storage record. In this way records can be reorganised
without affecting others.

When a record is reorganised the Displacement Offset, Record Length
and Prefix Length are zeroed. The storage record identifier remains
the same, but cannot be relied upon to equal the identifier of the
new storage record. The effect on new storage records and mappings is
described in the next part of this chapter.

The prefix is the means by which linkages are made and also provides
the complete description of the attached storage record, it must
provide version information. Because the record could be part of a
mapping for which there are many versions, the Mapping Clause number
must be qualified by the Version Number of the Mapping. Similarly
there must be a Version Number for the storage record type. In this
way the combination may be located from within the storage schema to
uniquely define the storage record. Further it is not necessary to
update set pointers when a record is updated, so a version number is
required for each set that the record is a tenant of, described
later.

8.5 Mechanisms to support reorganisation

As stated in 8.4 the structures required to support dynamic
reorganisation are few but the mechanisms and decisions are many. Not
only are the actual mechanisms required, but the decisions of when

and how far to reorganise are very complex. It could be said, that
the first decision as to when to reorganise is the simplest. Only
reorganise when writing to the database. However this would imply
that only when records are written or updated would a new version be
applied. If, as in the case of the example, an area is found to be
full, or the read access time is found to be too great and another
access path needs to be created, then we can see that without putting
through needless updates a reorganisation might not take place.

There are two ways in which this can be resolved. The first to allow
reorganisation on read. The second is that some background utility
performs this sort of reorganisation. Only the first method which
was within the scope of this project was investigated.

Let us now investigate the triggers of reorganisation and the depths
to which they affect the rest of the data. Using the storage objects;
area, mapping, storage record, set and index, we will see what
triggers the changes for new versions as described in Chapter 4.4.

The triggers could be seen as the reorganisations themselves and are
categorized by, an update to a record, a store of a record, manual
insertion or disconnection to a set, a record read, or a set
traversed. The 'set traversed' is the most controversial as it may
cause any number of reorganisations, and for what appeared to be a
simple read operation could become very costly.

As stated previously, a new area is a static reorganisation and is
created at the startup of the run-time system when the new storage
schema is introduced.

Let us say that there is a new mapping. One condition produces the
same storage records as before. The other provides one original
storage record plus two new ones. If a record is updated, that was
stored with a previous version of the mapping, then there are two
choices. Either the record when restored is changed to the new
mapping or the record's storage records stay the same unless
individually they have a new version. The latter may then trigger the
new mapping (see storage record reorganisation). If the former is
chosen then it would depend on which condition was used to map the
record. The former condition would not trigger storage record

87

reorganisation but the latter would. If a new mapping changes the
destination record of set and or index pointers, then either the
reorganised part of the record can be left to point to the new
destination record or else those pointers in the set and indexes
which are affected could be changed. The latter would of course take
a lot of locating. If the new MAPPING caused a new SET version then
for the action required (see set reorganisation).

8.5.1 Storage Record Reorganisation

If there is a new version of a storage record then its invocation
could be triggered by a new mapping or simply via an access by an
update or read. All new records are stored with the most recent
version of a storage record. A new set version could cause a new
storage record version to be adopted as will be shown in set
reorganisation. In formulating a record to get its data item values,
a storage record could be written back using the new version, this
must be controlled to prevent untoward deadlock. As stated in Chapter
4.4.2 a storage record reorganisation could be separated into three
sorts of change; changed linkages, placement and data description. To
change the linkage without adopting any other changes to the storage
record would require version numbers to be stored with the links. It
could also invalidate the data in a record. For example, some
identifiers are removed from the current storage record in a new
version, a new mapping is created which involves changing to this new
storage record and another storage record which includes these
identifiers. To change to the new storage record definition without
invoking in this case the new mapping would lose data. However a
change to the placement of the storage record or a change to provide
extra LINKs could be done so long as the DATA subentry remained the
same. However changing to part of a new mapping is not valid.

88

8.5.2 Set Reorganisation

A new version of a set can be adopted in bits only if a new linkage
mechanism is not chosen. That is, changing from FIRST, NEXT to LAST,
PRIOR support would cause all set pointers in the set to be changed.
Changing a mapping and therefore the destination and description of
the storage record need not imply the rest of the set need also be
reorganised. But if any of the affected records had a new mapping
which affected the set pointers, then these would also be triggered.
However for those in which a new version of a constituent storage
record only had a new version, the reorganisation is optional. The
storage records however may require their prefixes to be updated with
new pointer values, at which time since a write is necessary, then to
reduce Input/Output an optimiser could update the storage record or
mapping version. The cascades of reorganisation which can follow
especially with cyclic sets is optional.

A change to the pointers could merely involve the creation, or
addition to, of an index. Although only non-singular set indexes may
be reorganised dynamically, the storage key index providing indirect
pointers . could hide reorganisations that are taking place. Any
pointers which are direct to a changed storage record or mapped
record would have triggered their originators to be changed, had they
been indirect. A temporary form of indirection can be produced using
the line index reorganisation flag, the Reorganised Record
Position(RRP). Any pointer that points to the RRP, when used, is
changed to point to the new address. The problem remains, however,
when to remove this line index. One way could be to have a count for
those pointers which point directly to a line index, and subtract
those pointers which are changed subsequently. If the RRP option is
not allowed then all the sets for which the record is currently a
tenant, including indexes, will be affected.

89

8.5.3 Reorganisation Triggers

The next problem to solve, having worked out in general what types of
reorganisation and forms of access act as triggers, to decide at what
time to do the reorganisations. Investigated were the options; to
reorganise during a commit, or to reorganise during the creation of
the storage records. Also to what extent are rollback and deadlock
affected.

If a record is not reorganised until commit time then this would have
involved not performing any placement checks or set completions until
that point in time. If a set reorganisation were to cascade to other
sets and or records then not only would the records already affected
be updated, but that new records could have to be read in order to
complete reorganisations.

If reorganisation is performed while the new storage records are
created or updated then reorganisations are separated into small
parts during the life of the logical unit of work. However at the end
the logical unit of work must be rolled back, and then all the
reorganisation must also be undone. It could also be that when a
record is truly read thus obtaining its values, that at that time it
too could be reorganised. Then would rollback affect it, since the
only change to it would be a reorganisational change.

Although this is a single user system the decision for a multi-user
system as to what would be locked is most vital. For example are
those reorganisational changes, on read, hidden from other users,
that is locked, or could they be visible. This depends in part on
what the effect of a rollback is for these storage records.

90

CHAPTER 9. THE EFFECTS OF REORGANISATION

9.1 Introduction

The details of the example and runtime system having been defined in
Chapters 5, 7 and 8, we now look at the effect that the method and
support of reorganisation had on the example, and the effect of
reorganisation on the runtime system specification.

9.2 On the Example

In Chapter 5 we saw that performance tuning was required in two
areas. The first whs that the storage area M-s had become
overcrowded, the second that the access time required to find where a
particular Chemical could be brought had become too great.

The requirements involved generating definitions for a new area
called Items, and a new mapping for Item consisting of the two
storage records S-item and I-item. Consequently, the new set versions
for C-item, L-item, F-item and Ch-item and a new placement for the
storage record Chemical are required.

The reorganisations once implemented, let us investigate the effect
they are having on the queries specified in Chapter 5. These queries
were: "What Chemicals can I use to process this Film?"; "What can I
purchase in that Shop?"; "What lenses can I buy for this Camera?".

Let us first investigate the effect on the query "What Chemicals can
I use to process this film?". As stated in Chapter 5, to find the.
Process and Chemicals the record detailing the required Film needs to
be accessed. This first access is not affected once the Film is
found. The first Process to Chemical combination is found by
following the FIRST pointer. The record found happens to be a
Photocolor II developer (see Figure 46). If the owner of the Used-in

91

set is found, then the actual Chemical can be looked at. This
Chemical record is of the type that could be reorganised. There were
three options at this stage: it is already reorganised, it was
reorganised but the pointer to it was not updated, or it has not been
reorganised yet. If it was already reorganised then the pointer just
followed is updated to point to the reorganised record, or in the
first case, nothing is required to happen. The reorganised record is
found by just one extra page read. The update of the pointer implies
that this transaction is no longer read only, but this should be
invisible to the application. If the set is supported by more than
one link mechanisms, then the system must ensure that all the
pointers are updated.

FILM

processed-by

PROCESS

tt

Used-in

CHEMICAL

KODAK
F ECKTACHROME

Photocolor II
DEV

Photocolor II
N FIX

XX
DEV

FIX
Chem-1 DEVChem-2

Reorganised Record in
Line Index

DEV
Chem-2

New StorageRecord
Chemical

Figure 46. The reorganisation of storage record Chemical for
Chem-2

If the record had not been reorganised, then because detail from
within the record is required it is possible to trigger the
reorganisation immediately. If the Reorganised Record Position is
not adopted then the set pointers for Ch-item and Manufactures must

92

also be searched and updated. All the records of Ch-item are affected
but only the index of Manufactures is affected. If the cascade
option is not withdrawn then this could affect the occurrence of
Ch-item to which this Chemical belongs, since there is a new version
of the set. However it is not necessary to update set pointers simply
because of movement of a destination record.

The system as implemented uses the Reorganised Record Position
pointer in the line index, therefore if the record had not been
reorganised then the actions portrayed in Figure 46 are enforced.
However although it is possible to change the NEXT pointer in the
Process record, Photocolor II developer, the reorganisation does not
at this stage affect Ch-item or Manufactures.

For the second query, "What can I purchase in that Shop?" or, as
specified in Chapter 5, "What's on the Inventory of that Shop?, we
will see that some 'simple' reorganisation can in fact be quite
complicated.

In Figure 47 we see that the particular Shop we wish to find was
named Jessops of Sheffield, and that the Chainname was Jessops. In
order to find this Shop record, the system uses the CALC Chain on
Jessops and then searches the CALC set on that page until the Gen-det
record for Jessops of Sheffield is found. The system can calculate
that it is not necessary to formulate all the record by obtaining all
the storage records because the next part of the program only uses
the pointers in Gen-det. The next part of the query informs the
system to use the set Inventory to obtain the first Item record. Once
located the system formulates the record. The reorganiser notes that
there is a new Item mapping specified in the storage schema. As the
system is reorganising on read as well as write, it reorganises the
single storage record Item into the two storage records I-item and
S-item, and creates the storage key index Iit-ind to support indirect
pointers to I-item(see Figure 48).

93

Shop
S-addr

Shop
S-addr

Sheffield Middlesbrough
Gen-det Gen-det

Inventory

Item ItemItem Item Item Item

L-item

Ch-item
Lit-
index

Cit-
index

FilmL-model C-model Chemical

Description Mod-det

Macro Process

35-70 ST605

3-10

RRP

DevTamron Fujica KODAK
Eck-200

Camera
Mart

Jessops

Lens
Figure 47

Camera Film Chemical
Data as inserted with Version 1 of the storage
example storage schema.

The current I-item address is inserted into the index. As there is a
full set of NEXT and PRIOR pointers, the system can easily update the
set pointers to point to the new S-item record rather than the Item
Reorganised Record Position (RRP) pointer. The rest of the pointers
are separated between the storage records; S-item being linked to
Inventory, C-item, F-item and Ch-item, and I-item being linked to
L-item. Note that completing the set Inventory pointers did not
trigger the rest of the Item mapping reorganisations.

94

The next part of the query involves finding the owner of the current
Item for the set L-item. This is done by following the index pointer
to Lit-index and getting the owner pointer, to find the L-model
storage record for the record Lens. The record is obtained from the
amalgamation of the storage records L-model, Description and Macro,
to see that the record details a Tamron 35-70 Macro Lens. Although
there is new version for the set index L-item, it need not be
triggered. Thus we arrive at the diagram of the records accessed and
reorganised as seen in Figure 48.

S-addr

Gen-det

S-item Item

I-item

Iit-ind

Lit-index

L-model

RRP

Figure 48. The status of the pointers after the first access to
the L-model storage record.

95

For each NEXT in the set Inventory the above reorganisation is
triggered, thus each Item on the Inventory is split into two storage
records and a Reorganised Record Position pointer is created. In this
way the second objective of clearing space in the storage area M-s is
achieved.

The third query "What lenses can I buy for this Camera?" accesses the
records Camera and Lens using the sets Uses and Used-on. The use of
these sets does not trigger any reorganisation, even though the
storage record L-model participates in the set L-item which has a new
version for it, and similarly for C-model and the set C-item.

None of the queries mentioned so far involved ad hoc accesses to
storage records which have more than one possible placement
specification or version. These records are the ones for which it is
more difficult to find out if they exist. This sort of access
obviously becomes more expensive to run as time progresses when
reorganisation is involved. This is because more versions of the
placement specifications simply increase the complexity of the FIND.

9.3 On the Storage Structures and Mechanisms at Runtime

Chapter 7 introduced all the parts of the run-time system, and in
particular the DBMS and the other parts which had to be written in
order to provide the vehicle on which to test the feasibility of
dynamic incremental reorganisation for a network database system. The
run-time system was then expanded in Chapter 8, detailing those
structures and mechanisms which were required in order to support a
standard network system. Those facilities were specified by the
DDL/NDL 1980 and DSDL 1981 specifications, but did not at that stage
support the specified reorganisations.

Chapter 8 then went on to expand those structures to include those
parts necessary to support dynamic incremental reorganisation. Some
of the mechanisms which were required to support these structures
together with the general rules as provided in the 1981 DSDL were
then described. We will now look at the effect these structures had

96

on storage requirements, and the effect that the reorganisation
mechanisms had in terms of the code requirements.

As can be surmised from Chapter 8 the extra storage required to
support reorganisation is negligible. The page break down is as
follows.

The prefix consists of two parts, a fixed part which is the same for
all storage records, and a part which is dependant on the number of
sets of which the storage record is specified as being a member and /
or owner.

The change required to the fixed part consisted of a half word which
represents an increase of 7%. For each set the version number
requires 1 byte which gives an increase of approximately 8%. The
header and footer do not change. This leaves the line index, which
contains the Reorganised Record Position pointer which is set only
when a storage record together with its prefix is reorganised to
another position. When such a reorganisation occurs, the complete
line index is left on that page as well as their being a line index
for the record's new position. If the choice is made to include
having a counter in the line index to keep a count of the number of
pointers whose destination is that line index, then the filler(Fil)
already present in the line index can be used. Thus the line index
requires 50% more space per storage record to support dynamic
incremental reorganisation, in the ratio of 3 to 2 words.

When considering the code requirements for reorganisation, the first
suit of programs that was produced was the DSDL table compiler. The
compiler, as described in Chapter 6, consisted of five passes. The
PASCAL code requirements for each pass were: 2200 lines for Lexical
Analysis; 3400 lines for Syntax Analysis; 4700 lines for Semantic
Analysis; 2700 lines for Table Generation; and 4,500 lines for
Version Analysis. The extra pass, Version Analysis, was required to
compare the old and new versions of the storage schema, as described
in Chapter 6. This code, which was required to verify dynamic
incremental reorganisation specifications, was totally new, making
about 25% of the total code required for the compiler.

97

It was thought that the initial specifications of the run-time system
to support a none reorganisable storage schema, would consist of
upwards of 20,000 lines of Pascal code. The increase that was
required to support the reorganisation triggered by the DML verb
STORE consisted of about 3,000 lines of code, about 40% of which
could be used by the other DML verbs. Therefore we calculate that the
increase in total would have been about 40% to 50% on top of that
required to support the standard storage schema, that is about 30,000
lines in total.

98

CHAPTER 10. CONCLUSIONS

The aim of this project was to show that the reorganisation
facilities as provided by the 1981 J0D{B6} were as feasible as they
were desirable. That is to provide the DSDL ability to reorganise on
a dynamic incremental basis the objects in a network database system.
To this end a compiler for the DSDL, and a run-time system were
designed.

The implementation of the compiler/processor for the DSDL as
presented in Chapter 6 was completed first. The production of tables,
required in total five passes, Lexical Analysis, Syntax Analysis,
Semantic Analysis, Table Generation and Version Analysis. The latter
being the unique requirement for valid reorganisation analysis.
Problems incurred during the production of the compiler included; the
errors in the syntax and semantics in the JOD, the none LL(1) grammar
and the changing nature of the JOD.

Had the facilities of a lexical and syntax analyser been available,
such as LEX and YACC, then it estimated that the compiler production
time would have been reduced by a third, allowing enough time for the
investigation of the production of the code related DSDL mentioned in
Chapter 1. Also the discovery of the syntax faults in the DSDL would
have been quicker. The novelty of the compiler would not have been
changed with the new compiler techniques and any similar production
of a compiler for a relational DSDL would require a similar type of
Version Analysis.

Previously in the discussion a relational optimiser has been eluded
to. Obviously such an optimiser must make appropriate decisions. It
is possible to have not just a logical optimiser such as those
provided by current management systems but also one which pertains to
both storage and access mechanisms. The latter is required because
the method of access provided by current systems is not always
suitable to the type of data involved. During the discussion on the
provision of indexes in Chapter 8 we saw that the amount and type of
data accessed altered the characteristics of the indexes. To this

99

end, interaction between the optimiser and the database administrator
is required, alone it can not do the job proficiently.

The production of the run-time system was designed around the
requirements of the DML verbs, based on their relationship with the
data storage and access methods taking into account the environmental
restrictions imposed by the operating system. However, it was found
that a simulation was not adequate because it was the details that
provided the real reorganisation and the problems associated with it.

The basic structures and mechanisms required to support a DSDL were
described in Chapters 7 and 8. The investigation has shown that it is
not only necessary to have logical to physical description changes,
but the basic structures such as indexes must be allowed to change if
circumstances dictate. A small network or relational system can be
adequately supported by the simplest of index structures. Growth of a
system must indicate that complex structures may be required, such as
those described in Chapter 8.

One of the main problems, was in deciding what does, and when is,
reorganisation triggered. Also to what extent should the actions of
reorganisation trigger other reorganisations. All these facilities
were described in Chapters 8 and 9.

The main problem with undertaking an implementation of a run-time
system for a network database system was its sheer size. Therefore,
in order to simplify the production of the run-time system, although
all DML verbs were investigated, the design concentrated mainly on
the requirements of the verbs STORE and FIND or FETCH. Using these
verbs, the effect that the access of records and the storage of
records has, on reorganisation was investigated. The example in
Chapter 5 and the results presented in Chapter 9 have highlighted
some of the problems that arose. The first verb to be encoded was
STORE, however in order to store a record it is frequently necessary
to 'find' other records. For example, CLUSTERED storage for a
storage record when near owner, requires the owner to be found, and
that record(s) need not be the CURRENT of the set. Thus when
investigating the effect of a STORE the system also generated a lot
of the functionality for FIND and FETCH.

100

What materialised from the investigations into the triggers of
reorganisations was that although possible, reorganisation could be
costly in terms of storage, and very costly in terms of disk
input/output. That is the pages required to be local to a run-unit
could be increased by as much as 70%. Also the requirements of many
systems would force, as for the example in Chapter 5, the run-time
system to create FIND or FETCH forced reorganisations. Since a read
only query may become more popular thus forcing extra or better
access paths to be created.

The experimental evidence seems to show that although possible in a
single user environment, the effects of reorganisation in a
multi-user environment, could require either advanced deadlock
protection, or split level reorganisation. The later would then be
incremental back ground reorganisation rather than foreground
reorganisation. The triggers being the units of a record accessed the
actions taking place behind the scenes. However it is still difficult
to see how affected records would be effected by multi-user access.
For example a record is reorganised that triggers another, which is
required by another run-unit, the latter updates it, the former rolls
back. If the first record is not reorganised, then the second record
which it undoubtedly points to, or is pointed to by that record could
have an invalid prefix.

Although for the NDL this trigger effect does cascade to too many
records, if many record and set types are reorganised at any one time
then as for record deletion there will still be some effect on
connecting sets and storage records. The same can be said for a
relational system for which referential integrity constraints are
defined. The best way to avoid a cascade is by using indirect
pointers via storage key indexes.

The higher the number of record types and so forth participating in a
new version, then the more likely they are to be affected by cascade
reorganisation. Thus increasing the resource usage, wait time and the
possibility of deadlock (for a multi-user system) for an application.
It is believed that for a multi-user network system that the
occurrence of deadlock, during high dynamic foreground reorganisation
activity, is increased dramatically, possibly out of control. In
effect cascaded reorganisations should be done in the background, but

101

ABSTRACT

A Machine Independent Implementation of a Data Storage Description
Language

Anne L. Zorner

This thesis presents the methods, results and conclusions of a design
and implementation of a Data Storage Description Language (DSDL). The
DSDL chosen was the CODASYL Network DSDL. The design supports storage
independent manipulation, for access and reorganisation of
partitioned schema records, sets and indexes. The production of a
Table Generator to compile the DSDL provided the basic structure and
mechanisms of a run-time system for the support of dynamic
incremental reorganisation. The project developed storage constructs
and techniques for a machine independent Data Storage Description
Language and evaluated these ideas through an implementation.
The particular objectives of the project included the evaluation of
the efficiency of the techniques regarding the criteria of the
storage space of tables and records, time for processing, and ease of
reorganisation. By developing a run-time system to control dynamic
reorganisation of a database given a new version of the storage
schema for the same database.

that a reorganisation process should still be triggered by the access
of the record. For a STORE however the record must be stored using
the most recent version of the. storage records, mapping and index,
therefore it is difficult to see how any such reorganisation might
not effect other storage objects.

The original intention of dynamic reorganisation is still valid, with
the demise of network database systems there has come the flourishing
but uncontrollable relational database system. Systems such as
SQL/DS, IBM's VM/CMS relational database management system, would
still benefit from the inclusion of some form of DSDL. It can be
seen, from information{B18) that the basic storage structure
available in the SQL database, is not that dissimilar to that
described by this thesis. The fact that indexes can benefit from
reorganisations, into such structures as defined in chapter 8, is
without doubt. Although, when referential integrity is introduced
into the SQL then there would arise the same cascade problems as for
a network database. In other words permanent DIRECT links should be
avoided when considering foreground incremental reorganisation.
Current relational systems already have advanced deadlock detection
facilities, provided that reorganisation across referential integrity
constraints into other tables is detectable then there can be only
fewer problems than those found for a network system.

Further work that could be envisaged would include the investigation
of the implementation of such a DSDL for a relational system {23} as
that being defined by the DBAWG. An implementation of such a system
could include the manipulation of tables using predicate calculus or
an SQL type language. Any such implementation should not be deterred
from making use of current technology, especially in the area of
transputers{B19} and parallel computing technology. Where it is felt
that the DSDL fragmentation and multiple placement techniques would
be greatly improved. In this way providing some form of a CAFS type
interface, allowing the hardware to improve retrieval times. Thus
removing some of the difficulties from ad hoc retrieval of multiply
placed multiply versioned records.

102

APPENDIX A. THE PHOTOGRAPHIC SCHEMA

A.l DDL Example Schema

(error recovery and access control omitted)

SCHEMA NAME IS Photo-Schema '
RECORD Manufacturer

KEY Manu-code is M-name
DUPLICATES ARE NOT ALLOWED

01 M-name TYPE IS CHARACTER 20
01 Address

02 Number FIXED 6
02 Road CHAR 20
02 Town CHAR 20
02 County CHAR 20
02 Postcoad-Zip CHAR 10
02 Country CHAR 20

01 VAT-no CHAR 10
RECORD Shop

KEY Shop-code IS S-name
DUPLICATES FIRST

01 S-name CHAR 20
01 Address

02 Number FIXED 6
02 Road CHAR 20
02 Town CHAR 20
02 County CHAR 20
02 Postcode-Zip CHAR 10
02 Country CHAR 20

01 VAT-No CHAR 10
01 Chainname CHAR 20

RECORD Supplier
01 S-name CHAR 20
01 M-name CHAR 20

RECORD Camera
KEY C-name IS Brand-name,model

DUPLICATES NOT ALLOWED
01 Brand-name CHAR 20
01 Model CHAR 10
01 Mode CHAR 5 OCCURS 3
01 ASA-range

02 Top FIXED 502 Bottom FIXED 3
01 Speed-range

02 Top FIXED 5
02 Bottom FIXED 3

01 Flash-sync-spd FIXED 5 OCCURS 2
01 Rec-retail-prc FLOAT 6,2

RECORD LENS
KEY L-name IS Brand-name, model
01 Brand-name CHAR 20
01 Model CHAR 10
01 Type CHAR 10
01 Macro BOOLEAN
01 Min-max CHAR 10
01 mm

02 Lower FIXED 6
02 Upper FIXED 6

01 F-Stop
02 Minimum FLOAT 5,2
02 Maximum FLOAT 5,2

01 Rec-ret-price FLOAT 6,2
1-1

RECORD Film
01 Make CHAR 20
01 Code CHAR 501 Size

02 num DECIMAL 502 Measure CHAR 601 ASA DECIMAL 501 Rec-ret-price FLOAT 601 Type CHAR 2001 Number DECIMAL 3
RECORD Chemical

01 Code CHAR 2001 Make CHAR 20
01 Type CHAR 20
01 Size

02 num DECIMAL 502 Measure CHAR 601 REC-ret-price FLOAT 6
RECORD Item

01 S-name CHAR 2001 S-Code-no CHAR 1001 S-Price FLOAT 601 Item-type CHAR 1001 Item-Code CHAR 10
RECORD Mount01 C-Brandname CHAR 2001 C-Model CHAR 10

01 L-Brandname CHAR 2001 L-Model CHAR 10
RECORD Process

01 F-Make CHAR 2001 F-Code CHAR 501 Ch-Make 'CHAR 2001 Ch-Code CHAR 20
01 Ch-Type CHAR 2001 Process CHAR 2001 Result CHAR 10

SET NAME IS Inventory
OWNER IS ShopORDER FOR INSERTION IS

SORTED BY DEFINED KEYS
MEMBER IS Item

MEMBERSHIP IS CONTROLLED INSERTION IS AUTOMATIC
RETENTION IS FIXEDKEY IS Item-Code

SET SELECTION IS
THRU Inventory OWNER IDENTIFIED BY APPLICATION

SET Supplied-by
OWNER Shop

ORDER FIRST
MEMBER IS Supplier

MEMBERSHIP IS CONTROLLED INSERTION IS AUTOMATIC
RETENTION IS MANDATORYSET SELECTION

THRU Supplied-by OWNER IDENTIFIED BY APPLICATION
SET Supplies-to

OWNER Manufacturer
ORDER FIRST

MEMBER IS Supplier
MEMBERSHIP IS AUTOMATIC RETENTION IS MANDATORY SET SELECTION

THRU Supplies-to OWNER IDENTIFIED BY APPLICATION
SET Manufacturers

OWNER Manufacturer
ORDER SORTED DEFINED RECORD

_ SEQUENCE IS Camera,Lens,Film,Chemical MriMnttK iS uamera
MEMBERSHIP INSERTION AUTOMATIC OPTIONAL
KEY ASCENDING Model DUPLICATES NOT
SELECTION THRU Manufacturer APPLICATION

MEMBER IS Lens

MEMBERSHIP INSERTION AUTOMATIC OPTIONAL
KEY ASC Model Duplicates NOT
SELECTION THRU Manufacturer APPLICATION

MEMBER IS FILM
MEMBERSHIP INSERTION AUTOMATIC OPTIONAL
KEY ASC Code DUPLICATES FIRST
SELECTION THRU Manufacturer APPLICATION

MEMBER IS Chemical
MEMBERSHIP INSERTION AUTOMATIC OPTIONAL
KEY ASC Code DUPLICATES LAST
SELECTION THRU Manufacturer APPLICATION

SET C-item
OWNER Camera

ORDER NEXT
MEMBER Item

MEMBERSHIP INSERTION AUTOMATIC FIXED
SELECTION THRU C-item APPLICATION

SET L-item
OWNER Lens

ORDER NEXT
MEMBER Item

MEMBERSHIP INSERTION AUTOMATIC FIXED
SELECTION THRU L-item APPLICATION

SET F-item
OWNER Film

ORDER NEXT
MEMBER Item

MEMBERSHIP INSERTION AUTOMATIC FIXED
SELECTION THRU F-item APPLICATION

SET Ch-item
OWNER Chemical ORDER NEXT
MEMBER Item

MEMBERSHIP INSERTION AUTOMATIC FIXED
SELECTION THRU Ch-item APPLICATION

SET Uses
OWNER Camera

ORDER DEFAULT
MEMBER Mount

MEMBERSHIP INSERTION MANUAL OPTIONAL
SELECTION THRU Can-use APPLICATION

SET Used-on
OWNER Lens

ORDER DEFAULT
MEMBER Mount

MEMBERSHIP INSERTION MANUAL OPTIONAL
SELECTION THRU Can-be-used-on APPLICATION

SET Processed-by
OWNER Film

ORDER DEFAULT
MEMBER IS Process

MEMBERSHIP INSERTION MANUAL OPTIONAL
SELECTION THRU Processed-by APPLICATION

SET Used-in
OWNER Chemical ORDER DEFAULT
MEMBER IS Process

MEMBERSHIP INSERTION MANUAL OPTIONAL
SELECTION THRU Can-process APPLICATION

1-3

APPENDIX B. VERSION 1 OF THE PHOTOGRAPHIC STORAGE SCHEMA

STORAGE SCHEMA NAME IS Photographic VERSION 1
FOR Photo-Schema SCHEMA

MAPPING FOR SHOP
STORAGE RECORDS ARE Gen-det, S-addr

MAPPING FOR Camera
STORAGE RECORDS ARE C-Model, Mod-det

MAPPING FOR Lens
IF Macro= 'TRUE'
THEN STORAGE RECORDS ARE L-model, Description, Macro
ELSE STORAGE RECORDS ARE L-model, Wholedesc

STORAGE AREA Equipment
INITIAL SIZE IS 9000 PAGES
PAGE SIZE IS 1024 CHARACTERS

STORAGE AREA F-ch
INITIAL SIZE IS 10000 PAGES
PAGE SIZE IS 1024 CHARACTERS

STORAGE AREA M-s
INITIAL SIZE IS 1000 PAGES
EXPANDABLE BY 100 PAGES
PAGE SIZE 256 WORDS

STORAGE RECORD NAME IS Gen-Det
LINK TO S-Addr IS DIRECT
PLACEMENT IS CALC Chain USING Chainname
WITHIN M-S FROM 500 THRU 999
01 S-Name
01 Vat-No
01 Chainname

STORAGE RECORD S-addr
LINK TO Gen-det
PLACEMENT IS CALC Town USING Town
WITHIN M-S FROM 500 THRU 999
01 Address

DATA ALL
STORAGE RECORD C-model

LINK TO Mod-det
PLACEMENT IS CALC Mode USING Mode
WITHIN Equipment FROM 1 THRU 499
01 Brand-name
01 Model
01 Mode OCCURS
01 Rec-retail-prc

STORAGE RECORD Mod-det
LINK TO C-model
DENSITY IS 5 STORAGE RECORDS PER PAGE
PLACEMENT IS CALC Model2 USING Model
WITHIN Equipment FROM 499 THRU 998
01 Model
01 ASA-range

DATA ALL
01 Speed-Range

DATA ALL
01 Flash-sync-speed OCCURS
01 Rec-retail-prc

STORAGE RECORD L^model
LINK TO Description, Macro is DIRECT
LINK TO Whole-desc IS INDIRECT
PLACEMENT IS CALC Models USING Model
WITHIN Equipment FROM 999 THRU 1498
01 Brand-name
01 Model
01 Type

STORAGE RECORD Description
LINK TO Macro IS DIRECT 2-1

DENSITY IS 2 STORAGE RECORDS PER PAGE
PLACEMENT IS SEQUENTIAL ASCENDING Model
WITHIN Equipment FROM 7000 THRU 8000
01 Model
01 Type
01 Macro
01 F-stop

DATA ALL
01 mm

DATA ALL
01 Rec-ret-price

STORAGE RECORD Macro
LINK TO L-model IS DIRECT
PLACEMENT IS CALC Min-max USING Lower, Upper
WITHIN Equipment FROM 1499 THRU 1998
01 Model
01 Type
01 Mm-max
01 F-stop

DATA ALL
STORAGE RECORD Wholedesc

LINK TO L-model
PLACEMENT SEQUENTIAL ASCENDING Model
WITHIN Equipment FROM 6000 THRU 6999
01 Model
01 Macro
01 Min-max
01 F-stop

DATA ALL 01 mm
DATA ALL

01 Rec-ret-price
STORAGE RECORD Manufacturer

DENSITY IS 2 STORAGE RECORDS PER PAGE
PLACEMENT IS SEQUENTIAL ASCENDING M-name WITHIN M-s FROM 1 THRU 499
DATA ALL

STORAGE RECORD Supplier
PLACEMENT CLUSTERED VIA SET Supplies-to

NEAR OWNER
WITHIN M-s FROM 1 THRU 499
DATA ALL

STORAGE RECORD Film
DENSITY ONE STORAGE RECORD PER 3 PAGES
PLACEMENT CALC USING ASA
WITHIN F-ch FROM 1 THRU 4999
DATA ALL

STORAGE RECORD Chemical
PLACEMENT IS SEQUENTIAL ASCENDING Type, Make
WITHIN F-ch FROM 5000 THRU 9999
DATA ALL

STORAGE RECORD Item
PLACEMENT IS CLUSTERED VIA SET Inventory

NEAR OWNER
WITHIN M-S
DATA ALL

STORAGE RECORD Mount
DENSITY 3 RECORDS PER PAGE PLACEMENT IS CLUSTERED VIA SET Uses

NEAR OWNER
WITHIN Equipment
DATA ALL

STORAGE RECORD Process
DENSITY 3 RECORDS PER PAGE
PLACEMENT IS CLUSTERED VIA SET Processed-by

NEAR OWNER
WITHIN F-ch FROM 1 THRU 4999
DATA ALL

SET Inventory 2-2

OWNER
STORAGE RECORD Gen-det

POINTER FOR FIRST,LAST MEMBER
DESTINATION OF DIRECT POINTERS

MEMBER
STORAGE RECORD Item

POINTER FOR NEXT,PRIOR TENANT
DESTINATION OF DIRECT POINTERS

SET Supplied-by
OWNER

STORAGE RECORD Gen-det
POINTER FOR FIRST MEMBER

STORAGE RECORD S-addr
POINTER FOR LAST MEMBER
DESTINATION OF DIRECT POINTERS MEMBER

STORAGE RECORD Supplier
POINTER FOR NEXT,PRIOR TENANT
DESTINATION OF DIRECT POINTERS

SET Supplies-to
OWNER

STORAGE RECORD Manufacturer
POINTER FOR FIRST MEMBER MEMBER

STORAGE RECORD Supplier
POINTER FOR NEXT TENANT,OWNER

SET Manufacturers OWNER
STORAGE RECORD Manufacturer

POINTER FOR INDEX Man-index
MEMBER RECORD Camera

STORAGE RECORD C-model
POINTER FOR INDEX Man-index,OWNER
DESTINATION OF DIRECT POINTERS

MEMBER RECORD Lens
STORAGE RECORD Description

POINTER FOR OWNER
DESTINATION OF DIRECT POINTERS

STORAGE RECORD L-model
POINTER FOR INDEX Man-index

STORAGE RECORD Wholedesc
POINTER FOR OWNER
DESTINATION OF INDIRECT POINTERS MEMBER RECORD Film

STORAGE RECORD Film
POINTER FOR INDEX Man-index, OWNER

MEMBER RECORD Chemical
STORAGE RECORD Chemical

POINTER FOR INDEX Man-index,OWNER
SET C-item

OWNER
STORAGE RECORD C-model

POINTER FOR INDEX Cit-index
DESTINATION OF DIRECT POINTERS MEMBER

STORAGE RECORD Item
POINTER FOR INDEX Cit-index,OWNER
DESTINATION OF DIRECT POINTERS

SET L-item
OWNER

STORAGE RECORD L-model
DESTINATION OF DIRECT POINTERS
POINTER FOR INDEX Lit-indexMEMBER

STORAGE RECORD Item
DESTINATION OF DIRECT POINTERS
POINTER FOR INDEX Lit-index, OWNER

SET F-item
OWNER

STORAGE RECORD Film
POINTER FOR FIRST,LAST

MEMBER
STORAGE RECORD Item

POINTER FOR NEXT, PRIOR2-3

SET Ch-item
OWNER

STORAGE RECORD Chemical
POINTER FOR FIRST

MEMBER
STORAGE RECORD Item

POINTER FOR NEXT
SET Uses

OWNER
STORAGE RECORD Mod-det

DESTINATION OF DIRECT POINTERS
POINTER FOR FIRST

MEMBER
STORAGE RECORD Mount

POINTER FOR NEXT
SET Used-on

OWNER
STORAGE RECORD L-model

DESTINATION OF DIRECT POINTERS
POINTER FOR FIRST

MEMBER
STORAGE RECORD Mount

POINTER FOR NEXT
SET Processed-by

OWNER
STORAGE RECORD Film

POINTER FOR FIRST
MEMBERSTORAGE RECORD Process

POINTER FOR NEXT
SET Used-in

OWNER
STORAGE RECORD Chemical

POINTER FOR FIRST
MEMBERSTORAGE RECORD Process

POINTER FOR NEXT
INDEX Wdesc-ind

USED FOR STORAGE KEY Whole-desc
WITHIN Equipment

INDEX Man-index
PLACEMENT IS NEAR OWNER DISPLACEMENT -2 PAGES
USED FOR SET Manufacturers

KEY
LINK TO OWNER

WITHIN STORAGE AREA OF OWNER
INDEX Cit-index

PLACEMENT IS NEAR OWNER DISPLACEMENT 2 PAGES
USED FOR SET C-item LINK TO OWNER
WITHIN STORAGE AREA OF OWNER

INDEX Lit-index
PLACEMENT IS NEAR OWNERUSED FOR SET L-item LINK TO OWNER
WITHIN STORAGE AREA OF OWNER

INDEX Ind-man
USED FOR RECORD Manufacturer

SCHEMA KEY Manu-code
WITHIN M-S

INDEX Ind-shopUSED FOR RECORD Shop
SCHEMA KEY Shop-code
POINTER IS DIRECT TO Gen-det

WITHIN M-S FROM PAGE 100 THRU 200
INDEX Ind-cam

USED FOR RECORD Camera
SCHEMA KEY C-name
POINTER IS DIRECT TO Mod-det

2-4

APPENDIX C. VERSION 2 OF THE PHOTOGRAPHIC STORAGE SCHEMA

STORAGE SCHEMA NAME IS Photographic VERSION 2
FOR Photo-Schema SCHEMA

MAPPING FOR SHOP
STORAGE RECORDS ARE Gen-det, S-addr

MAPPING FOR Camera
STORAGE RECORDS ARE C-Model, Mod-det

MAPPING FOR Lens
IF Macro= 'TRUE'
THEN STORAGE RECORDS ARE L-model, Description, Macro
ELSE STORAGE RECORDS ARE L-model, Wholedesc

MAPPING VERSION 2 FOR Item
STORAGE RECORDS ARE S-item, I-item

STORAGE AREA Equipment
INITIAL SIZE IS 9000 PAGES
PAGE SIZE IS 1024 CHARACTERS

STORAGE AREA F-ch
INITIAL SIZE IS 10000 PAGES
PAGE SIZE IS 1024 CHARACTERS

STORAGE AREA M-s
INITIAL SIZE IS 1000 PAGES
EXPANDABLE BY 100 PAGES
PAGE SIZE 256 WORDS

STORAGE AREA Items
INITIAL SIZE IS 1000 PAGES
EXPANDABLE
PAGE SIZE IS 256 WORDS

STORAGE RECORD NAME IS Gen-Det
LINK TO S-addr IS DIRECT
PLACEMENT IS CALC Chain USING Chainname WITHIN M-S
01 S-Name
01 Vat-No
01 Chai.nname

STORAGE RECORD S-addr
LINK TO Gen-det
PLACEMENT IS CALC Town USING Town
WITHIN M-S
01 Address

DATA ALL
STORAGE RECORD C-model

LINK TO Mod-det
PLACEMENT IS CALC Mode USING Mode
WITHIN Equipment
01 Brand-name01 Model
01 Mode OCCURS
01 Rec-retail-prc

STORAGE RECORD Mod-det
LINK TO C-model
DENSITY IS 5 STORAGE RECORDS PER PAGE
PLACEMENT IS CLUSTERED
01 Model
01 ASA-range

DATA ALL
01 s^eed-Ran^e

"d a t a ALL*
01 Flash-sync-speed OCCURS
01 Rec-retail-prc

STORAGE RECORD L-model
LINK TO Description, Macro is DIRECT
LINK TO Whole-desc IS INDIRECT
PLACEMENT IS CALC Models USING Model
WITHIN Equipment 3-1

01 Brand-name
01 Model
01 Type

STORAGE RECORD Description
LINK TO Macro IS DIRECT
DENSITY IS 2 STORAGE RECORDS PER PAGE
PLACEMENT IS CLUSTERED VIA SET Manufacturers

NEAR OWNER
WITHIN Equipment
01 Model
01 Type
01 Macro
01 F-stop

DATA ALL 01 mm
DATA ALL

01 Rec-ret-price
STORAGE RECORD Macro

LINK TO L-model IS DIRECT
PLACEMENT IS CALC Min-max USING Lower, Upper
WITHIN Equipment
01 Model
01 Type
01 Mm-max
01 F-stop DATA ALL

STORAGE RECORD Wholedesc
LINK TO L-model
PLACEMENT SEQUENTIAL ASCENDING Model
WITHIN Equipment
01 Model
01 Macro 01 Min-max
01 F-stop

DATA ALL
01 mmDATA ALL
01 Rec-ret-price

STORAGE RECORD Manufacturer
DENSITY IS 2 STORAGE RECORDS PER PAGE
PLACEMENT IS SEQUENTIAL ASCENDING M-name
WITHIN M-s FROM 1 THRU 499
DATA ALL

STORAGE RECORD Supplier
PLACEMENT CLUSTERED VIA SET Manufacturers

NEAR OWNER
WITHIN M-s FROM 1 THRU 499
DATA ALL

STORAGE RECORD Film
DENSITY ONE STORAGE RECORD PER 3 PAGES
PLACEMENT CALC USING ASA
WITHIN F-ch FROM 1 THRU 499
DATA ALL

STORAGE RECORD ChemicalPLACEMENT IS SEQUENTIAL ASCENDING Type, Make
WITHIN F-ch FROM 5000 THRU 9999
DATA ALL

STORAGE RECORD Chemical VERSION 2
PLACEMENT IS CALC Codes USING Code
WITHIN Items FROM PAGE 500 THRU 1000
DATA ALL

STORAGE RECORD Item
"^PLACEMENT"IS ̂ CLUSTERED VIA SET Inventory

NEAR OWNER
WITHIN M-s
DATA ALL

STORAGE RECORD S-item VERSION 2
LINK TO I-item IS INDIRECT
PLACEMENT CLUSTERED VIA SET Inventory

NEAR OWNER 3-2

WITHIN M-s
01 S-name
01 S-code-no
01 S-price

STORAGE RECORD I-item VERSION 2
LINK TO S-item IS INDIRECT
DENSITY IS 3 STORAGE RECORDS PER PAGE
PLACEMENT IS

CALC calclcode USING Item-code
WITHIN Items FROM 1 THRU 401
Item-type
Item-code

STORAGE RECORD Mount
DENSITY 3 RECORDS PER PAGE
PLACEMENT IS CLUSTERED VIA SET Uses

NEAR OWNER
WITHIN Equipment
DATA ALL

STORAGE RECORD Process
DENSITY 3 RECORDS PER PAGE
PLACEMENT IS CLUSTERED VIA SET Processed-by

NEAR OWNER
WITHIN F-ch FROM 1 THRU 4999
DATA ALL

SET Inventory
OWNER

STORAGE RECORD Gen-det
POINTER FOR FIRST,LAST MEMBER
DESTINATION OF DIRECT POINTERS

MEMBER
STORAGE RECORD Item

POINTER FOR NEXT,PRIOR TENANT
DESTINATION OF DIRECT POINTERS

SET Inventory VERSION 2
OWNER

STORAGE RECORD Gen-det
POINTER FOR FIRST,LAST MEMBER
DESTINATION OF DIRECT POINTERS MEMBER

STORAGE RECORD S-item
DESTINATION OF INDIRECT POINTERS
POINTER FOR NEXT, PRIOR MEMBER

SET Supplied-by
OWNER

STORAGE RECORD Gen-det
POINTER FOR FIRST MEMBER

STORAGE RECORD S-addr
POINTER FOR LAST MEMBER
DESTINATION OF DIRECT POINTERS MEMBER

STORAGE RECORD Supplier
POINTER FOR NEXT,PRIOR TENANT
DESTINATION OF DIRECT POINTERS

SET Supplies-to
OWNER

STORAGE RECORD Manufacturer
POINTER FOR FIRST MEMBER

MEMBER
STORAGE RECORD Supplier

POINTER FOR NEXT TENANT,OWNER
SET Manufacturers

OWNER
STORAGE RECORD Manufacturer

POINTER FOR INDEX Man-index
MEMBER RECORD Camera

STORAGE RECORD C-model
r Oi n t e r FOR INDEX Man-index,OWNER
DESTINATION OF DIRECT POINTERS

MEMBER RECORD Lens
STORAGE RECORD Description

POINTER FOR OWNER 3-3

DESTINATION OF DIRECT POINTERS
STORAGE RECORD L-model

POINTER FOR INDEX Man-index
STORAGE RECORD Wholedesc

POINTER FOR OWNER
DESTINATION OF INDIRECT POINTERS

MEMBER RECORD Film
STORAGE RECORD Film

POINTER FOR INDEX Man-index, OWNER
MEMBER RECORD Chemical

STORAGE RECORD Chemical
POINTER FOR INDEX Man-index,OWNER

SET C-item
OWNER

STORAGE RECORD C-model
POINTER FOR INDEX Cit-index
DESTINATION OF DIRECT POINTERS

MEMBER
STORAGE RECORD Item

POINTER FOR INDEX Cit-index,OWNER
DESTINATION OF DIRECT POINTERS

SET C-item VERSION 2
OWNER

STORAGE RECORD C-model
POINTER FOR INDEX Cit-index
DESTINATION OF DIRECT POINTERS

MEMBER
STORAGE RECORD S-item

POINTER FOR INDEX Cit-index, OWNER
SET L-item

OWNER
STORAGE RECORD L-model

DESTINATION OF DIRECT POINTERS
POINTER FOR INDEX Lit-index

MEMBER
STORAGE RECORD Item

DESTINATION OF DIRECT POINTERS
POINTER FOR INDEX Lit-index, OWNER

SET L-item VERSION 2 OWNER
STORAGE RECORD L-model

DESTINATION OF DIRECT POINTERS
POINTER FOR INDEX Lit-index

MEMBER
STORAGE RECORD I-item

DESTINATION OF INDIRECT POINTERS
POINTER FOR INDEX Lit-index,- OWNER

SET F-item
OWNER

STORAGE RECORD Film
POINTER FOR FIRST,LAST

MEMBER
STORAGE RECORD Item

POINTER FOR NEXT, PRIOR
SET F-item VERSION 2

OWNER
STORAGE RECORD Film

POINTER FOR FIRST, LAST
MEMBER

STORAGE RECORD S-item
DESTINATION OF DIRECT POINTERS
POINTER FOR NEXT

SET Ch-item
OWNER

STORAGE RECORD Chemical
POINTER FOR FIRST

MEMBER
STORAGE RECORD Item

POINTER FOR NEXT
SET Ch-item VERSION 2

OWNER
STORAGE RECORD Chemical 3-4

POINTER FOR FIRST
MEMBER

STORAGE RECORD S-item
POINTER FOR NEXT

SET Uses
OWNER

STORAGE RECORD Mod-det
DESTINATION OF DIRECT POINTERS
POINTER FOR FIRST

MEMBER
STORAGE RECORD Mount

POINTER FOR NEXT
SET Used-on

OWNER
STORAGE RECORD L-model

DESTINATION OF DIRECT POINTERS
MEMBER

STORAGE RECORD Mount
POINTER FOR NEXT

SET Processed-by
OWNER

STORAGE RECORD Film
POINTER FOR FIRST

MEMBER
STORAGE RECORD Process

POINTER FOR NEXT
SET Used-in

OWNER
STORAGE RECORD Chemical

POINTER FOR FIRST
MEMBER

STORAGE RECORD Process
POINTER FOR NEXT

INDEX Wdesc-ind
USED FOR STORAGE KEY Whole-desc
WITHIN Equipment

INDEX Man-index
PLACEMENT IS NEAR OWNER DISPLACEMENT -2 PAGES
USED FOR SET Manufacturers

KEY
LINK TO OWNER

WITHIN STORAGE AREA OF OWNER
INDEX Cit-index

PLACEMENT IS NEAR OWNER DISPLACEMENT 2 PAGES
USED FOR SET C-item LINK TO OWNER
WITHIN STORAGE AREA OF OWNER

INDEX Lit-index
PLACEMENT IS NEAR OWNER
USED FOR SET L-item LINK TO OWNER
WITHIN STORAGE AREA OF OWNER

3-5

APPENDIX D. SCHEMA NDL ORIENTED TOKENS IGNORING COMPLICATED SET SELECTION

-►SCHEMA---- s c-name-

RECORD rec-name-

-►KEY— key-name- -ASCENDING- -d-id-t t
 DESCENDING 1 L

c DUPLICATES-

B
■FIRST-
LAST—
■NOT--
DEFAULT-

levno- -data-name-

I TYPE- BIT1= -int-

c
4-

C
4-

C

OCCURS int
n

CONDITIONAL-

SOURCE-

I— ►RESULT-1

►CHECK- -NEGATIVE-
L POSITIVE 1

— CHARACTER— int-----►
•NUMERIC int ►BOOLEAN------------ H

4-1

-SET- -set-name
-OWNER- -r e c-name-

-ORDER- -FIRST-
-LAST—
-NEXT—
-DEFAULT
-SORTED— — WI THIN

I— DEFINED , -TYPE--- rec-name
'—

DUPLICATES— r-FIRS: -LAST-
■NOT—
DEFAULT---

-MEMBER-
c •MEMBERSHIP- ’ONDITIONAL-

*— INSERTION— ;— AUTOMATIC-— FIXED-----
•— MANUAL 1 -MANDATORY

•— OPTIONAL—

I— d u p l i c a t e s — a-idtI_____

-SELECTI ON— THRU— s e t -name-

i 1•— KEY— k eyname---d -idTI_____

4-2

APPENDIX E. SYNTAX GRAPHS

E.l DSDL Overall Structure Syntax Graphs

STORAGE SCHEMA ENTRY
MAPPING DESCRIPTION ENTRY

STORAGE AREA ENTRY

STORAGE RECORD ENTRY

SET ENTRY
<-----------

INDEX ENTRY

5-1

E.2 DSDL Overall Subentry Structure Graphs

STORAGE SCHEMA ENTRY
------ STORAGE SCHEMA CLAUSE-------------

MAPPING DESCRIPTION ENTRY

-MAPPING SUBENTRY-

STORAGE AREA ENTRY
------ STORAGE AREA CLAUSE-

INITIAL SIZE CLUASE-
-PAGE SIZE CLAUSE-

STORAGE RECORD ENTRY
STORAGE RECORD SUBENTRY
PLACEMENT SUBENTRY-

ctL DATA SUBENTRY-

SET ENTRY
------ SET SUBENTRY-

WNER SUBENTRY-

cMEMBER SUBENTRY-

INDEX ENTRY
------ INDEX CLAUSE-

c PLACEMENT CLAUSE-

c POINTER CLAUSE-

c USED CLAUSE-

c ■WITHIN CLAUSE-

5-2

APPENDIX F. SEMANTIC ANALYSIS GRAPHS AND RULES

STORSCH stsn VERSION-int4---- FOR-scn— .

-MAPPING* -VERSION— int5- -scrn-

— — IF--- cond— — THEN---- STORAGE— s trn— --—t t
•— ELSE----------------1

-STORAR— s t an- 1 7 » 1 8

-INITSIZE— int---EXPANDABLE-

-BSTEPS-int-
■int*

-PSI ZE-int -CHARACTERS—
I *LiLWORDS"

6-1

-STORRCD—s t r n----- VERSION— int* 5 3 / 5 4 / 5 5 / 5 6 / 5 7

-LINK— st rn-
‘ L

DIRECT-
INDIRECT-

-RESERVEP— int-

, IF— cond---- THEN-L-ELSE------------

-DEN SIT Y— ;— ONE--- int-
L int-

PLACEMENT-

-CALC- procn USING id-TI___

-CLUSTERED—scsn- -OWNER— DISPLACEMENT— int—
-SEQUENTIAL -ASCENDINGt I t t

•-DESCENDING 1 L
-id-

-WITHIN—stan- -FROM—int int-7^1

6-2

4-
levno— ■scdn'4 5 / 4 6 / 4 7

-FILLER-
-DATA--

c— ALIGNMENT— int-- — WORDS---------
2 0-BITS----------
2 0L— CHARACTERS---

 EVALUATION—--— -ACCESS— |— STORNREQD-2 3L LSTORREQD-
t_ 2 4 _ T

-UPDATE-
25 3 01 FORMAT- j UNSIGNED -

— EXPLICIT---
1— IMSGN— impn— 1

-BINARY-
— DECIMAL— i

G SPEIMP— impn-
PACKED---------

2 6 / 3 2 2 7 | |-FIXED— ;— int--- int—
1 FLOAT— 1
-CHARS—CHARIMP-impn-
-BITS----------------

c -FRAMED— int*

JUSTIFIED— -LEFT
I— RIGHT— 1-NSIMP— impn-

c
I

3 9■NULL— opr---1 i t-
I— COMPACTED-1 . c-SYSDEF-

■SIZE— int— :— BITS
I—CHARACTERS-I— Xi-WORDS-

6-3

-SETENT— scsn---VERSION— int 7 5 * 8 1 * 8 2 ^ 7 7 ^ 7-VALBASE-
WNER

E STORRECSET s t rn-t tI_____

-DESTINATION -DIRECT
“ LINDIRECT--— I

■POINTER---- — INDEX—indn

lr
7 0
-FIRST'
LAST-

E ■ALLOCATION— — STATIC
*— DYNAMIC— *

I I 1| 6 4 * 6 5*— MEMBERREC----scrn-----

I STORRECSET — str-t tI___

-DESTINATION tDIRECT62 LINDIRECT-
■POINTER- — INDEX— indn-

7 3
-PRIOR------
-NEXT-------
OWNER'
c■ALLOCATION— — STATIC -•— DYNAMIC— J

6-4

APPENDIX G. DML-STORE MODULAR DIAGRAMS

DB-formulateStRecs

DB-CreateSetPointerLocs

DB-CreateRecinDBWA

DB-GetStorInfo

DB-StoreRecord

DB-CopyRecord2SysWA

DB-FindSchSchKey

DB-CheckSets

DB-PutStRecsIntoStKeylnd

DB-GetSchRecInfoFromSchTables

DB-CheckDupsNot

Figure 49. Modular Diagram of the DML verb STORE

7-1

APPENDIX H. PAPERS WRITTEN BY THE AUTHOR

ALZ-WP-8001

ALZ-WP—8101

ALZ-WP-8102
ALZ—WP—8103
ALZ-WP-8104

ALZ—WP—8105

ALZ—WP—8106

A fourteen page document of DSDL editing errors and
questionable ambiguities. (Put to the DDLC via DBAWG and ABERDEEN proposals.)
Reference is made to the DDL for all conditions, but
words used in conditions are not present in the DSDL
reserved word list. (DBAWG-8104)
The 'MEMBER1 ambiguity.
The ambiguous syntax points of the DSDL.
The Set clause (syntax rule 4 part b) referenced a
constraint no longer present in the DDL.
The Within clause, demonstrated
its integer specification.

an inconsistency in

The Syntax description of the Set Entry was incorrect,
a variety of correct syntaxes were proposed.

ALZ/SJC-WP-8201 Further to ALZ-WP-8106 the draft for a DBAWG paper on
the Set Entry as subentries was complied. This
includes the Member ambiguity.

ZORNER,A.L. "A Design for an Implementation of a Runtime System to
Support Dynamic Incremental Foreground Reorganisation
in a Network Database System" Proc. of the Third
British National Conference on Databases.11-13 July 1984.

9-1

APPENDIX I. BIBLIOGRAPHY

a. Papers and Articles

1. Addyman,A.M. et al "A Draft Description of PASCAL." Software
- Practice and Experience Vol 9 1979 pp381-424

2. Anzelmo,F.D. (member IEEE) "A Data Storage Format for
Information System Files." IEEE Trans on Computers Vol C-20
Nol Jan 1971

3. Arnow,D. & Tenenbaum,A.M. "An Empirical Comparison of
B-trees, compact B-trees, and multiway trees." Sigmod Record
Vol 14 No 2 pp33-46 Proceedings of Annual Meeting Boston MA
June 18-21 1984

4. B .C .S ./CODASYL DDLC DBAWG "Database Administration working
group June 1975 report" June 1975.

5. Bell,D.A. & Deen,S.M. "Hash Trees versus B-Trees." The
Computer Journal Vol 27 No3 1984

6. Belyeu,S.M. "Hardware Approach to Storage Mapping." IBM
Technical Disc. Bulletin Vol 21 Nol June 1978

7. Bernstein,P.A. & Goodman,N. "Multiversion Concurrency
Control - Theory and Algorithms." ACM trans on Database
Systems Vol 8 No4 Dec 1983 pp465-483

8. Blank,B.G. "Distributed Quasi-ordered and Ordered Data
Storage Structures in Direct Access Store." Programmirovanie
No5 Sept-Oct 1979 pp56-65

9. Blasgen,B.W. & Eswaran,K.P. "Storage and Access in
Relational Databases." IBM Syst 3 No4 1977 pp363-377

10. Blasgen,M.W. et al "System R: An architectural Overview."
IBM Syst 3 1981 Vol 20 Nol pp41-62

11. Boral,H., Delwitt,D.J., Friedland,D., Jamell,N.F. &
Wilkinson,W.K. "Implementation of the database machine
DIRECT." IEEE Trans on Software Engineering Vol SE-8 No6
Nov 1982 pp533-543

12. Brodie,M.L. "Research on the translation and Standardisation
of Relational and Network Type Database Management Systems."
US Army Research Final Report date 19 March 1981

13. Brodie,M.L. et al "ANSI/X3/SPARC DBS-SG Relational Database
Task Group (final report)." Standards Institute New York
Sept 81 NBS/GCR-82/379 PB82-170051

14. Buneman,P., Frankel,R.E. & Nikhil,R. "An Implementation
Technique for Database Query Languages." ACM Trans Database
Syst Vol 7 No2 June 1982 ppl64-180

15. Pin-Shan Chen,P. "The Entity-Relationship Model - Toward a
Unified View of Data." ACM Trans on Database Syst Vol 1 Nol
March 1976 27 pages

16. CODASYL Data Base Task Group. "CODASYL DBTG Report." Oct 1969
17. CODASYL Data Base Task Group "CODASYL DBTG Report" Apr 1971
18. CODASYL DDLC. Standing Paper 14 "Charter for the Data Base

Administration Task Group" Aug 1974.
19. Chen,P.P. & Bingyao,S. "Design & Performance Tools for

database systems." Pro Conf on Very Large Databases - Tokyo
Oct 1977 pp3-15

20. Chen,Huei-huang & McCure Kuck,S. "Combining Relational and
Network Retrieval Methods." ACM 1984 ppl31-142

21. Comer,D. "The Ubiquitous B-Tree." Computer Surveys Vol 11
No2 June 1979 ppl21-137

10-1

22. Crennell,K.M. et al "Report of the SRC Working Party on
Databases and Database Management Systems." Rutherford
Appleton Laboratories Oct 1980

23. DBAWG. "DBAWG-SP24.1 Draft SQL Data Storage Description
Language" Sep 1986.

24. Dewitt,D.J. & Hawthorn,P.B. "A Performance Evaluation of
Database Machine Architectures." University of Wisconsin
Madison - Computer Sciences Technical Report No 437 June 1981

25. Dewitt,D.J. et al "Implementation Techniques for Main Memory
Database Systems." Sigmod Record Vol 14 No2 ppl-8
Proceedings of Annual Meeting Boston MA June 18-21 1984

26. Dewitt,D.J. & Hawthorn,P.B. "Performance of Database Machine
Architectures.(U) Wisconsin University

27. Diehr,G. & Faaland,B. "Optimal Pagination of B-trees with
variable length items." Comms of ACM Vol 27 No3 Mar 1984
pp241-247

28. Elmasri,R., Devor,C. & Rahimi,S. "Notes on DDTS - An
Apparatus for Experimental Research in Distributed Database Management Systems." Honeywell Corporate Computer Sciences
Centre - Bloomington Minnesota pp32-49

29. Feborowicz,J. "A Zipfian Model of an Automatic Bibliographic
System: An application to medicine." J. of American Societyfor Information Science July 1982 pp223-232

30. Flower,R.A. "An Analysis of Optimal Retrieval Systems with
Updates." National Technical Information Service Report no. TR—488 MIT June 1975 14 refs

31. Fung,K.T. "A Reorganisation Model based on the Database
Entropy Concept." The Computer Journal Vol 27 Nol 1984
pp67-71

32. Fung,K.T. "An approach to reorganisation in a Database
(Conference paper)." Soc for Gen Syst Res Procs 26th Annual
Meeting of Soc for Gen Syst Res (with AAAS) Jan 1982 Vol 1,61 pp311-314

33. Germans,F. & Higgenbotham,S. "A Student Use Hierarchical
Database Management System." Dept, of Computer & Information
Sciences, Temple University, Philadelphia

34. Graef,N., Kretschonar,H., Loehr,K.P. & Morawetz,B. "How to
Design and Implement Time-Sharing Systems Using Concurrent
PASCAL." Software - Practice and Experience Vol 9 1979 ppl7-24

35. Hall,D.E., Scherrer,D.K. & Sventek,J.S. "A Virtual Operating
System." Comms of ACM Sept 1980 Vol23 No9 pp495-502

36. Hanson,P.B. "The Programming Language Concurrent PASCAL."
IEEE Trans on Software Engineering Vol SE-1 No2 1975
ppl99-207

37. Held,G.D., Stonebraker,M.R. & Wong,E. "INGRES - A Relational
Database System." Vol 1 Database Management Systems AFIPS Press pp37-44

38. Hong,Y.C. & Su,S.Y.W. "Associative Hardware and Software
Techniques for Integrity Control." ACM Trans on Database
Systems Sept 1981 Vol 6 No3 pp416-440

39. James,E.B. "The User Interface." The Computer Journal Vol
23 Nol pp25-28

40. Jeffery,K.G.,Gill,E.M. "The Design Philosophy of the G-EXEC
System." Computers and Geosciences, Vol2 1976 pp345-346

41. Ratz,R.H. & Wong,E. "Resolving Concepts in Global Storage:
Design through replication." AuM Trans on Database Systems
March 1983 Vol 8 Nol ppllO-135

10-2

42. Katz,R.H. & Lehman,T.J. "Database Support for Versions and
Alternatives of Large Design Files." IEEE Trans on Software
Engineering March 1984 Vol SE-10 No2 ppl91-200

43. Kay,M.H. "An Assessment of the CODASYL DDL for use with a
relational subschema." Computer Laboratory Univ. of
Cambridge Sept 1984

44. Kerridge,J.M. "A FORTRAN Implementation of Concurrent
PASCAL." Software - Practice and Experience Vol 12 1982
pp45-55

45. Kerridge,J.M. "An Architecture and Syntax for Distributed
Databases." North Holland Computers & Standards 3 1984
pp33-56

46. Kollias,J.G. "File Organisations and their Reorganisation."
Inform Systems 1979 Vol 4 pp49-54

47. Kompelmakher,V. & Listovets,V.A. "Database models and
loading methods." Translated from Programmirovarie Vol 5 No5
Sept 1979 pp348-353

48. Kung,H.T. & Lehman,P.L. "Concurrent Manipulation of Binary
Search Trees." ACM Trans of Database Systems 1980 Vol 5
No3 pp354-382

49. Leung,C.H.C. & Choo,Q.M. "The Effect of Fixed Length Record
Implementation on file system Response." Acta Informatica
Vol 17 1982 pp399-409

50. Leung,C.H.C. "Optimal Database Reorganisation: some
practical difficulties." Inf Processing Letters 19 Aug 82
Vol 15 Nol

51. Lions,J. "Experiences with the UNIX Time-Sharing System."
Software - Practice and Experience Vol 9 1979 pp701-709

52. Lochovsky,F.H. & Tsichritzis,D.C. "Teaching Data Management
using an Educational Database Management System." Computer
Systems Research Group, University of Toronto,Canada.

53. Lucking,J.R, "Database Language, in particular DDL,
development at CODASYL ICL no details

54. Major,J.B. "Processor, I/O Path, and DASD configuration
capacity." IBM Syst 3 1981 Vol 20 Nol pp63-85

55. Managaki,M., Doine,T., Toshimoto,H. & Katayama,H. "A
Structural Model for System Implementation and its
Application to CODASYL-DBTG." Vol 1 Database Management
Systems AFIPS Press pp51-58

56. Manhood,D.W. "Storage Level Control of a CODASYL database:
Part I." Computer Bulletin Sept 1980 pp6-10

57. Manhood,D.W. "Storage Level Control of a CODASYL database:
Part II." Computer Bulletin Dec 1980 pp4-5

58. March,S.T., Severence,D.G. & Wilins,M. "Frame Memory: A
Storage Architecture to Support Rapid Design and
Implementation of Efficient Databases." ACM Trans on
Database Systems Sept 1981 Vol 6 No3 pp441-463

59. Maskell,R. "Lexicon - An established Data Dictionary
System." Database Journal Vol 6 No7 ppl5-21

60. McLeod,D. & Heimbigner,D. "A federated architecture for
Database Systems." National Computer Conference 1982
pp283-289

61. Narayana,K.T., Prasad,V.R. Joseph,M. "Some Aspects of
Concurrent Programming in CCNPASCAL." Software - Practice
and Experience 1979 Vol 9 pp749-770

62. Neai,D. & Wallentine,V. "Experiences with the Portability of
Concurrent PASCAL." Software - Practice and Experience 1978
Vol 8 pp341-353

10-3

63. Oppen,D.C. "Reasoning About Recursively Defined Data
Structures." JACM Vol 27 No3 July 1980 pp403-411

64. Personal communications. "At inaugural DB2 User Group
Meeting" London 5th Dec 1986.

65. Prowse,P.H. & Johnson,R.G. "A Natural Language Database
Interface to the User." The Computer Journal Vol 23 Nol
pp22-25

66. Read,B.J., "A Relational Data Handling System for
Scientists." Proc. of the Fifth British National Conf. on
Databases (BNCOD5),1986,pp23-41

67. Reisner,P., Boyce,R.F. & Chamberlin,D.D. "Human Factors
Evaluation of two data base query languages - Square and
Sequel." Vol 1 Database Management Systems AFIPS Press PP71-76

68. Roussopoulos,N. "The Logical Access path Schema of a
Database." IEEE Trans on Software Engineering Vol SE-8 No6
Nov 1982 pp563-573

69. Rustin,R. "Database Management: An Overview." Chase
Manhattan Bank,NY no further details

70. Sale,A.H.J. "Strings and Sequence Abstraction in PASCAL."
Software - Practice and Experience Vol 9 1979 pp671-683

71. Seaman,R.P. "Algorithm for Mapping self-describing records."
IBM Technical Disc. Bulletin Vol 18 Noll April 1976

72. Senko,M.E. & Altman,E.B. "Diamll and levels of Abstraction
The physical device level: a general model for access
methods." Systems for Large Databases. North Holland
Publishing Co. 1976 pp79-83

73. Sethi,R. & Tang,A. "Constructing Call-by-Value Continuation
Semantics." JACM July 1980 Vol 27 No3 pp580-597

74. Sherman,S. & Werth,J. "Relationship between Database Systems
and Operating Capabilities: Stage One - the Survey." National
Bureau of Standards, Washington 25 Mar 1982 NTIS PB82-238932

75. Shu,N.C., Housel,B.C. & Lum,V.Y. "CONVERT: A High Level
Translation Definition Language for Data Conversion." ACM
comms Oct 1975 Vol 18 NolO

76. Sibley,E.H. & Taylor,R.W. "A Data Definition and Mapping
Language." ACM comms Dec 1973 Vol 16 Nol2 pp750-759

77. Sicherman,G.L., de Jonge,W. & Van de Riet,K. "Answering
Queries without Revealing Secrets." ACM Trans Dist. Syst Vol
8 Nol March 1983 pp41-59

78. Smith,D. et al "A Component Architecture for Database
Management Systems (interim report)." Computer corp. of
America, Cambridge, MA, 18 June 1980 NBS-GCR-81-340PB82-203621

79. Sockut,G.H. "A Performance Model for Computer Database
Reorganisation performed Concurrently with usage." Operations
Research 1978 pp789-804

80. Sockut,G.H. & Goldberg,R.P. "Database Reorganisation
principles and practice." NBS Special Publication, US Dept
of Commerce, National Bureau of Standards pp500-547

81. Sockut,G.H. & Goldberg,R.P. "Database Reorganisation
principles and practice." ACM Computer Surveys Vol 11 No4
Dec 1979

82. Soderlund,L. "Concurrent Database Reorganisation -
Assessment of a Powerful Technique through Modelling." Procs
7th Int. Conf. on Very Large Databases, Cannes Sept 1981
pp499-509

83. Soderlund,L. "Evaluation of concurrent physical database
reorganisation through simulation modelling." ACM Sigmetrics
Vol 10 No3 Sept 1981 ppl9-32

10-4

84. Su,S.Y.W., Nguyen,L.H., Emam,A. & Lipovski,G.J.
"Architectural Features and Implementation Techniques of the
Multicell CASSM." IEEE Trans on Computers Vol C-28 No6 June
1979

85. Stonebraker,M. et al "Performance Enhancements to a
Retrieval Database System." ACM Trans Database Systems Vol
8 No2 June 1983 ppl67-185

86. Uemura,S., Yuba,T., Kokuba,A., Ooomote,R. & Sugawara,Y. "The
Design and Implementation of a Magnetic-Bubble Database
Machine." Procs of the IFIP Congress Information Processing,
Tokyo Oct 1980 pp433-438

87. Uemura,S., Yuba,T., Kokubu,A. & Ooomote,R. "Database Machine
with Magnetic-Bubble Memory." Technologies North-Holland,
Amsterdam 1982 pp39-50

88. Whang et al "Separability - An Approach to Physical Database
Design." IEEE Trans on Computers Vol C-33 No3 March 1984 pp209-222

89. Wilson,T.B. "Database Restructuring: Options and Obstacles."
Euro IFIP, North Holland Publishing Co. 1979 pp567-573

90. Wilson,T.B. "The Description and Usage of Evolving Schemas."
IEEE Oct 1980

91. X3H2 ANSC "Overview of DBCS/Programming Language Interface."
ANSC X3H2 Feb 1982 Doc X3H2-22-8(R)

92. Yao,S.B., Das,K.S. & Teorey,T.J. "A Dynamic Database
Reorganisation Algorithm." ACM Trans on Database Systems Vol
1 No2 June 1976 ppl59-174

93. Yao,S.B. "Optimisation of Query Evaluation Algorithms." ACM
Trans on Database Systems June 1979 Vol 4 No2 ppl33-135

94. Yao,S.B, Henver,A.R. & Romeo,T. "Performance Evaluation of
Database Systems - a benchmark methodology." US Dept of
Commerce, NBS Washington, DC NBS-GCR 84-467 May 1984 PB84-217504

95. Yao,S.B. et al "Analysis of Three Database System
Architectures using Benchmarks (final report)." Software
Systems Technology Inc. College Park, MD May 1984NBS/GCR-84/468 PB84-217512

96. Zahle,T.U. "Scan - A simple record-at-a-time DML for the relational data model."
97. Zave,P. "The operational versus the conversational approach

to software development." Comms. of the ACM Feb 1984 Vol
27 No2

98. Zorner,A.L. "A Design for an Implementation of a Runtime
System to support Dynamic Incremental Foreground
Reorganisation of a Network Database System." Proc. of the
Third British National Conference on Databases. 11-13 July
1984.

Books and Manuals.

1. American National Standards Committee X3H2-83-121. "April
1983 (Draft Proposed) Network Database Language"

2. American National Standards Committee X3H2-86-26. "March 1986
(Draft Proposed) Network Database Language"

3. Bourne,F.R. "The UNIX system" Addison-Wesley Pub Comp. 1982
4. CODASYL Data Definition Language Committee. "DDLC Journal of Development." Aug 1973
5. CODASYL. "Data Description Language Committee DDL & DSDL

JOD" Secretariat of the Canadian Government EDP 1978
6. CODASYL. "Data Description Language Committee DDL & DSDL

JOD" Secretariat of the Canadian Government EDP 1981

7. CODASYL. "COBOL Committee JOD" Secretariat of the Canadian
Government EDP 1981

8. CODASYL. "Data Manipulation Language and Subschema "
Secretariat of the Canadian Government EDP 1981

9. ICL IDMS Appendix E: Space Management.
10. Date,C.J. "Database - A Primer." Addison-Wesley Popular

Series 1983
11. Date,C.J. "An Introduction to Database Systems." 2nd & 3rd

editions Addison-Wesley 1981 Syst Prog Services Chps
2,26

12. Date,C.J. "An Introduction to Database Systems." Vol II
Addison-Wesley 1983

13. Davis,B. "The Selection of Database Software." NCC Publications 1977
14. Draffan,I.W.&Poole,F. "Distributed Data Bases : An advanced

course." Cambridge University Press 1981
15. Dean,S.M. "Fundamentals of Database Systems." Macmillan

Press LTD 1977
16. Gries,D. "Compiler Construction for Digital Computers."

Wiley International Edition 1971
17. IBM. "SQL/Data System Terminal User's Reference for VM/System

Product" Release 3 pn 5748-XXJ
18. IBM. "CA77 SQL/DS Implementation & Management in a VM

Environment - student notes" UK33-5551 1985
19. INMOS. "Transputer Reference Manual" INMOS LTD. 1985
20. ISO 8907-1987(E) "Database Language NDL" November 1986
21. ISO 9075-1987(E) "Database Language SQL" November 1986
22. Larson,J.A. "Database Management System Anatomy." Lexington Books 1982 D.C. Heath & co
23. 011e,T.W. "The CODASYL Approach to Database Management."

John Wiley 1980
24. ORACLE. "ORACLE SQL/UFI Reference Guide" 1984 ORACLE Corp.,

Menlo Park, California
25. Palmer,I. "Database Systems: A practical Reference." CACI

1975
26. Proc. "Proc. of Symposium on Developement and Management of a

Computer-centered Data Base 1963" System Development
Corporation, Santa Monica, California. 1964

27. Rohl,J.S. "An introduction to compiler Writing." Macdonald
and Jane's/American Elsevier 1975

28. Robinson,H. "Database Analysis and Design. Chartwell-Bratt
1981

29. Schmidt,J.W. & Brodie,M.L. "Relational Database Systems
Analysis and Comparison." Springer-Verlag

30. Shneiderman,B. (ed) "Database Management Systems." Vol I
The Information Technology Series AFIPS Press

31. Tsichritzis,D.C. & Bernstein "Operating Systems" Academic Press 1974
32. Tsichritzis,D.C. & Lochovsky,F.H. "Database Management

Systems." Academic Press 1977
33. Uemura,S. et al "Database Machine with Magnetic-Bubble

Memory." 1.3 Computer Science and Technologies,North-Holland, Amsterdam 1982
10-6

34. Ullman,J.D. "Principles of Database Systems." 2nd edition
Pitman Publishing Ltd 1983

35. Wierderhold,G. "Database Design." 2nd edition McGraw-Hill
36. Zloof,M.M. "Query by Example." Vol 1 Database Management

Systems AFIPS Press pp63-70

10-7

APPENDIX J. DETAILS OF RELATED STUDIES

The references given in Appendix I have all been accessed as part of
the course of guided study.
The candidate has attended 34 meetings of the DBAWG, 11 meetings of
the BSI and 4 meetings of ISO TC97/SC21/WG3. These meetings involved
contributions to the development of database languages and standards.
- 13-14 Nov 1980 BCS/CODASYL DBAWG at BCS HQ. (LONDON)
- 13-14 Jan 1981 BCS/CODASYL DBAWG at Pr ime (BEDFORD)
- 15-16 Mar 1981 BCS/CODASYL DBAWG at Sheffield City Polytechnic
- 4- 5 Jun 1981 BCS/CODASYL DBAWG at Hatfield Polytechnic
- 27-28 Aug 1981 BCS/CODASYL DBAWG at ERCC
- 8-11 Oct 1981 BCS/CODASYL DBAWG at The Burn (ABERDEEN)
- 18-18 Dec 1981 BCS/CODASYL DBAWG at Open University (LONDON)
- 11-12 Feb 1982 BCS/CODASYL DBAWG at UNIVAC (LONDON)
- 15-16 Apr 1982 BCS/CODASYL DBAWG at D.C.E. (HOLLAND)
- 10-11 Jun 1982 BCS/CODASYL DBAWG at Woolwich Polytechnic
- 16-19 Sep 1982 BCS/CODASYL DBAWG at The Burn (ABERDEEN)
- 18-19 Nov 1982 BCS/CODASYL DBAWG at ICL (BRACKNELL)
- 13-14 Jan 1983 BCS/CODASYL DBAWG at SCICON
- 10-11 Mar 1983 BCS/CODASYL DBAWG at OU (Milton Keynes)
- 26-27 May 1983 BCS/CODASYL DBAWG at Sheffield City Polytechnic
- 7- 8 Jul 1983 BCS/CODASYL DBAWG at OUCC (OXFORD)
- 1- 4 Sep 1983 BCS/CODASYL DBAWG at The Burn (ABERDEEN)
- 10-11 Nov 1983 BCS/CODASYL DBAWG at Software Sciences
- 19-20 Jan 1984 BCS/CODASYL DBAWG at SPERRY (LONDON)
- 22-23 Mar 1984 BCS/CODASYL DBAWG at CAST (EDINBURGH)
- 31- 1 Jun 1984 BCS/CODASYL DBAWG at DCE (HOLLAND)
- 6- 9 Sep 1984 BCS/CODASYL DBAWG at The Burn (ABERDEEN)
- 8 - 9 Nov 1984 BCS/CODASYL DBAWG at ICL (LONDON)
- 23 Nov 1984 BSI DBMS Panel at BSI HQ (LONDON)
- 7 Jan 1985 BSI DBMS Panel at BSI HQ (LONDON)
- 24-25 Jan 1985 BCS/CODASYL DBAWG at NCC (MANCHESTER)
- 5- 8 Feb 1985 ISO WG5-15 at Bougeval (FRANCE)
- 14-15 Mar 1985 BCS/CODASYL DBAWG at Sheffield City Polytechnic
- 13 May 1985 BSI DBMS Panel at BSI HQ (LONDON)
- 23-24 May 1985 BCS/CODASYL DBAWG at OXFORD
- 18-19 Jul 1985 BCS/CODASYL DBAWG at Hatfield Polytechnic
- 5- 8 Sep 1985 BCS/CODASYL DBAWG at The Burn (ABERDEEN)
-

n/ r\~m J-
U U L 1985 n n T —___ n

d d i L / m n o j r d i i e x at BSI HQ (LONDON)
- 22 Oct 1985 BSI SQL Rapp). Gp. at ICI (MANCHESTER)
- 5- 8 Nov 1985 ISO TC97/SC21/WG3 at Gaithesburg (USA)10-8

21-22 Nov 1985 BCS/CODASYL DBAWG at CCTA (NORWICH)
7 Jan 1986 BSI SQL Rapp. Gp. at ICI (MANCHESTER)

10 Feb 1986 BSI SQL Rapp. Gp. at ICI (MANCHESTER)
3- 4 Apr 1986 BCS/CODASYL DBAWG at DCE (HOLLAND)

21-24 Apr 1986 ISO DBL Rapp. Gp. at SEIMANS (MUNICH)
29-30 May 1986 BCS/CODASYL DBAWG at ERCC (EDINBURGH)

10 Jun 1986 BSI SQL Rapp. Gp. at ICI (MANCHESTER)
17-18 Jul 1986 BCS/CODASYL DBAWG at Sperry (LONDON)

29 Jul 1986 BSI SQL Rapp. Gp. at ICI (MANCHESTER)
28 Aug 1986 BSI SQL Rapp. Gp. at ICI (MANCHESTER)

4- 7 Sep 1986 BCS/CODASYL DBAWG at The Burn (ABERDEEN)
15-19 Sep 1986 ISO TC97/SC21/WG3 at Royal Holloway College

17 Oct 1986 BSI SQL Rapp. Gp. at ICI (MANCHESTER)
13-14 Nov 1986 BCS/CODASYL DBAWG at NCC (MANCHESTER)

10-9

