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ABSTRACT OF THE THESIS 

"Unequally Spaced Knot Techniques for the Numerical

Solution of Partial Differential Equations"

S J WISHER

Cubic spline approximations to time dependent 
partial differential equations, having both constant 
and variable coefficients, are developed in which the 
knot points may be chosen to be unequally spaced.
Four methods are presented for obtaining 'optimal* 
knot positions, these being chosen so at to produce 
an increase in accuracy compared with methods based 
on equally spaced knots. Three of the procedures 
described produce knot partitions which are fixed 
throughout time. The fourth procedure yields 
differently placed 'optimal' knots on each time line, 
thus enabling us to better approximate the varying 
time nature characteristic of many partial 
differential equations. Truncation errors and 
stability criteria are derived and full numerical 
implementation procedures are given. Five case 
studies are presented to enable comparisons to be 
drawn between the knot placement methods and results 
found using equally spaced knots. Possible extensions 
of the work of this thesis are given.
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CHAPTER 1

. Introduction

1.1 Finite Difference Solution of Partial Differential Equations

The most well-known early work on the use of finite 

differences was that of Richardson (1910), although the 

paper by Courant, Friedrichs and Lewy (1928) is usually 

considered as the birthplace of modern numerical methods 

for solving partial differential equations. In that work 

Courant, Friedrichs and Lewy also showed that the 

convergence of simple difference approximations depends 

on the mesh ratio satisfying certain conditions. Such 

conditions were also derived using Fourier techniques for 

a wide variety of problems by von Neumann during the 

Second World War. A detailed discussion of von Neumann's 

work is given in O'Brien, Hyman and Kaplan (1951).

Since the work of von Neumann many finite difference schemes 

have been proposed, perhaps the most well-known being that of 

Crank and Nicolson (1947). A thorough description of methods 

available is given in Richtmyer and Morton (1967). The 

computational aspects and the application of finite 

difference methods to partial differential equations with 

variable coefficients and generalised boundary conditions 

is discussed in, for example, Ames (1977), Mitchell (1969) 

and Mitchell and Griffiths (1980).
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The majority of finite difference schemes derived for 

the solution of time dependent partial differential 

equations use rectangular grids which have constant 

step lengths in both the space and time directions.

There are} however, certain instances in which unequally 

spaced mesh points in the space direction are beneficial.

For example, situations frequently arise in which the 

solution of a partial differential equation varies very 

rapidly over a small part of the domain but changes slowly 

over the rest of the domain. The problem in using non- 

uniform grids in such situations is that, in general, an 

order of accuracy is lost by employing unequally spaced 

mesh point schemes. It is therefore important to position 

the mesh points so that optimal numerical performance is 

achieved. Pearson (1968) proposed an iterative scheme for 

the solution of boundary layer problems in which additional 

mesh points are added where the variation in solution values 

exceeds some predetermined level. Woodford (1975) extended 

this idea and produced a scheme which used graded meshes 

in which the mesh points are systematically chosen according 

to the natural structure of the problem. The use of such 

transformation techniques has also been considered by 

various authors (see, for example, Jones and Thompson (1980) 

and references therein) in determining the position of mesh
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points for the solution of fluid flow problems.

An additional area where non-uniform grids have been 

used is in the numerical solution of moving boundary 

problems in heat flow* Murray and Landis (1959) solved 

such so-called Stefan problems by employing a uniform grid 

on the solid side of the boundary and a different uniform 

grid on the liquid side. A change in the size of the step 

lengths therefore occurs from one side of the boundary to 

the other. These moving boundary problems were also 

considered by Douglas and Gallie (1955). They used a 

scheme with a variable time step length which is chosen so 

that the boundary always moves from one line of the space 

grid to the neighbouring line in a single time step. More 

recently, Crank and Gupta (1972b),proposed a method for 

solving Stefan problems which employed cubic splines to 

interpolate solution values.

Development of Spline Techniques

The term ’spline function’ was first used by Schoenberg 

(1946) in a paper describing the use of generalised splines 

and other piecewise polynomials to approximate smooth 

functions of one variable. Although Schoenberg’s early 

paper was an important contribution to the use of spline 

techniques, it was not until the 1960's that further work 

in the field was published.
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Since that time, spline functions have been used 

extensively as methods of interpolation and approximation, 

see for example, Birkhoff and de Boor (1967), Greville (1969), 

Schumaker (1969), Curtis (1970), Hayes and Halliday (1974) 

and Cox (1975). An excellent summary of spline techniques 

is given in Ahlberg, Nilson and Walsh (1967).

Due to the benefit gained by employing splines in approximation 

problems, numerous authors have adapted spline techniques to 

obtain solutions to various problems in numerical analysis.

For example, Loscalzo and Talbot (1967), Loscalzo (1969),

Micula (1973) and Patricio (1978) considered the solution 

of initial value problems, whilst methods for solving 

two-point boundary value problems were presented by Bickley 

(1968), Albasiny and Hoskins (1969) , Fyfe (1969) and 

Khalifa and Eilbeck (1982).

in addition, El Tom (1974 and 1976) has used spline techniques 

in the solution of Volterra integral equations.

The development of spline techniques for obtaining numerical 

solutions to partial differential equations began with 

Papamichael and Whiteman (1973) . In that work the authors 

presented a method for solving the simple one-dimensional 

heat conduction equation in which use was made of a cubic
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spline approximation in the space direction together with 

a finite difference approximation in the time direction.

A similar technique was used by Raggett and Wilson (1974) 

in obtaining numerical solutions to the one-dimensional 

wave equation.

Spline function approximations have since been applied 

to more general partial differential equations. For example, 

Raggett, Stone and Wisher (1976) considered the solution 

of practical problems modelled by hyperbolic partial 

differential equations of the form

a(x,t) jhi + b(x,t) jhi + c(x,t)u. (1 .2 .1 )
8 x _ 8 x

In addition, Rubin and Graves (1975) and Rubin and Khosla 

(1976) presented spline techniques for solving problems in 

fluid mechanics. In particular, their work developed the 

use of spline techniques in the solution of non-linear 

equations. The application of spline function approximations 

to partial differential equations in two space dimensions 

was considered by Jain and Holla (1978) . They proposed a 

high accuracy formula, using a technique similar to that 

of McKee (1973) , for the spline solution of wave equations of

a u = d_ 

8 t^ 3x
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the form

92u = a(x,y,t) 32u + b(x,y,t) 32u . (1 .2 .2 )
8 t2  9x2  3y2

Jain and Aziz (1981) have also recently applied parametric 

spline techniques to a variety of differential equations and 

have found that they compare favourably with the more usual 

cubic spline approximations. In addition, papers by Sastry 

(1976) and Pala and Spano (1978) have also proposed methods 

for obtaining spline solutions to parabolic partial 

differential equations.

1.3 Motivation for Present Work

As mentioned earlier, the use of cubic splines for the 

numerical solution of the one-dimensional wave equation 

has been considered by Raggett and Wilson (1974). An 

indication of how that work could be generalised to the 

solution of more general one-dimensional, constant coefficient, 

hyperbolic partial differential equations was shown by 

Raggett (1974). The completion of that work was carried 

out by Wisher (1977) , who indicated that the use of spline 

techniques gave increased accuracy over comparative 

finite difference approximations. The schemes used on
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hyperbolic equations by Wisher (1977) are illustrated in 

Chapter 3 of this thesis. The extension of that work to 

include parabolic partial differential equations is also 

given in Chapter 3.

Most of the previously mentioned works on the application 

of spline techniques to the solution of partial differential 

equations have produced methods in which the knots were 

chosen to be equally spaced. An exception here is that of 

Wisher (1977) who used unequally spaced knots in solving 

the simple wave equation. In that work, the knots were 

positioned in an ad-hoc manner and no improvement in 

accuracy was observed over the use of uniform knot partitions. 

Further, some experimentation on choosing the knot points 

to be the zeros or extrema of the shifted Chebyshev polynomial

T*(x) = Cos (nCos-1 (2x-l)) (1.2.3)n

was undertaken in Wisher (1977). Again no improvement in 

accuracy over constant knot spacing was observed.

In this thesis we employ spline techniques with unequally 

spaced knots for the numerical solution of both hyperbolic 

and parabolic partial differential equations. Further, we 

present methods for the optimal positioning of these knots.

7



The derivation of schemes allowing the non-uniform partitioning

of knot points is given in Chapter 4.

The problem of determining optimal positions of knots

has been shown to be a difficult one and has only to-date

been applied to approximation problems.

In the earlier works on approximating functions (see for 

example, Curtis and Powell (1967)) equally spaced knots 

were employed with additional knots being inserted when - 

the error in the approximation was larger than some 

prescribed magnitude. Since that time various authors 

have attempted to choose the positions of the knots, in 

some optimal sense, given knowledge about the function f 

being approximated. De Boor and Rice (1968) described an 

algorithm for solving the least-squares cubic spline 

approximation problem. Their idea was to vary one knot 

at a time so as to reduce the error of best approximation. 

Similarly, Esch and Eastman (1969) proposed a method for 

a best discrete Chebyshev approximation by splines. Both 

these algorithms are computationally expensive and de Boor 

(1973) has since proposed an alternative method which chooses 

the knot partition from the given function f. This method 

is applied to the solution of partial differential equations

8



in Chapter 5 by taking the function f to be the given 

initial condition. Two additional methods for optimally 

positioning the knots are also derived in Chapter 5.

In Chapter 6  of this thesis, a number of case studies 

are considered and solutions derived using knot partitions 

resulting from each of the methods given in Chapter 5. 

Comparisons are also made with results produced using equally 

spaced knots.

The results of Chapter 6  suggest that improvement on the 

methods for locating the knot points given in Chapter 5 would 

be desirable. An improved algorithm is thus presented in 

Chapter 7, which chooses optimal partitions of knots on each 

time line. The suitability of this method is examined in 

Chapter 8 , where the earlier case studies are again considered.

Throughout this thesis, no particular reference to the 

associated characteristics has been made for hyperbolic 

problems. However, it should be realised that due 

account has been taken in the satisfaction of the 

Courant Friedrichs Lewy condition (see Mitchell and 

Griffiths (1980)) for all the problems cited.
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CHAPTER 2

Review of Cubic Spline Theory 

Definition of a Cubic Spline

Let f(x) be a function with continuous derivatives in 

the range a $ x $ b. To approximate f(x) using cubic 

spline techniques we may subdivide the interval a $ x $ b 

into N sub-intervals by inserting knots x^ such that

a = Xq < x^ < ....< xN = b. (2.1.1)

S(x) is a cubic spline interpolating to the function f(x) at 

the knots x^, x  if

(i) in each sub-interval x̂  ̂ $ x $ x̂  ̂(1=1,2, ... ,N) f

S(x) is a cubic polynomial,

(ii) s ’(x) and s"(x) are continuous everywhere in [a,bJ ,

(iii) S(x±) = fCxJ (i=0,l,...,N).

A cubic spline thus consists of a set of cubic polynomial 

arcs which are joined smoothly end to end with continuous 

first and second derivatives. In general, the third derivative

will have a discontinuity at each of the knots x ,x ,....,x^ - ^

Cubic Spline Functions

From Ahlberg, Nilson and Walsh (1967), in the interval
r -| ttx^ , x we define S (x) as



where hi = Xi Xi l Ci = 1,2,...,N) (2.2.2)
ftand = S (x_̂) . Integrating twice gives the cubic spline 

function S(x) on I x, , x I as

S(x) = (x± - x)3 + M± (x - Xj.j)3 +/ “ h)2 ) (*,“*)
6 h± 6 h± \ 6  ' hi

+ | f(Xi) - h± 2  M± | (x - xi ]L) (i=l,2,----,N)

(2.2.3)

the constants of integration being evaluated from S(x^) = f(x^) 

and S(x̂ , )̂ = f(x^ )̂ . From (2.2^3) the following one-sided 

limits of the derivatives of s'(x) are derived

s'(Xi-) = h± U ±mml + h ± Mi + f(x±) - f(xi-_1) (i=l,2,...,N)

6 3  hi (2.2.4)

S ’(x±+) = -hi + 1  M± - hi + 1  Mi + 1  + f(x±+1) - f(x±) (i=0,l,...(N-l))

3  6  hi+l (2.2.5)

The unknowns M (i=0,2,...,N) are obtained by equating these 

one-sided limits, thus giving

h. M , + h.+h. M. + h. M. = h.f(x. .J-Oi.+h, ,)f(x.)+h, \  f(x. .l i- 1  l l+l i i+ 1  i+ 1  i i+ 1  i i+ 1  l i+ 1  i-l
6 3 6  h.h. ,l l+l

(i=l,2,...,(N-l))
(2.2.6)
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Equation (2.2.6) is a tri-diagonal system of (N-l) 

equations in (N+l) unknowns. To solve this system various 

choices of conditions are available at the end points,

Xq and x^, of the interval to produce a consistent set 

of (N+l) equations

(i) s"(x^) = 0 (i=0,N) (2.2.7)

(ii) S * (x^) ■= f*(xi) (i=0,N) (2.2.8)

(III) s " ^ )  = f’* (x±) (i=0,N) (2.2.9)

As suggested by Behforooz and Papamichael (1979), the

choice of these extra conditions plays an important role 

on the quality of the spline approximation. It is well-known 

that the best order of approximation which can be achieved 

by an interpolatory cubic spline is

I[ S - f 11 = 0(h4)

where | | . | | denotes the uniform norm on [a>bJ aad

h = max(h^). This order of accuracy is obtained if either

(ii) or (iii) are used as the extra conditions. As stated
4by Kershaw (1973) an 0(h ) accuracy is not obtained if 

condition (i) is applied. However, the conditions (ii) 

and (iii) require knowledge of the derivatives of the 

function f(x). This knowledge is not generally available 

from any imposed boundary conditions of partial differential 

equations and we thus use (i) as the extra conditions in

12



this thesis, S(x) and (i) being known as a ’natural’

cubic spline. Papamichael and Worsey (1981) have

recently derived improved extra conditions for spline

approximation which could result in increased accuracy

to the results of case studies considered later.

Having decided on the choice of 'end conditions', substitution

of these into (2.2.6) gives a system of (N-l) equations which

are linearly independent, tri-diagonal and diagonally

dominant. They can therefore easily be solved for M.i
(1=1,2,...,(N-l)), the satisfaction of the end conditions 

then giving MQ and The spline function S(x) can then

be obtained from (2.2.3).

13



CHAPTER 3

Initial Value Partial Differential 
Equations with Equally Spaced Knots.

(i) Hyperbolic Partial Differential Equations

3.1 Constants Coefficients

Suppose that u(x,t) satisfies the second order linear

hyperbolic partial differential equation 
2  2

8 u = a 8  u + b jhi + cu (0 £ x $ 1, t >0) (3.1.1)
2  2  

8 t 8 x dx

where the coefficients a, b, c are constants (a > 0 ).

Assume further that (3.1.1) is subject to the function

value boundary conditions

u(0,t) = f1 (t) , u(l,t) = f2 (t) (3.1.2)

and the initial conditions

u(x,0) = g (x) , 8u(x,0) - g (x) (3.1.3)
8 t

where f^(t), fg(t), g^x) and g2 Cx) are known functions.

To obtain solutions to (3.1.1) using spline techniques

we here consider the knots

0 . = x < x < .... < xXT = 1 (3.1.4)0 1 N

to be.equally spaced where the distance between successive

knots is h, so that xi = ih (i=0,l.... ,N) . We now replace

the time derivative in (3.1.1) by a finite difference

approximation and the space derivatives by a cubic spline,

thus obtaining at the point (ih,jk) the implicit relationship

(see Wisher (1977))
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u. . ,-2u. ,+u. . _ = afsM. . _+(l-20)M. J+0MJ .i,d i,j+l I i,j-l i,j i, j+lj

+ M 0l, .. _ +(1 -2 0 )L +0 L L\ i,j-l i, d i,d+lj

+ c(0 u. +(1 -2 0 )u +0 u \
I (3.1.5)

(i=0,l,....,N; d=l»2,»**»; ; 6  ^ 0)

where L = S*(x ), M = s"(x ); S (x) denoting the 113 J * J J  ̂ J
thcubic spline interpolating the values u on the d

1 »J
time line, this being given by

Y x ) " (v x ) 3  + Mi.,i(x-xi-i) 3  + fui-i..r^Mi-i..i) (xr x)
6 h 6 h \ / h

* y * t  j_-2"i j j (i=l,2 N) (3.1.6)

As shown in section 2.2, the continuity of the first 

derivatives of the spline function yields

i J + 2 M J . = u. , . - 2 uJ , + u, , .
k  i-1,3 o' i»d fi- i+1,3 i-1,3 i.d i+1.3

2 (3.1.7)h
(i=l,2,....,(N-l))
th thThis relationship also holds on the (d-1) and (d+1)

time lines, giving respectively

i  Mi-l,j-l+ |Mi,j-l+ = Ul-1 . j-l~2Ui ..1 -l'l'Ul+l. j- 1

h2

(1=1,2.....,(N-1))
(3.1.8)

and

iMl-l, j+l + |M1 , j+ 1  + £“i+l, j+l = Ul-1 . ,1 +l~2 Ui. ,1 +1 +U1 + 1 . j+ 1

h 2

(1=1,2......(N-l))
(3.1.9)

15



We now require an expression similar to (3.1.7) which
thincorporates the L values. On the j time line

1  ,  J

(2.2.4)and (2.2.5) respectively become

L_, a = SJ(xJ-) = hM , u + hM + u_, - û
h------- <3

J -  o  v *  -  n m  -  . T  U f f l  - r  u  -  ui,j j i g i-1.J 3 ij i,j i-l>J

(3

(3

(i=l,2....,N)
and

L. = S*(x. +) = -hM. -hM. + u ' • u. .i j  j i 3  g 1 +1,J i+l,J - i.d

(1=0,1,---,(N-1))
From (3.1.10) we have

It, , . = hMJ . + hM. , . + ^  , . — u. .i+l,j J  i+l.J i+l.j i,j
h

<i=0> 1,---- (N-l))

and from (3.1.11)

L = -hM - hM + u - ui-l,d 3  i-lj gi,j i,J i-ltj (3
h

(i=l,2,....,N)

A relationship is now obtained by adding (3.1.10) and (3.1 

the result being added to half the sum of (3.1.12) and (3. 

Thus on the jth time line

jLi-l,} + fLi J  + = V l . J  ' "i-l.J (3
2 h
(i=l, 2,. .. .,(N-l))

4-1-

Again (3.1.14) holds on the (j-1) and(j+l) time lines 

giving

1L + 2L + 1L = u - u „ „-i-l,j - 1  - i , H  - i + 1 ,d- 1  i+1,d-1 i-l,d-l (3
2 h

(i=l ,2 ---,(N-1))

.1.10)

.1.11)

.1.12)

.1.13)

.11), 
1.13).

.1.14)

.1.15)

16



and

1L + 2L + 1L = u — u-i-l,j+l - i j + l  -i+l,j+l i+l,j+l i-1,j+1 (3.1.16)
Zh

(1 * 1 , 2 (N-l)>

As shown in Wisher (1977) the required scheme incorporating 

splines is obtained by performing the following operations:

(i) multiply (3.1.7) by a(l-20);

(ii) add (3.1.8) and (3.1.9), multiply the result by a0;

(iii) multiply (3.1.14) by b(l-20);

(iv) add (3.1.15) and (3.1.16), multiply the result by b0;

(v) add the expressions produced in (i) - (iv) together;

(vi) use (3.1.5) to eliminate the and L. . values,

thus giving the following three time level scheme

and the mesh ratio r=k/h.

The truncation error for (3.1.17) is obtained by expanding 

each term of the scheme about the mesh point (ih,jk) using

(see Wisher (1977)) the following expression, to fourth order, 

is obtained

+ 4(l+3o0)u

4(l+3o0)u (3.1.17)

(i=l,2,----,(N-1))» • • • • >

Taylor series approximations. After appropriate rearrangements

17



(3,

k2 h2  c2 r2 f(0 )u + 2 bcr2 f(0 ) jhi 
[ 9x

f 2  2  2  2  ^ 2+J r (2ac + b )f(0) - 1 ̂c k 0> 9 u
I 6  J 3 z 2

+ J 2abr3f(9) - 1_ bck30^ 33u
L 6 J 3x3

( 2 2 2 o 1 4a r f(0) + 1 a - 1 ch - 1 ack 0i 9_u

12 72 6 J 3x4
where f(0) = 1_ (1 - ck20) - 6. (3,

12

This truncation error may be considerably simplified by

choosing f(0 ) = 0 , in which case the parameter 0  is

chosen such that

0 = 1 (3,
12 + ck2

Thus, in the special case where fourth and higher order

derivatives are small, the truncation error is reduced
2 2 4 2in magnitude from 0(k h ) to 0(k h ). The technique of

optimally choosing the parameter 0  has been considered

in detail by Wisher (1977). For example, when obtaining

solutions to the wave equation ((3.1.1) with a=l, b=c=0)
2 4 6the truncation error (3.1.18):can be reduced to 0(k h +k )

bt) choosing

0 = _JL_ (1+r2) (3,
1 2 r2

1.18)

1.19)

1.20)

1.21)

18



2 6 8and, in fact, to 0 (k h +k ) by suitable choice of both 

6  and r.

To examine the stability of the scheme (3.1.17) we use 

the well known von Neumann method (see Mitchell (1969)) in 

which a harmonic decomposition is made of the error at 

mesh points (see Wisher (1977) for full details). The 

following stability conditions are obtained

(a) if 6  £ it is unconditionally stable

(b) if 0  < it is stable when
- 1/2

r $ {3a(l-40)} . (3.1.22)
3.2 Variable Coefficients.

Here we require solutions to the hyperbolic partial

differential equation -

+ b(x,t) 9ii + c(x,t)u (3.2.1)
9x

where a(x,t), b(x,t) and c(x,t) are variable coefficients 

and a(x,t) > 0  at all points in the solution domain.

Again we consider the knots to be equally spaced and 

perform an analysis identical to that of the previous 

section. Though complicated by the variable coefficients 

the following scheme, similar to (3.1.17), is derived 

at (ih,jk)

if
9t
9 u = _9
2 9x

a(x,t) jhi
9x
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^i-l.j+l “8 *i,j+l>ui-l,j+l + ^ i . j + l  + 3 Yi,j+l)Ui,j+ 1

+('f’i+l,j+l “6xi,j+l)ui+l,J+l

={2 *i-i,j+ A - i . j  v u + 4 {2 ^ , j + A . j

-3(1-26,Yi(J} Ulj + {2*i+ltJ + k2c1+1tj ♦<l-ae>x1<j> u1+1>j

' + 3 Yi,j-i)ui,j-i

"^i+l.j-l “ 0Xi,3-l)Ul+l,j-1 (t=1>2.... »(N-1), (3.2.2)

where
2 2 

*i,j 1 k 9°i,j ’ Yi,l ” r ai,J ’ 6Yi,j 6l.j ’

Xi,J =6Yi,J + ei,d • 6i.j = 3rk(ai j  + b ilJ> > 

the prime denoting differentiation with respect to x.

The truncation error for (3.2.2) is again obtained using

Taylor series expansions. It is found that the error is 
2 2

0 (k h ), although in this case the expression is much more 

complex, involving derivatives of the variable coefficients 

and odd order derivatives of u with respect to t. The full 

expression for this truncation error is given in Wisher (1977)

The stability condition for (3.2.2) is obtained by applying 

the von Neumann method locally, since the method is only 

applicable to difference schemes with constant coefficients.

20



As suggested by Widlund (1966) and Mitchell (1969) 

we therefore perforin the analysis by considering the 

coefficients to be constant and assume that the scheme 

with variable coefficients will be stable provided the 

condition obtained is satisfied at every point of the 

solution domain. The scheme (3.2.2) then has the following 

stability condition

(a) if 0  £ ~  , it is unconditionally stable;

(b) if 0  < ■- , it is stable whenever
- 1/2

r $ {3a(x,t)(1-40)} (3.2.3)

is satisfied independently at each point of the solution 

domain.

Equations of the form (3.2.1) have been considered in detail 

by Raggett, Stone and Wisher (1975) and (1976).

(ii) Parabolic Partial Differential Equations

3.3 Constant Coefficients

The cubic spline solution of the simple heat conduction

equation has been considered by Papamichael and Whiteman(1973)

and by Sastry (1976). In this section we extend the technique

to the more general parabolic partial differential equation
23u = a 3 u + b 3u. + cu (0 $ x $ 1, t > 0) (3.3.1)

3t 3x^ 3x

21



where a, b, c are constants (a > 0) . We here assume that

(3.3.1) is subject to the initial condition

where f^(t), g(x) are known functions. If the

knot partition (3.1.4) is again chosen to be equally spaced, 

then by similarly replacing the time derivative in (3.3.1) 

by a finite difference approximation and the space derivatives 

by a cubic spline we have at (ih,jk)

similar in nature to (3.1.17) is obtained by performing the 

following operations:

u(x,0 ) = g(x) (3.3.2)

and the function value boundary conditions

u(0 , t) = f1 (t) U( 1 y t) = ^(t) (3.3.3)

k

(3.3.4)

where Li J and M are as previously defined. A scheme
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(i) multiply (3.1.7) by a(l-0);

(ii) multiply (3.1.9) by a0;

(iii) multiply (3.1.14) by b(l-0);

(iv) multiply (3.1.16) by b0;

(v) add the expressions produced in (i)-(iv) above 

together;

(vi) use (3.3.4) to eliminate the M and L values
i i J * i J

The following scheme incorporating splines thus results

(l-310)ui_1 j+1 + 4(1-*-320)u± ̂ +<1“330)ui+1 J+1

= {l+31 (l-0)}i^ _ 1  4{l-32 (l-0) }u±  ̂+ {l+33 (l-0)}ui + 1  (3.3.5)

(i=l,2,....,(N-l))

where 3, = 6 ar - 3brh + kc ; 3„ = 3ar - ck ; 3„ = 6 ar + 3brti + kc
1  A

2and the mesh ratio r = k/h .

The scheme (3.3.5) reduces to that of Papamichael and

Whiteman (1973) for a=l, b=c=0 and is analogous to (3.1.17)

for hyperbolic equations. In fact, if a=l, b=c=0, suitable

choices of the parameter 0  lead to other well-known finite

difference schemes. For example, by choosing 0 = 1_ the
6 r

scheme (3.3.5) reduces to the simple explicit representation;
1  1. 0 = —  + —  gives rise to the Crank-Nicolson formula and 
2  or

® ~ \  + ̂ 2r yields the accuracy formula of Douglas

(1956).
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+ 4(1-1

+(1 “3 3l

The truncation error associated with the scheme (3.3.5) Is 

again obtained using Taylor series expansions. Fuller 

details are given here (compared to the hyperbolic.case) 

since this truncation error has not been derived elsewhere. 

Thus, expanding (3.3.5) about the mesh point (ih,jk) we have

(l-3je> u + k / 3u\ + k^ I 82u \ + kf̂  183u\ + k^ / 34u\

-h + k 5 \ u \ + k

i,d 3x3t
l .

33u + k 34u
2 ! \3x3t /j i $ j 3! \ 3x3t*

+ h_ 
2 .'

2  ’ 3 u
3x2 ,

+ k / 3 u + k 34u "I
/ \ 2  1 2  2 / r \3x 31/ 2! \ 3x 3t /1»J i »J i» J

- h_ 
3*

33u
3x3,

J2 0)

))

u. ■ + k / 3u
i j

i j

k
\ 3x 3t

2 2

3t

+ h_ 
4:

34u
3x4

33u + k

i,d

4 34u
3! \. 3t /. . 4! \ 3ti. J

u., . + k/ 3u , 2  / . 2  + k / 3 u + k 33u + k

+h 3u 
\.\3x.

3t / . 2 ! \ 3t" .

2 / 3+ k / 3 u

3 ! \ 3t i,d
, / ^ 2  + k( 3 u + k3 / .4 3 u

v \ O X  / .
1 ,  J

7 1>3x3t/. . 2! \3x3t/ . 3.’ \ 3x313 , .i, j i , j i , 3

+ k/ 3 u
3x2 3t, i.j

+ k 
2 *.

34u
3x2 3t2 i,d-

+h_
3.*

rus \ + k 34u
3x3 3t

N x.4+ h 
41

34u
3x4

i.j.

34u
4! \ 3t i j
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ui . j " h i— ) + -
W i .3 2I

3 u * h a3  ' 3 u 4 / 4 \ 
+  h / 9 u

3x2-'i,j 3: ' 3x34 ,j 4:

Ui , j + h  -  + -
a2  ' 3 u + h 3  I 33 u\ + h 4 a4  3 u

2 ! \ 3x 3 ! \ 3x' i,d
4! V 3x i.j

(3.3.6)

Using the expressions for 3., 3 , 3 given earlier and
1  A U

rearranging we obtain the following truncation error to

fourth order

(-ck3 0 ) 3u + 1  (k^ - ck3 0 ) 3^u + 1  (k3  - ck4 0 ) 33u
3t 3t 3t‘

+ 1  (k4  - ck^0 ) 34u + (-bk3 0 ) 3^u + (- lbk3 0 ) 33u
24 3t 3x31 3x3t

2 . . 2 2. 2.+ (- lbk 0 ) 3 u + (- lckh ) 3 u + 1  (kh - 6 ak 0 -ck h 0 ) 3 u
3x3t' 3x 6

+ 1  (k^h3  -3ak3 0~ ck3 h3 0) 34u + (- lbkh3) 33u
6 12 2  , 2 a + 2  3x 3t 3x*

2 2 4  I 2 4  \ 4+ (- lbk h 0 ) 3 u + 1  j-akh - ckh j 3 u
3x3 3t 12 3x'

2 23x 3t

(3.3.7)

The time and mixed derivatives in (3.3.7) can now be 

replaced by space derivatives by employing (3.3.1).

For example
2 2 4 3 2 2 2

9 u = a 9 u + 2 ab 9 u + (2 ac + b ) 9 u + 2 bc 9u + c u,
9t 9x‘ 9x 9x 9x
2 3 29 u = a 9 u + b 9 u  + c 9 u
9x9t 9x 9x 9x
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The following expression for the truncation error

k2.
involving space derivatives only, is thus obtained

uc2  1(1-20) + ck(l-36) + c2 k2(l - 40 - ck0)
\ 2  6  24

be I 1-20 + ck(l-30) + c2 k2(l - 40 - ck0)
I 2 6

3u
dx

ac ( 1-20 + ck(l-30) + c2 k2(l - 30 - ck0) \ 2 6

+ b 2  / 1(1-20)+ ck(l-30) + c2 k4(l - 40 - ck0)

+ c2 h2  ( 1  - 1 2 0  - ck0 ) 
72

afu
3x2

ab [ 1-20 + ck(l-30) + c2 k2(l - 30 - ck0)

+ b 2  / ck2(l - 40 - ck0) + k (1 -30)

+ bch ( 1  - 1 2 0  - 6 ck0 ) 
36

afu
3x3

a2 / 1(1-20) + ck(l-30) + c2 k2 (l-20 - ck0)

+ ab2  / k (1-30) + ck2(l - 30 - ck0 )

+ ach2  ( 1  - 60 - 6 ck0 ) + b2 h2  ( 1  - 1 2 0  - 6 ck0 )
36 72

4 2 2+ b k  ( 1 - 4 0 -  ck0) + a - ch
24 12r 72r

34u
3x4

(3.3.8)
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For the simple heat conduction equation this error 

reduces to

k 2 1 (1 -2 0 ) + 1 3ju + ,... (3.3.9)
3x4

2  1 2  r

and thus by choosing

0 = 0 . +  _ ± _  (3.3.10)
2  1 2 r

the truncation error is simplified to include only terms 

higher than fourth order derivatives. As previously mentioned, 

the use of (3.3.10) gives rise to the high accuracy formula 

derived by Douglas (1956).

The stability of (3.3.5) is examined by first replacing
imY n

u j j by u and then letting u = e £ , where Y is an i, j m,n m,n
arbitrary real number and £ = X being a complex parameter.

Equation (3.3.5) thus becomes

(l-e_0)el(m”1 )YSn + 1  + 4(l+39 0)ei m Y £ n + 1  + (l-3 «e)ei ( m + 1 ) Y £ n + 1X 6 o

:{l+6 l(l-e)}ei(m-1 )Y5n + 4{l-B2 <l-6) }eimYCn + U +B3 (l-0) }ei(,,1+1> V

imy nDividing by e £ ^0 and rearranging gives

K = {1 +B1 (l-6 )}e"iY+ 4{l-B2 (l-0)} + {l+B3 (l-6 )}eiY 

Cl-6 1 8 )e_iY + 4(1+B2 0) + <l-B3 0)eiY

If we now replace 3., 30, 3, by their full expressions and let1 A 3
h and k tend to zero in such a way that r remains fixed we 

obtain
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K = {1 + 6ar(l-0)}(e“iY+eiY) + 4{l - 3ar(l-0)}

( 1  - 6 ar6 )(e“iY+eiY) + 4(l+3ar0) (3.3.11)

— iv iySince 2cosy = e +e ,

2and cosy = 1 - 2Sin y_
2

it follows that, in view of the fact that £ is purely real, the 

stability condition on £ is

-1 £ 3 - 2(1 + 6ar(l-0))Sin2y $ 1 (3.3.12)

3 - 2(1 - 6ar0)Sin2y

Denoting the denominator in this expression by D, we see 

that since r > 0, a > 0 and 0 £ 0 then D > 0. Thus (3.3.12) 

becomes

- 3 + 2(l-6ar0)Sin2y $ 3 - 2(l+6ar(l-0))Sin2y $ 3 - 2(l-6ar0)Sin2

2 2
(3.3.13)

From the right-hand inequality in (3.3.13) we have

-12arSin2 ŷ $ 0 (3.3.14)
2

which is satisfied for all r > 0 ; thus the left-hand 

inequality will yield the required stability criteria.

From the left-hand inequality we obtain the expression

12ar(l-20)Sin2y $ 6  - 4Sin2y . (3.3.15)
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Thus, if 1-20 > 0, we can rearrange (3.3.15) to give

2r $ 3 - 2Sin y

6a(l-20)Sin2y
(3.3.16)

Since Sin y_ e [o,l], then by choosing Sin y_ to give the most 
2  2

restricted condition on stability, we obtain

T* < 1“ ---±------  . (3.3.17)
6 a(l-2 0 )

Alternatively, if 1-20 $ 0, rearrangement Of (3.3.15) gives

r £ 3 - 2Sin2y

6a(l-20)Sin2y
(3.3.18)

2
and thus r £ a, where a < 0. This implies that the scheme

(3.3.5) is unconditionally stable for 1-20 ̂  0.

The scheme (3.3.5) therefore has the following condition 

governing its stability

(a) if 0  it is unconditionally stable.
A

(b) if 0  < -■, it is stable provided that
- 1

r S (6a(l-20)} (3.3.19)

3.4 Variable Coefficients

As shown in section 3.2 spline techniques can be applied 

to hyperbolic partial differential equations with variable 

coefficients. In this section we require solutions to the 

parabolic equation with variable coefficients
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3u =. _3_ 
3t 9x

a(x,t) 3u
3x

+ b(x,t) 3ii + c(x,t)u (3.4.1)
3x

where again a(x,t) > 0  at all points in the solution domain.

As in previous sections, if we replace the time derivative 

in (3.4.1) by a finite difference approximation and the 

space derivatives by a cubic spline we obtain at (ih,jk)

ul,j+l ~ ul.j = 0 ai,j+l + (1_6 )ai,j “i,j

+ e<ai(j+l + + bi,J>Li.j

+ 6 ci,j+l ui,j+l + (1-e)ci,j ui ,} (3-4‘2)

(i=0,l ,N ; J=l,2,„. ; Nh=l ; 6 5 0).

To obtain the required scheme incorporating cubic splines 

we perform the following operations:

(i) multiply (3.1.7) by a. (1-0);
^ » J

(ii) multiply (3.1.9) by 0a ;
t J "* " -* -

(iii) multiply (3.1.14) by (a! .+b .)(1—0);i > 0 * » 3
(iv) multiply (3.1.16) by 0(a^ j+1 ^’
(v) add the expressions obtained in (i)-(iv) together;

this gives the following expression

a. .(1-0)/ 1M . .+2M .+1M. _ . \ + a. . . d l 1M. _ .^+2M. _ \i,j -  i-l,j j  i , J j  i+1,J J 1, j+1 Ig- i-1,0+1 J  i,J+l q i+1,j+lj

+(a' ,+b4 ) (1-0)7 1L. _ +2L +1L. .\+(a.' 4j,+b, . . ) Q l l L  . ...v i,j i, j I -  l-l, j 3 i, j g- l+l, J i,j+l i,j+l hr i-1 , j+1 .
+ 2L. _+lL .

3 i,j+ 1  6 i+1 ,J+ 1

= ai..i(1~9 )/ v i . . r 2 ui..i+V i , j  V  ai..i+i9 /ui-i..i+r 2 ui.j+x+ui+i.3+i
A h2  I \ h2

+(ai, j+bi, (1_9)/ ul+l.j~ul-l.j \ *  (ai , j+l+bi , j+l)9/ui+l.j+l~Ui-l,J+l
2h / \ 2h

(3.4.3)
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(vi) use (3.4.2) directly and with i replaced by

both (i-1 ) and (i+1 ) to eliminate the M andi i j
L values in (3.4.3). In the case of constant i » J
coefficients the required scheme results immediately.

In this case however, use must also be made of Taylor 

Series expansions before the M's and L*s can be 

eliminated. For example, (3.4.2) with i replaced 

by (i-1 ) can be written as

Ui-l,j+l ~ Ui-ltj ^ 9 |ai,j+l ~ hai,j+l + —  ai,j+l J “i-1 ,j+ 1

k

+(1“0)|ai,j “ hai,j+ —  ai,r*--jMi-ij

+0 fai,j+l “ hai,j+l+ +bi,j+l “ hbi,j+l + —  bi,j+l**
2 1  

Li-1 ,j+ 1

« / * *’ ■ » 2  ** +(1 -0 )fa. - ha. .+....+b. - hb. + h b. .i,j i,j i,j i,j —  i,J
\ 21

h i-1 , j

+ 0O1-I,j+1 V i , M  + ■(1-8)0i-i,d Vi.d (3-4-4)

A similar expression can also be obtained for (3.4.2) 

with i replaced by (i+1). These expressions are then used 

to carry out the elimination of the M and L values as
1  I  J  *  J J

required. The following scheme thus results
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K-l jl-1
(V l , j + l  ‘ + 4 (*i,j+l + 3 0 Yi,j+l)Ui,j+l

+ ^i+lj+l “ 0 Xi,j+l)ui+l,j+ 1

i-1,j + kCl-l,j + (1 -6 )*l,jlui-l,J + 4 {*i,d + kci,J - 3 <1 -0 )Yi,J} ui.J

+{V l , j  + k°i+l,j + (1 -0 )Xi,j} ui+l,J 

(i=l,2.... . (N-l) (3.4.5)

where

*i,d = 1  - k0oi j  ’ Yu  = rai,d • ’"1 , 4 = 6 yi.j " ei,j ’

Xi,d ” 6 Yi,j + ei.J ’ Si.3 " 3  I  (ai.3 + bi.i>'

As in section 3.2, the stability condition for the scheme

(3.4.5) is derived by applying the von Neumann Method locally. 

It can thus be shown that

(i) if 0  £ —  , it is unconditionally stable2
(ii) if 0  < ^  , it is stable provided

a

- 1

r $ { 6 a(x, t)(1-20)} (3.4.6)

is satisfied independently at each point of the solution 

domain.

The truncation error associated with (3.4.5) may again be

derived by expanding the terms in the scheme using Taylor
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series. As in section 3.2, the expression is complicated 

by derivatives of the variable coefficients. For conciseness 

the details are not given here, but it can be shown that the 

error of (3.4.5) is 0(k2).

33



CHAPTER 4

Initial Value Partial Differential 
Equations with Unequally Spaced Knots

4.1 The Use of Unequal Step Lengths

The numerical solution of partial differential equations using 

finite difference schemes in which the mesh points are non- 

uniformly distributed has been considered by various authors.

For example, Saul’yev (1964) suggested the use of non-rectangular 

grids for solving the heat conduction equation in which the 

initial condition g(x) has the form illustrated in Figure 1.

Saul'yev recommends that, due to the changing nature of the 
function g(x) in such a situation the step lengths should be

and larger in the reamining two-thirds.

More complicated problems in which the solution varies rapidly 

over a small part of the domain but very slowly over the rest 

are found in boundary layer problems in fluid dynamics. Crowder 

and Dalton (1971) and Kalnay de Rivas (1972) have considered 

the use of non-uniform grids which can be used to place sufficient 

mesh points in the region of the boundary layer and fewer 

points in the remaining solution domain.

Finite difference approximations with unequally spaced mesh 

points have also been shown to be advantageous in moving 

boundary problems in heat flow (see for example Murray and

chosen to be smaller in the first third
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Landis (1959), Douglas and Gallie (1955), Lotkin (1960) 

and Crank and Gupta (1972a).

4.2 Hyperbolic Partial Differential Equations with Constant 
Coefficients

In this section we obtain solutions u(x,t) to (3.1.1) 

using spline techniques in which the knot partition (3.1.4) 

is considered to be unequally spaced and where the distance 

between successive knots is given in (2 .2 .2 ).

tilFrom equation (2.2.3) the spline function on the j time 

line has the form

V X) = “i-1,3 (X1 ~ X)3 + Mi,j (X - Xi-1)3 + ( Vi.j ' ' (X' ' X)
6hi 6hi \ 6  / hi

+ f ui j -  ̂ \ (x - x.^) . (i=l,2, ... ,N) (4.2.1)
6 * * I h"

Similarly the expression (2.2.6) for the second derivative
th'of the spline function becomes on the j time level

h.M. + h. + h. _ M, . + h. ,M. , .i l-l,j l i+ 1  i,j l+l l+l,j

= hiUi+l>J ~ (hi + hi+l>Ui.j + hi+lUi-l,j (4.2.2)
hihi+l

(1=1,2,...,(N-l))

A relationship similar to (3.1.14) is now required for unequally 

spaced knots. From (3.1.10) to (3.1.13) the following expressions 

are obtained
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2  2h L = h M + h M + u - u (4.2.3)i i,j _i i-1 ,j _i i,j i,j i-l,j V 9

6 3

. “ -h? ,M . - hf _M. + u. - u. . (4.2.4)i+1 i,j J + 1  i j  _J+1 i+lj i+l,j i, j
3 6

2  2h L = h M + h M + u  — u (4.2.5)i+ 1  i+1 , j i+ 1  i, j i+ 1  i+1 , j i+1 , j i,j

2 2h L = —h M — h M + u  — u (4.2.6)i i-1,j T i - l , j  T i , J  i,j i-1,j v '
3 6

Adding (4.2.3) and (4.2.4) to half the sum of (4.2.5) and

(4.2.6) gives the expression

h L  + h + h L + h L_i^i-l,j i i+ 1  i, j i+ 1  i+l,j
6  3 6

(hi ~ hi+l)Mi,j * Uj+1,j ~ Ui-l,j (4.2.7)
12 2

(i=l,2.... ,(N-1))

Approximations similar to (4.2.2) and (4.2.7) also hold on the 
th th(j-1) and (j+1) time lines. As explained in section 3.1

we now take combinations of the above mentioned relationships

and use (3.1.5) to eliminate the M. and L. terms where^ i j i »J
possible. The following three time level scheme is thus obtained
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={2 *± + t1(1-26)}u1_1 3 + 2 { 2  - xi(l-26)}ui {2 ^  + ^ ( 1 -2 0 ) }u1 + 1  ̂

— (d)  — v  0)u — 2(1 + Y  0)u — ( 8  — ib 0)i i  (4.2.8)v± *i ' i,j-l VPi v± 9 i+1,j-1 v '

(i=l,2,....,(N-l))

where

Y = 6 ar — 3bh 9 + ch h si i i+ 1  i i i+ 1  i

Xi = 6 avi - ck2

iii = 6  as + 3bh r + ch h rV± ouai uuiii i+lxi

6  = h 3  = h*i ui i pi “i+i
ĥ  + h. _ hJ + h. _i i+ 1  i l+l

and the mesh ratios r.. sJ and v. are given byl i l



If the coefficient b in (3.1.1) is non-zero the solution

of the scheme (4.2.8) is complicated by the presence of

i » M . Assuming that the scheme is fullyi,j-l i,j i»J+l
thdeveloped in that values for u and M are known on the j 

thand (j-1 ) time lines, then we must determine M values
1  I

before further solutions u. . , can be found.i, j+i

This problem is overcome using the following numerical 

procedure:

(i) Using the initial condition (3.1.3) the expression 

(4.2.2) becomes

hiMi-l, 0  + hj + hj+i Mi> 0 + hj+l Mi+1 , 0  

6  3 6

= hi «l(aW  ~ (hi + +  hi+lgl(*i-l} *
hihi+l (4.2

(i=l,2,---- (N-l)

Given that MQ = ^  = 0 (j=0,l,2,....), the tri-diagonal

system is easily solved for ^ (i=l,2,....,(N-l)).

(ii) By setting 0=0 and using the derivative initial

condition in (3.1.3), the scheme (4.2.8) becomes, 

with j= 0

2d> u + 4u + 28 u + bk2(h - h )Mvi i-1 , 1  i, 1  i i+1 , 1  v i+ 1  i' i , 0

= + Yi)g1<xi l )+2(2-xi)g1(xi)+(28i + ^i)&1<xi+1>

+ 2k(j)j,g2 (xi_1) + 4kg2 (xi) + 2 k3ig2 (xi+1) . (4.2

(i=l,2,---- (N-l))

The solutions u (i=l,2,...,(N-l)) are thus obtained fromX , X
tri-diagonal system (4.2.10).

9)

.10)
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(iii) Putting j=l in the expression (4.2.2) gives an easily 

solvable tri-diagonal system of equations producing 

the values M (i=l,2,....,(N-l)).

(iv) Since we have now determined M. _, II , , u andi ,u i,i i ,o
u. „ we can develop a general scheme for obtaining 
i.l

M, , , and hence u, , ,. This is done using a simplei,j+l i,j+l
iterative process, beginning with an initial approximation 

to Mi j+1>given by the extrapolated relationship

M.(°* = 2M. . - M.------ (i=0,1,--- ,N). (4.2.11)i,j+l i,j i,j-l

We substitute (4.2.11) into the scheme (4.2.8) thus
(0)obtaining initial approximations u^ to ui j+1 *

(v) Assuming now that the iterative process is fully

developed and that we wish to obtain improved

approximations BI . to M, J then from (4.2.2)i,j+ 1  * i,j+ 1

we have the expression

(n+1 ) (n+1 ) (n+1 )h.M, _ + h. + h. , M. + h. , M. _i i-1 ,j+ 1  i i+ 1  i,j+ 1  i+ 1  i+1 ,j+ 1

= h u ^  - (h + h )u ^  + h u ^i i+1 ,j+ 1  vni ai+l'ui.j+l ni+l i-1 .j+ 1  . ( 4  2  12)
hihi+l

Given that M = 0, the system (4.2.12)0,3+1 N,j+l
is easily solved for the required improved approximations 

MiCj+l> ( i = 1 > 2 .... .(N-l)).
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(vi) The M. values obtained in (v) are now used in
1 ,  J+- * -

the scheme (4.2.8), which in iterative notation is

(d> - Y 0)u n̂+1  ̂ + 2(1+y 0)u *n+1* + ($ -if, 0)U n̂+1^vvi ri ' i-1,j+1 v i i ,j+1 KPi V1 ' i+1,j+1

+ bk2 (h. - h ) (0 M +(1 -2 0 )M + O m / ^ )
2 ~  i+l 1  i,j-l i,j i,j+l

*{2 «1 +yi(1 -2 .0 )}u1 _ 1  j+2 {2 -xi(l-2 0 )}ui ^ { 2 6 ^ ( 1 - 2 0 )  }ui + 1  ̂^

- < W )Ui-l,j-l - 2 (1 +Xi8 >Ui,j-l - < W >Ui+l,j-l

(i=l,2,___,(N-1)) (4.2.13)

By solving (4.2.13) we obtain improved approximations 
(n+1 )u. . , , to u, . ,.i tj+ 1  i,j+l

(vii) A test is now performed on these u. values by
1 , j+ 1

examining numerical values of the inequality

* e  (i=l,2,...,(N-l)) (4.2.14)(n+1 ) _ (n)
1,3+1 1,3+1

for some fixed tolerance e. If (4.2.14) is satisfied for 

all i then the u,, are taken as the required solutionsi,j+l
However, if (4.2.14) is not satisfied, then the ufn**^i > J+i
must be re-employed in (4.2.12) and the process repeated 

until the required accuracy is achieved.

The obtaining of solutions to (3.1.1) using this iterative 

process is obviously more computationally expensive than the 

previously described equally spaced knot schemes. However,
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the M values obtained in this process are of further 

benefit in the following instances:

(a) As explained in Wisher (1977), a major advantage

of splines schemes is that by making use of the 
k

spline function (4.1.1), we can easily obtain 

solutions to (3.1.1) at points intermediate to 

the knot points.

(b) In a later section of this thesis an algorithm is 

derived for obtaining 'optimal' knot positions for 

the spline solution of partial differential equations. 

This algorithm requires the evaluation of the M 

values on each time line.

The truncation error for the scheme (4.2.8) may again be

derived using Taylor Series expansions. For example,

expanding u. , . and u. , . about (x.,t.) we have
v 6  i+l,j i-l,j i* j7

u. , . • = u. ■ + h  l d u \  + hf _ I 92u \ +.... (4.2.15)

'i,j 2 .' 'i,j

and
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The following expression for the truncation error is

thus obtained

*{

s2 k2 f(8 )u +-^2 bck2 f(0 ) + c2 k2 0 (hi”lli+1)J

k"(2 ac+b“)f(0 ) + £ b ( h 4 -h4 j_,)(l+<*“0 ) - |c2 k2 0 /h2 +h2+1V

Li+hi+l/-
6  ' i i+ 1

3 u 
3x2

+^2abk 2 f(0) + |k 2 9(hi-hi+1 )(2ac+3b2) - ~ c  ( h * - h *i+ 1

hi+hi+l;

-  ibck2e ( \
\h. +hi i+l>

+ { a2 k2 f(0 )+ ■̂ abk2 0 (h_L - bi+1> + J g hi 3  + h3+1\ (l-2 ck2 0 ) 

hi + hi+l

+ - 5 7  b I24 { _i____i+1
hi + hi+l

1  / u 5 u5

7 2  °  I i + i+1
hi + hi+l

34u
3x

(4.2

where f(0) is given by (3.1.19)

Due to the unequally spaced knot points employed in the 

scheme (4.2.8) it is not possible to examine the stability 

of this scheme using the usual von Neumann method. This is 

because the method requires that the step lengths h and k 

tend to zero in such a way that the mesh ratio r remains

fixed. In (4.2.8) each mesh ratio involves both h_, and h. , ,i i+l

.17)
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which we would have to let tend to zero at the same rate. 

However, the scheme (4.2.8) reduces to (3.1.17) when 

h = h i + 1  we would thus expect the stability

conditions for the two schemes to be very similar.

This problem has been considered by Saul'yev (1964) in the 

use of non-uniform finite difference approximations. Using 

his notation the reasoning of the above paragraph suggests 

that the scheme (4.2.8) has the following stability condition

(a) if 0   ̂j  , it is unconditionally stable

(b) if 0  < -  , it is stable provided that

k2  1 ------  *--- ---- ------  (4.2.18)
min{h±hi+1} 3a(l-40)

Numerical evidence confirming this stability condition is

given in the later chapters on case studies where values

of 0 , k. h. and h. , are used which either satisfy or ' i i+ 1

violate the condition.

Parabolic Partial Differential Equations with 
Constant Coefficients

Here we consider spline solutions to the parabolic equation

(3.3.1). As in the previous section the knot partition (3.1.4) 

is chosen to be unequally spaced where ĥ ,, the distance 

between successive knots, is given by (2 .2 .2 ).
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Using the technique explained in section 3.3, we take

combinations of the relationships (4.2.2) and (4.2.7) and use

(3.3.4) to eliminate the M and L terms where possible.
i > J i»J

The two time level scheme thus obtained is as follows

/<f> _ v Q)u + 2(1 + y 0)u + (8 — iIj 0)u , . ,VHi i ' i-l,j+l v i ' i,j+l v i *i  9 i+l,j+l

+ |k(hi+i - h ^ O H i  ^  + a - ^ i >;j)

(1=1,2..... (N—1) (4.3.1)

where ^i and are as defined in section 4.2 and

X± = 6 avi - ck,

r" hi(hik+ hi+i> ’ hi+i < V hi+i) ’ Vl a i V i

As described in section 4.2, when the coefficient b in (3.3.1)

is non-zero the scheme (4.3.1) requires the calculation of

M. . _ and M. . before solutions can be produced. A numerical i,j+l . . i,j
procedure similar to that of the previous section is employed, 

although in this case the process is considerably simplified 

since (4.3.1) is only a two time level scheme. The numerical 

procedure is briefly as follows:
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(i) Using the expression (4.2.2) determine ^(1=1,2,...., (.

(ii) Set 9 = 0 in (4.3.1) and hence evaluate the solutions 

u (i=l,2,....,(N-l)).

(iii) Using (4.2.2) determine M (i=l,2,...,(N-l)).1,1
(iv) Evaluate u (i=l,2,...,(N-l)) from the scheme

J- > 2

(4.3.1).

The procedure is now fully developed and further solutions 

are obtained using (4.2.2) and (4.3.1) alternately.

In a similar manner to previous sections, we again derive the 

truncation error associated with the scheme (4.3.1) using 

Taylor series expansions. It can thus be shown that (4.3.1) 

becomes

[-Yi+2 xi-*iJ u + £k(3-Yie+2Xj8-i|’i0> ]Jf

2~(3-Yie+2xie-fie) 3u
a t 5 ~(3-Yi0+2xi0 ^ i0) 33u

J at

h y — h ib i i i+1 i
+ T k 4| ^ ( 3 - Y i e + 2 x i e - ^ i e) a u

3t

+ [-k(h. - hi+1>+ k(hiYie - h1 + 1

*•>]*
i0)] —  J axat̂

au
ax

+ ' * W  + |-(V i 6 - V l  V ' LL- -JdXdt
2 2

‘̂ i Yi-hi+l ^  
2 2

a fa
a x 2

- D ) .



This expression again contains time and mixed 

derivative terms. As in section 3.3, these can be replaced 

using (3.3.1), although the resulting expression is

extremely complicated due to the variable step lengths.
cose

In the simple^of the heat conduction equation ((3.3.1) with 

a=l, b=c=0 ) the truncation error to fourth order derivative 

terms has the form

k + 1 _ [ i i+1  \ - k 0

1 2  1 hi + hi+l
3ju + ___ (4.3.3)
a x 4

In addition, the scheme (4.3.1) has the following conditions 

governing its stability

(a) if 0  £ ■— , it is unconditionally stable
A

(b) if 0  < -j- , it is stable provided that
A

(4.3.4)
“in{h h } ' 6 a(l-2 0 )
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CHAPTER 5

Methods for Obtaining Knot Partitions

5.1 Preamble

In this chapter three techniques are presented for

obtaining 'optimal* knot partitions. These techniques

will be called the 'local', 'global' and 'transformation' methods

for reasons which will become apparent. The knot partitions

obtained are chosen to best suit (in some sense) the initial

condition of the partial differential equation, but which

are then fixed throughout time.

As explained in the work of de Boor (1978), we cannot hope 

to place each knot optimally. This is because in approximating 

a function f(x) by a spline function S(x) we must have 

sufficient information about f(x) to evaluate ||f—S||^ 

before each knot can be optimally located. In the solution 

of differential equations f(x) is only known implicitly 

and hence in this thesis we endeavour to obtain an optimum 

knot distribution which we believe to be a general improvement 

on existing equally spaced knot methods. More exactly one could 

consider the knots as sub-optimal. Here-after the word optimal 

will have this meaning.
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5.2 A Local Method

The technique described in this section for obtaining 

optimal knot positions is an adaptation of the well-known 

work of Curtis and Powell (1967). In that work, the authors 

developed an algorithm for use in approximating simple 

functions using cubic splines. They stated than an estimate 

of the error e (x)=f (x)-S(x) at each knot xi is given by

ei = I lf " S l L  “ -L- <xi “ xi-l) 3  di (5.2.1)
1  384 1  1  1  1

where d^, the discontinuity in the third derivative of the 

spline function, is defined as
m  t i t

di = S (x +) - S  (x -). (5.2.2)

A full derivation of (5.2.1) is given in Schultz (1973).

We now require an expression for this discontinuity in 

terms of function values f(x).

Rewriting (3.1.7) we have

s"(xi-i) + 4s"(xi)+ s”(xi+i>= —  rf(xi-i)_2f(xi)+f(xi+i)i <5-2-3>
h2 l j

which in operator notation can be written as

(E-1+ 4 + E)h2S”(x )= 6 (E-1-2 + E)f(x±) (5.2.4)

and after rearrangement

h2S”( V  = S g ~ l *<*i> • (5.2.5)
e” 1  + 4 + E
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Using a simple forward difference approximation,
in

S (xi+) can be expressed as

in u H
S (xi+) = S (*i+1) - S (xi)

-

and thus by substituting for the second derivatives 

using (5.2.5), we have the expression

h V "  (x.+) = SCE^^+E) f (x _) - 6 (E"1 ~2 +E)f(xt) .
-1 -1E + 4  + E E + 4  + E

Employing the shift operator again, (5.2.7) becomes

h V *  (x +) '= 6 (1 -2 E+E2) f(x.) - 6 (E~1 -2 +E) f(x ) .
-1 1 -1E + 4  + E E + 4  + E

and thus after suitable rearrangement the following
hi

expression for S (x^) is derived

3 m 2 —1h S (x±+) = 6(3-3E+E -E ) f (x±) .
E'"14 4 + E 

Similarly, using the approximation
i n  it it

S (x±-) = S (x±) - S (xi ;L)
h ”

t i l
an expression for S (x^-) becomes -

3 m —1 —2hS. (x —) = 6(3E - 3 + E - E ) f(x ) .
- 1  i E + 4 + E

(5.2.6)

(5.2.7)

(5.2.8)

(5.2.9)

(5.2.10)

(5.2.11)
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Subtracting the relationships (5.2.11) from (5.2.9)

results in the expression
m  ' m  o —1 —2S (Xj+) - S  (x -) = 6 ( 6  - 4E + E - 4E + E ) f(x ) (5.2.12)

- 1E + 4 + E

and thus

s'" (3^+) - s'" (x±-) £ 6hfiv(x ). (5.2.13)
E + 4 + E

By expanding the denominator terms in (5.2.13) we obtain 

approximately
in in

S (.K± +) - S (x±-)

4and hence, by ignoring 0(h) terms, (5.2.14) results in the 

required expression for d̂

d± = s’" (xj,+) - s’" (x±-) = hfiV(x±) + 0(h3). (5.2.15)

Employing Taylor's theorem to remove the higher order 

terms in (5.2.15), the error estimate (5.2.1) thus becomes

e. = _ 1 _  h 4 f1 V(S) (5.2.16)
1  384

where £ is some value lying between x̂,  ̂and x^.

In the Curtis and Powell algorithm a cubic spline is 

fitted to the function f(x) using a small number of 

equally spaced knots and if exceeds some pre-assigned 

error bound, extra knots are inserted half-way between

■*[
2 2 4 4

1 + h D + h D
6  72

- 1  

] ■
_i vf  (x±) . (5.2.14)
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existing knots. The process is repeated until the 

error estimates |ê | are all less than the error bound.

To obtain unequal knot positions for use in the spline 

solution of partial differential equations we rewrite 

the error estimate (5.2.16) in the form

= lsi - \ \  =
384

h- |u (O (5.2.17)

where and u^ are, respectively, the spline and exact 

solutions at the knot x^. Rearrangement of (5.2.17) yields

the expression

hi =

1/4
384 e ± (5.2.18)

Substitution of (5.2.18) into (2.2.2) gives the approximation

Xi- 1  +
384

1/4
(i=l,2,...,N) (5.2.19)

which may be used as a basis for generating suitable knot
ivpartitions, in which the function u (£) is evaluated as the

fourth derivative of the initial condition at the knot x.l-l
As will be later shown, equation (5.2.19) is implemented

with e = e = e = .... = e , the aim being to choose a 1 A N
suitable e value which gives a desired number of knots 

over [o,l] . This is only to enable us to compare the various
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methods and in practice a bound would initially be 

fixed on ê . The number and position of knots would 

then be determined by this bound.

5.3 A Global Method

Here the technique described for obtaining knot partitions 

for use in the spline solution of partial differential 

equations is largely based on the work of de Boor (1973 and

1974). Using results obtained by Rice (1969), Phillips .(1970),

McClure (1970), Dobson (1972), de Boor and Swartz (1973) and 

Burchard (1974), de Boor considered the approximation of a 

given function f on [a,b] by , a spline of order k 

(degree k-1) with a knot partition A, where

A: a = t < t < ___< t„ < t = b. (5.3.11 & N N+l

For convenience only, (5.3.1) is here used rather than

(2 .1 .1 ); note that the notations are made compatible at the 

end of this section.

To obtain suitable knot distributions, de Boor suggests 

that the following condition should be satisfied

(5.3.2)

where

sup | h(t) | (5.3.3)

maxAt = max(t. , - t ) . i . i+ 1  ii l
(5.3.4)
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and C is a constant > 0. The norm | |f̂ k  ̂J | Can be 

illustrated pictorially as in Figure 2(a), and for 

sufficiently small |A| the expression (5.3.2) has the 

form shown in Figure 2(b).

Generalising (5.3.2) to the whole partition £t^, *jj+l] 

we obtain the condition
k

I lf - SJ  L S I lf “ SaI li % C ““ 1^1 I | |± (5.3.5)

which again is illustrated in Figure 3. This suggests that 

the knots t , t^,....,t^ should be chosen such that

I lf - sAl l±

is minimised. Since C is constant we thus require to 

minimise

max
i

|AtJ sup |f(k)

[’i’^i+l

(5.3.6)

(5.3.7)

max
i

t. - t l+l i sup (k) (5.3.8)

Consider now a particular interval [a,3j and define the 

function s(a,$) to be

s(a,3 ) = (3-a)k sup | f ^ (5.3.9)
[a,e]
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Fixing a and letting 3=3.̂  (say) we have from (5.3.9)

s(o, 6  ) = (6 , -o)k sup |f<k)| . (5.3.10)

M
If we now increase 3 to 30  = 3_ + 63. then« 1  1

sup | f ^ |  £ sup | f ^ |  (5.3.11)

[°-Sa] [°-6 l]

since in the new interval may ackieve a

new maximum or may not. In addition, since

(32  -<»k > (3X -<x)k (5.3.12)

then
s(a,32) >s(a,31). (5.3.13)

Similarly, if 3 is decreased to 30  = 3. - 63. we haveA l l

sup |f(k)| $ sup |f(k)| (5.3.14)

[».6a] [a’h]
and since

then

(6 2  -o)k < ( 8 X -o)k (5.3.15)

s(o,6 2) < 6 (0 ,6 ^  . (5.3.16)

We can thus conclude that the function s(a,3) is monotone 

increasing in 3  with a fixed.
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Consider now the case when $ is fixed and a= (say) . 

The expression (5.3.9) then becomes

= (B -a'1)k sup |f(k)| . (5.3.17)

If a is increased to a = a + 6 a then
A  1  1

sup | f ^ |  $ sup | f ^ |  (5.3.18)

l/V6] [arB]
and since

(B-a2)k < (B-a1)k (5.3.19)

we have
s(a2>$) < 8 (0 ^3). (5.3.20)

Similarly, if a is decreased to a2  = a^ - 6 a^ then it can 

be shown that

s(a2 ,3) > s(ax,3) (5 .3 .2 1 )

and thus the function s(a,3 ) is monotone decreasing in 

a with 3  fixed.

Let us now consider a single break point t ,  with adjacent
a

knots t and t fixed, as shown diagrammatically in Figure 4(a) .JL o
If, as illustrated,

s(tl,t2> > s(t2’V  (5.3.22)
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then by moving t to t = t - 6 t , we havea « 2  2

s(tl»t2> <’s<t1»t2) < 5

as shown in Figure 4(b). In addition

s(t2’V  >' S(t2,t3) ( 5

and we thus find that

IsO^.tj) - S(t2,t3)| < |s(tltt2) -s(t2>t3)|. (5

Therefore to minimise the deviation |s(t ,t ) - s(t ,t ) |1 a  2 3t
tg should be chosen such that

S(tl,t2) = S(t2,t3)* ( 5

Similarly, (5.3.26) holds if the condition (5.3.22) 

has the form

S(tl,V  < S(t2,t3) * ( 5

Generalising the above to the whole knot partition A

it can thus be shown that t ,t t should be chosen
2  o ri

such that

8 (tlft ) = constant (i=l,2,...,N) (5

in which case (5.3.8) is minimised . The expression 

(5.3.28) can be rewritten as

I ti+l “ \  I v If (k> I l o o  ) = constant (5

.3.23)

.3.24)

.3.25)

.3.26)

.3.27)

.3.28)

.3.29)
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and thus the knots t ,t ,.
A  O

.,t should be chosen such N
that

ti+ 1

(k) , 1 AfW (x) dx =
rl

(k) ,1 AfW (x) dx . <5

(i=l,2,....,N)

To employ this technique in deriving knot partitions for 

the spline solution of partial differential equations 

we again apply the strategy of section 5.2 and take the 

function f(x) to be the given initial condition (denoted 

by g(x) in chapter 3). Since in this thesis we use cubic 

splines with knots x^jX^,....,xN as defined by (3.1.4), 

the integral expression (5.3.30) becomes

r i+i
|giVU>

1/4
dx = N

|giV(x) |lŷ 4dx . (5

(i=0,l,....,(N-l))

3.30)

3.31)
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5.4 A Transformation Method

As shown by Kalnay de Rivas (1972) and Blottner (1975) 

the determination of suitable mesh points for the finite 

difference solution of boundary layer problems is available 

using co-ordinate transformations. Their idea is to make 

a change of independent variable, mapping the domain into 

a new co-ordinate system where the variations of the 

solution are less rapid. Assuming that the transformation 

is defined by

x = X(£) (5.4.1)

where x is the old independent variable and £ the new 

one, then to resolve the boundary layers, a transformation 

is required which stretches the independent variable in areas

of rapid change and compresses it elsewhere (see Figure 5).

This technique has been applied to several practical problems 

by Jones and Thompson (1980) who also suggest several possible 

types of transformation. For example, to resolve a boundary 

layer near x=0 , the transformation

x(5> = 52  (5.4.2)

is suggested and alternatively for boundary layers at both 

x=0 , and x=l, the transformation

X(£) = sin2 (irS/2) (5.4.3)

is appropriate.

58



In all the above references, the authors choose the 

mesh points £ to be equally spaced and generate the 

non-uniform grid points x^ from the transformation (5.4.1).

They then obtain the required solutions by using simple

equally spaced finite difference approximations on the

transformed differential equation. In the present work,

once the unequally spaced knot partition has been obtained

using (5.4.1), the solutions are obtained using the

schemes of chapter 4. This avoids any analytical differentiation

of the transformation function X(£) .

As in the two previous sections the choice of a suitable

transformation (5.4.1) here depends on the shape of the

initial condition of the partial differential equation.

Suppose, for example, that the initial condition g(x)

is a continuous function having one peak (for example,

as in figure 1) at some point x=a. The required transformation

should be chosen so as to 'bunch* the knots around x=a which

can be achieved by choosing x=£^ to the left of the peak and 
2x=£ to the right of the peak as illustrated in figure 6 .

Considering the area to the right of x=a, we require

x = A(£-a) 2  + a (5.4.4)

to be satisfied for some constant A. Since we also require 

x=l when £=1 , then
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A 1 (5.4.5)
1  - a

and thus to the right of the peak the knots are chosen

according to the relationship

1 (S-a)2 + a  .
1  - a

(5.4.6)

Similarly, it can be shown that to the left of the peak

the knots should be chosen from the expression

x = ( a O (5.4.7)

Additionally, a knot is positioned at the peak x=a.

Assuming, for example, that the initial condition has a peak 

at x=0.8, then the relationships (5.4.6) and (5.4.7) give 

the following knots for £ = 0 (0 .1 ) 1  :

€ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 0 .28 .40 .49 .57 .63 .69 .75 .80 .85 1

Alternatively, assuming that the peak is at x=0.5 then the 

following knots are generated:

5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 0 .2236 .3162 .3873 .4472 .5 .5250 .58 . 6 8  .82 1

As a further illustration of this technique suppose that the 

initial condition of the partial differential equation has a 

peak at x=a and a trough at x=3. For such a condition, using 

functions of the type (5.4.4) and (5.4.7), (5.4.1) may be 

represented as
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X iaO x < a (5.4.8)

x 2  (£-a) 2  + a a < x < a+g 
2

(5.4.9)
g -cc

X -  4 5 - + a+g q+g < x < g 
2 2

(5.4.10)

x = l (£-g) 2  + g x > g (5.4.11)
1-3

with knots additionally positioned at both x=a and x=g.

However, suppose for example that the initial condition has 

the form

Here one would expect the 'best' knots to be symmetrical 

about the peak x=0.5. The actual knots generated by the 

transformation (5.4.6) and (5.4.7) as given earlier, 

illustrate a drawback in this method. The major difficulty 

lies in generalising about the choice of the transformation 

function (5.4.1), while trying to take on board initial 

condition variations which cannot be explicitly bought into 

play.

Further discussion on the implementation of all three 

techniques described in this chapter is given in the 

following chapter on case studies.

u(x,0 ) = simrx 0  £ x £ 1 (5.4.12)
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CHAPTER 6

Case Studies 1 

Case Study Philosophy

In this first chapter of case studies we assess the 

effectiveness of the knot placement techniques derived 

in the previous chapter. For various partial differential 

equations, knot partitions are obtained from the methods 

of sections 5.2 to 5.4; these are then employed to obtain 

solutions using the schemes of chapter 4. The efficiency of 

using non-uniform knot placings is assessed by making 

comparisons with solutions produced for uniform knot partitions, 

having a corresponding number of knots.

In obtaining results for the case studies of this chapter the 

knots are chosen subject to the initial condition g(x) and are 

then fixed throughout time. This has the disadvantage that 

if the solution to the partial differential equation changes 

significantly in shape from that of the initial condition as time 

progresses, the knots will no longer be in optimal positions.

Case Study 1.1

As an illustration of the application of spline techniques 

in the numerical solution of hyperbolic partial differential 

equations we first consider the simple wave equation (3.1.1) 

with a=l, b=c= 0
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8 2u = 3^u ( 0  $ x $ 1 , t > 0 ) (6 .2 .1 )
2 2a t  3 x

with the boundary conditions

u(0 ,t) = u(l,t) = 0  (6 .2 .2 )

and the initial conditions

u(x,0) = simrx (6.2.3)

3u(x,0) = 0 . (6.2.4)
3t

To draw comparisons between the accuracy of the results 

produced using non-uniform knot partitions and constant 

knot spacings we require an equal number of knots in each 

case. For the constant knot spacing case we use h=0.1, which 

gives 9 internal knots in the range ^0, lj .

Employing the initial condition (6.2.3) the recursive process

(5.2.19) of the local method becomes

1/4
Xi = Xi- 1  + 384 e

47T simrxi_1
(i=l,2,....10)

(6.2.5)

where c is chosen to give 9 internal knots. An obvious problem 

in implementing (6.2.5) arises since the denominator is zero 

when x=0. This is easily overcome by fixing a knot at the 

peak x=0.5 and determining the knots from that point. Using 

the symmetry of (6.2.3) the internal knot positions produced 

are as shown in Table 1.
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To determine suitable knots using the global method of 

section 5.3 the initial condition (6.2.3) is again employed, 

the integral expression (5.3.31) thus becoming

*i+i
, , vl/4 (sinTTX) dx = 7T (simrx) 1 ^ 4  dx . (6 .2 .6 )

(1=0,1,___ ,9)

The right hand side of (6.2.6) is initially evaluated using

an IBM numerical integration routine employing the

trapezoidal rule. The knots are then chosen so that the

value of the integral between each pair of successive knots

is arbitrarily close to one-tenth of the value of the

integral between 0 and 1. This has been achieved using an interval

halving technique which generates the knot positions which

satisfy (6 .2 .6 ) to any desired accuracy, in this case taken to 
-5be 0.5 x 10 . The knots produced in this manner are again

given in Table 1.

Further discussion on the application of both the local and 

global methods to this particular case study is given in 

Raggett and Wisher (1979a and 1979b) .

The initial condition (6.2.3) obviously only has one peak 

in xe[o,l], this being at x=0.5. The expressions (5.4.6) 

and (5.4.7) thus become, respectively

Xi = 2  (̂ i “ ° - 5 > 2  + ° - 5  x > ° * 5  (6.2.7)
and

= (0.5£ i ) 1 / 2  x < 0.5 (6.2.8)
<i=0,l.....10)
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The knot positions thus produced by the transformation method 

are also given in Table 1.

Equation (6.2.1) is now solved using the scheme (4.2.8) and 

the accuracy of the results produced using the three knot 

partitions shown in Table 1 are compared with results obtained 

using constant knot spacings. The accuracy is examined by 

evaluating the maximum absolute value of the error between 

the numerical solutions and the analytic solution, evaluated 

at each knot point, out to a chosen point in time. The analytic 

solution to the wave equation (6 .2 .1 ) with the prescribed 

boundary and initial conditions (6.2.2) and (6.2.3) is derived 

in Appendix 1 and is found to be

u(x,t) = Simrx cosirt. (6.2.9)

Numerical solutions to (6.2.1) have been evaluated for a 

range of values of the parameter 6 . Table 2(a) gives such 

results using a time step length of k=0.05, the errors being 

examined for 10 time steps out to t=0.5. Similarly, Table 

3(a) shows maximum errors using k=0.01, in this case evaluated 

to t=0 .1 .

In certain more difficult problems the analytic solution may 

not be available and the accuracy of results obtained may be 

examined by evaluating the numerical value of the truncation 

error at each knot. This has been done for this particular
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case study and the maximum absolute values of the

trauncation error to fourth order derivative terms using k=0.05

are given for the various knot partitions in Table 4.

Results here are again for a range of 6  values examined

for 10 time steps. As can be seen from Table 4 these results

suggest that the use of the local and global knot partitions

may prove advantageous to using constant knot spacing. The

truncation errors for the transformation knots are also

seen to be significantly larger than those of the other knot

partitions. This is because the order of truncation error

depends on k,h. ,h „ and from Table 1 it can be seen that i i+ 1

the distance between successive knots is relatively large 

near x=0 and x=l. It should also be emphasised that due to the 

changing nature of the derivative terms in the truncation 

error this method of examining accuracy is unreliable and 

is not employed in future case studies.

As suggested in section 3.1, the truncation error (4.2.15) 

can be considerably simplified by choosing 6  so that (3.1.20) 

is satisfied. In this case, 6  is thus chosen to be 1/12. 

Extending this idea, it was earlier shown that for simple 

problems involving only uniform knot partitions the parameter 

6  can be chosen to eliminate the leading term of the truncation 

error. This technique was examined in detail by Crandell (1955) 

when using finite difference schemes for solving the heat 

conduction equation. Further, Wisher (1977) suggested that 

for schemes in which the knot partition is non-uniform, the
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leading term of the truncation error can be eliminated 

by suitably choosing 0  at each knot point. When solving 

the wave equation the truncation error (4.2.15) reduces t̂o

and thus to eliminate the fourth order term the parameter 9  

should be chosen such that

Results using 0 = 1/12 and 6  according to (6.2.11) are also 

given in Tables 2(b) and 3(b).

In analysing the results given in Table 2(a) it is difficult 

to draw any firm conclusions for this particular case study.

both the local and global methods result in smaller errors than

is true and the errors using constant knot spacings are smaller 

than those for either the local or global methods. Considering 

the results produced using the knots of the transformation 

method, only when 9=1 is any improvement seen, and this is 

very marginal.

k2 + (6.2.10)

0 i 1 _
12

(6.2.11)

As can be seen, for 0 ^  the knot partitions produced usingO

when equally spaced knots are used. For 0 > —  the reverseO
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The knots resulting from the transformation method also 

give numerical support to the stability condition (4.2.18).
For example, when 6=0, the scheme (4.2.8) is stable provided

k2  £ min * (6 .2 .1 2 )

3

For the transformation knots given in Table 1, min{h^hi+1} =0.001056 

and thus for stability we require

k2  $ 0.000352. (6.2.13)

Using k=0.05 this condition is violated and thus, as can be 

seen from Table 2(a), the results are unstable. If k=0.01, 

as in Table 3(a), then (6.2.13) is satisfied and stability 

is achieved.

As might be expected, the most accurate results for all 

choices of knots are produced when 6  is chosen to remove the 

leading term of the truncation error. In fact, if 0 is chosen 

subject to (6 .2 .1 1 ), the results produced using a uniform knot 

partition are superior to any of those using variable knot 

spacings. However, the results of Table 3(a), giving maximum 

errors only as far as t=0 . 1  using k=0 .0 1 , show that the local 

and global knot partitions give more accurate solutions than 

when using equally spaced knots. These results are consistent 

with the introductory remarks of this chapter.
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6,3 Case Study 1.2

Here we again consider the simple one-dimensional wave 

equation (6 .2 .1 ) with boundary conditions (6 .2 .2 ) but 

choose the initial conditions to be

and

u(x,0 ) = x ( 1  - x)

9u (x,0 ) = 0 .a t

(6.3.1)

(6.3.2)

As shown in Figure 7, (6.3.1) is non-symmetrical in 

x£ [o,l]and is in fact a particular case of the Beta 

probability distribution

f(x) =x°t l ( l - x ^ 1) a,$ > 0 (6.3.3)

The initial condition (6.3.1) is again employed to determine 

-non-uniform knot partitions using both the local and global 

techniques of chapter 5. The recursive relationship (5.2.19) 

of the local method and the integral expression (5.3.31) 

from the global method respectively become

1/4
Xi Xi- 1  + 384e

24 - 120xi-i’L

(1=1,2,.... 10) (6.3.4)

and
fXi+ 1 1/4

|24 - 120x| dx = 1
10

1/4
j24 - 120x| dx . (6.3.5)

(i=0,l,----,9)
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The knots produced by evaluating each of the expressions

(6.3.4) and (6.3.5) are given in Table 5. These knot 

partitions and uniformly spaced knots with h=0 . 1  are now 

used in (4.2.8) producing solutions for this case study. 

Comparisons in accuracy are again made by evaluating the 

maximum absolute value of the error between the numerical 

solutions and the following Courier series analytic solution 

(derived in Appendix 2)

Results given in Table 6 (a) show these maximum errors for 

k=0.05 using a range of 6  values. The errors have again been 

examined for 10 time steps out to t=0.5. The results show 

that when 6=0 and 6=1/4 the errors produced using the local 

and global knots are smaller than those using equally spaced 

knots, the results of the global method being superior. However, 

for the remaining 6  values used constant knot spacing proves 

more accurate. The results of Table 6 (a) are therefore again 

inconclusive. Overall, as can be seen in Table 6 (b), the errors 

of smallest magnitude occur when 6  is chosen to remove the 

leading term of the truncation error when the knots of the 

local method are used.

00

(6.3.6)
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These rather inconclusive results can best be explained by 

graphing the analytic solution (6.3.6) for various time 

levels. As can be seen in Figure 7 the peak of the solution 

moves in the x direction as time progresses and by t=0.5 

the shape of the wave is completely different from its original 

initial condition (6.3.1). The local and global knot partitions 

are thus no longer optimally placed. We would, however, 

expect the local and global knots to give improved accuracy 

close to the initial line t= 0  since for small t the shape 

of the solution is very close to that of the initial condition. 

As can be seen in Table 7 this is in fact found to be the case. 

Further numerical evidence of this is given in Table 8  where 

the maximum errors are listed using k=0 . 0 1  for 1 0  time steps. 

These results show that for all the 0 values used the solutions 

produced using the local and global knot partitions always 

have smaller errors than when uniformly spaced knots are 

employed. However, the above reasoning is contradicted by 

the results shown in Table 9 where maximum errors are again 

given using k=0.01. In this case the errors are examined for 

50 time steps out to t=0.5 and as can be seen, the local and 

global knots still prove more accurate. While this result 

is somewhat surprising, it is-also gratifying that the 

proposed new methods seem to be an improvement on constant 

knot spacing when the time steps are chosen relatively small.
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6.4 Case Study 1.3

As a final illustration of the use of spline techniques 

for solving hyperbolic partial differential equations we 

assume that the coefficients a and b in (3.1.1) have the 

values unity and zero respectively, and thus the equation 

under consideration is

32u = 92u + cu . (0 £ x £ 1, t > 0) (6.4.1)
2 2 dt dx

Equation (6.4.1) is assumed to be subject to the boundary 

conditions (6.2.2) and the initial conditions (6.2.3) and (6.2.4). 

The analytic solution to (6.4.1) is as derived in Appendix 3 

and is given by

u(x,t) = Sin7Txcos(7T2  - c)1 /2 t. (6.4.2)

To examine the effect of the lower order term cu, various values 

of the coefficient c are used, although in each case c is 

chosen to be negative to avoid any occurrence of negative 

square roots in (6.4.2).

As in previous case studies, numerical solutions are obtained 

using constant knot spacing with h=0 . 1  and also using the 

knot partitions resulting from the local and global methods
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of chapter 5. Since the initial condition used here is the 

same as that employed in case study 1 .1 , the knots resulting 

from the local and global methods are again as given in Table 1. 

As previously, accuracy is examined by evaluating the maximum 

absolute error between the numerical solutions and the 

analytic solution (6.4.2) at the knots out to a certain point 

in time. Results given in Tables 10 and 11 show maximum 

errors for a range of values of c using k=0.05 and k=0.01 

respectively. In each case results are examined out to t=0.5 

and the parameter 0 is chosen as \  . The errors given in 

Table 10 show that only when c=-l do the variable knot spacings 

prove superior to constant knot spacing. In Table 11, 

increased accuracy is observed when the local and global knot 

partitions are used for both c=-l and c=-1 0 .

As can be seen in both Tables 10 and 11, for large negative

values of c, the errors resulting from the use of all knot

partitions are large in magnitude and no improvement is

gained by employing non-uniform knot spacings. It should

however be noted that since the coefficient c in (6.4.1)
2is effectively multiplied by k then, particularly for large 

negative values of c, as k is decreased in size the accuracy 

of the results obtained increases.
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The equation (6.4.1) is also useful for assessing the

effect of lower order terms on the stability of the scheme

(4.2.8). Various authors (see for example Fox (1962),

Richtmyer and Morton (1967) and Griffiths (1982)) have

suggested that it is reasonable to assume that the presence
3uof the lower order terms, b-r—  and cu, have no great effectOX

on the stability condition of a particular finite difference

scheme. In section 4.2 it is shown that the stability of the

scheme (4.2.8) is unaffected by the presence of a cu term

in (3.1.1) and that the scheme (4.2.8) is unconditionally

stable when 0 £ -7 - . This is confirmed by the results of 4
Tables 10 and 11. Further, when 0 < -7 -, the scheme (4.2.8)4
is stable provided that the condition (4.2.18) is satisfied.

For this case study, when equally spaced knots are employed 

for example, the condition (4.2.18) reduces to 6  £ - \
1 4

when k=0.05. The results shown in Table 12 are produced 

when the parameter 0  is chosen to be zero and, as can be seen, 

stability is still achieved.

6.5 Case Study 1.4

In this case study we illustrate the application of the spline 

scheme derived in section 4.3 for obtaining numerical solutions 

to parabolic partial differential equations. We consider the 

simple one-dimensional heat conduction equation ((3.3.1) with 

a=l, b=c=0 )
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(0 $ x $ 1, t > 0) (6.5.1)

together with the initial condition

u(x,0 ) = simrx (6.5.2)

and the boundary conditions

u(0 ,t) = u(l,t) = 0 (6.5.3)

As in previous case studies, solutions are obtained using 

9 internal knots and thus in the equally spaced knot case, 

h=0.1 is used. Since the initial conditions (6.5.2) and

(6.2.3) are the same, the knots of the local and global 

methods are again given by (6.2.5) and (6.2.6) respectively. 

These knot positions are given in Table 1. Numerical solutions 

to (6.5.1) subject to (6.5.2) and (6.5.3) have been obtained 

employing the knots of Table 1, solutions being derived using 

the spline scheme (4.3.1). As shown in Appendix 4, the 

analytic solution for this case study is given by

The results given in Table 13(a) are the maximum absolute 

values of the errors between the numerical solutions and the 

analytic solution (6.5.4) using a time step length of k=0.05, 

results being examined for 10 time steps. As can be seen the 

errors produced using all three knot partitions are very 

similar in magnitude. The only case when the use of variable

u(x,t) = « sinux (6.5.4)
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knot spacings gives improved accuracy over constantly 

spaced knots is when the parameter 6  is chosen to be 1 /2 .

It should be noted, however, that this value of 6  is the 

most suitable choice when no additional information is 

available since it gives equal weighting to both time 

levels. The results of Table 14(a), where maximum errors 

for 50 time steps (using k=0.01) are given, confirm this. 

Results produced using 6=1/4 are included to provide 

numerical evidence to the stability condition (4.3.4). For 

example, using the local knots (4.3.4) is satisfied provided 

0 £ 0.486 when k=0.05 is used and provided 0 £ 0.430 in the 

case of k=0 .0 1 .

As suggested in section 6.2, in certain instances the leading 

term of the truncation error may be eliminated by suitable 

choice of the parameter 0. For this particular case study 

the truncation error is given by (4.3.3) and thus by choosing 

6  such that

the fourth order derivative term is reduced to zero. Results 

obtained Using (6.5.5) are given in Tables 13(b) and 14(b). 

In both cases the errors resulting from the use of the local

0i 2
1  + (6.5.5)
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and global knot partitions are smaller than those when 

equally spaced knots are employed. In addition, as might 

be expected, choosing e from (6.5.5) results in the most 
accurate solutions obtained.

6 . 6  Case Study 1.5

As a final illustration of the suitability of the local and 

global methods we again consider the heat conduction equation 

(6.5.1). In this case study we assume (6.5.1) has the initial 

condition

■ ■ Q T
u(x,0 ) = e (6 .6 .1 )

and the boundary conditions

u(0 ,t) = 1  (6 .6 .2 )

and u(l,t) = e a (6.6.3)

where a is a constant > 0. Since we again choose to have 9 

internal knot points in xe[o,l]the knots of the local method 

are given by the recursive process

Xi Xi- 1  + 384e
4 -ax4 a e A

1 / 4  (1=1,2,....,10) (6.6.4)

Similarly, applying the global method of section 5.3 the knot 

partition results from the following expression

77



fXi+l rl

= 1_ ( a V 3 3 5 ) 1 7 4  dx. (6.6.5)
10x oi

<1=0,1,....,9)
In carrying out numerical computations we have chosen the 

constant a to take the values. 1 and 10. The shapes of the 

initial condition (6 .6 .1 ) using these values of a are shown 

in Figure 8 . The knot partitions resulting from the 

expressions (6.6.4) and (6.6.5) using a=l and a=10 are given 

in Tables 15 and 16 respectively.

As in the previous case studies we assess the usefulness 

of the local.and global methods by comparing the results 

produced using these knots with results obtained using 

equally spaced knots. For this particular case study the 

analytic solution, which is derived in Appendix 5, is given 

by

u(x,t) = [l + (e a -l)x]

/ 2 \ 2 2 
2  , -a , A  a -n ir t—  (e cosmr - 1> ------------ Sinnirxernr v L v2 2 '\(mr) + a

n=° (6:6.6)

This analytic solution is evaluated at each knot point and 

the accuracy is again examined by calculating the maximum 

absolute error between the numerical solution and the analytic 

solution (6 .6 .6 ) for a chosen number of time levels.
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For the case when the constant a is chosen to be unity

Tables 17(a) and 18(a) show the maximum errors using k=0.05

and k=0.01 respectively. Similarly, when a=10 the maximum 

errors obtained are given in Tables 19(a) (for k=0.05) and 

20(a) (for k=0.01). In all computations the errors have been 

examined out to t=0.5.

Analysing the results for a=l first, we see that, as in 

the previous case study, only when 0  = do the non-uniformA
knot partitions result in smaller errors than when uniformly 

spaced knots are used. This is the case for both k=0.05 and 

k=0.01. Again the choice of 0= |  , which gives equal weighting

to each of the time levels, is a logical choice without

prior knowledge which may result in increased accuracy.

It should however be noted that the errors resulting from 

each of the knot partitions are very similar in magnitude 

for individual 0  values.

As in case study 1.4,0 may be chosen to remove the leading 

term of the truncation error (4.3.3). Again this is done by 

choosing the parameter 0 from the relationship (6.5.5). As 

is shown in Tables 17(b) and 18(b), this choice of 0 results 

in the most accurate solutions obtained for each of the knot
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partitions for both k=0.05 and k=0.01. However, using 

this value of 6 the local and global knots only result 

in smaller maximum errors when the time step length 

k=0.05. When k=0.01 constant knot spacing is more accurate.

Considering now the case when a=10, the maximum errors 

resulting from uniformly spaced knots are always smaller in 

magnitude than those when variable knot spacings are employed 

if k~0.01. When a time step length of k=0.05 is used,

6 = —■ is again the only case where the local and globalA
methods give any improvement. This includes choosing the 

parameter 6  such that the leading term of the truncation 

error is removed.

It is worthwhile to here consider in more detail the results 

obtained when the constant a in (6 .6 .1 ) is equal to ten.

For this value of a the analytic solution (6 .6 .6 ) has the 

form shown in Figure 9 for various time levels. As can be 

seen, the shape of the analytic solution becomes less •severe' 

as time progresses and by t=0.5 the solution is approximately 

linear. The knots produced using the local and global methods 

will therefore not be optimally placed for large t. As in 

case study 1 .2 , it might be expected that the local and global 

knot partitions give improved accuracy close to the initial 

line t=0. We have however found that close to t=0 the numerical
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solutions oscillate either side of the analytic solution 

for successive time lines and that the maximum errors 

quoted in Tables 19 and 20 always occur on the second 

time line; improvement is therefore not observed in this 

case.
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CHAPTER 7

Varying the Knots on Each Time Line

7.1 Preamble

In the case studies of Chapter 6  numerical solutions 

are obtained using knot partitions which are derived subject 

to the initial condition g(x) of the partial differential 

equation. These knots are then fixed throughout time. As 

was seen in case studies 1.2 and 1.5, when the shape of 

the solution to the partial differential equation changes 

significantly as time progresses then the knots will no 

longer be optimally placed. It would therefore be desirable 

to have an algorithm in which optimal knot partitions are 

derived on each time line. Obviously, if the position of 

the mesh points in any finite difference scheme change on 

each time line, then that scheme becomes much more complex 

(see for example, Murray and Landis (1959), where such a 

scheme was used in the solution of moving boundary problems 

in heat flow). Fortunately, in using spline functions, an 

interpolating polynomial is available which can be used to 

obtain solutions at points intermediate to the existing 

knot points.
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The technique used in the following section to determine

a new partition of optimal knots on each new time line,

is based on the previously described global method and is

an extension of the work of Dobson (1972) who used spline

techniques in approximation problems. As was shown in

section 5.3, the optimal knot partition of the global

method results from the integral expression (5.3.30). This

expression requires knowledge of the fourth derivative

of the function f(x) with respect to x. In the case studies of

Chapter 6 , f(x) was taken to be the given initial condition.

If the global method is used as a basis for generating new

knots on each new time line then f(x) will be unknown as

time progresses. This problem can be overcome by making

use of the spline function S(x) as given by (4.2.1). It
ivwould therefore seem reasonable to approximate f (x) in 

iv(5.3.30) by S (x). However, since in this work we use

cubic splines, then only the first and second derivatives
ivare continuous and S (x) = 0 in each knot interval. This

problem is overcome using the following algorithm.

7.2 Procedure for Determining Optimal Knot Partition

Assume that a partition of knots 7r̂  (as defined in (3.1.4))

and the corresponding numerical solutions u at these■*■ > j
thknots are known on the j time line. On the initial line, 

the knots it can either be taken as equally spaced or 

obtained using one of the methods of Chapter 5.
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(i) Determine the mid-points of the knots of tt ,J

Xi-i = Xi-1 + Xi (i=l»2,....,N) (7.2.1)

(ii) Evaluate the third derivative of the spline function 

at the mid-points from the relationship

= “ M 4 t P  (7.2.2)J ^“2 t. 1 9 J 1—X fJ
i

(i=l,2,....,N)

the M (i=0,1,.... ,N) first being determined
1  I J

from (4.2.2) with M . = M_T . = 0.o,j N,J

i v(iii) Obtain an approximation to S (x) at the knots x ,J X

i v "*
sj (Xi} = Sj (Xj+^) “ Si(Xi-*} <i=1>2>....(N-l))

*1+i - xi-4 <7-2-3>

ivwhere the (x^) will be piecewise constants with

discontinuities at the mid-points x^

While we realise that this is a crude approximation 
iv(S (x) is not well-defined at the knots), this procedure J

has been used with success by Dobson (1972) and 

de Boor (1978).

84



(iv)

(v)

Compute the values of 

iv 1 / 4

SJ (V (i=l,2,....,(N-l)). (7.2.4)

These will have the form illustrated in Figure 10,

the functions «iv, v 
sj (xi>

1/4
and ,iv

'jS V ( V i >
1/4

being extended to include all the range [0 ,1 ].

Using the expression (5.3.30) the new knots
• thx (i=0,-l,.... ,N) on the j time line should

thus be chosen such that

1 + 1

„ iv, N 
sj (x)

1/4
dx = 1

N 1

„iv, N S (x) 
J

1/4
dx.(7 .2 .5 )

(i=0,1....,(N-1))

The right-hand-side of the integral expression 

(7.2.5) is evaluated by summing the areas of the 

rectangles shown in Figure 10.

The relationship (7.2.5) thus becomes

x.i+ 1

niv. ' 
(x)

1/4
dx = A. (7.2.6)

where the constant A is given bys

A q - 1 -J
S N

«iv,
Sj (X1 }

1/4 N-l

•x£ + I  K x 1/4
(Xi+* - Xi ^ }

i=l

’j+ isr(V l )
1/4

(1 - w
(7.2.7)
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The knots are thus determined using the following
t

procedure. Assume that a knot x^ has been determined, as
I

illustrated in Figure 11. The knot x. , is found asi+ 1

follows:

(a) Evaluate

An Sj M
1/4

(xM+r  V
and let A = 0 .L

(b) If A > A_, then n o

A_ - A_x = x_, + S Li+ 1  i
’JS -'<V

1/4

(c) If A = A_, then n o

xi+i " xM+ r
(d) If A < A_, then let n S ’

xi =

A — A L n

and M = M+l. 

Evaluate

A = A + n n
,iv
‘JSV(V

1/4
(XM+i

and return to (b).
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As previously mentioned, this technique has been used 

by Dobson (1972), in approximating a function f by 

splines of various order. In that work,the author 

performed several iterations of the algorithm and 

examined the errors produced using the knots of each 

iteration. It was found that only one or two iterations 

were usually required, after which no improvement in 

accuracy was gained. As shown in the following section, 

we here perform only one iteration of the knot placement 

algorithm per time line, since with several iterations 

the process becomes computationally expensive. However, 

in the following chapter on case studies, it is noticed 

that certain conditions on the size of the time step length, 

and hence on the relative position of the knot partitions, 

should be observed.

7.3 Implementation of the Splines Schemes

With knots varying on each time line, numerical solutions 

to a given partial differential equation are again to be 

derived using the splines schemes (4.2.8) for hyperbolic 

equations and (4.3.1) for parabolic equations. In the 

case of hyperbolic partial differential equations the 

implementation of (4.2.8) is accomplished as follows:
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Assume that the scheme is fully developed in that

solutions u .(j*l) are known on the time lines i»J
t-o to t=jk. Using the algorithm described in section 

7.2, a new partition of knots tt is obtained. Solutions
J

u and u at these spatial knots are foundi i j— 1  i i j-""
using the spline function (4.2.1), these being used 

in (4.2.8) to determine new solutions u . The scheme1 ,  J

(4.2.8) is employed again to find solutions u ,i t j+i
the process then being repeated. As previously stated,

on the initial line the knots tt̂  are chosen to be equally

spaced or derived using one of the methods of Chapter 5.

Employing the derivative initial condition of (3.1.3),

solutions u are found from (4.2.8). A new partition i 1 1

of knots is then obtained from the algorithm of

section 7.2. Solutions u, at these knots are found fromi,o
the initial condition (3.1.3), these being used in (4.2.8)

to determine new solutions u. . The scheme (4.2.8) is

employed again to determine u , the process then being
»

fully developed.

In the case of parabolic partial differential equations 

the procedure is as above but is simplified since the 

scheme (4.3.1) is only two time level. Having found a 

new partition of knots tt , the spline function (4.2.1)
J

is required only once, this being to obtain solutions 

u .at these knots on the previous time line.
X  |  j  — 1
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CHAPTER 8

Case Studies 2

8.1 Case Study Philosophy

Here we again consider each of the case studies of 

Chapter 6  and derive solutions by choosing optimal knot 

partitions on each time line using the technique described 

in the previous chapter. The application of the technique 

to both hyperbolic and parabolic partial differential 

equations is therefore considered. Results obtained by 

varying the knots on each time line are compared with 

both those resulting from constantly spaced knots and the 

knots of the local and global methods. In the tables referred 

to in the following case studies, the results obtained in 

Chapter 6  are therefore listed again to enable comparisons 

to be made.

It should be noted that in sections 6.3 and 6 . 6  it was 

suggested that, due to the changing nature of the solution 

of the respective partial differential equations’, improvement 

might be expected from a scheme in which optimal knots are 

chosen on each new time line.
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8.2 Case Study 2.1

The simple one-dimensional wave equation (6.2.1) subject 

to (6.2.2), (6.2.3) and (6.2.4) is reconsidered here.

Using the algorithm described in section 7.2, optimal 

knot partitions are derived on each time line and solutions 

obtained employing the procedure of section 7.3. To enable 

comparisons to be made with the results of case study 1 .1 ,

9 internal knots are chosen on each time line and solutions 

are obtained for a range of values of the parameter 6 . 

Accuracy is again examined by evaluating the maximum absolute 

difference between the numerical solutions and the analytic 

solution (6.2.9) at the knots, out to a chosen point in time.

The errors given in Table 21 are those obtained using a 

time step length of k=0.05, results being examined out to 

t=0.5. As can be seen, for 0 £ results produced by varying' O
the knots on each time line are an improvement on results 

obtained using equally spaced knots. However, the errors of 

smallest magnitude are observed when the knots of the earlier 

described global method are employed. When 0 > -jj , using 

equally spaced knots gives greatest accuracy.
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The results of Table 21 suggest that for this particular 

case study no improvement in accuracy is to be gained by 

varying the knots on each time line. This might be expected 

since, as can be seen from (6.2.9), the solution has the 

form of a symmetrical wave. Figure 12 shows the partitions 

of knots derived using the algorithm of section 7.2 for 

certain time lines when the parameter 0  is chosen to be \'•.

As can be seen, little variation in the knot partitions is 

observed as time progresses and thus, due to the additional 

computation required, no increase in accuracy is obtained 

by varying the knots on each time line.

8.3 Case Study 2.2

Here we again consider case study 1.2 and derive solutions 

to the hyperbolic partial differential equation (6 .2 .1 ) with 

boundary conditions (6.2.2) and initial conditions (6.3.1) 

and (6.3.2).

Using the technique described in Chapter 7 solutions are 

obtained, the algorithm being employed to produce 9 internal 

knots on each time line. The results given in Table 22 are 

the maximum absolute errors between the numerical solutions 

and the analytic solution (6.3.6), where results were 

examined out to t=0.5 using a time step length of k=0.05.
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As mentioned earlier, and illustrated in Figure 7, the 

analytic solution (6.3.6) is such that the peak of the 

wave moves in the x direction as time progresses. We would 

therefore hope that by varying the knots on each time line 

some improvement in accuracy would be observed. The results 

given in Table 22 show that this is not the case for this 

particular choice of k. As can be seen, for all choices of 

the parameter 0  the errors produced by varying the knots 

on each time line are always larger in magnitude than 

those resulting from either uniformly spaced knots or 

from the variable knot spacings of the local and global 

methods.

To further test the algorithm, solutions were derived using 

a time step length of k=0.01; again 9 internal knot points 

were used. The results shown in Table 23 are the maximum 

absolute errors between the numerical solutions and the 

analytic solution (6.3.6) using k=0.01 in which errors were 

examined at the knot points for 50 time steps out to t=0.5.

In this case the errors produced by varying the knots on 

each time line are considerably smaller than those obtained 

earlier in case study 1.2. For all choices of the parameter 0 

shown, the results obtained by varying the knots on each
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time line are always more accurate than those produced 

by using either constant knot spacing or the knots of 

the local and global methods. By using a small time step 

length we thus see that significant improvement is gained 

by choosing different knot partitions on each time line.

Some explanation of the above can be obtained by examining 

the positions of the knots resulting from the application 

of the knot placement algorithm for each choice of step 

length k. Figures 13 and 14 show the partitions of knots 

produced by the algorithm on certain time lines when 

k=0.05 and k=0.01, respectively. Comparing these partitions 

with the shape of the analytic solution shown in Figure 7, 

we see that when k=0 . 0 1  the knots marginally better match 

the changing nature of the analytic solution than those 

derived when k=0.05, particularly on the early time lines.

The situation is further clarified when more than 9 internal 

knot points are produced on each time line. Figures 15 and 

16 show the partitions of knots produced when 19 internal 

knots are allowed and the time step length is chosen to be 

k=0.05 and k=0.01, respectively. As can be seen, considerable 

improvement in the positioning of the knots is obtained when 

the smaller step length k=0.01 is used. When k=0.05, the
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knots resulting from the application of the knot placement 

algorithm given in section 7.2 remain 'bunched' close to 

x=l and do not match the analytic solution (6.3.6). 

Additionally, Figure 17 shows the knots produced by the 

algorithm on t-0.5 when the analytic solution (6.3.6) is 

used instead of the numerical solutions. This has been 

done for comparison purposes and it is interesting to note 

that the knots produced in this way are very similar to 

those in Figure 16 when k=0.01 was used.

We thus here conclude that improvement in accuracy is to be 

gained by varying the knots on each time line if a small time 

step length is employed.

8.4 Case Study 2.3

In this section we reconsider case study 1.3 and derive 

solutions to equation (6.4.1) by producing different knot 

partitions on each time line. To enable comparisons to be 

made with earlier obtained results we again choose 9 internal 

knots on each time line and obtain solutions for various 

negative values of the coefficient c.

The results given in Tables 24 and 25 are the maximum absolute 

errors between the numerical solutions and the analytic
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solution (6.2.4) out to t=0.5 using time step lengths 

of k=0.05 and k=0.01, respectively. All results shown 

have again been obtained when the parameter 6  is taken to 

be i  Examining the errors given we see that for bothO
choices of k, no improvement in accuracy is observed by 

using different knot partitions on each time line. In 

certain instances (namely, c=-l when k=0.05 and c=-l, 

c= - 1 0  when k=0 .0 1 ) the errors produced by varying the knots 

on each time line are smaller than those resulting from 

equally spaced knots. However, in each of these cases, the 

results derived using either the local or global knot 

partitions are a further improvement. If the coefficient 

c is chosen to be -100 or -200, the errors for k=0.05 

are almost identical for each of the methods presented.

When the time step length k is taken to be 0.01, Table 25 

shows that, for these large values of c, constant knot 

spacing gives greatest accuracy.

When considering the results obtained by choosing different 

knot partitions on each time line it should be noted that 

the analytic solution (6.4.2) is symmetrical in [0,1] for 

all values of the coefficient c. As was seen in case study 

2 .1 , little benefit is therefore gained by varying the knots 

at each stage in time.
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8.5 Case Study 2.4

In this case study we now apply the technique described 

in Chapter 7 to parabolic partial differential equations.

We again consider the one-dimensional heat conduction 

equation (6.5.1) subject to the initial condition (6.5.2) 

and the boundary conditions (6.5.3). The algorithm given 

in section 7.2 is again used to produce 9 internal knot 

points on each time line and these are employed in the 

scheme (4.3.1) using the technique described in section 7.3. 

Figure 18 shows the partitions of knots produced by the 

algorithm on certain time lines when the parameter 0  is 

chosen to be ^  and when a time step length of k=0.05 is 

used.

The results shown in Tables 26 and 27 are the maximum errors 

between the numerical solutions and the analytic solution

(6.5.4) using k=0.05 and k=0.01, respectively. Results 

have been examined at the knot points, out to t=0.5 in each 

case. As can be seen, for both choices of k, the errors 

obtained by varying the knots on each time line are smaller 

than those resulting from both uniformly spaced knots and 

the knots of the local method when 0 = However, in 

each case further improvement is obtained by using the knots 

of the global method. For 0 > using a constant knot spacing
a
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of h=0.1 proves most accurate for both k=0.05 and k=0.01.

For this particular parabolic partial differential equation 

the analytic solution (6.5.4) has a symmetrical form for all 

time with the solution dying out as time progresses. As 

shown in Figure 18 the knot partitions produced in this 

case study are very similar on each time line and are 

approximately constantly spaced. Little is therefore to be 

gained by varying the knots on each time line.

8 . 6  Case Study 2.5

Here we reconsider the parabolic partial differential 

equation (6.5.1) together with the initial condition (6.6.1) 

and the boundary conditions (6.6.2) and (6.6.3). To enable 

comparisons to be made with the results obtained in case 

study 1.5 we again let the constant a in (6 .6 .1 ) take 

the values 1 and 10. In each case, solutions have been 

derived by using the algorithm in section 7.2 to produce 

new knot partitions on each time line. The accuracy of the 

solutions obtained is examined by comparing them with the 

known analytic solution (6 .6 .6 ) at each knot point. The 

results given in Tables 28 and 29 are the maximum absolute 

errors between the numerical solutions and the analytic 

solution when the constant a is equal to 1  and time step 

lengths of k=0.05 and k=0.01, respectively, are used.
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Similarly, the results shown in Tables 30 and 31 are the 

maximum errors produced using k=0.05 and k=0.01, respectively, 

when a is chosen to be 10. Errors in all tables have been 

examined out to t=0.5. In addition, Figures 19 to 22 show 

the partitions of knots generated by the knot placement 

algorithm for both a=l and a= 1 0  using time step lengths 

of k=0.05 and k=0.01. In each case, 9 internal knots are 

chosen on each time line and the partitions produced are 

those when the parameter 0  is taken to be -5 -.
A

Examining the results for a=l first, we see from Table 28 
1 3that when 0  = —  and 0  = —  the results obtained by varying

the knots on each time line are an improvement over those

produced using either equally spaced knots or the knots of

the local and global methods. In the case when 0 is chosen

to be unity, constant knot spacings prove most accurate.

When k=0.01, Table 29 shows that for 0 = ~  the errors
resulting from varying the knots on each time line are smaller

than those for each of the other knot partitions used. When 
3

0  = —  and 0  = 1 , using equally spaced knots again results

in the smallest errors. The results of Tables 28 and 29

are encouraging since the choice of 0  = ^  is the most suitable
a

in that it gives equal weighting to each of the time lines in 

the scheme (4.3.1).
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We now turn our attention to the results produced 

when the constant a in (6.6.1) is equal to 10. As can 

be seen from Table 30, when the time step length k=0.05 

is employed smaller errors result by choosing different 

knot partitions on each time line than by using either

equally spaced knots or the knots of the local and global
1  3 methods when 0 is set to — . The results for 0 = —  and2 4

0 = 1  again show that constantly spaced knots are most

accurate. In the case when k=0.01, the results of Table 31

show that the smallest errors for all choices of the 

parameter 0  are produced by choosing the knots to be 

equally spaced.

The results for a=10 are surprising if one considers the 

distributions of knots produced by the knot placement algorithm 

for both k=0.05 and k=0.01. Figures 21 and 22 indicate that 

more reasonable paritions of knots are produced when the 

smaller time step k=0.01 is employed (see figure 9 for 

analytic solution) since the knots for k=0.05 remain ’bunched* 

close to x=o for all time. These partitions of knots are 

consistent with those produced in case study 2 . 2  where a 

small time step length again gave better partitions.

99



However, the results of Table 31 show that no 

improvement in accuracy is gained by varying the knots on 

each time line when k=0.01 is used. The reason for this, 

as indicated in case study 1.5, is because close to t-o 

the numerical solutions oscillate either side of the analytic 

solution and the maximum error always occurs on the second 

time line for any choice of knots used. The benefit from 

the more reaslistic knot partitions is therefore not 

realised.
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CHAPTER 9

Conclusions and Extensions

9.1 Conclusions

Before drawing general conclusions about the proposed 

methods we here first briefly review the results obtained 

in the earlier case studies. This may repeat some of the 

comments made in chapters 6 and 8 but will enable easier 

comparisons.

In case studies 1.1 and 2.1 we considered the one-dimensional 

wave equation having a symmetric initial condition. The 

results obtained showed that for the smaller values of the 

parameter 6 used, the knots of the global method gave 

greatest accuracy. For larger 0 values, using equally spaced 

knots resulted in the relatively smaller errors. In certain 

cases, varying the knots on each time line produced greater 

accuracy than equally spaced knots, although in these cases 

the errors were still larger than those resulting from the 

knots of the global method. For this case study, without 

any additional information, the value 0 = 1/3, is the most 

logical a priori choice since it gives equal weighting to each 

of the time lines in the scheme (4.2.8) used. For this 

particular 0 value the global knot partition results in
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greatest accuracy. Employing the knots of the global 

method is therefore advantageous in this Case. As mentioned 

earlier, due to the symmetrical initial condition, no overall 

improvement in accuracy is gained here by varying the knots 

on each of the time lines.

The one-dimensional wave equation was again considered in 

case studies 1.2 and 2.2. In this case the initial condition 

was chosen to be non-symmetrical and resulted in a wave form 

in which the peak of the wave moves in the x direction as 

time progresses. From the results obtained it was found that 

the -knots of the local and global methods gave increased 

accuracy in certain cases, particularly for small time step 

lengths k. Since the wave form moves as time progresses it 

was noted that the local and global knot partitions, being 

based on the initial condition, would no longer be optimally 

placed away from the initial line. The results obtained by 

choosing different optimal knot partitions on each time line 

showed that, for a larger time step length of k=0.05, no 

improvement in accuracy over the use of local or global knots 

was observed; moreover in only one instance were the errors 

smaller than those of constant knot spacing. However, when 

a smaller time step length of k=0.01 was employed, the
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technique of varying the knots on each time line produced 

a significant increase in accuracy. For all 3 values used, 

the errors resulting from these knot partitions were always 

considerably smaller in magnitude than those of either 

equally spaced knots or the knots of the local and global 

methods.

A final example on the application of the techniques to 

hyperbolic partial differential equations was discussed in 

case studies 1.3 and 2.3. Here the constants a and b in

(3.1.1) were chosen to be unity and zero respectively, 

whilst the coefficient c was allowed to take various negative 

values. The results obtained indicate that for smaller 

negative values of c, some improvement in accuracy over 

equally spaced knots is to be gained by using either the 

local or global knot partitions. In some instances, the 

errors produced by varying the knots on each time line are 

also smaller in magnitude than constant knot spacing, although 

a further reduction in the magnitude of the errors is always 

produced by employing the local or global knots. This is to 

be expected since the initial condition used in this case 

study is. again symmetrical. For larger values of the 

coefficient c, the magnitude of the errors increases with 

little to choose between the results of the various knot 

partitions.
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In case studies 1.4 and 2.4 we considered the one- 

dimensional heat conduction equation, again choosing 

the initial condition to be symmetrical in shape. The 

results derived showed that when the parameter 6 = 1/2, 

the errors produced by varying the knots on each time line 

are smaller in magnitude than the errors resulting from 

uniformly spaced knots. However, as previously, the results 

of either the local or global knot partitions give a 

further improvement in accuracy. For the remaining 6 values 

used, constantly spaced knots proves most accurate. It 

should however be noted that the choice of 0=1/2 gives 

the natural ’Crank-Nicolson like* equal weighting to each 

of the time lines in the scheme (4.3.1) and for this value 

of 6 the global knots result in the most accurate solutions. 

Due to the symmetrical shape of the solutions little is again 

gained by choosing different knots on each of the time lines.

The final partial differential equation considered was that 

of case studies 1.5 and 2.5, in which the heat conduction 

equation was assumed to have an exponential initial condition 

with the parameter being chosen to be a=l and a=10. For a=l, 

the results produced -by varying the knots on each time line
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are superior to those found using equally spaced knots, 

or the knots of the local or global methods when 6 is 

chosen to give equal weighting to each of the time lines.

A similar improvement is gained by using 6=3/4 when the 

time step length is k=0.05, although for the remaining 

values of 6 and k equally spaced knots results in the errors 

of smallest magnitude. These encouraging results are not 

observed when the parameter a equals 10. In this case, only 

when 0=1/2 and k=0.05 are the results produced by varying 

the knots on each time line an improvement over the other 

methods. The remaining results show that constant knot 

spacing is superior. The practice of using a small time 

step length to gain improvement in accuracy when varying 

the knots on each time line (as observed in case study 2.2) 

is not observed here. As previously explained in section 8.6, 

this is because oscillations in the numerical solutions occur 

close to the initial line and maximum errors always occur 

on the second time line for each value of k used.

We now consider an overall view of the proposed methods by 

initially examining computing time required in the evaluation 

of the results. When the knots are fixed throughout time, 

numerical solutions are obtained from the schemes (4.2.8) 

or (4.3.1) depending on the problem concerned. Irrespective
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of the knot partition used each of the schemes resulted 

in a tri-diagonal system of equations which was solved 

using an efficient numerical algorithm (see for example, 

Mitchell and Griffiths (1980)) giving the required solutions. 

Obtaining these solutions using either constant knot spacing, 

or the knots of the local and global methods therefore requires 

the same computer time. Using the IBM 370/135 machine 

installed at Sheffield City Polytechnic this computing time 

for hyperbolic equations was found to be 15.2 seconds. In 

addition, the derivation of the knot partitions using the 

local and global methods is a relatively simple procedure 

requiring 2 seconds and 3.3 seconds of computer time, 

respectively. When the technique of chapter 7 is employed 

to obtain solutions by deriving different knot partitions 

on each time line, then the amount of computation required 

obviously increases. We have found that, to obtain numerical 

solutions to hyperbolic equations using this procedure 

requires 34.4 seconds of computer time. For parabolic 

partial differential equations slightly less computing 

time is required for each of the methods since the scheme

(4.3.1) employed is only two time level. The times required 

are however comparable, with the technique in which knots 

are chosen on each time line taking approximately twice as
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long as the methods in which the knots are fixed throughout

time.

In general, the results of the case studies suggest that 

when the solution of the partial differential equation is 

of symmetrical form for all time, then nothing is gained 

by varying the knots on each time line. However, in these 

cases the results show that improvement in accuracy over 

equally spaced knots is generally achieved by using either 

the local or global knot partitions and choosing the 

parameter 0 to give equal weighting to each of the time lines. 

In addition, when the solution of the partial differential 

equation exhibits the form of a wave whose peak moves in the 

x direction as time progresses, then considerable benefit 

appears to be gained by varying the knots on each time line 

provided the step length k is chosen to be small. The 

algorithm for positioning the knots on each time line is 

automatic and does not require knowledge about the shape of 

the solution a priori. This technique may therefore be useful 

in obtaining solutions to other numerical problems. Two 

possible extensions are given in the following section.
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9.2 Possible Extensions

(i) Parabolic partial differential equations of the form

8u = D 8^u + v _9u , (9.2.1)
8t 8x^ 8x

where D>0 and v are constants, are called "diffusion-

convection" equations because of the physical processes 

they describe. Typically, u might be the concentration of a 

material which is convectedwith velocity v and diffusing 

according to the diffusion coefficient D. Particular interest 

has been focussed on problems in which the cell Peclet 

number P is given by

P = vh (9.2.2)
2D

is large. In such situations spurious oscillations are 

introduced into finite difference solutions (see for example, 

Price, Cavendish and Varga (1968)) when the analytic solution 

is known to be non-oscillatory. Various methods have been 

proposed to overcome this problem, the most well-known being 

the technique of "upwinding" which has been used by Spalding 

(1972) in finite difference approximations and by Christie, 

Griffiths, Mitchell and Zienkiewicz (1976) in the use of 

finite elements. In the analysis of difference schemes 

Siemieniuch and Gladwell (1978) observed that solutions of

(9.2.1) may be kept non-oscillatory by restricting the step
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size h with respect to the coefficient v. However, for 

large values of v this is computationally expensive and a 

scheme which can restrict the step length h locally (in the 

region of the oscillations) may therefore be beneficial.

(ii) For moving boundary problems in heat flow the physical 

situation usually arises where an interface, or internal 

boundary, exists which moves as time progresses. The 

interface often takes the form shown in Figure 23 where 

region A contains a material in its solid form, region B 

the material in its liquid form and the boundary PQ varies 

due to melting or freezing of the material. If the position 

of the interface at time t is given by x=S(t) then, in 

one space dimension, a typical set of governing equations 

may be of the form (see for example, Meyer (1976))

- c1(x,t) 3u1 = F1(x,t), o<x<S(t)
at

- c2(x,t) 3u2 = F2(x,t), S(t)<x<l (9.2.3)
“ 3t

Specific conditions are assumed at the interface x=S(t), on the 

boundaries x=o and x=l and on the initial line t=o. A 

summary of the numerical methods devised for the solution of

_3_
3x

k2(x,t) 3u2 
3x

3x
k]L(x,t) 3ux

3x
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such "Stefan problems" is given in Ockendon and 

Hodgkins (1975). In general, the solution is such that 

significant changes in the solution may occur close to 

the interface. A scheme in which knot points are optimally 

chosen on each time line may therefore provide a suitable 

method of solution.
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TABLE 1

Internal knot positions used in Case Study 1.1

Local

0.117965

0.220349

0.316010

0.408487

0.500000

0.591513

0.683990

0.779651

0.882035

Global 

0.133776 

0.234013 

0.325845 

0.413714 

0.500000 

0.586286 

0.674155 

0.765987 

0.866224

Transformation 

0.223607 

0.316228 

0.387298 

0.447214 

0.500000 

0.520000 

0.580000 

0.680000 

0.820000

111



TABLE 2

Errors for Case Study 1.1 using k=0.05 for 10 time steps

0 Constant knot spacing Variable knot spacing

h == 0.1 Local Global Trans formation

(a) 0 8.16 X io”3 7.46 X io”3 7.09 X

CO1orH Unstable

1/4 3.25 X 10-3 2.54 X io-3 2.10 X IP-3 3.89 x 10”3

1/3 1.63 X 10-3 9.08 X ip-4 4.87 X io"4 2.25 x 10 3

1/2 1.64 X 10-3 2.34 X

COiorH 2.73 X io-3 -32.00 x 10

1 1.12 X io"2 1.19 X !P-2 1.24 X io'2 1.10 x 10~2

(b) 1/12 6.48 X io"3 5.81 X IP"3 5.43 X ip'3 Unstable

(6.2.11) 1.11 X ip-5 4.05 X io"5 1.26 X io"4 1.21 x 10"3
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TABLE 3

Errors for Case Study 1.1 using k=0.01 for 10 time steps

Constant knot spacing 

h = 0.1

Variable knot spacing 

Local Global Transformation

(a) 0 

1/4 

1/3 

1/2
1

(b) (6.2.11)

4.71 x 10-4

4.43 x 10-4

3.95 x 10-4

3.72 x 10-4

3.80 x 10-4

4.39 x 10-5

4.13 X io-4 3.76 X K f 4 7.88 X 10~4

3.63 X io'4 3.41 X io”4 7.78 X 10” 4

3.70 X io"4 3.32 X io-4 7.17 X io'4
3.42 X io“4 3.08 X io”4 7.37 X io-4

3.22 X io-4 2.96 X 10~4 7.28 X io”4

6.19 X io-5 2.04 X io-5 2.03 X io”4
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TABLE 4

Truncation Errors for Case Study 1.1 using k=0.05 for 10 time stpps

0 Constant knot spacing Variable knot spacing

h = 0.1 Local Global Transformation

0 2.50 X io”4 1.87 x IO-4 9.23 x IO-5 Unstable

1/4 9.98 X io"5 7.34 x 10”5 3.35 x 10“5 2.36 x IO"2

1/3 4.99 X io-5 3.55 x 10"5 1.39 x 10‘5 5.03 x 10“2

1/2 4.99 X io-5 5.27 x IO"5 2.89 x IO”5 1.04 x IO”1

1 3.49 X io"4 2.68 x IO"4 1.43 x 10“4 2.65 x IO"1
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TABLE 5

Internal knot positions used in Case Study 1.2

Local Global

0.104019 

0.228994 

0.397569 

0.501907 

0.595750 

0.683453 

0.766875 

0.847043 

0.924603

0.116725

0.282605

0.399465

0.500314

0.593166

0.680781

0.764549

0.845305

0.923605
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TABLE 6

Errors for Case Study 1.2 using k=0.05 for 10 time steps

(a) 0

1/4

1/3

1/2
1

(b) (6.2.11)

Constant knot spacing 

h = 0.1

1.10 x 10-2

3.89 x 10-3

2.28 x 10-3

4.38 x 10-3

1.21 x 10-2

2.61 x 10-3

Variable knot spacing 

Local Global

1.03 x 10-2

2.32 x 10-3

2.88 x 10-3

6.93 x 10-3

1.38 x 10-2

1.82 x 10-3

9 .35 x 10-3

2.01 x 10-3

2.84 x 10-3

6.76 x 10-3

1.36 x 10-2

1.92 x 10-3
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TABLE 7

Errors on second time line for Case Study 1.2

k = 0.05, 0 = 1 / 3

Constant knot spacing Variable knot spacing

h = 0.1 Local Global

-3 , -4 -41.01 x 10 2.18 x 10 2.65 x 10
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TABLE 8

Errors for Case Study 1.2 using k=0.01 for 10 time steps

. 0 Constant knot spacing 

h  = 0.1

Variable knot 

Local

spacing

Global

0 3.22 X 10-3 1.81 x 10-3

COiorHXCO001—1

1/4 3.13 X IQ"3 1.71 x io-3 1.77 x 10~3

1/3 3.10 X IQ'3 1.68 x io-3 1.74 x 10“3

1/2 3.04 X io-3 1.62 x io-3 1.67 x 10~3

1 2.86 X IQ'3 1.44 x io-3 1.50 x 10"3
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TABLE 9

Errors for Case Study 1.2 using k=0.01 for 50 time steps

0 Constant knot spacing 

h = 0.1

Variable knot 

Local

spacing

Global

0 1.00 x io-2 8.74 x 10t3 8.76 x IO”3

1/4 9.76 x io-3 8.24 x io-3 8.34 x IO-3

1/3 9 .65 x io-3 8.08 x io-3 8.20 x 10“3

1/2 9.43 x io-3 7.72 x io-3 7.86 x IO”3

1 8.83 x io"3 6 .80 x io-3 7.03 x IO-3
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TABLE 10

Errors for Case Study 1.3 using 0= and k=0.05 for 10 time steps

c Constant knot spacing Variable knot spacing

h = 0. 1 Local Global

-1 5.58 x IO’4 1.76 x IO-4 5.19 x IO-4

-10 7.54 x 10"3 7.93 x 10'3 8.15 x 10“3

-100 1.52 x 10_1 1.52 x lb""1 1.53 x IO""1

-200 2.93 x IO"1 2.93 x IO-1 2.93 x IO""1
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TABLE 11

Errors for Case Study 1.3 using 0= ^  and k=0.01 for 50 time steps

c Constant knot spacing Variable knot spacing

h = 0.1 Local Global

-1 6.29 x IO-3 6.21 x 10”3 5.55 x 10~3

-10 4.11 x 10’3 3.23 x 10”3 3.16 x 10~3

-100 4.58 x IO”3 4.81 x 10~3 4.94 x 10~3

-200 1.41 x IO-2 1.44 x IO”2 1.45 x 10~2
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TABLE 12

Errors for Case Study 1.3 vising 8=0 and k=0.05 for 10 time steps

Constant knot spacing 

h = 0.1

Variable knot spacing 

Local ' Global

-1

-10

-100

-200

8.09 X io-3 7.43 X io-3 7.07 X io-3

7.54 X io'3 7.17 X io'3 7.00 X io'3

5.75 X io"2 5.72 X io'2 5.71 X io”2

1.47 X io"1 1.47 X io'1 1.46 X io-1
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TABLE 13

Errors for Case Study 1.4 using k=0.05 for 10 time steps

0 Constant knot spacing Variable knot spacing

h = 0.1 Local Global

(a) 1/4 Unstable Unstable Unstable

1/2 1.08 x IO-2 1.05 x 10“2 1.03 x IO-2

3/4 3.39 x IO-2 3.42 x IO"*2 3.44 x 10~2

1 7.32 x 10“2 7.35 x 10~2 7.37 x 10“2

(b) (6.4.5) 7.65 x IO-3 7.63 x IO-3 7.61 x 10~3
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TABLE 14

Errors for Case Study 1.4 using k=0.01 for 50 time steps

e Constant knot spacing Variable knot spacing

h == 0.1 Local Global

(a) 1/4 Unstable Unstable Unstable

1/2 3.33 x io-3 2.97 x io-3 2.77 x 10“3

3/4 5.72 x io-3 6.07 x io-3 6.27 x 10“3

1 1.46 x io“2 1.49 x io"2 1.51 x IO”2

(b) (6.4.5) 2.87 x K f 4 2.71 x io-4 2.48 x IO-4
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TABLE 15

Internal knot positions used in Case Study 1.5

Local Global

0.089594

0.181218

0.274965

0.370935

0.469235

0.569981

0.673296

0.779315

0.888182

0.089472

0.180988

0.274652

0.370557

0.468818

0.569558

0.672893

0.778977

0.887945

when a=l.
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TABLE 16

Internal knot positions used in Case Study 1.5 when a=10

Local

0.041330

0.087159

0.138550

0.196988

0.264618

0.344707

0.442549

0.567504

0.738279

Global

0.038513

0.081132

0.128841

0.183019

0.245703

0.320070

0.411493

0.530205

0.699769
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TABLE 17

Errors for Case Study 1.5 when a=l and k=0.05

0
Constant knot spacing Variable knot spacing

h = 0 . 1 Local Global

(a) 1/4 Unstable Unstable Unstable

1 / 2
-33.00 x 10 2.89 x 10’ 3

-32.89 x 10

3/4 2.73 x IO- 3 2.74 x 10~ 3 2.74 x 10’ 3

1 5.77 x 10~ 3 5.83 x 10" 3 5.83 x IO- 3

(b) (6.4.5) 2.72 x 10~ 3 2.67 x 10~ 3 2.67 x IO- 3
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TABLE 18

Errors for Case Study 1.5 when a=l and k=0.01

0
Constant knot spacing Variable knot spacing

h = 0 . 1 Local Global

(a) 1/4 Unstable Unstable Unstable

1 / 2 7.04 x 10~ 4 6.99 x 10” 4 6.99 x 10“ 4

3/4 4.63 x IO- 4 4.73 x 10~ 4 to X o 1

1 1.17 x IO- 3 1.18 x 1 0 ” 3 1.18 x 1 0  3

(b) (6.4.5) 3.92 x 10” 4 4.36 x 10“ 4 4.37 x 10“ 4
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TABLE 19

Errors for Case Study 1.5 when a = 10 and k = 0.05

Constant knot spacing Variable knot spacing
e h = 0 . 1 Load Global

(a) 1/4 Unstable Unstable Unstable

1 / 2 1.55 x 10- 1 1.48 x IO" 1 1.48 x io”1

3/4 3.54 x 10“ 2 3.72 x 10" 2 3.84 x 10“ 2

1 8 . 0 1  x 1 0 “ 2 8.32 x 10” 2 8.29 x 10“ 2

(b) (6.4.5) 1.43 x 10_ 1 1.45 x IO” 1 1.45 x 10” 1
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Table 20

Errors for Case Study 1.5 when a = 10 and k = 0.01

Constant knot spacing Variable knot spacing
0 h = 0 . 1 Local Global

(a) 1/4 Unstable Unstable Unstable

1 / 2 4.49 x 10“ 2 4,86 x 10~ 2 4,77 x 10~ 2

3/4 . 1.09 x 10" 2 1,76 x IO- 2 1.73 x IO” 3

1 3.29 x 10~ 2 3.95 x 10" 2 3,93 x 10*"2

(b) (6.4.5) 2 . 6 8  x 1 0 ~ 2 4.47 x 10” 2 4,43 x 10^ 2
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TABLE 21

Errors for Case Study 2.1 using k=0.05 for 10 time steps

0 Constant knot spacing 

h=0 -l

Variable knot 

Local

spacing

Global

Varying the knots 

on each time line

0 8.16 X io-3 7.46 x io-3 7.09 x 10’ 3 7.34 X 1 0 “ 3

1/4 3.25 X io'3 2.54 x io-3 2 . 1 0  x IO” 3 2.39 X io'3
1/3 1.63 X io"3 9.08 x io“4 4.87 x IO" 4 7.61 X io'4
1 / 2 1.64 X io'3 2.34 x io”3 2.73 x 10“ 3 2.48 X io“3

1 1 . 1 2 X io’2 1.19 x 10-2 1.24 x 10" 2 1 . 2 1 X xo-2

131



TABLE 22

Errors for Case Study 2.2 using k=0.05 for 10 time steps

Constant knot spacing 

h=0 . 1

Variable knot spacing 

Local Global

Varying the knots 

on each time line

0

1/4

1/3

1/2
1

1 . 1 0 X io-2 1.03 X io-2 9.35 X io-3 2.17 X io-2

3.89 X icf3 2.32 X io'3 2 . 0 1 X io'3 3.48 X io'3

2.28 X icf3 2 . 8 8 X io'3 2.84 X icf3 4.17 X icf3
4.38 X io’3 6.93 X io'3 6.76 X icf3 9.85 X icf3

1 . 2 1 X io'2 1.38 X io-2 1.36 X io'2 1.55 X io”2
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TABLE 23

Errors for Case Study 2.2 using k=0.01 for 50 time steps

0 Constant knot spacing 

h=0 . 1

Variable knot 

local

spacing

Global

Varying the knots 

on each time line

0 1 . 0 0 X io-2 8.74 x u f 3 8.76 x io-3 4.48 X io-3

1/4 9.76 X io"3 8.24 x io-3 8.34 x io-3 5.07 X io"3
1/3 9.65 X io’3 8.08 x io-3 8 . 2 0  x io-3 5 . 2 1 X io'3
1 / 2 9.43 X io'3 7.72 x io-3 7.86 x io-3 4.60 X io'3

1 8.83 X io'3 6.80 x io-3 7.03 x io-3 5.02 X io"3
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TABLE 24

Errors for Case Study 2.3 using 6 = -jj- and k=O.Q5 for 10 time steps

c Constant knot spacing Variable knot spacing Varying the knots

h=0 . 1 Local Global on each time line

-4 Tt11 -4
- 1 5.58 x 10 1.76 x 10 5.19 x 10 3.22 x 10

-3 -3 -3 -3
- 1 0 7.54 x 10 7.93 x 10 8.15 x 10 8.04 x 10

- 1 - 1  - 1 - 1
- 1 0 0 1.52 x 10 1.52 x 10 1.53 x 10 1.52 x 10

- 1 - 1  - 1 - 1
- 2 0 0 2.93 x 10 2.93 x 10 2.93 x 10 2.93 x 10
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TABLE 25

Errors for Case Study 2.3 using 0 = - 7 and k=0.01 for 50 time steps1 “ Tl_r 1 r ‘ — -r —

c Constant knot spacing 

h=0 . 1

Variable knot 

Local

spacing

Global

Varying the knots 

on each time line

- 1 6.29 x 1 0 - 3 6 . 2 1  x 1 0 - 3 5.55 x 10“ 3
-35.90 x 10

- 1 0 4.1-1 x IO- 3 3.23 x 1 0 - 3 3.16 x 10“ 3 3.27 x 10“ 3

- 1 0 0 4.58 x 1 0 “ 3 4.81 x 1 0 - 3 4.94 x IO” 3 4.92 x 10“ 3

- 2 0 0 1.41 x IO” 2 1.44 x 10-2 1.45 x 10 2
- 21.43 x 10
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TABLE 26

Errors for Case Study 2.4 using k=0.05 for 10 time steps

e Constant knot spacing 

h=0 . 1

Variable knot spacing 

Local Global

Varying the knots 

on each time line

1 / 2 1.08 x io- 2 1.05 x 1Cf 2 1.03 x 10“ 2 1.04 x IO- 2

3/4 3.39 x io- 2 3.42 x 10” 2 3.44 x 10" 2 3.43 x 10" 2

1 7.32 x icf2 7.35 x IO" 2 7.37 x 10” 2 7.35 x 10~ 2
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TABLE 27

Errors for Case Study 2.4 using k=0.01 for 50 time steps

0 Constant knot spacing 

h=0 . 1

Variable knot spacing 

Local Global

Varying the knots 

on each time line

1 / 2 3.33 x 10“ 3 2.97 x 10“ 3 2.77 x 10” 3 2.90 x 10” 3

3/4 5.72 x IO- 3 6.07 x 10“ 3 6.27 x IO” 3 6.14 x IO- 3

1 1.46 x 10“ 2 1.49 x IO**2 1.51 x IO” 2 1.50 x IO" 2
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TABLE 28

Errors for Case Study 2.5 when a=l and k=0.05

0 Constant knot spacing 

h=0 . 1

Variable knot 

Local

spacing

Global

Varying the knots 

on each-time line

1/4 Unstable
-3

Unstable
-3

Unstable
-3

Unstable
-3

1 / 2 3.00 x 10
-3

2.89 x 10
-3

2.89 x 10
-3

2 . 8 6  x 1 0

-33/4 2.73 x 10
-3

2.74 x 10
-3

2.74 x 10
-3

2.71 x 10
-3

1 5.77 x 10 5.83 x 10 5.83 x 10 5.84 x 10
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TABLE 29

Errors for Case Study 2.5 when a=l and k=0.01

0 Constant knot spacing 

h=0 . 1

Variable knot 

Local

spacing

Global

Varying the knots 

on each time line

1/4 Unstable
-4

Unstable
-4

Unstable
-4

Unstable
-4

1 / 2 7.04 x 10
-4

6.99 x 10
-4

6.99 x 10
-4

6.81 x 1 0

-43/4 4.63 x 10
~3

4.73 x 10
-3

4.72 x 10
-3

5.01 x 10
-3

1 1.17 x 10 1.18 x 1 0 1.18 x 1 0 1 . 2 0  x 1 0
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TABLE 30

Errors for Case Study 2.5 when a=10 and k=0.05

0 Constant knot spacing 

h=0 . 1

Variable knot 

Local

spacing

Global

Varying the knots 

on each time line

1/4 Unstable
- 1

Unstable
- 1

Unstable
- 1

Unstable
- 1

1 / 2 1.55 x 10
- 2

1.48 x 10
- 2

1.48 x 10
- 2

1.45 x 10
- 23/4 3.54 x 10

- 2

3.72 x 10
- 2

3.84 x 10
- 2

3.67 x 10
- 2

1 8 . 0 1  x 1 0 8.32 x 10 8.29 x 10 8.19 x 10
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TABLE 31

Errors for Case Study 2.5 when a=10 and k=0.01

0 Constant knot spacing 

h=0 . 1

Variable knot 

Local

spacing

Global

Varying the knots 

on each time line

1/4 unstable
- 2

Unstable
- 2

Unstable
- 2

Unstable
- 2

1 / 2 4.49 x 10
- 2

4.86 x 10
- 2

4.77 x 10
- 2

5.01 x 10
- 23/4 1.09 x 10

- 2

1.76 x 10
- 2

1.73 x 10
- 2

1.45 x 10
- 2

1 3.29 x 10 3.95 x 10 3.93 x 10 4.02 x  1 0

141



9 t t

Figure 1

Shape of initial condition u(x,o)=g(x)
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Illustration of (5.3.2)
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Figure 5

A transformation from a uniform mesh £ to a 
non-uniform mesh x.
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Transformation for a peak at x = a .
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Figure 7

Shape of Analytic Solution (6.3.6) as time progresses
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Figure 8

Shape of initial conditions used in Case Study 4
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Shape of Analytic Solution (6 .5.6 ),for various time 
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Illustration of (7.2.4)
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Figure 11

Illustration of procedure for determining new knots
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Knot Partitions for Case Study 2.1 with 0 = k=0.05
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Knot Partitions for Case Study 2.2 with 0 = —  and k=0.05

154



H -H 1------- 1---- 1----- 1------1— — I-------------K

+ — ---1--- 1---  1---1---I---1--- 1----- 1-

H 1--- 1--- 1---1--1-- 1---1--- h

•i-------1------ 1---- 1-- 1--I-- 1---1-- H

H------ 1---- 1----1---1--1-1--1-- K

TFj30

TTî o—
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Knot Partitions for Case Study 2.2 with 0 = —  and k=0.01
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Knot Partitions for Case Study>2.2 with 6 = and k=0.05

4-------- 1---------I------1— l— I— | t- f -i | | | i-■ | -H4

4----- 1---- 1----I-----1----I I I «--H  I I li M i l

4— 1---- 1— 1— 1— 1— 1— 1— 1 1 1 1 1 m u  >

4 H 1-- 1--1--1-1— I ---- 1 lit Hi

4— 1 i — I—H— I— I— I— I— »— 4— I— I | I— I— K

156



-I— H — *— | — I I I M l I t I !• I 1 b rl h

i 1--1- + - I -M l 11 | i i l i t  ! I

I I 1-- 1---1-- 1— l-l n  t I II I -h

■>■ —  I I I 1---•— I— I I I III t M l-»-«-

I ■ -- 1— I--1 I ■ I I I ■ 11-14 11 I I II

■4 ►—I 1— 4 1— * 1—I 1— I 1 I I I I—I »■■»—•* 7T0  fc-O

^SoT

: p
  i

fc-
• t -\. 1 .

i

TT,^ fĉ o.i
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Knot Partitions for Case Study 2.2 with 0 = —  and k=0.01
u
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Figure 17

Knot Partitions for Case STudy 2.2 using 
the Analytic Solution (6.3.6) with k=O.01

158



H 1--------- 1— — I-------1-------1------- 1-------- 1--------b

A 1--- 1---H--- 1---b

H 1----1--- 1----1--- 1--- 1----1----1-

■f 1--- 1---1---1---1--- 1--- 1--- 1-

H 1--- 1---1--- 1---1--- i...♦ ■■---b

4--- 1--- 1--- 1--- 1--- I--- 1--- 1--- b

■ % -

TT,,- t sOit-—  
*

I -i '■ “ : 1.

Tly— |

t=o.a

TT^
\

TT0 t-O - 
x=l

Figure 18

Knot Partitions for Case Study 2.4 with 0 = —  and k=0.05
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Figure 19

Knot Partitions for Case Study 2.5 with a=l, k=O.O5,0 =
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Knot Partitions for Case Study 2.5 with a=l, k=0.01, 8= — .
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Knot Partitions for Case Study 2.5 with a=10, k=O.O5,0 = — .
A

162



! I i! \ j * •
• ■

ft

•..........
... . :.:i (- r  -  j
..  . 1i7 7 -7-1! | I:-- ' ^

| j : 1: • ■ " i 1

" s o

ft
: . ! .; ; . i ......: • 1
: . ; ' j ' ’ ' ‘ ! .

1. . .1 • • -.j . . . : .
H - - 7 .1 ........I

V o ■ ; ': j
- - - - t — 1 -i 
; ; :-- j

*\3o ■ i/— ^

... A - H _"30 ■ T  :

-jr t = . o  —- - - 1-. . ! ■ »■■■ 1- - - 1„- - i- - I I. ■ |- - -
X=0 X=l

Figure 22

Knot Partitions for Case STudy 2.5 with a=10, k=O.Ol,_.0
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A Moving Boundary Problem
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APPENDIX 1

Analytic Solution to Case Study 1.1

Here the analytic solution to the wave equation (6.2.1) is 

derived by separating the variables. Letting u=XT in (6.2.1) and 

dividing by XT we have

U H O
T = X = -k . (API. 1)
T X

Rearranging (AP1.1) gives

»» g ,f
T + k T = 0 and X +

which have the solutions

T = ASinkt + BCoskt and X = CSinkx + DCoskx (API.3)

respectively. The general solution to (6.2.1) thus has the form

u(x,t) = (ASinkt + BCoskt)(CSinkx + DCoskx) (API.4)

The constants, A, B, C, D and k are now evaluated using the imposed 

boundary and initial conditions (6.2.2) - (6.2.4). From the left- 

hand boundary condition of (6.2.2) we have

0 = (ASinkt + BCoskt)D (Ap.1.5)

implying D=0. Similarly the right-hand boundary condition of (6.2.2) 

gives

A  = (API.2)
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CSink = - DCosk (AP.1.6)

and thus k = tt. Substituting the initial condition (6.2.3) into 

(API.4) yields

Simrx = B (CSinkx + DCoskx). (API.7)

Since D=0 and k=Tr then (API.7) suggest that BC=1. Finally, from 

the derivative initial condition (6.2.4) the following is derived

0 = Ak(CSinkx + DCoskx) (API.8)

giving A=0. The general solution (API.4) thus becomes

u(x,t) = SinirxCosTTt. (API.9)
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APPENDIX 2.

Analytic Solution to Case Study 1.2

The fourier series analytic solution to the wave equation (6.2.1) 

is given by

u(x,t) =
n=l

a Sinrnrx Cosn7rt n (AP2.1)

where

a = n u(x,o)Sinmrx dx. (AP2.2)

In case study 1.2 the expression (AP2.2) becomes

a = 2  n
4 5(x - x ) Sinmrx dx (AP2.3)

which after successive integration by parts gives the relationship

a = 2n 24 - I -8 + 96 \ cosmr
(mr)5 \ (nTr)3 (mr)5/

(AP2.4)

The analytic solution to (6.2.1) subject to (6.2.2), (6.3.1) and (6.3.2) 

thus has the form

u(x
n=l

24 -8
(mr) \ (mr) (mr)

+ 96 \ cosmr
5

sinmrx Cosn7Tt.
(AP2.5)
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APPENDIX 3.

Analytic Solution to Case Study 1.3

The analytic solution to (6.4.1) is easily derived by the method 

of separation of variables employed in Appendix 1. However, for 

illustrative purposes, the method of Laplace Transforms is 

used here.

Taking Laplace Transforms of (6.4.1) we have

which after substitution of the initial conditions (6.2.3) and 

(6.2.4) becomes

By taking Laplace Transforms of the boundary conditions (6.2.2) 

we find that the constants A and B are both zero and thus (AP3.2) 

has the solution

g2 U(x,s) - su(x,0) - 9u (x,0) = d2U + cU
23t dx

(AP3.1)

(AP3.2)

It is easily shown that the general solution of this differential

equation has the form

(AP3.3)U(x,s) = Ae + Be + sSirnrx
2 2 TT +S -C

U(x,s) = sSirnTx
2 2 TT +S -C

(AP3.4)
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Using inverse Laplace Transforms we therefore find 

that the analytic solution to (6.4.1) subject to (6.2.2),

(6.2.3) and (6.2.4) is given by

2  iu(x,t) = SinTrx Cos(ir - c ) t. (AP3.5)
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APPENDIX 4

Analytic Solution to Case Study 1.4

Using the method of separation of variables, (6.5.1) becomes 

by lettingu = XT

» it o
T = X = - k (AP4.1)
T X

and thus
-k2tT = Ae (AP4.2)

and X = BSinkx + Ccoskx . (AP4.3)

The general solution to (6.5.1) therefore has the form

-k2tu(x,t) = Ae (BSinkx + Ccoskx). (AP4.4)

From the boundary conditions (6.5.3) the general solution 

(AP4.4) becomes

0 = ACe-fe2t (AP4-5)

on x=0 and
-k2t0 = Ae (BSink + Ccosk) (AP4.6)

on x=l. Since A^O, (AP4.5) gives C=0 and thus (AP4.6) becomes

BSink = 0 . (AP4.7)

If C=0 then Bĵ O or u(x,t)=0 and hence (AP4.7) gives k=iT.

Similarly, from the initial condition (6.5.2) the equation (AP4.4) 

yields
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sinirx = A(BSinkx + Ccoskx) (AP4.8)

and AB=1.

The general solution to the parabolic partial differential 

(6.5.1) therefore has the form

- Au(x,t) = e Sirnrx. (AP4.9)
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APPENDIX 5

Analytic Solution to Case Study 1.5

The steady-state solution to the equation (6.6.1) is when
23u = 0, that is when 8 u = 0, and thus u = A + Bx. From the
28x

boundary conditions (6.6.2) and (6.6.3) the constants A and B
—aare found to be A=1 and B=e -1. Denoting the steady-state

solution by u (x) we thus have o

u (x) = 1 + (e a-l)x o

The solutions to case study 1.5 are now defined by

u(x,t) = uq (x) + v(x,t)

where v(x,t) are solutions to the problem 

_9v _ a2v
a t  8x2

subject to

v(0,t) = v(l,t) = 0 

and v(x,0) = u(x,0) - uq (x) = e - 1 + (1-e )x.

The above problem is now in the more usual form for which the 

fourier series solution is

V(x.t, = X  
n=l

2 2 ̂ “n TT- tb SinniTx e n

(AP5.1)

(AP5.2)

(AP5.3)

(AP5.4)

(AP5.5)

(AP5.6)
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where ^

b = 2n v(x,0)Sinmrx dx. (AP5.7)

using (AP5.5) the integral(AP5.7) becomes 

rl
b = 2n (e -1 + (1-e )x)Sinnirx dx. (AP5.8)

o

which can be shown to have the solution

b = 2 (e acosnir - 1) / a2 \ . (AP5.9)n mr \ , s 2 2(mr) + a

The analytic solution to (6.5.1) subject to (6.6.1), (6.6.2) and

(6.6.3) is therefore given by the expression

u(x,t) = 1 + (e a - l)x

00

^  2_ (e acosnrr - l\ I a2
n=o \(n7r) +

2 2 -n rr tISinnrrx e 
2 I (AP5.10)a

The numerical evaluation of (AP5.10) is complicated by the presence 

of the SinniTX term. In evaluating the summation it is usual to sum 

terms until a particular term is less than a specified magnitude.

This is difficult in this case, since Sinmrx = 0 for certain values 

of n and x, and thus significant terms for larger n will be ignored.

In our computations this problem has been overcome by examining terms 

after those in which Sinmrx=0.

An additional danger is also encountered when n is large since in such 
-n2iT2tcases e becomes too small for computer arithmetic operations.
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