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ABSTRACT OF THE THESIS

"Unequally Spaced Knot Techniques for the Numerical

Solution of Partial Differential Equations"

by

S J WISHER

Cubic spline approximations to time dependent

partial differential equations, having both constant
and variable coefficients, are developed in which the
knot points may be chosen to be unequally spaced.
Four methods are presented for obtaining 'optimal'
knot positions, these being chosen so at to produce
an increase in accuracy compared with methods based
on equally spaced knots. Three of the procedures
‘described produce knot partitions which are fixed
throughout time. The fourth procedure yields
differently placed 'optimal' knots on each time line,
thus enabling us to better approximate the varying
time nature characteristic of many partial
differential equations. Truncation errors and
stability criteria are derived and full numerical
implementation procedures are given. Five case
studies are presented to enable comparisons to be
drawn between the knot placement methods and results
found using equally spaced knots. Possible extensions
of the work of this thesis are given.
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1.1

CHAPTER 1

Introduction

Finite Difference Solution of Partial Differential Equations

The most well-known early work on the use of finite
differences was that of R;chardson (1910), although ?he
paper by Courant, Friedrichs and Lewy (1928) is usually
considered as the birthplace of modern numerical methods
for solving partial differential equations. Ih that work
Courant, Friedrichs and Lewy also showed that the
convergence of simple difference approximations depends

on the mesh ratio satisfying certain conditions. Such

" conditions were also derived using Fourier techniques for

. a wide variety of problems by von Neumann during the

Second World War. A detailed discussion of von Neumang's

work is given in O'Brien, Hyman and Kaplan (1951).

Since the work of von Neumann many finite difference schemes

have béen proposed, perhaps the most well-known being that of
Crank and Nicolson (1947). A thorough descriétion.of methods
available is given in Richtmyer and Morton (1967). The
computationai aspects and the appliéation of finite
difference mefhods to partial differential equations with
variable coefficients and generalised boundary conditions

is discuséed ig, for example, Ames (1977), Mitchell (1969)

and Mitchell and Griffiths (1980).



The majority of finite difference schemes derived for

the solution of time dependent partial differential
ecjuations use rectangular grids which have constant

step lengths in both the space and time directions.

There are, however, certain instances in which unequally
spaced mesh ﬁoints in the space direction are beneficial.
For example, situations frequently arise in which the
solution of a partial differential equation varies very
rapidly over a small part of the domain but changes slowly
over the rest of the domain. The problem in using non-
uniform grids in such situations is that, in general, an
érder of accuracy is lost by employing unequally spaced
mesh point‘schemes. It is therefore important to position
the mesh points so that optimal numerical performance is.
achieved. Pearson (1968) proposed an iterative scheme for
the solution of boundary layer problems in which additional
mesh points are added where the variation in solution values
exceeds some predetérmined level. Woodford (1975) extended
this idea and produced a scheme which used graded meshes

in which the mesh points are s&stematically chosen acco;ding
to the ngtural structure qf the problem. The use of such
transformation techniques has also been considered by
various authors (see, for example, Jones and Thompson (1980)

and references therein) in determining the position of mesh



1.2

points for the solution of fluid flow problems.

An additional area where non-uniform grids have been
used is in the numerical solution of moving boundary
problems in heat flow. Murray and Landis (1959) solved

such so-called Stefan problems by employing a uniform grid

on the solid side of the boundary and a different uniform

grid on the liquid side. A change in the size of the step
lengths therefore occurs from one side of the boundary to
the other. These moving boundary probleﬁs were also
considered by Douglas and Gallie (1955). They used a
scheme with a variable time step length which is chosen so
that the boundary always moves from one line of the space
grid to the neighbouring line in a single time step. More

recently, Crank and Gupta (1972p),proposed a method for

-solving Stefan problems which employed cubic splines to

interpolate solution values.

Development of Spline Techniques

The term 'spline function' was first used by Schoenberg’
(1946) in a paper describing the use of generalised splines
and other piecéwise polynomials to approximate smooth
fugctions'of one variable. Although Schoenberg's early:
paper Qas an important contribution to the use of spline
techniques, it was not until the 1960'5 that further work

in the field was. published.



Since that time, spline functions have been used

extensively as mefhods of interpolation and approximation,

see for example, Birkhoff and de Boor_(1967); Greville (1969),
Schumaker (1969), Curtis (1970), Hayes and Halliday (1974)
'aﬁd Cox (1975). An excellent summary of spline techniques

is given in Ahlberg, Nilson and Walsh (1967).

Due to the benefit gained by employing splines in approximation
problems, numerous authors have adapteq spline techniques to
obtain solutions to vgrious problems in nuherical analysis.

For example, Loscalzo and Talbot (1967), Loscalzo (1969),
Micula (1973) and Patricio (1978) considered.the solutign

of initial value problems, whilst methods for solving

two-point boundary value problems were presented by Bickley
(1968), Albasiny and Hdskins (1969) , Fyfe (1969) and

Khalifa and Eilbeck (1982).

In addition, E1 Tom (1974 and 1976) has used spline techniques

in the solution of Volterra integral equations.

The development of spline techniques for obtaining numerical
solutions to partial differeﬁtia; equations began with
Papamichael and Whiteman (1973). In that work the authors
presented a method for solving the simple one-dimensibnal

heat conduction equation in which use was made of a cubic



spline approximation in the'space direction together with
a finite dif:erence approximation in the time direction.
A similar technique was used by Raggett and Wilson (1974)
in obtaining numerical solutions to the one-dimensional

wave equation.

Spline function approximations have since been applied

to more general partial differential equations. For_example,
Raggett, Stone and Wisher (1976) considered the solution
ofrpractical problems modelled by hyperbolic partial

differential equations of the form

82u = 9 a(x,t) Ju | + b(x,t) dgu + c(x,t)u. (1.2.1)
— . .
t 9x ox 9x

In addition, Rubin and Graves (1975) and Rubin and Khosla
(1976) presentéd spline techniques for solving problems in
fluid mechanics. In particular, their work developed the

use of spline techniques in the solution of non-linear
equations. The application.of spling function app;oximations
to partial differential equations in two space dimgnsions
was considered by Jain and Holla (1978) . They proposed a
high accuracy formula, using a téchnique similar to that

of McKee (1973), for the spline solution of wave equatidﬂs of
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"the form

3%u = a(x,y,t) 3%u + b(x,y,t) 3%u . (1.2.2)
Y ax> ay>

Jain and Aziz (1981) have‘also recently applied parametric
spline techniques to a variety of differential equations and
have found that they compare fafourably with the more usual
cubic spline approximations. In addition, papers by Sastry
(1976) and Pala and Spaﬁo (1978) have also proposed methods
for obtaining spline solutioné'to parabolic partial
differential eduations.

Motivation for Present Work

As mentioned earlier, the use of cubic splines for the
numerical solution of the one-dimensional wave equation
has been considered by Raggett and Wilson (1974). An

indication of how that work could be generalised to the

" solution of more general one-dimensional, constant coefficient,

hyperbolic partial differential equations was shown by

' Raggett (1974). The completion of that work was carried

out by Wisher (1977), who indicated that the use of spline
techniques gave increased accuracy over comparative

finite difference approximations. The schemes used on



hyperbolic equations by Wisher (1977) are illustrated in
Chapter 3 of this thesis. The extension of that work to
include parabolic partial differential equations is also

given in Chapter 3.

Most of the previously mentioned works on the application

of spline techniques to the solution of partial differential
equations have produced méthods in which the knots were
chosen to be equally spaced. An exception here is that of

‘ Wisher (1977) who used unequally spaced knots in solving

the simple wave equation. ;n that work, the knots were
positioned in an ad-hoc manner.and no improvement in

accuracy was observed over the use of uniform knot partitions.
Further, some experimentation on choosing the knot points

to be the zeros or extrema of the shifted Chebyshev polynomial

T:(x) = Cos(nCos 1(2x-1)) (1.2.3)

was undertaken in Wisher (1977). Again no improvement in

accuracy over constant knot spacing was observed.

In this thesis we employ spline techniques with unequally
spaced knots for the numefical solution of both hypefbolic
and parabolic partial differential equations. Further, we

present methods for the optimal positioning of these knots.



The derivation of schemes allowing the non-uniform partitioning

of knot points is given in Chapter 4.

The problem of determining optimal positions of knots
has been shown to be a difficult one and has only to-date

been applied to approximation problems.

In the earlier works on approximating functions (see for
example, Curtis and Powell (1967)) equally_spaced knots
were employed with additional knots being inserted when .
 the error in the approximation was larger than .some
prescribed magnitude. Since that time various authors

have attempted to'choose the positions of the knots, in
some optimal sense, given knowledée about the function £
being approximated. De Boor and Rice (1968) described an
algorithm for solving the least-squares cubic spline
approximation problem. Their idea was to vary one knot

at a time so as to reduce the error of best approximation.
Similarly, Esch and Eastman (1969) proposed a method for

a best discrete Chebyshev approximation by splines. Both
these algorithhs are computationally expensive and de Boor
(1973) has since proposed an alternative method which chooses
the knot partition from the given function £. This method

is applied to.the solution of partial differential equations



in Chapter 5 by taking the function f to be the given
initial condition. Two additional methods for optimally

positioning the knots are also derived in Chapter 5.

In Chapter 6 of this thesis, a number of case studies

are considered and solutions derived using knot partitions
resulting from each of the methods given in Chapter 5.
Comparisons are also made with results produced using equally

spaced knots.

The results of Chapter 6 suggest that imprqvement on the
methods for locéting the knot points given in Chapter 5 would
be desirable. An improved aigorithm is thus presentéd in
Chapfer 7; which chooses optimal partitions of knots on each
time line. The suitability of this method is examined in

Chapter 8, where the earlier case studies are again considered.

Throughout this thesis, no particular reference to the
associated characteristics has been made for hyperbolic
problems. However, it should be realised that due
accbunt has been taken in the satisfaction of the
Courant Friedrichs Lewy condition (see Mitchell and

Griffiths (1980)) for all the problems cited.



2.1

2.2

CHAPTER 2

Review of Cubic Spline Theory

Definition of a Cubic Spline

Vinto N sub-intervals by inserting knots x

Let £(x) be a function with continuous derifatives in
the range a § X § b. To approximate f£(x) using cubic
spline techniques we may subdivide the interval a £ X £ b
i such that

a = X, < X, < ....< X = b. (2.1.1)

S(x) is a cubic spline interpolating to the function f(x) at

the knots xo, xl,....',xN if

(i) in each sub-interval x X g xi (i=1,2,...,N),

i-1 g
S(x) is a cubic polynomial,

(ii) S'(x) and S"(x) are continuous everywhere in [a,b],

(ii;) S(xi) = f(xi) (i=0,1,...,N).

A cubic spline thus consists of a set éf cubic polynomial

arcs which are joined smoothly end to end with continuous

first and second derivatives. In general, the third derivative

will have a discontinuity at each of the knots :;T,x;l,....,xN;| .

Cubic Spline Functions

From Ahlberg, Nilson and Walsh (1967), in the interval

"
[xi—l’ xi] we define S (x) as

"
S (x) = Mi‘_1 xi - X + Mi xi—l (2.2.1)

by By

10



where hi =X -x (i=1,2,...,N) (2.2.2)

and Mi = S"(xi). Integrating twice gives the cubic spline

function S(x) on [xifl’ xi] as

_ 3 3 : 2
S(x) = Mi-l (xi x) + Mi (x xi-l) + f(xi_l) - El Mi-l (xi g)
'Ghi 6hi 6 h1

2

#leep -nfu e -x poGeL2,.L W
3 h

1 (2.2.3)

the constants of integration being evaluated from S(xi) = f(xi)

~and S(xi-l) = f(x ). From (2.2.,3) the following one-sided

i-1
limits of the derivatives of S'(x) are derived

s (x,-)

= El.Mi-l + El Myor B(x) - £(xg_ ) (1=1,2,...,1
6 3 hy (2.2.4)
s'(x.+) = -h h £ i=0,1 N-1
(¥ = -hy My m By My Y - £ (90,1, (R-1))

3 6 hin (2.2.5)

The unknowns Mi(i=0,2,...,N) are obtained by equating these
one-sided limits, thus giving

. M + h_+h,
i i i+

By M 1Myt By My T By R0 )BT,
6

1

i-1

s s ' | Bihia

(i=1,2,...,(N-1))
(2.2.6)

11



Equation (2.2.6) is a tri-diagonal system of (N-1)
equations in (N+1) unknowns. To solve this system various
choices of conditions are available at the end points,

X5 and XN of the interval to produce a consistent set

of (N+1) equations

(1) s'(x) =0  (i=0,N) | (2.2.7)
(1) 8'(x) = £ (x) (1=0,) , (2.2.8)
(I11) S"(xi) = £"(x;)  (1=0,N) (2.2.9)

As suggested by Behforooz and Papamichael (1979); the

choice of these extra conditions plays.an important role

on the quality of the spline approximation.'lt is well-known
that the best order of approximation which can be achieved

by an interpolatory cubic spline is

I|s -2 =oa%

where || . ll denotes the uniform norm on [a,b] and

h = max(hi). This order of accuracy is obtained if either
(ii) or (iii) are used as the extra conditions. As stated
by Kershaw (1973) an 0(h4) accuracy is not obtained if
Vcondition‘(i) is applied. However, the conditions (ii)

and (iii) requiré knowledge of the derivatives of the
function f£(x). This knowledge is not generally available
from any imposed boundary conditions of partial differential

equations and we thus use (i) as the extra conditions in

12



this thesis, S(x) and (i) beiﬁg known as a ‘'natural’

cubic spline. Papamichael and Worsey (198l1) have

recently derived improved extra conditions for spline
approximation which could resuit in incieasedlaccuracy

to the results of case studies considered later.

Having decided on the choice of 'end céndifions', substitution
of these into (2.2.6) gives a system of (N-1) equations which
are linearly independent, tri-diagonal and diagonally
dominant. They can therefore easily be solved for Mi
(i=1;2,...,(N—1)), the satisfaction of the end conditions
then giving M_ and MN. 'The spline.function S(x) can then

(o]
be obtained from (2.2.3).

13



CHAPTER 3

Initial Value Partial Differential
Equations with Equally Spaced Knots.

(i) - . Hyperbolic Partial Differential Equations

3.1 Constants Coefficients

Suppose that u(x,t) satisfies the second order linear

hyperbolic partial differential equation-

32u = aazu +bdu +cu (0Ogxg1, £t>0) (3.1.1)
atz 3x2 dx ’

where the coefficients a, b, ¢ are constants (a > 0).
Aésume further that (3.1.1) is subject to the function
value bouﬁdary conditions

wo,t) = £.(t) , ul,t) = £,(t) (3.1.2)
and the initial conditions

u(x,0) = gl(x) , u(x,0) = gz(x) (3.1.3)
- .9t ‘

where fl(t), fz(t), gl(x) and gz(x) are known functionms.

To obtain solutions to (3.1.1) using spline techniques
we here consider the knots

O0=x_ <x < ..,..<x =1 _ - (3.1.9)

to be.equally spaced where the distance between successive

knots is h, so that x, = ih (i=0,1,....,N). We now replace

i
the time derivative in (3.1.1) by a finite difference
approximation and the space derivatives by a cubic spline,

thus obtaining at the point (ih, jk) the implicit relatiomship

(see Wisher (1977))

14



ui.d-1-2u1,3+ui,j+1 = _a[BMi’J_1+(1-29)M1’J+9Mi’3+1}

+ b{eLi’J_l+(1-29)Li,j+9Li’j+l} |

+ .

°{?“i,3-1+(1'26)“1,3+e“1,j+1}

(i=0,1,....,N; j=1,2,....; Nh=1 ; 6 3 0)

(3.1.5)

where Li,j = Sj(xi), Mi,j = Sj(xi); Sj

cubic spline interpolating the values ui j on the jth

(x) denoting the

time line, this being given by

— 3 3 2 - -
Sj(x) = Mi—l,j (xi X)  + Mi,J(x xi-l) + ui-l,j %-Mi-l,j (xi X)
6h 6h h
+{u -th (x-x ) (i=1,2 N) (3.1.6)
i’j_s_ i,j i-l ) g vy . .
h

As shown in section 2.2, the continuity of the first
derivatives of the spline function yields _ -

I R T e N T T I T |

6
. h2 (3.1.7

1M +
g 1i-1,3

W

(i=1,2,....,(N-1))
' . th th
This relationship also holds on the (j-1) and (j+1)

time lines, giving respectively

1M + 2 o+ 1 = -2
31,501 5“1,3-1 _3M1+1,j-1-. Y1917 4o, -1
. 2
h
/ (i=1,2,....,(N-1))
(3.1.8)
and
%M151,3+1 * %Mi,j+1 * %Mi+1,j+1 T U g1 ge1tUien,gal
2
h .
(i=1,2,....,(N-1))
(3.1.9)

15



We now require an expression similar to (3.1.7) which

incorporates the L values. On the Jth time line

L

i,3
(2.2.4)and (2.2.5) respectively become
?
L =8 (x.-) = hM + hM + u -u
1,0 TSy TR L P TNy
6 3L n
(i=1,2,....,N)
and
t
=8 (x,+) = -hM
1,3 7550 =3

1,5 2,5 T e,y - g
' h

(1=0,1,....,(N-1))
From (3.1.10) we have

L = hM + hM +u -u
i+l1,] E—i,j §-i+1,j i+1,3 i,]
h

(i=0,1,....,(N-1))

and from (3.1.11)

L = -hM - hM + u -u
i-1,j  Fi-1,3 g, i,  i-1,§
h

(i=1,2,....,N)

(3.1.10)

(3.1.11)

(3.1.12)

(3.1.13)

A relationship is now obtained by adding (3.1.10) and (3.1.11),

the result being added to half the sum of (3.1.12) and (3.1.13).

Thus on the jth time line

1L + 2L + 1L =u N = u
i-1,] *§ i,J —i+l,j i+l,j i-1,j

6 2h ,
(i=1,2,....,(N-1))

(3.1.14)

Again (3.1.14) holds on the (J-l)th and(j+1)th time lines

giving
%Pi-l,jel * %Li,j-l * %P1+1,3-1 T Ue1,5-1 7 Y1,

2h
(i=1,2,....,(N-1))

16

(3.1.15)



and

b L = -
Ay gy Y2y gt épi+1,j+1 “141,341 " %i-1,4+41  (3.1.16)

6 3 =

(i=1,2,....,(N-1))

As shown in Wiéher (1977) the required scheme incorporating

splines is obtained by performing the following operations:
| (1) multiply (3.1.7) by a(1-20); |

(ii) add (3.1.8) and (3.1.9), multiply the result by af;

(iii) multiply (3.1.14) by b(1-26);

(iv) add (3.1.15) and (3.1.16), multiply the result by b6;

{v) add the éxpressions produced in (i) - (iv) togethér;

(vi) use (3.1.5) to eliminate the M

5,3 and Li . values,

?

thus giving the following three time level scheme

(181900 gur * QB0 g+ B30, 4y in

{248, (1-20)} uw, | . + 4 {2-8,(1-20)} u, | + {246,(1-20)} u

1,] s J i+l,J

—(I—Ble)ui_ - 4(1+829)ui . (1—636)u

1,j-1 ,J-1 i+1,j-1 (3.1.17)
| (1=1,2,....,®N-1)

where Bi = 6ar2-3brk+ck2; 82=3ar2-ck2; B3=6ar.2+3brk+ck2

and the mesh ratio i=k/h.

The truncation error for (3.1.17) is obt#ined by expanding
each term of the scheme about the mesh point (ih, jk) using
Taylor series apﬁroximations. After éppfopriate rearrangements

(see Wisher (1977)) the following expression, to fourth order,

is obtained

-17



kzh2 [czrzf(e)u + 2bcr2f(6) du
9x

+{ r2(2ac + b )f(e) - 1 c k e} 82u
6 2
ax
3
+{2abr £(6) - 1 bek B 3 u
6 3
3x
+ azrzf(S) +1 a-1 ch2 -1 ackze} 84u (3.1.18)
12 72 6 4 T
ox
where £(6) = 1 Q1 - ckze) - 6. (3.1.19)
12 ‘
This truncation error may be considerably simplified by
choosing £(8) = 0, in which case the para;neter‘ 6 is
chosen such that
0 = 1 | (3.1.20)
12 + ck2

Thus, in the special case where fourth and higher order
derivatives are small, the truncation error is reduced
: 2 2 4 2
in magnitude from O(k'h ) to O(k h ). The technique of
optimally choosing the parameter 9 has been considered
in detail by Wisher (1977). For example, when obtaining
solutions to the wave equation ((3.1.1) with a=1l, b=c=0)
2 4 6,

the truncation error (3.1.18) :can be reduced to O(k h +k )

by choosing

6= 1 (1+4rd) (3.1.21)
12r

18



and, in fact, to 0(k2h6+k8) by suitable choice of both

0 and r.

To examine -the stability of the scheme (3.1.17) we use

the well known von Neumann method (see Mitchell (1969)) in
which a harmonic decomposition is made of the error at
mesh points (see Wisher (1977) for full details). The
following stability conditions are obtained

(a) if © 2'%,
1

(b) if 6 < =, it is stable when

=1/2
r ¢ {3a(1-46)} . (3.1.22)

it is unconditionally stable

Variable Coefficients.

Here we require solutions to the hyperbolic partial
differential equation ~

82u = 9 | a(x,t) du|+ b(x,t) 3u + c(x,t)u (3.2.1)

Btz ox ox ox

where a(x,t), b(x,t) and c(x,t) are variable coefficients
and a(x,t) > O at all points in the solution domain.
Again we consider the knots to be equally spaced and.
perform an aﬁalysis identical to that of fhe.previous
section. Though complicatéd by.the variable coefficients
the following'scheme, similar to (3.1.17), is derived

at (ih, jk)
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g3, 501 7 5e? %1, 500 ¥ 408 a1 T3y 500 ga

541,541 7%y 3410 %41, 02

kzc -+ (1-20)y

+ } u 2
i-1,§ i-1,3 i,J i-1,3

=26 1,5 VE %,

+ 4{2¢

2
kei,;

-3(1-20)y, .} u j + {2¢ u1+1,J

AN +(1'29)X1,J}

i1, T

- (¢;-1,j-1 Y I L PR B IR Rl G B 371,3-1)“1,351
g4y go1 ~ g g W gy GSL2Z,, @D (3.2.2)
where
b1, 7 l'kzeci,J v Vg5 T ?231,3 ¥y g T8y 3T By y
Xy 3 =6Y 3+ By ;o B = 3rk(a;}j +by )

the prime denoting differentiation with respect to x.

The truncation error for (3.2.2) is again obtained using
Taylor series expansions. It ié found that the error is
O(kzhz), although in this case the expression is much more
complex, involving derivatives of ‘the variable‘coéfficients
and odd order derivatives of u with respect to t. The full

expression for this truncation error is given in Wisher (1977) .

The stability condition for (3.2.2) is obtained by applying
the von Neumann method locally, since the method is only

applicable to difference schemes wifh constant coefficients.
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As suggested by Widlund -(1966) and Mitcheil (1969)

we therefore perform the analysis by considering the
coefficients to be constant and assume that the scheme
with variable coefficients will be stable provided the
condition obfained is satisfied at every point of the
solut;on domain. The scheme (3.2.2) then has the following

stability condition

(a) if o z-% , it is unconditionally stable;
1 R
(b) if 6 < 2 it is stable whenever
-1/2
r £ {3a(x,t)(1-48)} (3.2.3)

is satisfied independently at each point of the solution

domain.

Equations of the form (3.2.1) have been considered in detail

by Raggett, Stone and Wisher (1975) and (1976).

(ii) Parabolic Partial Differential Equations

3.3 Constant Coefficients’

The cubic spline solution of the simple heat conduction
equation has been considered by Papamichael and Whiteman(1973)
and by Sastry (1976). In this section we extend the technique
to fhe more general parabolic partiai differential equafion

Su =adu +bdut+cu (Osxs1, t>0  (3.3.1)
at 32 ax |

21



where a, b, ¢ are constants (a > 0). We here assume that

(3.3.1) is subject to the initial condition

u(x,0) = g(x) (3.3.2)

and the function value boundary conditions

w(0,t). = £.(t) , u(l,t) = £,(t) (3.3.3)

Where fl(t), fz(t) and g(x) are knowﬁ functions, If the

knot partition (3.1.4) is again chosen to be équally spaced,
tﬁen by similarly replacing the time derivative in (3.3.1)

by a finite difference approximation and the space derivatives

by a cubic spline we have at (ih, jk)

Uoga "%y T aL{eMi,:l+1 + (1-e)mi,3}
k
+ b{eLi’:]+1 + (1—6)Li’3}
+ c{eui,d+1 + (l-e)ui’j} ‘ ‘(3.3.4)
(i=0,1,....,N ; j=1,2,.... ; Nh=1 ; 6 2 0)
where L, and M are as previously defined. A scheme

1,3 4,3 |
similar in nature to (3.1.17) is obtained by'performing the

following operations:
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(1)  multiply (3.1.7) by a(1l-6);

(ii) multiply (3.1.9) by a6b;

(iii) multiply (3.1.14) by b(1-8);

(iv) multiply (3.1.16) by b6;

(v) add the expressions produced in (i)-(iv) above
together;

(vi) use (3.3.4) to eliminate the M

i
The following scheme incorporating splines thus results

and L values.
i i,]

(1-8,0)u

i-1, §+1 + 4(1+826)u

g, g+ TR

+1,j+1

{148, (1-0) 1y, L+ 4{1-8,(1-6) }u,

3 + {1+S3(1-9)}u

141, 3 (363.5)

(i=1,2,....,(N-1))

where Bl = 6ar - 3brh + ke ; B, = 3ar - ck ; 83 = 6ar + 3brh + kc

2
and the mesh ratio r = k/h2.
The scheme (3.3.5) reduces to that of Papamichael and
Whiteﬁan (1973) for a=1, b=c=0 and is anélogous to (3.1.17)
for hyperbolic equations. In fact, if a=1, b=c=0, suitable

choices of the parameter 6 lead to other well-known finite

difference schemes. For example, by choosing 6 = 1 the
4 : 6r

scheme (3.3.5) reduces to the simple explicit representation;

0= %-+ %; gives rise to the Crank-Nicolson formula and
6 = %-+ %5; ields the high accufacy formula of Douglas
(1956) .
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The truncation error associated with the scheme (3.3.5) is
again obtained using Taylorj series expansions. Fuller
details are given here (compared to the hyperbolic.case)
since this truncation error has not been derived elsewhere.

Thus, expanding (3.3.5) about the mesh point (ih,jk) we have

(1-8,0) | u, g k ('au) + k2 (32u) + Kk (33u) skt (a‘lu)
' 2 3 2
ot 2! \at 3: \» 41 \3
1,3 1,3 MRE W

‘+k( 82‘11) +k2(83u) +k3 84u }
2 3

9xot 2' \3xdt 3! 9x3t :

J 1,j vy 1,3

) »J
+ﬁ{(82u) +k( 83u ) +_1f_ ( 'a4u ) \\
2 2 2,.2
1 t
2! 9x i3 9x Jt 1,3 2! 9x ot 4 i,j‘j
-I_lf_{(asu) +k(94u ) }+ _1_1f_ (a4u)
3 3 4
3! 3 , dx ot 4! ax 7/,
x i!j ilj x llj
+ 4(1—326) u j + k(au) + _1_:3 ( azu) + _l_:j < asu) + 3_4 ( 84u)
. , — 5
at 2! at 3! ot . 4! \ ot
i, i,3 i,3 v i.J
H1-650) | u o+ k(_a_u) - ( 32u) - (a3u) xt ( 34u)
! 2 3
ot . 2! \ 3t 3! \ot 4! ot
- T 1,3 i,J ’ i,J i,
+h{(§_) +k( azu) +gf_( aau ) +§f_( 84u ) }
2 3
1] 1]
9x 1,j dxdt 1,3 2! \9xdt 1,3 3! \9x3t 1,3
+§f_{(82u) + k( 83u ) +_15_2_ ( 84u ) }
2 2 . 2,2
2! \3 9x at 2! 9x ot
0 R W HOx 1,3
3(/,3 1 4 T4 4 1
+_1_1_{/ u) +k(8u) }+§_(3u)
3 3 4
3! ‘ ox dt C4 )
0x/4 3 - o% i,j° * iy

’
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= {1+31(1-e)} w - h [du + f_ Bzu - ﬁ 83u + ﬁ 34u
v J 5 —3 4
i,

+ 4 {1-82(1-9)} u

»d
+ {1+83(1-9)} u p +h (.B_u) + _1_13 (azu) + i 331.1) + gf_ (a4u
! . 2 3 4
ax 2! 9x 3! 9x 4! 9x
i,J i,J i,J
(3.3.6)
Using the expressions for Bl’ Bz, 83 given earlier and
rearranging we obtain the following truncation error to
fourth order
(-ck26) du + _1__(k2 - ck39) 32u + _}_(k3 - ck46) 83u
3t 2 at2 6 3t
4 3 '
+1 (k - ck59) 34u + (—bkze) Bzu + (- 1bk 6) 33u
24 at? %9t 2 3x3t
4 , .
+ (- k) 3%+ - 1ekn® 2% + 1 aw® - ear®o-cx®n®e) 3%
6 gt 6 ax> 8 axZat2
+ _l_(kzh2 -3ak36- ck3h26) 84u + (- lpkhz) 33u
6 12 2 8x23t2 6 3x3
« (- wx?n%) 2%+ 1 [-an® - am?) 2% (3.3.7)
6 3 12 6 4
ax dt : 9x

- The time and mixed derivatives in (3.3.7) can now be
replaced by space derivatives by employing (3.3.1).

For example

82u = a2 34u + Zabvasu + (2ac + b2) 82u + 2bc du + czu,
Btz 8xé 3x3 sz 9x

82u = A asu +b 32u ~+ c du

9xot 3x3 axz ox
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The following expression for the truncation error
involving space derivatives only, is thus obtained

k2 2( 1(1-20) + ck(l 30) + ¢ k ck (1 - 46 - ckb) )}

2 24
+|b (129+ck(1-39)+ck(1—49-ck8)) du
' 6 ox
+ ( 1-26 + ck(1-36) + C k ck (1- 30 - cke))
6 R

+ b 1(1-29)+ ck(1-39) + C k (1 - 46 - ckb)
2z 2 2
+ A @ - 120 - ey | 0%

72 axz

+[ab ( 1-26 + ck(1-38) + coko(1 - 36 - cke))

2
3 2
+ b ck (1 - 49 - ck6) + E (1 -36)
6 6
3
+ bch (1 - 126 - 6ck6) 9 u
36 3 3
X
+ 1(1-26) + ck(1-36) + czk ¢k (1-26 - ckb)
2 2 4
2 2
+ ab E(l—39)+ck (1 - 36 - ckb )
2 2
2 2.2
+ ach (1 - 66 - 6¢ckf) + b h (1 - 126 - GCke)
36 72
+ b4k2 (1 - 40 - ckf) + a - ch2 8411
24 , 12r 72r 3x4

26
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For the simple heat conduction equation this error

reduces to

2 | 1a-20 + 1 | 2% o+ ..., (3.3.9)
2 12r 4
ox
and thus by choosing
0 = + 1 (3.3.10)

1 1
2 12r

the truncation error is simplified to include only terms
higher than féurth order derivatives. As previouslf mentioned,
the use of (3.3.10) gives rise to-the high accuracy formula
derived ﬁy Douglas (1956) . |

The stability of (3.3.5) is examined by first replacing

- imy_n .
ui,d by um,n and then letting um n e & , where Y is an

i A
arbitrary real number and § = e A, Abeing a complex parameter.

Equation (3.3.5) thus becomes

i(m-1)Y, n+l imy, n+l i(m+1l)y . n+l

(l-Ble)e £ + 4(l+629)e 13 + (1-836)e 3

={1+81(1—6)}ei(m'—1”5n + 4{1-82(1-6)}e""’“‘zt;n + {1+83(1-6)}ei(m+1)an

Dividing by eleEn#O and rearranging gives

£ ;'{1 +81(1-6)}e—iY+ 4{1-82(1-6)} + {1+83(1-6)}eiY

-iy iy
(1-816)9 + 4(1+626) + (;-Bse)e

If we now replace 61, 82, 83 by their full expressions and let
h and k tend to zero in such a way that r remains fixed we

obtain
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£ = {1 + 6ar(1-6) e V+elYy + 4{1 - 3ar(1-6)}

(1 - 6ard) (e Y4elYy 4+ a(1+3ard) (3.3.11)

Since 2cosy = e_iY-i-eiY ’

‘and cosy =1 - 2Sin%1
2
it follows that, in view of the fact that £ is purely real, the

stability condition on £ is

-1 & 3 -2(1+6ar(1-6)Sin’y s 1 1 (3.3.12)
2 .

3 - 2(1 - 6arS)Sin%1‘
2

Denoting the denominator in this expression by D, we see
that since r > 0, a > O and 6 2 O then D > O. Thus (3.3.12)
becomes

) 2
- 3 + 2(1—6ar6)Sin%1 £ 3 - 2(1+6ar(1-6))Sin%1 € 3 - 2(1-6arf)Sin y .
2

2 2
(3.3.13)
From the right-hand inequality in (3.3.13) we have
A-12arSin%l <0 ’ ‘ (3.3.14)
2 .

which is satisfied for all r > O; thus the 1§ft-hand
inéquality will yield the required stability criteria.
From the left-hand inequality we obtain the expression

12ar(1-20)Sin’y £ 6 - 4Sin%y . (3.3.15)

2 2
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3.4

Thus,vif 1-26 > O, we can rearrange (3.3.15) to give

r £3 -.ZSin%l
2

| 2 (3.3.16)
6a(1-20)Sin"y
2

Since Singl € [0,1], then by choosing Sin%l to give the most
2 2 :

restricted condition on stability, we obtain

ros 1 (3.3.17)
6a(1-20)

Alternatively, if 1-26 < O, rearrangement of (3.3.15) gives

rz3 - ZSin%l
2 ' (3.3.18)
6a(1—29)Sin%l

2

and thus r > o, where a < O. This implies that the scheme
(3.3.5) is uncbnditionally stable for 1-26 < O.

The scheme (3.3.5) therefore has the following condition

" governing its stability

(a) if 6 %, it is unconditionally stable.

(b) if 6 < %, it is stable provided that
-1

r < {6a(1-20)}. : © (3.3.19)

Variable Coefficients

As shown in section 3.2 spline techniques can be applied
to hyperbolic pértial differential equations with variable
coefficients. In this section we require solutions to the

parabolic equation with variable coefficients
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ou =. 9 a(x,t) du | + b(x,t) du + c(x,t)u ~ (3.4.1)
3t 9x 9x ax

where again a(x,t) > O at all points in the solution domain.

As in previous sections, if we replace the time derivative

in (3.4.1) by a finite difference approximation and the

space derivatives by a cubic spline we obtain at (ih, jk)

Upgel "%y T8y g My gt (-0e oM
Kk ’ ' '
+ e(ai’j+1 + bi,j+1)Li,j+l +(1-Q)(ai’j + bi,j)
+ eci’3+1 ui,j+1 + (1-6)ci’j ui,j (3.4.2)

(i=0,1,....,N ; j=1,2,... ; Nh=1 ; 6 2 0).

To obtain the required scheme incorporating cubic splines

we perform the following operations:

(1) multiply (3.1.7) by ai j(l-e);
’
,(ii) multiply (3.1.9) by eai,j+l;
(iii) multiply (3.1.14) by (af j+bi j)(1-6);
: ! ?
(iv) multiply (3.1.16) by e(a 1,4+l bl,j+1);
(v) add the expressions obtained in (i)-(iv) together;

this gives the following expression

ai,'(1'9)(%M1-1,j+2M1,J*1M1+1,3) 8y g4 (;Mi 1,3+1 §M1,3+1 %M1+1 j+1)'
.
+(a, .+b 1-6 +1L, \+(a! +b 6/1L
(a; 5405 ¢ )( -1 j i,j §f1+1,3) (85 34175, 541’ (6 i-1 j+l
* 2L j+1flpi+1 j+1 )
= - -2 + -2 +
ay (=00 fu; 572 My )+ T T s T T M Yoy I
2 A 2
. (] ' R / -
+(ay gby P e)k“1+1,j Uz, )T B ety 5?8 Y jea %, g
2h \ 2h

(3.4.3)
30
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(vi) use (3.4.2) directly and with i replaced by

both (i-1) and (i+l) to eliminate the Mi

values in (3.4.3). In the case of constant

3 and
Li,j
coefficients the required scheme results immediately.
In this case however, use must also be made of Taylor
Series expansions before the Mfs and L's can be
eliminated. For example, (3.4.2) with i replaced

by (i-l) can be written as

' 2 n .
Yio1,9+41 " %-1,3 T e(ai,j+l -hay gt l—‘—-ai,;;+1“") Mi-1, 441
N 4 , Y
+(1-8)(a, . -ha' _ +hZ a" | M
i:j i,Jd - i:j..'. i-1,3
: 2!
t " [ 2 " .
+6(ai,j+1 - hai,j+1+""+bi,j+l - hbi,j+1 + E—-bi,j+1"”
~ ‘ 21
Li-l,:j+1
(1-8) [a, ha. +b mb! .+ B2
+(1- a - a, +eene - . + R
i,J i,J i,J i,J — 1i,j
' 2!
Liag
) ' - 4.4
00y g, 41 Yen,ger T A0 Y (3.4.4)

A similar expression can also be obtained for (3.4.2)

with i replaced by (i+l) . These expressions are then used

to carry out the elimination of the Mi j andiLi j values as
’ ?

required. The following scheme thus results
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(8%

. l—l,j'-l
053,341 =~ Py g0 2005 500 T30 50Y g
* 5,541 T %% 54041, 501
={¢i—1,3(+ kci_l’j + (1-e)wi’j}u1_l,3.+ 4{¢1,3 + kci’j - 3(1-6)71’3} U g
o 0,5 FEC gy Q00X b u g
(1=1,2,....,(N-1) (3.4.5)
where
T OEO Ly My T Ry 0 Yy g Ty TRy
X3 7 e,y tPay By TR TRy

As in section 3.2, the stability condition for the scheme
(3.4.5) is derived by applying the von Neumann Method locally.

It can thus be shown that

(1) if 6 2 %-, it is unconditionally stable
(ii) if 6 < %—, it is stable provided
. -1
r ¢ { 6a(x,t)(1-20)} ~ (3.4.6)

is satisfied independently at each point of the solution
domain,
The truncation error associated with (3.4.5) may again be

derived by expanding the terms in the scheme using Taylor
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series. As in section 3.2, the expression is complicated
by derivatives of the variable coefficients. For conciseness
the details are not given here, but it can be shown that the

error of (3.4.5) is O(kz).
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4.1

CHAPTER 4

Initial Value Partial Differential
Equations with Unequally Spaced Knots.

-The Use of Unequal Step Lengths

The numerical solution of partial differential equations using
finite difference schemes in which the mesh points are non-
uniformly distributed has been considered by various authors.
Forieiample, Saul'yev (1964) suggested the use of non-rectangular
grids for solving the heat conduction equation in which the

initial condition g(x) has the form illustrated in Figure 1.

Saul'yev recommends that, due to the changing nature of the
function g(x) in such a situation the step lengths should be
chosen to be smaller in the first third of the range [0,1]

and larger in the reamining two-thirds.

More complicated pfoblems in which the solution varies rapidly
over a small part of the domain but very slowly over the rest
are found in boundary iayer problgms in fluid dynamics. Crowder
and Dalton (1971) and Kélnay de Rivas (1972) have considered
thé use of non-uniform grids which can be used to place sufficient
mesh points in the tegion of the boundary layer and fewer

points in the reﬁaining solutibn domain,

Finite difference approximations with unequally spaced mesh
points have also been shown to be advantageous in moving

boundary problems in heat flow (see for example Murray and
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Landis (1959), Douglas and Gallie (1955), Lotkin (1960)

and Crank and Gupta (1972a).

4.2 Hyperbolic Partial Differential Equations with Comnstant -
Coefficients '

In this section we obtain solutions u(x,t) to (3.1.1)
using spline techniques in which the knot partition (3.1.4)
is considered to be unequally spaced and where the distance

between successive knots is given in (2.2.2).

From equation (2.2.3) the spline function on the Jth time

line has the form

_ 3 3 2 "
Sj(x) = Mi—l,j (xi x) + Mi,j (x xi-l) + ui-l,d - 5131‘1,3 (xi X)
6hi 6hi ’ 6 hi
+ th ( ) i=1,2 N (4.2.1)
ui“_) b x-x 4. (i=1,2,...,N) .2,
6 hi
Similarly the expression (2.2.6) for the second derivative
of the spline function becomes on the jth time level
M + + -
BMia,g YR TR M M
6 3 6
= ) - + + .
BiWier,y ~ By TR DY YRy Y g (4.2.2)
h h, _ '
ii+l

(i=1’2) R ;(N—l))
A relationship similar to (3.1.14) is now required for unequally
spaced knots. 'From (3.1.10) to (3.1.13) the following expressions

are obtained
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2 2 ,
L =h + + - 4.2.3
B,y TRMia s P EML T N T Yy (4.2.3)
6 3 :
h, .L = -n? u -n2 M +u -u (4.2.4)
i+171,j i+174,J i+1 i+1,3 i+l, ] i, U
3 6
h, .L =n® m _+n +u - (4.2.5)
1417441, d+ld,3 ¢ Caela+l, 3 T Y+1,3 T Y4,3 .
6 3 :
h,L = -n’y -n?M  +u | -u (4.2.6)
ii-1,3 ii4-1,3 11,3 i,J i-1,J o
3 6 4

Adding (4.2.3) and (4.2.4) to half the sum of (4.2.5) and

(4.2.6) gives the expression

+ +
Bilyoa,g YR P by T Rl
6 3 : 6
2 2 :
B T T e U B T B T 0T (4.2.7)
12 2

(i=1,2,....,(N-1))

Approximations similar to (4.2.2) and (4.2.7) also hold on the
th th . '

(3-1 and (j+1) time lines. As explained in section 3.1 .

we now take combinations of the above mentioned relationships

and use (3.1.5) to eliminate the Mi j and terms where
. H]

L,
i,Jd
possible. The following three time level scheme is thus obtained
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(4 =799 5 ju

+ 2(1 + xie)ui
?

+ (Bi - !bie)u

J+1 i+l, j+1

2
YRR By RO OM g v 20N, 5 M ey
=(20; + v, 120}y, 4+ 202 - x, (120 Juy ¥ (28, + ¥, (1-20) bu

i+l,]

-, - - - - .2,
@y =¥y ®uy = 2@+ xOuy = By =0T (4.2.8)
(i=1,2,....,(N-1))
where
Yy = 6ar; - 3bh, 8, +chihy 08
- 2
xi = Gavi ck
*1 = Gasi + Sbhiri + Chihi+1ri
¢y = by y By = b
by *hia by +*hin
and the mesh ratios ri,lsi and vi are given by
r, = ok , sy = K2 ;v = 12
By(hy + By By + By by
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If the coefficient b in (3.1.1) is non-zero the solution
of the scheme (4.2.8) is complicated by the presence of

M

M M . t 1
1,5-1" M5y gnd 1,341 Assuming that the scheme is fully

developed in that values for u and M are known on the jth
and (j--l)th time lines, then we must determine Mi 41 values
: ’

before further solutions u can be found.
i,j+1

This problem is overcome using the following numerical
procedure:
(1) Using the initial condition (3.1.3) the expression

(4.2.2) becomes

+
BMia0* 8 YR Mot Pia Mo
6 | 3 6
=hy gy (X)) - By Y By ED AR 8
| BB | (4.2.9)

(i=1,2,....,(N-1)

Given that Mo,j = MN,j = 0 (j=0,1,2,....), the tri-diagonal

system is easily solved for Mi o (i=1,2,....,(N-1)).

(ii) By setting 6=0 and using the derivative initial

condition in (3.1.3), the scheme (4.2.8) becomes,

with j=0
T T T T T T I %5?(h1+1 B Mo
= (26, + )8 (x;_)*2(2-x, )8  (x,)+(2B, + ¥,)g (%, )
+ 2k¢ig2(xi_1) + 4kg2(xi)v+'2k8ig2(xi+li. , (4.2.10)

(i=1,2,....,(N-1))

i,l
tri-diagonal sysfem (4.2.10).

The solutions u (i=1,2,...,(N=-1)) are thus obtained from
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(iii) Putting j=1 in the expression (4.2.2) gives an easily
solvable tri-diagonal system of equations producing

the values Mi 1 (i=1,2,....,(N-1)).
?

(iv) Since we have now determined M and

M u
i,0’ "i,1’ i,0

ui 1 we can develop a general scheme for obtaining
?

and hence u This is done using a Simple

Mi,J+1 i,j+1°
iterative process, beginning with an initial approximation

0)

Mi,d+1 to Mi’J+1,g?ven by the extrapolated relgtionship
© = 2M - M (i=0,1,....,N). (4.2.11)
ilj+l ipj i,d-l 1 ’

We substitute (4.2.11) into the scheme (4.2.8) thus

o

obtaining initial_approximatiqns ui,j+1’ o ui,j+1'

(v) Assuming now that the iterative process is fully

developed and that we wish to obtain improved

(n+l)

t 2,
approximations Mi,j+l , to Mi,j+1’ then‘from (4.2.2)
we have the expression

(n+l) (n+1) (n+l1)

o +
31¥1-1,j+1 PRy B M a0 YR M ga
6 3 6
_ (n) (n) L ()

DUy ger T By TR S TR Y e
L h +(4.2.12)
i i+l
(n+1) _ (n+l1) _ .
Given that MO,j+1 = MN,j+l = 0, the system (4.2.12)

is easily solved for the required improved approximations

(n+1)

My 541

(i=1,2,....,(N-1)).
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(n+l)

(vi) The M values obtained in (v) are now used in

i,j+1
the scheme (4.2.8), which in iterative notation is
(n+1) (n+l) (n+1)

+ 2(1+xie)u

(03 = Y499 41 1,941 T By T V0L 5n

2 (n+l1)
+ EE-(hi+ +(1-26)Mi,j + eMi’j+1 )

- h_ )(6M
2 i

1 i,3-1

={2¢i+yi(1-2e)}ui_1 +2{2--xi(1-2e)}u1 j+{281+¢1(1-2e)}u

»J i+1,3

3

TR PR T i e T L I I B U

- i+1, j-1

(1=1,2,....,(N-1)) (4.2.13)

By solving (4.2.13) we obtain improved approximations

(n+l)
1,541 0 Y% ja-
(vii) A test is now performed on these ui(gii) values by
1

examining numerical values of the inequality

(n+1) (n) .
i,3#1 T Y je1| T (i=1,2,...,(N-1)) (4.2.14)

for some fixed tolergnce €. If (4.2.14) is satisfied for

(n+1)
i,j+1

However, if (4.2.14) is not satisfied, then the u

are taken as the required solutions.

(n+1)
i,j+1

all i then the u

must be re-employed in (4.2.12) and the'process repeated
until the required accuracy is achieved.
The obtaining of solutions to (3.1.1) using this iterative
process is'obviously more computationally expensive than the

previously described equally spaced knot schemes. However,

40



the M values obtained in this process are of further
benefit in the following instances:
(a) As explained in Wisher (1977), a major advantage
ouer finire diffevevee approxmaaticns
of splines schemeskis that by making use of the
spline function (4.1.1), we can easily obtain
solutions to (3.1.1) at points intermediate to
the knot points.
(b) in a later section of this thesis an algorithm is
derived for obtaining 'optimal' knot positions for
the spline solution of partial differential equations.
This algorithﬁ requires the evalﬁationAof the M

i,J
values on each time line.

The truncation error for the scheme (4.2.8) may again be

derived using Taylor Series expansions. For example,

expanding ui+1,j and ui—l,j about (xi’tj) we have
= u + h, _[3u + n2 52 + (4.2.15)
Y150 M, 1+1 ——-) 1+1 -—%%) e il
oxly 5 a1 0x iy
and
2 2
= - h 9 ) : - 4,.2.16
%i-1,3 i, ('5£> oy (—-li) | ¢ )
%)y 5 gy \¥X /4
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The following expreséion for the truncation error is

thus obtained

2| 22 2 1 22
k ck £(0)u 4~{2bck £(0) + 3¢ k S(hifhi+1{} %ﬁ
2 2 2 122./.3.3 2
. {k (200D 2(0) + & b8, -h, ) Are’0) - o /any, | 2%
hi+hi+1 ox

2 .. 2 ' 2 1 4 4
+{:2abk £(0) + %k O(h,-h, 1) (2ac+3b") - Jge [hi-hy .
hy*hy
2 3.3 3
- %bck 5] hi+hi+l 9 1;
hi+-hi+l ox
22 1..2 1 3 3 ' 2
+{'a k £(0)+ Eabk e(hi - hi+1) + 128 hi + hi+1 (1-2ck 6)
by +hy
1 4 4 1 5 5 4 .
+57b (hi -b .\~ Fze(b +h 3 : (4.2.17)
hy by hy +h,,/) 2=

where f£(0) is given by (3.1.19)
Due to fhe ﬁnequally spaced kpot points employed in the
scheme (4.2.8) it is not possible to examine the stability
of this scheme using the uéual von Neumann method. This is
" because the methoq requires that the step lengths h and k
tend to zero in such a way thatbthe mesh ratio r remains

fixed. In (4.2.8) each mesh ratio involves both hi and hi+1’
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which we would have to let tend to zero at the same rate.
However, the scheme (4.2.8) reduces to (3.1.17) when
hi = hi+1 = h and we would thus expect the stability

condifions for the two schemes to be very similar.

This problem has been considered by Saul'yev (1964) in the
use of non-uniform finite difference approximations. Using
his notation the reasoning of the above paragraph suggests

that the scheme (4.2.8) has the following stability condition

(a) if 0 2 %-, it is unconditionally stable
(b) if 6 < % , it is stable provided that
2
k0 1 (4.2.18)
min{hihi+1} 3a(1-46)

Numerical evidence confirming this stability condition is
given in the later chapters on case studies where values

of 0, k, hi and h are used which either satisfy or

i+l

violate the condition.

Parabolic Partial Differential Equations with
Constant Coefficients

Here we consider spline solutions to the parabolic equation
(3.3.1). As in the previous section the knot partition (3.1.4)
is chosen to be unequally spaced where hi’ the distance

between successive knots, is given by (2.2.2).
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Using the technique explained in section 3.3, we take
combinations of the relationships (4.2.2) and (4.2.7) and use

(3.3.4) to eliminate the Mi j and Li j terms where possible.
’ ’ ’

The two time level scheme thus obtained is as follows

(4 = 7,0 + 201+ X, Ou Lo+ (B - §,0u

i "177%0 54 j+1 141, j+1
+ %Ejhi+l = BOCOM, L+ A-OH, )

={¢, + v, Q-0 }u, | 3*2{1'X1(1‘9’}“1,3 +{B,+¥, (1-0) Ju

’

i+1, j

(i=1,2,....,(N-1) (4.3.1)

where Yi’wi’ ¢i and Bi are as defined in section 4.2 and

xi = Gavi - ck,

r, = Kk , 8, = Kk vy Kk
hy(y +h, ) b€ ) 2hbin

i+l Byt

As described in section 4.2, when the coefficient b in (3.3.1)
is non-zero the scheme (4.3.1) requires the calculation of

M, and M, before solutions can be produced. A numerical
1:j+1 1::] - :

procedure similar to that of the previous section is employed,

although in'this case the process is considerably simplified

since (4.3.1) is only a two time level scheme. The numerical

procedure is briefly as follows:
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(i) Using the expression (4.2.2) determine Mi 0
1

(ii) Set 6 = 0 in (4.3.1) and hence evaluate the solutions
ui "1(i=1’2, e .,(N-l)) -

(iii) Using (4.2.2) determine M, _(i=1,2,...,(N-1)).

i,1
(iv) Evaluate u, 2(i=1,2,...,(N-1)) from the scheme

’
(4.3.1).

The procedure is now fully developed and further solutions

are obtained using (4.2.2) and (4.3.1) alternately.

In a similar manner to previous sections, we again derive the

trunqation error associated with the schéme (4.3.1) using

Taylor series expansions. It can thus be shown that (4.3.1)

becomes

du
- - - - —_—
[yi+2xi "’1] u+ [k(a-y eeax sy, 0) [

+ [ &2 1ou®  [x® 53u
E—(3-Yie+2xie'¢ie) ;:E' + g—(3-Yie+2Xie’¢ie) ‘:?;

)
S l.a [ ) Ju
| 223 02X 0 @ 1B u ) Yy =By Yy }&'
3t
i Bzu
| k(B =By ) R0 - Ry wie)] %3t
T .2 2 3
-k k d u
PR e V5 L G FU T "’19)] 2
L axat
3 3 .4 2 2 2
-k 3 u -n h a°u
6 BBt G o i hi+1"’ie)] 37" [ Lovym A4l "’1] 2
- axat 2 -2 9x
. .3
k, 2 2 , 3 u
+ [E(hi(¢i-yie)+hi+1 (Bi-wie)) 3
: v ox oJt
2 1.4 3 3 1.3
kK 2 2 :
[Z"(hi(¢1—Yie)+h1+1(61""ie)) 3_23 * [5- ' —-—hi“wi M;_
' 9x ot 6 6 J 9x
4 4 4 1 .4
-k 9 u -h - h 3 u
* [’6_( (43-749) hi+1 By~¥s e)) 3_ *[ Ly Ay, /7

24 24 1] ox
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This expression again contains time and mixed

derivative terms. As in section 3.3, these can be replaced
using (3.3.1), although the resulting expression is
‘extremely complicated due to the variable step lengths.

In the simplijﬁ% the heat conduction equation ((3.3.1) with-

.a=1, b=c=0) the truncation error to fourth order derivative

terms has the form

3 3 :
k| k + 1 hi + hi+1 - k0 84u + teee (4.3.3)
2 12 hi + hi+1 ax4

In addition, the scheme (4.3.1) has the following conditions

governing its stability

1
(a) if 06 > 3 it is unconditionally stable
(b) if 6 < %-, it is stable provided that
Kk p 1 . (4.3.4)
min{h_ h } = 6a(1-20)

i i+l
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CHAPTER 5

Methods for Obtaining Knot Partitions

Preamble

In this chapter three techniques are presented for

obtaining 'optimal' knot partitions. These techniques

will be called the 'local!, 'global' and 'transformation' methods
for reasons which will become apparent. The knot partitions
obtained are chosen to best suit (in some sense) the initial

" condition of the partial differential equation, but which

are then fixed throughout time.

As explained in the work of de Boor (1978), we cannot hdpe

to place each knot optimally. This is because in approximating
a function £(x) by a spline functioﬁ S(x) we must have
sufficient information about £(x) to evaluate II:f:‘--SIIn°

before each knot can be optimally located. In the solution

of differential equations f(x) is only known impliéitly

gnd hence in this thésis we endeavour to obtain an optimum

- knot distribution which we believe to bé a general improvement
on existing equally spaced knot methods. More exactly one could
consider the knots as sub-optimal. Here-after the word optimal

will have this meaning.
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5.2

A Local Method

The technique described in this section for obtaining
optimal knot positions is an adaptation of the well-known
work of Curtis and Powell (1967). In that work, the authors
developed an algorithm for use in approximating simple
functions using cubic splines. They stated than an estimate

ei of the errore (x)=£(x)-S(x) at each knot xi is given by

3
e, = |lg~-8s|]. = 1 (x, ~-x,_ )" 4 (5.2.1)
i ® 382 i i-1 i
where d,, the discontinuity in the third derivative of the

i,
spline function, is defined sas

Tm"e ”ne

d = S (xi+) -85 (x

i -). ) . (5.2.2)

i
A full derivation of (5.2.1) is given in Schultz (1973).
Welnow require an expression for this discontinuity in
terms of function values £(x).

Rewriting (3.1.7) we have

S (xi—l) + 48 (xi)+ S (xi+l)= QE_[f(xi_l)-Zf(xi)+f(xi+l)] (5.2.3)

=3

which in operator notation can be written as

&t 4+ Bn%" (x)=6E -2 + B)2Cx)) (5.2.9)

and after rearrangement
" . -1
h's (xi) = 6(E - 2 + E) f(xi) .

ELl ¢ 44+ E

(5.2.5)
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Using a simple forward difference approximation,

me

- S (xi+) can be expressed as

S (xi+) = S (x1+1) - S (xi)
h

and thus by substituting for the second derivatives

using (56.2.5), we have the ekpression

ne - . ‘ -
03" (x,9) = 6B -248) £(x, )- 6B -24E) £(x,) .
i - i+l P — i
E +4+E E +4+E
Employing the shift operator again, (5.2.7) becomes

h3snt (xi+) - 6(1—2E+E2) f(xi) - G(E-,l_Z'l'E)f(xi) .

E Lty 4 +E EL +44+E

and thus after suifable rearrangement the following

m"e
expression for S (xi+) is derived

2

3 ”e ._1
h'S (x,+) = 6(3-3E+E -E ) £(x.).
1 = i

E '+ 4+ E

Similarly, using the approximation

A

S () = S (x) -8 (x;_))
h

"t

an expression for S (x —)'becomes-

i
3 m - B o
B°S" (x,-) = 6(3E ! _3+E-ED £(x) .
EL +4+E
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Subtracting the relationships (5.2.11) from (5.2.9)

results in the expression

" T - -
S (xi+) -8 (xi-) = 6(6 - 4E + E2 - 4E 1 + E 2) f(xi) (5.2.12)
EL +44+E
and thus
"ne 111 . ) iV )
S (x,¥) -8 (x-) X 6hf (x,). (5.2.13)
El+a+E

By expanding the denominator terms in (5.2,13) we obtain

approximately -1
mny 1ts
s (x4 -8 (x.-) =h|1+0d +nt+...| Vx). (5.2.19)
t . % m 1 |

and hence, by ignoring 0(h4) terms, (5.2.14) results in the
required expression for d,

A4 "

I v 3 '
d, =8 (x;+) -5 (x-) =hf (%) +0(k). (5.2.15)

Employing Taylor's theorem to remove the higher order

terms in (5.2.15), the error estimate (5.2.1) thus becomes

e, = _L vV gy (5.2.16)
384 :
where £ is some value lying between xi—l and xie

In the Curtis and Powell algorithm a cubic spline is
fitted to the function f(x) using a small number of -

equally spaced knots and if € ekceeds some pre-assigned

i

error bound, extra knots are inserted half-way between
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existing knots. The process is repeated until the

error estimates leil are all less than the error bound.

To obtain unequal knot positions for use in the spline
solution of partial differential equations we rewrite

the error estimate (5.2.16) in the form

=Is; ~wl= _L h: G (5.2.17)

I
1 384

where Si and u, are, respectively, the spline and exact

i
solutions at the knot X . Rearrangement of (5.2.17) yields

the expression
1/4
384 e, (5.2.18)

G

Substitution of (5.2.18) into (2.2.2) gives the approximation

1/4
x, = x + 384 ¢, (i=1,2,...,N) (5.2.19)

'V &) |

which may be used as a basis for generating suitable knot
partitions, in which the function uiv(E) is evaluated as the

_fourth derivative of the initial condition at the knot xi_

1
As will be later shown, equation (5.2.19) is implemented

with e = e, = ¢_ = ;... =

1 2 the aim being to choose a

EN,
suitable € value which gives a desired number of knots

over{[b,l]. This is only to enable us to compare the various
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5.3

methods and in practice a bound would initially be

i
then be determined by this bound.

fixed on €,. The number and position of knots would

A Global Method

Here the technique described for obtaining knot partitions

for use in the spline solution of partial differential
equations is largely based on the work of de Boor (1973 and
1974) . Using results obtained by Rice (1969), Phillips (1970),
McClure (1970), Dobson (1972), de Boor and Swartz (1973) and
Burchard (1974), de Boor consideréd the approximation of a
given function f on [a,b] by SX , a spline of order k'

(degree k-1) with a knot pértition A, where

. = < < < < = . oD,
A a‘ tl t2 cees tN tN+1 b. . (5.3.1)

For convenience only, (5.3.1) is here used rather than
(2.1.1); note that the notations are made compatible at the

end of this section.

To obtain suitable knot distributions, de Boor suggests

‘that the following condition should be satisfied

k
k k '
||f—SA||i s clat | Hf( )‘”1 +0(]|al) (5.3.2)
where .
llnl], %  sw  |nw] (5.3.3)
| te[ti,ti+1]
[a] = maxAt, = max(t, . - t) (5.3.4)
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(k)ll
i

and C is a constant > O. The norm ||f can be
illustrated pictorially as in Figure 2(a), and for
sufficiently small IAI the expression (5.3.2) has the

form shown in Figure 2(b).

Generalising (5.3.2) to the whole partition [tl’ tN+1]

we obtain the condition

(5.3.5)

‘ ' O
IIf-SAIIwSm:xIIf-SAHi"‘CmEXIAtiI IEand i

which again is illustrated in Figure 3. This suggests that

the knots tz, t3,....,t should be chosen such that

N
max ||f - sA||i (5.3.6)
i
is minimised. Since C is constant we thus require to
minimise
: k (k) .
max lAtil sup |£ I (5.3.7)
1 t,,t
[ i’ i+1]
= k (k)
=  omax||t .- ti[ sup [£°7]]. (5.3.8)
1 t.,t
[i’iﬂJ
Consider now a particular interval [a,B] and define the
function s(a,B) to be
k k
s(a,B) = (B-a) sup If( )l . (5.3.9)

[o.8]
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Fixing ¢ and letting B=81 (say) we have from (5.3.9)

s(a,B)) = (B, e P (5.3.10)

| [a,Bl]

= Bl + 681 then

If we now increase B to 82

£ »

sup > sup |f(k)| (5.3.11)
[=52] [o2,]
since in the new interval [u,Bz] lf(k)l may achieve a
new maximum or may not. In addition, since
@8, -0* > @, - | (5.3.12)
then v
s(a,B,) > s(a,B.). (5.3.13)
Similarly; if B is decreased to 82 = 81 - 681 we have
sup |+ < sup [£®] (5.3.14)
es] [
and since
(8, -»* < (B, -»)" | - (5.3.15)
" then
s(a,B,) < s(a,8)) . ' . (5.3.16)

We can thus conclude that the function s(a,B) is monotone

increasing in B with a fixed.
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Consider now the case when B is fixed and o= @y (say).

The expression (5.3.9) then becomes

s(a,,B) = (B -al)k sup |f(k)| . (5.3.17)
] |

If o is increasgd to a, =@, + Gal then

sup If(k)l < swp |2 (5.3.18)

][]

and since

B0 < (B-a* | (5.3.19)
we have

5(a,,8) < 5Coy,8). | (5.3.20)

Similarly, if o is decreased to a2 = al - 6&1 then it can
be shown that

S(az,B) > s(al,B) | (5.3.21)

and thus the function s(a,B) is monotone decreasing in

o with B fixed.

Let us now consider a single break point t2, with adjacént

3
If, as illustrated,

knots tl and t, fixed, as shown diagrammatically in Figure 4(a).

s(tl,tz) > s(tz,ta) (5.3.22)

55



" then by moving tz to t2

= t2 - 6t_, we have

2
'y | 3.23
<

s(tl,tz) s(tl,tz) (5.3.23)

as shown in Figure 4(b). In addition
. .
>

s(tz,ta) s(tz,ts) (5.3.24)
and we thus find that

1 ] 1

- < -
Is(tl,tz) s(tz,ts)l Is(tl,tz) s(tz,t3)|. (5.3.25)
Therefore to minimise the deviation |s(t1,t2) - s(tz,t3)|
. .
t2 should be chosen such that
) ot ]

s(tl,tz) = s(tz,ts). . (5.3.26)
Similarly, (5.3.26) holds if the condition (5.3.22)
has the form

s(tl,t2)< s(tz,ts). (5.38.27)
Generalising the above to the whole knot partition A

3"...,

it can thus be shown that t2,t tN should be chosen
such that
s(ti,ti+l) = constant (i=1,2,...,N) (5.3.28)

in which case (5.3.8) is minimised . The expression

(5.3.28) can be rewritten as

[t, . -t ] ||f(k)|| b - constant | 5.3.29)
141 1 o = constan (5.3.
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and thus the knots t2,t3,....,tN should be chosen such

that
t
i+l 1
1/k 1/k
I fP@ | ax = 5| [ P@] ex. (5.3.30)
ti o

(i=1,2,....,N)

To employ this technique in deriving knot partitions for
the spline solutionvof partial differential equations
wevagain apply the strategy of section 5.2 and take tﬁe
funct;on f(x) to be the given initial condition (denoted
by g(x) in chapter 3). Since in this thesis we use cubié
splines with knots ko,xl,....,xN as defined by (3.1.4),
the integral expression (5.3.30) becomes

X

i+l 1
~ 1/4 iv 1/4 : _
giv(x)l Cdx = %. J lg" x| Tax . (5.3.31)

o

(1=0,1,....,(N-1))
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5.4

A Transformation Method

As shown by Kdlnay de Rivas (1972) and Blottner (1975)
the determination of suitable mesh points for the finite
difference solution of boundary layer problems is available
using co-ordinate transformations. Their idea is to make
a change of independent variable, mapping the domain into
a new co-ordinate system where the variations of the
solution are less rapid. Assuming that thé transformation
is defined by

x = X(§) (5.4.1)
where x is the old independent variable and £ the new
one, then to resolve the bound;ry layers, a transformation
is required which stretches the independent variable in areas
of rapid change and compresses it élsewhere (see Figure 5).

This technique has been applied to several practical problems

by Jones and Thompson (1980) who also suggest several possible

types of transformation. For'example, to resolve a boundary
layer near x=0, the transformation

=€) = £ | (5.4.2)

is suggested and alternatively for boundary layers at both

x=0, and x=1, the transformation

X(g) = .sinz(HE/Z) (5.4.3)

is appropriate.
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Iﬁ all the above references, the authdrs choose the

mesh points Ei to be equglly spacéd and generate the
non-uniform grid points xi from the transformation (5.4.1).
They then obtain the required solutions by using simple
equélly spaced finite difference approximations on the
transformed differential équation. In the preseht work,

- once the unequally spaced knot partition has been obtained
using (5.4.1), the solutioné are obtained using the

schemes of chapter 4. This avoids any analytical differentiation

of the transformation function'X(E).

As in the two previous secfions the choice of a suitable
transformatidn‘(5.4.1) here depends 6n the shape of the

initial condition of the partiai differential equation,

Suppose, for example, that the initial condition g(x)

is a continuous function having one peék,(for example,

as in figure 1) at some point x=0. The required transformation

should be chosen so as to 'bunch' the knots around x=a which

can be achieved by choosing x=€£ to the left of the peak and

x=€2 to the right of the peak as illustrated in figure 6.
Considering the area to the right of x=a, we require

x = A(E—a)2_+ a (56.4.9)
to be satisfied for some constant A. Since we also require

x=1 when £=1, then
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A = 1 : (5.4.5)

and thus to the right of the peak the knots are chosen

according to the relationship

X = 1 (E—a)z + o ., (5.4.6)
l-a

Similarly, it can be shown that to the left of the peak

the knots should be chosen from the expression

3

x = (af) (5.4.7)

Additionally, a knot is positioned at the peak x=a.

Assuming, for éxample, that the initia14condition has a peak

at x=0.8, then the relationships (5.4.6) and (5.4.7) give

the following knots for £ = 0(0.1)1 : V

g€ O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x O .28 .40 .49 .57 .63 .69 .75 .80 .85 1

Alternatively, assuming that the peak is at x=0.5 then the
following knots are generated:
g 0 0.1 0.2 0.3 0.4 05 06 ©0.7 0.8 0.9 1

x 0 .2236 .3162 .3873 .4472 .5 .5250 .58 .68 .82 1

As a further illustration of this technique suppose that the
initial'copditiog of the partial differential equation has a
peak at x=0 and a trough at x=B. For such a condition, using
functions of the type (5.4.4) ‘and (5.4.7), (5.4.1) may be

represented as
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x = (af) x <a (5.4.8)
X = 2 (E—a)2 + 0 a < x <oa+f (5.4.9)
' . B -a 2
x=(s;a)*[ - (ﬂ)]* +a+8  a+B<x< B (5.4.10)
2 2 2 2 ’
x = _1__(5-5)2 +B x >B (5.4.11)
1-8

. with knots additionally positioned at both x=a and x=8.

However, suppose for example that the initial condition has

the form

u(x,0) = sinmx 0

A
]

A
[

(56.4.12)

Here one would expect the 'best' knots to be symmetrical
about the peak x=0.5. The actual knots generated by the
transformation (5.4.6) and (5.4.7) as given earlier,
illustrate a drawback in this method. The major diffiéulty‘
lies in generalising about the choice of the transformation
function (5.4.1), while trying to take on board initial
céndition variations which cannotbbe explicitly bought into

play.
Further discussion on the implementation of all three

techniques described in this chapter is given in the

following chapter on case studies.
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CHAPTER 6

Case Studies 1

Case Study Philosophy

In this first chapter of case studies we assess the
effectiveness of the knot placement techniques derived
in the previous chapter. For various partial differential

equations, knot partitions are obtained from the methods

of sections 5.2 to 5.4; these are then employed to obtain

solutions using the schemes of chapter 4. The efficiency of
using non-uniform knot placings is assessed by making
comparisons with solutions produced for uniform knot partitions,

having a corresponding number of knots.

In obtaining results for the case studies of this chapter the

knots are chosen subject to the initial condition g(x) and are

‘then fixed throughout time. This has the disadvantage that

if the solution to the partial differential equation changes
significantly in shape from that of the initial condition as time

progresses, the knots will no longer be in optimal positions.

Case Study 1.1

As an illustration of the application of spline techniques
in the numerical solution of hyperbolic partial differential
equations we first consider the simple wave equation (3.1.1)

with a=1, b=c=0
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dou = 9 u (0Osxg1l, t>0) (6.2.1)

with the boundary conditions
u(0,t) = u(l,t) =0 (6.2.2)

and the initial conditions

u(x,0) = sinmx ' (6.2.3)
du(x,0) =0 . (6.2.4)
at

To draw éomparisons between the accuracy of the results
produced using non-uniform knot partitions and constant

knot spacings we require an equal number of knots in each
case, For the constant knot spacing case we use h=0.1, which

gives 9 internal knots in the range [0,1].

Employing the initial condition (6.2.3) the recursive process
(56.2.19) of the local method becomes

1/4
x, = x, .+ 384 ¢ | (i=1,2,....,10)

) A |
™ sinmx, , (6.2.5)

where € is'chosen'to give 9 internal knots. An obvious problem
in implementing (6.2.5) ariseé since the denominator is zerb |
when x=0. This is easily overcome by fixing a knot at the

peak x=0.5 and determining the knots from that point. Using
the symmetry of (6.2.3) the internal knot positions produced

are as shown in Table 1.
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To determine suitable knots using the global method of
section 5.3 the initial condition (6.2.3) is again employed,
the integral expression (5.3.31) thus becoming

Xi+1
/4

1
T (sin'n’x)1 dx = T J (sinnx)l/4 dx . (6.2.6)
10

L]

(i=0,1,....,9)

The right hand side of (6.2.6) is initially evaluated using

an IBM numerical integration routine employing the

trapezoidal rule. The knots are then chosen so that the

valﬁe of the integral between each pair of successive knots

is arbitrarily close to one-tenth of the value of the

integral between O and 1. This has been achieved using an interval
halving technique which generates the knot positions which
_satisfy (6.2.6) to any desired accuracy, in this case taken to

be 0.5 x 10—5. The knots produced in this manner are again

given in Table 1.

Furthéf discussion on the application of both  the local and
global methods to this particular case étudy is given in
Raggett and Wisher (1979a andv1979b).

The initial condition (6.2.35 obviously only has one peak
| in xe[b,l], this being at x=0.5. The expressions (5.4.6)

and (5.4.7) thus become, respectively

X

X 2 (5, - 0.5%2+0.5 x>0.5 (6.2.7)

and

/2 .

»
I

.56 x < 0.5 . (6.2.8)

(i=0,1,....,10)
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The knot positions thus produced by the transformation method

are also given in Table 1.

Equation (6.2.1) is now solved using the scheme (4.2.8) and

the accuracy of the results produced using the threé khot '
partitions shown in Table 1 are compared with'resﬁlts obtained
using constant knot spacings. The accuracy is examined by
evaluating the maximum absolute vglue of fhe error between

the numerical solutions and the‘analytic solufion, evaluafed

at each knot point, out to a chosen point in time. The analytic
solution to the wave equation (6.2.1) with the prescribed
boundary'and in;tial conditions (6.2;2) and (6.2.3) is derived

in Appendix 1 and is found to be
u(x,t) = Sinnrx cosmt. (6.2.9)

Numerical solutions to (6.2.1) have been evaluated for a

range of values of the parameter 6. Table 2(a) gives such
results using a time step length of k=0.05, the errors beingb
examined for 10 time steps out to t=0.5. Similarly, Table

3(a) shows maximum errors using k=0.01, in this case'évaluated

to t=0.1.

In certain more difficult problems the analytic solution may
not be available and the accuracy of results obtained may be
examined by evalﬁating the numefical value of the truncation

error at each knot. This has been done for this particular
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case study and éhe maximum absolute values‘of the

trauncation error to fourth order derivative terms using k=0.05
are given for the various knot partitions in Table 4.

Results here are again for a range of 6 values examined

for 10 time steps. As can be seen from Table 4 fhese results
suggest that the use of the local and gldbal knot partitions
may ﬁrove advantageous to using constant knot spacing. The
truncation errors for the transformation knots are also

seen to be significantly larger,than those of the other knot
partitions. This is because the order of truncation error.

depends on k,h_,h

and from Table 1 it can be seen that
i’ i+l .

the distance between successive knots is relatively large
near x=0 and x=1. It should also be emphasised that due to the .
changing nature of the derivative terms in the truncation

error this method of examining accuracy is unreliable and

is not employed in future case studies.

As suggested in section 3.1, the truncation error (4.2.15)

can be considerably simplified by choosing 6 so that (3.1.20)
is satisfied. In‘this case, 0 is thus chosen to be 1}12.
Extending this ide#, it waslearlier shown that for simple‘
problems involving only uniform knot parfitions the parameter

@ can be chosen to elimigate the leading term of the truncation
error. This technique was examined in detail by Crandell (1955)
when using finite difference schemes for solving the heat
cénduction equgtion. Further, Wisher (1977) suggested that

for schemes in which the knot partition is non-uniform, thé
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leading term of the truncation error can be eliminated
by suitably choosing g at each knot point. When solving

the wave equation the truncation error (4.2.15) reduces to

kz k2(1 —e)+ 1 h3+h3 a4u Foaas "~ (6.2.10)
= = i i+l =
12 2 \w, a,, /|
i M4 x

and thus to eliminate the fourth order term the parameter g
should be chosen such that

3 3
i 1 1l + hi + hi+1 .

12 3
k (hi+h )

[e2]
]
[

(6.2.11)

i+l

1/12 and 6 according to (6.2.11) are also

Results using ©

given in Tables 2(b) and 3(b).

In analysing the results given in Table 2(a) it is difficult

to draw any firm conclusions for this particular case study.

As can be seen, for 6 g %-the knot partitions produced using
kboth the local and global methods result in smaller errors than
when equally spaced knots are used. For 6 > %-the feverée

is true and the'ergprs_using consfant knot spacings are smaller
than those for either the logal or global methods. Considering
the results produced using the knots of the transformation

method, only when 6=1 is any improvement seen, and this is

very marginal.
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The knots resulting from the transformation method also
give numerical support to the stability condition (4.2.18).

For example, when 6=0, the scheme (4.2.8) is stable provided

2 : . _
k° & min {hihi+l} . _ (6.2.12)

3

For the transformation knots given in Table 1, mih{hihi+1} =0.001056

and thus for stability we require

k2 £ 0.000352. (6.2.13)

Using k=0.05 this condition is violated and thus, as can be
seen from Table 2(a), the results are unstable. If k=0.01,
as in Table 3(a), then (6.2.13) is satisfied and stability

is achieved.

As might be expected, the most accurate results for all
choices of knots are produced wheﬁ 6 is chosen to remove the
leading term of the truncation efror. In fact, if 0 is chosen
Subject to (6.2.11), the results produced using a uniform knot
partition are superior to any of those using variable k#ot
spacings. However, the results of Table 3(a), giving maximum
errors only as far as t=0.1 using k=0.01, show that the local
and global knotvpartitions give more accurate solutions than
when using equally spacéd knots. These results are consistent

- with the introductory remarks of this chapter.

68



Case Study 1.2

Here we again consider the simple one-dimensional wave
equation (6.2.1) with boundary conditions (6.2.2) but

choose the initial conditions to be

w(x,0) = x(1 - x (6.3.1)
and

2u (x,0) = 0. ' | (6.3.2)

ot

As shown in Figure 7, (6.3.1) is non-symmetrical in
X€E [O,I]and is in fact a particular case of the Beta
. probability distribution

g0 = ta-2Y  as>0 . (6.3.3)

The initial condition’(G.S.l) is again employed to determine
-non~uniform knot partitions using both'the local and global
vtechniques of chapter 5. The recursive relationship (5.2.19)
of the local method and the integral expression (5.3.31)

from the global method respectively become .

' 1/4 | |
x, =x  +| __ 384 (i=1,2,....,10) (6.3.4)
24 - 120x, _, | |
and
X : 1
i+l 1/4 1/4 |
24 - 120x| ax = 1 | [24 - 120x] dx . (6.3.5)
x 10
i o

(i=o0,1,....,9)
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The knots produced by evaluating each of the expressioné
(6.3.4) and (6.3.5) are given in Table 5. These knot
partitiong andiuniformly spaced:knots witﬁ h=0.1 are now
used in (4.2.8) producing solutions for this case study.
Comparisons in accuracy #re again made by evaluating the
ma#imum absolute value of the error between the numerical
solutions and the following Fourier series analytié solution

(derived in Appendix 2)

©

u(x,t) = E 2| 24 -( -8 + 96 - ) cosnm | SinnmxcosnTt.

5 3 5
— (nm) (nm) (n7)
=1 (6.3.6)

Results given in Table 6(a) show these maximum errors for

. k=0,05 using a range of 6 values. The errors have again been
examined for 10 time éteps out to t=0.5. The results show

that when 6=0 and 6=1/4 the errors produced using the local

and global knots are smaller than those using equaliy spaced
knots, the results of the global method being superior. Howevef,
for the remaining 6 values used constant knot spacing proves
more accurate. The results of Table 6(a) are therefore again
inconclusive. Overall, as can be seen in‘Table 6(b), the errors
of smallest magnitude occur when 6 is chosen to remove the
leading term of the t:uncation error when the knots of the

local method are used.
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These rather inconclusive results can best be explained by
graphing the analytic solution (6.3.6) fdf various time

levels. As can be seen in Figure 7 the peak of the solution
moves in the x direction as time progresses and by t=0.5

the shape of the wave is completely different from its original
initial condition (6.3.1). The local and global knot partitions
are thus no longer optimally placed; We would, however,

expect the local and global knots to give improved accuracy
close to the initial line t=0 since for small t the shape

of the solution is very close to that of the initial condition.
As can be seen in Table 7 this is in fact found to be the case.
Further numerical evidence of this is given in Table 8 where
the maximum errors are listed using k=0;01 for 10 time steps.
Tpese results show that for ail the‘e values used the solutions
produced using the local and global knot partitions always

have smaller errors than when uniformly spaced knots are
employed. However, the above reasoning is contradicted by

the results shown in Table 9 where maximum errors are again
given using k=0.01, In this case the errors are examined for
50 time steps out to t=0.5‘and as can be seen, the locél and
global knots still prove'more gccurate. While this result

is somewhat surprising, it is- also gratifying that the |
proposed new methods seem to be an improvement on constant

knot spacing when the time steps are chosen relatively small.
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Case Study 1.3

As a final illustrationvof the use of spline techniques
for solving hyperbolic partial differential equations we
assume that the coefficients a and b in (3.1.1) have the
values unity and zero respectively, and thus the equation

under consideration is

82u = 82u + cu . (0gxg1,t>0) (6.4.1)
atz sz

Equation (6.4.1) is assumed to be subject to the boundary

conditions (6.2.2) and the initial conditions (6.2.3) and (6.2.4).

The analytic solution to (6.4.1) is as derived in Appendix 3

and is given by

1/2

u(x,t) = Sinnxcos(n2 - c) t. (6.4.2)

To examine the effect of the lower order term cu, various values
of the coefficient c are used, although in each case c is
chosen to be negative to avoid any occurrence of negative

square roots in (6.4.2).

As in previous case studies, numerical solutions are obtained
using constant knot spacing with h=0.1 and also using the

knot partitions resulting from the local and global methods
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of chapter 5. Since the initial condition used.here is the

same as that employed in case study 1.1, the knots resulting
from the local and global methods are again as given in Table 1.
As previously, accuracy is- examined by ev#luating the maiimum
absolute error between the numeriéal solutionsvand the

analytic solution (6.4.2) at the knots out tova certain pdint'-
in time. Results given in Tables 10 and 11 show maximum

errors for a range of values of c using k=0.05 and k=0.01
respectively. In eacﬁ case results are examined out to t=0.5
and'the parameter 6 is chosen as %-. The errors given in
Table 10 show that only when c=-1 do the variable knot spacings
prove superior to constant knot spacing. In Table 11, |

increased accuracy is observed when the local and global knot

partitions are used for both c¢=-1 and c=-10.

.As can be seen in both Tables 10 and 11, for large negative
values of c,'the errors resulting from the use 6f all knot
.partitions are large in magnitude anﬁ no imﬁrovement is
.gained by employing non-uniform knot spacings. It should
however be noted that since the'coefficient c in (6.4.1)

is effectivelyvmultiplied by kz then, particularly for large
negative values of ¢, as k is decreased in size the accuracy

of the results obtained increases.
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The equation (6.4.1) is also useful :or assessing fhe
effect of lower order terms on the stability of the scheme
(4.2.8). Various authors (see for example Fox (1962),
Richtmyer andrMorton (19675 and Griffiths (1982)) have

suggested that it is reasonable to assume that the presence

du
ox

on the stability condition of a particular finite difference

of the lower order terms, b and cu, have no gréat effect
scheme. In section 4.2 it is shown that the stability of the
scheme (4.2.8) is unaffected by the presence of a cu term

in (3.1.1) and that the scheme (4.2.8) is unconditionally
stable when 6 ?'l

4
Tables 10 and 11. Further, when 6 < 13 the scheme (4.2.8)

. This is confirmed by the results of

is stable provided that the condition (4.2.18) is satisfied.

For this case study, when equally spaced knots are embloYed

for example, the condition (4.2.18) reduces to 6 2 -4%2
when k=0.05. The results shown in Table 12 are produced
when the parameter 6 is chosen to be zero ahd,ras can be seen,

stability is still achieved.

Case Study 1.4

In this case‘study we illustrate the application of'the spline
schéme derived in section 4.3 for obtaining numerical solutions
to parabolic partial differential equations. We consider the
siﬁple one-dimenéional heat cpnduction.equation ((3.3.1) with(

a=1l, b=c=0)
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u = 9_2.2 (Osx<1, t>0) (6.5.1)
2
ot ox

- together with the initial condition

u(x,0) = sinmx (6.5.2)

and the boundary conditions

u(0,t) = u(l,t) =0 . (6.5.3)

As in previous case studies, solutions are obtained using

9 internal knots and thus in the edually spaced knot case,
h=0,1 is used, Since the initial conditions (6.5.2) and
(6.2.3) are the same, the knots of the local and global
methods are again given by (6.2.5) and (6.2.6) respectively.
These knot positions are given in Table 1. Numerical solutions
to (6.5.1) subject to (6.5.2) and (6.5.3) have been obtained
employing the knots of Table 1, solufions being derived using
the spline scheme (4.3.1). As shown in Appendix 4, the

analytic solution for this case sthdy is given by
-T t
u(x,t) = e sinmx . (6.5.4)

The results given in Table 13(a) are the maximum absolute
values of the errors between the numerical solutions andrthe
analytic solution (6.5.4) using a'time step length of k=0.,05,
results being examined for 10 time steps. As can be seen the
errors producgd using all three knot partitions are very

similar in hagnitude. The only case when the use of variable

75



knot spacings gives improved accuracy over constantly
spaced knots is when the parameter 6 is chosen to be 1/2.
It should be noted, however, that this value of 6 is the
most suitable choice when no additional information is
available éihce it gives equal weighting to both time
levels. The results of Table 1l4(a), where ﬁaximum errors
for 50 time steps (using k=0.01)rare given, confirm this.

; Results produced using 6=1/4 are included to provide
numerical evidence to the stability condition (4.3.4). For
exﬁmple, using the locai knots (4.3.4) is satisfied provided
8 > 0.486 when k=0.05 is used and provided 6 2 0.430 in the

case of k=0.01.

As suggested in section 6.2, in certain instances the leading
term of the truncation error may be eliminated by suitable
choice of the parameter 6. For this particular case study

the truncation error is given by (4.3.3) and thus by choosing
0 such thaf

3 3
+ 1 hi * hi+
12k hiv+ hi+

1
1

6 = 1 .
i > (6.5.5)

the fourth order derivative term .is reduced to zero. Results
obtained using (6.5.5) are given in Tables 13(b) and 14(b).

In both cases the errors resulting from the use of the local
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6.6

‘and global knot partitions are smaller than those when

equally spaced knots are employed. In addition, as might
be expected, choosing g from (6.5.5) results in the most

accurate solutions obtained.

Case Study 1.5

As a final illustration of the suitability of the local and
global methods we again consider the heat conduction equation
(6.5.1). In this case study we assume (6.5.1) has the initial
condition

u(x,0) = e °F (6.6.1)

and the boundary conditions

.u(O.f)

I
=

$ (6.6.2)

and u(l,t) =e ° (6.6.3)

n
o

where a is a constant > O, Since we again choose to have 9
internal knot points in xe[b,l]the knots of the local method

are given by the recursive process

X, = ox_, o+ 384c | 1/% (i=1,2,....,10) (6.6.9)
ate ¥4 '

Similarly, applying the global method of section 5.3 the knot

partition results from the following expression
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dx.  (6.6.5)

(i=0,1,....,9)
In carrying out numefical computations we'have chosen the
constant a to take the values.l and 10. Thg shapes of the
initial condition (6.6.1) using these values of a are shown
in Figure 8. The knot partitions resulting from the
expressions (6.6;4) and (6.6.5) using a=1 and a=10 are given

in Tables 15 and 16 respectively.

As in the previous case studies we assess the usefulness

of the local.and global methodé by comparing the results
produced using these knots with results obtained using
equally spaced knots. For this particular case study the
analytic solu?ion, which is derived in Appendix 5, is given
. by

u(x,t) = [1 + (e—a -l)x]

2 ’ -nzﬂzt
=— (e cosnﬂ - 1) 2 Sinntxe
2 2
(nT) + a

(6.6.6)

This analytic solution is evaluated at each knot poiht and
the accuracy is again examined by calculating the maximum
absolute error between the numerical solution and the analytic

solution'(6.6.6) for a chosen number of time levels.
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For the case when the constant a is chosen to be unity
Tabies 17(a) and 18(a) show the maximum errors using k=0.05
and k=0.01 respectively. Similarly, When a=10 fhe maximum
errors obtained are given in Tables 19(a) (for k=0.05) and
20(a) (for k=0.01). In all computations the errors have been

examined out to t$0.5.

Analysing the results for a=1l first, we see that, as in
the previous case study, only when 6 = %- do the non-uniform
knot partitions result in smaller errors than when uniformly

spaced knots are used. This is the case for both k=0.05 and

k=0.01.'Again the choice of 0= %-,

which gives equal weighting
to each of the time levels, is a logical choice without -
prior knowledge which may result in increased accuracy.

It should however be noted that the errors resulting from

each of the knot partitions are very similar in magnitude

for individual 6 values.

As in case stﬁdy 1.4, 0 may be chosen to remove the leading
term of tﬁe truncation error (4.3.3). Again this is done by
choosing the parameter.e frém the relationship (6.5.5). As
is shown iﬁ Tables 17(b) and 18(b), this éhoicé of 6 results

in the mést accurate solutibns obtained for each of the knot
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partitions for both k=0.05 and k=0.0l1. However, using
this value of 6 the local and global knots only result
in smaller maximum errors when the time step length

k=0.05. When k=0.01 constant knot spacing is more accurate.

Considering now the case when a=10, the maximum errofs
resulting from uniformly spaced knots are alwa&s smaller in
magnitude than those when variable knot spacings are employed
if k=0.01. When a time step length of k=0.05 is'used,

0= %-is again theronly case where the local énd global
methods give any improvement. This ipcludes choosing the

parameter 6 such that the leading term of the truncation

error is removed.

It is worthwhile to here consider in moré detail the results
obtained when the constant a in (6.6.1) is equal to ten.

For this value of a the analytic solution (6.6.6) has the

form shown in Figure 9 for various tiﬁe levels. Aé can be
seen, the shape of the analytié solution becomes less 'severe'
as tiﬁe_progresses and by t=0.5 the solution is approximately
linear. The knots produced using the local and global methods
will therefore not be. optimally plgced for large t. As in

case study 1.2, it might be expected that the local and global
knot partitions give improved accuracy close to the initial

line t=0. We have however found that close to t=0 the numerical
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solutions oscillate either side of the analytic solution
for successive time lines and that the maximum errors
quoted in Tables 19 and 20 always occur on. the second
time line; improvement is therefore not observed in this

case.
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7.1

CHAPTER 7

Varying the Knots on Each Time Line

Preamble

In the case studies of Chapter 6 numerical solutioms

are obtained using knot partitions which are derived subject
to the initial condition g(x) of the partial differential
equation. These knots are then fixed throughdut time. As
was seen in case studies 1.2 and 1.5, when the shape of

the solution to the partial diffe:ential equation changes
significantly as time progresses then the knots will no
longer be optimally placed. It would therefore be desirable
to have an algorithm in which optimal knot partitioﬁs are
derived on each time line.- Obviously, if the position of
the mesh points in any finite difference scheme change on
each time 1iﬁe, then that scheme. becomes much more complex
(éee for example, Mﬁrray and Landis (1959), where such a
scheme was used in the solufion of movihg boundary probléms
in heat flow). Fortunately, in using spline functions, an
interpolating polynomial is available which can be used to
obtain solutions at points-intermediate to the existing

knot points.
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The technique used in the following section to determine

a new partifion of optimal knots on eaﬁh ﬁew time line,

is based on the pre?iously described global method and is

an extension of the work of Dobson (1972) who used spline
techniques in approximatiﬁn'problems. As was shown in
section 5.3, the optimal knot pértition of the global
method results from the integral expression (5.3.30). This
expression requires knowledge of the fourth &erivative

of the function f£(x) with respect to x. In the case studies of
Chapter 6, £(x) was taken to be the given initial condition.
If the global method is used as a basis for generating new
knots on gach new time line then £(x) will be unknown as
time progresses. This problem_can be overcome by making

use of the spline function S(x) as given by (4.2.1). It
would therefore seem reasonable to approximate fiv(x) in

iv(x). However, since in this work we use

(5.3.30) by S
cubic splines, then 6n1y the first and second derivatives
" are continuous and Siv(x) = 0 in each knot interval. This

problem is overcome using the following algorithm.

Procedure for Determining Optimal Knot Partition

Assume that a partition of knots "j (as defined in (3.1.4))

and the corresponding numerical solutions u at these

i,J
knots are known on the jth time line. On the initial line,
‘the knots né can either be taken as equally spaced or

obtained using one of the methods of Chapter 5,
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1)

(i)

(1i1)

Determine the mid?points of the knots of HJ,A

3 T X +x (i=1,2,....,N) (7.2.1)

Evaluate the third derivative of the spline function

at the mid-points from the relationship

"

Sj (xi_é)

= 1 (M ,-M )
== 1,3 7 Ti-1,3

i

(7.2.2)

(i=1,2,....,N)

the Mi J(i=0,1,....,N) first being determined
?

from (4.2.2) with M = = d.
(4.2.2) 0,3~ M,3

Obtain an approximatiqn to S;v(x) at the knots xi,

iv "

Sj (xi) = %J (xi+§) - Sj(xi_%) (i=1,2,....,(N-1))

(7.2.3)

i+3 xi-%

iv '
where the S (xi) will be piecewise constants with

J
§iscontinuities at the mid-points xi_%.

While we realise that this is a crude approximation
(Siv(x) is not well—defined.at the knots), this procedure
has been used with success by Dobson (1972) and

de Boor (1978).
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(iv). Compute the values of

iv 174
55 (xi)l (i=1,2,....,(N-1)). (7.2.4)

These will have the form illustrated in Figure 10,
iv 1/4 siv( , 1/4
i -1

s (xl) and
being extended to include all the range [0,1].

the functions

J

(v) Using the expression (5.3.30) the new knots
L
xi(i=0,1,....,N) on the jth time line should

thus be chosen such that

t
X

i+l ‘v 1/4 1 ‘v .;
S (%) - odx = 1 IS. (x)
ﬁ' J

1/4
dx. (7.2.5)

]

VO
(i=0,1,....,(N-1))

The right-hand-side of the integral expression
(7.2.5) is evaluated by summing the areas of the
rectangles shown in Figure.10.

The re1ationship (7.2.5) thus becomes

X,
i+l 1/4
- dx = AS v - (7.2.6)

i
J

ls V(x)

1

Xi,

where the constant A_ is given by

S
o _ -1
A =1) stV 1/4‘:: + stVix) e (X, , - X, 4)
S il e j i i+3 i~%
. - i=1
| iv 1/4
+Sj(le)l (l-xN%)
(7.2.7)
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¢

The knots are thus determined using the following

procedure. Assume that a knot x, has been determined, as

i
]
illustrated in Figure 11..The knot xi+1 is found as
folipws: '
- (a) Evaluate
1/4
_ iv '
An . Sj (xM) (xM+§ xi)
and let AL = 0,
‘(b) If An > AS, then
] ] -
X =x + AS- AL ' .
i+1 i —_——
. Isiv( )|_1/4
j ‘u
(c) If An = AS, then
' .
a1 T Tmaye
<
(d) If A < Ag, then let
L
%5 T MM+
AL = An
and M = M+l.
Evaluate
A =4 + |stY¢ )‘1/4(x -x )
n n J *M SUOMAR M-%

and return to (b).
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As previously mentioned, this technique has been used

by Dobson (1972), in approximating a function f by
splines of various order. In that work,the author
performed several iterations of the algorithm and
examinedvthe errors produced using the knots of each
iteration. It was found that only one or two iterations
were usually required, after which no improvement in
accuracy was gained. As shown in the following section,
we here perform only one iteratioo of the knot placement
algorithm per time line, since with several iterations

the process becomes computationally expensive. However,

in the following chapter on case studies, it is noticed
that certain conditions on the size of the time step length,
and hence on the relative>position of the knot partitioms,

should be observed.

Implementation of the Splines Schemes

With knots varying on each time line, numerical solutions
to a given partial differential equation are aéain to be
doriyed using the splines schemes (4.2.8) for hyperbolic
equations and (4.3.1) for parabolic equations., In the
case of hyperbolic partial differential equations the

implementation of (4.2.8) is accomplished as follows:
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Assume that the scheme is fully developed in that

solutions ui j(jal) are known on the time lines
)

- t=o0 to t=jk. Using the algorithm described in section

7.2, a new partition of knots “j is obtained.~Solutions

and at these spatial knots are found

Y,3-1 Y, 3-2

using the spline function (4.2.1), these being used

in (4.2.8) to determine new solutions ui . The scheme
1

(4.2.8) is employed again to find solutions ui j+1°
?

the process then béing repeated. As previously stated,

én the initial line the knots “o are chosen to be equally
spaced or derived'gsing one of the methods of Chapfer 5.
Employing the derivative iﬁitial condition of (3.1.3),

solutions u are found from (4.2.8). A new partition

i,1
of knots T, is then obtained from the algorithm of

section 7.2. Solutions ui o at these knots are found from
?

the initial condition (3.1.3), these being used in (4.2.8)

to determine new solutions u, - The scheme (4.2.8) is

»1

employed égain to determine u the process then being

i,2’
fully developed.

In the case of parabolic partial differential equations
the proéedure is as above but is simplified since the
scheme (4.3.1) is only two time level. Having found a
new partition of knots nJ,‘the spline function (4.2.1)

is required only once, this beihg to obtain solutions

ui j-1 at these knots on the previous time 1line.
, :
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CHAPTER 8

Case Studies 2

_Case Study Philosophy

Here we again consider each of the case studies‘of

Chapter 6 and derive solutions by choosing‘optimal knot
partitions on each timé line using the technique described
in the previous chapte:. The application of the technique
to both hyperbolic and parabolic partial differential
equations is therefore considered. Results obtained by
varying the knots on each time line are compared with

both those resulting froﬁ constantlf spaced knots and the
knots of the local and global methods. In the tables referred
to in the following case studies, the results obtained in
Chapter 6 are therefore listed again to enable comparisons

to be made.

It should be noted that in‘sections 6.3 and 6.6 itbwas
suggested fhat, due to the changing nature of the solution

of the respective pértial differentigl equationé; imﬁrovement
might be expected from a scheme in which optimal knots are

chosen on each new time line.
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8.2

Case Study 2.1

The simple one-dimensional wave equation (6.2.1) subject

to (6.2.2), (6.2.3) and (6.2.4) is reconsidered here.

Using the algorithm described in section 7.2, optimal

knot partitions are derived on each time line and solutionmns
obtained employing the procedure of section 7.3. To enable
comparisons to be made with the results of case study 1.1,

9 internal knots are chosen on each time line and solutions
are obtained for a range of values of the parameter 0.
Accuracy is again examined by evaluating the maximum absolute
difference between the numerical solutiqns and the analytic

solution (6.2.9) at the knots, out to a chosen point in time.

The errors given in Tabie 21 are those obtained using a

’

" time step length of k=0,.05, results being examined out to

t=0.5. As can be seen, for ] s-% pesults produced by varying
the knots on éach time line are an improvement on results
obtained using eqﬁallywspaced knots. However, tﬁe errors of
smallest maénitudé are observed when the knots of the earlier
described global method are employed{ When 6 > l-, using

3

equally spaced knots gives greatest accuracy.
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certain time lines when the parameter 6 is chosen to be lu

The results of Table 21 suggest that for this pafticular
case study no improvement in accuracy is to be gained b&
varying the knots on each time line. This might be expected
since, as can ﬁe seen from (6.2.9), the solption has the
form of a symmetrical wave. Figure 12 shows the partitions
of knots derived using the algorithm of section 7.2 for

3
As can be seen, little variation in the knot partitions is
observed as time progresses and thus, due to the additional
computation required, no increése in ‘accuracy ié obtained

by varying the knots on each time line.

Case Study 2.2

Here we again consider case study 1.2 and derive solutions
to the hyperbolic partial differential equation (6.2.1) with
boundary conditions (6.2.2) and initial conditions (6.3.1)

and (6.3.2).

Using -the technique described in Chépter 7 solutions are
obtained, the algorithm being employed to produce 9 intefnal
knots on each time line. The resﬁlts given in Table 22. are
the maximum absolute errors between the nﬁmerical solutions
and the analytic solution (6.3.6), where results were

examined out to t=d.5 using a time step length of k=0.,05.
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As mentioned earlier, and illustrated in Figure 7, the
analytic solution (6.3.6) is such that the peak oi the
wave moves in the x direction as time progreéses. We would
therefore hope that by varying the knots on each time line
some improvement in accuracy would bebobserved. The results
given in Table 22 show that this is not the case for this
particular choice of k. As can be seen, for all choices of
thé parameter 6 the errors produced by varying the knots

on each time line are aiways larger iﬁ magnitude than |
those‘resulting from either uniformly spaced knots or

from the variable. knot spacings of the local and gldbal

methods.

To further test the algorithm, solutions were derived using
a time step length of k=0,01; again 9 internal knot points
were used. The results shown in Table 23 afe the maximum
absolute errors between the numerical solutions and the
analytic solution (6.3.6) using k=0.01 in which errors were
examined at the knof points for 50 time steps out to £=0.5.
In this case the errors produced by vary@ng the knots on

each time line are considerably smaller than those obtained
earlier in case study 1.2. For all choices of the parameter 6

shown, the results obtained by varying the knots on each -
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time line are always more accurate than those produced
by using either constant knot spacing or the knots of

the local and global methods. By using a small time step
length we thus see that significant improvement is gained

by choosing different knot partitions on each time 1line.

Some explanation of the above can be obtained by examining
the positions of the knots resulting from the application

of the knot placement algorithm for each choice of step’
léngth k. Figﬁres 13 and 14 show the partitions of knots
produced by the algorithm on certain time lines when

k=0,05 and k=0.01, respectively. Comparing these partitions
with the shape of the analytic solution shown in Figure 7,
we see that when k=0.01 the knots marginally better match
the changing nature of the analytic solution than those
derived when k=0.05, particﬁlarly on the early time lines.
The situation is further clarified when more than 9 internél
knot points are produced on each time line. Figures 15 and
16 show the partitions of knbts produced when 19 internal
knots are allgwed aﬁd the time step length is chosen to be
k=0.05 and k=0.01, respectively. As can be seen, considerable

improvement in the positioning of the knots is obtained when

the smaller step length k=0.01 is used. When k=0.05, the
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knots resulting from the application of the knot placement
algorithngiven in section 7.2 remain ‘'bunched' close to
x=1 and do not matchrthe analytic solution (6.3.6).
Additionally, Figure 17 shows the knots produced by the
algorithm on t=0.5 when the analytic solution (6.3.6) is
used instead of the numérical solutions. This has been

done for comparison purposes and it is interesting to note
that the knots produced in this way are very similar -to

those in Figure 16 when k=0.0l1 was used.

We thus here conclude that improvement in accuracy is to be
gained by varying the knots on each time line if a small time

step length is employed.

Case Study 2.3

In this section we reconsider case study 1.3 and derive

solutions to equation (6.4.1) by producing different knot

partitions on each time line. To enable comparisons to be

made with earlier obtained results we again choose 9 internal
knots on each time line and obtain solutions for various

negative values of the coefficient c.

The results given in Tables 24 and 25 are the maximum absolute

~errors between the numerical solutions and the analytic
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solution (6.2.4) out to t=0.5 using time step lengths
of k=0.05 and k=0.01, respectively. All results shown
have again been obtained when the parameter 6 is taken to

1
be 50

Examining the errors given we see that for both
choices of k, no improvement in accuracy 15 observed by
using different knot partitions on each time liné. In
certain instances (namely, c=-1 when k¥0.05 and c=-1,
c=-10 when k=0.,01) the errors produced by varying the knots
on each time line aré smaller than those fesulting from
equally spacedbknots. Howeyer, in each 6f these cases,  the
results derived using either the local or global knot
partitions are a further improvement. If the coefficient
¢ 1s chosen to‘be -100 or -200, the errors for k=0,05

are almost identical for each of the methods presented.
When the time step length k is taken to be 0.01, Table 25

shows that, for these large values of ¢, constant knot

spacing gives greatest accuracy.

When éonsidering the results obtainéd by choosing different
knot partitions on each time line it should be noted that
the analytic solution- (6.4.2) is symmetrical in [O;I] for
all values of the coefficient ¢. As was seen in case study
2.1, little benefit is tﬁerefore gained by varying the knots

at each stage in time.
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Case Study 2.4

In this case study we now apply the technique described
in Chapter 7 to parabolic partial differential‘equations.
We again consider‘the one-dimensional heaf conduction
equation (6.5.1) subject to the iqitial condition (6.5.2)
and the boundary conditions (6.5.3). The algorithm given
in section 7;2 is again used to produce 9 internal knot
points on each time line and these are employed in the
scheme (4.3.1) using the technique described in section 7.3.
Figure 18 shows the partitions of knots produced by the
algorithm on cerfain time lines when the parameter 6 is
chosen to be &-and when a time step length of k=0.05 is

2

used.

The results shown in Tables 26 and 27 are tﬁe maximum errors
between the numerical solutions and the analytic solution
(6.5.4) qsing’k=0.05 and k=0.01, respectively. Results

have been examined at the knot ﬁoints, out to t=0;5 in each
case. As can be seen, for bothAchoices of k, the errors
oStaiped by varying the knots on each time line aré smaller
thaﬁ those resulting from'both uﬁiformly spaced knots aﬁd
the knots of the local method when 6 = %u However, in

each case further improvement is obtained by using the knots

of the global method. Fdr 8 > %3 using a constant knot spacing
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8.6

of h=0.1 proves most accurate for both k=0.05 and k=0.01.

For this particular parabolic partial differential equatipn
the analytic solution (6.5.4) has a symmetrical form for all
time with the solutidn dying out as time progresses. As
shown in Figure 18ythe knot partitions produced in this

case study are very similar on each time line and are

- approximately constantly spaced. Little is therefore to be

gained by varying the knqts on each time line.

Case Study 2.5

Here we reconsider the parabolic partial differential
equatioﬁ (6.5.1) together with the initial condition (6.6.1)
and the boundary.conditioqs (6.6.2)>and (6.6.3). To enable
comparisons to bé made with the results obtained in case
study 1.5 we again let the constant a in (6.6.1) take

the  values 1 and 10. In each case, soiutions have been
derived by using the algorithm in section 7.2 to produce"
new knot partitions on each time line. fhe accﬁrac& of the

solutions obtained is examined by comparing them with the

known analytic solution (6.6.6) at each knot point. The

results given in Tables 28 and 29 are the maximum absolute
errors between the numerical solutions and the analytic
solution when the constant a is equal to 1 and time step

lengths of k=0.05 and k=0.01, respectively, are used.
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Similarly, the results shown in Tables 30 and 31 are the .

- maximum errors préduced using k=0.05 and k=0.01, respectively,
when a is chosen to be 10. Errors in all tables have been
examined out fo t=0.5. In addition, Figures 19 to 22 show

the partitions of knots generated by the knot placement
algorithm for both a=i and a=10 usiﬁg time step lengths

of k=0,05 and k=0.01. In each case, 9 internal knots are
choéen on each time line and the partitions produced are

those when the parameter 6 is taken to be %u
Examining the results for a=1 first, we see from Table 28
 that when © =-% and © =-% the results obtained by varying

the knots on each tiﬁe line are an improvement over those
produced using eithér equally spaced knots or the knots of

the local and global methods. In the case when 6 is cﬁosen

to be unity, constant knot spacings prove most accurgte.

When k=0,01, Table 29 shows that for 0 =-% the errors
resulting from varying the knots on each time line are smaller
than thoée for each of thé other knot pagtitions used. When

6 = and 6 = 1, using equally spaced knots again results

w|w

in the smallest errors. The results of Tables 28 and 29
are ehcouraging since the choice of 6 = %-is the most suitable
in that it gives equal weighting to each of the time lines in

the scheme (4.3.1).
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We now turn our attention to the results produced

when the constant a in (6.6.1) is equal to 10. As can

be seen from Tgble 30, when the time step length k=0.05

is employed smaller errors result by choosing different
knot partitions on each time line than by using either
equally spaced knots or the knots of the local and global
methods when 6 is set to %u The resulfs for © =-% and

6 = 1 again show that constantly spaced knots are most
accurate. In tﬁe case when k=0.0i, the results of Table 31
show that the smallest errors for all ghoices of the

-parameter 6 are produced by choosing the knots to be

equally spaced.

The results for a=10 are surprising if one considers the
distributions of knots produced by the knot placement algorithm
for both k=0,05 and k=0.01. Figures 21 and 22 indicate that
more reasonable paritions of knots are produced when the
smaller time step k=0.0l1 is employed (see figure 9 for

analytic sqlution) since the knots for k=0.05 remain 'bunched’
close to x=o for all time. These partitions of knots are
consistent with those produced in case‘study 2.2 where a

‘small time step length again gave better partitions.
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However, the results of Table 31 show that no

improvement in accuracy is gained by varying the knotsbon
eaéh time line when k=0.01 is used. The reason for this,

as indicated in case study 1.5, is because close to t=o

the numerical solutions oscillate either side of the anaiytin
solution gnd the maximum error always occurs on the second
time line for any choice of knots used. The benefit from

the mére reaslistic knot partitions is therefore not

realised.
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CHAPTER 9

Conclusions and Extensions

Conclusions

Before drawing general conclusions about the proposed-
methods we here first briefly review the results obtained
in the earlier case studies. This may repeat some of the
comments made in chapters 6 aqdys but will enable easier

comparisons.

In case studies 1.1 and 2.1 we considered the one-dimensional
wave equation having a symmetric initial condition. The
results obtained showed that for the smaller values of the

parameter 6 used, the knots of the global method gave

greatest accuracy. For larger 6 values, using equally spaced

knots resulted in the relatively smaller errors. In certain
cases, varying the knots on éach time line produced greater
accuracy than equally spéced.knots, although in these cases
the errors-were still larger than those resulting from the
knots of the global method. For this case'study, without

any additional information, the value 6 = 1/3, is the most
logical a priori choice since it gives equal weighting.to each
of the time lines in the scheme (4.2.8) used. For -this

particular 6 value the global knot partition results in
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greatesf accuracy. Employing the knots of fhe global

method is therefore advantageous in this case. As mentioned
earlier, due to the symmetriqal initial con&ition, no overall
improvement in accuracy is gained here by varying the knoté

on each of the time lines.

The one—diﬁensional wave equation was again considered in
case studies 1.2 and 2.2. In this case the initial condition
was chosen to be non-s}mmetrical and resulted in a wave form
in which the peak of the wave moves in the x direction as
time progresses. From the results obtained it was found that
the .knots of the local and global methods gave increased
accuiacy in certain éases, particularly fof small time step
lengths k. Since the wave form moves as time progiesses it
was noted that the local and global knot partitions, being
based on the initial condition, would no longer be optimally
placed away from the initial line. The results obtained by
choosing different optimal knot partitions on each time line
showed that, for a larger time step length of k=0.05, no
improvement in accuracy over the use of local or global knots
was observed; moreover in only one instance were fhe errors
smailer than those of constant knot spacing. However, when

a smaller time step length of k=0.01 was employed, the
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technique of varying the knots on each time line produced
a significant increase in accuracy. For all 0 values used,
the errors ;esulting frbm these knot partitions were always
considerably smaller in magnitude than those of either
equally~spaced knots or the knots.of the local and global

methods.

A final example on the application of the techniques to
hyperbolic partial differential equations was discussed in
case studies 1.3 and 2.3. Here the constants a an§ b in
(3.1.1) were chosen to be unity and zero respectively,

whilst the coefficient c was allowed to take various negative
values. The résults obtained indicate that for smaller
negative values of c, some imp:ovement in accuracy over
equaliy spaced knots is to be gained by using either the
local or global knot partitions. In some instances, the
errors produced by varying the knots on each time line are
also amaller in magnitude thgn constant knot spacing, although
a further reduction in the magnitude of the errors is always
produced by employing the local or global knots. This is to
be expected sipce the.initial condition used in this case
study isgagain symmetfical. For larger vaipes of the
coefficient ¢, the magnitude of the errors increases with
little to choose between the results of the various knot

partitions.
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In case studies 1.4 and 2.4 we considered the one-
dimensional heat conduction equation, again choosing

the initial condition to be symmetrical in shape. The
results derived showed that when the parameter 8 = 1/2,‘

the errors produced by varying the knots on each time line
are smaller in magnitude than the errors resulting from
uﬁifprmly spaced knots, quever, as previously, the results
of either the local or global knot partitions éive a
further improvement in accuracy. For the remaining 6 values
uéed, constantlybspaced knots proves most accurate. It
shbuld however be noted that the choice of 6=1/2 gives

the naturalv'Crank-Nicolson like' equal weighting to each
of the time lines in the scheme (4.3.1) and for this value
of 6 the global knots result in the most acéurate solutions.
Due to the symmetrical shape of the solutions 1ittle.is again

gained by choosing different knots on each of the time lines.

The final partial differential equation considered was that
of case studies 1.5 and 2.5, in which the heat conduction
equation was assumed to havé ﬁn exponential initial condition
with the parameter being chosen to be a=1 and a=10. For a=1,

the results produced-by varying the knots on each time line
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are superior to those found using equally spaced knots,

or the knots of the local or global.methods when 0 is

chosen to give equal weighting to each of the time lines.

A similar improvement is gained by using 6=3/4 when the

time step length.is k=0.05, although for the remaining
values of 6 and k equally spaced knots results in the errors
of smallest magnitude. These encouraging results #re not
observed when the parameter a equals 10. In this case, only
when 6=1/2 and k=0.05 are the results produced by varying
the knots on each time linevan-improvement over the other
methods. The remaining results show that constgnt knot
spacing is superior.‘The practice of using a small time

step iength to gain improvement in accuracy when varying‘

the knots on each time line (as observed in case study 2.2)
is not observed hére; As previously explained in seétion 8.6,
this is because oscillations in the numeriéal solutions occur
close to the initial line th maximum errors always occur

on the second time line for each value of k used.

We now consider an overall view of the proposed methods by
initially examining computing time required in the evaluation
of the results. When thé knots are fixed tproughout time,
numefiéal solutions are obtained from the schemes (4.2.8)

or (4.3.1) depending on the problem concerned. Irrespective‘ﬂ
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of the knot partition used each of the schemes resulted

in a tri-diagonal system of equations which was solved

using an efficient numerical algorithm (see for example,
Mitchell and Griffiths (1980)) giving the required solutioms.
Obtaining these solutions using eithér constant knot spacing,
or the knots of the local and global methods therefore requires
the same computer time. Using the IBM 370/135>machine
instélled at Sheffield City Polytechnic this computing time
for hyperbolic equations was found to be 15.2 seconds. In
addition, the derivation of the knot partitions gsing the
local and global methods is a relatiﬁely simpie procedure
requiring 2 seconds and 3.3 seconds of computer time,
respectively. When the technique of chapter 7 is employed

to obtain solutions by deriving different knot partitions

on each time line, then the amount of computation required
obviously incrgases. We have found thaf, to obtain nﬁmerical
solution; to hyperbolic equations using this procedure
requires 34.4 seconds of computer time. For parabolic
partial differential equations slightlyvless compﬁting

timé is required for each of fhe methods since the scheme
(4.3.1) employed‘is only two time level. The times required
‘are héwever comparable, with the technique in which knots

are chosen on each time line taking approximately twice as
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long as the methods in which the knots are fixed throughout
time. |

In general,_the reshlts of the case studieé suggest that

when the solution of the partial differential equation is

of symmetrical form for all time, then nothing is gained

by varying the knots on each time line. However, in these
cases the results show that improvement in éccuracy over
equall& spaced knots is generally achieved by using either
the local or global knot partitions and choosing the
parameter 6 to give equal weighting to each of the time lines.
In addition, when the solution of thé-partial differential
equation exhibits the form of a wave whose peak moves in the
X direction as time prog¥esses, then cpnsiderable benefit
appears to be-gained by varying the knots on each time line
provided the step length k.is chosen to be small. The
algorithm for positioning the knots on each time~line is
~automatic and does not requife knowledge about the shape of
the solution a priori. This technique may therefore be useful
in obtaining solutions to other ﬁumerical proﬁlems. Two |

possible extensions are given in the following section.
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9.2

Possible Extensions

(1) Parabolic partial differential equations of the
' a2
3w =D 3% + v
ot 32 ox

where D>0 and v are constants, are called '"diffusion-

form

(9.2.1)

convection”" equations because of the physical processes

they~describe. Typically, u might be the concentration

of a

material which is convectedwith velocity v and diffusing

has been focussed on problems in which the cell Peclet

number P is given by

P = b
2D

is large. In such situations spurious oscillations are

~according to the diffusion coefficient D. Particular interest

(8.2.2)

introduced into finite difference solutions (see for example,

Price, Cavendish and Varga (1968)) when the analytic solution

is known to be non-oscillatory. Various methods have been

proposed to overcome this problem, the most well-known

being

the technique of "upwinding'" which has been used by Spalding

(1972) in finite difference approximations and by Christie,

Griffiths, Mitchell and Zienkiewicz (1976) in the use of

finite elements. In the analysis of difference schemes

Siemieniuch ahd Gladwell (1978) observed that solutions of

(9.2.1) may be kept non-oscillatory by restricting the
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size h with respect to the coefficient v. However; for

large values of v this is computationally expensive and a

scheme which can restrict the step length h 1oca11y (in the

region of the oscillations) may therefore be beneficial.

(ii) For moving boundary problems in heat flow the physical

situation usually arises where an interface, or internal

boundary, exists which moves as time progresses. The

interface often takes the form shown in Figure 23 where

region A contains a material in its solid form, region B

the material in its liquid form and the boundary PQ varies

_due to melting or freezing of the material. If the position

of the interface at time t is given by x=S(t) then, in

one space dimension, a typical set of governing equations

may be of the form (see for example, Meyer (1976))

ox

k,(x,t) du

]

- cl(x,t) aul
at

- cz(x,t) 3u2
at

= Fl(x,t), o<x<S(t)

= Fz(x,t), S(t)<x<l

(9.2.3)

Specific conditions are assumed at the interface x=S(t), on the

boundaries x=o0 and x=1 and on the -initial line t=o. A

summary of the numerical methods devised for the solution of
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such "Stefan problems" is given in Ockendon and

Hodgkins (1975). In general, the solution is such that
significant changes in the solution may occur close to
the interface. A sqheme in which knot points.are optimally -
chosen on each time line may therefore provide a suitable

method of solution.
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Internal knot positions used in Case Study 1.1

TABLE 1

Local
0.117965
0.220349
0.316010
0.408487
0.500000
0.591513
0.683990
0.779651

0.882035

Global
0.133776
0.234013
0.325845
0.413714
0.500000
0.586286
0.674155
0.765987

0.866224
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Transformation

0.223607

"0.316228

0.387298
0.447214
0.500000
0.520060
0.580000
0.680000

0.820000



TABLE 2

Errors for Case Study 1.1 using k=0.05 for 10 time steps

Variable knot spacing

8 | Constant knot spacing
h =0.1 Local Global Transformation
-3 -3 -3
(a) 0 8.16 x 10 7.46 x 10 7.09 x 10  Unstable
- -3 Co- -
1/4 3.25 x 10> 2.54 x 10 2.10 x 10°° 3.89 x 10 3
. 1/3 1.63 x 10°° 9.08x10 % 4.87x10°% 2.25 x 1073
1/2 1.64 x 103 2.3¢ x 10°° 2.73x 10> 2.00 x 10°°
1 1.12 x 102 1.19 x 1072 1.24 x 1072  1.10 x 1072
__ —_—
(b) 1/12 6.48 x 10> 3
* 5.81 x 10 5.43 x 10 Unstable
(6.2.11) 1.11 x 107 4.05 x107° 1.26 x 107* 1.21 x 107°
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TABLE 3

Errors for Case Study 1.1 using k=0.01 for 10 time steps

Constant knot spacing

6 Variable knot spacing
h=0.1 Local Global Transformation
’ . —4 -4 -4 -
(2) o 4,71 x 10 4.13 x 10 3.76 x 10 7.88 x 10 4
-4 - - =4
1/4 4.43 x 10 3.63 x 10°% 3.41 x 10°% 7.78 x 10
1/3 3.95 x 104 3.70x 10 3.32 x10°% 7.17 x 107*
- -4 - ' -4
1/2 3.72 x 1074 3.42 x 107 3.08 x 107 7.37 x 10
1 3.80 x 10 3.22 210 % 2.96 x 10°% 7.28 x 1072
-5 - - -4
(b) (6.2.11) 4.39 x 102 6.19 x 10°° 5
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2.04 x 10 2.03 x 10



TABLE 4

Truncation Errors for Case Study 1.1 using k=0.05 for 10 time steps

6 Constant knot spacing Variable knot spacing

h=0.1 Local | Global Transformation
0 2.50 x 1077 1.87 x 1077 9.23 x 1070 Unstable
1/4 9.98 x 10"_5 7.34 x 107° 3.35 x 10°  2.36 x 1072
1/3 4.99 x 107° 3.55 x 1070 1.39 x 10° 5.03 x 102
1/2 4.99 x 107 5.27 x 10° 2.80 x 107  1.04 x 10}
1 3.49 x 10 ° 2.68 x 19'4 1.43x 10°% 2.65 x 107!
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‘Internal knot positions uséd in Case Study 1.2

TABLE 5

Local

0.104019

0.228994

'0.397569

0.501907
0.595750
0.683453
0.766875
0.847043

0.924603
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Global

0.116725

0.282605

0.399465

0.500314

0.593166

0.680781

0.764549

0.845305

0.923605



TABLE 6

Errors for Case Study 1.2 using k=0.05 for 10 time steps

Variable knot spécing

116

1.82 x

6 Constant knot spacing

h =0.1 Local Global
’ - - . -3

(a) O 1.10 x 102 1.03 x 10~ 2 9.35 x 10
1/4 3.89 x 105 2.32 x 10°° 2.01 x 105
1/3 2.28 x 10> 2.88 x 107° 2.84 x 103
1/2 4.38 x 10°° 6.93 x 10> 6.76 x 10 °
1 1.21 x 1072 1.38 x 10~ 2 1.36 x 102
(b)) (6.2.11) 2.61 x 105 1073 1.92 x 10°°



TABLE 7

Errors pn second time line for Case Study 1.2

k =0.05, 6 =1/3

Constant knot spacing Variable knot spacing
h =0.1 Local Global
1.01 x 1072 2.18 x 10 % 2.65 x 10 °
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TABLE 8

Errors for Case Study 1.2 using k=0.0l1 for 10 time steps

8 Constant knot spacing Variable knot spacing

h ; 0.1 Local Global
0 : 3.22 x 10'3_ 1.81 x 107> 1.86 x 10°°
1/4 3,13 x 105 1.71 x 1073 1.77 x 1073
1/3 - 3.10 x 1073 . 1.68 x 1073 1.74 x 1073
1/2 3.04 x 1073 1.62 x 1073 1.67 x 10_"3
1 2.86 x 107 1.44x 070 1.50 x 107°
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Errors for Case Study 1.2 using k=0.01 for 50 time steps

TABLE 9

Constant knot spacing

Variable knot spacing

h = 0.1 Local Global
0 1.00 x 102 8.74 x 1073 8.76 x 10>
1/4 9.76 x 1073 8.24 x 1075 8.34 x 1075
1/3 9.65 x 10°° 8.08 x 107> 8.20 x 1073
1/2 9.43 x 1073 7.72 x 1073 7.86 x 10’3
1 8.83 x 1073 6.80 x 10> 7.08 x 107>
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Errors for Case Study 1.3 using 6= %-and k=0.05 for 10 time steps

TABLE 10

Variable knot spacing

c Constant knot spacing
h =0.1 Local Global

- -4 -4
-1 5.58 x 10 1.76 x 10 5.19 x 10

- _ -3 -3
-10 7.54 x 10 7.93 x 10 8.15 x 10

-1 o=l -1
-100 1.52 x 10 1.52 x 10 1.53 x 10

- 1 -1
-200 2,93 x 10 2,93 x 10
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2.93 x 10



TABLE 11

Errors for Case Study 1.3 using 6= %-and k=0.01 for 50 time steps

c Constant knot spaéing Variable knot spacing
h=0.1 Local Global
-1 6.29 x 107> 6.21 x 1073 5.55 x 1073
-10 4.11 x 1073 5.23 x 1073 3.16 x 1073
-100 4.58 x 102 4.81 x 1000  4.94x 1073
-200 1.41 x 1072 1.44 x 1072 1.45 x 1072
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TABLE 12

Errors for Case Study 1.3 using 6=0 and k=0.05 for 10 time steps

c Constant knot spacing Variable knot spaéing
h =0.1 Loqal ! Global
-1 8.09 x 10°5 7.43 x 1073 7.07 x 10°°
- =10 7.54 x 105 7.17 x 10°° 7.00 x 10°°
-100 5.75 x 102 5.72 x 1072 5.71 x 1072
-1 -1 -1
-200 1.47 x 10 1.47 x 10 1.46 x 10
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Errors for Case Study 1.4 using k=0.05 for 10 time steps

TABLE 13

6 Constant knot spacing Variable knot spacing
h =0.,1" Local Global
(a) 1/4 Unstable Unstable Unstable
1/2 1.08 x 1072 1.05 x 1072 1.03 x 1072
3/4 3.39 x 1072 3.42 x 1072 3.44 x 1072
1 7.32 x 10'"2 7.35 x 10_2 7.37 x 10-2
' - -3 : -3 -3
(b) (6.4.5) 7.65 x 10 7.63 x 10 7.61 x 10
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TABLE 14

Errors for Case Study 1.4 using k=0.01 for 50 time steps

Constant knot spacing

Variable knot spacing

)
h =0.,1 Local Global
(a) 1/4 Unstable ‘Unstable Unstable
1/2 3.33 x 1073 2.97 x 1073 2.77 x 10°°
3/4 5.72 x 10°° 6.07 x 10°° 6.27 x 1073
1 1.46 x 1072 1.49 x 1072 1.51 x 10~ 2
-4 -4 -
(b) (6.4.5) 2.87 x 10 2.71 x 10 2.48 x 10
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_TABLE 15

Internal knot positions used in Case Study 1.5 when a=1.

Local v Global

0.089594 0.089472
0.181218 0.180988
0.274965 0.274652
0.370935 0.370557
0.469235 0.468818
0.569981 0.569558
0.673296 0.6%2893
0.779315 0.778977
0.888182 .0.887945
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TABLE 16

Local

0.041330
0.087159
0.138550
1 0.196988
0.264618
0.344707
0.442549
0.567504

0.738279
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Internal knot positions used in Case Study 1.5 when a=10

Global

0.038513
0.081132
0.128841
0.183019

0.245703

. 0.320070

0.411493
0.530205

0.699769



TABLE 17

k=0,05

Errors for Case Study 1.5 when a=1 and

Variable knot spacing

0 Constant knot spacing
h =0.1 Local Global

(a) 1/4 Unstable Unstable Unstable
' -3 - -3

1/2 3.00 x 10 2.89 x 10 3 2.89 x 10
3/4 2.73 x 10”5 2.74 x 10°° 2.74 x 1073
1 5.77 x 10°° 5.83 x 1075 5.83 x 10 >
-3 -3 -3

(b) (6.4.5) 2.72 x 10 2.67 x 10 2.67 x 10
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TABLE 18

Errors for Case Study 1.5 when a=1 and k=0.01

Constant knot spacing

Variable knot spacing

)
h = 0.1 Local Global
(a) 1/4 Unstable Unstable Unstable '
1/2 7.04 x 10 6.99 x 10°%  6.99 x 107*
3/4 4.63 x 1072 4.73 x 1074 4.72 x 104
1 1.17 x 1072 1.18 x 1073 1.18 x 102
, -4 - -4 -4
(b) (6.4.5) 3.92 x 10 4.36 x 10 4.37 x 10
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TABLE 19

Errors for Case Study 1.5 when a = 10 and k = 0.05

Constant knot spacing Variable knot spacing
0 h =0.1 ' Loacl Global
(a) - ‘'1/4 Unstable : Unstable Unstable
- -1 -1 -1
1/2 1.55 x 10 1.48 x 10 1.48 x 10
) - - -2
3/4 3.54 x 10 2 3.72 x 10 2 3.84 x 10
) _ | ' _ 2
1 . 8.01 x 10 2 8.32 x 10 2 8.29 x 10
: -1 -1 -1
(b) (6.4.5) . 1.43 x 10 o 1.45 x 10 1.45 x 10
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Table 20

Errors for Case Study 1.5 when a = 10 and k = 0.01

Constant knot spacing Variable knot spacing
) - h = 0.1 : Local Global

(a) 1/4 Unstable _ Unstable = Unstable
- - -2
1/2 4.49 x 1072 4,86 x 10 2 477 x 10 A
3/4 1.00 x 107 1.76 x 1072 1.73 x 10
1 3.29 x 1072 3.95 x 102 3.93 x 10 2
-2 -2 -2

(b)  (6.4.5) 2.68 x 10 . 4.47 x 10 © 4.43 x 10
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TABLE 21

Errors for Case Study 2.1 using k=0,05 for 10 time steps

0 Constant knot spacing | Variable knot spacing t -Varying the ‘knots
“h=0-1 Local Global on each time 1line
) 8.16 x 10°° 7.46 x 1073 7.00 x 03|  7.34 x 107
1/4 3.25 x 107> 2.54 x 107 2,10 x 1073 2.39 x 1073
1/3 1.63 x 1075 9.08 x 10% 4,87 x 107% 7.61 x 107 °
1/2 1.64 x 10°° 2.34x 100° 2,73 x 1075 2.48 x 1072
1 1.12 x 1072 1.10 x 102 1.24 x 1072 1.21 x 1072
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TABLE 22

Errors for Case Study 2.2 using k=0.05 for 10 time steps

6 Constant knot spacing | Variable knot spacing Varying the knots
h=0{1 Local Global on each time line
6 1.10 x 1072 | 1.03 x 1072 9.35 x 10”° 2.17 x 1072
1/4 3.89 x 1075 2.32 x 1070 2.01 x 1073 3.48 x 105
1/3 2.28 x 10'3 2.88 x 10°°  2.84 x 10°° 4.17 x 1072
1/2 4.38 x 1073 6.93 x 10> 6.76 x 10°° 9.85 x 107>
1 1.21 x 102 1.38 x 1002 1.36 x 1072 1.55 x 1072
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TABLE 23

Errors for Case Study 2.2 using k=0.01 for 50 time steps

8 Coﬁstant knot spacing Va:iéble knot spacing Varying the knots
h=0.1 Iocal - Global on each time line
0 1.00 x 10 2 8.74 x 10> 8.76 x 10°° 4.48 x 1073
1/4 9.76 x 1072 8.24 x 1070 8.34 x 1073 5.07 x 103
1/3 9.65 x 10 ° 8.08 x 107> 8.20 x 10°| 5.21 x 1073
1/2 9.43 x 1073 7.72 x 10°°  7.86 x 1072 4.60 x 1073
1 8.83 x 10°° 6.80 x 10> 7.03 x 105 5.02 x 103
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TABLE 24

Errors for Case Study 2.3 using 6 = % and k=0.05 for 10 time steps

c Constant knot spacing| Variable knot spacing Varying the knots
=0.1 Local Global on each time 1line

-1 5.58 x 107 1.76 x 100 5.19 x 107%| - 3.22 x 107*

-10 7.54 x 10°° 7.93 x 107> 8.15 x 107> 8.04 x 107>

-100 1.52 x 1071 1.52 x 0% 1.53 x 10" 1.52 x 107}

-200 2.93 x 10°% 2,93 x 1001 2.93 x 1071 2.93 x 107}

134



Errors for Case Study 2.3 using 6 =

TABLE 25

Constant knot spacing

Q|

Variable knot spacing

and k=0.01 for 50 time steps

Varying the knots

'h=0.1 Local ' Global' on each time line
-1 6.290 x 10 6.21 x 10°° 5.55 x 1073 5.90 x 1073
-10 4.11 x 10~ 3.23x 1000 3.16 x 10> 3.27 x 1073
-100 4.58 x 10 > 4.81 x 1005 4.94 x 10°° 4.92 x 1073
- - - -2
-200 1.41 x 10~ 2 1.44 x 102 1.45 x 10°2 1.43 x 10
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TABLE 26

Errors for Case Study 2.4 using k=0.05 for 10 time steps

0 Constant knot spacing | Variable knot spacing " |Varying the knots
h=0.1 Local Global on each time line
1/2 1.08 x 107 1.05 x 1072 1.03 x 1072 1.04 x 107
3/4 3.39 x 1072 3.42 x 102 3.44 x 1072 3.43 x 1072
1 7.32 x 1072 7.35 x 1072 7.37 x 102 7.35 x 1072
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TABLE 27

Errors for Case Study 2.4 using k=0.01 for 50 time steps

6 Constant knot spacing | Variable knot spacing Varying the knots
h=0.1 Local Global on each time 1line
1/2 3.33 x 10°° 2.97 x 10°°  2.77 x 1073 2.90 x 10°°
3/4 5.72 x 10°° 6.07 x 100> 6.27 x 10”2 6.14 x 105
1 1.46 x 102 1.49 x 102 1.51 x 10'2. 1.50 x 10 2
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TABLE 28

Errors for Case Study 2.5 when a=1 and k=0.05

138

0 ‘Constant kﬁot spacing | Variable knot spacing Varying the knots
h=0.1 . Locai Global on each-time line
1/4 Unstable Unstable Unstable Unstable
1/2 3.00 x 107° 2.89 x 1070 2.89 x 107° 2.86 x 1072
3/4 2.73 x 10°° 2.74 x 107 2.74 x 1073 2.71 x 1072
1 5.77 x 10°° 5.83 x 10°°  5.83 x 107> 5.84 x 107>



TABLE 29

Errors for Case Study 2.5 when a=l1 and k=0,01

0 Constant knot spaciﬁg Variéble knot spacing Varying the knots
h=0.1 Local Giobal on each time line
1/4 Unstable Unstable " Unstable Unstable
1/2 7.04 x 107 6.99 x 10 °  6.99 x 10 6.81 x 10
3/4 4.63 x 10°% 4.73 x 10°%  4.72 x 107% 5.01 x 107
1 1.17 x 1073 1.18 x 10°  1.18 x 1073 1.20 x 107
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TABLE 30

Errors for Case Study 2.5 when a=10 and k=0.05

] Constant knot spaéing Variable knot spacing Varying the knots
h=0.1 Local Global on each time line
1/4 Unstable Unstable Unstable _ Unstable
1/2 1.55 x 10! 1.48 x 100 1.48 x 10! 1.45 x 107"
3/4 3,54 x 1072 3.72 x 1002 3.84 x 1072 3.67 x 102
1 8.01 x 1072 8.32°x 102  8.20 x 10 2 8.19 x 102
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TABLE 31

Errors for Case Study 2.5 when a=10 and k=0.01

Q Constant knot spacing| Variable knot spacing Varying the knots
h=0.1 : Local G16ba1 on each time line
1/4 unstable ‘ Unstable Unstable Unstable
1/2 4.49 x 1072 4.8 x 102 4.77 x 102 5.01 x.10_2
3/4 1.09 x 10 2 1.76 x 10 2 1.73 x 1072 1.45 x 1072
1 3.29 x 102 3.95 x 102 3.93 x 102 4.02 x 10°2
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Figure 1

Shape of initial condition u(x,o0)=g(x)
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Locating the knot point tz - Global Method
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Figure S

A transformation from a uniform mesh £ to a

non-uniform mesh x.
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Figure 6

Transformation for a peak at x=a.
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Figure 7

Shape of Analytic Solution (6.3.6) as time progresses
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w(x,0)
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Figure 8

Shape of initial conditions used in Case Study 4
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u(x,t)

Figure 9

Shape of Analytic_Solution (6.5.6),for various time

lines, using a=10.
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Enot Partitions for Case Study 2.1 with 6 = %3 k=0.05
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Knot Partitions for Case Study 2.2 with 6 = %-and k=0.01
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Figure 17_

Knot Partitions for Case STudy 2.2 using
the Analytic Solution (6.3.6) with k=0.01
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‘Knot Partitions for Case Study 2.4 with 0 ='% and k=0.05
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Knot Partitions for Case Study 2.5 with a=1, k=0.01, 6=

161

B

A
1

¥ $ t $ + t t * + : 1153“
: — ey ‘ T =0t
e e+ T - tzo—-



et 4 ! T t=0:5—
b ——— ' + Tig- t=o- v~
— ' + To (7"0-5%,-;

4

tz0.2

=
¥F

+ -+ TTa t=o.\

-
-
-
L
L
L 3
+

X=0 : S X=1

Figure 21

=t
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Knot Partitions for Case STudy 2.5 with a
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A Moving Boundary Problem
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APPENDIX 1

Analytic Solution to Case Sfudy-l.l

Here the analytic solution to the wave equation (6.2.1) is
derived by separating the variableé. Letting u=XT in (6.2.1) and

dividing by XT we have

" ) " 2
T = X = -k . , (AP1.1)
T X
Rearranging (AP1l.1) gives
" 2 114 2

T + kT=0 and X + kX = 0 (AP1.2)

which have the solutions
T = ASinkt + BCoskt and X = CSinkx + DCoskx (AP1.3)

respectively. The general solution to (6.2.1) thus has the form

u(x,t) = (ASinkt + BCoskt) (CSinkx + DCoskx) V i (AP1.4)

‘The constants, A, B, C, D and k are now evaluated using the imposed
boundary and initial conditions (6.2.2) - (6.2.4). From the left-

hand boundary Qondition of (6.2.2) we have
0 = (ASinkt + BCoskt)D . (Ap.1.5)

implying D=0. Similarly the right-hand boundary condition of (6.2.2)

gives.
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CSink = - DCosk ‘ (AP.1.6)

and thus k = 7, Substituting the initial condition (6.2.3) into

(AP1.4) yields

Sinmx = B(CSinkx + DCoskx). (AP1.7)

Since D=0 and k=m then (AP1l.7) suggest that BC=1. Finally, from

the derivative initial condition (6.2.4) the following is derived
0 = Ak(CSinkx + DCoskx) o (AP1.8)
giving A=0. The general solution (AP1.4) thus becomes

u(x,t) = SinmxCos7t. (AP1.9)
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APPENDIX 2.

Analytic Solution to Case Study 1.2

The fourier series analytic solution to the wave equation (6.2.1)

is given by
o
u(x,t) = :Ej a Sinnmx Cosnwt (AP2.1)
n=
where 1
a = 2 [ u(x,0)SinnTx dx. (AP2.2)
o

In case study 1.2 the expression (AP2.2) becomes

1
4 5
an = 2 J (x - x) Sinnmx dx (AP2.3)

o

which after successive integration by parts gives the relationship

a = 2| 24 - [ -8 + 96 cosaT | . (AP2.4)
n 5 3 5

(am) (nm) (nm)
The analytic solution to (6.2.1) subject to (6.2.2), (6.3.1) and (6.3.2)

thus has the form

-]

u(x,t) = E 2| 24 - [ -8 + 96 cosnT | sinnmx CosnTt.
=1 | @m® \@m?®  @n® (AP2.5)
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APPENDIX 3.

Analytic Solution to Case Study 1.3

The analytic solution to (6.4.1) is easily derived by the method
of separation of variables employed in Appendix 1. However, for
illustrative purposes, the method of Laplace Transforms is

used here.

Taking Laplace Transforms of (6.4.1) we have

éz U(x,s) - su(x,0) - QE'(X,O) = dzU + cU (AP3.1)
3t dx’ '

which after substitution of the initial'conditions (6.2.3) and

(6.2.4) becomes

dzU - (s2 - ¢)U = - sSinmx. (AP3.2)

dx2

It is easily shown that>the general solution of this diffefential
equation has the form

VSZ—CX ‘ - Sz - CX-

U(i,s) = Ae + Be + sSinmx . (AP3.3)

2 2

T +8 -C
By taking Laplace TrénSforms of the boundary conditions (6.2.2)
we find that the constants A and B are both zero and thus (AP3.2)

has the solution

U(x,s) = sSinmx = . ' (AP3.4)

2 2
T +8 —-C
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Using inverse Laplace Transforms we therefore find
that the anal&tic solution to (6.4.1) subject to (6.2.2),

(6.2.3) and (6.2.4) is given by

u(x,t) = Sinmx Cos(ﬂz-—c)%t. ' (AP3.5)
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APPENDIX 4

Analytic Solution to Case Study 1.4

Using the method of separation of variables, (6.5.1) becomes

by lettimqu = XT

T = X = -k (AP4.1)
T X
and thus
-kzt
T = Ae (AP4.2)
and X = BSinkx + Ccoskx . (AP4.3) "

The general solution to (6.5.1) therefore has the form

2
u(x,t) = Ae ¥ Y(BSinkx + Ccoskx). (AP4.4)

From the boundary conditions (6.5.3) the general solution
(AP4.4) becomes

0 = ace®t K (AP4.5)

on x=0 and
0 = Ae (BSink + Ccosk) (AP4.6)

on x=1. Since A#¥0, (AP4.5) gives C=0 and thus (AP4.6) becomes

‘BSink = 0 . g ,  (AP4.7)
If C=0 fhen B#0 or‘u(x,t)=0 and hence (AP4.7) gives k=m.
Similarly, from the initial condition (6.5.2) the equation (AP4.4)

yields
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sinmx = A(BSinkx + Ccoskx) . (AP4.8)
and AB=1.

The general solution to the parabolic partial differential

(6.5.1) therefore has the form

u(x,t) = e " ° Sinmx. | (AP4.9)
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APPENDIX 5

Analytic Solution to Case Study 1.5

The steady-state solution to the equation (6.6.1) is when

2
du = 0, that is when 3 u = O, and thus u = A + Bx. From the
ot 8x2

boundary conditions (6.6.2) and (6.6.3) the constants A and B

are found to be A=1 and B=e-a -1. Denoting the steady-state

solution by uo(x) we thus have

uo(x) =1 + (e—a-l)x .

The solutions to case study 1.5 are now defined by
u(x,t) = uo(x) + v(x,t)

where v(x,t) are solutions to the problem

v_ 3v
ot 3x.‘2
sub ject to
v(0,t) = v(1,t) = O
and v(x,0) = u(x,0) - u_(x) = e 2 1 4+ (1-e Hyx.

The above problem is now in the more usual form for which the

fourier series solution is

o]

-nznzt
v(x,t) = E bnSinnnx e

n=1
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where

1
b = z~[ v(x,0)SinnTx dx. (AP5.7)

o

using (AP5.5) the integral(AP5.7) becomes

1
b= 2 [ e 21 + (1-e *)x)Sinnmx dx. (AP5.8)

(o]

which can be shown to have the solution

bn = 2 (e-acosnﬂ -1 a2 C . ‘ : (AP5.9)
nm 2 2
(nT) + a

The analytic solution to (6.5.1) subject to (6.6.1), (6.6.2) and

(6.6.3) is therefore given by the expfession

u(x,t) = 1 + (e-ab— l)x
il 2 2
+ :E: EL_(e-acosnn - 1) a2 Sinnmx e_n Tt
n=o =" (nm)” + a (AP5.10)

The numerical evalugtion of (APS.iO) is complicated by the presence

of the Sinnnx term. .In evaluating the summation it is usual to sum
terms until a particular term is less than a specified magnitude.
This'ig difficult in this case, since.Sinnﬂx>= 0 for certain values

of n and x, and thus significaﬁt terms for larger n will be ignored.
In our computations this problem has been overcome by examining terms
after those in which Sinnmx=0,

An additional danger is_also encountered when n is large since in such

2 2
cases e Tt becomes too small for computer arithmetic operationms.
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