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WORKABILITY AND MATURITY PROPERTIES OF GROUND
GRANULATED BLASTFURNACE SLAG CONCRETES

D.E.WIMPENNY

ABSTRACT
The intimate mixing of ordinary Portland cement (OPC) with 

ground granulated blastfurnace slag (GGBS) to produce a cementitious 
binder for concrete has several environmental, technical and economic 
advantages which have led to it becoming accepted in many countries.

Almost all published work on GGBS concretes in the United 
Kingdom has used GGBS from a single long-established source. Several 
sources of GGBS are now available, so an extensive project was 
undertaken by the author to determine the importance of the origin and 
grinding of the granulate.

In the main programme of research two types of GGBS were 
incorporated in concrete mixes with three cementitious contents and 
three cementitious blends. Five different curing conditions and five 
ages of testing were employed. Alternative methods of assessing the 
workability, hydration characterisics, strength and potential 
durability were examined.

The results seem to indicate that both the level and source 
of GGBS in the cementitious blend have an important bearing on fresh 
and hardened concrete properties; dependent on other factors, such as 
the cement content, age and curing conditions. The relationships 
between the hardened concrete assessment parameters were also found 
to be influenced by the presence of GGBS. Novel tests to assess the 
mix stability, hydration characteristics and potential durability of 
concrete performed favourably.
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Waste or by-products from quarrying, mining or power 
production have a long history of use in the building and construction 
industries. Their use is prompted by the need to : reduce the cost and 
importation of materials, conserve energy and natural resources, avoid 
quarrying and tipping, and where possible improve the quality of 
construction.

A survey (1) of major industrial by-products and waste 
materials was conducted on behalf of the Department of the Environment 
in the early 1970’s. This yielded four categories of residue:

a) quarrying waste,
b) mining waste and tailings,
c) metallurgical slags, and
d) fuel combustion residues.

All the categories find use in construction. Typical uses are as a
fill or roadstone, in brick or block making, and in concrete.

Concrete is usually a composite of aggregates in a cement 
binder. It is an obvious candidate for the use of residue materials 
since its aggregates consume natural stone, gravel and sand, whilst 
the manufacture of Portland cement requires limestone, clay, gypsum 
and a large input of energy. Indeed, in the United Kingdom artificial 
aggregates are used to produce lightweight concrete, and ground 
granulated blastfurnace slag (GGBS) from iron smelting or pulverized- 
fuel ash (PFA) from coal combustion are used to partially replace 
OPC.

The potential of GGBS was slow to be realised. Of the nine 

million tonnes of blastfurnace slag produced in 1971, less than two 
percent was used as a cementitious material (1 ). The use and
sources of GGBS have burdgeoned in the 1980’s, yet published data 
relating to these new sources is scarce. At the same time increasing 
demands are being made on materials in terms of construction cost, 
complexity and quality. There is a real need to know how the use of 
these materials will affect the ability to place and compact the fresh 
concrete, the properties of the concrete as it hardens, and the long­
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term performance. It is the former two topics which this thesis 
specifically seeks to address.

The reported results come from an extensive investigation 
conducted by the author, at Sheffield City Polytechnic, between 1985 
and 1988.
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2.1 Introduction
The following five sections examine the evolution of cement 

and concrete production, the interrelationship between the design, 
properties and performance of concrete, and the nature of cement 
replacement materials. The final section of the chapter catalogues 
previous research, appropriate to this investigation.

2.2 Historical Note
The earliest concrete was discovered, forming a hut floor,in 

Yugoslavia and dates from approximately 5600 BC ( 2 ). The word
concrete derives from the latin ’concretus’ meaning compounded. 
Indeed, the distinguishing characteristic of concrete is its 
compounding of water, cement, and aggregates.

The early evolution of concrete is really that of the 
cementitious component. The early cements, consisting essentially of 
lime, were weak and would not set underwater. Around 200 BC the Romans 
started using fine volcanic ash from near Pozzuoli in their concrete. 
This ash when mixed with lime produced a strong, hydraulic cement. 
This ’pozzolanic’ cement found widespread use and exists to this day 

in the remains of the theatre at Pompeii.
After the fall of the Roman empire, cement and concrete 

declined in use until a renaissance in the 18th Century. John 
Smeaton working on the Eddystone Lighthouse developed a cement 
consisting of burnt limestone and pozzolana. Experiments by John 
Aspdin, a Leeds builder, culminated in him taking out a patent for the 
manufacture of ’Portland cement’ in October 1824.

The hydraulic potential of blastfurnace slag were discovered 
by Emil Langen in Germany , in 1 862, and production of cement 
incorporating GGBS followed three years later. Despite the 
considerable history of use of pozzolanic cements in concrete, the use 
of PFA as a source of pozzolana only became apparent in the 1930’s, 
through work in America ( 3 ) •

GGBS was originally mixed with lime to produce a cement.
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This method of production became redundant with the discovery that 
GGBS could be activated by combining with Portland cement, to form 
Portland blastfurnace cement, or calcium sulphate to form 
supersulphated cement. The initial method of combining the Portland 
cement with GGBS was to intergrind the clinker with the slag to 
produce a ’composite’ cement. However in 1933 the Trief process was 
patented, in which the granulated slag is wet-ground to form a slurry 
for blending with Portland cement at the mixer. A logical extension of 
this process was the separate dry-grinding of granulated slag for 
within-mixer blending. This first began in South Africa in 1958, and 
was introduced in the United Kingdom six years later. In 1969 separate 
GGBS, marketed under the trade name ’’Cemsave”, began full production 
from Scunthorpe using locally available slag.

A list of the developments in the use of GGBS is given in 
Reference 3* The most significant of these have been : the
recognition that GGBS can beneficially effect durability; the 
acceptance of within-mixer blending; and the increase in the number of 
sources of GGBS.

GGBS is currently manufactured in at least six locations in 
the United Kingdom, including: Scunthorpe in the East Midlands, 
Purfleet in the South East, Aberthaw in Wales, Padeswood in the North 
West, and Clyde in Scotland ( 4 ). Major projects employing the 
material include the Anchor Steelworks (1964),the Wet Sleedale Dam 
(1965), and the Humber Bridge (1974).

2.3 Concrete Properties and Performance
Producing good concrete is a matter of controlling certain 

factors, such as the mix design and curing, in order to obtain 
specified levels of measured properties, which should in turn be 
reflected in a satisfactory performance of the concrete in service. 
The relationship between these three elements is indicated in Fig 2.3.

The term workability covers a number of characteristics of 
fresh concrete, including the its ability to be placed and compacted,

6
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and its stability. The workability of fresh concrete has an important 
bearing upon its hardened properties. The ability of a concrete to be 
placed and compacted will influence the amount of voids present in the 

hardened concrete, and consequently its strength and durability. A mix 
may be made more workable by adding water, however this additional 
water will itself leave small pores in the concrete upon evaporation.

The stability or ’cohesiveness' of fresh concrete determines 
the amount the constituents will separate out under gravity from a 
uniform mixture. This separation is termed bleeding when it involves a 
movement of water, and segregation when the solids are redistributed. 
Segregation reduces the homogeneity of the concrete and its ability to 
be fully compacted. Bleeding only becomes a problem when the water 
carries with it other constituents or collects under reinforcement. 

Indeed, bleeding may beneficially reduces the water-cement ratio of 
the concrete and mollify plastic shrinkage cracking.

The process of hydration and the absorption and evaporation 
of water leads to a loss of workability with time. During hydration 
the compounds in cement react with water and products are 
precipitated. These products eventually cause the cement paste to 
stiffen or set. This setting determines the end of concrete 
workability, the pressures exerted by the concrete on the formwork, 
and the time of some finishing processes. Hydration in addition to 
setting also produces heat. In restrained sections this heat may lead 
to thermal cracking.

The chief aims of the design, mixing and handling of the
concrete prior to curing is to maximise its compaction, homogeneity
and integrity.

Curing of the concrete promotes hydration, the products of
which interlock with each other and the aggregates. As a consequence
the strength of the concrete increases and its porosity is reduced.
The strength and elastic properties of the hardened concrete determine
the degree of deformation and cracking under stress. The porosity of
the concrete is reflected in its permeability and water absorption,



that is the ease with which aggressive agents and water move into and 
through concrete, and thus has a large bearing upon its durability.

The aim of the curing and treatment of hardened concrete is 
to produce a material which has the required stability to loads and 
the environment.

2.4 Contemporary Cement Production
Portland cement consists of silicates and aluminates from 

clay or shale, and lime from chalk or limestone. Blends of these 
materials are heated in a rotary kiln at approximately 1400 °C, so 
that they burn and fuse to form a clinker. This clinker vitrifies 
upon cooling and is ground to a fine powder in a ball mill. Gypsum is 
added at this stage to prevent premature setting of the resulting 
cement. Several varieties of Portland cement are available; the most 
popular being ordinary, rapid-hardening and sulphate-resisting.

Three systems of blending and burning the constituents are 
currently in use: the wet process in which the raw constituents are 
blended and fed into the kiln as a slurry; and the semi-dry and dry 
processes in which the materials are blended as powders, and preheated 
prior to entering the kiln. The efficiency of the kiln depends greatly 
on the moisture content of the meal entering it. For this reason the 
semi-dry and dry processes are the favoured option in the United 
Kingdom.

The grinding system have evolved from open systems, in which 
all material simply exits the ball mill, to closed systems in which 
the material is passed through separators or classifiers. Particles 
which are too coarse are recycled through the mill, whilst the finer 
particles pass to the silo. This system leads to a more efficient use 
of grinding time and ensures a narrower range of particle sizes.

Hammer crushers and rollar presses which form the clinker 
into shattered cakes requiring substantially less grinding, are also 
being introduced.

Several changes in cement production have promoted the use of

9



GGBS as a replacement material. Firstly, changes from the wet to the 
dry and semi-dry processes have increased the ratio of C^S to C2S ( 5 ) 
(Section 2.1) and the alkali levels in Portland cement. This had 
important implications for durability; increasing the heat of 
hydration and consequent danger of thermal cracking; increasing the 
risk of alkali-silica reaction; and maintaining the steady decline in 
the cement content required for strength compliance. Secondly, the oil 
crisis and restrictions on energy consumption forced a reduction in 
Portland cement production, leading to severe shortages of cement and 
a sharp rise in prices and imports ( 6 ).

These durability and price considerations have supported a 
sustained growth in the use of GGBS (Fig 2.4.a), and it is estimated 
that separate GGBS and the interground cement together account for 
over 10$ of the cementitious material used in the United Kingdom 
annually ( 7 ). Similar levels have been reached in other countries, 
such as Japan (Fig 2.4.b)( 8 ).

In the United Kingdom blending of the cementitious components 
takes place in the mixer, whilst on the Continent the cement clinker 
and GGBS, or PFA, are predominantly interground. The within-mixer 
process has the advantage of allowing the individual grinding and the 
overall blend of the granulate, or ash, and the Portland cement to be 
adjusted. When intergrinding the hardness of the granulate results in 
preferential grinding of the softer clinker. Studies have indicated 

that within-mixer blending is as effective as intergrinding (9 ,10 ) -
The potential to produce an infinitely variable cement form 

just two silos of material is both the chief advantage and 
disadvantage of within-mixer blending. Extra care must be exercised in 
the storage and batching of separate GGBS.

2.5 Cement Replacement Materials
The principle cement replacement materials in use in the 

United Kingdom are GGBS and PFA. Although both materials are latent 
hydraulic binders, one distinction must be made: GGBS is intrinsically

10
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hydraulic whilst PFA is not.

2.5.1 GGBS
Blastfurnace slag is a by-product of the steel industry and 

results from the "fusion of limestone flux, with ash from coke, and 
the siliceous and aluminous residue remaining after the reduction and 
separation of the iron from the ore" (1 ). The slag has an important
role in removing from the iron impurities such as sulphate, and its 
composition is carefully controlled. Molten slag is tapped from the 
base of the furnace and cooled selectively to form three very 
different materials:

a) Air-cooled slag is a dense crystalline material similar to a 
Basic rock. After crushing and grading it can be used as an 
artifical stone or concreting aggregate.

b) Foamed slag has a cellular structure similar to pumice. After 
processing the foamed slag is used as a lightweight 
concreting aggregate or raw material in glass manufacture.

c) Granulated slag is a vitreous material, resembling sand,
formed by supercooling the molten slag under high pressure 
water jets. After grinding the GGBS can be used as a partial 

replacement for Portland cement.

The composition of the slag is carefully controlled as part 
of the iron production process. However long-term variation in the 
chemical and mineralogical composition of the slag may arise from 
changes in the ore, furnace operating conditions and granulation 
( 11 ). The suitability of GGBS as a cement replacement material 

depends chiefly on the state of vitrification, although the chemical 
and mineralogical composition also influence the reactivity. BS 6699 
specifies minimum levels for fineness, glass content, and a chemical 

modulus (Section 2.6.3).

12



2.5.2 PFA
PFA is the fine ash electrostatically precipitated from the

flue gases of power stations, using pulverized bituminous coal as 
fuel. The material "consists principally of aluminosilicate glass 
spheres together with small quantities of crystalline materials"
( 3 )• PFA varies in quality with the source of the coal, 
pulverization, furnace firing conditions, and the collection method.

The suitability of PFA as a cement replacement material 
depends on the fineness and residual carbon content. Selection of the 
ash by removal of the coarser, and higher carbon content, particles 
gives rise to two classes of PFA to BS 3892; the finer suitable for 
cement replacement, and the coarser suitable for fine aggregate 
replacement only. Certain power stations, such as Eggborough , which 
operate under stable ’base-load’ conditions, and are supplied with 

coal of a consistent quality, are favoured sources of PFA.

2.5.3 Cement Chemistry
Portland cement is assumed to consist of a series of complex 

compounds or mineralogical phases built up from oxides; primarily: 
lime (CaO), alumina (A^O^), silica (Si02), magnesia, and ferric 
oxide. These five oxides also typically account for over 80% of the 
composition of GGBS and PFA. The composition of various hydraulic 
materials is summarised in Fig 2.5 using a ternary diagram, indicating

S \0

'FLY ASHBLASTFURNACE
SLAG

GAS I FIER 
SLAG

C.AS
PORTLAND
CEMENT ■ALUMINOUS

CEMENT
CA,

Cai 'ALO.

Fig 2.5 : Some hydraulic materials on a ternary composition diagram.
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the percentages of lime, alumina and silica. OPC, GGBS and PFA form 
three separate zones, in order of decreasing lime content. As the lime 
content decreases the silica and alumina both increase, the silica 
showing the greater rise.

Bogue proposed (12) that the complex compounds in Portland 
cement are tricalcium silicate (CgS), dicalcium silicate (C2S), 
tricalcium aluminate (C^A) and tetracalcium aluminoferrite (C^AF). 
The tricalcium and dicalcium silicate react moderately and slowly 
respectively to form calcium silicate hydrate and lime. It is the 
tricalcium silicate hydrate which is responsible for much of the 
cementing strength of Portland cements. The tricalcium aluminate would 
react very fast , producing much heat and premature setting, in the 
absence of gypsum. However, because of the gypsum added to the clinker 
in the ball mill, the setting and heat of hydration of the cement are 
mainly determined by the reaction of the tricalcium silicate.

GGBS is intrinsically hydraulic in that it reacts on its own 
with water; albeit at a rate so slow as to be of no practical use. In 
an alkaline environment the reactions become much more rapid. Such an 
environment can be provided by the lime produced by the hydration 

reaction of Portland cement. Silicates in the slag react to form 
hydration products similar to Portland cement, that is: calcium 
silicate hydrate, calcium aluminate hydrate, and additionally calcium 
silicate aluminate hydrate.

The hydration of PFA is significantly different from the 
principal reaction of GGBS. Aluminates and silicates from the ash, and 
lime from the hydration of the Portland cement combine to form calcium 

aluminate hydrates and calcium silicates. A similar secondary 
pozzolanic reaction is thought to occur between acids from the GGBS 
and lime from the hydration of the Portland cement, in the gap between 
the clinker and slag grains. This secondary reaction has important 
implications for durability (Section 2.6.6.3).

The reaction of blended cements is moderated by the need of 
the GGBS or PFA component for lime. However, the higher activation

14



energies of blended cements compared to Portland cements means this 
moderating effect can be overcome by raising the reaction temperature 
(Section 2.6.3).

2.5.4 A_ comparison of GGBS and PFA
The very different origins and characteristics of GGBS and 

PFA are reflected in some practical aspects of their use (see Tab 
2.5). PFA generally requires no grinding, and the lower energy 
requirement for processing PFA means it can be theoretically sold at a 
lower price than GGBS. However, the chemistry of the material limits 
the amount of OPC that can be replaced, and consequently the cost 
saving that can be made. The British Standard for specifying ready- 
mixed concrete, BS 5328,limits the proportion of PFA to 35$, whereas 
GGBS may be used to replace up to 90$ of the OPC.

The GGBS particles are similar in shape, size and relative 
density to clinker grains and GGBS is simply substituted on a mass 
basis for OPC, with a slight reduction in the water content of the 
mix. In contrast the PFA particles are smooth hollow spheres with a 
much lower density and higher fineness than clinker grains. 
Substitution of OPC by PFA on a mass basis increases both the volume 
of powder and the workability; this is usually compensated for by a 
reduction in the fine aggregate and water contents. Unlike GGBS the 
composition of PFA is not controlled as part of the production 
process, but is dictated by the operating conditions of the power 
station. Indeed possible variation in the quality of PFA hindered its 
early development.

Despite the aforementioned differences in PFA and GGBS there 
are similarities in the specification and use of the materials. Both 
have:

1) specifications to cover the blended cement at lower and 
higher replacement levels for normal and low-heat 
applications respectively (BS 146 (0-65$ GGBS), BS 4246 (50- 
90$ GGBS), BS 6588 (15-35$ PFA) and BS 6610 (35-50$ PFA);
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Tab 2.5 : Some Differences Between GGBS and PFA.

Aspect PFA GGBS
Reaction Pozzolanic activated

reaction in alkaline
with lime environment

Maximum and
Normal level 50% 90%
in blend 20% 50%

Cost third of OPC two-thirds of OPC
Processing Classified Ground

and
Energy used* 1-2% of OPC 3-5% of OPC
Workability Increased Slight Increase

Bleeding Decreased Increased

Variability high low
Identification spherical particles white in colour

under magnification
Mix Design fine aggregate similar to OPC
philosophy replacement
Admixture higher due usually normal
dosage to absorption

* PFA figures vary according to degree 
of processing required.
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Fulton, 1974 ( 14 ), working with separately ground South 
African slags, used a modified Vebe test to study the effect of GGBS 
level on concrete "vibratability". He showed that for a constant 
water-cement ratio the time of compaction decreased consistently with 
GGBS level.

Taylor, 1974 ( 15 ), in an article on cost reduction with GGBS 
commented that "when the quantity of free-water used in the mix is 
held constant an increased granulate content is associated with an 
increase in mix workability".

Atwell, 1974 ( 16 ), described the use of GGBS in the Anchor 

Steelworks. A constant workability was adopted for the project and 
"improved blend efficiencies could be achieved indicating a beneficial 
effect on workability with slag replacement".

Tattersall and Banfill, 1983 ( 17 ), reporting limited work by 
Arnold (1981), indicated that there is generally a decrease in both g 
and h with increasing GGBS level at a constant water content. These 
authors conducted a water demand test using constant workability 
mixes, containing up to 90$ GGBS. The water reduction achieved with 
GGBS mixes did not exceed 5$. In order to explain the maximum 
workability obtained by Fulton at 40$ GGBS the authors suggested that 
the increased powder content when replacing OPC by mass with GGBS took 
the effective fines content through an optimum value.

Ellis, 1985 ( 18 ), assessed the workability of various GGBS 
concretes using three British Standard methods and the two-point 
workability apparatus. Two series of mixes, with high and low fines 
contents, and cement replacement by volume and mass respectively, 
were produced. No consistent effect of GGBS upon workability was 
apparent. The reduced influence of GGBS level when replacing by volume 
in the first series of mixes seemed to indicate that powder volume is 
an important mechanism in the effect of slag upon workability. An 

optimum workability appeared to be obtained in the second series of 
mixes at about the 40$ GGBS level. The work confirmed the complexity 
of the effect of GGBS upon workability and the increased sensitivity
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2) specifications to cover the separately ground material for 
within-mixer blending (BS 6699 and BS 3892 respectively);

3) schemes with the BRMCA to provide blend levels for different 
sources of cementitious materials to ensure compliance with 
the blended cement specification;

4) Agrement certficates to confirm their suitability for use in 
construction (numbers 82/1032 ( 13 ) and 85/1504);

5) the potential advantages of reducing the heat of hydration 
and the risk of sulphate attack and alkali-silica reaction;

6) the potential disadvantage of a lower early rate of strength 
development.

2.6 A Review of Previous Research

2.6.1 General
Most research carried out on the Continent into the effects 

of GGBS has employed composite cements, formed by intergrinding. Data 
on within-mixer blended cement generally comes from South Africa and 
the United Kingdom; virtually all published data in the United Kingdom 
relates to GGBS from the longest established source at Scunthorpe. The 

only significant research on slag types, found by the author, was that 
by Moss (1984), and Frearson and Uren (1986).

In this section previous research is discussed under the
headings : workability, hydration and potential reactivity, strength,

elastic properties, and long-term performance. When examining the 
results of any investigation consideration must be given to the mix 
designs used, particularly the adoption of a constant workability or 
water content. Unless otherwise stated constant workability refers to 
a constant slump value.

2.6.2 Workability

This sub-section deals firstly with general workability, then 
looks at mix stability and workability loss.
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of the two-point test over the British Standard methods.
Moss, 1984 (19 ), employed GGBS from Scunthrope and Purfleet 

in an investigation or air-entrained and platicized concretes of 

constant workability (compacting factor). He concluded "The partial 
replacement of cement by Cemsave effected water reductions. The most 
noticeable effect being within the region of up to 40% cement 
replacement". His results also indicate that the slag source affects 
the water demand, although the author made no mention of this.

2.6.2.2 Bleeding
Dean, 1987 ( 4 ), reported that small-scale laboratory tests 

carried out by the Frodingham Cement Company showed that although 70$ 
GGBS mixes displayed substantially increased bleed capacity over 
corresponding OPC mixes, at lower replacement levels the source of the 
OPC used in the blend was highly influential.

Wainwright, 1986 ( 20 ), reports that Cesarini and Frigione
(1986) and Allard (1984) found the bleeding rate and total amount of 
bleed increased with the GGBS level for both constant water-cement 
ratio and constant workability mixes. However, he adds that "there is 
in the UK at least no evidence from site to suggest that concretes 
containing GGBS show any greater tendency to bleed than concretes of 
the same 28-day strength made from Portland cement".

2.6.2.3 Workability loss
Meusel and Rose, 1983 ( 21 ), examined the workability loss in 

high workability concrete containing up to 50$ GGBS at temperatures 
between 24°C and 27°C. They concluded that there was no significant 
difference in the rate of loss of slump between the different 
concretes.

Banfill, 1985 ( 22 ), using the two-point test examined the 
effect of interactions between GGBS and superplaticizers on 
workability loss, as well as hydration and strength development.He 

concluded that the rate of workability loss is unaffected by the slag
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replacement level and cementitious content.

2.6.3 Hydration and Potential Reactivity

2.6.3.1 Setting
Several authors have researched this topic and found 

increased times of set in cement pastes made with GGBS. However, there 
is disagreement about how standard setting time tests relate to 

practice.
Stutterheim, 1960 ( 9  ), reporting the construction of an

irrigation canal with a blended cement containing 70% high-magnesia 
slag described how slow setting resulted in a slight delay to 

finishing operations.
Harrison and Spooner, 1986 (23), indicate that under standard 

conditions an increase in GGBS from 30% to 60% increases the initial 
set by about an hour, and the final set by about an hour and a half. 
Similar values have been suggested by Hogan and Meusel ( 20 ).

2.6.3*2 Heat of Hydration
Atwell, 1974 (16 ), concludes from measurements on site and 

laboratory simulations that "temperature rise was reduced, and the 
time to peak increased as the slag proportion was increased".

Bamforth, 1980 ( 24 ), in an article on the performance of 
mass concrete in the foundations for a grinding mill, states that "The 
effect of cement replacement was in each case to reduce the peak 

temperature rise by about 8°C". He concluded that for pours up to two 
and a half metres deep GGBS and PFA were effective in reducing the 
temperature rise. For deeper pours the benefits of reduced temperature 
rise were outweighed by the increased stiffness of slag concretes.

VJainwright, 1985 (25 ), generated ’adiabatic’ temperature
profiles in the laboratory which indicated that the temperature rise 
coefficient fell from around 11 to 8°C/100 kg of cement when 70$ GGBS

owas used to replace OPC in mixes containing approximately 440 kg/m-1 of
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cement.

Cannon, 1985 ( 26 ), combined data from fourteen sites, using 
several Portland cement sources and one source of GGBS. The 
temperature rise coefficients in pours with a least lateral dimension 
of one metre were 13,11 and 7 °C per 100 kg of cement for OPC, PBFC 
and LHPBFC mixes respectively. The beneficial effect of using slag was 
much reduced when the least lateral dimension increased to three 
metres.

Harrison, 1981 ( 27 ), in a guide on early age crack control
presents an estimate of the minimum reduction in temperature when
using up to 80/6 GGBS, for section thicknesses of one and half to three
metres. The guide indicates a reduction in the temperature rise of a 
tenth for 40% GGBS, and a third for 80% GGBS, compared to OPC.

The important influence of the reaction temperature upon the 
reaction rate and the heat evolution of blended cements has been 
mentioned by a number of authors, including Atwell (16 )•

2.6.3.3 Potential Reactivity
The potential reactivity of GGBS is a function of the 

properties of the granulate and its grinding. The final reactivity in 
service will be dependent on additional factors such as the 
activating cement and the reaction temperature; however this section 
concentrates on the chemical, mineralogical and physical properties of 
the slag alone.

Parker and Nurse, 1949 ( 28 ), applied a number of moduli to 
the 90-day compressive strength results from a wide range of British 
slags. They concluded that for blends of constant fineness, containing 
35% GGBS with a fixed source of clinker, the German modulus 

M1 = CaO + MgO + 1/3 A1203 

Si02 + 2/3 A1203
gave the best correlation with strength, when combined with a measure 
of the percentage of non-crystalline particles in the slag, using 
transmitted light microscopy.
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Demoulian et al, 1980 ( 29 ), examined fifteen moduli and 
found that M2 = CaO + MgO + Al^^,

Si02
which was incorporated in the German Standard DIN 1164, gave the best
correlation with strength. The usefulness of pure glass content as a
measure of hydraulicity was questioned by these authors, who stated 
that "perfect vitrification of slag is not the criterion of its 
optimal reactivity in slag cements". The adequacy of approaches based 
solely on chemical moduli or degree of vitrification has been 

challenged by a number of workers (30 ,31 )•
Frearson and Uren, 1986 ( 30 ), in a review of the nature of 

slag containing Merwinitic crystalline inclusions, compared GGBS from 
Scunthorpe, having Melilite inclusions, with that from Purfleet, 
having Merwinite inclusions. The authors indicated that Merwinitic 

inclusions, although reducing the proportion of pure glass, did not 
practically deplete the reserve of glass for reaction, and actually 
increased the alumina levels and consequently the reactivity of the 
remaining glass. They suggested that the Purfleet slag should give 
rise to a higher rate of strength development than the Scunthorpe slag
by virtue of its higher chemical modulus and Merwinitic inclusions.

Mehta, 1 983 ( 31 ) , reviewing the work of Wada and Ikawa, 
states that "particles less that 10 microns contributed to early 
strength development in concrete (until 28 days), whereas 10 to 40 
micron particles continued to hydrate thereafter....in short the 
ground granulated slag for use as mineral admixture in concrete should 
contain few particles above 45 microns and a considerable portion of 
particles below 10 microns in order to improve the early strength 
development".

Hogan and Rose, 1986 ( 32 ), in a paper describing a slag 
activity test using mortar indicated that the fineness of the GGBS has 
less effect at 1 and 28 days that at 3 and 7 days. Stutterheim 
reported a similar effect ( 9 ).

Regourd, 1986 ( 33 ), reporting work he carried out in the

22



early 1980’s , indicated that if the Arrhenius law for rates of 
chemical reaction was applied to hydration data for OPC and a blended 
cement containing 70$ GGBS it yielded activation energies of 50 and 46 
kJ/mol respectively. The larger activation energies for slag cement 
was also reported by Roy and Idorn ( 34 ), and explains why slag 
cements can benefit from raised reaction temperatures.

2.6.4 Strength

Consideration of this topic has been split into three areas:
1) The effect of mix design and curing upon the compressive

strength.
2) In situ strength and the use of maturity functions.
3) The effect of mix design and curing upon the indirect tensile 

strength.

2.6.4.1 Compressive Strength

Compressive strength development is influenced by a number of 
factors, chiefly: cementitious type and content, water-cement ratio, 
chemical admixtures, and curing temperature and humidity. Wainwright 

( 20 ) states that "genrally for equivalent cement contents and water- 
cement ratios, the higher the GGBS content the slower the development 
of strength, but the higher the long-term gain". In practice concrete 
is designed to a constant workability. Atwell, 1974 ( 16 ), reporting 
on the Anchor Steelworks project states that "the efficiency of a 
blend relative to 100$ OPC will be improved when workability is the 
constraint".

Harrison and Spooner, 1986 ( 23 ), report that "for mixes
designed on the basis of equal 28-day strength and workability using 
40$ GGBS the 3-day strength is about 50-60$ of the OPC concrete and at 
7 days about 65-75$. Similarly, using 70$ GGBS these figures drop to 
about 30-35$ at 3 days and 50-65$ at 7 days". The importance of the 
reaction temperature was acknowledged by these authors. They comment
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that "at 5°C the strength of the PBFC concrete at 1 day is only 50$ of 
that of the equivalent OPC concrete (equal 28 day strength at 20°C)".

Pratas, 1987 ( 35 ), in a dissertation the early strength
development of Cemsave concretes, wrote "replacements of 30 and 50$ 
led to reductions in the 28-day strength of the order of 20$ and 30$ 
respectively", in mixes manufactured to a constant workability and 
strength grade, and cured at 5°C. In contrast, "at 30°C the replaced 
mixes are stronger than the control within 14 days".

Moss, 1984 ( 19 ), carried out an extensive investigation 
into the effects of combinations of plasticizer or air-entraining
agents and GGBS upon the water demand and strength development of 
concrete. GGBS was derived from two sources: Civil and Marine,
Purfleet and Frodingham Cement, Scunthorpe. Concrete was made to a 
constant workability (compacting factor) and was standard cured 

throughout. He observed that "Cemsave derived from Civil and Marine 
was more reactive. It exhibited higher compressive strengths than the 

equivalent concrete with Frodingham Cement Co. Cemsave". Moss also 
found that the 28-day strength of plasticized GGBS concretes was equal 
to or exceeded that of plain OPC concretes. Unplasticized concrete 
containing 70$ GGBS had compressive strengths at 3 and 28 days which 
were only approximately 25$ and 80$ of the OPC control respectively. 
This percentage rose with reduced GBBS level and increasing 
cementitious content.

2.6.4.2 In Situ Strength
The slower early rate of strength development of GGBS 

concretes would be expected to be reflected in higher formwork 
striking times; there are however no published guidelines. Atwell 
( 16 ) reported no unusual delays in striking formwork on the Anchor 
project, although a reduced level of GGBS had to be adopted in certain 
circumstances.

Curing specimens at fixed temperatures, or alongside the 
formwork, does not give an accurate indication of the strength
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development in the structure, where heat produced by the hydration 
reaction results in an imposed temperature cycle. In order to overcome 
this discrepancy temperature matched curing (TMC) was developed (26).

Bamforth 1980 ( 24 ), reporting TMC work on mass structures 
utilising OPC, PFA and GGBS noted that "the effect of the early 
temperature cycle.... was to accelerate the early rate of strength 
gain. At 28 days, however, although the strengths of the concrete 
containing replacement materials were enhanced by the temperature 
cycle, the strength of the OPC concrete was significantly impaired".

Wainwright and Tolloczko 1985 ( 25 ), compared standard and 
temperature cycled curing ,using artificial ’adiabatic’ temperature 
profiles. They found that OPC concretes produced a higher adiabatic 
temperature rise, resulting in cycled strengths higher at early ages 
but lower at later ages than for standard curing. The slag concrete 
did not benefit from cycled-curing at early ages but was less 
detrimentally affected by these at later ages. They state "under 
adiabatic conditions concretes containing 70% slag have reached or 
exceeded the strength of equivalent OPC concrete by,7 days".

Pratas 1978 ( 35 ), in a dissertation on the early-age 
strength development in concrete containing Cemsave examined the use 
of maturity functions for formwork striking. He observed that a 
single relationship could be used under wet curing for temperatures 
between 5°C and 30°C.

Wainwright and Reeves 1981 ( 36 ), applied the Nurse-Saul
function (Section C.2.1) to strength data from fixed and cycled curing 
of concretes containing OPC and blends of OPC with 30, 50 and 70%
GGBS. They observed that the strength-maturity relationship was 
temperature dependent for both OPC and slag cement concretes, leading 
to higher strengths at higher temperatures. In the case of OPC this 
trend was reversed at later maturities. Two factors were proposed for 
the unimpaired later strength of concrete containing Cemsave: "Firstly 
it reduces the overall percentage of C^S in the blended cement and 

hence reduces the volume of less dense C^S hydrates.... Secondly in
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slowing down the overall rate of the hydration reaction, the addition 

of Cemsave allows the more dense C2S hydration products to form and 
predominate”.

2.6.4.3 Indirect Tensile Strength

Stutterheim 1960 ( 9 ), measured the modulus of rupture of 
standard cured specimens made from six blended cements and an OPC 
control. The author, commenting on the modulus of rupture-compressive 
strength relationship for a typical slag cement and the OPC control, 
states "the relationship clearly differs appreciably for the two types 
of cement

Wainwright 1986 ( 25 ), recorded the tensile splitting 
strength of cylinders made from OPC and cement blends, containing 50% 
and 70$ GGBS, under fixed and cycled curing. He concluded "Concretes 
containing slag have a higher tensile strength for an equivalent 
compressive strength than OPC concretes. The largest difference 

recorded for the normal cured concrete was 0.7 MPa (19$) and 1.2 MPa 
(40$) for adiabatic cured".

2.6.5 Elastic Properties
These comprise the four parameters: static modulus of

elasticity, dynamic modulus of elasticity, Poisson’s ratio, and the 
ultrasonic pulse velocity. The latter three parameters are linked by a 
fundamental equation (Section C.2.3).

2.6.5.1 Elastic Modulus

Neville and Brooks 1975 ( 37 ), carried out a study into the 
time-dependent behaviour of concrete containing 0,30 and 50$ GGBS, and 
cured in water and in air. The mix proportions were adjusted to give 
constant workability (VeBe) and 28-day strength. The authors reported 
that "There was no definite difference in the static modulus of 
elasticity of the three mixes for any of the curing conditions but it 
is possible that on prolonged storage in water .... Cemsave concrete
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had a slightly higher modulus. Also, on prolonged dry storage the 
modulus of Cemsave concrete tended to decrease, while that of 
Portland cement concretes remained constant”.

Bamforth, 1980 ( 24 ), reported static elastic moduli for slag 
concretes under cycled-curing were approximately 8 GPa greater, at 
any compressive strength, than for OPC concrete of equal workability 
and 28-day strength.

Wainwright and Tolloczko, 1986 ( 25 ), measured the static and 
dynamic elastic moduli of constant workability mixes, with 
cementitious contents of 300 and 400 kg/m^ and GGBS levels of 0, 40 
and 70/e GGBS, under standard and cycled curing. Only the static 
elastic modulus data was presented in detail, however the authors 
determined that under standard curing slag cement concrete had a 
slightly lower elastic modulus at lower compressive strengths (less 
than 40 MPa) and a higher modulus at higher strengths, than OPC 
concrete. The difference between slag and OPC concrete was less than 5 
GPa at any compressive strength. Under cycled curing separation of the 
modulus-strength relationships with blend was more marked, although 

according to the authors the maximum increase in the elastic modulus 
for slag cement concrete over OPC was, at 12%, similar to that under 
standard curing.

Stutterheim, 1960 ( 9 ), reporting studies on concrete
containing mixed and interground blends of OPC with high-magnesia 
slags states that "Poisson’s ratios for all these cements including 
the portland cement, are nearly the same at each respective test 
age....It will be seen that although the modulus-age relationships are 
not the same for the various cements the compressive strength-dynamic 
modulus relatonships are closely similar".

2.6.5.2 Ultrasonic Pulse Velocity
Little published data on the effect of using blended cement 

upon the strength-UPV relationship could be found. Facaoaru 1969 (38) 
in a review of non-destructive research in Romania states that "The
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use of high quality ,rapid-hardening cements leads to an increase in 
the strength corresponding to a given pulse velocity, whereas, on the 
contrary, the use of cements containing a large proportion of inert or 
nearly inert additions (like slag) decreases the strength, 

corresponding to a given pulse velocity”.

2.6.6 Long-term Performance
Consideration is given firstly to those aspects relating to 

the physical stability of the concrete, such as creep, shrinkage and 
abrasion resistance. Porosity, water absorption and permeability, 
which have bearing on both the physical and chemical stability are 
considered next, followed by a brief summary of specific chemical 
stability problems, such as sulphate attack and alkali-silica 
reaction.

2.6.6.1 Creep and Shrinkage
Neville and Brooks, 1975 ( 37 ) looking at the time-dependent 

behavour of concrete containing Cemsave observed that ”For a constant 
stress-strength ratio, the basic and accelerated creep of Cemsave 
concrete are appreciably smaller than in Portland cement 
concrete.... however for air-storage the total creep of Cemsave 
concrete is slightly higher than in ordinary Portland cement concrete. 
Futhermore, ’’both types of concrete exhibit similar shrinkage,but the. 
modulus of elasticity of cemsave decreases somewhat with prolonged dry 
storage”. The authors attributed the reduced creep of Cemsave concrete 
to a reduced paste content due to a lower water content , and its 
continued strength development at later ages.

Bamforth 1980 ( 2̂4 ), reached similar conclusions for mass 
concrete. He noted that at a constant sress-strength ratio "the 
reduction in creep (basic) is in proportion to the level of 
replacement using slag”.

2.6.6.2 Abrasion and Frost Resistance
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Chaplin, 1986 ( 39 ), using the C&CA accelerated abrasion 
apparatus tested OPC and blended cement mixes, including a 50% GGBS 
blend. Three types of fine aggregate were employed, and mixes were 
made to a constant workability, and subject to different curing. 
Whilst there was "no detectable trend in the wear depth results for 
the slabs cured under polythene or with a resin curing 
compound....greatest depths of wear were obtained from the air-cured 
specimens containing GGBS".

The degree to which concrete is affected by frost depends on 
its strength, permeabilty, degree of saturation, and air entrainment. 
Early damage to concrete can result from premature exposure to 
freezing. Later damage can result from repeated cycles of freezing, 
coupled with scaling arising from the application of deicing salts.

Hansen et al, (40 ), 1958 carried out freeze-thaw tests on
slabs of concrete containing PBFC from different sources, and with 
different finenesses. Precise experimental details were not given by 
the author, however no effect of cement fineness or source could be 
discerned.

Moss 1 9 8 4 , ( 19 ) 1984, reports that "the use of air 
entraining agents is not significantly changed by the replacement of 
cement by Cemsave".

2.6.6.3 Porosity
This topic covers four related areas: hydrate structure, 

water absorption, permeability, and diffusivity.
The hydrate structure of OPC becomes more porous at higher 

temperatures. Bakker, 1983 (41 ), attributes this to a poorer
dispersion of the hydration products, which are precipitated closer to 
the reacting grains. In blended cements the secondary pozzolanic 
reaction between the excess calcium hydroxide from the clinker and 
acid components from the GGBS leads to products being deposited in the 
gap between the grains. Under higher temperatures this reaction 

counters any loss of permeability due to poor dispersal of the main
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hydration products.
Roy and Idorn, 1982 ( 3^ ), in a review of research on slag 

hydration also describe this long-term supplementary hydration. They 
conclude that ”development of a dense microstructure, a fine pore 
structure, and a lower capillary porosity generates materials with 
very low permeability and ionic diffusivities’’.

F e l d m a n , 1 9 8 3 (M2 ), credited slag cements with a
discontinous pore structure, low permeability and lime content, whilst 
Roy and Parker, 1983 ( M3 ), observed smaller critical pore radii and 
lower pore volumes in slag cements.

Gjorv and Vennesland, 1 979 ( MM ), using well-cured
cylindrical mortar specimens immersed in seawater, concluded that 
’’Portland cements may give as much as two to five times higher 
chloride penetration than blended cements ”. The results indicate that 
the diffusion of chloride ions into the concrete is dependent not only 
on the permeability and chloride binding capacity, but also on the 
ion exchange capacity of the system. Page et al, 1981 ( M5 ), using
paste discs inserted in a diffusion cell reached similar conclusions.

2.6.6.M Chemical Stability
The effect of GGBS use upon the chemical stability of 

concrete is summarised in Tab 2.6. Several areas of dispute exist, 
probably arising from differing experimental conditions. In well- 
cured concrete the incorporation of GGBS lowers the level of reactive 
components and the permeability and diffusivity. However, this is 
countered by increased sensitivity to poor curing, and a reduced 
alkali reserve.

A comprehensive review of the effects of GGBS upon concrete 
durability has been presented by Reeves, 1971 ( M6 ) • More recently, 
important research has been published on the topics of carbonation and 
alkali-silica reaction. Litvan and Meyer, 1986 ( M7 ) indicate that in 
service GGBS concretes suffer from higher levels of carbonation than 
OPC concretes and, in contrast to OPC concretes, the permeability
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increases after carbonation. Hobbs, in early work ( 48 ), seemed to 
favour the use of GGBS in concrete to reduce the risk of alkali-silica 
reaction. Subsequent work ( 49 ) by the same author contradicts these 
findings.

A brief summary of the effects of GGBS use upon chemical 
stability and other properties of concrete is given in Section 3.2.

Tab 2.6 : The Chemical Stability of GGBS Concretes.

Aspect Mechanism Effect of GGBS

Sulphate Attack
sulphates react with lime 
and calcium aluminate hydrate 
to form expansive products

L
reduction in lime 
lower permeability

Acid Attack
acids react with cement 
to form water soluble salts 
which are then leached

D

Carbonation Carbon di oxide reacts with lime 
and protective alkalinity around 
reinforcement is removed

D,H
depletion of lime 
more curing sensitive

Chloride Attack
Chloride attacks passivating 
iron oxide film on reinforcement

L
ion diffusivity reduced

ASR
hydroxyl ions and siliceous 
aggregates react to form 
expansive hygroscopic gel

D,L
dilution of alkalis

L Lower risk
D Disputed
H Higher risk
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3.1 Introduction
The purpose of any research could be summarised as the 

verification of the accepted, the resolution of the disputed, and the 
illumination of the neglected. This chapter firstly examines the 
accepted, disputed and neglected areas of the effect of GBBS use, and 
then details the scope and objectives of the research undertaken. Care 
was taken to consider both academic and industrial interests when 
determining the scope, in order that the work would be both 
independent and commercially relevant.

3.2 Some aspects of the use of GGBS
The suitability of a material for use in a particular 

situation depends upon a number of factors, most notably, construction 
cost and engineering performance. It can be concluded from Chapter 2 
that the main reasons for using GGBS is to obtain specific hydration 
or durability characteristics. Concrete incorporating GGBS as part of 

the cementitous binder is credited with (13 ) a reduced heat of 
hydration, greater sulphate resistance (to Class 3 soil conditions, as 
defined in BRE Digest 250, for >70% GGBS), and a reduced expansion due 
to alkali-silica reaction (>50% GGBS recommended).

In addition to its beneficial effects, GGBS also introduces 
several problems. A modified version of a Table presented in a C&CA 
guidance note on composite cements ( 23 ) is shown in Tab 3.2. From
this it can be observed that the reduced hydration rate in GGBS
concretes, particularly at low ambient temperatures, may lead to an 
extension of the setting, curing and formwork striking times. The 
universally acknowledged advantages of using GGBS are the potential to 
reduce the temperature rise and increase the resistance to sulphate 
attack. Unfortunately, formwork costs and construction time are 
important elements in the overall expenditure, whilst the greater care 
required with curing conflicts with common site practice.

Several areas of GGBS use requiring further research have 
been highlighted by other workers. Tattersall and Banfill observed
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Tab 3-2 : Changes in concrete practice when using GGBS.

Aspect Change Note

Workability Slight
Increase

5 litre reduction 
in water demand

Bleeding and 
Plastic Cracking

Increased
Risk

as the GGBS level 
increases

Formwork Pressure Increased by about 10-20 kN/m2

Working and 
Finishing time6

Extended higher GGBS levels 
lower temperatures

Formwork Striking Delayed Current tables of times 
for Portland cement only

Curing Increased 
Care needed

Time (days) for different 
Ambient Conditions* 
Average 80/(t + 10) 
Poor 140/(t + 10)

* t ie the average surface temperature of concrete 
Poor ambient conditions signifies RH < 50% and 
not protected from sun and wind.



that data on the effect upon rheology of GGBS substitution of OPC was
limited ( 17 ). Wainwright made the same point, and suggested that
information was lacking on other topics ( 20 ), including bleeding and 
plastic cracking, and the influence of slag content and composition 
and curing environment, upon the modulus of elasticity.

The author observes that:
In general, research conducted on the Continent has used 
blended cements formed by intergrinding, whilst work in the
United Kingdom has used within-mixer blends containing
GGBS from just one source.
Previous work on cement replacements has avoided applying low 
curing temperatures continuously from casting.
Most guidance on mix design and formwork striking and curing 
times originates from research on Portland cements.
There is little published work on the effect of GGBS upon 
non-destructive test parameters.

Scope 

The Academic Input

The academic requirement for the project was that it should 

produce a package of research suitable for completion within two 
years, and the experimentation and the formulation of conclusions 
should be as objective as possible. The proposed title of the project 
confines it to an investigation of the workability and maturity 
properties of concrete containing GGBS. The term workability covers a 
number of characteristics of concrete when fresh; the maturity 
properties characterize the hydration and hardening of concrete. The 
project therefore encompasses the performance of concrete from the 
fresh to the hardenend states, but excludes long-term considerations 
such as creep and shrinkage.

To comply with the academic requirements the number of mixes

a)

b)

c)

d)
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in the main programme of research were not to exceed one hundred, a 
broad base of experimental techniques were to be included, and the 
experimentation was to have a factorial design. These elements will 
now be considered in more detail.

The adoption of alternative techniques for measuring 
properties allow trends to be collaborated and patterns in the 
behaviour of the various test methods to be formed. The test methods 
chosen for the main programme of research were as follows:

1) Workability was to be assessed subjectively and using the
slump, compacting factor and two-point tests. The number of 
workability test was limited by manpower to three. Choice of 
the compacting factor test over the Vebe test was a result of 
concern about the poor end-point of the latter test. The 
inclusion of a subjective assessment of workability was in 
recognition of the shortcomings of workability tests.

2) Strength of the concrete was to be assessed using compression
and indirect tensile tests. The compression testing of 
standard specimens is the most commmon compliance criteria 
for concrete. In certain cases, such as pavement
construction, the indirect tensile strength from splitting or 
flexure tests becomes important. Curing space was limited, so 
the compression and tensile splitting tests were to use 
100 mm cubes, and the beam for flexural testing was also used 
as a specimen for longitudinal ultrasonic pulse velocity and 
electrodynamic measurements.

3) The elastic properties of the concrete were to be assessed 
from the dynamic elastic modulus and ultrasonic pulse 
velocity. These parameters have the advantage of being non­
destructive. They have no fundamental connection with 
strength although UPV has found use on site in determining 
the comparative quality of concrete. When measured in 
conjunction with density these parameters can be used to 
calculate the dynamic Poisson’s ratio.
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In addition to the above, limited work was to be conducted 
into the hydration characteristics of each mix, using vacuum flask 
calorimetry and pulse velocity measurement at very early ages, and the 
potential durability, using water absorption measurements.

The factorial design, adopted for the experimental work, is 
very useful where a number of factors are being varied since it 
permits their individual and interaction effects to be quantified 
( 50 ). The technique requires factors to be kept constant or 
systematically adjusted to set levels. In the simplest designs each 
possible combination of levels of each factor must be obtained, with 
at least two replications. This leads to L^xL2xL^...x LnxR treatments, 
where L  ̂ is the in the number of levels of factor 1, and there are n 
factors and R replications.

3.3.2 The Industrial Input
The collaborating establishments (Frodingham Cement Limited, 

Scunthorpe, and Civil and Marine Limited, Purfleet) supply separately 
ground granulated blastfurnace slag for use in concrete. It was 
logical that this project would use GGBS supplied by them in within- 
mixer blends. Following a meeting with the collaborating 
establishments in January 1986 it was decided that the project should 
employ:

a) 3 cementitious contents of 200,300 and 400 kg/m
b) 3 replacement levels of 0,40 and 70% (by mass);
c) 2 GGBS types supplied from Scunthorpe and Purfleet;
d) 5 curing temperatures of 5,10,20,40°C;
e) 2 humidities (at 20°C); and

f) 5 ages for testing of 1,3,7,28 and 91 days.

It was also decided that a single ordinary Portland cement produced by 
Castle cement, Ketton and a fixed water-cement ratio should be used 
throughout.

The 3 cementitious contents, 3 GGBS levels and 2 GGBS types
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leads to eighteen mix designs (Section 3.3.1). In fact mixes 
containing 0% GGBS of the two types are identical, reducing the number 
of different mix designs to 15. Limits on the number of cube moulds 
meant that specimens for all the regimes could not be cast from the 
same mix. This fact, coupled with the logistical problems of handling 
five regimes simultaneously led to the work being divided into two 
parts (see Section 6.2). In the first part the curing temperatures 
were 40°C and 20°C, and in the second the temperatures were 10°C and 
5°C. With replication in each of the two parts the total number of 
mixes is sixty; well below the limit of one hundred mixes.

3.4 Objectives

3.4.1 Primary
The author considered that the five primary objectives of the 
study were to:

1) Observe the effects of GGBS type and level upon the 
workability, strength and elastic properties of concrete; and 
the influence of cement content, curing and age upon these 
effects.

2) Identify and quantify the effect of factors upon the 
workability and maturity properties measured, and isloate 
systematic trends and optimums in the the relationship 
between the response and control variables with regard to 

forming a predictive model.
3) Compare the patterns in behaviour and sensitivities of the 

alternative assessment methods, and where possible define the 
relationship between each.

4) Examine the usefulness of novel techniques for describing the 
hydration characteristics and potential durability.

5) Attempt to isolate the physical characteristics behind the 
mix constituents and proportioning which leads to the 

observed effects.
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3.^.2 Secondary
In response to observations within the main programme of

research it was decided to examine mixes and properties outside the
rigid factorial experimental design. Firstly, mixes were observed to
bleed and segregate in the two-point test (Section 5.2.2) and work was
undertaken to test the hypothesis that the change in torque during a
prolonged period of shearing was a measure of mix stability. Secondly,
well-defined trends in workability were observed when increasing the
GGBS level from 0% to 70%. To ascertian if these trends were
maintained 100$ GGBS mixes were produced at each of the cementitious
contents. Finally, the main programme of research adopted a constant
water-cement ratio. The sensitivity of the properties of the
different mix designs to adjustment of this ratio was investigated in

«a secondary study

3.5 Summary
In the main programme of research concrete produced at 3 

cement contents, 3 GGBS levels and 2 GGBS types, was to be cured under 
5 regimes and tested at 5 ages. The workability of the fresh concrete 
was to be assessed using British Standard methods, the two-point 
apparatus, and subjectively. The strength of the concrete in 
compression and indirect tension were to be evaluated. The elastic 
properties, ultrasonic pulse velocity and dynamic elastic modulus, 
were to be measured.

A summary of the investigation is given in Tab 3*5.
The main objectives of the work are to define the effects of

the mix proportions and constituents, particularly GGBS level and

* Hereafter the main programme of research and secondary study are 
signified by initial capitals.
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type, upon the workability and maturity properties of concrete, and to 
compare different methods of assessing the workability and mechanical 
properties. The major features of the work are the:

a) within-mixer blending of OPC with GGBS from two sources;
b) wide range of cement contents,GGBS levels and curing regimes;
c) broad base of assessment methods;
d) factorial experimental design; and
e) adoption of a constant water content.

Tab 3.5 : Summary of the Investigation

MAIN PROGRAMME SECONDARY WORK
100% GGBS Water
Mixes Sensitivity

Slump Slump Slump
FRESH AND Workability CF CF Two-point

Two-point Two-point
HARDENING
CONCRETE Hydration Vacuum flask * Pulse Velocity
PROPERTIES Characteristics Calorimetry at early ages

Strength Compressive Compressive
! Indirect Tensile

HARDENED
CONCRETE Elasticity Dynamic Modulus * Dynamic and
PROPERTIES Pulse Velocity Static Moduli

Durability Water Absorption
Potential

3 Cement Contents 2 Cement Contents
3 GGBS Levels 3 GGBS Levels
2 GGBS Types 2 GGBS Types

DESIGN 5 Ages 3 Ages
5 Curing Regimes 1 Curing Regime

Randomised Not randomised or replicated
Block

* Medium W/C ratio only 
! 28 and 91 days only
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4.1 Introduction
The purpose of mix design is to produce as economically as 

possible concrete with the required workability, hydration, strength, 
durability and aesthetic characteristics. Mixes were traditionally 
specified in terms of nominal volumetric proportions to facilitate 
site batching. However, the development of ready-mixed concrete was 
acknowledged in 1976 with the publication of BS 5328, the British 
Standard for specifying concrete. BS 5328 basically describes two 
classes of mix : ordinary prescribed mixes for building works and
designed mixes for larger construction projects. In ordinary 

prescribed mixes the mix design and constituents to be used are 
specified in the standard; the proportion of GGBS, for example, is 
restricted to 65%. In contrast, the designed mixes allow a wider range 
of materials to be used, and are usually specified only in terms of 
the workability and compressive strength. The compressive strength is 
often quoted as a grade; this being the target strength to be attained 

by 95% of the concrete supplied.
The author felt it appropriate that this investigation into 

the performance of GGBS concretes should adopt designed mixes, in 
which performance is of prime importance and GGBS level is 
unrestricted.

The process of mix design is dealt with in the following
sections.

4. 2̂ Constraints upon the design
The scope of the work in Chapter 3 places several constraints 

upon the design. Firstly, the factorial experimental design 
necessitates a systematic adjustment of factors if their effects are 
to be rigorously quantified. The adoption of performance levels either 
of workability or strength across a range of cementitious contents and 
GGBS levels could be difficult to maintain without combined changes in 
several factors, which would make analysis difficult. Such an approach 

would also have the disadvantage of preselecting assessment methods
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for workability or strength, the validity of which this investigation 
would, in part, be testing. Secondly, the inclusion of the two-point 
workability test favours the use of an uncrushed gravel with a maximum 
size of 20 mm as the coarse aggregate. Thirdly, the collaborating 
establishment recommended the use of: two slag types from sources at 
Scunthorpe and Purfleet; three cement contents of 200,300 and 400 
kg/m^; three replacement levels of 0,40 and 10% GGBS by mass; and OPC 

from Castle Cement, Ketton.
The final, and arguably the most important, constraint upon 

the mix designs was that they should be representative of those used 
in the ready-mixed concrete industry. To this end, a survey of mix 

designs and mix design methods was carried out.

4.3 Mix Design Survey

4.3.1 Mix Design Methods
A number of methodologies exist for optimising the mix 

proportions. All of these take a small amount of information about 
the materials, and using a simple basis predict (with varying degrees 
of success) their performance in combination.

The design process tends to be as follows:
1) Workability and strength fix the water and cement contents.
2) Durability requirements may override the values from (1).
3) Aggregate properties determine the amount of fine or coarse 

aggregate in the mix.
4) The unknown quantities can be determined by subtraction of 

the known volumes from one cubic metre.

Mix design methods published by the ACI,BRE, C&CA and Road 
Research Laboratory ( 51 , 52 , 53 > 54 ) were examined by the author. The 
approach taken by each method is represented in Fig 4.3*a. As the 
cement content changes, at least one of the other constituents is 
changed to maintain the same volume. None of the designs change all
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three remaining constituents. ’’Road Note 4” and ’’The Design of Normal 
Concrete Mixes” maintain a constant coarse aggregate content and 
water content respectively. The ACI and ’’Basic Mix” methods hold the 
contents of both water and coarse aggregate constant, adjusting the 
fines aggregate to maintain a constant volume of fines plus cement.

The numerical values obtained by applying the constraining 
factors to these mix design methods are shown in Tab 4.3.a.

4.3.2 Representative Designs
The author visited two ready-mixed concrete companies and also 

solicited the advice of two concrete technologists(55, 56,57,58). It was 
apparent that ready-mixed concrete companies did not operate using a 
design method but instead gathered information from site and ad hoc in 
the laboratory using locally available materials over a range of 
cement and water contents. From this information the batching books 
are compiled.

The four designs proposed for each of the three cement
contents are shown in Tab 4.3.b. For the 300 kg/m^ cement content mix
the water content shows a range of 160 to 170 kg/m-*, and the 
percentage fines ranges from 36 to 44. Two out of the four designs 
adopt both a constant water and coarse aggregate content.

Having ascertained that no design methods were universally
qemployed it was decided that a typical 300 kg/mJ mix , with a target 

slump of 70-80 mm should be used as the design base. The higher and 
lower cement content designs were to be formed by keeping a constant 
volume of fines plus cement, consistent with the ACI and Basic Mix
methods. It was provisionally decided to adopt a water content of 165
litres per cubic metre, and a percentage fines of 40. This produces 
the 0PC control designs represented in Fig 4.3-b. In order to 
determine if this mix would be satisfactory, recourse was made to 
trial mixes.
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Tab 4.3.a : Mixes suggested by the survey of Design Methods.

Fine Coarse
Cement Water Aggregate Aggregate W/C A/C %Fines

ACI Method (211.1-77 and 211.3--75) Slump 7 0 mm
200 185 855 1050 0.92 9.5 44.9
300 185 770 1050 0.61 6.1 42.4
400 185 690 1050 0.46 4.3 39.6

Road Note 4 (Hughes Modification) Medium Workability
200 * 165 780 1220 0.84 10.0 38.9
300 160 710 1220 0.54 6.5 36.8
400 170 610 1220 0.44 4.6 32.4

Design of Normal Concrete Mixe6 Slump 30-60 mm

200 180 880 1120 0.90 10.0 44.0 *
300 180 720 1180 0.60 6.3 38.0
400 180 630 1170 0.45 4.5 "35.0

Basic Mix Method ! Slump 50-75 mm

200 180 705 1220 0.90 9.6 36.6
300 180 620 1220 0.60 6.1 33.8
400 180 540 1220 0.45 4.4 30.6

* Extrapolated valuesi Fine aggregate replacement of cement by volume
extended from the Basic mix to give these proportions

Note:- The properties used in the design calculations relate
to the materials employed for the trial mixes

Tab 4.3.b : Mixes suggested by the survey of Industry.

Batch Quantities (kg/m3)

Fine Coarse
Target Slump Cement Water Aggregate Aggregate w/c A/C %F ines

200 170 895 1030 0.84 9.6 46.5
300 170 800 1030 0.57 6 . 1 43 . 6

80 mm 400 175 710 1050 0.44 4.4 40.4
200 165 890 1120 0.82 10.0 44.2
300 165 805 1120 0.55 6.4 41. 8

50 mm 400 165 720 1120 0.41 4.6 39 . 2
200 180 810 1190 0. 90 10. 0 40. 5
300 160 710 1240 0.54 6.5 36.4

50 mm 400 170 615 1250 0.43 4.7 33 . 1
200 175 830 1130 0.88 9.8 42. 2
300 165 745 1160 0.55 6.3 39 . 1

65 mm 400 175 655 1150 0 . 44 4.6 36 . 2
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4. 4 Trial Mixes
A series of trial mixes encompassing over eighty mix designs 

was undertaken, examining the effect upon compressive strength and 
workability of GGBS level and the water, cement and fines contents.

The study upon the effect of GGBS level confirmed that mixes 
designed for ordinary Portland cement should remain sufficiently 
workable for testing when GGBS was incorporated. The results of the 
study into fines and water contents are summarised in Fig 4.4.a. The 
dashed lines indicate the lower and upper levels of workability for 
testing in the two-point apparatus and slump test respectively. It can 

be observed that use of 165 kg/m^ water content and the proportioning 
in Fig 4.3.b gives rise to a slump in the medium cement content mix of 
approximately 70 mm. The workability at the other cement contents 
falls within the acceptable range so the designs were deemed 
satisfactory.

The 200, 300 and 400 kg/m^ mixes would be expected to achieve 
strengths of 25,50 and 65 MPa respectively, at the adopted water 
content (see Fig 4.4.b), corresponding to compressive strength grades 
of C13» C40 and C55 for an assumed standard deviation of 5.5 MPa.

In the complementary work (see Section 6.2) 100% GGBS mixes 
were produced at the three cementitious contents, and the 300 and 400 
kg/mJ cementitious content designs were repeated at low, medium and 
high water-cement ratios of : 0.50, 0.55 and 0.60; and 0.36, 0.41 and 
0.46 respectively.
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5.1 Introduction
This chapter gives background information on the test 

methods used in the investigation. The methods fall into one of three 

categories:
subjective - associated with a particular assessor;
empirical - associated with a particular piece of equipment; and
fundamental- associated with a particular theory.

The emphasis in the background information is on a 
description of novel test methods. British Standard test are 
accompanied by an appropriate reference, and fundamental tests are 

accompanied by their theoretical basis.

5.2 Workability Assessment

5.2.1 British Standard Tests
The key role of workability in influencing the hardened 

properties of concrete has already been discussed (Section 2.3). The 
slump and compacting factor tests (BS 1881, Parts 102 and 103 
respectively) are empirical in nature and primarily assess the ability 
to place and compact fresh concrete. Other characterisitics of the 
concrete ,such as propensity to bleed and suitability to pump, may be 
important depending on job. Although it is unrealistic to expect a 

workability test to adequately assess all these aspects, it should be 
able of define the flow behaviour of concrete under the different 

working conditions encountered.
The relationship between shear stress and rate in concrete 

has been found to be approximately linear, as proposed in the Bingham 
model. Tattersall observes that in order to define this relationship 
for any concrete the shear stress at two shear rates must be known. 
Individually, the British Standard tests, which only operate at a 
fixed shear rate are inadequate, so Tattersall has developed a 

suitable two-point test ( 59 ).
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PLATE J_
The two-£olnt aEgaratus O M  mode,, fitted with a pressure transducer).
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5.2.2 The Two-Point Apparatus
In the two-point test concrete contained within a cylindrical 

bowl is sheared by an impeller driven by an electrical motor operating 
through a hydraulic transmission (Plate 1). The hydraulic 

transmission, in addition to allowing the impeller speed to be 
infinitely varied, provides a simple method of impeller torque 
measurement. The pressure generated in the transmisson is displayed on 
a gauge and its value, net of pressure produced under machine idling, 
can be related by calibration to impeller torque (Fig A.1.a).

The relationship between impeller torque (T) and impeller 
speed (N) can be approximated by the linear equation

T = g + hN,
where T and N are respectively analogous to shear stress and shear 
rate, and the constants g and h are respectively analogous to yield 
stress and plastic viscosity in the Bingham model. Although it is 
possible to calibrate the apparatus using a Bingham plastic, this was 

outside the scope of the investigation ( 59 ).
A two-point apparatus manufactured by Tremix Engineering 

Limited, and operated in the LM mode for low to medium workability 
concretes, was used throughout the investigation. The author 
considered that there were several problems with the equipment:

a) The oil snubber in the hydraulic line caused an excessive 
amount of lag in the response of the pressure gauge. This was 
especially evident when calibrating the machine. The snubber 
was therefore removed from the hydraulic line and replaced by 
a needle-valve which permitted the degree of damping to be 

readily adjusted.
b) Significant idling pressure changes with machine running 

was a potential source of error in the calculated values of 
net pressure. The changes in idling pressure and oil 
temperature under different operating conditions were 
recorded (Figs A.1.b and A.1.c). This led to the 
recommendation to run the apparatus for 30 minutes before
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tests,at the highest speed employed, and maintain this speed 
between tests.
The fluctuation of the needle of the pressure gauge when 
testing concretes of low workability hampered the choice of a 
representative pressure value. A pressure transducer was 
attached to the hydraulic system, and this in turn connected 
to a computer sytem capable of recording and analysing these 
pressures (Fig 5.2). Further details of this development are 
given elsewhere ( 60 ).
Segregation of the sample during the test was characterised 

by the formation of a dewatered layer at the base of the bowl 
and a deviation from linearity of the speed-torque 
relationship. It was decided that the number of rotations of 
the impeller in each test should be reduced by limiting the 

duration at each speed, and biasing the speeds to lower 
values.
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Fig 5.2 : The pressure transducer system.



Each two-point test requires a 40 kg sample of concrete. A 
sequence of nine impeller speeds (speed settings 6,5,4,3-5,3,2.5,2,1.5 
and 1) was employed by the author. A further speed setting of 6 was 
introduced later to test the hypothesis that torque change after a 
period of shearing could be used to assess the mix stability. The time 
at each speed is 20 seconds. During this time the speed of the 
apparatus is measured using an optical tacometer and total pressure 

readings are taken at the rate of four per second using the pressure 
transducer. The idling pressure at each speed are recorded before and 

after each test.
A computer program in Section D.1 rapidly faciliates the 

conversion of the pressure values and coupling speeds to impeller 
torque and speed, and the regression of the latter to give the values 

(and confidence intervals) of g and h.

5.2.3 Subjective Assessment
The subjective assessment of workability has been tried out 

by several workers ( 61 ). Its popularity as a method of judging 
concrete on site, despite its dependence on the skill and experience 
of the assessor, underlines the shortcomings of the British Standard 
tests.

A crude assessment, early in the Main Programme, of the 
consistency of the mixes, on a scale proposed by Tattersall ( 61 ), was 
developed in blocks 2 to 4 of the Main Programme to include a 
subjective assesmment of the ’bleeding’ and ’cohesion’. The 
assessment, made during the slump test by the same technician, was on 
a scale of 0 to 10; where low marks indicate low bleeding or unstable 
mixes and high marks indicate high bleeding or sticky mixes 
respectively.

5.3 Hydration Characteristics
Two methods of assessing the hydration characteristics were 

used : vacuum flask calorimetry and pulse velocity measurement. Both
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these methods have advantages over the determination of the heat of 

hydration to BS 4550 in that they:
a) operate on concrete;
b) do not require an adjustment to the mix proportions; and

c) are relatively simple to carry out.
5.3.1 Vacuum Flask Calorimetry

The sample under test is simply sealed within a domestic 
vacuum flask and its temperature is monitored. The thermal system lies 
between the isothermal and adiabatic because as the temperature within 
the flask rises heat is lost at a rate governed by the insulating 
characteristics of the flask and the temperature differential.

The technique has been used in industrial research to rank 
blended cements according to their heat of hydration. The relationship 
between the vacuum flask method and standard method of determining 
the heat of hydration has been reported by others ( 62 ).

Two types of wide-mouthed vacuum flask were tried. A flask 
with integral, rather than separate, outer and inner plastic shells 
was found to be easiest to handle. The flask containing approxiamtely 
2 kg of compacted concrete is capped by a pierced rubber bung. A 
thermocouple wire in a plastic sheath is then inserted through the 
bung till its tip is mid-depth in the sample (Fig 5.3.a). A computer 

based temperature monitoring system, incorporating a 0°C reference, 
was developed to record the thermocouple temperature. The monitoring 
is usually at 20 minute intervals and is continued for at least ten 
hours after the peak temperature is attained.

Two vacuum flasks were used per mix and all the work was 
carried out in the relative humidity control room at 20°C.

The cooling curves for each flask can be used to calculate 

the cummulative heat loss, which when added to the observed 
temperatures produces an apparent adiabatic temperature (Section 

C.3.1). This is only a first-order correction since it does not take 
into consideration the effect of temperature upon the hydration 

reaction ( 1 6 ).
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5.3*2 Pulse Velocity measurement at very early ages
The chief difficulties with measuring the pulse velocity in 

immature concrete are:
a) the severe attenuation of the pulse;
b) the need to achieve and maintain good contact between the 

transducers and the concrete as it bleeds and shrinks, whilst 
avoiding damage to the specimen; and

c) the sensitivity of the equipment to external vibrations.

Several researchers have successfully used the technique. 
Elvery and Ibrahim ( 63 ) used horizontal spring-mounted transucers
bearing on the ends of a beam, still within its mould, to record the 
UPV from six hours onwards. They related these measurements to the 
compressive strength at different ages to see if the velocity could be 
used for predicting formwork striking times and the 28-day compressive 
strength. Van Der winden and Brant ( 64 ) used vertically mounted 
transducers, bearing by gravity on the upper and lower surfaces of a 

concrete frustrum, to record the UPV of fresh concrete (1 to 24 hours) 
containing plasticising and retarding additives. These measurements 
were used to judge the end of workability and the time for 
slipforming, in connection with construction of the Dunlin offshore 
platform.

A system similar to Van der Winden and Brant’s was developed 

by the author using 50 kHz transducers aranged above and below 
approximately 1.5 kg of concrete, fully compacted within a conical 
mould (Fig 5.3.b). Contact between the transducers and the concrete is 
obtained by applying a coupling agent to the transducers and a mass to 
the cover plate; the contact being maintained by gravity.

The continuous transmission of pulses through concrete is 
thought to affect the development of mechanical properties, so a 
timer was used to turn the equipment on and off at intervals. The 
system includes an external amplifier to boost the received signal 
during the first two hours and a chart recorder connected to the
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PUNDIT set to record the transit time. Vibration of the equipment was 
reduced by placing it on a foam mat and inserting a foam strip 
between the mould and the cylindrical stand. Upon completion of the 
test the transit time can be converted to a pulse velocity by 
measuring the path length through the specimen using calipers.

All the work took place in a controlled environment at 20°C 
and 60% relative humidity.

5.4 Mechanical Properties
The author opted to divide the tests into those assessing 

strength and those assessing elastic properties. An equally valid 
classification would be that of destructive and non-destructive tests.

The compressive strength of standard cured specimens is the 
most widespread quality control parameter applied to concrete. 
The parameter is not fundamental, nor does it represent the intrinsic 
strength within a structure. An indication of the latter is given by 
non-destructive parameters such as the ultrasonic pulse velocity. The 
pulse velocity is usually used comparatively, although the compressive 
strength may be predicted providing a suitable calibration has been 
carried out.

5.4.1 Strength
The strength determination of concrete is carried out using a 

compression machine capable of applying force to the specimen at the
required rate, and displaying this force with the prescribed

accuracy. The author used an Avery Denison 7226CB with an automatic 
loading rate control. The machine has a 3000kN capacity direct 
crushing facility for testing concrete cubes and a 1000 kN capacity
transverse unit for testing beams in flexure, or weak cubes. The

loading of the specimens followed the apppropriate British Standards 
with the loading rate set at the centre of the specified range.

Two measures of indirect tensile strength were obtained by 
splitting cubes and testing beams in flexure (BS 1881 : Parts 117 and
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118). The flexural test is based on elastic theory and, for a downward 
load, assumes a maximum tensile stress at the lower face of the beam. 
The splitting test is based on obtaining a biaxial state of stress 
under narrow strips of loading either side of the specimen. This 
comprises a localised compressive stress zone adjacent to each strip, 
and running between these zones a plane of tensile stress which leads 
to splitting across the specimen.

In practice the stress block based on elastic theory is not 
strictly applicable in the flexure test due to redistribution of 
stresses and as a consequence of this the values are higher than would 
be obtained in splitting or direct tension.

5.^.2 Elasticity

The ultrasonic pulse velocity and dynamic elsatic modulus 
have advantages over the destructive strength tests in that, they 
allow a repeated measurement on the same specimen and have a 
fundamental basis in elastic theory.

E0(J = fV2 (1+p) (1-2p)

(1-V>)
Where:
E__ is the dynamic elastic modulus (GPa);uq

V is the ultrasonic pulse velocity (km/s)
f is the density (kg/m^); and
p is the Poisson’s ratio.

The pulse velocity is determined by measuring the time of 
transit of high frequency pulses of sound through a specimen, along a 
path of known length (BS 1881 : Part 203). The pulses are produced and 
received by transducers of a set frequency. 54 kHz transducers produce 
a pulse which is robust to the attenuation arising in immature 
concrete or over long path lengths. 200 kHz transducers, because of 
their smaller size and wavelength, may be used for cicumscribed work.
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The author used the 54 kHz and 200 KHz transducers for measurements 
through cubes and beams respectively. These transducers were connected 
via coaxial cables to a CNS Electronics PUNDIT Mk IV, giving a digital 
display of transit time.

A system for underwater pulse velocity measurement was 
modified by the author. In this technique cubes are positioned 
underwater on a rubber block between 54 kHz sealed transducers. By 
recording the transit times with and without the cube the pulse 
velocity through the concrete can be calculated (Section C.2.2). The 
technique, in addition to being more rapid than conventional 
measurement in air, eliminates acoustic coupling gels and surface 
abrasion.

The dynamic elastic modulus of concrete is determined from 
the resonant frequency of the fundamental mode of longitudinal 
vibration in a beam (BS 1881 : Part 5). In long thin rods this 
resonant frequency (n) is related to the dynamic modulus and density 
(f) of the concrete by the equation

where L is the length of the specimen.

The author used a Cawkell Electrodynamic Materials Tester 
Type SCT4. A computer program incorporating a calibration 
relationship and the above equation was used to convert the dial 
setting, from the apparatus, to a modulus.

The static modulus is determined from stress and strain 
measurements on a 150 mm diameter and 300 mm long cylinder. Despite 
several cyles of loading (BS 1881 : Part 121) prior to testing the

static modulus is always slightly lower than the dynamic modulus due 
to creep.

5.5 Potential Durability
In immature concrete the capillary pores are largely 

unsegmented, facilitating the ingress of aggressive agents in solution 

or as gases. As hydration proceeds the capillary pores are blocked by
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its products. The water absorped under capillary action is therefore 
an indication of both the extent of hydration and the potential 
durability.

The British Standard water absorption tests are the simple 
immersion method (BS 1881 : Part 122) and the Initial Surface
Absorption test (BS 1881 : Part 5). The latter test were considered 
too involved for use in this investigation, so attention was 
concentrated on the immersion method. This method, although simple, is 
empirical and has been criticised because of its sensitivity to the 
maturity of the concrete and the entrapment of air ( 65 ). The author 
modified a test for bricks, so that the complete contact of the 
immersion method was replaced by end-contact only. The method has the 
advantages of : reducing the air entrapment; allowing absorption to 
be measured through a chosen surface; and being less empirical than 

the standard method.
A core, 75mm in diameter and trimmed to 80 mm in length, is 

dried in and oven at 105°C for 48 hours and cooled for a futher 24 
hours. The core is weighed to the nearest 0.1g and placed trimmed end 
down on a stiff foam pad in a container of water. A mass is placed on 
the top of the core to ensure a good contact with the foam, and the 
container is sealed to restrict the evaporation of water. The mass of 
the core, after removal of excess water, is recorded at 60 minutes 
(this was found to be an optimum time, beyond which some cores became 

saturated).
pThe water absorption in ml/m .s is calculated by dividing the 

mass of water absorped, by the time of absorption and the area of 

contact (Section C.3.3).
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CHAPTER 6

EXPERIMENTAL PROGRAMME AND MATERIALS
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6.1 Introduction
In the three preceeding chapters the basic scope of the 

research in terms of the mix designs and test methods was followed by 
a more detailed appraisal of each of these elements. The first part of 
this chapter deals with the programme of mixing and the nature and 
regularity of supportive testing, for example, upon the constituent 
materials. It is the characteristics of these materials which are 
covered in the latter part of the chapter.

6.2 Experimental Programme

6.2.1 Mix Notation
A summary code was devised for the mix designs, together with 

a number to facilitate randomisation. These are shown below for the 
Main Programme of research.

2S0 1 3S0 4 4S0 7
2S4 2 3S4 5 4S4 8

2S7 3 3S7 6 4S7 9
2P4 10 3P4 12 4P4 14

2P7 11 3P7 13 4P7 15

This code was extended for the complementary work to include four 

components in sequence:
1) 2,3 or 4 denoting the 200, 300 and 400 kg/m^ cement contents;
2) S or P denoting the slag sources Scunthorpe and Purfleet;

3) 0,4,7,10 denoting the 0,40,70 and 100% GGBS levels; and
4) L,M or H denoting the low, medium and high w/c ratios.

6.2.2 Main Programme of Research
The research has a randomised block design in which each of 

the fifteen different mix designs is cured under five regimes and 
tested at five ages, this being replicated twice.
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The number of specimens made from the same batch of concrete 
and the number of specimens made on the two days available each week 
for mixing was limited by the mixer capacity, number of cube moulds, 
and accumulation of hardened concrete testing.

The author decided that in order to comply with these 
restrictions, and reduce the logistical problems associated with 
simultaneous use of a large number of regimes the work should be split 
into two parts. In Part 1 of the Main Programme each of the fifteen 
mix designs were made in a randomised order and cured underwater at 

40°C and 20°C, and cured in air (60% relative humidity) at 20°C. This 
procedure was then repeated to give two independent blocks of results. 
In Part 2, these medium curing temperatures were replaced by low 
temperature curing underwater at 10 C and 5°C. This design is 
represented in Tab 6.2.a.

The need to be able to demould the cubes following the first 
mix each week, to release more moulds and curing tank space for the 
second mix, meant full randomisation of the mix designs was 
impractical. Instead the designs were divided into higher and lower 
strength mixes and randomised within these groups. Higher strength 
mixes were produced first each week, followed by the lower strength 
mixes.

The initial programme of mixing is shown is shown in Tab

6.2.b. Unfortunately, there was a loss of specimens during the work. 
Specimens from six mixes were lost due to the failure of an electrical 

relay serving the 40°C tank, and four beams cured at 5°C were broken 
during stripping. Replacement specimens were manufactured at the end 
of Parts 1 and 2 of the work respectively.

6.2.3 Complementary Work
In Chapter 3 it was mentioned that was provision for 

complementary work outside the rigid factorial experimental design 
(Tab 3.5).

The 100% slag mixes were produced at the end of Part 2 of the
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Tab 6.2.a : The Experimental Design.

2OOXCOUJ

C m 2 Cm 3Cm 1

Ty 2Ty 1Ty 2Ty1Ty 2Ty 1

Rp 1 R p2 Rp3Rp3 Rp3 R p2Rp2 Rp1 Rp 2Rp3 Rp2 Rp1 Rp2 Rp3 Rp3
BkBk

(1 2)(10)
- Q O OC r- <

C m  -  Cemen t  C o n t e n t  (200,300,400 k g / m 3 ) 

Rp -  R e p l a c e m e n t  L e v e l  ( 0 ,1 ( 0 , 7 0 %  GGBS) 

Ty -  S l a g  Typ e  

Bk -  B l o c k  Number

0  -  Common OPC C o n t r o l  M i x  R e s u l t s

Tab 6.2.b : Initial Programme of Mixing

MIX DESIGNS
Part 1 - 1986 Part 2 - 1987

Block 1 Block 2 Block 1 Block 2
(July) (September) (February) (April)

* 13 15 8 4
* 4 7 1 1
* 9 5 12 13
* 8 10 ! 3 12
* 5 2 4 6
* 7 8 15 14

6 13 11 9
12 12 7 6
14 3 6 11
11 6 14 7
1 11 9 3
2 4 5 ! 15

10 14 ! 13 2
15 1 2 ! 5
3 9 10 10

* specimens incorrectly cured
! specimens broken

Month of starting each block is shown in parentheses
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Main Programme. The aim was to confirm the trends observed up to the 
70$ GGBS level, and discount the OPC source. Three cementitious 
contents were considered, giving rise to six mix designs. Only 
workability was assessed, because of the low rate of strength 
development likely in such mixes.

A Secondary Study was started in late 1987 to determine the 
effect of adjusting the water content. The 300 and 400 kg/m^ 
cementitious content mixes were produced at three water-cement ratios; 
the medium ratio corresponding with that adopted in the Main 
Programme. These 30 mixes used new deliveries of OPC and fine 
aggregate and the results were considered separately from those of the 
Main Programme. The workability, strength and elasticity were 
assessed.

6.2.4 Supportive Testing
These tests included calibrating the apparatus, testing the 

materials used and monitoring the curing regimes. The nature and 
frequency of the testing is indicated in Tab 6.2.c.

The practical nature of the work made it undesirable that all 
factors should be rigorously controlled. However, care was taken to 
ensure any variation in curing temperature, for example, remained 
within commonly accepted limits.

6.3 Materials

6.3*1 General
The cements and aggregates were sampled and tested according 

to BS 4550 and BS 812 respectively. In the case of the cementitious 
materials the samples were randomly selected from the drums, and each 
tested to produce an average result, representative of the whole. In 
the case of the aggregates an unbiased result was formed by testing a 
representative test portion of the aggregates formed by random 
sampling and riffling.
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Tab 6.2.c : The Nature and Frequency of Supportive testing.

Nature Methodology Frequency
CALIBRATION
Two-point Apparatus Spring Balance start/end
Temperature Monitoring System Mercury Thermometer start/end
Compression Testing Machine Proving Ring yearly
CHECKS
Speedy Moisture Meter Oven-drying* start/end
Electrodynamic Materials Tester Aluminium Bar every 3 months
Underwater Pulse Velocity Rig Cubes in air start/end
Split Cube Platen Dimensions Vernier Calipers every 2 months
MATERIALS
Aggregates
Particle Size Distribution Sieving every 8 months
Relative Density Gas Jar 2 samples
Free Moisture Content Speedy Moisture Meter each mix
Cementitious Material !
Fineness Rigden 12 samples
Consistence,Setting,Soundness 0,40,70% GGBS blends 2 samples
Chemical Composition X-ray fluorescence 3 samples
Particle Size Distribution Sedimentation 1 sample
TEMPERATURE
Fresh Concrete Electronic Thermometer each mix
Regimes 40°C wet Temperature start/end

20°C wet Monitoring System once
20°C dry Casella Hygrometer continously
10°C wet Electronic Thermometer daily
5°C wet Control Thermometer weekly

! Cementitious materials tested to BS 4550:Part 3
* Aggregates tested to BS 812:Parts 2 and 103
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The water used throughout the investigation was freshly drawn 
tap water supplied by the Yorkshire Water Authority.

6.3.2 Cementitious Component

Ordinary Portland Cement to BS 12 and two types of ground 
granulated blastfurnace slag complying with BS 6699 were supplied in 
single consignments at the start of the work by Castle Cement 
Limited, Ketton and the collaborating establishments respectively. 
They were stored in airtight drums until needed. Samples for physical 
and chemical testing were taken randomly from the numbered drums. The 
results of these tests are summarised in Tab 6.3.a.

It can be observed that the GGBS type 2 has the highest
specific surface area, followed by the GGBS type 1, and then the OPC.
The GGBS type 2 also has the higher chemical modulus, and therefore 
potential reactivity, of the two slags.

The particle size distributions shown in Fig 6.3 were 
obtained by x-ray sedigraph. Determinations by two other laboratories 
using both sedimentation and elutriation techniques displayed a 
consistent ranking of the materials (Tab A.1.a) but differed by up to 
eight percentage points in the cummulative percentage passing. In 
accordance with the specific surface area values the type 2 GGBS has 
particles which are finer and of a single size. The type 1 GGBS has a 
particle size distribution similar to the OPC.

The distributions can be summarised in terms of the Rosin- 
Rammler constants xQ and N ( 66 ) in the relationship

In In 100 = N (In x- xQ),
R

where R is the percentage greater than the particle size x in microns, 
and xQ is the particle size for R equal to 36.79%.

%  £
OPC 22.9 1.18
GGBS type 1 21.3 0.96
GGBS type 2 12.3 1.32
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Tab 6.3.a : Properties of the Cementitious Materials.

PHYSICAL OPC Slag Type 1 Slag Type 2

Colour grey
white

(greyish)
white 
(pinkish)

Rigden Fineness 
(m 2/kg)

378
(375-381)

406
(402-409)

452
(450-456)

Median Particle Size 
(microns)

16.5 13 .0 9.0

Oven-dried Relative Density 3.14 2 .89 2.91
Moisture Content (%) 0.4 0 .3 0.4

% GGBS in blend 0 40 70 40 70

Standard Consistence (%) 24.0 24.0 27 .8 27.8 31.1

Setting Time 
(minutes)

Initial 100 
Final 150

145
180

170
250

160 195 
210 275

Expansion (%) 1 1 2 0 0

CHEMICAL OPC Slag Type 1 Slag Type 2

Major Oxides (%) -
CaO 
SiO 2 
AI2O3 
MgO 
Fe203

64.5 - 
21.3 - 
4.9 -
2.7 -
2.8 -

66
21
4
4
2

. 0 38. 

.6 35. 

.9 10. 

.0 9. 

.9 0.

1 - 39.1 
1 - 36.0 
4 - 10.6 
4 - 9.6 
4 - 0.4

38.6 - 39.5
32.7 - 33.4 
11.1 - 11.3
8.9 - 9.2 
1.2 - 1.3

BS 6699 :1986 
Chemical Modulus 1.65 1.79

Tab 6.3-b : Supplementary Data from the Manufacturers.

PHYSICAL

Slag 
Type 1

Slag 
Type 2

BS 4550 :1978 
Compressive Strength 
of 70% GGBS blend

(MPa)
3-day
7-day

28-day
6.5

13.0
36.5

9.0 
20. 0 
42.0

CHEMICAL AND MINERALOGICAL
Slag 

Type 1
Slag 

Type 2
Major Oxides (%)

CaO 
SiO 2
a i 2o ,
MgO

40.7
36.7 
9.8 
9.2

40 . 5
34.5
11.5 
8.5

BS 6699 :1986 
Glass Content (%) Pure

Glassy
90
100 95

100
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The lower value of xQ and higher value of N for the GGBS 
type 2 confirms its finer and narrower particle size distribution. The 
lower value of N for the GGBS type 1 compared to the OPC indicates a 
wider distribution. The difference in the particle size distributions 
of the GGBS types could account for their differing water demands for 
standard consistence.

The lime to silica ratio of GGBS type 1 is 1.08 compared to 
1.18 for GGBS type 2. No mineralogical tests were carried out by the 
author. Work by others ( 30 ) on slags with similar lime to silica 
ratios indicates that GGBS type 1 will contain Melilite inclusions, 
whilst the type 2 will contain Merwinitic inclusions. The Merwinitic 

inclusions have the effect of promoting the reactivity of the 
surrounding glass (Section 2.5). It would be expected that the GGBS 
type 2 would, by virtue of its physical, chemical and possibly 
mineralogical properties, have a higher rate of strength development. 
Indeed, the standard strength data supplied by the manufacturers in 
Tab 6.3.b indicate this (although different sources of OPC were used).

6.3.3 Aggregates
One consignment of fine aggregate and two consignemts of 

coarse aggregate were used during the investigation. The fine 
aggregate is a Trent Valley sand conforming to a BS 882:1983 zone fM f 
or a BS 882:1965 zone 3. It was obtained from Newark,Nottinghamshire. 
The coarse aggregate is a graded Trent Valley gravel from Blaxton, 
South Yorkshire. It has a 20-5 mm grading, which is slightly deficient 
in 10 and 5 mm particles.

Although the source of the second delivery of coarse 
aggregate was the same as the first, some sieving to remove oversize 
material was carried out. The consistent grading of the coarse 
aggregate is witnessed by the small range in the cummulative 
percentage passing shown in the Tab 6.3*c.

The aggregates were stored in enclosed bunkers in an
approximately saturated surface-dry condition. Local drying at the
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surface of the fine aggregate was prevented by a polythene cover.

Tab 6.3.c : Physical Properties of the Aggregates.

GRADING

Fine Aggregate Coarse Aggregate
% Passing Blocks 1 - 4  % Passing

Blocks Block
Sieve Size Mean Range Sieve Size 1 - 3 4 *

5.00 mm 96.4 95.5 - 96.9
2.36 mm 84.4 82.6 - 85.8
1.18 mm 75.2 72.9 - 77.3 20 mm 99.4 94. 1 (99.6)

600 microns 62.3 60.9 - 65.8 14 mm 63.8 58.3 (61.7)
300 microns 12.0 9.6 - 17.6 10 mm 28.7 26 .4 (28.0)
150 microns 1.5 1.2 - 1.7 5 mm 1.8 0.9 (0.95)

BS 882 : 1965 BS 882 : 1983
Zone 3 Limits 20 - 5mm Limits

Sieve Size on % Passing Sieve Size on % Passing
5.00 mm 90 - 100 20 mm 90 - 100
2.36 mm 85 - 100 14 mm
1.18 mm 75 - 100 10 mm 30 - 60

600 microns 60 - 79 5 mm 0 - 1 0
300 microns 12 - 40
150 microns 0 - 1 0

DENSITY CHARACTERISTICS
Fine Aggregate Coarse Aggregate

Blocks 1 - 3  Block 4
Saturated Surface-Dry 2.65 2.63 2.63
Relative Density
Water Absorption (%) 0.8 0.6 0.7

* Values in parentheses are adjusted fractions
when oversize material has been removed
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7.1 Introduction
The previous two chapters dealt with the tests methods and 

the experimental programme. This chapter describes the daily 
procedure, from batching the fresh concrete through to testing the 

hardened concrete specimens. Particular attention is paid to the 
sequence and timing of tests. Any changes in procedure are indicated.

7.2 Batching and Mixing
OThe mixes were batched in a clean and dry 0.1mJ capacity 

mixer pan on 250 kg capacity Avery Scales. The total mass of solids 
batched was approximately 150 and 100 kg in Parts 1 and 2 of the Main 
Programme respectively. The batch masses per cubic metre are shown in 
Tab 7.2. Each constituent was added until the required cummulative 
mass was obtained to the nearest 0.2 kg. To improve the efficiency of 
the mixing the cementitious component was batched between half 

quantities of the aggregates.
In the Secondary Study the mass of solids was reduced to 

approximately 50 kg and the the cement was weighed separately to the 

nearest 10 g.

Tab 7.2 : Batch Masses for the Main Programme Mixes.

Mix Design Batch Quantities kg per cubic metre 
Number

Slag 
type 1

Slag 
type 2

WATER
Free

BLENDED 
OPC 

! 3.15
CEMENT
GGBS
2.90

AGGREGATES 
Fine Coarse 
2.65 2.65

GGBS
level
(%)

1 165 200 __ 855 1160 0
* W/C = 0.830£ 10 165 120 80 855 1160 40 A/C = 10.0
%Firies= 42.5

3 11 165 60 140 855 1160 70 %Paste=22.9-23.2

4 165 300 __ 770 1160 0
W/C = 0.55

5 12 165 180 120 770 1155 40 A/C = 6.4
%Fines= 40.0

6 13 165 90 210 770 1155 70 %Paste = 2 6 .1-26 . 6

7 165 400 __ 690 1160 0
W/C = 0.41

8 14 165 240 160 685 1155 40 A/C = 4.6
%F ines= 37.3

9 15 165 120 280 685 1150 70 %Paste = 2 9 .3-29 . 8

* W/C=Free Water/Total Cementitious Content 
A/C= Aggregate/Total Cementitous Content 

! Assumed oven-dried and saturated surface-dry relative densities
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The design shown in Tab 7.2 assumes 1^ entrained and the 
relative densities indicated. No adjustment of the batch masses of the 
aggregates for their moisture content was deemed necessary. However, 
the free moisture content of the fine aggregates was allowed for when 
calculating the water to be added (the coarse aggregate was assumed to 
be saturated surface-dry). Accurate allowance for the moisture content 
of the aggregates and the true relative densities of the materials 
gives rise to the proportions in Tab A.1.b.

The water to be added was weighed to the nearest 10 g and 
mixed with the solids for two minutes in a Liner Cumflow rotating pan 
mixer, with a forced impeller action. The concrete was allowed to 
stand for approximately 10 minutes before samples were taken for the 
workability tests.

7.3 Fresh concrete testing
The nominal time of the workability tests was 15 minutes 

after the addition of water. The actual timing is given below.
slump - first determination at 13 to 15 minutes and

second determination at 15 to 18 minutes 
compacting factor - 15 to 18 minutes
two-point test - idling pressures measured before and after

the test at 13 and 20 minutes 
In Part 2 of the Main Programme an additional speed setting 

of 6 (1.1 Hz) was inserted at the end of the normal sequence of speeds
in the two-point test to determine the change in resistance of the
concrete, brought about by the period of shearing.

The concrete from the workability tests was returned to the
mixer and subject to half a minute remix. Samples for vacuum flask 
calorimetry and pulse velocity measurement at very early ages were 
taken before and after casting the hardened concrete test specimens. 
Monitoring the temperature and pulse velocity started 30 minutes and 

around 60 minutes after mixing respectively.
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7.4 Specimen Manufacture, Curing and Handling
The casting of specimens started 30 minutes after mixing. 

In the Main Programme, twelve cubes and a beam were manufactured per 
regime. In the Secondary Study six cubes were produced for each mix, 
and an additional beam and cylinder were manufactured from the medium 
water-cement ratio mixes.

The 100mm cubes and 100x 100 x 500 mm beams were cast in two 
layers, each receiving 20 seconds of vibration. The 150 mm diameter by 
300mm long cylinder was cast in six layers with its axis vertical. A 
cover plate was then attached to its upper rim and it was vibrated 
with its axis horizontal. It was stored in this position till 
stripping.

In order to reduce the time taken for the specimens to reach 
the nominal curing temperature some moulds were preconditioned by 

heating to 40°C or cooling to 10° C, as appropriate. After casting the 
specimens were immediately transferred to their undemoulded curing 
conditions (Fig 7.4). The temperature at the centre of specimens was 
found to be within 10^ of the nominal curing temperature 100 minutes 
after mixing.

Demoulding of the specimens normally took place 16 to 24 
hours after casting. Each specimen was marked with: the date of 
mixing; the mix number prefixed by letters to indicate the origin; and 
a curing code consisting of the temperature and the letter W or D to 
denote wet or dry curing respectively. After marking, the specimens 
were placed in the main curing regimes.

7.5 Hardened Concrete Testing

The hardened concrete tests were carried out at 1, 3, 7, 28 
and 91 days, within a tolerance of a sixtieth of the nominal age, as 
follows:

a) pulse velocity (cubes) - two cubes underwater at each age
b) compressive strength - two cubes at each age
c) pulse velocity (beam) - one beam used at each age
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d) dynamic elastic modulus - one beam used at each age
e) splitting strength - two cubes at 28 days
f) flexural strength - one beam at 91 days
g) equivalent cube strength- two ends of each beam at 91 days
h) water absorption - one core at 95 days.
i) density - each specimen at testing

In the Secondary Study compressive strength was determined at 
1,7 and 28 days, and the dynamic and static elastic moduli were 

determined at 7 and 28 days.
The cubes were immersed in 20°C water for 15 minutes after 

removal from their respective regimes to standardize the temperature 
and surface saturation. Two pulse velocity measurements underwater 
were carried out through each cube and its mass in air was recorded to 
the nearest 10 g. The cubes were then tested in compression. In Part 2 
of the Main Programme the more sensitive transverse unit of the 
compression machine was used where strengths less than 2 Mpa 
(corresponding to a pulse velocity of 3-5 km/s) were anticipated.

The beam was removed from its curing regime. Three pulse 
velocity measurements were made along the beam, 25,50 and 75mm below 
the trowelled face using 200 kHz transducers. Where the transit time 
using this frequency of transducer was over 200 microseconds 
(corresponding to a velocity of 2.5 km/s) a single measurement was 
made using 50 kHz transducers instead. Without delay the beam was 
weighed in air and its dynamic elastic modulus determined. The beams 
was returned to their regimes within 30 minutes of removal.

To avoid inappropriate testing, no pulse velocity 
measurement was made on a beam when the corresponding pulse velocity 
through cubes was less than 3*3 km/s, and no electrodynamic 
measurement was made when a compressive of less than 1 Mpa was 

recorded.
After the non-destructive tests at 91 days all beams were

placed in water at 20°C for 24 hours to standardize the temperature
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and surface saturation. At 92 days (nominally 91 days) each beam was 
weighed in air and water to the nearest 1 g. After removal from the 
water each beam was immediately tested in flexure. The two portions 
of the failed beam were retained and tested in compression as 
equivalent cubes. The longest unbroken section of beam remaining at 
this time was drilled through its width to provide a 75mm diameter 
water absorption specimen. This specimen was tested at 95 days after 
drying.

In the Secondary Study the static modulus cylinder was fitted 
with demec spots 2k hours prior to testing using dental cement. After 
four cycles of stressing up to a third of the compressive strength, 
obtained from cubes, the cylinder was loaded to failure.

Although most specimens were stripped and tested without 
difficulty, some delays were experienced in low cementitious contents 
mixes and under low curing temperatures. These delays to testing are 
indicated in Tab 7.5.

Tab 7.5 : Effect of Curing on Hardened Concrete testing at 1 day.

Cementitious Curing Code
Mix Slag Content (kg/m )

Design Type OPC GGBS 40W 20W 20D 10W 5W
7 _ 400 0
4 - 300 0

14 2 240 160 - -

8 1 240 160
1 - 200 0 E V

12 2 180 120 E V
5 1 180 120 E V

15 2 120 280 E V
9 1 120 280 - - — — E V E V

13 2 90 210 - - — - - E V E V
6 1 90 210 — - - — E V E V

10 2 120 80 - - - - — E V E V C
2 1 120 80 - - - - - - E V E V C

11 2 60 140 - - E E E V E V C
3 1 60 140

“

E E E V E V C

Letters indicate tests not carried out 
E - Dynamic Elastic Modulus 
V - Pulse Velocity (beam)
C - Compressive Strength
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8.1 Introduction
This chapter has two main sections; the first deals with the 

results from the Main Programme , the second part relates to the 
Secondary Study. In each section there is a graphical account of the 
results, followed by a tabulated summary of the regression analyses. 
The strength and elasticity data from the Main Programme has been 
arranged into a comparison of medium curing temperatures (40 and 
20°C), different curing humidities (100/6 and 65% RH at 20°C), and low 
curing temperatures (10 and 5°C)

In general the graphs adopted solid, broken and dashed lines 
for the low, medium and high cementitious contents or GGBS levels,
respectively. The slag type was indicated by the number of dots
breaking a line or by shading of the symbols. The symbols 
corresponding to the low, medium and high cementitious contents were a 
circle, square or cross, and triangle or asterix, respectively.

8.2 Analysis of the results
It is worthwhile at this point to reiterate the three 

main objectives of the study:
1) To determine the practical and statistical significance 

of the effects of mix design factors (particularly GGBS 
type and level) upon the workability, strength and elastic 
properties of concrete.

2) To develop, where practically appropriate, predictive 
functions for the behaviour of slag cement concretes in the 
fresh and hardened states.

3) Examine the relationship between the assessment methods 
for the workability, strength and elastic properties.
To accomplish these objectives the raw test data was first 

processed to give the test parameters, which were then analysed. The 
analysis included graphical presentation, summary statistics, and 
where appropriate, regression analysis and analysis of variance.

An account of the processing of the results is given in Tab

81



8.2. Most of the calculations are adequately covered in the British 
Standards, however further explanation of the processing of the two- 
point test, underwater pulse velocity, water absorption and vacuum 
flask calorimetry data is given in Appendix C. For brevity raw test 
data is not supplied, however the processed results are detailed in 
Appendix A. A brief explanation of the statistical summary parameters 
and analyses are given in Appendix B.

Individual block results were used when plotting or 
regressing the relationships between test parameters. The effects of 
experimental factors were generally indicated using block means, with 
the block range giving a measure of the residual variation.

Some data was plotted on logscales or logarithmically 
transformed prior to statistical analysis. One consequence of 
transforming a variable is that associated residuals are effectively 

weighted according to their proportion of the variable. Transformation 
of data is discussed in Sections B.2 and B.3 of the Appendices.

Three maturity functions summarising the combined effect of 
age and curing temperature have been employed in this work. A limited 
comparison of two of them,the Sadgrove and Nurse-Saul functions 
(Section C.2.1) is given in Fig 8.3.3*k. Unless otherwise stated 
equivalent ages at 20°C were calculated using the Sadgrove function. 
The Arrhenius function was used to estimate activation energies for 
the different cementitious blends used (Section C.3.2).

Computers were used to store, process and analyse the 
experimental data. Programs were written for the BBC B+ microcomputer 

to control the sampling of pressure and temperature and to store and 
process this data. Salient elements of these program are given in 
Appendix D, together with examples of their output. The BBC B+ and IBM 
PC microcomputers were used for simple statistical analyses and for 
the manipulation and presentation of data. Regression analyses and 
anlyses of variance were carried out on the IBM 4341 mainframe 

computer using the Minitab and SPSSX ( 67 >68 ) packages.
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Tab 8.2 : Processing the test Results

Final
Parameter

Measured
Quantities

Processing

WORKABILITY
Slump 

to 1 mm
Length 

to 5 mm
mean of two determinations

CF 
to 2 dp

Mass 
to 10 g

ratio of partially and 
fully compacted masses

£
to 0.01 Nm 

h
to 0.01 Nms

Pressure 
to 1 lbf/in2 

Speed 
to 10 rpm

calculation and regression 
of impeller torque and speed

STRENGTH
Compressive 
to 0.1 MPa

Force 
to 0.1 kN*

Force/10 
mean of two determinations

Tensile 
Splitting 

to 0.01 MPa
Flexural 

to 0.01 MPa

Force 
to 0.1 kN

Force 
to 0.01 kN 

Volume 
to 1 ml

Force/15.7 
mean of two determinations

Force x 1500 
Volume

ELASTICITY
Dynamic 
Modulus 

to 0.1 GPa
Frequency 
to 5 Hz 

Mass to 10 g 
Volume to 1 ml

calculate density 
Density x (Frequency)2x 10

Pulse
Velocity

Time 
to 0.1 ps

nominal path length (mm) divided 
by time

to 0.01 
to 0.1 km/s

Beam
Cube

mean of three determinations 
mean of two determinations

DURABILITY
Water 

Absorption 
to 0.01 ml/m2s

Mass 
to 0.1 g

Mass/15.9

* transverse mode testing
dp decimal places
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Results from the Main Programme

Workability

Figs <1>inJCOCO

Figs 8.3.1. f-g
Figs 8.3.1.h-l
Tab 8.3.1.a
Tabs 8.3.1.b-c

effect of cementitious blend 
relationships between the test methods 
mix stability 
polynomial model
relationships between the assessment methods
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8.3-1-a : Effect of GGBS level upon workability in the low

(200 kg/mJ) cementitious content mixes.
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Fig 8.3.1.b : Effect of GGBS level upon workability in the medium
(300 kg/m^) cementitious content mixes.
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Fig 8.3.1.c : Effect of GGBS level upon workability in the high
(400 kg/m^) cementitious content mixes.
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Fig 8.3.1.1 • The relationship between hardened concrete homogeneity, 

indicated by variation in ultrasonic pulse velocity 
and fresh concrete stability, indicated by torque 
change under shearing.

Tab 8.3.1.a : Coefficients from a polynomial model for workability.

Parameter GGBS Constant Cm Rp Cm x Rp Cm2
Type

Slump 1 -415
i

3.04
(mm) 2 -320 2.36

CF ! 1
2

657
503 I

1.70
2.83

g * 1 1609 -7.23
(Nm ) 2 1907 -9.27

h * 1 1871 -9.25
(Nms) 2 1568 -7.34

0 .3 >< 0 .001 X -0 .005 I 0 .879 22
si 1 .3 si 0 .005 \l -0 .003 V 0 .835 16

V 0 .3 X -0 .001 X -0 ., 002 V 0 .942 9
\J 2 ..3 sj -0 ..009 V 0 .. 004 si 0 ,. 894 18
V -13,, 3 i 0 ,. 035 V 0 ,. 010 si, 0 ,. 884 71
sj -15., 8 0 ,. 055 V 0 ,. 013 \l 0 . 829 108

i 4,.2 i -0 . 109 X 0 .013 V 0 .929 65
\I 0 . 4 V 0 .038 si 0 .010 V 0 . 849 69

72 Observations
! All values multiplied by 1000
* All values multiplied by 100
V Probability of significance 98% or higher

Cm Cement Content
Rp GGBS Level

93



Tab 8.3.1.b : Relationship between the workability 
assessment methods.

Linear y = ax + c
y X a c r df sig*

CF 
Ang. CF 

Slump 
CF 

Slump 
CF

1 Slump 
log Slump 

g h 
h 
g

0.001 
10.77 

-11.35 
-0.012 
-17 .6 

-0.014

0.885
56.50
102.5 
0.982
142.6 
0.976

0.766
0.803
0.508
0.489
0.666
0.696

58
58
58
58
58
58

> 99.8
> 99.8
> 99.8
> 99.8
> 99.8
> 99.8

y X a, a2 c r df sig*
Slump
CF
6

g h 
g h 
g

-11.45 
-0.014 
0. 042

-17.72
-0.012

179.6 
1. 028

0.841
0.853
0.872

57
57
59

> 99.8
> 99.8
> 99.8

Power y = axb

y X
Cement
Content a b r df sig*

Slump g low
medium
high

36.6
177.7
268.8

-0.352 
-0.833 
-1.083

0.625
0.910
0.914

18
18
18

> 99.0
> 99.8
> 99.8

s
1

(Slump) 
Arcs in0

-0.47
0.5

(CF)

* Probability that correlation is significant

Tab 8.3.1..c : Relationship between 
assessment methods

the mix stability

Linear y = ax + c df = 28

y x a c r s ig*
Bleeding Mark 
Cohesion Mark 
Bleeding Mark 

TTR (km/s)

Cohesion Mark -0.86 
TCH (Nm) -1.05 
TCH (Nm) 1.89 
TCH (Nm) 1.15

7 . £2 
7.61 

-1.60 
0.71

0.720 > 
0.564 > 
0.692 > 
0.771 >

99 . 8 
99 . 0 
99 . 8 
99. 8

* percentage probability that the correlation is significant
TCH Torque change during two-point testing, measured at 1.1 Hz
TTR Transit time range in the beam, measured at 28 days.
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8.3.2 Hydration

Fig 8.3.2.a 
Fig 8.3.2.b

peak temperature differential 
time to peak temperature
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8.3.3 Compressive Strength

Figs 8.3.3.a-c development with age
Figs 8.3.3*d-h pseudo three-dimensional plots
Fig 8.3.3.i relative to the control mixes
Fig 8.3- 3 -J relative to standard curing
Fig 8.3-3.k relationship with equivalent age

Tab 8.3*3 relationship with equivalent age
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Indirect Tensile Strength

Figs 8.3.^.a-d relationship with compressive strength
Tab 8.3.^ relationship with compressive strength
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(supplementary results included).
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Tab 8.3.4 : Coefficients in the regression analysis of Compressive 
Strength and Indirect Tensile Strength.

Relationship se a b r df Note

y = Splitting Strength (MPa) x = Compressive Strength (MPa)
0.395 0.882 0.971 28 40°C wet

Power 0.543 0.821 0.982 28 20°C wet
y = axb 0.143 1.101 0.947 28 20°C dry

0.629 0.921 0.976 28 10°C wet
0.242 0.964 0.982 28 5°C wet
0. 377 0.892 0.980 118 wet

y = Flexural Strength (MPa) x = Compressive Strength (MPa)

0.113 0.681 0.965 28 40°C wet
Power 0.142 0.594 0.912 28 20°C wet
y = axb 0.052 0.863 0.942 28 20°C dry

0.109 0.553 0.960 28 10°C wet
0. 094 0.822 0.898 28 5°C wet
0.114 0.693 0.926 118 wet

Note:- The compressive strength was assumed to be the dependent 
variable when regressing.
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8.3.5 Ultrasonic Pulse Velocity

Fig 8.3.5.a development with age
Figs 8.3«5.b-e relationship with compressive strength
Tab 8.3*5 relationship with compressive strength
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Tab 8.3.6 : Coefficients from the regression analysis of
Strength and Ultrasonic Pulse Velocity.

Relationship se a b,c r df Note

y = Compressive Strength (MPa) x = Pulse Velocity (km/s)

(Upper portion, UFV > 3.5 km/s)
2.30 2.09 0.961 144 40*C wet
0.87 2.31 0.985 128 20 “C wet

13.64 1.76 0.964 103 20*C dry
1.17 2.24 0.977 103 10*C wet
0.85 2.29 0.969 98 5°C wet

(Lower portion, UPV < 3.5 km/s)
0.266 0.78 0.995 2 40'C wet

Exponential 0.151 0.92 0.887 9 20-C wet
y = aebx 0.041 1.45 0.931 36 20*C dry

0.102 1.02 0.872 30 10“C wet
0.181 0.75 0.754 22 5 *C wet

(0PC Control Mixes, upper portion)
1.14 2.25 0.991 28 40°C wet
1.54 2.18 0.975 28 20®C wet

22.45 1.63 0.981 28 20-C dry
2.77 2.04 0.974 24 10'C wet
1.12 2.23 0.982 22 5°C wet

(Slag Mixes, upper portion*)
0.79 2.34 0.983 98 40 °C wet
2.45 2.08 0.958 114 20'C wet

22.93 1.63 0.980 111 20*C dry
0.81 2.33 0.979 77 10°C wet
0.75 2.32 0.963 74 5*C wet

y = Splitting Strength (MPa) x - Pulse Velocity (km/6)

Linear 0.42 4.24 -16.66 0.913 118 wet
y r ax + c 0.26 1.77 -5.79 0.930 28 dry

y = Flexural Strength (MPa) x = Pulse Velocity (km/s)

Linear 0.67 7.35 -29.37 0.847 118 wet
y = ax + c o.28 1.86 -5.53 0.942 28 dry

* Includes the lower portion results for 20'C dry curing. 
Note:- Coefficient a multiplied by 1000 for the upper portion.
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Fig 8.3.5.e : Compressive strength (logscale) against pulse velocity 
showing the regression relationships (upper portion).
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8.3.6 Dynamic Elastic Modulus

Figs 8.3.6.a-c development with age
Figs 8.3.6.d-g relationship with compressive strength
Figs 8.3*6.h-i relationship with stiffness constant
Tab 8.3.6.a relationship with compressive strength
Tab 8.3*6.b relationship with stiffness constant
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Tab 8.3-6.a : Coefficients from the regression analysis of 

Strength and Dynamic Elastic Modulus.

Relationship se a b,c r df Note
y = Compressive Strength (MPa) x = Dynamic Modulus (GPa)

8.2 1.76 -38.7 0.874 148 40°C wet
Linear 9.3 1.66 -33.2 0.880 142 20°C wet
y = ax + c 4.1 1. 13 -17.7 0.922 146 20°C dry

8.1 1.32 -23. 0 0.877 132 10°C wet
8.7 1.16 -18.7 0.844 121 5°C wet

(All Mixes)
0.762 0.089 0.976 148 40°C wet

Exponential 0.524 0.099 0.991 142 20°C wet
V  - a e b x 0.509 0.106 0.964 146 20“C dryy - ae 0.516 0.098 0.989 132 10°C wet

0.542 0.095 0.987 121 5°C wet
(OPC Control Mixes)

0.632 0.094 0.983 28 40°C wet
0.513 0.099 0.993 28 20°C wet
0.895 0.088 0.981 28 20°C dry
0.724 0.089 0.992 27 10°C wet
0.608 0.092 0.993 25 5°C wet

Tab 8.3.6.b : Coefficients from the regression analysis of
Dynamic Elastic Modulus and Stiffness Constant.

Relationship se a b, c r df Note

y = Dynamic Modulus (GPa) x = Stiffness Constant (GPa)
(upper linear portion, Stiffness Constant > 20 GPa)

0.86 1.09 -12.8 0.994 146 40°C wet
Linear 0.78 1.05 -11.2 0.996 134 20°C wet
y = ax + c 0.72 0.91 -2.6 0.996 141 20°C dry

1.17 0.99 -8.1 0.994 131 10°C wet
1.47 1. 04 -10.8 0.992 120 5°C wet

(all results)
1. 30 1.02 -9.5 0.992 544 wet

Power 0.219 1.34 0.984 544 wet
y = axb

133



8.3*7 Water Absorption

Fig 8.3*7*a 
Fig 8.3* 7*b 
Fig 8.3.7-c 

Tab 8.3*7

summary of the data
relationship with compressive strength 
relationship with BS absorption 
regression relationships
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Tab 8.3*7 : Coefficients from the regression analysis of the 
water absorption data.

Relationship se a b, c r df Note
y = Water Absorption (ml/m2s) x = Equivalent Cube Strength (MPa)
Power 2.35 -0.577 0.868 28 40°C wet
y = axb 4.46 -0.709 0.911 28 20°C wet

6.93 -0.815 0.943 27 20°C dry
2.04 -0.516 0.858 26 10°C wet
1.51 -0.435 0.831 27 5°C wet
4.65 -0.735 0.905 144 All Regimes

y = BS 1881 Water Absorption x = Absorption under end-
under immersion (%) contact (ml/m2s)

Linear 0.29 4.49 0.835 0.939 19
y = ax + c
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Results from the Secondary Study

Figs 8.4.a-b workability assessment
Figs 8.4.c-e pulse velocity profiles
Figs 8.4.f-g compressive strength
Fig 8.4.h relationship between strength and slump
Figs 8.4.i-k static modulus
Tab 8.M regression relationships
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Tab 8.4 : Coefficients from the regression analysis of the Elastic 
Moduli and Compressive Strength data.

Relationship se a b , c r df Note
y = Static Modulus (GPa) x = Compressive Strength (MPa)
Linear 2.70 0.284 
y = ax + c 2.97 0.280

20.4
20.3

0.833
0.811

18
14

All mixes 
Slag Mixes

Power 10.97 b 0.291 0.852 18 All mixes

y = Static Modulus (GPa) x = Dynamic Modulus (GPa)
Linear 2.09 0.951 -9.15 0.940 18 All mixes
y = ax + c 2.30 0.998 -10.86 0.892 14 Slag Mixes
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9.1 Introduction
This chapter follows the logical sequence of reporting the 

results adopted previously, that is: workability, hydration,
compressive strength, indirect tensile strength, ultrasonic pulse 
velocity, dynamic elastic modulus, and water absorption. The first 
part of the chapter discusses the results arising from the Main 
Programme of research, the latter part the results from the Secondary 
Study. Within each of the seven sections consideration of the effect 
of the experimental factors on the various test parameters is followed 
by an appraisal of the relationship between these parameters.

9.2 General
In discussing the results it should be bourne in mind that a 

constant water content was adopted throughout the work and that, in 
practice, mixes incoporating GGBS would be designed to have the same 
workability as their OPC equivalents.

The author, where possible, has considered both the 

statistical significance of the changes occuring, relative to those 
occuring by chance, and the practical significance of the changes, 
relative to levels which are significant, either economically, or 
when allowing for inherent variability, perhaps introduced by factors 
deliberately excluded from the work.

A factorial design was adopted for the Main Programme of 

research. Unfortunately both the design and data are flawed. The 
failure of the 40°C wet regime and the breakage of some specimens 
meant that eleven mixes were produced outside the original randomised 
order, to replace missing data. Significant block effects, whilst 
justifying the choice of a randomised block design, cast doubt both on 
the validity of replacing missing results and the adequacy of control 
of time-related factors. The design is distorted by the provision for 
a non-existent slag type effect at the 0$ GGBS level, and the use of 
duplicate results from the common OPC control mix.

For the sake of brevity some of the discussion is limited to
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selected ages and cementitious contents, or average trends over the
two GGBS types. Unless otherwise stated the trends discussed will be
representative of the whole of the data.

9.3 Main Programme

9.3*1 Workability
Workability is a general term covering a number of properties 

which for the purpose of this study may be summarised as : 
flowability, compactability and stability. The first part of this 
section deals with the flowability and compactability as assessed by 
the slump, compacting factor and two-point tests. The subjective 
assessment of stability, and its link with objective measurements on 
fresh and hardened concrete, is discussed in the later part of this 
section.

Figs. 8.3.1.a to 8.3.1.c show the changes in workability, as 
assessed by the four workability parameters, with GGBS level and type, 
for the three cementitious contents respectively. The arithmetic mean 
and range of the four blocks of available results are indicated by the 
lines and symbols respectively. The dotted lines above and below the 
OPC control mix results are BS 5328 tolerance limits for the British 
Standard tests, or equivalent rule-of-thumb limits for the two-point 
test (Section C.1.2). When the mean value of the results from the GGBS 
mixes falls outside these limits a practically significant change in 
workability from that of the OPC control, is assumed, indicated by an 
’s’ in the adjoining table.

9.3.1.1 Effect of GGBS level and type
At the low (200kg/m^) cementitious content both slag types 

have a similar effect upon workability. Slump and compacting factor 
rise consistently with GGBS level. This trend in workability is 
repeated in the g values which decrease significantly to approximately
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a third of the control mix value in the 70$ GGBS mixes. The difference 
in the g values of the two GGBS types is small, compared to the range 
present between the blocks of results. This range could be ascribed to 
the large amount of bleeding observed in the concrete prior to 
sampling. The value of h increases with GGBS level indicating, in 
contrast to the other workability assessment parameters, a decrease in 
workability. This increase in h, which is significant for GGBS type 1, 
suggests that at higher shear rates any beneficial effect of GGBS 
level would diminish.

At the medium (300 kg/m^) cementitious content some 
divergence in the performance of mixes made from the two slag types 
becomes apparent. At the 40$ GGBS level, workability, as assessed by 

the four parameters, increases slightly with slag type 1, and 
decreases slightly with slag type 2. At the 70% GGBS level the 
workability of the slag type 1 mixes is, according to all the 
parameters, greater than that of the control; significantly so in the 
case of slump and g. In contrast the slag type 2 mixes have a a lower 
workability than the control for all the assessment parameters; 
significantly so in the case of g.

In the high (400kg/m^) cementitious content mixes the 
divergent effect of the two slag types upon workability becomes more 
pronounced. Slump and compacting factor increase for slag type 1, but 
signficantly decrease for slag type 2 relative to the control, at 
both the 40% and 70$ GGBS levels. The latter effect is particularly 
marked for compacting factor, the mean value of which decreases from 
approximately 0.96 in the OPC control, to 0.84 in the 70$ GGBS type 2 
mixes. The two-point parameters confirm this trend in workability for 
slag type 2, but indicate that slag type 1 has little effect upon 
workability.

It was mentioned in Section 6.3.2 the particle size 
distribution of slag type 2 is finer and narrower than that of slag 
type 1. Sumner et al (66) investigated the influence of a narrow
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partice size distribution in OPC, due to more efficient grinding, upon 
the water demand of pastes and concrete. By grinding GGBS to normal 
and narrow particle size distributions they showed that, at least in 

pastes, the changes in water demand arose from a physical effect. A 
narrower distribution of particle sizes results in increased voidage, 
which in turn requires more water before lubrication is achieved.

9.3*1.2 Effective Fines Ratio

Figs 8.3-1.d and 8.3*1.e show the trend in the mean values of 
British Standard and two-point parameters respectively, with GGBS 
level and cementitious content. One block of results at the 100$ GGBS 

level have been included.
The trends in workability observed up to the 70$ GGBS level 

are generally maintained at the 100$ GGBS level. Increasing the levels 
of both slag types has a beneficial effect upon workability at the low 
cementitious content. At the high cementitious content, increasing the 
proportion of slag type 2 in the blend results in a decrease in 

workability. Lower than expected values of g and h in mixes of low 
workability may be attributed to the formation of a stable annulus of 
conrete adjacent to the impeller orbit, and a consequent reduction in 
the volume of concrete being sheared.

One possible explanation for the effect of GGBS level upon 
workability is the increase in the volume of paste in the mix when OPC 
is replaced, on a mass basis, by slag of a lower relative density. 

This change can be described in terms of the effective fines ratio 
(EFR), that is the combined volume of fine aggregate and cement 
divided by the volume of coarse aggregate.

The percentage paste and EFR are shown at the bottom of Fig

8.3. I.e. It can be observed that the value of the EFR is the same in 
the OPC control mixes, but rises from 88.5 to 91.2$ as a result of 

GGBS inclusion. Tattersall has suggested that replacement of OPC by 
GGBS may be sufficient to take the EFR through an optimum value for 

workability, thus explaining a transition in the effect of GGBS upon
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workability as the cement content changes ( 17). In the case of slag 
type 2 the optimum value of the EFR appears to be around 89.3$*

The effect of using 70$ GGBS upon workability is summarised 
below in terms of the water content adjustment in the OPC control mix, 
in litres per cubic metre, to produce a similar change in slump. The 
adjustments were obtained by applying the mean slump values to Fig
4.4.a.

Cementitious 
Content (kg/m^)

200 300 400
Slag type 1 +5 +6 +7
Slag type 2 +7 -2 -9

The maximum benefit of using slag is equivalent to an 
addition of about seven litres of water, whilst the maximum difference 
between the slag types is equivalent to 16 litres (approximately 10$) 
per cubic metre. The former value is in accord with the equivalent 5$ 
increase in water content suggested by Tattersall (Section 2.6.2), but 
is much smaller than the water reduction obtained by Moss (19) working 
at a constant nominal compacting factor, and employing slag from the 
same sources. His values confirm the extra water demand of the GGBS 
type 2, and indicate a 15$ difference in water demand between the two 
slags.

9.3*1.3 Statistical Deductions
As expected from the transition in the effect of GGBS level 

with GGBS type and cementitious content, the analysis of variance 
produced a significant interaction between these three factors 
(Section B.2.3). It was necessary to split the analysis by one of the 
terms present in the interaction, in this case cementitious content. 

The results of these analyses are summarised in Tab 9.3.1. The 
differences between the result of the analyses of variance on the 
transformed and untransformed data are small, and only the latter will
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Tab 9.3.1 : Summary of the 3-factor Analysis of Variance of
the Workability data, split by cementitious content.

Factor Cement Slump CF g h
Content (m m ) log a n g u la r (Nm) (Nms)

Cml ■ ■ I I A A
Rp Cm2 0 0 0 0 0 0

Cm3 0 0 I I I 1
Cml 0 0 0 0 0 0

Ty Cm2 I I I I I 0
Cm3 I I I I I 1
Cml 0 O 0 0 0 0

Bk Cm2 0 O ■ ■ 0 A
Cm3 0 O 0 0 0 0

Cml 0 O 0 0 0 0
Rp x Ty Cm2 ■ ■ A A A A

Cm3 □ □ A A A □
Cml 0 0 □ □ 0 0

Rp x Bk Cm2 0 0 0 0 0 0
Cm3 0 0 0 0 0 0
Cml 0 0 0 0 0 0

Ty x Bk Cm2 0 0 0 0 0 0
Cm3 0 0 0 0 0 0
Cml 0 0 0 0 0 0

RpxTyxBk Cm2 □ A 0 0 0 0
Cm3 ▲ A 0 0 0 0

Probability Significance
Level (%) Attributed

o > 2 . 5  None
O  ^ 2 . 5  Just
A  ^ 1 . 0  Moderate
M  ^  0.5 VeryA ^ 0 . 1  Extremely

I indicates where main effects are high but not 
proven because of significant interaction terms
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be discussed further. GGBS replacement level is the most persistently 
significant factor, both as a main effect and through interactions 
with slag type and block. A main effect of GGBS type could not be 
proven because of significant interactions. The prevalance of 
significant interactions vindicates the choice of a factorial 
experimental design.

At the low cementitious content, there is a single main 
effect of GGBS level in the slump, g and h data. A least significant 
difference follow-up study, equivalent to multiple t-tests, was 
carried out to determine whether the data from the GGBS levels were 
grouped in any way. The study (Section B .2. *0 indicates that 
significant differences only existed between the extreme GGBS levels 
in the slump data, whilst the g data from all three replacement levels 
was significantly different. It could be expected from the diverging 
effects of GGBS level for the two slag types, in the medium and high 
cementitious content mixes, that the Rp x Ty interaction would be 
significant. Indeed, this is so across all the parameters, even when 
tested against a significant Rp x Ty x Bk interaction.

At the medium cementitious content a significant block effect 
was detected in the compacting factor and h data. This indicates a 
systematic time-related effect upon the results. A least significant 
difference study indicates that mixes in block 3 were significantly 
less workable than those in the other blocks. This difference may be 
connected with the use in block 3 of coarse aggregate, near to the 
base of the stockpile, with a raised dust content, or the lower mix 
temperatures (Fig A.1.e).

The analysis of variance confirms that consideration must be 
given to the cementitious content, GGBS level and slag type when 
judging the probable effect of GGBS replacement of OPC upon 
workability. A more extensive consideration of the analysis is given 
elsewhere ( 69 ).

It seemed likely from a visual appraisal of the results , and 
from the work of others ( 70 ), that a polynomial model could be
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fitted to the workability data. A model was formed using the
quadratic, linear and interaction components of cement content and
GGBS level (Tab 8.3*1.a). The slag types were considered separately,
since it was felt that this qualitative term was unsuitable for

2incorporation into the model. The Rp term was not significant, and 
was therefore removed from the model, to yield equations such as that 
below .

slump = 2.36 Cm + 1.3 Rp + 0.005 (Cm x Rp) - 0.003 Cm^
The standard error on the observed workability parameters 

were small when taking into consideration BS 5328 tolerance limits on
slump and compacting factor of 25 mm and 0.06 respectively, and
standard error estimates for g and h of 0.9 and 0.6 respectively, from 
the analysis of variance. It can be observed that the linear Cm 
(cementitious content) and Rp (GGBS level) terms act to increase the 
workability, whilst their quadratic and interaction terms decrease it. 
As expected the Cm x Rp term is much more important in the model for 
slag type 2 than slag type 1.

Verifying the model with independent data is necessary, but 
outside the scope of this thesis.

9.3.1.4 Relationship between the British Standard and two-point test
parameters.

Tattersall ( 71 ), has suggested that a good relationship 
should hold between slump and g because both parameters relate to a 
state of zero shear rate. Fig 8.3.1.f seems to indicate that a single 
relationship will only be applicable over a limited range of 
cementitious contents. At low g values the points separate out, 
reflecting an increase in slump, at any value of g, with increasing 
cementitious content. This effect could arise from a transition in the 
relative importance of paste viscosity and particle interlock in 
determining slump and g, as cementitious content changes.

Fig 8.3-1 -g shows the relationship between compacting factor 
and slump. An approximately exponential relationship exists between
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these parmeters; slump becomes more sensitive at high values, 
compacting factor shows a reverse trend. The presence of a wide spread 
of results, particularly attributable to the high cementitious content 
slag type 2 mixes, indicates that a unique relationship between the 
parameters is unlikely. Logarithmic and angular transformation of the 
slump and compacting factor data improves their correlation, (Tab
8.3.1.b), and supports the adoption of these transformations in the 

analyses of variance.
Regression of the British Standard test parameters upon g and 

h indicates that the correlation between mixed shear rate tests, such 
as CF and g is unexpectedly higher than that between parameters with 
associated shear rates, such as slump and g (Tab 8.3.1.b).

The three curves obtained for the different cementitious 

contents in the relationship between slump and g may be described by 
power expressions (Tab 8.3*1.b). As the cementitious content 
increases the correlation coefficient of the relationship also 
increases, and there is a transition between an inverse relationship, 
with a power index of -1.08, to an approximately inverse square root 
relationship, with an index of -0.35. The latter is consistent with a 
parameter "S”, equal to slump proposed by Tattersall (71 ).
Regression of this parameter against g gave rise to the expression

S = 0.042 g,
with a much higher correlation coefficient than using slump, or by 
multiple regression of slump upon both g and h. Multiple regression of 
compacting factor upon g and h produced the relationship

Cf = -0.014g -0.012h + 1.028.
The constant term is similar to that obtained by Tattersall, but the 
coefficent differs. The latter can be easily ascribed to differences 

in the apparatus used.
There is no indication in Fig 8.3.1.h of a relationship 

between g and h, even within the cementitious contents. This confirms 
the power of the test, in that neither parameter is redundant. 
However, the similarity of the g and h values for the low cementitious
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content OPC control mixes and high cementitious content mixes 
incorporating 10% GGBS type 2 illustrates that these parameters, 
whilst independent, are not unique to a single mix design.

9.3.1.5 Mix Stability.
As stated previously (Section 5.2.3) an assessment of the 

bleeding and cohesion of each mix were made in blocks 2 to 4 of the 
Main Programme. Figs 8.3. 1.h and 8.3. 1.i show the subjective 
assessment marks for each mix located on a plot of h against g.

Considering bleeding first we observe that the highest and 
lowest marks were observed in the low and high cementitious content 
mixes respectively. There appears to be a slight tendency at the low 
cementitious content, towards higher bleeding marks in mixes with a 
high h and low g value; these mixes, containing 70 % GGBS, were from a 
practical viewpoint adjudged to be bleeding excessively.

The assessment of cohesion was made during the slump test.
Cohesion marks near to ten indicate mixes that were felt to be over-
cohesive, whilst marks near to zero indicate instability. It can be 
observed in Fig 8.3.1.i that a region of assessment marks around the 
ideal value of five is centred on g and h values of about 2.5 and 3.5
respectively. The lowest cohesion marks were awarded to the low
cementitious content mixes. The high cementitious content mixes 
displayed a trend to higher g values and cohesion marks with an 
increasing proportion of GGBS type 2; the 70% GBBS type 2 mixes were 
adjudged to be over-cohesive.

Similar findings to the above were made for flowing concrete 
containing superplasticizer, by Edmeades ( 72 ). He suggests that 
over-cohesion and segregation in flowing concrete is associated with 
high and low g values respectively.

Although the subjective assessment marks provide some 
additional information upon the mixes, which was not immediately 
apparent from any of the objective workability tests, it was 
recognised that they have the disadvantage of being very dependent on
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the assessor, the range of workabilities encountered, and the shear 
rate and time of the assessment. It was observed that some mixes 
segregated in the two-point test, and that this segration was 

accompanied by a a decrease in the resistance of the concrete to 
shearing, at a given speed. It was therefore logical to explore this 
phenomenon as a possible objective method of assessing the stability 
of mixes to segregation and bleeding ( 60 ).

Figs 8.3.1.j and 8.3.1.k show the subjective assessment marks 
of cohesion and bleeding respectively, against the torque change, at 
an impeller speed of 1.1 Hz, during a prolonged period of shearing. It 
appears that bleeding increases linearly with torque change, whilst 
cohesion displays a corresponding non-linear decrease, or inverse 
relation, with torque change. Regression analyses of bleeding and 
cohesion upon torque change produced significant correlations, at 

greater than the 99- 8% probability level in the former case.
The above suggests a link between objective and subjective 

assessments of mix stability. However, it was hoped that a 
confirmatory connection with the hardened concrete properties could be 
found. Tomsett suggests that the variation in UPV, for example in a 
column, provides some measure of mix bleeding and segregation ( 73 ) • 
During the Main Programme three measurements were made on each beam at 

different depths from the casting face. The author tried several 
methods to summarise this data, the range in the transit time of the 
ultrasonic pulse at the top and bottom of the beam being considered 

the most efficient. The mean value of this range at 28 days under 10°C 
and 5°C curing is shown plotted against the torque change in Fig
8.3.1.1. A relationship is suggested by this plot, and 
confirmed by the significant correlation coefficient in Tab 8.3*1.c. 
Thus links have been established between a subjective and objective 
assessment of fresh concrete stability, and an objective measure of 
hardened concrete homogeneity.
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9.3.2 Hydration

The temperature within a vacuum flask was recorded over a 
period of several days. From these measurements conclusions about the 
hydration characterisitics of each mix were drawn. Several statistics 
were used summarise the profiles:

a) time to peak temperature from casting;
b) peak temperature rise above that at casting;
c) peak temperature differential ( 27 ) relative to the ambient;
d) temperature rise coefficient, calculated as the rise per

100 kg of cementitious material (26);
e) arithmetic mean temperature over the first 24 hours; and
f) adiabatic temperature gain at 24 hours, corrected for heat

losses from the flask (Section C.3.1).

9.3.2.1 The peak temperature
In the vacuum flask calorimetry work the ambient temperature 

was 20°C (Section 5.3.1 ),and the casting temperature varied between 
20 and 16°C; consequently the temperature differential is generally 
higher than the temperature rise . The temperature rise values are not 
discussed further, but are presented in Tab A.2.3*a, together with the 
other summary statistics.

Fig 8.3.2.a shows the peak temperature differential plotted 
against the GGBS level. As the GGBS level increases the temperature 

decreases almost linearly. The temperature differential in the 10% 
GGBS mixes is approximately a third of that of the corresponding OPC 
control, at all three cementitious contents. The temperature rise 
coefficients in the 0, 40 and 70% GGBS mixes are approximately 4.4, 
3.0, and 2.1°C per 100 kg of cement.

In addition to reducing the peak temperature, the use of GGBS 
delays the peak. In the OPC control mixes the peak temperature occurs 
13 to 14 hours after casting (Fig 8.3.2.b). The time to the peak 
temperature appears to be constant or increase slightly in the 405& 
GGBS mixes. In the 7056 GGBS mixes the peak occurs 15 to 20 hours after
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casting at the medium and high cementitious contents. This delay to 

the peak in the 70$ GGBS mixes is more pronounced in the low 

cementitious content mixes, with the peak occuring 27 to 29 hours 
after casting.

No systematic effect of GGBS type upon the magnitude or time 
of the peak temperature could be detected. There were, however, some 
indications of slightly higher temperatures being generated in the 
slag type 2 mixes at the 70$ GGBS level.

This widely reported effect of using high levels of slag 
( 16,, 24, 26 ,62 ) means that the temperature gradients both in time 
and through the section are reduced because of the lower heat 
generated, the increased time to the peak, and the greater opportunity 
for heat dissipation. The peak temperature differential values, and 
the substantial reduction in these values with GGBS level, indicate 
section sizes less than 300 mm according to CIRIA Report 91 ( 27). In 
larger concrete sections the beneficial effects of GGBS, in reducing 
the risk of thermal cracking, may be absent.

9.3.2.2 The arithmetic mean and adiabatic temperatures
The effect of GGBS on the temperature profile is both to 

broaden, and lower the peak (Figs A.2.3.a to A.2.3»c). Thus, although 
the peak temperature is reduced by up to 10°C in the GGBS mixes 
compared to the corresponding OPC mixes, the mean temperature over the 
first 24 hours is only reduced by 6°C.

The first-order corrected adiabatic temperature gains in the 

OPC control mixes are approximately 19 ,27 and 38°C in the low, medium 
and high cementitious content mixes respectively. The latter value, 
and the temperature gain of 12.5°C in the corresponding 70$ GGBS type 
1 mix, are in general agreement with first-order corrected values of 

43 and 11°C, obtained by Atwell for a 390 kg/m^ cementitious content 
mix containing OPC and a blend of 70$ GGBS respectively ( 16).
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9.3.3 Compressive Strength

9.3.3.1 General Observations
Figs 8 . 3 . 3 . a to 8 . 3 . 3 . C  are multiple bar charts summarising 

the compressive strength development at each of the cementitious 
contents, under the five curing regimes. Each column in the charts 
relates to a particular GGBS-OPC blend. The compressive strength is 
represented by the height of the bars, which have been overlain for 
the different ages to show the gain in strength for the increments in 
time, indicated in the key.

Several trends are immediately apparent:
a) Compressive strength rises almost linearly with cementitious 

content. The strength values at the high cementitious content 
are approximately three times those at the low cementitious 

content.
b) At 1 day the compressive strength decreases almost linearly

with GGBS level. With increasing age and curing temperature 
this linearity breaks down, the 40% GGBS mixes showing a 
disproportionally high strength.

c) GGBS type has no consistent effect on strength across the
curing regimes at 1 day. At the other ages the GGBS type 2 
mixes are predominantly stronger than the corresponding type 
1 mixes.

d) The development of compressive strength at early ages
increases with curing temperature. At later ages the 
increments in strength under low curing temperatures equal or 
exceed those under medium curing temperatures. The 91-day 
compressive strength values increase with curing temperature 

up to 20°C, but fall slightly at 40°C.
e) At 1 day there is no consistent effect of curing humidity

upon the compressive strength. The gain in strength at the
other ages is much smaller under 20°C dry curing than under 

20°C wet curing, leading to a substantial reduction in the
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91-day strength.
To show graphically the effect of several factors and their 

interactions upon a chosen variable the results may be presented in a 
pseudo three-dimensional form proposed by McIntosh (74). In the 
following example compressive strength is plotted conventionally on 
the y-axis against age on the x-axis. The third dimension is created 
by shifting the origin along the x-axis a distance proportional to the 
levels of of the second factor; in this case GGBS level. The effect 
of age for each GGBS level is indicated by a solid curve. Dashed lines 
linking the results from the same age on each of these curves show the 
GGBS level effect. The GGBS level effect lines are approximately 
parallel at each of the ages. Converging or intersecting lines would 
signify a change in the GGBS level effect with age; or interaction 
between the two factors.

91 days

28 daysUJ

*-CD 7 daysLU> 3 daysCO
CO
UJa
Q_21O 1 day

AGE

GGBS LEVEL0 70

Additional factors could be accommodated in the graph by 
repeated shifts along the x-axis proportional to the factor levels, 
followed by the linking of corresponding points in each of the 

shifted groups.
Figs 8.3.3«d to 8.3*3.h show the pseudo three-dimensional 

technique applied to the compressive strength data. In these Figures 
there are five independent variables: age (logscale), cementitious
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content, GGBS level, GGBS type, and block. To avoid overcomplication 
the different cementitious contents have been segregated, and each of 
the curing regimes are shown separately. The x-axis has not been 
scaled; numbers and symbols on the graph indicate the factor levels. 
Individual block results are shown except where they differ by less 
than 0.5 MPa. Under wet curing the greatest range between the two 
blocks of results is less than 5 MPa.

9.3.3.2 Medium curing temperatures
The compressive strength data under 40°C wet and 20°C are 

shown in Figs 8.3.3.d and 8.3.3-e respectively. It can be observed 
that the compressive strength-log age relationships are approximately 
linear. In OPC mixes the upper end of the relationship deviates 
towards a lower compressive strength at later age. In GGBS mixes this 
curvature is lessened, but an additional curvature is introduced at 

the lower end of the relationship, due to a low initial rate of 
strength development.

At early ages the effect of GGBS level is an approximately

linear reduction in compressive strength. The 1-day compressive
strength values in the 70$ GGBS mixes are approximately a third and a 
fifth of those of the OPC control mixes at 40 and 20°C respectively.
At later ages the linear GGBS level effect breaks down, the 40$ GGBS
mixes displaying a disproportionally high compressive strength. 
Increasing cementitious content and curing temperature appear to 
promote the development of this peak. In addition to the peak, the 
GGBS effect lines are reduced in slope with age, particularly at the 
higher curing temperature. This effect of age can be described as an 
anticlockwise rotation of the GGBS level effect lines about the OPC 
control mix result. The rate of rotation is higher in the slag type 2 
mixes and this results in their lines being displaced above those of 

the type 1 mixes by up to 7 MPa. The differential rotation described 
indicates an interaction between GGBS level, GGBS type, and age.

The higher rotation of the GGBS effect lines for slag type 2
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leads to all the mixes, attaining strength parity with the OPC control 
mix by 91 days (at only 7 days at the low cementitious content), 
under 40°C wet curing. In contrast, the corresponding slag type 1 
mixes are lower in strength than the OPC control, at all ages. This 
effect if slag type is consistent with the work of others (19,30).

9.3.3.3 Different curing humidities.
Figs 8.3.3«e and 8.3»3.f show the compressive strength data 

under 20°C wet and 20°C dry curing respectively. At 1 day the 
compressive strength values and trends are very similar under 20°C wet 
and 20°C dry curing, viz: an almost linear reduction in compressive 
strength with increasing GGBS level, and no apparent effect of slag 
type. The variability of the compressive strength data for dry curing 
was found to be great in relation to the strength levels; there is a 
maximum difference of 7.3 MPa (18$) between the two blocks of results.

The compressive strength-log age relationships under dry 
curing differ significantly from those associated with wet curing in a 
much more rapid decrease in the rate of strength development, at later 
ages. In two, low cementitious content, mixes the strength at 91 days 

was actually less than that at 28 days. Pomeroy reported a similar 
fall in strength, which he attributed to surface shrinkage cracking 
(75 ). At 91 days the compressive strength values in the 40$ and 70$ 
GGBS mixes only about a half and quarter respectively, of those 
obtained under wet curing. This reduction in compressive strength 
under dry curing is much greater than is suggested by data, for mixes 
of a constant workability, presented by Pratas ( 35 ).

The differential rotation of the GGBS level effect lines with 
increasing age, described previously for 20°C wet curing, is much less 
obvious under 20°C dry curing. A systematic effect of slag type is 
apparent in the medium, and to a lesser extent low, cementitious 
content mixes. Slag type 2 mixes are up to 7 MPa stronger than the 
corresponding slag type 1 mixes. The almost linear reduction in 
strength with increasing GGBS level, observed at 1 day, was maintained
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at the other ages under dry curing. A peak in compressive strength at 
the 40$ GGBS level, prevalent at 28 and 91 days under the medium 
curing temperatures, was only slightly apparent under 20°C dry curing.

All but one of the 40$ GGBS mixes under 20°C wet curing 
attained strength parity with their OPC control. In contrast, no GGBS 
mixes attained strength parity under 20°C dry curing.

The slower rate of hydration of GGBS mixes means that 
dessication is able to remove much more evaporable water from the 
concrete. This is reflected in the density of the concrete, which in 
GGBS mixes falls progressively below the OPC control mix with age (Fig 
A.2.3-d). As a consequence of this greater loss of water the hydration 
reaction is arrested at a much earlier stage in GGBS mixes, leading to 
a greater loss of strength. However, it should be emphasised that the 
specimens used in the investigation were very small compared to 
structural elements. Pomeroy has shown that increasing the cube size 
will extend hydration and increase the ultimate strength under dry 
curing ( 75 ).

9.3.3.4 Low curing temperatures
Figs 8.3*3*g and 8.3.3*h show the compressive strength data 

under 10°C and 5°C wet curing respectively.
The compressive strength-log age relationships differ from 

those under 20°C wet curing in having a reduced curvature at their 
upper ends and, for the GGBS mixes, an increased curvature at their 
lower ends. The 91-day compressive strength values under 10°C wet 
curing are less than 3 MPa lower than under 20°C wet curing, in the 
OPC mixes, but up to 13 MPa lower in the 70$ GGBS mixes. ( The 
compressive strength in the high cementitious content OPC control mix 
is actually highest under 5°C; this being confirmed by both blocks of 
data.)

The GGBS effect lines rotate clockwise about the OPC control 

mix result with increasing age, up to about 7 days, suggesting an 
increase in the effect of GGBS level. Thereafter, the lines remain
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parallel, or rotate slightly anticlockwise. A peak in the 91-day 
compressive strength, at the 40$ GGBS level, is present in the slag 
type 2 mixes at all three cementitious contents, but is only present 
at the high cementitious content for slag type 1. Moreover, at the low 

cementitious content the 40$ GGBS type 1 mixes display 
disproportionally low compressive strength values at 28 and 91 days. 
The GGBS type 2 mixes are consistently stronger than the GGBS type 1 

mixes from 3 days onwards. The maximum difference in compressive 
strength between the slags types under the low curing temperatures is 
approximately 8 MPa.

At 28 days the mean strength of the 40$ GGBS mix under 5°C 
wet curing, across the slag types and cementitious contents, is 
approximately two-thirds of that of the corresponding OPC control mix. 
This is in close agreement with 28-day strength reductions in 30 and 

50$ GGBS mixes of 20 and 30$ respectively under 5°C, proposed by 
Pratas. Under 10°C wet curing strength parity with the OPC control is 
attained only in the low cementitious content mix, containing 40$ GGBS 
type 2. Non of the GGBS mixes attain strength parity with the control 
at 5°C.

In summary, out of the twelve GGBS mixes, the number gaining 
strength parity with the OPC control is as follows : eight at 40°C, 
six at 20°C, one at 10°C, and none under 20°C dry or 5°C wet curing.

9.3.3-5 Statistical Deductions
Further deductions about the data may be made using either 

statistical summary parameters, or by statistical analysis. The first 
part of this section considers the trends in percentage strength 

values, relative to the OPC control and standard curing, the second 
part of the section examines the findings of the factorial analysis.

Fig 8.3»3.i shows the compressive strength at 3, 7 and 28 
days in the medium cementitious content mixes, under each of the 
different curing conditions, as a percentage of the corresponding OPC 
control mix strength. The trends observed at the other cementitious
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contents are broadly the same. The broken lines link the percentage 
strength values under wet curing conditions, the dashed *dessication’ 
lines link the percentage strength values under wet and dry curing at

20°C.
It is apparent that the percentage of the OPC control mix 

strength rises systematically with both curing temperature and age. 
The lines for the 40$ GGBS mixes, and the slag type 2 mixes lie above 
those of the 70$ GGBS mixes, and slag type 1 mixes respectively. At 3 
days the percentage strength value in the 70% GGBS type 2 mix is 
approximately 20% at 5°C, and 65/6 at 40°C. At 28 days the 
corresponding percentages are just over 45%, and just under 100% 
respectively. The lines for the two GGBS levels converge with 
increasing age and curing temperature, but the separation of the lines 
associated with the two slag types increases. Consequently at 28 days 
and 40°C the lines for the 40$ GGBS type 1, and 70$ GGBS type 2 
intersect.

At 3 days all the dessication lines rise, indicating a greater 
percentage strength with respect to the control under 20°C dry curing 
than under 20°C wet curing. However, the rise in the percentage 
strength values with age is greater under wet curing than dry curing, 
so that 28 days the values under dry curing are approximately 15 and 

25 percentage points lower than under wet curing, for the 40$ and 70$ 
GGBS mixes respectively. At 3 days the percentage strength values in 
the 70$ GGBS type 2 mix under 20°C wet and 20°C dry curing is 
approximately 30 and 35$ respectively. At 28 days the corresponding 
values are approximately 75$ and 50$. In most cases the dessication 
lines do not cross, indicating that the ranking of the GGBS levels and 
types is consistent with that under wet curing.

Fig 8.3- 3-j shows the compressive strength under 40°C wet, 
20°C dry, and 10°C wet curing , as a percentage of the value under 
20°C wet curing, for different GGBS levels, cementitious contents, and 
ages. The percentages indicated are the arithmetic mean values for the 
two slag types. A logscale has beeen used to reflect the true effect
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of the percentage values, thus a doubling and halving of strength 
are represented by similar increments on the logscale.

At 7 days the percentage strength under 40°C wet curing rises 
approximately linearly with GGBS level, illustrating the 
responsiveness of GGBS mixes to elevated curing temperatures. At the 
70% GGBS level and low cementitious content, the compressive strength 
is almost 250$ that under standard curing. The corresponding 
percentage for the OPC mix is only 120$. At 91 days the percentage 
strength values are less than 100$ at all the GGBS levels and 
cementitious contents. At the low cementitious content the percentage 

strength rises from 85$ in the OPC control mix, to 95$ in the 70$ GGBS 
mixes. This deleterious effect of high curing temperatures on long­
term strength development, particularly in OPC mixes, has been 
attributed by others to the formation of less dense hydration products 

( 36 ).
At 7 days the percentage strength values in the low 

cementitious content mixes are greater than in the high cementitious 
content mixes; at 91 days this position is reversed.

The trends in percentage strength with GGBS level and 
cementitious content under 20°C dry curing are virtually a mirror 
image of those already described for 40°C wet curing. At 7 days the 
value in the low cementitious mixes lie between 75$ and 85$ at all 
GGBS levels. At 91 days the percentage strength falls almost linearly 
with GGBS level, from about 65$ in the OPC control, to just under 25$ 
in the 70$ GGBS mixes. This highlights the greater sensitivity of GGBS 
mixes to dry curing.

Under 10°C wet curing the trends in percentage strength 
relate only to the medium cementitious content mixes. At 1 day the 
percentage strength, with respect to standard curing, rises 
unexpectedly with GGBS level, from just over 30$ in the OPC control 
mix, to approximately 50$ in the 70$ GGBS mixes. This would seem to 
indicate a greater sensitivity in the OPC mixes to lower curing 
temperatures, than in the GGBS mixes. The same pattern was repeated at
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the other cementitious contents. In contrast, at 7 days the percentage 
strength values in the 70$ GGBS mixes are approximately 25 percentage 
points lower than those in the OPC mix. At 91 days the percentage 
strength values are higher than at 7 days, and fall systematically 
with GGBS level. In the OPC control mix the compressive strength is 
over 95$ of that under standard curing. The corresponding value for 

the 70$ GGBS mixes is approximately 75$.
Logarithmic transformation of compressive strength (see 

Section B.3.2) did not consistently improve the normality or 

homogeneity of variance of the compressive strength data. The 
transformation improved the homogeneity at early ages, but worsened 
the acceptability of the data at later ages. This appears to support 
the relationship between standard deviation and magnitude, for 
compressive strength values up to 20 MPa, presented in the "Design of 
Normal Concrete mixes" ( 52 ).

The factorial analysis of the strength data at each age 
proved problematical because of the number of significant interactions 
involving cementitious content, GGBS level, and curing. Splitting the 
analysis by cementitious content and GGBS level (Section B.3.3) 
produced degrees of freedom of unity for the main factors and first- 
order interaction terms, permittting direct comparison of their F- 
ratios. Discussion of the split analyses will concentrate on the 
effects of curing and slag type.

Fig 9.3*3.a to 9.3*3«c show the pattern of change in the F-
ratios with GGBS level and age for the medium cementitious content
mixes , under the medium curing temperatures, different curing 
humidities, and low curing temperatures. Only the ratios for the 
medium cementitious mixes are shown; trends observed at the other 
cementitious contents are similar, unless otherwise stated. A logscale 
was used to facilitate plotting of the F-ratios. The points for the

curing and type main effects are linked by solid lines, whilst a
dashed lines link their interaction F-ratios. Gaps in the line and 
arrows indicate that a point has not been plotted because its F-ratio
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falls below 0.1. The linking of the F-ratios from the separate 
analyses at each age is not to imply strict comparability but to 
highlight broad patterns of change. The significance of factors is 
dependent on the interactions present, however an F-ratio value of 10 
is the approximate lower level of significance for the limited degrees 
of freedom available.

For the medium curing temperature comparison the F-ratios 
associated with curing are initially high, but decrease with age at 
all the GGBS levels. The curing main efect appears to reach a minimum 
at 7 days at the 0% GGBS level and 28 days at the 40/6 GGBS level. In 
each case the age is sensibly the point at which the compressive 
strength-age relationships at 40°C and 20°C intersect. The increase in 
curing temperature effect after the minimum reflects the depression of 
ultimate compressive strength when curing at elevated temperatures, 
and is especially pronounced at the 0/6 GGBS level.

The slag type effect at 1 day is much lower than that of 
curing temperature, however it rises with increasing age to surpass 
the curing effect at 28 and 91 days. At the 70% GGBS level the slag 
type effect reached a peak at 3 days. Similar maxima were present at 
the other cementitious contents, though at different GGBS levels. 
Interactions are genearlly small in magnitude and the effects of 
curing at early ages, and slag type at later ages are likely to be 
significant.

The F-ratios from the comparison of different curing 
humdities are shown in Fig 9*3*3«b. In contrast to curing temperature, 
the effect of curing humidity increases steadily with increasing age. 
At the 40$ GGBS level the F-ratios rises from around 15 at 1 day to 
over 2500 at 91 days. The effect of slag type increases with 
increasing age between 1 and 7 days, but decreases at 28 days at both 
GGBS levels. The effect of type is less than that of curing, except 
at 1 and 3 days at the 70% GGBS level. Both the slag type and curing 
effects are sufficiently large to be significant, were it not for a 
large main effect of block and a potentially confounding interaction
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effect between block and type.

Fig 9.3»3»c indicates the F-ratios for the low curing 
temperature comparison. The F-ratio values for the main effects are 
smaller than in the previous curing comparisons; non of the values 
rise above 1000. The curing temperature effect appears to reach a 
maximum at 3 and 7 days. Similar maxima were present at the other 
cementitious contents. The curing temperature effect is ultimately 
lowest at the 0% GGBS level. The F-ratios associated with the slag 
type effect are generally lower than those of curing temperature. They 
rise in value from 1 day, reaching a peak at 7 days at the 70% GGBS 
level. Similar maxima were present at the high cementitious content.

In general the F-ratios associated with the curing and slag 
type effects are greater as the GGBS level increases. In over three- 
quarters of the analyses the slag type increases in effect from 1 day, 
the exception being the the high cementitious content mixes, in the 
comparison of medium curing temperatures, and different curing 
humidities. In over half the analyses a peak in slag type effect 
occured at around 7 days.

A more complete account of the analaysis of variance of the 
compressive strength data is given in Section B.4.2.

9 - 3- 3•6 Maturity Functions

The combined effects of temperature and age can be summarised 
in terms of a maturity parameter, either by multiplying the age by the 
temperature, relative to a base ( 76 ), or by applying a maturity 
function to the age to give the equivalent age at 20°C ( 77 ). For 
simplicity the dry cured data is not considered in this section.

Fig 8.3*3.k shows typical plots of compressive strength 
against equivalent age for different cementitious blends and maturity 
functions. An ideal compressive strength-log equivalent age 
relationship would be linear and independent of curing temperature. 

Unfortunately, the strength-log equivalent age relationship is clearly 
not linear, and the range of curing temperatures produces a band or
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envelope of relationships. It can be observed that the slope of the 
strength-log age relationships is lower in the 70% GGBS mixes than the 
OPC mix at early ages, but this position is reversed at later ages. 
Futhermore, the envelope of relationships relating to the different 
curing temperatures is wider, for the 70% GGBS mix data, when the 
Nurse-Saul function is used to calculate the equivalent age, than when 
the Sadgrove function is used (Section C.2.1). This point is covered 
in more detail elsewhere ( 78 ), however as a consequence the Sadgrove 
function was adopted throughout.

It can be seen in Figs A.2.2.b to A.2.2.f, that whilst in the 
OPC mixes the points associated with 40°C and 5°C curing lie 
respectively at the bottom and top of the envelopes for each of the 

different cementitious contents, in the GGBS mixes this position is 
reversed. Compressive strength values under 40°C curing at equivalent 
ages between 7 and 14 days are up to 10 MPa lower in OPC mixes, and 5 
MPa higher in GGBS mixes than those under 20°C curing. This is 
consistent with values suggested by Wainwright and Reeves for 
temperature cycled concrete ( 36 ).

After considering the graphs it was decided that the 

regression analysis should be split into three parts as follows:
a) Early ages (1 to 7 days), all temperatures
b) Later ages (7 to 28 days), 40 and 20°C data
c) Later ages (7 to 28 days), 20, 10 and 5°C data

The equivalent ages were calculated in hours at the early ages, and
days at the later ages. They were logarithmically transformed prior to 
linear regression to produce an expression :

fc = a log M + c,
similar to that proposed by Plowman (76 ); where M is a measure of 
maturity.

It would be expected that the regression analyses (shown in 
Tab 8.3.3 ) would confirm the shape of the compressive strength - log 
equivalent age relationship and their changes with cementitious 

content and blend. Indeed the lower rates of strength development at
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early ages in GGBS mixes, and later ages in OPC mixes are reflected by 
lower correlation coefficients and slopes. With increasing GGBS level 
both the coefficient and intercept generally decrease. The coefficient 
and intercept in the slag type 2 mixes are usually higher and lower 
respectively than in the GGBS type 1 mix, signifying a rotation of the 
strength-age plots about a similar 1-day compressive strength value. 
With each 100 kg of cementitious material the slope and intercept 
generally increase and decrease in value by approximately ten 
respectively.

At later ages the units of age were changed from hours to 
days, so comparison of the coefficients with those from early ages is 
not possible. At medium curing temperatures the standard error 
increases with cementitious content, having average values of 

approximately 3> 4.5 and 5.5 MPa, in the low, medium and high 
cementitious content mixes respectively. This reflects an underlying 
relationship between the standard deviation and magnitude of 
compressive strength. The values of slope and correlation coefficient 
in the OPC mixes were approximately half those in the GGBS mixes 
indicating the flattening of the compressive strength age 
relationships in the OPC mixes, and the sustained hydration in the 
GGBS mixes. At the lower curing temperatures the standard deviation 
decreases to levels observed in the early age data analysis. The slope 
and correlation coefficient are consistently higher in these analyses 
than at the medium curing temperatures. This difference is most 
apparent in the OPC mixes, where the value of the slope is more than 
doubled. This appears to contradict the findings others that the break 
in the strength-maturity relationship at high maturity values is 
unconnected to the cementitious blend or curing temperature ( 36 ).

The estimated equivalent age at which the the strength of a 
GGBS mixes equals that of the corresponding OPC control is lower when 

derived from the 40-20°C maturity relationship than from the 20-5 °C 
relationship. In the 40$ GGBS type 2 mixes at the medium cementitious 
content the equivalent ages are 41 and 136 days for the high and low
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temperature expressions. This illustrates the relative advantage of 
curing GGBS concrete at elevated temperatures.

The relative advantage of thermal treatment of GGBS concrete 

is also confirmed by the apparent activation energies of the blends, 
calculated by applying the compressive strength data to the the 
Arrhenius function (Section C.3.2.). OPC has the lowest activation 
energy value of 49 kJ/mol. This value increases to 58 and 55 kJ/mol 
in the 40^ GGBS type 1 and 2 mixes, and 67 and 58 kJ/mol in the 70% 
GGBS type 1 and 2 mixes. This increase in the activation energy with 
GGBS level is consistent with the work of others, although the values 
obtained were higher than those reported elsewhere ( 33 , 34 ).

9*3*4 Indirect Tensile Strength

9*3*4.1 The measurement of Indirect Tensile Strength
As mentioned in Section 5.4.1 the measurement of indirect

tensile strength from the flexural test is inherently higher than that
from the splitting test. This point is illustrated in Fig 8.3*5.a, 
which shows the indirect tensile strength values at 28 and 91 days, 
under 20°C wet curing, plotted against the compressive strength. The 
splitting strength at any compressive strength is between a half and 
two-thirds the flexural strength. Supplementary results under this
curing were obtained to facilitate the plotting of the two curves,
which are also shown superimposed on Figs 8.3*4.b and 8.3*4.c.

9.3*4.2 Relationship with Compressive Strength
Figs 8.3*4.b to 8.3*4.d show the indirect tensile strength

plotted against the compressive strength for the medium curing
temperatures, different curing humdities, and low curing temperatures 
respectively. In each graph the flexure and splitting test results 
have been partitioned by a diagonal line, and curves have been drawn 
through the OPC control mix results (solid curves originate from the 
extended data shown in Fig 8.3*4.a).
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At medium curing temperatures there appears to be a slight 
tendency for higher flexural strength values in slag mixes at 
compressive strength values above 50 MPa. However the effect is small 
compared to the large scatter of the points, and is not confirmed in 
the tensile splitting results. This increasing scatter of the points, 
as the strength values increase, is present in the work of others 

( 79 ).
Fig 8.3.4.0 shows the effect of curing in air upon the 

indirect tensile strength results. Under dry curing the tensile 
splitting strength and flexural strength values at any compressve 
strength are approximately three-quarters and a half respectively of 
those on the best-fit curves for wet curing. This indicates that dry 
curing has a greater effect on indirect tensile strength than 
compressive strength and that the flexural value is more affected than 
the tensile splitting value. This may be attributed to the higher 
shrinkage at the surface of the specimen, compared to the interior. 
Tensile stresses and cracking induced by this differential shrinkage 
would promote failure in specimens in tension at, or near to, the
outer surfaces ( 12 ). From the test theories it would be expected
that the tensile splitting strength, because the tensile stress blocks 
lie within the specimen, would be less sensitive than the flexural 

strength to surface drying ( 75, 79).
Under low curing temperatures (Fig 8.3.4.d) there appears to 

be some evidence of higher flexural and splitting strength values, at 
any compressive strength, in the GGBS mixes. On average there are 
three times as many points associated with the GGBS mixes above the 
curves, drawn through the OPC control mix results, as below them. The 
magnitude of the increase in indirect tensile strength is 
approximately 0.2 and 0.4 MPa for the splitting and flexural tests 
respectively. Wainwright made similar findings for concrete which had 
been subject to fixed and temperature cycled curing, by splitting 

cylindrical specimens ( 25 ).
Both measures of indirect tensile strength appear to have a
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curvilinear relationship with compressive strength; and a power 
expression is often adopted ( 12 ). The coefficients obtained when 
regressing the indirect tensile strength upon the compressive strength 
are shown in Tab 8.3.4.

The power index for flexural strength under wet curing is 

0.69; close to the value of 0.66 adopted by Raphael ( 79 ) • The 
corresponding index for the splitting tests is 0.89, which is much 
larger that the value of approximately 0.7 suggested by Carino and 
Lew, for cylindrical specimens. This difference could arise from the 
differing shapes of specimen used, or the method of fitting the power 
law ( 80 ).

Under dry curing the indirect tensile strength - compressive 
strength relationship becomes straighter, and there is a corresponding 
increase in the power index. The range on the correlation coefficient 

is 0.965 to 0.898 in the flexural test, and 0.982 to 0.947 in the 
splitting test. The lower correlation in the flexural results could be 
due, in part, to mishandling of the specimens (thermal shock,early 
overstressing, or surface drying). Although the equivalent cube 
strength and compressive strength were closely related (Fig A.2.2.a), 
it may be possible to obtain an improved correlation between the 
flexural strength and equivalent cube strength.

Under wet curing the relationship between indirect tensile 

strength and compressive strength does not appear to be greatly 
influenced by the the curing temperature. For compressive strength 
values of 20, 40 and 60 MPa the flexural strength is approximately
3.5, 5.0 and 5.5 MPa respectively, and the tensile splitting strenth 
is approximately 1.75, 3.0 and 4.0 MPa respectively. The latter values 
are in close aggreement with tensile splitting strengths of 1.7, 3.0 
and 4.2 MPa, obtained for the same compressive strength values from a 
linear expression, proposed by Marrison for similar aggregates ( 81 ).
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9.3.5 Ultrasonic Pulse Velocity
Ultrasonic pulse velocity is commonly used to get either a 

relative picture of concrete quality, or as a predictor of concrete 
strength using appropriate calibration charts or equations. The author 
could find very little data on the effect of cement replacement 
materials upon the strength-UPV calibration.

9.3.5.1 Development with Age
Fig 8.3-5.a shows the development in UPV, in cubes under 10°C 

and 5°C wet curing, as a multiple bar chart. The lower and upper 
values of 2 and 5 km/s on the scale represent the extremes of pulse 
velocity likely to be encountered in practice. Values of UPV less than 
2 km/s are unreliable because of the possibility of indirect 
transmission in the underwater method. The relationship between the 
UPV underwater through cubes, and that measured in air through beams 
is indicated in Fig A.2.2.g.

In general UPV rises with cementitious content, age and 
curing temperature. Other regimes are not shown since the response of 
UPV to the development of mechanical properties falls rapidly with 
maturity ( 63). The pulse velocity supports the compressive strength 
ranking of the mixes, that is, in decreasing order of magnitude : OPC, 
40^ GGBS type 2, H0% GGBS type 1, 10% GGBS type 2 and 10% GGBS type 1. 
However, the development of the two parameters with age differs. It 

can be observed that the gain in pulse velocity between 1 and 3 days 
is substantially greater than that between 28 and 91 days. For 
compressive strength the opposite is the case (Fig 8.3.3.c).

9.3-5.2 Relationship with Compressive Strength
By convention ( 38 ) an exponential relationship is assumed 

between compresive strength and UPV, of the sort :

Consistent with this, compressive strength is shown plotted on a 
logscale against the pulse velocity from beams in Figs 8.3*5.b to
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8.3.5.d, for the medium curing temperatures, different curing 
humidities, and low curing temperatures respectively.

Under wet curing the points form a curve, which can be 

approximated by two straight lines. Elvery, measuring the velocity at 
early ages ( 63 ), also adopted a bi-linear relationship, although he 
considered that the point of discontinuity occured around a pulse 
velocity of 2 km/s. Elvery attributed this discontinuity to a physical 
interlocking of aggregate particles and hydration products. However, 
it should be noted that the use of a logarithmic scale for compressive 
strength, coupled with the curvilinearity, produces large positive 
residuals near to the origin, which could be misinterpreted as a 
sudden change in the gradient. It is possible that a single function 
could replace the two exponential functions, but investigation of this 

is outside the scope of the work.
The UPV value of 3.5 km/s, chosen by the author as the point 

to break the relationship into upper and lower portions, is the 
approximate point of formwork striking. The dashed lines represent the 

90% confidence interval on observations in the upper portion, formed 
by regression analysis. The presence of points above the confidence 
interval at the ends of the portion, and below it at the centre, 
illustrate the curvilinearity. The widest and narrowest confidence 

intervals relate to 5°C and 20°C wet curing respectively, and are 
equivalent to about a third to a half of the observed compressive 

strength values.
Close examination of the distribution of the results within 

the confidence intervals relating to wet curing reveals that at the 
top of the upper portion (compressive strength greater than 30 MPa) 
the points for the GGBS mixes seem lie above those of the OPC mixes. 
The maximum increase in compressive strength at any pulse velocity for 
the GGBS mixes is equivalent to about 30/6. Facaoaru has reported 
similar findings ( 38 ). In addition, at the bottom of the upper 
portion (compressive strength less than about 5 Mpa) the compresive 
strength values in the GGBS mixes appear to be slightly lower than in
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the OPC mixes.
The greatest scatter in the results in the lower portion is 

under the low curing temperatures. Some of this can be attributed to 
the overlapping use of different frequency transducers, affecting UPV 
values between 2.5 and 3.3 km/s (Section 7.5).

A number of factors are known to affect the relationship 
between compressive strength and UPV (BS 1881 : Part 203), including 
the curing and test conditions. Fig 8.3*5.e shows the compressive 
strength-UPV relationship, for each of the curing regimes, obtained by 
regressing the results in the upper portion. It can be observed that 
the lines associated with the different curing regimes converge at a 
UPV value of 5 km/s and a compressive strength value of 80 MPa. 
However, the line relating to dry curing has a much lower slope than 
those relating to wet curing. Consequently at a UPV value of 3*5 km/s 
the compresive strength under 20°C dry curing is approximately 6 MPa, 
whilst that under 20°C wet curing is approximately 3 MPa; a percentage 
difference of 66^. The maximum difference between the relationships 
in terms of magnitude is equivalent to about 10 MPa. This effect of 
dessication has been reported previously by Tomsett (73).

In addition to the effect of curing humidity, in Fig 8.3.5.e, 
there also appears to be a small effect of curing temperature. The 
lines relating to wet curing indicate an increase in compressive 
strength at any value of UPV with increasing curing temperature. No 
such influence of curing temperature was reported by Elvery, and it is 
possible that some of it arises from the residual temperature of the 
beams at testing; the UPV is known to decrease slightly as the 
specimen temperature increases (BS 1881 : Part 203).

Tab 8.3.5 shows the coefficients obtained from the regression 
of strength with the pulse velocity. The correlation coefficient for 
the upper portions are quite high, the minimum being 0.96. The 

correlation coefficients for the lower portion are generally less, 
despite the reduced number of points, the minimum value being 0.75. 

The closeness of the coefficients for the GGBS and OPC control mixes
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indicates little overall effect of blend upon the relationship. Under 
wet curing the coeffcient (a) is generally lower and index (b) is 
higher in the GGBS mixes than the OPC mixes.

Linear relationships between indirect tensile strength and 
UPV are shown for completeness. Only a limited range of UPV and 
indirect tensile strength values are available, however the 
relationship between flexural strength and UPV for wet curing is in 
reasonable agreement with an expression,

fcf = 7 V - 30,
derived by the author from data presented by Nwoyke, for an irregular 

gravel ( 82 ).

9*3*6 Dynamic Elastic Modulus

The dynamic elastic modulus may be thought to be a measure of 
material stiffness. The value of dynamic elastic modulus is 
approximately equal to the initial tangent modulus in a static stress- 
strain cycle and, as such, is higher than the secant modulus obtained 
by static testing. The dynamic elastic modulus and ultrasonic pulse 
velocity are closely related parameters : both non-destructive; linked 
by a fundamental equation; and displaying similar trends with 
compressive strength. However, unlike UPV, the dynamic elastic modulus 
is a meaningful engineering parameter. This difference is reflected in 
the discussion.

9.3.6.1 Development with Age
Figs 8 . 3 * 6 . a to 8 . 3 . 6 . C  show the development of dynamic 

elastic modulus at medium curing temperatures, different curing 
humidities, and low curing temperatures respectively. Some results are 
missing at early ages beacause the specimens were to weak to test (see 
Section 7.5 for criteria) and this is signified by crosses at the top 
of the columns. Several broad trends can be identified :

a) At early ages the dynamic modulus rises with increasing 
cementitious content and curing temperature, but falls with
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increasing GGBS level.
b) At later ages the dynamic modulus is less affected by

cementitious content and GGBS level; and appears to be 

greatest under 20°C wet curing.
c) Like compressive strength, the dynamic modulus decreases

slightly between 28 and 91 days in some of the dry cured 
specimens.

d) The dynamic modulus values are generally higher in the slag
type 2 mixes, than the corresponding slag type 1 mixes.

Although dynamic modulus generally ranks the mixes at early 
age in the same order as compressive strength, it is clear, from a 
comparison of Fig 8.3.6.b and Fig 8.3-3-b* that the gain in dynamic 
modulus at early ages is greater than that of compressive strength. 
At later ages this position is reversed. At 91 days the dynamic 
modulus in the medium cementitious content mixes is virtually constant 
at 46 GPa, whilst the compressive strength varies between 40 MPa and 
54 MPa, with cementitious blend.

9. 3*6.2 Relationship with Compressive Strength
The different responsiveness of compressive strength and 

dynamic modulus suggests an exponential or power relationship between 
these parameters; indeed, in CP 110 : 1972, a cube root expression was 
adopted ( 12 ). Although a linear function did not give a good fit to 
the data (Tab 8.3* 6.a), the author considered that an exponential 
function, similar to that used for UPV, could be adequate. Consistent 
with this Figs 8.3.6.d to 8.3*6.f show the compressive strength, 
plotted on a logscale, against the dynamic modulus, for the medium 
curing temperatures, different curing humidities, and low curing 
temperatures. As with the pulse velocity, the broken lines represent 
the 90/5 confidence intervals on observations produced by regression. 
Slight curvilinearity of the relationship is indicated by the presence 
of points above the upper confidence limit at the extreme ends of the
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relationship. The nature of the curvature suggests that additional 
logarithmic transformation of the dynamic modulus is unjustified. The 
widest and narrowest confidence intervals were obtained for the 20°C 
dry and 20°C wet data, representing a dynamic modulus range of 
approximately 9 and 5 GPa respectively.

There are no immediately apparent effects of GGBS level upon 
the relationship between compressive strength and dynamic modulus. 
However, examination of the distribution of the results within the 
confidence intervals indicates that at dynamic modulus values greater 
than about 40 GPa (or compressive strength of 30 MPa) the compresive 
strength is slightly higher in the GGBS mixes than in the OPC mixes. 
The maximum effect of GGBS can be considered to be a 30$ increase in
compressive strength, or a 4 GPa decrease in dynamic modulus. In
addition, it can be observed that in the low curing temperature data 
there is a slight tendency towards lower compressive strength values 
in the GGBS mixes, compared with the OPC mixes, at dynamic modulus 
values less than about 25 GPa. The maximum effect of GGBS is 
approximately equivalent to a 30$ reduction in compressive strength, 
or a 4 GPa increase in dynamic modulus. These findings conflict with a 
comparison of OPC and slag mixes under standard curing carried out be 
Wainwright. That study indicated higher elastic modulus values in slag 
mixes than OPC mixes at high compressive strength values, and lower 
moduli at low compressive strength values.

The regression relationships between compressive strength and 
dynamic modulus are shown in Fig 8.3.6.g, for the different curing
conditions. The lines for 20°C dry and 40°C wet curing lie above the
other lines, intersecting with them at compressive strength values of 
approximately 1 and 30 MPa respectively. Below the latter point the 
compressive strength at any dynamic modulus increases with increasing 
curing temperature. The compressive strength values at an elastic 
modulus value of 20 GPa are approximately 3*8, 4.2 and 4.5 MPa under 
5°C wet, 20°C dry and 40°C wet curing respectively; the corresponding 

values at a dynamic modulus of 50 GPa are 63, 100 and 65 MPa.
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The coefficients associated with the regression analysis of 
compressive strength and dynamic modulus are presented in Tab
8.3.6.a. The improved fit of the exponential function compared with 

the linear function is reflected in a significant increase in the 
correlation coefficient from 0.88 to 0.98. Under 20°C dry, 10°C wet 
and 5°C wet curing the coefficient (a) and index (b) associated with 
the OPC mixes are higher and lower in value than those derived for all 
the mixes. This is consistent with the effect of cementitious blend 
described previously.

9.3*6.3 Relationship with Stiffness Constant
The fundamental relationship linking dynamic modulus and UPV 

also includes concrete density and Poisson’s ratio terms (Section 
C.2.3). It would be expected thefore that allowance for these terms 
would improve the relationship between dynamic modulus and pulse 
velocity. Indeed, Nwokye ( 82 ), reports such an improvement when using 
the product of the square of the pulse velocity and density. The later 
value, called the stiffness constant, was calculated by the author for 
each of the mixes (see Tab A.2.2.f). The relationship between dynamic 

modulus and stiffness constant for the different curing humidities is 
shown in Fig 8.3.6.h. The other curing conditions are shown in Figs 
A.2.2.h and A.2.2.i.

Under 20°C wet curing the relationship appears to consist of 
a linear upper portion ( stiffness constant values greater than 
approximately 20 GPa), and a lower curvilinear section which deviates 
towards higher dynamic modulus and lower stiffness constant values. 
The scatter of the results in the upper portion, which encompass 
different cementitious contents and blends, is very low and there are 
no discernible effects of GGBS level. The lack of scatter is also 

signified by the low standard error values, of approximately 1 GPa, 

yielded by the regression analysis (Tab 8.3»6.b). Under 20°C dry 
curing the curvilinear portion appears to be absent, and all the data 

was included in the regression.
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The regression relationships for the linear upper portion, 
are shown in Fig 8.3*6.i for all the curing conditions. It can be 
observed that the lines converge at stiffness constant and dynamic 
modulus values of approximately 55 and 50 GPa respectively. Below this 
point the line for 20°C dry curing lies above that for wet curing, due 
to its lower slope, and the lines associated with wet curing ascend 
with decreasing curing temperature; both of these signify an increase 
in dynamic modulus value at any stiffness constant. At a stiffness 
constant value of 20 GPa the dynamic modulus values under 20°C dry, 
10°C wet and 40°C wet curing are approximately 16, 12 and 9 GPa 
respectively. The closeness of the lines for wet curing suggest that 
a single relationship could be fitted to the data. Regression 
analysis produced the expression:

Eoq « 1-02 Eu - 9.5, 
with a high correlation coefficient of 0.992, and a low standard error 
of 1.3 GPa.

In order to accommodate the lower curvature in the dynamic 

modulus-stiffness constant relationship, Nwokoye fitted a power 
expression to his data ( 82 ). Linear regression of the dynamic modulus 
and stiffness constant for all the wet cured data combined, after 
logarithmic transformation gave rise to the power expression in Tab
8.3.6.b. The power index obtained is, at 1.3*1» slightly higher than 
the value of 1.2 proposed by Nwokoye, unfortunately there are problems 
with the units quoted in his work.

Fig 8.3*6.i shows the power relationship for wet curing, and 
the linear relationship for dry curing. Located on these relationships 
are the associated dynamic Poisson’s ratio values, calculated by 
applying the power and linear expressions to the fundamental theory 
(see Section C.2.3). The Poisson’s ratio values rise from 
approximately 0.4 in immature concrete, with a dynamic modulus and 
stiffness constant of less than 10 GPa, to 0.2 in mature concrete, 
with dynamic modulus and stiffness constant values of more than 60 
GPa. This is consistent with Poisson’s ratio values of 0.3 at 1 day,



and 0.2 at 28 days, presented by Simmons ( 83 ).
The decrements in Poisson’s ratio with changes in the dynamic 

elastic modulus are greater at early ages than later ages, particulary 
under dry curing. The average decrease in Poisson’s ratio under wet 
curing is 0.04 for every 10 GPa rise in the stiffness constant.

9.3.7 Water Absorption
The water absorption provides a measure of both the extent of 

hydration and the potential of the concrete to resist the ingress of 
harmful agents.

9.3.7.1 The factors affecting Water Absorption
When the specimens are placed in contact with the reservoir 

of water, the water absorped rises rapidly, but with time the rate 

begins to drop (Fig A.2.3*e). A square root relationship appears to 
exist between the water absorped and the time of contact; other 
workers have also suggested such a relationship (84). A time of 
contact of 60 minutes was found to be the optimum time for 
differentiating between concretes of different quality; beyond this 
time some cores became saturated.

The water absorption results are summarised in Fig 8.3-7.a. 

Water absorption is indicated on a logscale which has been adjusted to 
reflect the change in water absorption between wet and dry curing.
Under dry curing the absorption values range from approximately 1.4 to

20.3 ml/m s, whilst under wet curing the corresponding range is only
20.5 to 0.2 ml/m s. The water absorption decreases with increasing 

cementitious content across all the curing regimes, this decrease 
being most apparent between the low and medium cementitious contents. 
The water absorption appears to be related to the water-cement ratio, 
however the increased proportion of aggregates in the concrete at 

lower cementitious contents may also be important, due to the 
preferential absorption observed at the cement paste-aggregate 
interface,
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Under 20°C dry curing the water absorption is consistently 
greater at higher GGBS levels, and in the slag type 1 mixes. The 
absorption values in the 70/6 GGBS mixes are approximately twice those 
in the OPC control, and the slag type 1 values are approximately 20% 
higher than those of the corresponding slag type 2 mixes.

In wet cured specimens the trends in water absorption are 
slight, and have to be judged against a measure of the inherent 
variability of the test. Such a measure is provided by the two blocks 
of data, which have been plotted for the OPC control mix. The range in 
the results reaches a maximum of about 20% of the absorption values;
although in most cases it is much smaller.

In over half the GGBS mixes the mean water absorption value 
falls outside the range of the corresponding OPC control mix results. 
In slag type 2 mixes the water absorption generally decreases or 
remains constant with GGBS level. In slag type 1 mixes a similar 
pattern is maintained at the 40^ GGBS level. However, at the 70% GGBS 
level some high water absorption values were obtained, these values 
often being confirmed by both blocks of data (Tab A.2.3«b). As the 
curing temperature decreases the general level of water absorption 
rises. In the low cementitious content mixes the absorption rises from 

0.39 ml/m2s at 40°C, to 0.45 ml/m2s at 5°C.
It would appear from the above that the mix design and curing

affect the water absorption in the following descending order of
importance: curing humidity, cementitious content, GGBS level, GGBS 
type and curing temperature.

9.3.7.2 Statistical Deductions
As with the compressive strength data the analysis of 

variance of the water absorption data was split into a comparison of 

medium curing temperatures, different curing humidities, and low 
curing temperatures. In the comparison of medium curing temperatures 
and different curing humidities there were significant three-factor 

interactions, and it was necessary to split the analysis by
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cementitious content (Section B.3.3).
The results of the analysis of variance are summarised in Tab

9.3.7. At the medium curing temperatures a significant effect of 
curing and a significant interaction effect between GGBS level and 

type were identified in the low cementitious content data. The 
comparison of different curing humidities yielded a significant 
interaction effect between GGBS level and curing humidity, at all 
three cementitious contents. This interaction, in addition to 
illustrating the sensitivity of GGBS mixes to curing humidity, 
prevents high main effects of GGBS level and curing from being proved 
significant. Despite the higher water absorption values in the GGBS 
type 1 mixes, described earlier, the slag type effect was only 
significant at the medium cementitious content.

The initial analysis of the low curing temperature data does 
not indicate any significant interactions, so splitting the analysis 
was unnecessary. Cementitious content and GGBS level are highly 
significant; the probability of the cementitious content effect 
occuring by chance was less than 0.1$. A least significant difference 
study was carried out on this data (Section B.2.4 ) to see if it was
grouped in any way. This study indicates that the results from all
three cementitious contents are significantly different, and the water 
absorption in the OPC control mix is significantly higher than in the 
GGBS mixes.

9.3.7.3 Relationship with Compressive Strength

The specimen for the water absoprtion test was taken from a
beam, broken in flexure, and tested in compression as equivalent 
cubes. Fig 8.3«7.b shows the relationship between the water absorption 
and the equivalent cube strength obtained from the same beam. Initial 

plotting of the results (Fig A.2.3*f) suggested a power relationship, 
so a logscale has been adopted here. The relationship appears to be 
an inverse power law, with an index of -0.74. The strong relationship 

is to be expected considering the number of common factors affecting
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Tab 9.3.7 : Summary of the Analysis of Variance of the Water 
_ Absorption data.

Factor 40W/20W 20D/20W 10W/5W
Cml Cm2 Cm3 Cml Cm2 Cm 3 All

Cm -- --- -- -- --- -- ▲
Rp I 0 I I I I ■
Ty 0 0 0 0 □ 0 0

Cu ■ 0 0 I I I 0

Bk 0 0 0 0 0 0 □
Rp x Ty ▲ 0 0 0 0 0 0

Rp x Cu 0 0 0 ▲ ▲ ▲ 0

Cu x Ty 0 0 0 0 0 0 0

Probability Significance
Level (%) Attributed

0 >  2.5 None
□ ^  2.5 JU61A sc: 1.0 Moderate
■ ^  0.5 Very
▲ <  0.1 Extremely

I indicates where main effects are high but not
proven because of significant interaction terms
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both parameters. The OPC control mix results lie close to the 
regression line, whilst the points associated with the GGBS mixes lie 
above and below them at high and low equivalent cube strength values 
respectively. This seems to indicate that in well cured concrete the 
water absorption of slag mixes is lower than that of OPC mixes of 
equal strength, whilst in poorly cured concrete the opposite is the 
case. This is in general agreement with previous research in to the 

durability of slag cement concretes (Section 2.6.6.3)*
Although a relationship appears to exist between water 

absorption and compressive strength the regression coefficients vary 
with the mix design and curing (see Tab 8.3.7). The power index rises 
from 0.44, under 5°C wet curing, to 0.82, under 20°C dry curing. This 
indicates the limitations of judging potential durability from even an 
in situ strength.

9.3*7.4 The measurement of Water Absorption

The new method of water absorption was designed to overcome
some disadvantages of the British Standard immersion method. Fig
8 . 3 . 7 . C  shows the relationship between the results from the two 
methods for a limited number of specimens, which encompass good to 
poor quality concrete, defined by BS 1881 absorption values of less
than 2% and greater than 4^ respectively ( 65 ). A strong linear
relationship, with a correlation coefficient of 0.94, exists between 
the two sets of water absorption values. In spite of this 
relationship, work with different sizes of core (not presented) 
indicates that unlike the British Standard water absorption the new 
parameter is relatively independent of the diameter and length of the 
specimen.

9.4 Secondary Study
As stated in Chapter 3, this study is an extension of the 

Main programme work, outside of its rigid factorial experimental 
design. The aims of the Secondary study were to explore the response
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of workability and compressive strength to changes in the water-cement 

ratio, as the cementitious content and blend alters. In addition data 
was gathered on the relationships between the static and dynamic 
modulus, and the UPV at early ages and setting. Only the medium (300 
kg/m^ ) and high (400 kg/m^) cementitious content mixes were 
investigated : each at low, medium, and high water-cement ratios (see 
Tab 3*5). The medium ratio was the same as that used in the Main 
Programme. No replications were carried out in this work, so 
increased variability of these individual results, compared with the 
mean values from the Main Programme, is to be expected.

9.4.1 Workability
Figs 8.4.a and 8.4.b show the workability, as assessed by the 

slump and two-point parameters g and h, plotted against the GGBS level 
(on the left) and the water-cement ratio (on the right) for the medium 
and high cementitious content mixes respectively. The scales of the g 
and h axes have been inverted to facilitate comparison with the trends 
in slump.

Immediately apparent form Fig 8.4.a is the similarity in the 
trends in the slump and g values, and the contrasting trends in the h 
value. At the low, medium and high w/c ratios the workability, as 
assessed by slump and g, in the 40$ GGBS type 2 mixes is increased 
with respect to the OPC control and the corresponding slag type 1 
mixes. However, between the 40 and 70$ GGBS levels the workability of 
the slag type 1 and 2 mixes increase and decrease respectively, 
signifying an interaction between GGBS level and type. At the 70$ GGBS 
level the workability of the slag type 2 mixes is less than or equal 
to that of the corresponding OPC control and slag type 1 mixes.

The values of slump and g show a range of 15 to 230 mm, and
0.3 to 6.0 Nm respectively with w/c ratio and cementious blend. In
contrast, the corresponding range in h is only 1.3 to 3.7 Nms (Tab
A.3.A). The only consistent trend in h is a peak in the workability of 
the slag type 2 mixes at the 40$ GGBS level, observed previously in
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the other parameters.
Considering the effect of w/c ratio we observe that the for 

slag type 1 the slump values of the OPC control mix and 40$ GGBS mix
are very similar at all w/c ratios, whilst those of the 70$ GGBS mix
are consistently higher. This is particularly the case at the medium 
w/c ratio, where the slump is over 100 mm greater in value. A 
comparable pattern exists in the slag type 2 mix although, in this 
case, the higher workability is obtained in the 40$ GGBS mix. The rise 
in slump between the low and medium w/c ratios (0.5 to 0.55) for the
70$ GGBS type 1 and 40$ GGBS type 2 mixes is approximately 140 mm.

This compares with an increase in slump of less than 80 mm in the 
other mixes. This difference in the sensitivity of workability to w/c 
ratio could have important quality control implications. The above 
trends are generally confirmed by the two-point parameter g, although 
a lower than expected g value was obtained for the low w/c ratio, 70$ 
GGBS type 1 mix.

The change in h with w/c ratio appears to be completely 
different from that of the other workability parameters. Tattersall 
contends( 85) that g and h should decrease with increasing w/c ratio, 
and indeed the change in h for the 70$ GGBS type 1 and 40$ GGBS type 2 
mixes is consistent with this. However in the other mixes the h value 
at the low w/c ratio was less than would be expected. It is possible 
that these low h values arise from the observed formation of a stable 
annulus of concrete adjacent to the impeller orbit, and a consequent 
decrease in the volume of concrete being sheared.

At the high cementitious content (Fig 8.4.b) both slump and g 
generally indicate a rise and fall in workability with an increasing 

proportion of slag type 1 and slag type 2 respectively. In the latter 
case the slump decreases from 200 mm to 70 mm, and the g value 
increases from 0.6 to over 5.4 Nm, as the GGBS level increases from 0 

to 70$. The trends in h were consistent with, if less pronounced, 
than those of the other workability parameters. The greatest change 
in h with GGBS level was a rise of about 4 Nms in the 70$ GGBS type 2
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mix compared with the OPC control. The low values of g and h values at 

the low w/c ratio, may be attributed to the annulus formation 
described earlier.

With the exception of the low w/c ratio control mix, the 
slump, g, and h values in the OPC and GGBS type 1 mixes are very 
similar. As the w/c ratio increases from O.36 to 0.46, the slump in 
the 70$ GGBS type 1 mix increases from 5 to 205 mm , and g decreases 
from 5.5 to 0.6 Nm. The corresponding change in h is from 
approximately 3.5 to 1.8 Nms.

The change in workability with w/c ratio for the slag type 2 
mixes appears to be less systematic than in the other mixes. The slump 
values in the OPC control and 40$ GGBS mixes are very similar, whilst 
those in the 70$ GGBS mix are significantly lower at the medium and 
high w/c ratios. In the 40$ GGBS mixes the rise in slump of 150 mm 

between the low and high w/c ratios (0.36 to 0.46) was accompanied by 
corresponding decreases in g and h of approximately 5 Nm and 2 Nms 
respectively.

Low and high values of the two-point parameters were obtained 
in the 40$ GGBS mix, at the low w/c ratio, and in the 70$ GGBS, at the 
high w/c ratio, respectively. The latter mix was associated a 
relatively low correlation coefficient of 0.943 between impeller 
torque and speed (see Section C.1.2)

It can be observed from the above that an increase in the w/c 
ratio of 0.1 produced a corresponding increase in the value of slump 
of more than 160 mm, in most mixes. In comparison, an increase in the 
GGBS proportion from 0 to 70$ produced increases of slump of less than 
120 mm, in most mixes (see Section 9.4.3).

9.4.2 Hydration
Figs 8.4.c and 8.4.d show the development in UPV over the 

first 12 hours for the medium and high cementitious content mixes, at 
the medium w/c ratio. A line has been drawn thorugh the points 
relating to the OPC control mix to give an indication of the shape of
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the profile. There are gaps in the data, due to malfunctioning of the 
equipment, and steps in the profiles at approximately 2 hours, due to 
the removal of the external amplifier from the system (Fig 5.3.b). The 
numerical values used to form the profiles are given in Tab A.3.b.

It can observed that the pulse velocity increases rapidly up 
to about 4 hours, after which the rate of increase falls. The values 
of UPV obtained 4 hours after mixing are about 1.7 km/s and 2.5 km/s 
in the medium and high cementitious content mixes respectively; the 
corresponding values at 12 hours are approximately 3.5 and 4 km/s.

Overall the UPV values at 6 hours rank the ten mixes in the 
following descending order of magnitude : 4S0, 4P4, 4S4, 3P4, 3S0,
4P7, 4S7, 3P7, 3S4, 3S7. This compares with a 1-day compresive 
strength ranking of the mixes of 4S0, 3S0, 4S4, 4P4, 3P4, 3S4, 4P7,

4S7, 3P7, 3S7. Except for the medium cementitious content OPC control 
mix (3S0) and the 40^ GGBS type 1 mix (3S4), the ranking of the mixes 
is strikingly similar. The consistent ranking of the two slag types is 
interesting but, because of the lack of randomisation, requires 
further investigation.

It was hoped by the author that some connection could be 
established between the UPV and the time of initial set , as defined 
by penetration resistance measurements on mortar to BS 5075. Fig 8.4.c 
shows the point of setting marked on a limited number of UPV profiles. 
These results indicate a trend between increased setting time and GGBS 
level, which is accompanied by delays in the development of UPV. At 
the medium cementitious content the setting time increases from under 3 
hours in the OPC control mix, to about 4 hours in the 70% GGBS type 1 
mix. The initial set seems to occur when the velocity is around 1.4 
km/s, the value falling with increasing setting tme. This is 
consistent with previous research which determined that the end of 

workability, or initial set, was defined by the time at which the 
pulse velocity increased from 1 to 1.5 km/s (64 ).

This work indicates that UPV measurements can be made from 
early ages and that these measurements may be used to rank mixes with
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different cementitious contents and blends, or as a setting time 
criteria.

9.4.3* Strength
Fig 8.4.f shows the compressive strength at 1, 7 and 28 days 

plotted against the GGBS level (on the left ) and w/c ratio (on the 
right), in the medium cementitious content mixes. The compresive 
strength scale has been adjusted to suit the changes occuring at each 
age. The relationship between compressive strength and GGBS level at 1 
day consists of pairs of lines for the two slag types, descending in 
strength with increasing w/c ratio, and converging at the 70% GGBS 
level. At 7 and 28 days the relationships become bilinear, and their 
separation, according to w/c ratio and slag type, increases, 
particularly at the 70% GGBS level.

The relationship between compressive strength and w/c ratio 
is approximately linear. At 1 day the change in compressive strength 
with w/c ratio in the 70^ GGBS mixes is very low, suggesting that the 
sensitivity of the crushing machine at low compressive strength may be 
a limiting factor. The OPC control mix shows the greatest change with 
w/c ratio at all ages; the compressive strength value at the high w/c 
ratio being 44% and 62^ of that at at the low w/c ratio, at 1 and 28 
days respectively. The separation of the lines for the different GGBS 
levels at 1 and 7 days appears to be greater than the change in 
strength with w/c ratio . At 7 days the compressive strength values in 
the 70% GGBS mixes are typically a third of the corresponding OPC 
control mixes. This compares with strength values in the high w/c 
ratio mixes which are approximately two-thirds of those at the low w/c 
ratio.

Fig 8.4.g shows the trends in compressive strength with w/c 
ratio and GGBS level in the high cementitious content mixes. At 1 day 
the trends in compressive strength with GGBS level are similar to 
those described previously for the medium cementitious content mixes, 
although the compressive strength values are more than doubled. At 7
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days the linearity in the compressive strength-GGBS level relationship 
breaks down and, as in the Main Progamme, the 40$ GGBS mixes display a 
disproportionally high strength. At 28 days the separation of the 
relationships according to w/c ratio and slag type leads to the slag 
type 2 mixes being stronger than the type 1 mixes at both the 40 and 
70/6 GGBS levels. The maximum difference in the strength of the two 
slags is 12 MPa.

The greatest change in compressive strength with w/c ratio is 
witnessed in the 70% GGBS type 1 mixes. The compressive strength at 
the high w/c ratio is 66$ of that at the low w/c ratio. The sustained 
hydration in the GGBS mixes is reflected in the reduced separation of 
the different GGBS levels at 28 days, compared with 7 days. 
Consequently the effect of w/c ratio is more important than that of 
GGBS level at 28 days. Compressive strength values at the high w/c 
ratio are approximately 80$ of those at the low w/c ratio, whilst the 
strength in the 70$ GGBS mixes are approximately 85$ of those of the 
OPC control.

From the above it can be observed that the effect of a an
increase in w/c ratio of 0.1 is less than a 40$ reduction in the 7-day
compressive strength. Whereas the effect of increasing the GGBS level 
is approximately a 50$ reduction in the 7-day strength. This greater 
effect of the GGBS level compared to w/c ratio is contrary to that 
witnessed in the workability data.

The trends in compressive strength described so far are not 
of much practical relevance since a constant workability and not w/c 
ratio, is often adopted. This deficiency can be overcome by comparing
the compressive strength values on an equal slump basis.

Fig 8.3*4.h shows the relationship between the 28-day 
compressive strength and slump for the two cementitious contents, and 
three GGBS levels. Looking at 40$ GGBS mixes with a 80 and 160 mm 
slump it can be observed that slag type 2 produces strength values 
greater than or equal to OPC, whilst the strength values associated 

with slag type 1 are up to 5 MPa lower.
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At the 70% GGBS level, and medium cementitious content, the 
lines for OPC and slag type 2 intersect at a slump value of 120 mm. At 
slump values less than 120 mm the compressive strength associated with 

OPC is greater than that of slag type 2. The strength produced by 
slag type 1 is up to 10 MPa lower than that of slag type 2. In 
contrast, at the high cementitious content the lines for the two slag 
types coincide, reflecting the reduced workability of slag type 2, 
mentioned earlier. At slump values of 80 and 160 mm respectively the 
compressive strength values produced by high cementitious content, 70% 
GGBS mixes are approximately 10 and 13 MPa lower than for OPC.

9.^.4 Elasticity.
Two measures of elasticity were made: the dynamic modulus, in 

which a beam is subject to a very rapid cycle of low stress, and the 

static modulus, in which a cylinder is subject to a prolonged cycle of 
stress.

Fig 8.4.i shows the gain in static modulus at 7 and 28 days. 
Although the 7-day moduli of the high cementitious content mixes rank 
the blends in a similar order to compressive strength, this is not the 
case in the medium cementitious content mixes, where there are some 
unexpectedly low results for the slag type 2 mixes. In contrast, at 28 
days the static moduli of the slag type 2 mixes are greater than, or 
equal to, those of the other mixes.

Fig 8.4.j shows the static modulus plotted against the 

compressive strength. The relationship appears to be curvilinear, 
although a linear expresson may be adequate over a limited range of 
moduli. The relationship between static modulus and compressive 
strength is often described by a power expression (12 ). Regression 

analysis on the untransformed and logarithmicaly transformed 
compressive strength and static modulus data produced the linear and 
power relationships indicated. The power expression has a index of 

0.29, which is close to the cube root value adopted in CP 110 : 1972. 
The linear expression is similar to equation 17 in Section seven of
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BS8110 : Part 2, that is, EC2g = 2 0 + 0 . 2  fQU 2g> f°r estimating
the static modulus from the characteristic strength, for normal-weight
aggregates.

It can be observed that whilst the OPC results lie either on

or above the power relationship; in the GGBS mixes there are twice as
many points below the curve, as above it. This suggests lower values 
of static modulus at any compressive strength in the GGBS mixes. 
However the effect is small, and the moduli of the GGBS mixes are less 
than 5 GPa lower than those predicted by the power relationship.

Fig 8.4.k shows the static and dynamic elastic moduli at 7
and 28 days, plotted against each other, together with the linear
relationship and confidence interval proposed in BS 8110 (equation 19, 
Section seven).

The dynamic modulus is inherently higher than the static 
modulus (Section 5.^.2), and indeed the dynamic values in Fig 8.4.k 
are approximately 10 GPa greater than the corresponding static values. 
Although the points lie predominantly within the confidence interval, 
the static modulus values are generally lower, at any dynamic modulus, 
than would be predicted by the BS 8110 relationship. The limited 
results available indicate a slightly lower static modulus at any 
dynamic modulus in the OPC mixes; three of the four points associated 
with these mixes fall below the lower confidence interval.

9.5 Summary
Three concrete parameters are of over-riding importance 

during construction : workability (usually slump), strength (usually 
28-day compressive strength), and the formwork striking time.

In order to provide practical guidance for engineers, and 
tie together the various parts of the investigation, the author 
utilised relationships between compressive strength and slump, and 
compressive strength and age as follows.

The mean cube strength for striking formwork can be 
calculated for a required in situ cube strength by applying a factor
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of 1.88, as shown in Ciria Report 73 ( 86 ). Futhermore, the time to 
reach the required mean cube strength may be predicted from the 
relationships between compressive strength and age. The equivalent 
ages to reach in situ cube strength values of 2 and 5 MPa are shown in 
Tab A.2.2.g. The author related these striking times to the 28-day 
compressive strength, as proposed by Sadgrove ( 7 7  ), and expanded 
Fig 8.4.h, relating slump and 28-day compressive strength, to form Fig
8.5. The adopted in situ strength values of 2 and 5 MPa are those 
recommended in CIRIA 73 and BS 8110 to avoid frost damage to 
unsaturated and saturated concrete respectively; intermediate values 
are also shown.

Fig 8.5 is intended as a mix design and formwork striking 
guide for engineers, allowing all three of the parameters listed above 
to be predicted for different cementitious contents and blends.
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10.1 Introduction

This chapter draws together the findings of the Main 
Programme of research and the Secondary Study under the headings 
adopted in Section 2.6, that is: workability, hydration and potential 
reactivity , strength ,elastic properties and long-term performance. 
For clarity each of the major conclusions is listed separately and 
labelled.

The significant interactions between factors, identified in 
the workability, compressive strength and water absorption data, 
vindicates the choice of a factorial design for the experimental work.

A constant water content was used throughout the Main 
Programme, and adoption of a constant workability, instead, would 
affect the findings.

10.2 Workability (Section 8.3*1)
a) The workability assessment methods generally indicate 

concordant trends in workability.

b) Increased replacement of OPC by GGBS has a significant effect 
on workability. At the low cementitious content the increase 
in workability associated with the incorporation of 70% GGBS 
is approximately equivalent to a seven litre addition of 
water to the OPC control mix. At the high cementitious 
content the workability appears to remain the same or 
decrease as the proportion of GGBS increases.

c) The differing effects of GGBS upon workability at low and 
high cementitious contents may be connected with a transition 
of the effective fines ratio, through an optimum value for 
workability.

d) The two GGBS types used in the investigation had divergent 
effects on the workability in the medium and high 
cementitious content mixes. The decrease in workability 
associated with the incorporation of GGBS type 2 is probably 
connected with its a narrow particle size distribution,
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requiring increased mix water for void filling and surface 
wetting.

e) The trends in workability observed in the Main Programme were 
generally supported by the results at the 100̂ 6 GGBS level 
and other water-cement ratios. However, at low concrete 
workabilities the two-point test parameters seem to be 
affected by the formation of a stable annulus of 
concrete about the impeller orbit.

f) The workability of concrete containing 10% GGBS type 1, or 
405S GGBS type 2, was much more sensitive to a change in the 
water-cement ratio than those mixes containing OPC or the 

other cementitious blends. This could have implications for 
workability control.

g) Quadratic models for each of the GGBS types, involving 
cementitious content and GGBS level, provide a reasonable 
fit to the workability data.

h) The transition in the effects of GGBS level and type with 
cementitious content is supported by significant interactions 

between cementitious content, GGBS level and GGBS type in 
the analyses of variance of the slump and compacting factor 
data.

i) Least significant difference follow-up studies on significant 
main effects of GGBS level and block indicate that, whilst 
the GGBS levels are not grouped in any way, one block of 
workability results are significantly lower than the rest. 
This was thought to be due to a rise in the dust content of 
the coarse aggregate.

j) The relationship between slump and g, for different

cementitious contents, consists of a series of power 
expressions; producing higher slump values with increasing 
cementitious content, particularly at low g values. 
Significant correlations (>99.8/6 probability) were obtained 
between the British Standard and two-point test parameters.
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The low cementitious content mixes, particularly those 
containing GGBS, were adjudged to have bled excessively, 
whilst the high cementitious content mixes containing GGBS 
type 2 were adjudged to be over-cohesive. A region of ideal 
cohesion marks is located about g and h values of 
approximately 2.5 and 3.5 respectively.
The change in impeller torque when concrete is subjected to a 
period of shearing in the two-point test correlates 
significantly (>99.856 probability) with the subjective 
assessment of fresh concrete bleeding, and an objective 
measure of hardened concrete segregation. This seems to 
support the use of the two-point test as an indicator of mix 
stability.

Hydration and Potential Reactivity (Sections 8.3*2 and 8.4) 
GGBS type 2 was found to be finer than GGBS type 1, with a 
higher chemical modulus and lime-silica ratio. These 
differences, together with possible changes in mineralogy, 
would be expected to lead to a higher reactivity in GGBS type 
2 than GGBS type 1; confirmed by physical tests on cement 
paste, mortar, and concrete.
Vacuum flask calorimetry is a simple method of generating 

heat evolution data for concrete. This data appears to give 
an indication of the temperature differential in modest 
sections, or may be used to estimate the first-order 

corrected adiabatic temperature rise.
The vacuum flask data indicates a significant reduction in 
the peak differential temperature with GGBS level, and an 
increase in the time to the peak temperature, particularly at 
the 200 kg/m^ cementitious content. The temperature rise 
coefficients of the 0,40 and 70% GGBS mixes were 

approximately 4, 3 and 2 °C per 100 kg of cementitious 
material.



UPV measurements at early ages can be used to generate 
profiles which appear to characterise the hydration of 
concrete mixes with different cementitious blends and 
contents. These profiles indicate a greater pulse velocity 
development at higher cementitious contents, at low GGBS 

levels, and in the GGBS type 2 mixes.
The end of workability , as defined by penetration resistance 
measurements on mortar, seems to occur when a pulse velocity 
of about 1.4 km/s is reached.
The activation energy, calculated by applying Arrhenius law 
to the compressive strength data, has a value of : 50 kJ/mol 
for pure OPC, 58 and 55 kJ/mol for 40% blends of GGBS type 1 
and type 2, and 67 and 58 kJ/mol for 70$ blends of GGBS type 
1 and type 2. The higher activation energies in the blended 
cements suggests a greater response of the hydration rate to 
elevated curing temperatures; confirmed in the compresssive 
strength data.

Strength (Sections 8.3*3, 8.3*4 and 8.4)

Compressive strength generally increases with age and 
cementitious content.
At early ages the compressive strength decreases almost 
linearly with increasing GGBS level. At later ages, the 40$ 
GGBS mixes may display a disproportionally high strength; 
this becomes more pronounced as the curing temperature 

increases.
The percentage strength values in the GGBS mixes, relative to 
the OPC control, increase with curing temperature; rising in 

the 70$ GGBS type 2 mixes from less than 20$ at 3 days under 
5°C curing, to over 60$ at 40°C, at the same age.
The compressive strength values at 3 days onwards in the GGBS 
type 2 mixes are consistently higher, under wet curing



conditions, than those of the corresponding slag type 1 
mixes. The maximum difference in strength between the slags 
is approximately 8 MPa.

e) An interaction between age, GGBS level and GGBS type is 

signified by a differential anticlockwise rotation of the 
GGBS effect lines about the OPC control mix result, in the 
pseudo three-dimensional graphs. This rotation means that out 
of the twelve mix designs incorporating GGBS, strength 
comparability with the OPC control is attained in eight at 
40°C , six at 20°C, one at 10°C, and none under 20°C dry or 
5°C wet curing.

f) At early ages, under wet curing conditions, the strength 
development increases with increasing curing temperature. At 
later ages compressive strength rises with increasing curing 
temperature up to 20°C in all mixes, except the OPC control, 
but then falls slightly at 40°C. This indicates the 
deleterious effect of elevated curing temperatures on the 
ultimate strength.

g) The percentage strength values, with respect to standard 
curing, indicate a greater sensitivity of the 1-day 
compressive strength of OPC mixes to lower curing 
temperatures, compared to GGBS mixes. In contrast, at 91 days 
the percentage strength falls almost linearly with GGBS 
level, from over 95% in the OPC control, under 10°C wet 
curing, to approximately 75% in the 70^ GGBS mixes.

h) Curing in air severely retards the development of
compressive strength in laboratory specimens from about 3 
days onwards. Consequently, compressive strength values at 91 
days are between two-thirds and a quarter of the 
corresponding values for standard curing; this proportion 
decreasing as the GGBS level increases.

i) When the 28-day compressive strength values of the medium and
high cementitious content mixes are compared on an equal
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slump basis, the values associated with 40$ GGBS type 2 are 

at least equal to those of OPC, and exceed those of slag 
type 1 by about 5 MPa. In contrast, at the 70$ GGBS level the 
compressive strength values of the GGBS mixes are lower than 
those of the OPC mixes at slump values less than 120 mm. 
Futhermore, at 70$ GGBS level, and the high cementitious 
content the relationship between compressive strength and 
slump coincides for the two slags, 

j) Analyses of variance of the compressive strength data yielded 
significant interaction effects involving cementitious 
content, GGBS level, curing and GGBS type. These interactions 
prevent definite conclusions from being drawn about the 
significance of the main effects, 

k) Relative changes in the F-ratios associated with the 
different effects indicate that, in general : the effects of 
GGBS type and curing increase with GGBS level; the slag type 
effect rises from 1 day (the most notable exception being in 
the high cementitious content mixes) and reaches a peak at 
around 7 days; and the effect of curing humidity increases 
with age, whilst that of temperature is sensibly minimised 
where the compressive strength-age relationships, for the 
compared regimes, intersect.

1) The cementitious blend affects the shape and temperature 
dependency of the compressive strength-equivalent age 
relationships. Lower rates of strength development, at later 

ages in OPC mixes and early ages in GGBS mixes, are indicated 
by a decrease in the slope of the relationship in each case; 
confirmed by regression analysis, 

m) Curing at 40°C produces strength values at equivalent ages
between 7 and 14 days, up to 10 MPa lower in the OPC mixes 
and 5 MPa higher in the GGBS mixes, than curing at 20°C. This 
indicates the relative advantage of heat treating GGBS mixes, 

n) Tensile splitting tests give strength values two-thirds to
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half of those from flexural tests, for the same compressive 
strength.
The relationship between indirect tensile and compressive 

strength can be expressed as a power relationship. Under wet 
curing the relationship for the flexural strength data is 
similar to that obtained by other workers. However, the power 
index for the tensile splitting data is higher than has been 
reported by other workers, using cylindrical specimens.
Curing in air results in a reduction in the indirect tensile 
strength at any compressive strength. This greater effect of 
dessication upon indirect tensile strength, compared to 
compressive strength, is thought to be connected with surface 
shrinkage cracking. Consistent with the underlying theory of 
the tests the flexural strength is more affected than the 

splitting strength.
The indirect tensile strength at any compressive strength 

appears to be higher in GGBS mixes than OPC mixes, under low 
curing temperatures. The effect is only slight, producing 
splitting and flexural strength values 0.2 and 0.4 MPa 
greater respectively, at any compressive strength.

Elastic Properties (Sections 8.3.5, 8.3-6 and 8.4)
The elastic properties, ultrasonic pulse velocity and dynamic 
elastic modulus, support the compressive strength ranking of 
the cementitious blends at early ages. That is, in order of 
decreasing magnitude: OPC, 40% GGBS type 2, 40^ GGBS type 1, 
70% GGBS type 2, and 70% GGBS type 1.
The elastic properties appear more responsive than 
compressive strength at early ages to changes in mechanical 
properties brought about by mix design and curing, but less 
responsive at later ages.
The relationships between compressive strength and the 
elastic properties may be approximated by exponential



functions. Plots of the compressive strength, on a logscale, 
against pulse velocity and dynamic elastic modulus are 
curvilinear or bilinear, for wet curing conditions.

d) The greatest change in the relationships between compressive 
strength and the elastic properties was introduced by a 
change in the curing humidity. Curing in air gives rise to 
an increased compressive strength at any value of pulse 
velocity or dynamic modulus, compared with curing underwater. 
Under wet curing conditions the compressive strength at any 
value of pulse velocity or dynamic modulus appears to 
increase with increasing curing temperature.

e) At compressive strength values greater than about 30 MPa 
there is a tendancy for the pulse velocity or dynamic modulus 
to be lower in GGBS mixes than in OPC mixes. At compressive 

strength values less than about 5 MPa, the reverse is true.
f) The dynamic elastic modulus and the stiffness constant are 

linked by a fundamental equation, and as expected a very 
strong relationship was found to exist between them. The 
relationship seems to be independent of the mix design, but 
is influenced by the curing conditions. It consists of an 
upper portion, which is approximately linear, and a lower, 
curvilinear portion, which can be modelled using a power 
expression.

g) The linear portions of the relationship between dynamic 
elastic modulus and the stiffness constant form a series of 
lines converging at a dynamic modulus of approximately 50 
GPa. Below this point curing in air produces a higher 
elastic modulus, at any value of stiffness constant, than 
curing underwater. Under wet curing conditions the elastic 
modulus at any value of stiffness constant decreases with 
increasing curing temperature.

h) Dynamic Poisson’s ratio can be located on a plot of dynamic 
modulus and stiffness constant. The ratio rises from
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approximately 0.4 to 0.2 as the concrete matures.
Curing in air increases the linearity of the relationships 
between the compressive strength and the elastic properties, 

and that between the dynamic elastic modulus and the 
stiffness constant.
The static moduli generally rank the medium water-cement 
ratio in the same order as the dynamic modulus, although the 
the 40% GGBS type 2 mixes are promoted above the OPC control 

mix at 28 days.
The relationship between the static and dynamic elastic 
moduli appears to be linear. The limited results available 
indicate that Equation 19 in BS 8110 may overestimate the 

static modulus at any dynamic modulus, particularly in OPC 
mixes.
The relationship between the static elastic modulus and 

compressive strength can be approximated by a linear 
expression, similar to equation 17 in BS 8110 , or a power 
expression with an index of 0.29. There are some indications 
of a lower static modulus at any compressive strength in the 

GGBS mixes, compared with the OPC mixes; the reduction in 
the static modulus being less than 5 GPa.

Long-term Performance (Section 8.3-7)

A simple water absorption test has been developed in which 
only the end of the specimen is in contact with water. This 
test has potential advantages over the alternative British 

Standard test, which uses the full immersion of specimens. As 
expected, a strong linear relationship exists between the 
water absorption under end-contact and that under full 
immersion.

The water absorption values at sixty minutes decrease 
consistently with increasing cementitious content, and when 
wet curing, relative to dry curing. The range in water



2absorption with cementitious blend was 1.4 to 0.3 ml/m s
2under dry curing, compared to a range of 0.5 to 0.2 ml/m s 

under wet curing.
c) Under dry curing the water absorption rises with GGBS level, 

the value more than doubling for 70>6 GGBS mixes compared to 
the corresponding OPC control mix.

d) Water absorped and compressive strength can be related by 
an inverse power law whose coefficents are dependent on the 
mix design and curing. There was some indication of a 
slightly lower water absorption in well cured GGBS mixes 
compared to OPC control mixes of equivalent strength.

e) Analysis of variance of the water absorption data for 10°C
and 5°C curing indicates significant main effects of 
cementitious content and GGBS level; the water absorped 
decreases as the cementitious content and GGBS level
increase. The other analyses indicate a significant
interaction between cementitious content, GGBS level, and 
either curing humidity or GGBS type.

10.7 Practical Recommendations
The interrelationship between the parameters measured in this 

investigation, and their bearing upon the engineering performance of 
concrete, was explained in Section 2.3. The significant difference in 
workability and strength development of mixes made with the two GGBS 
types indicates that consideration must be given both the trial mixes
and construction to the source of the slag used. This is particularly
the case where there are high demands on the concrete, such as in 
slip-forming.

When estimating the in situ compressive strength of concrete 

from pulse velocity measurements, allowance must be made for the 
curing humidity, curing temperature and cementitious blend.

Dry curing of laboratory specimens detrimentally affected all 
mixes, leading to a severe reduction in strength, especially indirect
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tensile strength, and an increase in the water absorption. The 
properties of GGBS mixes are particulary susceptible to dessication 
and attention must be paid to the curing on site. The minimum periods 
of curing and protection in Table 6.5 of BS 8110 do not allow for the 
level of GGBS in the cementitious blend, and a further tier of curing 
times is required for LHPBFC. The author, on a basis of equal 
compressive strength at the cessation of curing, tentatively 
recommends a period in days of l40/(t + 10) for average ambient 
conditions and 200/ (t + 10) for poor ambient conditions; where t is 
the average surface temperature of the concrete.

The reduced early rate of strength development and 
lower heat evolution in GGBS mixes, compared to OPC mixes, could 
result in extended formwork striking times in thin sections, at low 
ambient temperatures. Guidance should be given to engineers, perhaps 
relating the concrete workability to 28-day strength and the 
equivalent age for striking formwork.
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FURTHER WORK
Significant effects of slag type upon workability and

compressive strength have been identified by this work. However, 
isolation of these effects to physical, chemical or mineralogical
properties was not possible. An investigation of slags with similar 
chemistry but varying particle size distributions, such as that being 
carried out at Leeds University by F.T.Olorunsogo, may determine the 
relative importance of the granulate and grinding.

The experimental design used in this work was distorted at
the 0% GGBS level by the provision of a slag type effect. A better
method of analysing the results would be a response surface approach 
(87), which allows the effect of continuous variable, such as GGBS 
level, to be taken into consideration when testing the significance of 
a qualitative variable such as GGBS type. A natural extension of this 
approach would be the fitting of a polynomial model to the compressive 
strength data.

The work indicates a significant interaction effect of 
cementitious content and type upon the workability of concrete. The 
importance of the fine fraction (less the 600 microns) of the fine 
aggregate has been recognised in the BRE guide "Design of normal 
concrete mixes" ( 52 ). It may be possible to extend this methodology 
to include a consideration of the cementitious content and grading.

Work by other researchers has indicated that the internal 
temperature cycle generated within structural elements can 
significantly influence the relationship between compressive strength 
and other parameters, such as maturity. An investigation into the 
effect of low temperature cycles on the development of in situ 

strength, from cores and temperature profiled cubes,has been carried 
out by the author (88 )•

A diagram combining slump, 28-day compressive strength and 

striking times was proposed in Section 9.5. Additional data to check 
its reliability needs to be obtained.

Encouraging results were obtained for the use of torque in
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the two-point test to assess the stability of mixes to segregation and 
bleeding. Further work on this topic using short columns has been 
carried out by the author in the laboratory, however site trials 
involving the casting of columns or piles would be more relevant.

Other techniques which were promising but which require 
further research and development are the the measurement of UPV at 
early ages and water absorption under end-contact. In particular 
correlations between the water absorption and long-term performance, 
such as carbonation, could provide a guide to acceptable absorption 
levels.
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BRITISH STANDARD REFERENCES
The following were published by the British Standards Institute, 
London. Withdrawn or superceeded standards are marked by an asterix.

Specifications
BS 12 : 1978 ’’Specification for ordinary and rapid-hardening

Portland cement”.

BS 146 Part 2 : 1973 "Specification for Portland-blastfurnace cement".

BS 4246 Part 2 : 1974 "Specification for low heat Portland-
blastfurnace cement".

"Specification for ground granulated 
blastfurnace slag for use with Portland 

cement".

"Specification for Portland pulveriszed-fuel 
ash cement".

"Specification for pozzolanic cement with 
pulverized-fuel ash as pozzolana".

BS 3893 Part 1 : 1982 "Specification for pulverized-fuel ash for use
as a cementitious component in structural 
concrete".

BS 5328 : 1981 "Specifying concrete, including ready-mixed

concrete".

BS 882 : 1965* "Specification for aggregates from natural
sources for concrete (including granolithic)".

BS 6699 : 1986

BS 6588 : 1985

BS 6610 : 1985
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BS 882:1983 "Specification for aggregates from natural 
sources for concrete".

BS 5075 Part 1 : 1982 "Specification for accelerating admixtures,
retarding admixtures and water-reducing 
admixtures".

Testing

BS 812 Part 2 : 1975 "Methods for sampling and' testing of mineral
aggregates, sands and fillers - Physical 
properties".

BS 812 Parts 101-103 "Testing aggregates", 1984 and 1985.

BS 4550 Part 3 : 1978 "Methods of testing cement - Physical tests".

BS 1881 Parts 101-125 "Testing Concrete", 1983 to 1986.
(Parts 101-107 fresh concrete testing;

108-111 specimen manufacture and curing;
114-122 hardened concrete testing).

BS 1881 Part 203:1986 "Recommendation for measurement of velocity of
ultrasonic pulses in concrete".

BS 1881 Part 5 : 1970 "Methods of testing concrete for other than
strength".

Miscellaneous

CP 110 Part 1 : 1975* "The structural use of concrete".

BS 8110 : 1985 "Structural use of concrete".
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A. 1 Peripheral Work

Fig A. 1 .a
Figs A.1.b-c
Figs A.1.d-e
Tab A. 1 .a
Tab A. 1. b

two-point test calibration 
change in idling pressure
aggregate moisture and concrete temperature 
particle size distribution of the cement 
concrete mix proportions
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Tab A.1.a : Particle Size Distribution of the Cementitious Materials 
using three methods of determination.

CUMULATIVE % SMALLER
Cilas Granulometre Microtrac Sedigraph

Particlte
S i ze Slag Slag Slag Slag Slag Slag
(dm) OPC Type 1 Type 2i OPC Type 1 Type 2 OPC Type 1 Type 2
128 100.0 98.0 100.0 100.0 100.0 100.0 __ __ __

a 96 100. 0 97.9 100.0 93.1 93.0 100.0 99.2 97 .8 100. 0
64 90.0 91.8 100. 0 88.0 85 . 5 100 . 0 95.8 91.6 100.0

b 48 88.5 86.9 100.0 82.3 80.7 100.0 86.9 82.2 100.0
32 70.5 74.1 94.3 71.8 71.5 95.2 78.3 76.5 96.8
24 61. 0 64.7 84.9 64.2 63.8 83.2 64.3 66.5 89 .8
16 48.3 54.3 66.4 53.7 58 . 1 71.4 47 .8 55.8 76.2
12 42.0 46.1 51.9 42.7 48. 5 57.5 35 .6 45.6 59.5
8 33.0 38.0 38.0 33.0 38.6 40.2 28.3 38.2 45.5
6 28.2 31.5 30.0 27.6 32.9 31.6 18.7 28.8 31.5
4 20.9 25.4 22.7 17.3 20.2 19.1 13.0 19.7 20.0

c 3 16. 1 20.2 17.7 6.6 8.0 7.1 7.1 12.3 12.5
2 11.0 14.9 12.9 -- -- -- 4.3 5.8 7 . 8

1.5 8.3 10.2 8.8 -- -- -- 1.3 2.3 4.0
1 6.8 8.3 7.2 -- -- -- 0.9 0.8 2.0

Not available
a b c Actual sizes for the Microtrac and Sedigraph

were 90, 45 and 2. 8 (am respectively.

Tab A. 1. b : Concrete mix proportions allowing for the true relative 
densities and moisture condition of the constituents.

Mix 
Design 
N o . Code

Batch Quantities kg
WATER CEMENT 
(Free) OPC GGBS

per cubic metre
AGGREGATES 

Fine Coarse W/C A/C %Fines

1 2S0 165 200 840 1165 0.82 9.92 41. 84
2 2S4 165 120 80 835 1165 0.82 9.90 41.82
3 2S7 165 60 140 835 1160 0.83 9.93 41.83

10 2P4 165 120 80 835 1165 0.32 9.90 41.82
11 2P7 165 60 140 835 1160 0.83 9.93 41 .33

4 3S0 165 300 __ 755 1165 0.55 6.35 39.36
5 3S4 165 180 120 755 1160 0.55 6.36 39 . 36
6 3S7 165 90 210 750 1155 0.55 6.36 39.36

12 3P4 165 180 120 755 1160 0.55 6.33 39 .36
13 3P7 165 90 210 750 1155 0.55 6.34 39.36

7 4S0 165 405 __ 675 1160 0.41 4.55 36.68
8 4S4 165 240 160 670 1155 0.41 4.57 36.67
9 4S7 165 120 280 670 1155 0. 41 4.55 36 .68

14 4P4 165 240 160 670 1155 0 .41 4.56 36.67
15 4P7 165 120 280 670 1155 0.41 4.56 36 .66

* W./C=Free Water/Total Cementitious Content 
A/C= Aggregate/Total Cementitous Content 

! Oven-dried and saturated surface-dry Relative Densities
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Tab A.2.1.a : Summary of the Workability data, showing mean and 
standard deviation of the four blocks of results.

Mix 
Design 
No. Code

Slump
(mm)

sd*
Compacting
Factor

sd
E

(Nm)
sd

h
(Nms)

sd
1 2S0 17 6 0.902 0. 009 5.72 1.19 5.10 0.31
2 2S4 33 11 0.915 0 . 009 2.80 1.13 6.82 0.95
3 2S7 35 13 0.918 0.008 0.91 0.63 6.95 0.56
10 2P4 25 8 0.916 0.013 3.98 1.66 5.32 0.80
11 2P7 41 18 0.920 0.019 2.09 1.66 6.29 1. 13
4 3S0 81 24 0.956 0. 007 2.57 0.58 3.46 0.61
5 3S4 96 23 0.956 0.016 1.91 0.17 3.52 0.64
6 3S7 147 22 0.971 0.004 1.42 0.14 3.03 0.45

12 3P4 83 25 0.951 0. 013 2.83 0.75 3.48 0.44
13 3P7 62 12 0.937 0.009 3.84 1.45 3.80 0.85
7 4S0 85 13 0.958 0.012 2.59 0.61 2.93 0.48
8 4S4 94 24 0.962 0. 009 2.88 0.67 2.87 0.19
9 4S7 114 26 0.967 0.007 2.61 0.43 3.35 0.44
14 4P4 46 16 0.892 0. 033 5.02 0.92 3.36 0.47
15 4P7 37 8 0.846 0.031 6.74 0.59 4.67 0.31

* Standard deviation
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Tab A.2.1.b : British Standard Workability test results.

Mix 
Design 
No. Code

Block
Slump 
A B 
(mm)

Mean
CF plastic 

density 
(kg/m 3)

1 2S0 1 20 15 18 0.903 2402
2 5 20 13 0.905 2371
3 15 10 13 0.889 2397
4 30 20 25 0.910 2386

2 2S4 1 40 45 43 0.924 2391
2 25 30 28 0.903 2400
3 30 10 20 0.918 2395
4 45 35 40 0.915 2399

3 2S7 1 35 40 38 0.918 2373
2 45 35 40 0.918 2380
3 20 10 15 0.908 2386
4 55 35 45 0.928 2393

10 2P4 1 20 25 23 0.918 2415
2 20 30 25 0.900 2415
3 35 35 35 0.931 2393
4 20 10 15 0.915 2380

11 2P7 1 30 40 35 0.903 2404
2 75 50 63 0.945 2413
3 20 20 20 0.908 2389
4 50 40 45 0.922 2402

4 3S0 1 80 90 80 0.954 2417
2 70 60 65 0.962 2402
3 60 70 65 0.947 2409
4 100 130 115 0.962 2409

5 3S4 1 85 90 88 0.957 2417
2 110 125 118 0.966 2426
3 65 70 68 0.933 2408
4 115 105 110 0.966 2413

6 3S7 1 160 160 160 0.976 2411
2 110 125 118 0.967 2406
3 170 165 168 0.969 2404
4 155 130 143 0.971 2411

12 3P4 1 65 70 68 0.940 2415
2 140 100 120 0.968 2408
3 80 60 70 0.942 2415
4 80 70 75 0.953 2406

13 3P7 1 45 45 45 0.929 2420
2 75 70 73 0.945 2406
3 60 60 60 0.929 2400
4 75 60 68 0.944 2406

7 4S0 1 105 90 98 0.975 2433
2 65 70 68 0. 956 2437
3 90 90 90 0.949 2433
4 90 80 85 0.950 2442

8 4S4 1 85 80 83 0.956 2433
2 65 65 65 0.954 2429
3 120 115 118 0.966 2422
4 125 90 108 0.973 2422

9 4S7 1 120 105 113 0.965 2420
2 125 155 140 0.974 2399
3 80 75 78 0.958 2400
4 140 110 125 0.972 2417

14 4P4 1 50 55 53 0.895 2426
2 50 45 48 0.891 2417
3 20 25 23 0.850 2417
4 60 60 60 0.930 2428

15 4P7 1 30 35 33 0.851 2415
2 45 50 48 0. 886 2408
3 30 30 30 0.832 2417
4 35 35 35 0.813 2418
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Tab A.2.1.C : Two-point Workability test results.

upper lower upper lower
Mix g h r g g h h

Design Block (Nm) (Nme) (Nm) (Nm) (Nms) (Nms)
No. Code
1 2S0 1 6.26 5.51 0.970 6.90 5.61 6.50 4.53

2 6.45 4.79 0.985 6.83 6.06 5.38 4.20
3 6.21 4.95 0.996 6.42 6.00 5.27 4.62
4 3.94 5. 15 0.991 4.28 3.60 5.67 4.65

2 2S4 1 2.54 7.78 0.980 3.28 1.81 8.90 6.65
2 4.37 7.47 0.996 4.70 4.04 7 .97 6.97
3 2.62 5.87 0.993 2.96 2.29 6.37 5.36
4 ! 1.68 6.15 0.996 1.98 1.38 6.57 5.72

3 257 1 0.82 7.27 0.965 1.76 -0.12 8.69 5.85
2 0. 48 6.77 0.969 1.30 -0.35 8.02 5.53
3 1.82 7.51 0.991 2. 30 1.34 8.23 6.78
4 0.50 6.25 0.984 1.05 -0.04 7.07 5.44

10 2P4 1 4.86 4.42 0.993 5. 12 4.61 4.80 4.03
2 5.32 5.97 0. 997 5.54 5.09 6.32 5.63
3 1.60 6.02 0.988 2.04 1.16 6.68 5.35
4 4. 14 4.87 0.991 4.45 3.83 5 .34 4.40

11 2P7 1 4.56 7 .13 0.995 4.89 4.23 7.64 6.63
2 ! 1.48 5.03 0.979 1.96 1.00 5.85 4.20
3 1.19 7.36 0.980 1.90 0.48 8.43 6.30
4 1.12 5.65 0.969 1.81 0.43 6.67 4.62

4 3S0 1 2.83 3.01 0.984 3.09 2.56 3.40 2.62
2 2.96 3.35 0.982 3.27 2.64 3.81 2.88
3 2.76 4.35 0.996 2.95 2.57 4.63 4.07
4 1.71 3.11 0.989 1.93 1.48 3.44 2.78

5 3S4 1 1.98 3.28 0.958 2.45 1.51 3 .98 2.57
2 1 .66 3.30 0.988 1.91 1.41 3.67 2.93
3 2.06 4.46 0.994 2.29 1.83 4.81 4.11
4 1.93 3.03 0.988 2.16 1.70 3.38 2.69

6 3S7 1 1.40 2.52 0.983 1.62 1.17 2.86 2. 18
2 1 .60 2.99 0.990 1.80 1.40 3.28 2.69
3 1.25 3.61 0.996 1.41 1.08 3.86 3.37
4 1.42 2.99 0.990 1.63 1.21 3.30 2.68

12 3P4 1 3.87 3.41 0.981 4. 19 3.55 3.89 2.92
2 2.11 3.29 0.988 2.36 1.87 3.66 2.91
3 2.55 4.11 0.986 2.88 2.23 4.60 3.62
4 2.79 3.11 0.983 3.06 2.51 3.53 2.69

13 3P7 1 5 .43 2.79 0.980 5.70 5.17 3. 19 2.38
2 2.65 3.61 0.977 3.03 2.28 4. 17 3.05
3 4.70 4.84 0.981 5. 15 4.24 5.52 4. 15
4 2.57 3.95 0.994 2.77 2.36 4.26 3.64

7 4S0 1 2.42 2.55 0.984 2.65 2.20 2.88 2.22
2 3.48 2.75 0.983 3.73 3.24 3.12 2. 38
3 2.35 3.63 0.990 2.61 2.09 4.01 3.25
4 2.11 2.80 0.979 2. 39 1.83 3.22 2. 38

8 4S4 1 3.08 3.15 0.970 3.46 2.70 3.71 2.59
2 3.74 2.77 0.980 4.01 3.47 3. 17 2.37
3 2.36 2.81 0.995 2.49 2.22 3.01 2.61
4 2.33 2.75 0.983 2. 58 2.09 3. 11 2.38

9 4S7 1 2.58 3.07 0.991 2.78 2.37 3.38 2.77
2 2.59 3.58 0.994 2.78 2.40 3.86 3.30
3 3. 16 3.84 0.976 3.57 2.75 4.46 3.23
4 2.12 2.90 0.982 2.39 1.86 3.29 2.50

14 4P4 1 5.19 2.74 0.991 5 .37 5.02 3.00 2 . 47
2 5.33 3.88 0.991 5.57 5.09 4.24 3.51
3 5.85 3.42 0.980 6. 18 5.52 3.92 2.93
4 3 .70 3.41 0.989 3 .94 3.46 3 .78 3.05

15 4P7 1 7.53 5.09 0.995 7.77 7.28 5.46 4.72
2 6.65 4.60 0.991 6.94 6.36 5.03 4 . 16
3 6.09 4. 35 0.988 6 . 41 5.78 4.83 3 . 87
4 6.67 4.65 0.988 7.01 6.33 5. 17 4. 12

one set of impeller torques and speeds 
removed to give 6ix degrees of freedom
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Tab A.2.1.d : Subjective and Objective Assessments of Mix Stability.

Subjective Objective
Mix Cohesion Bleeding Torque Mean Transit

Design Block Mark Mark Change Time Range
No. Code (Nm) (ps)

1 2S0 3 3.5 3.5 2.78 3.05
4 4.0 6.0 2.93 2.45

2 2S4 3 1.5 8.0 3.26 5.30
4 * 3.0 3.5 3.38 5. 05

3 2S7 3 4.0 7.0 4.62 4.30
4 * 3.0 6.5 4.05 7.20

10 2P4 3 4.0 3.5 3.60 5.60
4 3.0 6.0 2.81 4.70

11 2P7 3 3.0 7.0 4.71 7.45
4 3.0 6.0 3.69 4.65

4 3S0 3 5.0 0.0 2.15 2.85
4 6.0 1.0 1.36 2. 10

5 3S4 3 5.5 1.0 2. 30 3. 40
4 7.0 2.5 1.54 3.10

6 3S7 3 2.0 2.5 1.42 3.90
4 3.0 3.0 1.21 4.10

12 3P4 3 5.5 2.0 2.33 2.95
4 5.5 2.0 2.02 3.05

13 3P7 3 6.0 3.0 2.99 3.40
4 6.0 1.5 1.96 3.35

7 4S0 3 5.5 1.0 1.78 2. 10
4 6.0 0.0 1.33 1.75

8 4S4 3 6.0 0.5 0.97 2.60
4 6.0 1.0 1.45 2.90

9 4S7 3 6.0 2.0 2.09 1.25
4 6.0 2.0 1.48 2.30

14 4P4 3 7.5 0.0 1. 03 1.70
4 7.0 1.0 1.84 1.90

15 4P7 3 9.0 1.5 1.75 1.55
4 * 10.0 0.5 1.60 2.30

* Temporary Assessor
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Tab A.2.1.e : Workability results for the 100$ GGBS mixes.

Mix
Design
Code

Slump
(mm)

Compacting
Factor

g
(Nm)

h
(Nms)

2S10 170 6 0.951 0.73 3.14
2P10 150 s 0.937 ! 0.36 5.98
3S10 208 C 0.970 0.47 2.22
3P10 118 U 0.943 2.08 4. 15
4S10 175 0.981 1.52 2.79
4P10 18 0.753 7.50 4.06

6 shear
c collapse 
u unstable
! one set of impeller torques and speeds removed
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A.2.2 Strength and Elasticity

Figs A.2.2.a equivalent cube strength

Figs A.2.2.b -f strength against equivalent age

Fig A.2.2.g pulse velocity in air and underwater

Figs A.2.2.h-i dynamic modulus and stiffness constant
Tabs A.2.2.a-f summary of the data
Tab A.2.2.g formwork striking times
Tabs A. 2. 2.h-j results for 40°C wet curing
Tabs A. 2. 2.k-m results for 20°C wet curing
Tabs A. 2. 2.n-p results for 20°C dry curing
Tabs A. 2. 2 .q-s results for 10°C wet curing
Tabs A. 2.2.t-v results for 5°C wet curing
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Ĵ4 ^  KJ4 <Ŝ  Ĵ4 k*4 tj4 ^  -M4 t*4 tJ4

05 CO r r  CM 05 
CD CD CD CD CD

r r  r r  r r  r r  r r

p
CD rH  05 O  -M4 a) b CO CD b o
b  b  i f  cd i n CM 05 i n  05 C^

tj4 hj4 •q4 ^ o M4 co  r o  CO CD

in
>> o b- uO CO b- m 05
CO ro o UO rH 00 in CM
TO
1

ro
M 4 CO ro •M4

O  f~  lO  03 CM 
r~  r r  CM r r  CO

r r  r r  r r  r r  r r

O b- m ’tj4 CD co ■M4 rH in rH 05 00 m CDO m CM CD o CM 00  ̂o in CM CD CM CD

co CM ro 3 4 ro 3. 4. 3. 4. 4. 3. 4. 3.

W  CO 1(5 CO C-- uo t~- r— r~- c-

O  CO CO t- t*- 
uO CD uO CD CD

^  'M4 ^  ’c}4 "sp

cd r*- ro  Q> ooC O N H N O

G  ro  CD H  O) 
IX)COCO 0 ) N

o  ^  to  ^
(X  05 CO 05 CO

■m 4 ^  ^j4 ^

W  a .  CD IT) H  
00 b  b  00 00 00 00 00 00 00

CM E— OO b  O  
b  CD CD CD CD

00 05 O  00 CD 
b  b  b  b  CD

■m 4 oo cd b  co 
CD UO ^  TT co

b  CM CM m  CM 
t— CD CD CD CD

r— ▼—< Oj cd o  h ro 10 a ̂
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Ĵ4 ̂ d4 ■M4 ̂ J4 ■M4

l O i O C O O O )  
^  CM CD H r -
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Tab A.2.2.g : Times to reach In Situ Cube Strength values of 2 and 5 MPa.

Mix
Design
Code

Time to reach an in situ Compressive Strength of 2 Mpa *
Age at Equivalent Age Age at Equivalent Age 

10°C (days) at 20°C (days) 5°C (days) at 20°C (days)
Blk 1 Blk 2 Blk 1 Blk 2 Blk 1 Blk 2 Blk 1 Blk 2

s 2S0 1.8 2.1 0.94 1. 10 2.6 2.9 0.88 0. 99
2S4 5.5 5.8 2.87 3.03 8.0 8.2 2.72 2.79
2S7 11.4 13.5 5.95 7.04 17.3 16.4 5.89 5.58
2P4 4.4 4.7 2.30 2.45 6.1 6.9 2.08 2.35
2P7 8.1 10.0 4.23 5.22 12.4 13.5 4.22 4. 59
3S0 1.0 1.0 0.52 0.53 1.4 1.4 0. 47 0.47
3S4 1.4 1.7 0.73 0.89 2.4 2.5 0.80 0.83
3S7 5.1 5.7 2.66 2.97 7.6 8.2 2.59 2.79
3P4 1.3 1.4 0.68 0.73 2.3 2.5 0.77 0.833P7 3.6 4.0 1.88 2.09 4.9 5.5 1.65 1.85
4S0 0.7 0.8 0.39 0. 40 1.0 1.0 0.34 0. 35
4S4 0.9 0.9 0.46 0. 46 1.5 1.5 0.49 0.52
4S7 2.5 3.2 1.28 1.67 3.9 4.2 1.31 1.41
4P4 0.9 1.0 0.47 0.54 1.2 1.3 0.42 0. 43
4P7 1.6 1.7 0.81 0.86 3.0 3.3 1.02 1.11

Time to reach an in situ Compressive Strength of 5 Mpa
Mix Age at Equivalent Age Age at Equivalent Age

Design 10°C (days) at 20°C (days) 5°C (days) at 20° C (days)
Code

Blk 1 Blk 2 Blk 1 Blk 2 Blk 1 Blk 2 Blk 1 Blk 2
2S0 5.5 8.7 2.87 4.54 9.2 11.3 3.13 3.85
2S4 24.2 25.0 12.62 13.04 37.0 42.0 12.59 14.29
2S7 31.0 32.0 16.17 16.69 55.0 60.0 18.72 20 . 42
2P4 16.3 18.0 8.50 9.39 28.0 28.0 9.53 9.53
2P7 23. 8 26.0 12.41 13.56 36.5 39.5 12.42 13.44
3S0 1.8 1.8 0.93 0.93 2.6 2.8 0.88 0.94
3S4 4.6 3.9 2.37 2.03 6.2 6.9 2.11 2.35
3S7 12.6 13.2 6.57 6.89 19.2 20.7 6.53 7 . 04
3P4 3.7 3.9 1.93 2.03 5.7 6.5 1.94 2.21
3P7 10. 1 8.2 5.27 4.28 12.2 15.0 4. 15 5. 10
4S0 1.0 1.1 0.54 0.57 1.5 1.5 0.49 0.49
4S4 1.9 2.0 0.99 1.02 3.1 3.4 1.05 1. 16
4S7 6.7 6.9 3.49 3.60 8.8 9.8 2.99 3.33
4P4 1.7 1.7 0.89 0.89 2.3 2.5 0.78 0.85
4P7 4.1 4.4 2.11 2.30 7.2 7.5 2. 45 2.55

* requiring cube strengths of 3.8 and 9.4 MPa respectively
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Tab A.2.2.j : 91-day results for concrete under 40°C wet curing.

Mix Strength (MPa) Pulse Velocity Dynamic
Design Density Equivalent (km/s) Modulus
No. Code (kg/m3 ) Compressive Cube Flexural Cube Beam (GPa)
1 2S0 2381 20. 0 20.9 3.24 4.61 4.409 38.8

2394 20.6 20.6 3.13 4.43 4.482 39 .9
2 2S4 2395 22.5 24.0 3 .33 4.72 4.597 42.0

b 2395 22.4 24.2 3.87 4.74 4.627 42.9
3 2S7 2386 18.6 18.8 3.26 4.79 4.532 40.7

2391 18.9 19.2 3. 10 4.71 4.533 41.7
10 2P4 2393 23.5 23.1 3 .46 4.67 4.513 41.5

2395 23.6 24. 8 3.34 4.79 4.559 41.5
11 2P7 2380 25.0 26.5 3.27 4.80 4.621 43.9

2396 24.9 25.0 3 . 16 4.74 4.561 42 . 2
4 3S0 2411 43.3 42.3 4.97 4.82 4.717 44.6

2406 43.4 41.2 5.48 4.77 4.690 45.2
5 3S4 2401 43.2 44.2 4.75 4.77 4.705 45.7

2413 43.5 45.7 4. 39 4.89 4.766 47 .5
6 3S7 2401 38.8 39.7 4.64 4.83 4.692 46 . 0

2420 37.5 36.6 4.76 4.89 4.744 46.8
12 3P4 2420 50.5 49.9 5.33 4.97 4.769 47 .0

2409 48.6 48.5 5.55 4.84 4.756 46. 1
13 3P7 2392 46.1 43.5 5.11 4.70 4.670 46 . 4

2400 44. 1 42.8 5.64 4.87 4.715 45.9
7 4S0 2442 57. 1 57.5 6.05 4.86 4.805 48.9

2425 57 .6 58.4 5.93 4.94 4.848 48.5
8 4S4 2422 60.5 60.7 6.86 4.87 4.820 48.5

b 2419 65.4 58.7 6.34 5.00 4.836 49. 1
9 4S7 2407 54.4 51.9 6.71 4.77 4.747 47.5

2415 51.1 52.9 6.31 4.89 4.748 47 .3
14 4P4 2425 64.4 62.8 5.98 4.92 4.786 47.6

2418 63. 1 61.2 6.71 4.95 4.820 48.8
15 4P7 2418 57 .9 55.9 6.21 4.94 4.800 48.3

2411 58.9 54.8 6.70 4.93 4.748 47 . 4

b Tested at 94-98 days.
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Tab A.2.2.m : 91-day results for concrete under 20°C wet curing.

Mix 
Design 
No. Code

Density 
(kg/m3 ) 1

Strength (MPa) 
Equivalent 

Compressive Cube Flexural
Pulse Velocity 

(km/6)
Cube Beam

Dynamic
Modulus
(GPa)

1 2S0 2390 24.5 25.3 3.79 4.68 4. 492 40.6
2388 24.3 25.4 3.77 4.72 4.524 40.6

2 2S4 2398 24.4 26.2 3.97 4.72 4.524 41. 4
b 2387 25.8 27.5 4..05 4.84 4.533 41.6

3 2S7 2393 21.1 20.3 3.50 4.82 4.499 40.5
2394 21.4 22. 1 3.32 4.73 4. 484 40.5

10 2P4 2398 29.3 30.9 4. 15 4.73 4.584 43. 1
2395 29.6 29.6 4.50 4.78 4.598 43.0

11 2P7 2393 27.5 29.8 4.59 4.79 4.591 43.2
2379 26.0 29.6 3.69 4.68 4.580 42. 1

4 3S0 2416 50.8 48.9 5.38 4.88 4.763 46.3
2419 52.3 51.9 4.92 4.84 4.739 46. 1

5 3S4 2414 45.9 51.2 5.29 4.77 4.726 45. 8
2414 44.4 48.2 5.15 4.83 4.732 45.4

6 3S7 2411 40.4 43.8 5.44 4.81 4.660 44.8
2414 39.2 38.8 4.79 4.88 4.711 45.9

12 3P4 2427 54.3 55.2 5. 13 4.93 4.782 47 .3
2420 54.0 54.3 5.94 4.87 4.780 47 . 3

13 3P7 2410 48.0 48.6 5.22 4.79 4.730 45.8
2411 46.5 49.0 5.53 4.87 4.705 46. 1

7 4S0 2434 65.3 63.5 6.40 4.97 4.883 49. 0
2441 64. 0 64.4 5.38 5. 00 4 .870 50. 1

8 4S4 2439 69.6 70. 1 7.45 4.94 4.872 49.2
b 2430 71.5 67.0 6.72 5.00 4.847 49. 4

9 4S7 2421 58.6 59.8 5.96 4.88 4.739 47.2
2419 56. 1 58.2 7.24 4.96 4.732 47.8

14 4P4 2431 69.7 68.7 5.91 4.88 4.819 48.8
2435 72.7 69.7 6.76 4.96 4.843 49.2

15 4P7 2427 59.7 61.0 4.71 4.88 4.759 47 .7
2418 60.9 61.9 6.63 4.90 4.751 47.8

b Tested at 94-98 day6.
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Tab A.2.2.p : 91-day results for concrete under 20°C dry curing.

Mix 
Design 
No. Code

Strength (MPa) 
Density Equivalent 
(kg/m3 ) Compressive Cube Flexural

Pulse Velocity 
(km/s)

Cube Beam
Dynamic
Modulus
(GPa)

1 2S0 2298 16.1 13.7 1.32 4.15 3.805 29.0
2298 16.3 14.2 1.60 4.08 3.882 29.9

2 2S4 2291 10.0 8.8 1.10 3.93 3.567 25.2
b 2295 10. 1 10. 1 1.50 4.07 3.655 26.6

3 2S7 2256 5.6 6.4 0.59 3.51 3.207 18.2
2298 5.6 5.9 0.60 3.51 3. 197 17.8

10 2P4 2287 9.9 10.8 1.19 3 .84 3.608 26.2
2290 10.4 10.6 1.56 4. 06 3.686 26.2

11 2P7 2306 7.7 7.7 0.94 3.59 3.475 22.7
2285 7.0 6.4 0.60 3.65 3.237 20 . 24 3S0 2365 28.9 30.0 2.69 4.44 4.350 39.92365 27. 1 27.9 2.43 4.36 4.360 39.75 3S4 2372 22.3 22.7 1.70 4.28 4.204 36.62342 22.2 19.8 2.51 4. 34 4.178 35.86 3S7 2343 10.3 12.6 1.41 4.01 3.834 29.22335 11.0 13. 1 1.33 3.87 3.807 28.612 3P4 2373 28.7 22.3 2.21 4. 39 4.224 37.42346 21.4 23.4 2.44 4.27 4.212 36.513 3P7 2328 17.8 17.3 2.12 4.01 3 .993 30.42329 18.4 16.4 1.37 4.03 3.937 29.27 4S0 2392 42.6 40.6 3.04 4.64 4.584 43. 12395 40.4 39.9 3 .40 4.61 4.575 43.68 4S4 2372 39. 1 35.3 3.62 4.53 4.484 41.9b 2374 34.8 33.0 2.65 4.53 4.455 41. 09 4S7 2345 27.6 25.4 2.28 4.36 4.217 35.52352 25. 1 23.3 1.99 4.26 4.254 35.914 4P4 2361 35.6 36.2 2.81 4.49 4.468 41.02364 37.3 32.2 2.57 4.56 4.456 40.715 4P7 2340 25.7 22.4 2.45 4.33 4. 171 35.32333 21.0 23.5 1.88 4.09 4.097 32.9

b Tested at 94-98 days.
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Tab A.2.2.S : 91-day results for concrete under 10°C wet curing.

Mix Strength (MPa) Pulse Velocity Dynamic
Design Density Equivalent (km/6) Modulus
No. Code (kg/m3 ) Compressive Cube Flexural Cube Beam (GPa)
1 2S0 2391 23.8 23.2 3.65 4.56 4.442 39.5

2398 22.3 22.4 3.55 4.68 4.525 41.2
2 2S4 2390 19.2 20.9 3. 17 4.65 4.448 39.2

2399 18.4 20.4 3 .46 4.71 4.483 39.2
3 2S7 2382 17.4 19.1 3. 12 4.44 4.289 35.6

2393 17.5 17.2 2.85 4.50 4.363 36.6
10 2P4 2408 23.7 23.9 3 . 45 4.70 4.519 41.2

2394 24. 1 24.3 3.70 4.72 4 . 499 40.4
11 2P7 2399 20.9 21.4 3.38 4.56 4.395 38.5

2396 22.0 21.6 3.37 4.64 4.422 39.4
4 3S0 2425 49.0 48.7 5. 15 4.82 4.736 45.6

2432 49.7 47.5 5.62 4.91 4.791 47 .3
5 3S4 2415 38.1 40. 1 5.11 4.72 4.615 43.4

2423 39 .6 41.5 5.43 4.72 4.650 44.6
6 3S7 2415 30.9 33.5 4.65 4.70 4. 466 39.4

2415 33.2 32.1 4.52 4.69 4.550 41.2
12 3P4 2419 44.5 44.6 5.26 4.74 4.632 44. 4

2419 46. 1 45.4 5.20 4.77 4.692 45.6
13 3P7 2423 35.2 37.5 5.08 4.65 4.621 43.8

2413 33.9 35.9 4.40 4.71 4.617 43. 1
7 4S0 2447 62.4 63 . 4 5.23 4.95 4.815 49.2

2443 63.5 61.8 5.94 4. 94 4.878 50.3
8 4S4 2439 56.7 55.9 5.68 4.80 4.711 46.0

2434 55.9 54.8 5.45 4.87 4.751 47. 1
9 4S7 2418 43.8 48.8 5. 18 4.69 4. 617 44. 0

2431 45.2 44.7 5.41 4.76 4. 644 45. 1
14 4P4 2427 62.6 58.0 5.85 4.86 4.718 45.8

2441 60.6 60.6 5.89 4.90 4.773 47 .6
15 4P7 2427 46.4 48.5 5.35 4.72 4. 600 43.6

2426 47.3 50. 1 4.70 4.83 4.696 45.2
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Tab A.2.2.V : 91-day results for concrete under 5°C wet curing.

Mix 
Design 
No. Code

Density
(kg/m3)

Strength ( 
Equivalent 

Compressive Cube
MPa)
Flexural

Pul6e Velocity 
(km/s)

Cube Beam
Dynamic
Modulus
(GPa)

1 2S0 2397 20.9 21.7 2.34 4.53 4.482 38 .9
2400 18.4 22.1 3.14 4.59 4.496 40.7

2 2S4 2406 15.2 16.2 2.51 4.47 4.377 35.0
2414 14.2 17.8 2.69 4.53 4.425 37.9

3 2S7 2419 14.3 16.7 1.73 4. 46 4.383 36.9
2405 12.6 13.9 1.57 4.51 4.302 35.2

10 2P4 2415 17.3 19.5 3.44 4.51 4.462 38.6
2403 17.4 19.3 3. 16 4.64 4. 404 38 . 4

11 2P7 2426 15.7 19.0 2.37 4.46 4.376 38 .7
2413 17.3 19.8 3.44 4.55 4.451 39 . 1

4 3S0 2439 44.5 46.5 4.91 4.80 4.742 46.8
2430 47.3 45.0 5. 18 4.90 4.751 46.5

5 3S4 2426 34.0 37.3 5.72 4.67 4.579 42.8
2427 33.7 35. 1 4.50 4.73 4.635 42.2

6 3S7 2424 26.0 29.3 4.06 4.60 4.447 39.2
2432 25.6 29.3 3.67 4.69 4.537 40.7

12 3P4 2419 37 .5 39. 1 4.88 4.73 4.653 43.6
2435 37 .6 40.4 4.68 4.80 , 4.689 44.0

13 3P7 2410 32.6 34.5 4.63 4.64 4.494 41 . 4
2420 27.7 32.6 3.42 4.65 4.563 42.9

7 4S0 2464 67 .8 64.8 6.09 4.93 4.848 49.4
2448 63.5 60.8 4.40 4.90 4.882 50.0

8 4S4 2446 50.3 49.9 5.34 4.75 4.666 44 . 4
2441 49.5 50.3 5.75 4.85 4.676 45.7

9 4S7 2421 38.9 43.9 5. 16 4.66 4.554 41.5
2432 38.4 40. 1 5.33 4.71 4.569 41.3

14 4P4 2425 59.6 60.6 6.77 4.75 4.733 47 . 0
2442 55.7 55.7 5.88 4.79 4.744 46.3

15 4P7 2421 42.0 43.6 4.96 4.72 4.552 42.5
2427 41.3 44.0 4.82 4.74 4.655 43.6
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Tab A.2.3.a ' A summary of the Vacuum Flask Calorimetry Profiles.

Mix Temperature (6C) Time to Temperature (°C)
Design Flask Peak
No. Code No. Casting Peak (hrs) Rise Diff. Gain Mean
1 2S0 1 20..2 27 .,9 13..7 7 ,.7 7 .,9 18.9 25 .2

2 20.. 1 29.,3 13..3 9.,2 9..3 18 . 2 26. 4
2 2S4 1 18 ,. 1 23.,8 13,.0 5..7 3..8 10.6 22. 2

2 18..3 24.,0 14..3 5,,7 4.,0 9.8 22. 5
3 2S7 1 16..5 20.,9 26,.7 4,, 4 0.,9 4. 1 19. 9

2 16..1 21.,7 31..0 5.,6 1..7 5.7 20. 2
10 2P4 1 18..6 23.,9 13..3 5., 3 3.,9 10. 5 22. 4

2 18,.6 24. 7 14..3 6., 1 4.,7 10.9 23. 2
11 2P7 1 16..9 22.,3 28..7 5.,4 2., 3 7.6 20.,9

2 16 .,8 22. 0 25..7 5.,2 2.,0 6 . 4 20. 6
4 3S0 1 18 ., 6 32.,5 14..0 13..9 12..5 25. 1 28. 12 18., 5 31. 5 13.,7 13.. 0 11.,5 28.7 27. 35 3S4 1 17.,8 26. 7 14..0 8.,9 6..7 17.8 24., 1

2 17.,8 28.,0 15.,7 10.,2 8..0 18.3 25. 16 3S7 1 17..0 22..9 14..7 5..9 2..9 9.7 21., 5
2 16..8 23., 1 20..0 6..3 3.. 1 9.1 21..612 3P4 1 17..3 26.,7 14,.3 9,.4 6..7 18.7 24.. 0
2 17..2 27..2 15,.7 10,. 0 7..2 17.0 24..313 3P7 1 19.. 1 23..9 17..3 4,.8 3..9 11.7 22..7
2 19,. 0 24,, 4 20,.0 5..4 4,.4 10.6 22..9

7 4S0 1 16,.9 35., 0 13,.3 18 . 1 15,.0 38.2 29,.3
2 16,.9 34..3 13,.0 17,.4 14,.3 --- 26,.68 4S4 1 18 .8 30..9 13 .7 12,.1 10..9 30.2 27,. 4
2 18..6 29..5 13,. 0 10,.9 9,.5 19.3 26 . 19 4S7 1 17,.5 24..3 14 . 3 6,.8 4,.3 13. 1 22 .5
2 17,.3 24..5 17 .0 7,.2 4 .5 11.9 22 .814 4P4 1 16 .3 27..9 14 .3 11,.6 7 .9 21.8 24 . 4
2 16,.2 29,.4 15,.3 13,.2 9 .4 21.9 25 .515 4P7 1 17,.2 24,.3 18 .0 7 . 1 4 .3 13.6 22 .6
2 17 . 1 25..5 22 .3 8,.4 5 .5 13.7 23 .0

  Re6ulte not available
Rise = Peak - Casting temperature 
Diff.= Peak - Ambient temperature
Gain = gain after allowance for the insulating characteristics 

of the flasks and the Casting and Ambient temperatures 
Mean = Arithmetic mean of temperatures over first 24 hours
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Tab A.2.3«b : Summary of the Water Absorption data, showing the 
British Standard test results.

Mix 
Design 
No. Code

Block

40W

Water Absorption (ml/m2s)
Curing Code 

20W 20D 10W 5W
BS1881

(%)
End-Contact 
(ml/m2s )

1 2S0 1 0.40 0.43 0.73 0.48 TT. 4"6 3.1 0.3&
2 0.39 0.40 0.74 0.40 0.46 2.8 0 .40

2 2S4 1 0.30 0.39 1.26 0.38 0.52 3.0 0.51
2 0.34 0.43 1.11 0.44 0.43 2.9 0.47

3 2S7 1 0.58 0.51 1.44 0.48 0.38 3.2 0.52
2 0.47 0.52 --- 0.45 0. 48 2.3 0.32

10 2P4 1 0.35 0.43 1.00 0.44 0.48 2.3 0.28
2 0.41 0.42 0.95 --- --- 1.7 0.25

11 2P7 1 0.35 0.45 1.18 0.41 0.43 2.3 0.35
2 0.35 0.41 1.12 0.43 0.40 1.5 0. 19

4 3S0 1 0.28 0.30 0.43 0.33 0.33 1.8 0.21
2 0.32 0.28 0.37 0.29 0.33 2.9 0.29

5 3S4 1 0.30 0 v 28 0.57 0.30 0.38 1.6 0.25
2 0.25 0.26 0.70 --- 0.30 1.7 0.27

6 3S7 1 0.29 0.39 1.11 0.37 0.33 3.5 0.67
2 0.25 0.35 1.02 0.35 0.29 2.0 0.29

12 3P4 1 0.22 0.23 0.52 0.33 0.28 2.1 0.31
2 0.24 0.33 0.52 0.23 0.28 4.5 0.74

13 3P7 1 0.27 0.28 0.88 0.27 0.30 1.9 0.25
2 0.25 0.26 0.78 0.28 0.30 2.1 0.26

7 4S0 1 0.31 0.28 0.35 0.31 0.31 4.1 0 .78
2 0.25 0.26 0.32 0.30 0.28

8 4S4 1 0.20 0. 16 0.31 0.28 0.31
2 0. 19 0.21 0.41 0.25 0.29

9 4S7 1 0.26 0. 19 0.65 0.26 0.25
2 0.25 0.27 0.67 0.21 0.25

14 4P4 1 0. 18 0.21 0. 35 0.25 0.25
2 0. 19 0.21 0.29 0.23 0.27

15 4P7 1 0.23 0.27 0.62 0.26 0.27
2 0.26 0.25 0.50 0.23 0.23

  Results not available.
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A.3 Secondary Study

Tab A.3.a
Tab A.3.b
Tab A.3.C

workability data
pulse velocity at early ages

strength and elasticity data
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Tab A.3.a : Workability data.

Mix W/C
Slump
(mm)

E
(Mm)

h
(Nine)

r
10% Confidence Intervale 

£ h 
(Nm) (Nm6)

L 20 5.53 2.09 0.958 6.02 _ 5.05 2 .76 _ 1.43
3S0 M 70 2.64 2.60 0.985 3.01 - 2.28 3.10 - 2.11

H 175 0.49 2. 12 0.991 0.73 - 0.26 2.44 - 1.81
L 20 5.98 2.56 0.972 6.47 - 5.50 3.22 - 1.91

3S4 M 80 2.36 2.69 0.989 2.68 - 2.04 3.13 - 2.25
H 17 0 0.66 1.75 0.976 0.97 - 0.35 2. 17 - 1.34
L 50 3.07 3.69 0.992 3.45 - 2.68 4.21 - 3. 18

3S7 M 190 1.51 2.86 0.994 1.77 - 1.25 3.21 - 2 . 52
H 185 0.54 1.55 0.989 0.72 - 0.36 1.80 - 1.31
L 35 4.52 2.59 0.988 4.83 - 4.20 3.02 - 2. 17

3P4 M 190 0.91 1.84 0.995 1.06 - 0.77 2.04 - 1.65
H 230 0.34 1.30 0.988 0.51 - 0. 18 1.52 - 1.09
L 15 5.66 2.29 0.962 6. 17 - 5.15 2.98 - 1.60

3P7 M 65 3.95 3.70 0.992 4.31 - 3.58 4. 19 - 3.21
H 185 1.39 2.41 0.992 1.64 - 1. 14 2.75 - 2.08
L 0 2.35 1.96 0.888 3. 16 - 1.55 3.04 - 0.87

4S0 M 70 3. 12 2.73 0.981 3.54 - 2.69 3.30 - 2. 16
H 200 0.76 1.36 0.999 0.81 - 0.70 1.43 - 1.28
L 10 4.97 3.64 0.977 5.60 - 4.35 4.49 - 2.78

4S4 M 75 2.76 2.77 0.984 3. 15 - 2.37 3.30 - 2.25
H 180 0.95 1.69 0.992 1.12 - 0.77 1.92 - 1.46
L 5 5.46 3.51 0.984 5.96 - 4.97 4. 18 - 2.83

4S7 M 105 2.63 3.05 0.992 2.94 - 2.32 3.47 - 2.63
H 205 0.62 1.78 0.991 0.81 - 0.43 2.04 - 1.52
L 0 3.54 3.92 0.976 4.23 - 2.85 4.86 - 2.99

4P4 M 45 6.55 3.81 0.993 6.89 - 6.20 4.28 - 3.34
H 195 1. 39 1.86 0.981 1.68 - 1. 10 2.25 - 1.47
L 0 3.41 4.25 0.977 4. 15 - 2.67 5.23 - 3.26

4P7 M 5 3. 10 3.48 0.987 3.54 - 2.66 4.07 - 2.88
H 70 5.40 5.48 0.943 6.92 - 3.88 7 .54 - 3.42

Cement Content W/C ratios 
(kg/m3) L M H

300 0.50 0.55 0.60
400 0.36 0.41 0.46
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Tab A.3.b : Pulse Velocity at Very Early Ages.

Mix Code
3S0 3S4 3S7 3P4 3P7

Time UPV Time UPV Time UPV Time UPV Time UPV
(hrs) (km/s) (hrs) (km/s) (hrs) (km/s) (hrs) (km/s) (hrs) (km/s)

1.75 0.64 1.75 0.31 1.75 0.29 2.05 0.61 2.00 0.49
2.00 0.77 2.00 0.35 2.00 0.32 2.17 0.67 2. 13 0.55
2.25 0.93 2.25 0.38 2.25 0.35 2.42 0.76 2.25 0.59
2.75 1.39 2.75 0.45 2.83 0.39 2.92 1.23 2.75 0.87
3.25 1.79 3.00 0.49 2.83 0.53 3.17 1.41 3.00 1.01
3.75 2.17 3.25 1.08 3.25 0.73 3.42 1.59 3.25 1. 16
4.00 2.34 3.75 1.47 3.75 1.06 3.92 2.11 3.75 1 . 53
4.25 2.42 4.00 1.58 4.00 1. 18 4.17 2.30 4.00 1 .69
5.75 2.91 4.25 1.72 4.25 1.36 4.42 2.46 4.25 1.83
6. 00 2.91 6.00 2.43 6.00 2.22 6.00 3.11 6.00 2.62
8.00 3.24 8.00 2.81 8.00 2.69 8.00 3.44 8 . 00 3. 15
10.00 --- 10.00 2.97 10. 00 2.89 10.00 3.59 10.00 3.37
12.00 --- 12.00 3.17 12.00 2.95 12.00 3.71 12.00 3. 44
14.00 --- 14.00 3.28 14.00 3.02 14.00 3.82 14. 00 3.54
24.00 4.21 24.00 3.62 24.00 3.21 24.00 3.99 24.00 3.72

4S0 4S4 4S7 4P4 4P7
Time UPV Time UPV Time UPV Time UPV Time UPV
(hrs) (km/s) (hrs) (km/s) (hrs) (km/s) (hrs) (km/s) (hrs) (km/s)
1.75 0.57 1.75 ---- 1.75 0 . 49 1.95 0.68 ____ ---
2. 00 0.76 2. 08 0.53 2. 00 --- 2.00 0.731 2.00 0.56
2.25 0.99 2.25 1.23 2.25 0.53 2.50 1.29 2.25 0.73
2.83 1.64 2.75 1.75 2.5 1.27 2.75 1.53 2.75 1. 12
3.00 1.80 3.00 1.97 3.00 --- 3.00 1.81 3.00 1.30
3.25 --- 3.25 --- 3.25 1.59 3.42 2.19 3.25 1.47
3.75 --- 3.75 2.49 3.75 --- 3.92 2.62 3.75 1.90
4. 00 2.69 4. 00 2.56 4.00 1.82 4. 17 2.73 4 . 00 2. 03
4.25 --- 4.25 2.66 4.25 --- 4.42 2.83 4. 25 2 . 16
6.00 3.44 6.00 3.05 6.00 2.59 6.00 3.38 6.00 2.92
8.00 3.86 8.00 3.35 8.00 3.29 8.00 3.68 8.00 3.26
10.00 4.05 10.00 3.58 10.00 --- 10.00 3.91 10. 00 3.48
12.00 4.24 12.00 3.77 12. 00 3.50 12.00 4.07 12.00 3 . 6514. 00 4.35 14.00 3.85 14.00 3.65 14.00 4.22 14. 00 3.7724. 00 4.60 24.00 4.09 24.00 3.83 24.00 4.42 24. 00 4.04

  Results not available.
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Tab A.3.c : Strength and Elasticity data.

Mix Code
L

1-day
M H

Compressive strength
7-day 

W/C Ratio 
L M H

(Mpa)

L
28-day

M H
3S0 8.9 6.3 3.9 34.7 27.9 19.5 45.5 38.5 28. 1
3S4 4.5 3.1 2.2 21.6 17.5 12.9 39.3 33.9 28.4
3S7 1.1 1.1 0.9 11.6 9.5 7.8 30.0 25.1 20.0
3P4 4.3 2.8 2.2 22. 1 16.1 12.9 42.2 33.7 28.9
3P7 1.7 1.3 1.3 17.9 15.2 12.7 38.2 34.4 31.4
4S0 19.9 15.1 9.9 51.7 44.5 34.5 60.7 53.9 47.2
4S4 11.6 8.5 5.6 40.5 35.2 32.9 56.5 51.0 43.6
4S7 2.9 2.1 1.5 24.0 18.9 13.4 49.7 41.9 32.7
4P4 11.0 9.1 5.5 39.6 36.2 25.7 59.2 57 .2 48.5
4P7 3.6 3.2 2.1 30.7 28.0 20.9 55.6 52.6 44.5

Compressive strength Dynamic Modulus Static Modulus
(Mpa) (GPa) (GPa)

Mix Code
7-day 28-day 7-day 28-day 7-day 28-day

3S0 27.9 38.5 42.2 45.4 30.5 32.7
3S4 17.5 33.9 35.6 42.0 27.5 30.4
3S7 9.5 25. 1 31.6 38 .6 23.7 27 .8
3P4 16.1 33.7 35.1 43.8 22. 1 37 . 1
3P7 15.2 34.4 34.9 42.6 21.1 34.2
4S0 44.5 53.9 45.5 47 .7 33. 1 36.2
4S4 35.2 51.0 41.0 45 . 1 27 .6 31.4
4S7 18.9 41.9 37.2 42. 1 24.4 32. 1
4P4 36.2 57 .2 42.7 46.3 31.3 36 . 1
4P7 28.0 52.6 37.3 45.4 25.9 33.7

Cement Content W/C ratios
(kg/m3) L M H

300 0.50 0.55 0.60
400 0.36 0.41 0.46
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B. 1 Measures of location and spread

B.1.1 Arithmetic Mean
The sum of all observations divided by their number

m = x 
n

B. 1.2 Median
The value about which an equal number of observations lie. It 

is an appropriate measure where large outlying values are expected.

B. 1.3 Mean Absolute Deviation (50 )
The absolute arithmetic mean deviation of the observations 

from the mean.
MAD = ABS (x-m)

*n

B. 1.4 Variance and Standard Deviation
The variance is the mean square deviation from the mean, 

whilst the standard deviation is the square root of this value.
sd2 = £(x-m)2

«n
The standard deviation of the arithmetic mean of a set of 

individuals, called the standard error, is the standard deviation 
devided by the root of the number of individuals in the sample.

B.1.5 Confidence interval ( 50 )
An interval within which an observation from the population 

should lie with a known probability. The interval is calculated using 
information about the population from samples and a predictive model 
called the probability distribution. For small samples the Student's t 
distribution is used, whilst for larger samples the Normal
* where predictions about the population are being made the 

divisor should be reduced to n-1.
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distribution is appropriate. In the former case the interval is

m +/” tc^,df x sd» 
where the percentage probability level within the interval is usually
100-2c and sd may be replaced by se for sample means. The degrees of
freedom (df) can be considered to be the number of values available
for comparison, and is equal to the number of observations reduced by
the number of estimates made.

If a value lies outside a confidence interval then it can be 
said to be significantly different from the population on which the 
interval was based. Alternatively, it is possibe to compare a test 
statistic with critical values from the appropriate probability 
distribution. This statistic is calculated as the difference between 
the suspect value and the population mean,divided by an estimate of 
the population variance.
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B.2 Analysis of Variance

B.2.1 Principle
By assuming that the effect of factors and random error upon 

a response variable are linearly additive, the variance attributable 
to any one source can be separated from the overall variance and may 
be compared with an estimate of the residual variation.

Brownlee describes the case for the three factors G,T and S 
as follows (89).

Source of Variance Degrees of Freedom Components of Variance
G g-1 vo+ Svgt + Tv + TSg
T t-1 vo+ Gvts + Svgt + SGt
S s—1 vo+ Tvsg + Gvst + GTS

G x T (g-1)(t-1) vo+ Svgt
T x S (t—1)(s—1) vo+ Gvst
S x G (s—1)(g—1) vo+ Tvsg
Residual (g—1)(t—1)(s—1) vo
Total gts-1

The variance or mean sum of squares (ms) for each factor is 
calculated by dividing the sum of squares (ss) for each factor by the 
corresponding degrees of freedom (df). Starting with the highest order 
interactions, that is those terms at the bottom of the list, each sum 
of squares is divided by an estimate of the residual variation and 
this F-ratio compared with critical values from statistical tables. An 
F-ratio close to one indicates a non-significant component of variance 
which should be removed from the list. A new estimate of the residual 
variance can be obtained by pooling the sum of squares and degrees of 
freedom of the redundant term and the old residual.

B.2.2 Transformation of the response variable
Transformation, as opposed to simple recoding of the data, 

may be needed in order to obtain a normal probability distribution or
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homogeneity of variance. The compacting factor and compressive
strength data was subject to angular and logarithmic transformations 
respectively, as suggested by Orr (90 ). The slump data was 
logarithmically transformed, consistent with the increased tolerance 
limits with higher slump values allowed in BS 5328. The recoded and 
transformed values used in at the analysis were:

1. (log-|Q slump) x 100
2. CF x 1000
3. Arcsin°(CF)0-5
4. (log(strength x 100) ) x 100
5. water absorped x 10

The normality and homogeneity of the transformed and 
untransformed data was judged using Bartlett's test, whilst Cochran's 
test was used to identify outlying variance values ( 91 ).

Probability of Acceptability Correlation between
Parameter Bartlett-Box Cochran cell mean and sd

slump 0.340 1.000 positive
log slump 0.838 0.674 slight negative
CF 0.035 0.016 negative
Angular CF 0.419 0.153 slight negative

S 0.032 0.362 positive
h 0.432 0.153 positive
compressive strength

3-day 0.125 positive
91-day 0.010 slight positive

(log) 3-day 0.511 none
(log) 91-day 0.002 negative

Underlining indicates that the data is unacceptable according to the 
test. High block variances failing the Cochran test were investigated,
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but no justification was found for removal of results.

B.2.3 Interactions
In general to prove the significance of the component B, the 

variance A+B+C must be tested against A+C. If an interaction is 
significant then associated main effects may be tested against it. 
However, in this situation main effects are little value and ideally 
the analysis should be split up by the levels of one of the main 
effects in the interaction term.

The analysis of variance associated with this work involved a 
maximum of five factors; cementitious content (Cm), GGBS replacement 
level (Rp), GGBS type (Ty), Curing (Cu) and Block (Bk). In addition to 
these factors a within -cell variance term is available from the 
analysis of the slump and compressive strength data because two 
determinations were made at each treatment combination. A number of 
interactions were identified and it was necessary to split the 
analysis of variance as shown below.

Analysis Factors Interactions Split by
Workability 1) Cm,Rp,Ty,Bk CmxRpxTy --

2) Rp,Ty,Bk Rp x Ty Cm
Strength 1) Cm,Rp,Ty,Cu,Bk CmxRpxTyxCu age

2) Rp,Ty,Cu,Bk Rp x Ty age,Cm

3) Ty,Cu,Bk Ty x Cu age,Cm,Rp
Absorption 1) Cm,Rp,Ty,Cu,Bk CmxRpxCu, CmxRpxTy --

2) Rp,Ty,Cu,Bk RpxTyxCu Cm

The workability data gave rise to significant Cm x Rp x Ty 
interaction so the analysis was split by the cementitious content. 
Analysis of the strength data was carried out separately at each age 

for three pairs of curing regimes: 40 and 20°C wet, 20°C wet and dry, 
and 10 and 5°C wet.
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The analysis was split by cement content when significant
interactions involving Cm,Rp,Ty and Cu were identified (see B.4.2 for 
typical examples). However, the reduced analyses produced 
significant Rp x Ty interactions and the analysis was further divided 
by replacement level. Although this removed from the analysis an 
important factor, it also removed from the design a distortion at the 
0$ GGBS level due to the provision of a slag type effect and the use 
of duplicate test data. In addition, this splitting of the analyses 
unified the degrees of freedom of all the factors facilitating direct 
comparison of the F-ratios. As a consequence of these division 135 
three factor analyses were carried out which are summarised as tables 
of F-ratios in Section B.4.2.

involving Cm and Rp for the 40 and 20°C wet, and 20°C wet and dry 
analyses, so these analyses were split by cement content.

last residual estimate at the point when the significant interaction 
was identified; as such they are for comparative purposes only.

B.2.4 Least significant difference ( 50 )

If only main effects are significant it is possible to group 
the data associated with the levels of each main effect, ignoring any 
other factors, in order to indentify the contribution of each level to 
the significance. A confidence interval on the difference in the mean 
values at each level can be calculated as:

Where s is an estimate of the population sd, calculated as the root of 
the residual mean square; df denotes the degrees of freedom associated 
with the residual; and n is the number of individuals at each level.If 
the difference in the mean values of groups at any two factor levels 
is outside these limits then the groups are significantly different. 
Grouping within the factors levels is usually indicated by

The water absorption data produced significant interactions

Some F-ratios for the main effects were calculated using the
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underlining.
Least significant difference studies were carried out on the 

slump, g, h and water absorption data, and are summarised below,
a) Slump (mm)

Significant effect- GGBS level for Cm1 (200 kg/m^)

Summing across blocks,
Mean

Rp1 ( 0$ GGBS) 17.25
Rp2 (40$ GGBS) 28.63

Rp3 (70$ GGBS) 37.63
s = /233.0 = 15.26

t2.5$,21 = 2*o8°
LSD = 15.26 x T2 x 2.080 = 15.9

Rp3 > Rp2 > Rp1

b) g (Nm)

Significant effect- GGBS level for Cm1 (200 kg/m^)

Summing across blocks,

Mean
Rp1 ( 0$ GGBS) 5.72
Rp2 (40$ GGBS) 3.39

Rp3 (70$ GGBS) 1.50

s = 1. 692 = 1.300

t2.5$,21 = 2-o8°
LSD = 1.300 x [2 x 2.080 = 1.35

Rp3 > Rp2 > Rp 1
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c) h (Nm)
Significant effect- Block for Cm2 (300 kg/m3)

Summing across blocks,
Mean

Bk1 3.00
Bk2 3.32

Bk3 4.29
Bk4 3.22

s = /b.155 = 0.394

t2.5%,21 = 2-o8°
LSD = 0.394 x [2 x 2.080 = 0.47

Bk3 > Bk2 > Bk4 > Bk 1

d) Water Absorped (g)
Significant effect- Cement Content and GGBS Replacement level

Summing across GGBS levels,

Mean
Cm1 (200 kg/m3) 7.06
Cm2 (300 kg/m3) 4.93
Cm3 (400 kg/m3) 4.26

s = \fo. 175 = 0.419

fc2. 5/o,63 = 1,998
LSD = 0.419 x f~2 x 1 .998 = 0.26

v 21

Cm1 > Cm2 > Cm3
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Summing across Cement contents,

Rp1 ( 0$ GGBS)
Rp2 (40$ GGBS)
Rp3 (70$ GGBS)

LSD = 0.26 (as previously)

Rp1 > Rp2 > Rp 3

B. 3 Regression analysis

B.3.1 Correlation
Correlation is the degree to which changes in one variable 

are accompanied by systematic changes in another variable. For linear 
relationships a measure of correlation is given by the coefficient r.

r = I(x-mx) (y-my)
Vr[I(x-mx)2 I(y-my)2]

B.3.2 Regression
The regression line is formed by minimising the sum of 

squares of the deviation of the observed values from the proposed 
line. Solution of this produces the coefficients a and c in y = ax +c. 

a = J(x-mx)( y - m y )  c = my-amx
I(x-mx)2

The standard error of the observed y values about the line is 
formed in a similar fashion to that of a sample mean, although the 
divisor is reduced due to the estimation of the two coefficients.

se = J(y- (c + ax) ) 
n-2

Mean

5.65
5.22
5.25
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B.3.3 Transformation
In cases where the relation between the variables is not 

linear it may be possible by transforming the variables to obtain an 
approximately linear relation suitable for linear regression.Common 
transformations are the logarithm, square root and reciprocal. For 
example :

a) Exponential function y = aebx
rectify X = x , Y = In y

Y = c + bX
where a = ec

b) Power function 
rectify X = log x,

where a = 10c

Caution has to be exercised when transforming variables since 
the homogeneity of the variance and the Normality of the distribution 
of variances will be altered. For instance, logarithmic transformation 
results in the variances being weighted according to their proportion 
of the variable, and not their magnitude.

B.3.^ Polynomial Regression
The power law shown above is a specific case of a polynomial 

relationship. Such an approach is not appropriate where more complex 
quadratic and cubic relationships are anticipated. For two independent 
variables W and Z in a quadratic relationship

Y = c + a^W + a^Z + a^WZ+ a^W^ + a^Z^
This expression may be simplified by successive elimination 

of non-significant terms ( 92 ). Caution has to be applied when 
carrying out polynomial regression to avoid adopting more terms than 
can be supported by the observations or justified by the required 
level of accuracy.

y = axb 
Y = log y 
Y = c +bX
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Results from the Analysis of Variance

Workability data

Tabs B.4.1.a-b 
Tabs B.4.1.c-d

4-factor analyses 
3-factor, split analyses
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Tab B.4.1.a : 4-Factor analysis of variance of the slump data.

Factor SS DF MS
Residual

used F-ratio
Significance 
Level %

1 Cement 107289 2 53644 c 145.68
2 Replacement 3551 2 1776 c 4.82
3 Type 22500 1 22500 c 61. 10
4 Block 4363 3 1454 c 3 . 95
5 Cm x Rp 6151 4 1538 c 4. 18
6 Cm x Ty 11176 2 5588 c 15.17
7 Cm x Bk 1167 6 195 c 0.53
8 Rp x Ty 16501 2 8251 c 22. 41
9 Rp x Bk 4105 6 684 c 1.86

10 Ty x Bk 1403 3 468 c 1.27
11 Cm x Rp x Ty 13245 4 3311 c 8.99 > 0 . 1
12 Cm x Rp x Bk 13431 12 1119 c 3 . 04 > 1.0
13 Cm x Ty x Bk 1088 6 181 b --
14 Rp x Ty x Bk 1171 6 195 b --
15 Cm x Rp x Ty 6579 12 548 a 6. 10
16 Within Cell 6475 72 90

Residuals DF MS
a 16 72 90
b 15 12 548
c b + 14,13 24 368

Tab B.4.1.b : 4-Factor analysis of variance of the compacting
factor data.

Residual Significance
Factor SS DF MS used F-ratio Level %

1 Cement 21686 2 10843 c 55. 19
2 Replacement 1794 2 897 c 4. 56
3 Type 11628 1 11628 c 59. 19
4 Block 2170 3 723 c 3 .68
5 Cm x Rp 10145 4 2536 c 12.91
6 Cm x Ty 14081 2 7041 c 35.84
7 Cm x Bk 649 6 108 c 0.55
8 Rp x Ty 7934 2 3967 c 20.19
9 Rp x Bk 1292 6 215 c 1. 10

10 Ty x Bk 500 3 167 c 0.85
11 Cm x Rp x Ty 8377 4 2094 c 10.66 > 0.1
12 Cm x Rp x Bk 3764 12 314 b 2.27
13 Cm x Ty x Bk 636 6 106 a --
14 Rp x Ty x Bk 839 6 140 a --
15 Cm x Rp x Ty 1835 12 153

Residuals DF MS
a 15 12 153
b a + 14, 13 24 138
c b + 12 36 196

6 4 A



Tab B.4.1.C : 3-Factor analysis of variance of slump, split by
cementitious content.

Factor SS

Cement

DF

Content

MS

200 k g / m 3

Residual
used F-ratio

Significance 
Level %

1 Replacement 3420 2 1710 d 7.34 > 0.5
2 Type 5 1 5 c ---
3 Block 1227 3 409 c 2.01
4 Rp x Ty 416 2 208 b
5 Rp x Bk 1872 6 312 b
6 Ty x Bk 639 3 213 b
7 Rp x Ty x Bk 734 6 122 a 1.97
8 Within Celle 1488 24 62

Reeiduale
Factor Number DF MS

a 8 24 62
b 7 6 122
c b + 4,6,5 18 204
d c + 2 , 3 21 233

Factor SS

Cement

DF

Content

MS

300kg/m 3

Residual
used F-ratio

Significance 
Level %

1 Replacement 4278 2 2139 d 2.28
2 Type 12838 1 12838 d 13.69
3 Block 3202 3 1067 d 1.14
4 Rp x Ty 17114 2 8557 * 19.98 > 0.5
5 Rp x Bk 9947 6 1658 c 3.62
6 Ty x Bk 1547 3 516 b --
7 Rp x Ty x Bk 2570 6 428 a 3.53 > 2.5
8 Within Celle 2913 24 121

Reeiduale
Factor Number DF MS

a 8 24 121
b 7 6 428
c b + 6 9 457
d c + 5 15 938

Cement Content 400 kg/m 3

Factor SS DF MS
Residual

used F-ratio
Significance 
Level %

1 Replacement 2004 2 1002 c 1.44
2 Type 20833 1 20833 c 29.86
3 Block 1102 3 ' 367 c 0.53
4 Rp x Ty 12217 2 6108 * 8.24 > 0.5
5 Rp x Bk 5717 6 953 b --
6 Ty x Bk 304 3 101 b --
7 Rp x Ty x Bk 4446 6 741 a 8.57 > 0.1
8 Within Celle 2075 24 86

Reeiduale
Factor Number DF MS

a 8 24 86
b 7 6 741
c b + 6,5 15 698
* Tested against Rp x Ty x Bk
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Tab B.4.1.d : 3-Factor analysis of variance of compacting factor,
split by cementitious content.

Factor SS

Cement

DF

Content

MS

200 kg/m
Residual

used

3

Significance 
F-ratio Level %

1 Replacement 1303 2 652 b 11.99
2 Type 4 1 4 b 0.08
3 Block 275 3 92 b 1.69
4 Rp x Ty 2 2 1 a --
5 Rp x Bk 1596 6 266 b 4.89 >2.5
6 Ty x Bk 200 3 67 a --
7 Rp x Ty x Bk 396 6 66

Residuals
Factor Number DF MS

a 7 6 66
b a + 6 , 4 11 54

Factor SS

Cement

DF

Content

MS

300kg/m3
Residual

used F-ratio
Significance 
Level %

1 Replacement 44 2 22 b 0.46
2 Type 1001 1 1001 b 21.25
3 Block 1116 3 372 b 7 .90 > 0.5
4 Rp x Ty 1356 2 678 b 14.39 > 0.1
5 Rp x Bk 281 6 47 a --
6 Ty x Bk 175 3 58 a --
7 Rp x Ty x Bk 250 6 42

Residuals
Factor Number DF MS

a 7 6 42
b a + 6 , 5 15 47

Factor SS

Cement

DF

Content

MS

400 kg/m
Residual

used

3

F-ratio
Significance 
Level %

1 Replacement 10592 2 5296 b 13 .31
2 Type 24704 1 24704 b 62. 10
3 Block 1428 3 476 b 1.20
4 Rp x Ty 14953 2 7477 b 18.79 >0.1
5 Rp x Bk 3179 6 530 a --
6 Ty x Bk 762 3 254 a --
7 Rp x Ty x Bk 2027 6 338

Residuals
Factor Number DF MS

a 7 6 338
b a + 6,5 15 398
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. o - r d u o o r  analysis or variance of g ,  split by
cementitious content.

Factor SS

Cement

DF

Content

MS

200 kg/m3
Residual 

used F--ratio
Significance 
Level %

1 Replacement 71.48 2 35.74 d 21. 13 > 0.1
2 Type 3.71 1 3.71 c 2.333 Block 10.80 3 3.60 b 2.904 Rp x Ty 1.85 2 0.93 a --
5 Rp x Bk 10. 16 6 1.69 a --
6 Ty x Bk 5.07 3 1.69 a --
7 Rp x Ty x Bk 3.94 6 0.66

Residuals
Factor Number DF MS

a 7 6 0.66
b a + 6,5,4 17 1.24
c b + 3 20 1.59
d c + 2 21 1.69

Cement Content 300 kg/m 3
- Residual Significance

Factor SS DF MS used F-ratio Level %
1 Replacement 0.29 2 0.15 b 0.34
2 Type 7.46 1 7.46 b 17.14
3 Block 3.56 3 1.19 b 2.73
4 Rp x Ty 5.96 2 2.98 b 6.85 > 0.1
5 Rp x Bk 2.26 6 0.38 a ---
6 Ty x Bk 2.04 3 0.68 a ---
7 Rp x Ty x Bk 2.23 6 0.37

Residuals
Factor Number DF MS

a 7 6 0.37
b a + 6 , 5 15 0. 44

Cement Content 400 kg/m3

Factor SS DF MS
Residual

used F-ratio
Significance 
Level %

1 Replacement 17 .95 2 8.97 b 30.78
2 Type 26.19 1 26. 19 b 89.83
3 Block 3.38 3 1. 13 b 3.87
4 Rp x Ty 17.00 2 8.50 b 29. 17
5 Rp x Bk 1.85 6 0.31 a --
6 Ty x Bk 0.20 3 0.07 a --
7 Rp x Ty x Bk 2.32 6 0.39

Residuals
Factor Number DF MS

a 7 6 0.39
b a + 6 , 5 15 0.29

6 7A



Tab B.4.1.f : 3-Factor analysis of variance of h, split by
cementitious content.

Factor SS

Cement

DF

Content

MS

200 kg/m3
Residual

used F-ratio
Significance 
Level %

1 Replacement 9.49 2 4.74 c 6.51 > 0.1oLa Type 3.07 1 3.07 b 5 . 03
3 Block 1.89 3 0.63 a ---
4 Rp x Ty 2.23 2 1. 12 a ---
5 Rp x Bk 4. 15 6 0.69 a ---
6 Ty x Bk 1.28 3 0.43 a ---
7 Rp x Ty x Bk 2.67 6 0.45

Residuals
Factor Number DF MS

a 7 6 0. 45
b a + 6,5,4,3 20 0.61
c b + 2 21 0.73

Factor SS

Cement

DF

Content

MS

300 kg/m
Residual

used

j

F-ratio
Significance 
Level %

1 Replacement 0.03 2 0.01 b 0.21O Type 0.36 1 0.36 b 5.39
3 Block 5.87 3 1.96 b 29. 50 > 0.1
4 Rp x Ty 0.84 2 0.42 b 6 . 32 1.0
5 Rp x Bk 0.67 6 0.01 a 3 . 08
6 Ty x Bk 0.04 3 0.01 a ---
7 Rp x Ty x Bk 0.29 6 0.05

Residuals
Factor Number DF MS

a 7 6 0.05
b a + 6 9 0.04
c b + 5 15 0.07

Factor SS

Cement

DF

Content

MS

400 kg/m3
Residual

used F-ratio
Significance 
Level %

1 Replacement 5.28 2 2.64 b 17.042 Type 2.20 1 2.20 b 14.18
3 Block 0.68 3 0.23 b 1.45
4 Rp x Ty 1. 80 2 0.90 b 5.80 > 2.5
5 Rp x Bk 0.98 6 0 . 16 a ---
6 Ty x Bk 0. 16 3 0.05 a ---
7 Rp x Ty x Bk 1.18 6 0.20

Residuals
Factor Number DF MS

a 7 6 0 ..20
b a + 6 , 5 15 0 .. 15
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Compressive Strength data

Tabs B.4.2.a-b 
Tabs B.4.2.c-d 
Tabs B.4.2.e-g

Typical 5-factor analyses 
Typical 4-factor, split analyses 
F-ratios



Tab B.4.2.a : 5-Factor analysis of variance of the 3-day compressive
strength data for 20°C wet and dry curing.

Factor SS DF MS
Residual

used
Significance 

F-ratio Level %
1 Cement 6767. 3 2 3383. 6 b 7387 ,,8
2 Replacement 5152. 5 2 2576. 3 b 5625,, 0
3 Type 37. 5 1 37 .5 b 81,. 8
4 Curing 394. 1 1 394. 1 b 860,.5
5 Block 12. 5 1 12. 5 b 27 ,. 2
6 Cm X Rp 1052. 5 4 263. 1 b 574 .5
7 Cm X Ty 2. 2 2 1. 1 b 2 . 4
8 Cm X Cu 145. 8 2 72. 9 b 159 . 1
9 Cm X Bk 11. 5 2 5. 7 b 12 .5
10 Rp X Ty 30. 9 2 15. 5 b 33 .8
11 Rp X Cu 133. 9 2 67. 0 b 146 .2
12 Rp X Bk 4. 1 2 2. 0 b 4 .4
13 Ty X Cu 0. 1 1 0. 1 b 0 . 1
14 Ty X Bk 0. 0 1 0. 0 b 0 . 1
15 Cu X Bk 1.,8 1 1..8 b 3 .9
16 Cm X Rp X Ty 8.,6 4 2., 1 b 4 .7
17 Cm X Rp X Cu 41..0 4 10.. 2 b 22 .3 > 0.1
18 Cm X Rp X Bk 15..8 4 3..9 b 8 .6 > 0.1
19 Cm X Ty X Cu 0,.3 2 0,.2 a —

20 Cm X Ty X Bk 1,.5 2 0..7 a —

21 Cm X Cu X Bk 0,.8 2 0,. 4 a — -

22 Rp X Ty X Cu 0 .0 2 0 .0 a - - -

23 Rp X Ty X Bk 0 .9 2 0 .5 a — -
24 Rp X Cu X Bk 2 . 0 2 1 .0 a — -
25 Ty X Cu X Bk 0 . 4 1 0 .4 a — -
26 Cm X Rp X Ty x Cu 0 . 4 4 0 . 1 a ---
27 Cm X RP X Ty x Bk 2 .3 4 0 .6 a -- -

28 Cm X Rp X Cu x Bk 2 .9 4 0 .7 a ---
29 Cm X Ty X Cu x Bk 0 .4 2 0 . 2 a -- -

30 Rp X Ty X Cu x Bk 0 .9 2 0 .5 a — -
31 Cm X Rp X Ty x Cu x Bk 0 .7 4 0 .2 a — -

32 Within <Dell 34 .6 72 0 .5

Residual Factor Number DF MS
a 32 72 0.5
b a + 31 to 19 105 0.5
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Tab B.*l.2.b : 5-Factor analysis of variance of the 91-day compressive
strength data under 20°C wet and dry curing.

Factor SS DF MS
Residual

used
Significance 

F-ratio Level %
1 Cement 23887 2 11944 a 5701.8
2 Replacement 2296 2 1148 a 548.0
3 Type 164 1 164 a 78.5
4 Curing 20157 1 20157 a 9623.0
5 Block 15 1 15 a 7.3
6 Cm x Rp 357 4 89 a 42.6
7 Cm x Ty 120 2 60 a 28.6
8 Cm x Cu 692 2 346 a 165. 1
9 Cm x Bk 9 2 4 a 2.1
10 Rp x Ty 88 2 44 a 20.9
11 Rp x Cu 523 2 262 a 124.9
12 Rp x Bk 2 2 1 a 0.5
13 Ty x Cu 50 1 50 a 24.0
14 Ty x Bk 0 1 0 a 0.0
15 Cu x Bk 15 1 15 a 7 .1
16 Cm x Rp X Ty 63 4 16 a 7.6
17 Cm x Rp X Cu 82 4 20 a 9.8
18 Cm x Rp X Bk 29 4 7 a 3.4
19 Cm x Ty X Cu 1 2 0 a 0.1
20 Cm x Ty X Bk 11 2 5 a 2.6
21 Cm x Cu X Bk 10 2 5 a 2.4
22 Rp x Ty X Cu 26 2 13 a 6.1
23 Rp x Ty X Bk 0 2 0 a 0.0
24 Rp x Cu X Bk 7 2 3 a 1.6
25 Ty x Cu X Bk 1 1 1 a 0.6
26 Cm x Rp X Ty X Cu 30 4 8 a 3.6
27 Cm x Rp X Ty X Bk 14 4 3 a 1.6
28 Cm x Rp X Cu X Bk 15 4 4 a 1.8
29 Cm x Ty X Cu X Bk 5 2 3 a 1.2
30 Rp x Ty X Cu X Bk 1 2 0 a 0.2
31 Cm x Rp X Ty X Cu x Bk 27 4 7 a 3.2 >2 . 5
32 Within (3ell 151 72 2

Residual Factor Number DF MS
a 32 72 2.1
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Tab B.4.2.C : 4-Factor analysis of variance of the 3-day compressive
strength data under 20°C wet and dry curing, split
by cementitious content.

Factor SS

Cement

DF

Content

MS

200 kg/m
Residual

used

3

F-ratio
Significance 
Level %

1 Replacement 352.62 2 176.31 b 3060.39
2 Type 5.39 1 5.39 b 93.62
3 Curing 7.18 1 7.18 b 124.71
4 Block 0.03 1 0.03 b 0.50
5 Rp x Ty 3.90 2 1.95 b 33.86
6 Rp x Cu 3.94 2 1.97 b 34.19
7 Rp x Bk 0.22 2 0.11 b 1.91
8 Ty x Cu 0.00 1 0.00 b 0.06
9 Ty x Bk 0.16 1 0.16 b 2.70
10 Cu x Bk 0.01 1 0.01 b 0.09
11 Rp x Ty x Cu 0.09 2 0. 04 a -
12 Rp x Ty x Bk 0.08 2 0.04 a -
13 Rp x Cu x Bk 0.80 2 0.40 b 6.92 > 0.5
14 Ty x Cu x Bk 0.03 1 0. 03 a -
15 Rp x Ty x Cu x Bk 0.02 2 0.01 a -
16 Within Cell 1.57 24 0.07

Residuals DF MS
a 16 24 0.07
b a + 15,14,12,11 31 0.06

3
Cement Content 300 kg/m

Residual Significance
Factor SS DF MS used F-ratio Level %

1 Replacement 1715.93 2 857.96 c 1420.94
o Type 18.00 1 18.00 c 29.80
3 Curing 143.35 1 143.35 c 237.41
4 Block 22.48 1 22.48 c 37 .23 > 0.1
5 Rp x Ty 9.51 2 4.75 c 7.87 > 0.5
6 Rp x Cu 61.26 2 30.63 c 50.73 > 0.1
7 Rp x Bk 1.61 2 0.81 b --
8 Ty x Cu 0.37 1 0.37 b --
9 Ty x Bk 0.60 1 0.60 b --
10 Cu x Bk 0.84 1 0.84 b --
11 Rp x Ty x Cu 0.21 2 0.10 a --
12 Rp x Ty x Bk 0.31 2 0.15 a --
13 Rp x Cu x Bk 3.97 2 1.99 b 3.96
14 Ty x Cu x Bk 0.75 1 0.75 a --
15 Rp x Ty x Cu x Bk 0.57 2 0.28 a --
16 Within Cell 13.71 24 0.57

Residuals DF MS
a 16 24 0.57
b a + 15,14,12,11 31 0.50
c b + 13,10,9,8,7 38 0.60

Cement Content 400 kg/m
Residual Significance

Factor SS DF MS used F-ratio Level %

1 Replacement 4136.5 2 2068.3 c 2870.58
L. Type 16.3 1 16.3 c 22.64
3 Curing 389.3 1 389.3 c 540.33
4 Block 1.5 1 1.5 c 2.03
5 Rp x Ty 26. 1 2 13.1 c 18. 13 > 0 . 1
6 Rp x Cu 109.7 2 54.8 c 76.11 > 0.1
7 Rp x Bk 18.0 2 9.0 c 12.48 > 0.1
8 Ty x Cu 0.0 1 0.0 b --
9 Ty x Bk 0.7 1 0.7 b --

10 Cu x Bk 1.7 1 1.7 b ----
11 Rp x Ty x Cu 0.1 2 0.1 cl ----
12 Rp x Ty x Bk 2.8 2 1. 4 b 2. 09
13 Rp x Cu x Bk 0.2 2 0.1 a --
14 Ty x Cu x Bk 0.0 1 0.0 a --
15 Rp x Ty x Cu x Bk 1.0 2 0.5 a --
16 Within Cell 19.4 24 0.8

Residuals DF MS
a 16 24 0.81
b a + 15,14,13,11 31 0.67
c b + 12,10,9,8 36 0.72
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Tab B.4.2.d : 4-Factor analysis of variance of the 91-day compressive
strength data under 20°C wet and dry curing, split
by cementitious content.

Factor SS

Cement

DF

Content

MS

200 kg/m
Residual

used

3

F-ratio
Significance 
Level %

1 Replacement 217.0 2 108.5 b 98.0
2 Type 45.1 1 45.1 b 40.7
3 Curing 2445.2 1 2445.2 b 2208.8
4 Block 0.0 1 0.0 b 0.0
5 Rp x Ty 26.4 2 13.2 b 11.9
6 Rp x Cu 227 .2 2 113.6 b 102.6
7 Rp x Bk 2.1 2 1.1 b 1.0
8 Ty x Cu 21.5 1 21.5 b 19.4
9 Ty x Bk 1.0 1 1.0 b 0.9

10 Cu x Bk 0.0 1 0.0 b 0.0
11 Rp x Ty x Cu 10.8 2 5.4 b 4.9 > 2.5
12 Rp x Ty x Bk 0.9 2 0.5 a --
13 Rp x Cu x Bk 0.5 2 0.2 a --
14 Ty x Cu x Bk 0.6 1 0.6 a --
15 Rp x Ty x Cu x Bk 0.3 2 0.2 a --
16 Within Cell 32.0 24 1.3

Residuals DF MS
a 16 24 1.3
b a + 15,14 ,13,12 31 1.1

Factor SS

Cement

DF

Content

MS

300 kg/m

Residual
used

Significance 
F-ratio Level %

1 Replacement 996.1 2 498.0 a 496.2
2 Type 239.1 1 239.1 a 238.2
3 Curing 8277.4 1 8277.4 a 8246.1
4 Block 9.8 1 9.8 a 9.7
5 Rp x Ty 124.6 2 62.3 a 62.1
6 Rp x Cu 62.3 2 31.2 a 31.0
7 Rp x Bk 10.9 2 5.5 a 5.4
8 Ty x Cu 12.7 1 12.7 a 12.6
9 Ty x Bk 3.3 1 3.3 a 3.3

10 Cu x Bk 5.2 1 5.2 a 5.2
11 Rp x Ty x Cu 25.1 2 12.6 a 12.5
12 Rp x Ty x Bk 5.7 2 2.9 a 2.9
13 Rp x Cu x Bk 16.5 2 8.2 a 8.2
14 Ty x Cu x Bk 5.6 1 5.6 a 5.5
15 Rp x Ty x Cu x Bk 12.5 2 6.3 a 6.2 > 2 . 5
16 Within Cell 24.1 24 1.0

Residuals DF MS
a 16 24 1.00

3Cement Content 400 kg/m
Residual Significance

Factor SS DF MS used F-ratio Level %

1 Replacement 1439.9 2 720.0 c 142.2S
2 Type 0.0 1 0.0 c 0.0
3 Curing 11126.4 1 11126.4 c 2198.9
4 Block 14.3 1 14.3 c 2.8
5 Rp x Ty 0.0 2 0.0 b --
6 Rp x Cu 315.5 2 157.7 c 31.2 > 0 . 1
7 Rp x Bk 17 .7 2 8.9 b --
8 Ty x Cu 16 .8 1 16.8 b --
9 Ty x Bk 6.6 1 6.6 b --

10 Cu x Bk 19.8 1 19.8 b --
11 Rp x Ty x Cu 20.2 2 10.1 b 2.6
12 Rp x Ty x Bk 6.9 2 3.5 a --
13 Rp x Cu x Bk 4.5 2 2.3 a --
14 Ty x Cu x Bk 0.1 1 0.1 a --
15 Rp x Ty x Cu x Bk 14.9 2 7.5 a --
16 Within Cell 94.7 24 3.9

Residuals DF MS
a 16 24 3.9
b a + 15,14,13,12 31 3.9
c b + 11,10,9,8,7,6 40 5.1
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CD O  CO tp  r-i 
CM CO

ID  CM ©  CM ID  03 ID  
CO ID  CO 
CM CO

OO) rr 
TfHO

CM O  CM O  05 O  H  

CD 0*- O  O  O  O  O

N  CO CO O) CO o  

I D O O O I O O H

05 CM CD 

tp ©  ©
O  CD CM CO H  (O
O  ID  O  O  O  O  O

05 CD CO O  ID  ID  CM 

CO O  O  CO CO lD  H

TP 05 Tp 

TP CO

O  O  05 CO O  CO O CD N  f -  T}1 H  h» H  

N  H  H  H  CD CO O

TP tH O  

CD O  O

t *  O  O  CO CO 05 CD

4-3
C<D-PcOO
CO3o•H-P•H
4-3
c<D
E<1)O
T5Ca

COCOuo

<oe\ho

CO CM CO 

H  CM O

CO o  o  

CM O  O

Tp CD ID

cor- o

CO CD CM 

05 CD ID

S C D H O I D H I D

H C D i f i O O O H

CO TP T f  CD CM TP CD 

tP CM i—C t P O  CM CD

O  CO 05 O  CM O  05 

O  CD O  CM O  O  O

I D I D 0 5 M D H O

C O H O H C M O O

I CM O  O  CM ■

f - l D l D l O H O H

CO CO O  CD TP 1-4 05 

H  CM 05 ID  05 N  OC 0 r - H  r-i
CM CM

t P ID  05 CD CO CD O

I D N N 0 0 0 5 -

( D C D H ^ O l D H

-H f -  CM Tp 03 CM CD 
CM r-t CM
CO ID

H  CD CM CO CD H  

CM r *  O  H  O  CM CM

ioo5r*r-HHo 
ID  CM TP 05 O  Tp O

P  TJ 
O  C  
45 <0

-P  -o  
C  45o o O 3

<1)bO03
05 ID *H 
O H CO CM CM CM CO rH CO O  

CM Tp O  O  O  O  O

CD ID Tp CO ID tp , T3 45 
C  45 i 03 U

> 54D
43•H

Tp O  t -  TP CO O  I CO I I < 0 3 0  I | | |

CM CM i-H I O  I I O  Tp o  I I | |

CO CO CO 
P  45
o  e  45 

-P  O  Jm O T3 ho 
CO 4) 45 

*M 05 TJ U•H <H H

0* u X
>> 3  rH fcs >» 3H U CQ h h U P« ̂ I>> 3 -h >> >, 3 E-« O  PQ E-. E- O

* 3  CO CD 
4) 45 45 
45 45 P

*H  ho 45 
45 rC  TJ P

CO CO CO 
45 3  TJ 
45 TJ

ho CD 
45 4) -P  QK<

7 6 A



B.4.3 Water Absorption data

Tab B.4.3.a 5-factor analysis
Tabs B.4.3*b-c 4-factor, split analyses
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Tab B.4.3*a : 5-Factor analysis of variance of the water absorption
data, under 10°C and 5°C wet curing.

Residual Significance
Factor SS DF MS used F-ratio Level %

1 Cement 2716.6 2 1358.3 d 77.44
2 Replacement 207.3 2 103.6 d 5.91
3 Type 11.7 1 11.7 c ---
4 Curing 29.3 1 29.3 c ---
5 Block 106.9 1 106.9 d 6.09
6 Crn X Rp 138.8 4 34.7 b ---
7 Cm X Ty 12. 1 2 6.0 b ---
8 Cm X Cu 4.8 2 2.4 b --
9 Cm X Bk 10.6 2 5.3 b ---

10 Rp X Ty 38. 5 2 19.3 b ---
11 RP X Cu 80.6 2 40.3 c 2 .4212 Rp X Bk 40.8 2 20.4 b ---
13 Ty X Cu 10. 0 1 10.0 b ---
14 Ty X Bk 1.2 1 1.2 b ---
15 Cu X Bk 7.6 1 7.6 b ---
16 Cm X Rp X Ty 51.8 4 13.0 a ---
17 Cm X Rp X Cu 53.9 4 13.5 a ---
18 Cm X Rp X Bk 118.7 4 29.7 a ---
19 Cm X Ty X Cu 4.3 2 2.2 a ---
20 Cm X Ty X Bk 17.5 2 8.8 a ---
21 Cm X Cu X Bk 14.7 2 7.3 a ---
22 Rp X Ty X Cu 86. 1 2 43. 1 b 2.72
23 Rp X Ty X Bk 3.0 2 1.5 a --
24 Rp X Cu X Bk 44.6 2 22.3 a ---
25 Ty X Cu X Bk 4.0 1 4.0 a ---
26 Cm X Rp X Ty X Cu 55.2 4 13.8 a ---
27 Cm X Rp X Ty X Bk 21.5 3 7.2 a ---
28 Cm X Rp X Cu X Bk 153.2 4 38.3 a --
29 Cm X Ty X Cu X Bk 28.8 2 14.4 a --
30 Rp X Ty X Cu X Bk 33. 0 2 16.5 a --
31 Cm X Rp X Ty X Cu x Bk 28.8 2 14. 4

Residual Factor Number DF MS
a 31 2 14.4
b a + 30 to 23,21 to 16 40 15.8
c b + 22,15 to 1 to 6 59 16.7
d c + 11,3,4 63 17.5
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Tab B.4.3.b : U-Factor analysis of variance of the water absorption
data, under 40°C and 20°C wet curing.

Factor SS

Cement

DF

Content

MS

3
200 kg/m

Residual 
used F- ratio

Significance 
Level %

1 Replacement 517.33 2 258.67 c 9.13
2 Type 150.00 1 150.00 c 5.30
3 Curing 240.67 1 240.67 c 8.50 1.0
4 Block 8. 17 1 8.17 c 0.29
5 Rp x Ty 804.00 2 402.00 c 14.19 > 0.1
6 Rp x Cu 58.33 2 29.17 b -
7 Rp x Bk 120.33 2 60.17 b -
8 Ty x Cu 10.67 1 10.67 b -
9 Ty x Bk 1.50 1 1.50 b --

10 Cu x Bk 1.50 1 1.50 b --
11 Rp x Ty x Cu 126.33 2 63.17 b 3.29
12 Rp x Ty x Bk 13.00 2 6.50 a -
13 Rp x Cu x Bk 37 . 00 2 18.50 a --
14 Ty x Cu x Bk 48.17 1 48.17 a -
15 Rp x Ty x Cu x Bk 36.33 2 18.17

Residuals DF MS
a 15 2 18.17
b a + 12,13,14 7 19.21
c b + 11,10,9,8,6,7 16 28.33

Factor SS

Cement

DF

Content

MS

300 kg/m
Residual 

used F- ratio
Significance 
Level %

1 Replacement 99.75 2 49.88 e 1.50
2 Type 92.04 1 92.04 e 2.76
3 Curing 92.04 1 92.04 e 2.76
4 Block 2.04 1 2.04 d -
5 Rp x Ty 79.08 2 39.54 d -
6 Rp x Cu 115.58 2 57.79 d --
7 Rp x Bk 65.58 2 32.79 d -
8 Ty x Cu 5.04 1 5.04 d -
9 Ty x Bk 51.04 1 51.04 d -

10 Cu x Bk 0.38 1 0.38 d -
11 Rp x Ty x Cu 140.58 2 70.29 d 2.84
12 Rp x Ty x Bk 64.58 2 32.29 b 11.93
13 Rp x Cu x Bk 100.75 2 50.38 c 3.46
14 Ty x Cu x Bk 2.04 1 2.04 a --
15 Rp x Ty x Cu x Bk 6.08 2 3.04

Residuals DF MS
a 15 2 3.04
b a + 14 3 2.71
c b + 12 5 14.54
d c + 13 7 24.78
e d + 11,1 to  4 19 33.30

Factor SS

Cement

DF

Content

MS

3400 kg/m
Residual

used F-ratio
Significance 
Level %

1 Replacement 621.58 2 310.79 d 29.05
2 Type 7.04 1 7.04 d 0.66
3 Curing 0.04 1 0.04 d 0.00
4 Block 2.04 1 2.04 d 0.19
5 Rp x Ty 5.08 2 2 .54 c ---
6 Rp x Cu 7 .58 2 3.79 c ---
7 Rp x Bk 125.08 2 62.54 d 5.85 > 2.5
8 Ty x Cu 22.04 1 22.04 c ---
9 Ty x Bk 9.38 1 9.38 c ---

10 Cu x Bk 30.37 1 30.37 c 3.24
11 Rp x Ty x Cu 11.08 2 5.54 a ---
12 Rp x Ty x Bk 5.25 2 2.63 a ---
13 Rp x Cu x Bk 1.75 2 0.88 a ---
14 Ty x Cu x Bk 45.37 1 45.37 b 7.07
15 Rp x Ty x Cu x Bk 33.25 2 16.63

Residuals DF MS
a 15 2 16.63
b a + 13,12,11 8 6.42
c b + 14 9 10.74
d c + 5,6,9,8,10 16 10.70
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Tab B.4.3.C : 4-Factor analysis of variance of the water absorption
data, under 20°C wet and dry curing.

Factor SS

Cement

DF

Content

MS

200kg/m
Residual

U 6 e d

3

F-ratio
Significance 
Level %

1 Replacement 3961.3 2 1980.6 d 25.57
2 Type 245.7 1 245.7 d 3.17
3 Curing 16897.4 1 16897.4 d 218 .20
4 Block 125.4 1 125.4 d 1.62
5 Rp x Ty 261.3 2 130.6 c -
6 Rp x Cu 3329.2 2 1664.6 d 21.49 > 0.1
7 Rp x Bk 62.1 2 31.0 c -
8 Ty x Cu 110.0 1 110.0 c -
9 Ty x Bk 23.4 1 23. 4 c -

10 Cu x Bk 78. 1 1 78.1 c -
11 Rp x Ty x Cu 320.2 2 160. 1 c 3. 13
12 Rp x Ty x Bk 17.7 2 8.8 a -
13 Rp x Cu x Bk 189.9 2 95.0 b 3.25
14 Ty x Cu x Bk 66.1 1 66.1 a -
15 Rp x Ty x Cu x Bk 33.1 1 33.1

Residuals DF MS
a 15 1 33.1
b a + 12,14 4 29.2
c b + 13 6 51.1
d c + 11,9,7,10,8,5 15 77.5

Factor SS

Cement

DF

Content

MS

300kg/m
Residual

U6ed

3

F-ratio
Significance 
Level %

1 Replacement 8879.3 2 4439.6 d 38.54
2 Type 805.0 1 805.0 d 6.99 > 2.53 Curing 18205.0 1 18205.0 d 158.01
4 Block 45.4 1 45.4 d 0.39
5 Rp x Ty 735.6 2 367 .8 c 4.65
6 Rp x Cu 6803.6 2 3401.8 d 29.53 > 0.1
7 Rp x Bk 405.8 2 202.9 b 5.218 Ty x Cu 273.4 1 273.4 b _
9 Ty x Bk 0.4 1 0.4 a _

10 Cu x Bk 22.0 1 22.0 a _
11 Rp x Ty x Cu 137.3 2 68.6 a _
12 Rp x Ty x Bk 0.8 2 0.4 a _
13 Rp x Cu x Bk 56. 1 2 28.0 a _
14 Ty x Cu x Bk 84 . 4 1 84.4 a _
15 Rp x Ty x Cu x Bk 127.8 2 63.9

Residuals DF MS
a 15 2 63.9
b a + 14 to 9 11 39.0
c b 4 7,8 14 79 . 1
d c + 5 16 115.2

Factor SS

Cement

DF

Content

MS

400kg/m
Residual

used F-ratio
Significance 
Level %

1 Replacement 2830.6 2 1415.3 d 28 . 16
2 Type 28.2 1 28.2 d 0.56
3 Curing 5460.2 1 5460.2 d 108.64
4 Block 4.2 1 4.2 d 0.08
5 Rp x Ty 30.1 2 15.0 a -
6 Rp x Cu 2492.6 2 1246.3 d 24.80 > 0.1
7 Rp x Bk 70.6 2 35.3 a -
8 Ty x Cu 160.2 1 160.2 b 5.10
9 Ty x Bk 204.2 1 204. 2 c 5.10

10 Cu x Bk 37.5 1 37 . 5 a -
11 Rp x Ty x Cu 105. 1 2 52. 5 a -
12 Rp x Ty x Bk 103.1 2 51.5 a -
13 Rp x Cu x Bk 54.3 2 27. 1 a -
14 Ty x Cu x Bk 20.2 1 20.2 a -
15 Rp x Ty x Cu x Bk 19. 1 2 9 . 5

Residuals DF MS
a 15 2 9.5
b a 4 14 to 11,5,7 14 31. 4
C b 4 8 15 40.0
d C 4 9 16 50 . 3
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C.1 Workability

C.1.1 Calculation of £ and h
For the two-point test operating in the low-medium 

workability mode, with a 20:1 right-angle reduction gear and a 1:2.25 
planetary gear. At each speed:

21. Total and Idling pressures are measured in lbf/in and
p

coupling speed is measured in RPM (1 lbf/in r 6.9 kPa).
22. Net Pressure = Total Pressure - Idling Pressure lbf/in

3. Axial Torque = 0.0680 x Net Pressure (Fig A.1.a) Nm
4. Impeller Torque = Axial Torque / 2.25 Nm
5. Impeller Speed = Coupling Speed x 2.25 / (20 x 60) Hz
6. g and h, in the equation T = g + hN, are calculated by

regressing impeller torque upon speed.

Example:-

Speed Pressure (lbf/in2) N T
(RPM) Total Idling (Hz) (Nm)

597 521 129 1 .119 11.85
497 485 121 0.932 11.00
396 438 116 0.742 9.73
348 424 111 0.653 9.46
296 390 108 0.555 8.52
247 366 102 0.463 7.98

199 350 96 0.373 7.68
152 327 92 0.285 7.10

93 293 88 0.174 6.20

r = 0.997 g = 5.32 h = 5.97
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C.1.2 Confidence Interval on £ and h ( 17 )
The standard errors are:

seh = h /(1-r2)( 1 )
V r2 n-2

seg = seh ( JN2) 
n

where n is the number of speeds used.
For the nine speed settings used (6,5,4,3.5,3,2.5,2,1.5,1) 

the root mean square of the speeds lies around 0.64.

Thus se_ = 0.64 se*..- g n
The confidence interval is formed by multiplying the standard 

error by the appropriate value of Students t.
h +/- seh x tn_2 and g +/- seg x tn_2

C.1.3 Rule-of-thumb interval on £ and h
This is calculated assuming that the upper and lower 90% 

limits on g and h are independent observations from the population. 
For example, four blocks of workability results give rise to eight 
observations.

1 1 3  4

upper limits 6.90 6.83 6.42 4.28 
lower limits 5.61 6.06 6.00 3.60

using se = sd and interval = mean +/- se x t2 5  ̂ 7
{2

mean = 5.72, sd = 1.19, se = 0.84, t = 2.36, 

therefore interval = 5.72 +/- 1.99
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C. 2 Strength and Elasticity

C.2.1 Maturity ( 76)
Compressive strength is shown plotted against the equivalent 

age in Fig 8.3.3-k. Two maturity functions were used to calculate the 
age,

Nurse-Saul (T+10) and Sadgove jT+16j 2
30 36

where T is the mean concrete temperature (°C).
Work by the author elswhere (.78 ) has indicated that the 

Sadgrove function is more universal than the Nurse-Saul function. The 
equivalent ages in days at 20°C are shown below for the curing 
temperatures employed.

Age (days) 40°C 20°C 10°C 5°C
1 2.4 1 0.5 0.3
3 7.3 3 1.6 1.0
7 16.9 7 3.7 2.4
28 67.8 28 14.6 9.5
91 220.2 91 47.5 31.0

underwater

•••o.
y/o. v

<t>c Water k Water o03Uh- Gap r
Concrete

Gap cu
cc

o?.

I - Transit time (ps) w - Water
L - Path length (mm) g " Water gap
V - Pulse velocity (km/s) c - Concrete

m -  M ix tu re
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In order to obtain the pulse velocity in the concrete cube the 
transit times with and without the cube in the tank of water must be 

measured.

thus
but

1 — +itri T*m“ g c
T - T_c= m g
T - Lng= w c

substituting for a 100mm cube,
T. = T -(T - 100) c m w __

1.48

therefore TQ = Tm - Tw + 67.7 and Vc = 100

Tc

C.2.3 Poisson's ratio
Ecq = f V2 (1 + p) (1-2p) GPa

1-P
but fV2 is the Stiffness Constant (Eu) GPa. (82). 
let ^  = T

Eu
substituting and rearranging,

T(1-p) = (1+p) (1-2p) 
and 0 = 2p2 + (1-T)p + (T-1) 

using the formulae x = -b +/- /(b2- 4ac)
2a

p = (T-1) +/-/[ (1-T)2 - 8(T-1)]
4

for positive values of p
p = (T-1) + \[[T2 - 10T + 9]

4
Poisson's ratio can easily be calculated from the stiffness

constant.
If Ecq = aEu+c then T = a + °/Eu 
or Ecq = aEub then T = aEu(b”1)
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C.3 Hydration and Durability

C.3.1 First-order correction of vacuum flask calorimetry results

COOLING CURVE
c.

-kt

t i meTe
tt

CORRECTION(U
<uC-c Actua1 

Recorded,^
<ui-

1 1 me

The temperature profile can be approximated by a number of 
thin trapezoidal strips. The cooling over each strip (C) can be taken 
to be a function of the mean temperature (Tm), cooling coefficient (k) 

and the strip width (t). Applying Arrehnius law, with all the 
temperatures measured relative to the base temperature Te:

-kt

C = TmCl-e~kt)therefore
and Ta = C + Tr

The coefficient k is 0.0018-0.0012 °C/min and the subscripts r and a 

denote the recorded and actual temperatures respectively; ignoring the 
effect of temperature upon the reaction rate and heat evolved by it. 
For a sequence of slices the corrections for cooling must be added 
together.

i

thus Taj_ = I cs + Tri 
1
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C.3.2 Activation Energy
Several researchers ( 34 ) have calculated apparent activation 

energies using the Arrhenius relationship
t-, = exp {Ea (1 - 1 )j

t2 R T-j T2
where E0 is the apparent activation energy KJ/mol;d
R is the molar gas constant (0.008314 kJ/mol K°);
T is the curing temperature K; and
t is the equivalent age to reach a certain degree of hydration.

rearranging, Ea = R { ln (t*|/t2)j
( 1 - 1 )
T, T2

The degree of hydration can be judged from strength or 
calorimetry measurements. The following values of Ea were calculated 
from the equivalent ages to reach compressive strengths of 10, 20 and

O30 MPa in the 200, 300 and 400 kg/m cementitious content mixes, under 
20 and 5°C wet curing.

Mix 
OPC 

40$ Type 1 
40$ Type 2 

70$ Type 1 
70$ Type 2

Mean sd

49.5 4.2
57.5 4.9
54.8 7.3

66.7 2.7
57.5 4.2

C.3.3 Water Absorption
The water absorption can be simply calculated by dividing the 

mass of water absorped by the area and time of contact.
specific water absorption = mass

area x time
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? ? Area of cross section = 75 x TI =4418 mm
4

C Pthus WAgQ = mass x 10 = mass ml/m .s
4418 x 3600 15.90
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D. 1 Two-point Test Data Analysis

10 REN A PR06RAH TO ANALYSE THE DATA OF THE THO-PDINT WORKABILITY R16 OK A BBC B* WITH GRAPHICS AND PRINTHASTER RONS FITTED 
110 INPUT 1AB(0.91"CHOOSE RIG"*aBUlLDlN6=l OR CIV. ENG.=2 ? "RIG

a 120 INPUT TAblO,12)‘CHOOSE MOTION"'*C0NCENTRIC=1 OR PLANETARY-2 ? ‘NOTION
130 INPUT TAEf(0,15)“CHOuSE GEAR B0X"“FIVE TO ONE =1 DR TWENTY TO 0NE=2 ? ‘BEAR
140 INPUT TAb(0,18)“COUPLING SPEED FACTOR*'* 1 OR 2 ? "SPOTS
150 INPUT TAB(0,2l)“CONFIDENCE LEVEL"“901=1 OR 952=2 ? "CL
160 A(1,1)=0.019:A(1,2)=0.066:A(2,l)=A(l,lj:A(2,2)=0.068:A(3,11=1/(4.75160):A(3,2)=1/(20I60)170 T(1.11=2.920:T(2,1)=2.353:T (3,1)=2.132:T(4,1)=2.015:T(5,1)=1.943:T(6,l)=1.895:T(7,l)=i.860:T(8,l)=1.833:T(1,2)=4.303:T(2,2)=3.128:T (3,21=2.776:T(4,2)=2.571:1(5,21=2.447:T(6,2)=2.365:T(7,2)=2.306:T(8,2)=2.262 
180 HINRINT=0.1:H1NT1NT=0.2:NINIS1NT=0.2200 DIN C0UPSPEEDZ|12):DIH PRESSZ(12):DIM IDLPRESSZ(12):DIM IMPSPEED(12):DIH TRQUE(12);DIM RESIDUAL(12):D1M INDRESD(12)260 REPEAT
270 CLS:INPUT TAB(0,2) "NIX LABEL "NIX*290 CLS:INPUT TAB(0,2) ‘NUMBER OF POINTS "POINTS 300 FOR J=1 TO POINTS

l 310 INPUT TAB(0,5)"COUFLINS SPEED(RPH) .TOTAL PRESSURE(PSI) AND IDLING PRESSURE(PSl)" TAB(10,(6tJ)) COUPSPEED,PRESS,IDLPRESS320 IF PRESSUDLPRESS THEN 310 ELSE COUPSPEEDZ(J)=INT(COUPSPEED/SPOTS+0.5):PRESSX(J)=INT(PRESS+0.5):IDLPRESSX(J)=INT(IDLPRESS+0.5)
330 NEXT J
350 CLS:INPUT TAB(8,10)"HAftDCOPY-Y/N "DISPR1N*
360 FOR 0=1 TO F01NTS

c 370 INPSPEEDIJ)=COUPSPEEDZ(J)1A(3,GEAR):TRQUE(J)=(PRESSI(J)-IDLPRESS2(J))1A(R16,GEAR)
375 IF H0TI0N=2 THEN IHPSPEED(J)=IHPSPEED(J)l2.25:TR0UE(J)=TR8UE(J)/2.25
380 NEXT J
381 FOR 1=1 TO P01NTS+1
382 IF P0INTS<5 THEN T=POINTS *1 U 384 PROCREGRESSION:NEXT T
385 IF P0INTS<4 THEN 6W=0:HW=0:B0T0 410 
390 STDERRORH=SQR( (l-RA2)/(RA24(P0INTS-2))) e 400 HW=ABS(H4ST0ERR0RH4T((POINTS-3),CL)):6W=ABS(KIHW)
410 ULIHITH=H+HW:LL1NITH=H-HW:ULIHITG=G+6W:LLINITG=G-GW:1STYLE "N H"420 IF DISPRIN*=‘Y“ THEN VDU 2 
430 §2=4000002:4UNDERL1NE440 PRINT:PRINT:PRINT:PRINT:PRINT HIX$:VDU3:>INITIALISE 
450 hAXRESIDUAL=0:MAXTRGlUE=0:MINTRQUE=G:MAXSPEED=0 
460 FOR J=1 TO POINTS 

f 470 RES I DUAL(J)=TRQUE(J)-(HIINPSPEED(J)+6)
480 IF ABS(RESIDUALIJ))>MAXRESIDUAL THEN HAXRESIDUAL=ABS(RESIDUAL(J))490 IF TRQUE(J)>MAXTRQUE THEN MAXTRQUE=TRQUE(J)
500 IF TRflUEIJXHINTROUE THEN NINTRQUE=TRQUE(J)
510 IF IMPSPEEDIJ)XMAXSPEED THEN HAXSPEED=INPSPEED(J)
520 SG5=SQS+(RESIDUAL(J)A2)
530 NEXT J:SDARL=SQR(SOS/(POINTS-2))750 SR=INT(RESIDUAL(J)/SDARL+0,5):IF POINTS > 4 THEN SlR=lNT(ABS(INDRESD(J)/SDARL+0,5))
860 DEF PROCREGRESSION 9 870 ASUM=0:BSUH=0;ASQSUH=0;BSQSUM=0:PRODSUM=0:S0S=0:N=0:FOR J=1 TO POINTS
871 IF J=T THEN 873 ELSE N=NH:A=I«PSPEED(J):B=TR0UE(3)872 ASUH=ASUH+A:BSIIM=BSUM+B:PR0DSUM=PR0DSUM+A4B:ASOSUH=ASQSUH+(AA2):BSQSUM=BSQSUH+(BA2)
■873 NEXT J874 V=(PR0DSUN-(ASUH4BSUM)/N):K=S0R(ASQSUH/N):U=(ASQSUM-(ASUNA2)/N):2=(BSfiSUH-(BSUHA2)/N):R=V/(S0R(U<2)):H=V/U:C=(BSUN-H4ASUH)/N
875 IF DPOINTS THEN G=C:H=H ELSE INDRESD(T)=TRQUE(T)-(H*IMPSPEED(T)+C)880 ENDPROC

, 1170 DEF PRQCST ORE
" 1180 FOR 1=1 TO 1000:F=T HUD 100

1190 IF F=0 THEN PRINT TAB(8,10)"INSERT DATA DISC IN DRIVE 1‘ ELSE IF F=50 THEN PRINT TAB(B,10)‘
1200 NEXT T1210 INPUT TAB(0,15)"GIVE FILE LABEL".LABEL*
1220 IF LABEL$=” THEN 1210
1230 FILENO=OFENOUT(LABEL*):PRlNTf FILENO.POINTS,R,H,ULIMITH,LLIHITH,G,ULIHITB,LL1MITG 
1240 FOR J=1 TO P01NTS:PR1NT£ FILENO,1MPSPEED(J),TRQUE(J):NEXT J
1250 FOR j=l TO POINTS:PRINT£ F1LEN0,COUPSPEEDKJ),PRESS!(J),IDLPRESS!(J):NEXT J:CLOSE£ FILENO:VDU 2:PR1NT LABEL*" STORED1

.....:VDU 3:ENDPR0C
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Fig D.1 : Example of the computer presentation of the two-point 
workability test results (a=4S0, b=4P4, c=4P7).
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D.2. Temperature Monitoring

10 REM ft TEMPERATURE MONITORING SYSTEM FOR UPTO 10 THERMOCOUPLES CONNECTED TO A COLD JUNCTION
170 1NPUTTAB(0,13)*Flease enter the proposed number of Thermocouples ' TCS

i 180 INPUTTAP(0,15)*Please enter the DURATION of the test(hours) ’DURATION
185 lNPUTTAB(0,17)’Please enter the time INTERVAL between readinQs(minutes) ’TIC
190 FILE5=INT(DURAT10NI(TCS+l)/(25tTlC)+l):X=INT(350ITIC/(TCS<-1)):IF FILES>14 OR TIC<0.5 THEN PRINTTAB(30,15)" ’:B0T0 180
200 lNPUTTAB(0,19)'Please enter the UPFER and LONER temperature limits ’UPPERT,LONERT 
210 IF UPFERT<L0NERT THEN 200
220 INPUTTAB(0,21)*Please enter the title and the date "TITLE*,DATE,MONTH,YEAR

. 240 CTRL4(l)=l'CllG'’:CTRLt(2)=’C12G':CTRL4(3)=’C136":CTRL$(4)=’C146’:CTRL4(5)=’C15G’:CTRL$(6)=’C16G’:CTRL4(7)=,C17G,':CTRLt(B)=’C18G’
J CTRL*(9)="C196*

241 CTRL<(10)=*C1AG*:CTRL*(11)=,C1BB‘:CTRL*(12)=*C1CG*:CTRL*(13)=*C1DB’:CTRL*(14)=’C1EB‘:CTRL*(15)="C1FB*
250 GOSUB 1400
330 DURATION=I NT < DURAT10NI3.6E5):TIC = INT (TIC I 6E3)

, 340 REM TEST FOR REMOTE CONTROL CONNECTED
K  350 TEST = 0

360 FOR I = 1 TO 4
370 IF ADVAL(l) > 30000 THEN TEST = TEST ♦ 1 
380 NEXT I
390 IF TEST = 0 THEN 450
400 IF TEST > 0 THEN PRINTTAB(15,17)’Remote Control NOT Connected - -  Please CONNECT ’;
410 7* = 1NKEY$(50)
420 PRINTTAB(15,17)’ ’;
430 24 = INKEY*(20)
440 GOTO 340

1 450 REM START TEST FROM REMOTE
460 R=TIME MOD 100
470 IP R>0 AND R<5 THEN PRINTTAB(0,19)"Press BUTTON 1 to start test’
480 IF R>45 AND R<50 THEN PRINTTAB!0.19)’
490 IF ADVAL(l) > 30000 THEN 520 
500 GOTO 450
520 FOR 1=1 TO TCS:MIN(11=10000:TATAL(I)=0:ALLSAM=0:MAX(I)=-10000:NEXT I :TIK=0:TIHE=-500:A=0:B=A:F*=’0FF":F=1:P=0
530 CLS
535 PR1NTTAB(50,3)"TIME INTO TEST*:PRINTTAB(50,4)’Hrs Mins Secs’
540 TALLY=0 :SAMPLE=0 
550 GOSUB 990 

m  560 REM ALARM/FAULT SEQUENCE
570 IF Ft=’ON“ THEN PRINTTAB(20,5) ’— FAULT— ’'"LABEL*" NOT STORED BECAUSE ’iREPDRT:PR1NTTAB( 17,8) ’PRESS 'C KEY TO RETRY STORE’
620 REM CONTROL FROM REMOTE
630 PRINTTAB(0,19)’Press BUTTON 1 to END test’"Press BUTTON 2 to PRINT VALUES*"press BUTTON 3 to RESTART test’"press BUTTON 4 to 

EXIT to BASIC’
650 DPROMP*=INKEY*(10):IF DPR0MP4=’C’ THEN F*=’0FF’:P=0;PRINTTAB(17,8)*
655 IF TIME MOD 100=0 THEN PROCTIME(TIME)
656 IF A 0  B THEN §2=lrOOOOOA:PRINTTAB(17,10)"TEMPERATURE LIMITS EXCEEDED!’sFOR DELAY =1 TO 70:NEXT DELAY:PR1NTTAB(17,10)*

n  660 IF ADVAL(l) > 30000 THEN 950
670 IF ADVAL(2) > 30000 THEN P=20
680 IF ADVAL(3) > 30000 THEN 520
690 IF ADVAL(4) ) 30000 THEN MODE 135: PRINT ’BYE”:END
691 IF TIME>TIK THEN 730 ELSE IF F*=’0N’ GOTO 720

O  700 IF T A L L YM500 THEN PROCSTORE(LABEL4(F)):G0T0 540
710 IF TIME > DURATION THEN 950 
720 GOTO 650
730 REM START SAMPLE RUN HERE 
740 PRINTTAB(0,19)”

750 MI NUTE5=T I ME DIV 6000: NEWT ALL Y=T ALLY 1: TEMP (NENT ALLY) =N INUTES :B=A:MAXDIFF=0
760 FOR 1=1 TO TCS:GOSUB 1220:NEXT I 
770 FOP 1=1 TO TCS
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D 780 IF VOLTS!I}<0.39 THEN TEHP*VOLTS(I)/O.039
^ 790 IF VOLTS!I)>=0.39 AND VOLTS(1)<1.19 THEN TENP=(VOLTS(I)-0.39)/0.04 +10800 IF V0LTS(I)>=1.19 AND VOLTS!I)(2.03 THEN TEHP=(VOLTS!I)-l.191/0.042 *30

810 IF VOLTS!I!'=2.03 AND VOLTS!I)(2.91 THEN TEMP=(VOLTS(I)-2.03)/0.044 +50
820 IF VOLTS!1)>=2.91 ANP VOLTS!I)<3.81 THEN TEHP=(VOLTS(I(-2.911/0.045 +70
830 IF VOLTS!I)>=3.01 THEN TE«P=(VOLTS(D-3.81)/O.047 +90 840 IF TEHF > HA)((I) THEN MAX(I)=TENP
850 IF TEMP < MIN(I) THEN KIN(I)=TEHP
860 IF TEHf >UPPERT OR TEMP (LOHERT THEN A=A+1 
870 TATAL(I) = TATAL(I) + TEMP 
880 NEWTALLY=NENTALLY+1:TEMP(NENTALLY)=TEMP 
0B1 DIFF=ABS(TEMF'-PRETEHP(1))882 IF DIFF>MAXDIFF THEN MAXDIFF =DIFF 890 NEXT I
900 IF p>0 THEN VDU2
910 PRINTTAF(0,25)’ ":*7=&000006:PRINTTAB(0,25)iMINUTES;

n «7=4020105:FuR J=(TALLY+2) TO NENTALLY:PRINT,TEMP(J);
920 NETT J:PRINT:VDU 3
925 IF I1AXDIFF<0.2 THEN NEHTALLY=NENTALLY-TCS-1 ELSE FOR 1=TCS TO 1 STEP -1 :PRETEMP( I)=TEMP(NENTALLY-TCS-+I) :NEXT I 930 IF F$=’OFF” THEN TALLY=NENTALLY:SAMPLE=SAMPLE+1
940 TIK=m+TIC:GOTO 620 
950 PROCSTORE(LABELS(F))
960 GOSUB 1310
980 END _ . .

r  990 REfl SUB IEEE STARTUP 
1000 tIEEE
1010 c»d?=OPENlN("COMMAND")
1020 data?=OPENIN("DATA")
1030 PRINT£c»d?,"BBC DEVICE N0",0 
1040 FRlNTEcmd?,"CLEAR"
1050 FRINTEcir.dX, "REMOTE ENABLE"
1060 PPINTEcidX,"END OF STRING".CHR$(13)+CHR*(10) 
1070 dv»7=0PENIN(*16’)
1080 PRINTfcmd?.,"LOCAL LOCKOUT"
1090 PRINTEcudX,"DEVICE CLEAR"
1100 FRlNT£c»d7,"UNLISTEN"
1110 PRINTfcmdl,"LISTEN",dv#7.,"EXECUTE"
1120 PR I NTEda ta7., *F 1H0R0K1HON100D2TOG ’
1130 PRINTEcid?, “UNLISTEN'1 
1140 PRINT£cEd7.,"TALK’,dv*X 
1150 PRINTEcsdX."TIMEOUT ON*
1160 PRJNT£c*dX,"STATUS*
1170 INFUTEctdX,state!
1180 IF state?, <> 8445444 THEN PRINT TAB(0,2) state?
1190 INPUTEdataX,volts$
1200 PRlNTEcifdi."UNTALK"
1210 RETURN

1220 REM READ CHANNELS ROUTINE 
1230 PRlNTEcaid?."LISTEN",dv#?,"EXECUTE" 
1240 PRINT£data?,CTRL4(I)
1250 PRlNT£c»d?."UNLI5TEN"
1260 PRINTEcid?, "TALK" ,dv*7.
1270 INPUT£data7,volts*
1280 PRINT£c*d7,"UNTALK"
1290 VOLTS! 1) = 1000»(VAL(vdIts$))
1300 RETURN
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D .3 Vacuum Flask Calorimetry Analysis

10 REM ft PROGRAM 10 PROCESS THE DATft FROM THE TEMPERATURE MONITORING ROUTINE ON A BBC WITH GRAPHICS AND PRINTMASTER ROMS FITTED 
60 DIM TEMP(1500):DIM K(4):DIH LABELS(15)

S  65 DIM TME{200):DIM ITEHP(200):DIH ADJTEMP(200):D1M 6ENTENPI200)
70 K(1)=0.0018 :K(2)=0.0012:K(3)=0.0013:K(4)=0.0011

110 1NPUTTABI10,10) 'Please enter LONER and UPPER tiae liaits (hours) *HINT1NE,MAXTINE 
*. 120 IF MINTIME>MAXTIME THEN 110 ELSE NINT1NE*M1NTIHEI60:MAXTINE=HAXTIHEI60

130 CLS:F1LES=-1:REPEAT:F1LES=F1LES+1:1NPUTTAB|0,5*F1LES)'FILE NAMES 'LABELS(F1LES+1):UNTIL LABELS(FILES+1)=*F' 
140 FOR I- 1 TO FILES;VDU 2:CLS:VDU 3 
ISO PROCFEEDILABELS(I))
190 TCS=(TALLY-SAMPLE)/SAMPLE:MINTIMT=0.5 
205 PROCHEADIN6|LABELS(I),0)
210 PROCHEfiDlNGCTIME',0)
220 FOR S=1 TO SAMPLE;PROCSORT(1);THE(S )=VAR1:MEXT S
230 FOR T=1 TO TCS:CLS
240 PROCHEADING('THERMOCOUPLE-',T )
250 FOR S=1 TO SAMPLE:PROCSORT((T+l)):ITEMP(S)=VARI;NEXT S:VDU 3

250 FOR S=1 TO SAMPLE;PROCSORT((T+1)):ITEMP(S)=VAR1sNEXT S:VDU 3 260 PROCSTAT(1500)
U 270 PROCADJ:PROCSCALE

290 FOR J=1 TO SAMPLE;PROCPLOT(69,TME(J),I TEMP(J)):NEXT J 290 FOR 0=1 TO SAMPLE:PROCPLOT(69,TME(J),ADJTEHP(J)):NEXT J 
V 295 FOR J=1 TO SAMPLE:PRDCPLOT(5,THE(J),GEMTEHP(J))iNEXT J 

300 IGDUMP 3 13 1 20 310 VDU 3 
320 NEXT T 325 NEXT 1:END 

w 330 DEF PROCFEEDILABELS)
410 FILEN0=0PENIN(LA8EL$)
420 INPUTE FILENO,TALLY.SAMPLE 
430 VDU2;PRI NT,TALLY,SAMPLE:VDU3 440 FOR J=1 TO TALLY 
450 INPUTE FILENO,TEMP(J)460 NEXT J 
470 CLOSED FILENO 
490 VDU 3;ENDPR0C

X  570 DEF PROCSORT(F1LESTART)
580 FlLEPOS=FILESTART+((S-DKTCS+l)) 
590 VARI=TENP(F1LEPQS)
600 VDU2:§2=i02010B:PRINT,VAR1;;VDU3 
610 ENDPROC

y 620 DEF PROCADJ630 VDU2.-PRINT:PRINT :PRINTiVDU3 
640 CH6SUH=0;F0R S=1 TO SAMPLE 650 GRAD=EXP(-K(T)I(TME(S)-TME(S-l)))
660 DIFF=ABS(1-GRAD)
670 MID=(lTEMP(S)tITEMP(S-l))/2 680 CHG=(MID-20)SDIFF 
690 CHGSUM=CHG+CHGSUM 
700 ADJTEMP(5)=ITEMP(S)+CHGSUM-M1N
705 6ENTEMP(S)=600*(ADJTEMP(S)-ADJTEMP(S-l))/(TME(S)-TME(S-l)> 710 VDU 2:eX=i020208:PRINT,ADJTEHP(S);:VDU 3 720 NEXT S 
730 ENDPROC
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740 DEF PROCSTATfCUTOFF)
Z  750 DUTSUM=0:INSUM=0:INSAHPLE=0:MAX=-1000:HIW=1000:SOS=0 

760 FOR TO SAMPLE
770 IF ITEMP(J)7CUTOFF THEN OUTSUM=DUTSW+ITEKP(J):GOTO 820 
780 IF TMEUKMINTIHE OR TME(J)>MATT1ME THEN 820 
790 IF 1TEHP(J)>MAX THEN MAT-1 TEMP IJ):TTPEAF=TMEIJ)
800 IF ITEHPfJKMlN THEN HIN=ITEMP(J)
BIO 1NSAMPLE=INSAMPLE+1:1NSUM=INSUM+1 TEMP(J )
820 NETT J:AVE=INSUM/INSAMPLE
830 FOR J=1 TO SAMPLE
040 IF ITEMPIJDCUTOFF THEN 860
850 RES1DUAL*ITEMP(J )-AVE:SDS=SOS+ (RES1 DUAL"2)
860 NETT J :SD=(INT(SBR(SOS/INSAHPLE)41000))/1000
870 CLS:VDU 2:PR1NT:PRINT:PRINT,READIN6S^;INSAMPLE,',MA7INUH=,;HAT,',AVERA6E*,;AVE)"MINIHUH=,,;HIN:PRINT,T1HE TO PEAK=*;TTPEAK:VDU 3 
880 ENDPROC

NOTES
a - experimental conditions
b - experimental results
c - calculation of impeller torque and speed
d - analys is
e - calculation of in terval on g and h
f - residua] s ta t is t ic s
g - regression procedure
h - procedure for storing data from the analysis
i - experimental conditions
j - setting up the analogue scanner
k - check on the remote control
1 - s ta r t  of sampling
m - alarm for errors in data or its  storage
n “ remote control options
o - data storage and end of test
P - thermocouple ca lib ra tion  equations
q - optional hard copy of results
r - subroutines for in terfacing with scanner and voltmeter
s - f lask cooling coeff ic ien ts
t - data retrieval and presentation
u - analys is
V - graph p lott ing
w - procedure for data re tr ieva l
X - procedure for data sorting
y - procedure for f i r s t -o rd e r  correction
z - procedure for s ta t is t ic a l  analysis
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