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Abstract

Distributed simulation provides an alternative solution when today’s highly 

complicated systems including manufacturing are to be simulated. Complexities 

involved in implementation, the need for more expertise, high development cost 

and long implementation time etc. along with a lack o f guidelines for developing 

distributed simulation, and the complexity o f tools and techniques used to 

implement schemes, resulted in the lack o f acceptance for distributed simulation 

among the general simulation community. In order to address some o f these 

issues, a new approach is proposed for modelling and simulating large scale 

enterprises using distributed simulation. The proposed approach which includes a 

comprehensive methodology for distributed enterprise simulation, developed by 

combining activities required for traditional sequential simulation with additional 

activities required for distributed simulation.

The thesis elaborates the additional activities required for distributed simulation in 

different chapters with simplified approaches for carrying out these activities. 

These include an approach to decide the appropriate simulation strategy (SimSS 

process), a simplified approach to modelling and model partitioning, a 

synchronization mechanism that approximately synchronizes the distributed 

enterprise simulation and an approach for developing distributed simulation using 

tools and technologies which are popular, well accepted and also cost effective. 

The differences between the traditional distributed simulation approaches and the 

proposed methodology include: partitioning o f the conceptual model into logical 

processes before transforming them into computer simulation models, use o f 

commercial simulation software to implement the distributed simulation, and use 

o f cost effective and popular middleware and programming languages. Illustration 

o f the proposed approaches focuses on distributed manufacturing applications.
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Chapter 1

Introduction

This chapter, as the first chapter o f the thesis provides an 

introduction to the thesis as well as a rationale for the 

research carried out. Objectives o f the research, 

contribution o f the research and structure o f the thesis are 

also included in this chapter.



Chapter 1 - Introduction

1.1 Introduction

Simulation is one o f the most powerful tools available to decision makers 

responsible for the design and operation o f many diverse areas o f applications. 

The system under study can be anything from aerodynamic properties o f a new 

aircraft under development to intricacies o f protein folding into a complex three 

dimensional shape. However, the size and complexity o f many o f today’s 

simulation models place severe demands on the computational resources required. 

Many researchers have concluded that the traditional sequential simulation has 

reached its limit in simulating highly complicated and large applications. 

Distributed simulation (along with parallel simulation) provides an alternative 

solution when today’s highly complex systems are to be simulated by 

decomposing a simulation model into a number o f sub-models and executing them 

in parallel. Furthermore, a parallel or distributed simulation model is more 

realistic and natural for many real world applications. Distributed simulation 

provides a means o f executing simulation models scattered over a building, a 

campus, a city, a country or even the world. It is the only solution available when 

simulation models need to exist in different places due to various reasons such as 

security concerns about the confidentiality o f information contained in simulation 

models, simultaneous access to executing simulation models for users in different 

locations etc. Distributed simulation plays an important role in enterprise 

simulation. Enterprise simulation refers to a dynamic model or simulation which 

is constructed with a top-down perspective and is intended to provide an overall 

view o f the workings o f an enterprise. In fact, an enterprise simulation model 

becomes a distributed simulation model when there are two or more simulation 

models o f the enterprise executed in a network. Therefore the term ‘distributed 

simulation’ instead o f ‘enterprise simulation’ will be used in the thesis for 

literature or applications are common to both types o f simulations.

This research presents a comprehensive approach for modelling large scale 

enterprises through distributed simulation. Although the proposed approach 

focuses on enterprise simulation, it can be employed to develop general 

distributed simulation models as well.
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Chapter 1 -  Introduction

The objective o f this chapter is to provide an introduction to the thesis. The next 

section explains the rationale for the research. Objectives o f the research and 

contributions made by the research are presented in sections 1.3 and 1.4 

respectively. The last section provides the structure o f the thesis. The chapter ends 

with a summary.

1.2 Rationale

Although distributed simulation provides an attractive alternative when simulating 

large, complex or geographically distributed systems, it is more complex to 

manage than traditional sequential simulation since inter-processor 

communication and synchronisation issues required to be addressed. A number o f 

authors have criticised distributed simulation (along with parallel simulation) for 

the complexity, lack o f availability o f design and development tools, lack of 

acceptance by the general simulation community, lack o f use in industrial 

applications etc. Fujimoto (1993a) commented that despite over a decade and a 

half o f research and several successes, this area o f simulation has not had a 

significant impact on the general simulation community. He also predicted that 

unless new inroads are made in reducing the effort and expertise required to 

develop (parallel and) distributed simulation models, the field will continue to 

have limited application, and will remain as a specialised technique used by only a 

handful o f researchers. Although these comments were made almost a decade ago 

still many authors including Bass (1999), Low et al. (1999), Nicol and 

Heidelberger (1995), Pham et al. (1998) and Taylor (2002) echo similar 

sentiments. In spite o f a great deal o f effort made by the research community, 

parallel and distributed simulation techniques have not yet been widely used in the 

industry (Cai and Teo, 1999) and remains a relatively unknown field to those not 

directly researching in this area (Taylor, 1998). Bass (1999) noted that the 

complexity and difficulties o f implementation have inhibited the commercial 

success o f many parallel and distributed applications. Bagrodia (1996) complained 

that the design o f efficient parallel discrete event simulation models often appears 

to be a mysterious art primarily practiced by researchers who have been rigorously 

ordained in this task.
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Chapter 1 - Introduction

Fujimoto (1993b) concluded that (parallel and) distributed simulation thrives only 

if the parallel and distributed research community makes the transition process 

easier for the discrete event community. Turner (1998) noted that, it is generally 

recognised that the future success o f parallel and distributed simulation depends 

on the extent to which it is possible to reduce the effort and expertise required to 

develop simulations. This requires simple tools such as user friendly simulation 

software packages, popular programming languages as well as modelling 

methodologies that guide parallel and distributed simulation users.

Simulation methodology plays a crucial part in any simulation project, particularly 

in distributed simulation due to its complex nature. Abrams (1993) highlighted the 

importance o f  modelling for parallel and distributed simulation and noted that 

model design and program design are not independent tasks. Page and Nance 

(1994) noted that the importance and role o f the conceptual framework within the 

model development process has had little recognition in the parallel and 

distributed simulation community. Simulation modelling methodologies have 

been investigated for more than four decades. Different authors have presented a 

number o f methodologies over this period. However, almost all o f these were 

focused on sequential simulation and not on distributed simulation (or parallel 

simulation either). Therefore it is desirable to investigate methodologies for 

distributed simulation as this form o f simulation is much more complex than 

traditional sequential simulation. The highly complex nature o f this type o f 

simulation calls for more attention into the distributed simulation model 

development process. Furthermore, less complicated approaches for implementing 

distributed simulation could play a significant role in addressing some o f  the 

previously highlighted issues.

1.3 Objectives of the research

• Present a new methodology for distributed simulation in order to develop large 

scale enterprise simulation models.

• Simplify the implementation process o f distributed enterprise simulation.

• Implement the proposed methodology for distributed simulation using widely 

available, popular, and cost effective tools and technologies.

4



Chapter 1 -  Introduction

1.4 Expected contribution from the research

• A new methodology for distributed enterprise simulation (Chapter 3).

• A process for determining an appropriate simulation strategy (Chapter 4).

• A simplified approach for partitioning enterprise models (Chapter 5).

• An approximate synchronization mechanism for enterprise simulation 

(Chapter 6).

• An approach to implementation o f enterprise simulation models using cost 

effective, widely used and popular simulation software, middleware and 

programming language (Chapter 7).

It should be noted that in this thesis the term parallel and distributed simulation 

will be used instead o f distributed simulation as most o f the concepts discussed 

are also relevant to parallel and distributed simulation.

Since different topics are covered in different chapters o f the thesis, it was decided 

not to include a separate literature review chapter. Instead, the background 

literature relating to different chapters was included within the individual chapters 

in order to enhance the logical organization of materials presented in the thesis.

1.5 Structure of the thesis 

Chapter 1 -  Introduction

Provides a rationale for the research carried out, objectives o f the research and 

contributions made by research.

Chapter 2 -  Parallel and distributed simulation

Presents an introduction to parallel and distributed simulation, distributed 

simulation, enterprise simulation, and limitations o f  parallel and distributed 

simulation. Discrete event simulation which is the foundation o f distributed 

simulation is also discussed in chapter 2. In addition, it also discusses sequential 

simulation and limitations o f sequential simulation briefly.

5



Chapter 1 -  Introduction

Chapter 3 -  The new proposed methodology for distributed enterprise 

simulation

The research carried out for the thesis revolved around the methodology for 

distributed enterprise simulation. This chapter explains how the proposed 

methodology developed by combining activities required for sequential simulation 

with additional activities required for distributed simulation. It presents the 

literature relating to sequential simulation methodologies, and additional activities 

needed for distributed simulation before presenting the new methodology. Then it 

briefly describes stages o f the proposed methodology. Subsequent chapters 

elaborate the key stages o f the proposed methodology.

Chapter 4 -  The simulation strategy selection (SimSS) process

This chapter provides the user with the SimSS process for determining the most 

appropriate simulation strategy out o f parallel simulation, sequential simulation 

and distributed simulation. The analytical hierarchy process (AHP) based SimSS 

process concludes that there is no one best simulation strategy for all situations 

and the appropriate simulation strategy depends on the situation. Before 

presenting the SimSS process, the chapter presents literature on the AHP.

Chapter 5 -  Conceptual modelling, model partitioning and mapping for 

distributed enterprise simulations

This chapter briefly discusses literature on modelling methodologies, modelling 

tools, partitioning and mapping approaches. A simplified approach is proposed for 

development o f the conceptual model for enterprises, partitioning the conceptual 

model and mapping o f the partitioned logical processes.

Chapter 6 -  The proposed synchronization mechanism for distributed 

enterprise simulation

Synchronisation is one o f the most important issues to be addressed when 

developing distributed simulations. The literature relating to synchronisation is 

presented before proposing an approximate synchronisation approach for 

distributed simulation. In addition, the literature on networking issues is also 

discussed briefly in his chapter as distributed enterprise simulation relies on 

networking infrastructure.

6
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Chapter 7 -  Construction of the distributed enterprise simulation model

This chapter describes the approach employed to implement the enterprise 

simulation using widely available, popular and cost effective technologies and 

tools. Microsoft Message Queue (MSMQ), Arena and Visual Basic for 

Applications (VBA) were used as the message passing middleware to connect 

simulation models, simulation software to build simulation models and VBA to 

write an interface between MSMQ and Arena respectively. A hypothetical case 

study is presented to illustrate the implementation process. The chapter also 

provides a brief discussion o f middleware, which is used to communicate between 

distributed simulation models.

Chapter 8 -  Discussion, conclusion and recommendations for further work

The chapter discusses the proposed approaches presented in previous chapters 

including benefits and shortcomings. Suggestions are also made for improving the 

work carried out and further work that can be carried out is also included in this 

chapter.

Summary

This chapter has provided an introduction to the thesis. As noted in the rationale, 

the research is focused on distributed enterprise simulation methodology, which 

provides an architecture for the development o f enterprise simulation models. The 

next chapter briefly describes discrete event simulation since distributed 

simulation is based on the fundamentals o f the former and also provides an 

introduction to parallel and distributed simulation.

7



Chapter 2

Parallel and distributed simulation

This chapter presents an introduction to the general concepts o f simulation and to 

parallel and distributed simulation. Although the research focused on distributed 

simulation and in particular distributed enterprise simulation, most o f the issues 

involved are also common to parallel simulation. One notable exception is the 

location where partitioned model components reside. The literature also uses the 

term ‘parallel and distributed simulation’ to refer to distributed simulation. The 

chapter includes basic concepts in simulation, introductions to sequential 

simulation, parallel and distributed simulation, distributed simulation, and 

enterprise simulation which is an application o f distributed simulation. A brief 

discussion o f limitations o f parallel and distributed simulation which provided a 

motivation for this research is also presented in this chapter.

8
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2 .1  Introduction

Since the beginning o f civilization, people have tried to understand the principles 

and systems o f the environment. An essential tool to this endeavour has been the 

development o f models. In order to model a system, it is necessary to understand 

the concept o f a system and the system constraints. A system is defined as a group 

o f objects that are joined together in some interactions or interdependence toward 

an accomplishment o f some purpose. A system is often affected by changes 

occurring outside o f  the system. Such changes are said to occur in the system 

environment. Depending on the purpose o f the study, it has to be decided on the 

boundary between the modelled system and its environment.

A model is a representation o f the construction and working o f some systems o f 

interest, and is similar to but simpler than the system it represents (Maria, 1997). 

A model should be a close approximation to the real system and incorporate most 

o f its salient features. However, it should not be so complex that it is impossible to 

understand and experiment with it.

A model:

• Acts as a communication vehicle, making available a description o f  the 

behaviour o f a system.

• Enables users to gain insight and understanding regarding the behaviour o f  a 

system.

• Provides means for the analysis and the evaluation o f the system as well as the 

prediction o f its future behaviour.

Simulation is defined as an imitation o f the operation o f a real-world or imaginary 

process or system over time (Banks, 2000). According to Shannon (1998) 

simulation is the process o f designing a model o f a real system and conducting 

experiments with this model for the purpose o f understanding the behaviour o f  the 

system and/or evaluating various strategies for the operation o f the system. The 

process o f executing a model on a computer system in order to derive answers to 

questions regarding the operations o f modelled systems is referred to as computer 

simulation. A model adapted for simulation on a computer is known as computer

9
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simulation model or simply as a simulation model. The complexity o f organized 

enterprises has enhanced the attractiveness o f computer simulation as a problem 

solving and design tool, and many contemporary systems could only be 

understood and manipulated using computer modelling and simulation techniques. 

Shannon (1998) also mentioned that it is one o f the most powerful tools available 

to decision makers responsible for the design and operation o f complex processes 

and systems. Law and Kelton (1991) noted that as a technique, simulation is one 

o f the most widely used in Operations Research and Management Science.

Simulation has a long history and has been used since around 3000 BC, when the 

Chinese war games Wei-Hei were developed. The history o f computer based 

simulation dates back to 1950s (Pidd, 1994) and many fields now rely on 

extensive use o f simulation to test new ideas and options. The gaming industry is 

exploding with virtual reality and interactive simulations based futuristic games. 

Interactive simulators have been used for pilot training for years and are 

increasingly being used for training on advanced equipment. A wide range o f 

simulation applications is available to users in the manufacturing industry. The 

field o f simulation will continue to grow and the technology will move from the 

domain of more expensive and complex industrial, defence and gaming systems to 

many aspects o f our lives (Jain, 1999). Furthermore, recent technological 

advances have enabled simulation to be utilized in contexts barely conceivable 

only a few years ago. Simulation models are now executed not only as 

conventional ‘sequential simulation’, but also executed on distributed networks 

and multiprocessors.

The objective o f this chapter is to present an introduction to parallel and 

distributed simulation, and the foundations o f it. The next section describes basic 

concepts in simulation. Discrete event simulation, on which parallel and 

distributed simulation is based, is discussed in section 1.3. Section 1.4 presents 

sequential simulation, limitations o f sequential simulation and alternatives to 

sequential simulation. An introduction to parallel and distributed simulation is 

provided in section 1.5. The next section describes distributed simulation, and 

enterprise simulation which is an application o f distributed simulation. The last

10



Chapter 2 - Parallel and distributed simulation

section o f the chapter presents a brief discussion o f limitations o f parallel and 

distributed simulation. The chapter ends with a summary.

2.2 Basic concepts in simulation

2.2.1 Terminology for simulation

Entity:

Attributes:

System:

Model:

System state:

Set:

Event:

Resources:

Activity:

Delay:

These descriptions are based on Banks et al. (1996), Carson (1992) and Ingalls 

(2002).

2.2.2 Deterministic and stochastic models

If a simulation model does not contain any probabilistic or random components, it 

is called a deterministic model. In deterministic models, the output is determined

Any object or component that requires explicit representation in 

the model. Entities cause changes in the state o f the simulation. 

Attributes are characteristics o f a given entity which are unique 

to that entity. They are critical to the understanding o f  the 

performance and function o f entities in the simulation.

A collection o f entities that interact together over time to 

accomplish one or more goals.

An abstract representation o f a system, usually containing logical 

and/ or mathematical relationships which describe a system in 

terms o f state, entities and their attributes, sets, events, activities, 

and delays.

A collection o f variables that contains all the information 

necessary to describe the system at any time.

A collection o f (permanently or temporarily) associated entities, 

ordered in some logical fashion.

An instantaneous occurrence that changes the state o f a system, 

a resource is a type o f entity that provides service to other 

entities.

An activity is a definite duration o f time that is explicitly defined 

by the modeller.

A delay is an indefinite duration o f time that is caused by some 

combination o f system conditions.

11
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once the set o f input quantities and relationships in the model have been specified. 

However, events in most o f the real world systems occur randomly. Therefore 

these systems must be modelled as having at least some random input 

components. This type o f simulation model is known as a stochastic simulation 

model.

2.2.3 Continuous and discrete models

If the state of the system does not change but remains stable over time (i.e. the 

system is in an equilibrium state), the system is characterized as a static system. 

Systems with dynamic behaviour (i.e. systems whose state change over time) are 

typically classified either as continuous or discrete systems. In continuous 

systems, state changes occur continuously over time. In discrete systems, state 

changes are assumed to take place only at a set o f discrete instants in time rather 

than continuously. But in reality, very few real world systems are likely to be 

entirely discrete or continuous. However, by selecting a certain scope o f the 

respective simulation task one type usually dominates this subsystem (Korn et al., 

1999).

2.3 Discrete event simulation

Two types o f discrete event simulations emerged that could be distinguished with 

respect to the way simulation time is progressed (Ferscha and Tripathi, 1994). In 

time driven discrete event simulation, simulated time is advanced in time steps o f 

constant units. With this type o f simulation observation o f the simulated dynamic 

system is ‘discretised’ by unitary time intervals. Event driven discrete simulation 

‘discretised’ the observations o f the simulated system at event occurrence instants. 

This type o f simulation is generally referred to as discrete event simulation.

The behaviour o f discrete event dynamic systems can not easily be described by 

partial differential equations. Several mathematical notations and techniques have 

been developed to allow the mathematical modelling o f discrete event systems 

including Markov processes, Petri nets, Queuing theory and Finite state 

mechanics. However, mathematical models are often unable to capture the 

dynamic behaviour and other important aspects o f the system in sufficient detail. 

Moreover, for most real discrete event systems, mathematical models have no

12
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simple and practical, analytical or numerical solutions (Theodoropoulos, 1995). In 

these situations, simulation modelling and analysis may be the most appropriate 

alternative for assessing performance o f such complex systems (Davis, 1999).

Discrete event simulation has several advantages over mathematical modelling 

and prototyping (Carson, 1992; Korn, 1999; Shannon, 1992; Shannon, 1998; 

Thesen and Travis, 1990) including:

• It facilitates the testing and evaluation o f systems where the system does not 

exist. In such cases mathematical modelling is almost impossible, and 

prototyping is expensive and time consuming. It is generally easier, faster and 

cheaper to design, build and implement a simulation model.

• Provides higher degree o f flexibility than prototypes, as it can be easily 

modified. Thus it makes possible for efficient experimentation with new 

situations, providing answers to “w hat-if’ type questions which would 

otherwise be too time consuming and expensive to contemplate. As a result, it 

can reduce both system development time and costs.

• Allows the representation o f the system at any level o f detail sufficient to meet 

the objectives o f the designer by supporting hierarchical design approaches.

• Facilitates the study o f dynamic behaviour o f systems by allowing the 

manipulation o f time. Time could be compressed or expanded thus providing a 

rapid view at long time horizons in the past or future o f the system under 

consideration.

• Enhances designers’ understanding o f the system since the process o f discrete 

event simulation model building requires a detailed description o f the system.

Discrete event simulation is based on following building blocks (Pidd, 1994):

• Individual entities

The behaviour o f the model is composed o f the behaviour o f individual objects 

o f interest, which are usually called entities. The simulation program tracks 

the behaviour of each of these entities through simulated time. The entities 

could be truly individual objects such as machines, people, vehicles or could 

be a group o f such objects (i.e. a crowd, a machine shop, a convoy o f 

vehicles).
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• Discrete events

Each entity’s behaviour is modelled as a sequence o f events, where an event is 

a point o f time at which the entity changes its state. The flow o f simulation 

time in a discrete event simulation is not smooth. As it moves from one event 

time to another, time intervals may be irregular. A simulation event may be 

viewed as modelling an event in the physical system, which causes a state 

transition to take place.

• Stochastic behaviour

The intervals between events are not always predictable.

2.4 Sequential simulation

In sequential simulation, events are simulated in the order o f times at which they 

occur. Typically a sequential discrete event simulation utilizes three main 

elements:

• Global clock

Keep track o f the progress o f the simulation in terms o f logical or simulated 

time.

• State variables

Describe the state o f the simulation at any particular point in simulated time.

• Event list

Contains all events which have been scheduled but have not yet occurred.

Each scheduled event is assigned a timestamp, which indicates the point in 

simulated time at which the event occurs. Simulation o f  an event may change the 

event list by scheduling or cancelling pending events. Simulation is carried out by 

repeatedly removing the next event from the event list, advancing the simulation 

clock to the time at which the next event is scheduled to occur, and simulating the 

next event.

2.4.1. Shortcomings of sequential simulation

Simulation o f  a discrete event system may have a number o f objectives to achieve, 

such as understanding the behaviour o f the system, estimating the average 

performance measures and guiding the selection o f design parameters (Righter
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and Walrand, 1989). However, any simulation tool will be o f limited value if it is 

complicated and difficult to develop and if a simulation takes a very long time to 

complete. Unfortunately, simulations o f large-scale systems are very complicated 

to develop and take a long time to complete thus greatly restricting the number 

and scale o f experiments that can be performed. Although the speed o f sequential 

processors increases every year, the complexity o f the systems also increases 

every year. Many o f today’s simulation models place severe demands on the 

computational resources required (Turner, 1998). Kim et al. (1997) and Fujimoto 

(1998) noted that simulation o f large, complex systems remains a major stumbling 

block due to its prohibitive computational costs. Complex simulations are slow to 

develop and slow to run (Carothers, 1999; Righter and Walrand, 1989). The 

following points summarize problems associated with traditional sequential 

simulation.

• Complexity o f systems

As mentioned above, simulation models o f complex systems are also complex. 

One solution for complex systems is to model the system at a higher level o f 

abstraction in order to reduce details. Most o f the time this is not considered a 

satisfactory approach as it does not allow the user to incorporate the required 

details and may end up with an over-simplified version o f the system to be 

investigated. Complex sequential simulation models are difficult to develop 

and most o f the times are unacceptably slow when executing.

• Computational resources

Generally, complex sequential simulations are slow to run due to their 

requirements for more resources in terms o f more processing power, more 

memory, and more disk space. I f  the sequential simulation is executed in a 

single computer, resources available for the simulation are restricted to the 

resources available in a single machine. However, for a complex simulation 

model resources available in a single computer may not be adequate and an 

obvious means o f obtaining a faster simulation is to dedicate more resources to 

it.

• Parallelism

Since most simulations are o f systems which consist o f many components 

operating in parallel, it could be reasonably assumed o f that the inherent
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parallelism in the system could be exploited, thus improving the efficiency o f 

the simulation. However, sequential simulation models could not exploit this 

inherent parallelism as they execute events one after another.

Pham et al. (1998) pointed out that the systems we desire to simulate today are so 

complex that the tasks o f executing these simulation models are often beyond the 

capability o f  sequential simulators and in many cases sequential simulation has 

now reached its limits.

2.4.2. Alternatives to sequential simulation

Although the sequential approach to discrete event simulation is based on a very 

efficient algorithm, it has been unable to provide a satisfactory means of 

simulating large and complex systems (Calinescu, 1996). In order to overcome 

this limitation, parallel approaches to discrete event simulation have been 

considered since the early 1980’s by decomposing a simulation for processing on 

multiple processors. Some o f these approaches that were cited in the literature are 

outlined below (Calinescu, 1996; Hamilton et al., 1997; Koh et al., 1996; Lin, 

1993; Righter and Walrand, 1989; Vee and Hsu, 1999).

• Parallelizing compilers

In this approach, Parallelizing compilers are used to exploit the parallelism 

available in a given sequential simulation program. It requires no changes in 

the code for sequential simulation, and thus is readily applicable to many 

existing sequential simulation programs. However, since the compiler 

completely ignores the structure o f the problem, the parallelism exploited is 

quite limited. The program may have to be rewritten to exploit more 

parallelism o f the underlying problem.

• Replicated trials (Parallel Independent replicated Simulation -  PIRS)

Under this approach, a number o f sequential simulations is run independently 

on the same number o f processors, and their results are averaged in the end. 

Since no coordination is required among the trials, high efficiency could be 

expected. However, the parameters o f all simulation runs must be decided 

before any run takes place and this does not encourage interactive decision 

making. In addition, the computational resources available in computers may
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impose a severe restriction on the size and complexity o f simulations that 

could be executed this way.

• Distributed functions

With this approach, the essential subtasks o f  a simulation are assigned to a 

number o f processors. The subtasks may include random number generation, 

event set processing, file manipulation, statistics collection etc. This approach 

requires minimum changes in the code for sequential simulation. However, 

since the number o f such subtasks is limited, not much parallelism could be 

exploited. Furthermore, the workload among the processors is also difficult to 

balance.

• Distributed events (with central event list)

Under this approach, a processor which becomes available continues to 

process the event with the earliest timestamp in a global event list. The global 

event list may be maintained either in a distributed manner or by a particular 

processor. To avoid errors o f timing, each processor has to ensure that the 

event with earliest timestamp in the list will not be cancelled by some events 

currently processed by other processors. It also has to ensure that processing 

this event with other events currently being processed by other processors is 

consistant with the semantics o f the system being simulated. This requires 

knowledge o f the simulation model, which may not be extracted easily. The 

global event list can become a bottleneck if many processors are involved in 

the simulation.

• Distributed model components

In this approach, the simulation model is decomposed into loosely coupled 

components and is assigned the simulation o f each component to a process, 

where one or few processes could be run in a single processor. This 

decomposition approach is attractive because it is applicable to any model and 

shows the greatest potential in offering scalable performance for large models, 

and also for its ability to exploit the inherent parallelism o f the simulation 

model. Since a number of processes runs in parallel, it is required to 

synchronize the simulation in order to make sure that the simulation 

progresses correctly.
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Among these approaches the distributed model component approach shows the 

greatest potential and is considered the most promising approach for performing 

discrete event simulation in parallel (Hamilton et al., 1997; Righter and Walrand, 

1989). Since the event list is also decomposed into individual ones, the event list 

would not become a bottleneck as in the distributed events approach and a higher 

degree o f parallelism is expected since this approach encourages concurrent 

processing o f events with different timestamps (Vee and Hsu, 1999). This 

approach is generally known as parallel and distributed simulation.

2.5 Parallel and distributed simulation

The field o f computer simulation is still growing. As technology develops, old 

forms o f simulations are made faster, and new branches o f simulation emerge. 

This involves taking existing simulation concepts and blending these concepts 

with those outside o f the simulation discipline (Fishwick, 1994). Parallel and 

distributed simulation combines parallel and distributed computing technologies 

from computer science with simulation concepts. Pasquini and Rego (1998) 

pointed that it offers great promise for meeting the simulation needs o f developers 

o f increasingly complex systems.

The idea o f parallel and distributed simulation was first proposed by K.M. Chandy 

and R.E. Bryant independently. Papers presented by Chandy and Misra in 1979 

and Bryant in 1977 contained basic ideas o f parallel simulation, the problem o f 

deadlock and schemes for deadlock resolution, detection and recovery 

(Overeinder et al., 1991). Jefferson (1985) proposed an alternative scheme for 

parallel and distributed simulation.

In this thesis the terms parallel simulation and distributed simulation are defined 

as follows: Parallel discrete event simulation (simply parallel simulation) is 

concerned with the execution o f simulation programs on multiprocessor 

computing platforms. Distributed simulation is concerned with the execution o f 

simulation on geographically distributed computers interconnected via a Local 

Area network (LAN) and/or Wide Area Network (WAN) (Fujimoto, 2001). 

Generally, the term parallel and distributed simulation is used to refer to either or 

both o f parallel simulation and distributed simulations.
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Parallel and distributed simulation offers a radically different approach to 

simulation. In parallel and distributed simulation the system under investigation is 

partitioned into a number o f sub systems. I f  the system under investigation is a 

physical system, then the system being simulated is known as the physical system 

and is considered as a collection o f physical processes. In parallel and distributed 

simulation, physical processes are represented by logical processes (LPs). Hence 

parallel and distributed simulation could be viewed as a collection o f LPs that 

communicate with each other by passing o f timestamped messages. When 

compared to sequential simulation, it is more complex and requires more expertise 

of modellers and programmers. Furthermore, a global clock and a global event list 

do not exist in a parallel or distributed simulation system. However, individual 

LPs can be considered as sequential simulations with local state variables, a 

virtual clock and an event list (Mehl, and Hammes, 1993). Bagrodia (1996) also 

viewed parallel and distributed simulation as a collection o f sequential discrete- 

event simulation models, which communicate with each other using timestamped 

messages. Since LPs are executed in parallel, their simulation time may advance 

asynchronously. Thus, a LP may not always receive messages with increasing 

timestamps. However, in order to simulate a physical system correctly, each LP 

has to process its incoming messages in its global timestamped order (Cai and 

Teo, 1999). A synchronized simulation system makes sure that each LP is 

processing arriving messages in their timestamped order and not in their real time 

arriving order. This requirement is referred to as the local causality constraint 

(Fujimoto, 1999). Synchronization mechanisms should allow parallel and 

distributed simulation to extract maximum possible parallelism and minimize the 

associated overheads (Sanchez et al., 1996). As synchronization is one o f  the main 

issues in parallel and distributed simulation, a more detailed discussion o f 

synchronization will be presented in chapter 6.

Parallel and distributed simulation has attracted a considerable amount o f interest 

in recent years due to large and complex simulations in engineering, computer 

science, economics, and military applications that consume enormous amounts of 

time on sequential machines. Lin (2000) noted that since (sequential) simulation is 

time consuming, it is natural for attempting to use multiple processors to speedup 

the simulation process. Furthermore, it offers means o f exploiting inherent
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parallelism in real world systems. Dado et al. (1993) also noted that the need for 

performance, natural concurrency and impact on parallel computation has caused 

a growing interest in (parallel or) distributed execution o f single discrete event 

simulation. Another potential benefit o f utilizing multiple processors is increased 

tolerance to failures. If  one processor fails, it may be possible for other processors 

to continue the simulation provided that critical elements do not reside on the 

failed processor (Fujimoto, 1999). Moreover, many researchers agree that a 

parallel or distributed model is more realistic and natural for many real world 

applications (Bass, 1999). Davis (1999) mentioned distributed simulation as one 

area that should provide significant opportunity for further development and 

application into this millennium. Pidd et al. (1999) predicted that in the future 

distributed simulation can be evolved into component-based simulation on the 

web.

As noted earlier, distributed simulations are implemented on workstations 

connected through a LAN or wide area network WAN. However, LAN based 

machines have greater communication latencies, although this is gradually being 

decreased with new networking technologies. WAN based machines experience 

the highest communication latencies. Communication latency is important, since it 

is one factor that dictates the efficiency o f the simulation system. LAN and WAN 

based systems often contain computers from different manufacturers. On the other 

hand, multiprocessor systems are relatively expensive when compared to LAN or 

WAN based systems. Hence, the use o f  networked workstations interconnected 

through LAN/ WAN has been evolving into a popular and effective platform for 

concurrent execution o f simulation models.

2.6 Distributed simulation

Although, parallel computers are much more widely available than was the case a 

decade ago, they are far from universal and, their use is not straightforward and 

may require yet more specialist knowledge (Cassel an'd Pidd, 2001). The 

proliferation o f inexpensive and powerful workstations has continued at a rapid 

rate in the last few years. In recent years the use o f networked workstations for 

distributed applications is gaining popularity (Ikonen and Porras, 1998). The cost 

o f this method can be kept down, as most o f the equipment is already available.
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The low cost o f equipment and incremental scalability are the other main 

advantages o f using a distributed system. Generally, most o f the time workstations 

are used for small tasks or they are idle and these idle cycles could be utilized to 

run parallel application on networks o f workstations. The network o f workstations 

can be considered as a parallel computer, or ‘hypercomputer’, whose performance 

is similar to that of a parallel machine but is achieved at much lower cost (Cabillic 

and Puaut 1997). Furthermore, network computing environments retain their 

ability to serve as a general purpose computing platform and run commercially 

available software products. Fujimoto (1999) presented several reasons that 

encourage distributing the execution o f simulation across multiple computers.

• Reduced execution time

Execution time could be reduced by subdividing a large simulation into many 

sub-models that can execute concurrently. This is possible due to availability 

o f more computational resources and exploitation o f parallelism inherent to 

most o f the real world systems. However, it must be noted that parallel 

simulation reduces execution time further with its low communication 

latencies.

• Geographic distribution

Executing the simulation program on a set o f geographically distributed 

computers enables creation o f a virtual single simulation program o f which 

components are distributed across different physical sites. Allowing the user to 

keep sub-models o f the simulation where they belong may alleviate security 

concerns about leaking o f sensitive information and simplify the sub-model 

maintenance process.

• Ability to connect computers from different manufacturers.

Unlike in parallel computers which use processors from the same 

manufacturer, distributed simulation allows connecting o f different computers 

from different manufacturers. This also helps to keep costs at lower level.

Panda and Ni (1997) noted that since LAN technology was not initially developed 

for parallel processing the communication overheads among workstations are still 

quite high. Low communication speeds, shortage o f network bandwidth and the 

ever increasing demand for network resources may result in slowing down the
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execution speed o f the distributed simulation model. Although the networked 

workstations will be slower than dedicated machines, they may be fast enough and 

may require much less specialist expertise to put them to use, at a fraction o f a 

cost o f the price needed for a dedicated parallel processing computer (Cassel and 

Pidd, 2001). Thus, investigating the use o f distributed simulation using standard 

networking technologies seems to make much sense.

The research was focused on enterprise simulation. However, as noted in the 

previous chapter enterprise simulation model becomes a distributed simulation 

model when simulation models o f two or more enterprises are linked together and 

executed in distributed environment.

2.7 Enterprise simulation

Historically, discrete-event simulation has been view as a standalone project based 

technology. However, as technology advances at rapid pace, it is envisioned that 

the next wave o f simulation applications may bring simulation to a higher level o f 

applicability in the business application arena. Mastaglio (1999) highlighted 

simulating business enterprises as the next major application approach to use 

simulation technology effectively. Enterprise simulation which is considered as an 

important application o f distributed simulation does so by promising to extend the 

benefits o f simulation modelling and analysis as it is performed today. Moreover, 

advances in distributed simulation concepts and networking technology can 

provide much needed push to enterprise simulation by serving as enablers. The 

success o f enterprise simulation in simulating war games back in 1990 proved its 

role in analyzing the behaviour o f complex systems, which by definition are 

comprised o f a number o f independent systems.

Although the term enterprise simulation or something similar is being used with 

ever-increasing frequency, the field lacks a clear definition and discussion o f the 

theoretical basis for what is meant by the term. Enterprise simulation can be 

viewed as a simulation, which is constructed with a top-down perspective and is 

intended to provide an overall conceptual view o f the workings o f the enterprise 

(Mastaglio, 1999; Meilke, 1999). It provides decision-makers a virtual 

environment in which they can quickly, economically, and safely test and improve
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their understanding and expertise about the environment. For this purpose, 

different functions in an enterprise should be identified, modelled and integrated 

together to run as a single simulation system with distributed simulation 

technologies. Datar (2000) noted that an enterprise simulation model becomes a 

distributed simulation model when there are two or more simulation models o f  the 

enterprise in the network. If  the enterprise consists o f more than one organization, 

the use o f geographically distributed enterprise simulation allows each partner to 

hide any proprietary information in the implementation o f the individual 

simulation. Furthermore, it also allows simulation o f multiple systems at different 

degrees o f abstraction level, to link simulation models built using different 

simulation software, to take advantage o f additional computing power, 

simultaneous access to executing simulation models for users in different 

locations, to reuse of existing simulation modes with little modifications etc. (Gan 

et. al., 2000; McLean and Riddick, 2000; Taylor et. al., 2001; Venkateswaran et. 

al., 2001).

2.8 Limitations of parallel and distributed simulation

Parallel and distributed simulation research began more than 20 years ago as a 

means o f speeding up the execution o f discrete event simulation by distributing 

simulation workload across a number o f processors. It offers a great promise for 

meeting the simulation needs o f developers o f  increasingly complex systems 

(Pasquini and Rego, 1998). However, the widespread interest in parallel and 

distributed simulation in the research community did not bring about the 

widespread deployment o f it in real world applications (Fujimoto, 1993). Bagrodia 

(1996) complained that the design o f efficient parallel discrete event simulation 

models often appears to be a mysterious art practiced primarily by academic 

researchers who have been rigorously ordained in this task. Presumably more than 

1500 research papers have appeared (since the pioneering work by Chandy and 

Misra, and Jefferson) which have significantly contributed in the scientific sense, 

but nevertheless failed to bring the field to an industrial and/or commercial 

success (Ferscha et al., 2001). Ikonen and Porras (1998) noted that distributed 

simulation is generally not considered as an option when companies are deciding 

about their simulation methods. Execution o f a discrete event program on a 

parallel computer is no trivial task. Even though the system being simulated often
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contains much intrinsic parallelism, translating this into concurrent execution o f 

the simulator has proven to be challenging (Fujimoto, 1993). Pancake (1996) also 

noted that, although parallelism is an intuitive and appealing concept, in practice 

parallelism carries a high price tag. Parallel programming involves a steep 

learning curve and is also effort intensive.

Following are some o f the reasons cited in the literature which contributed to lack 

o f success o f parallel and distributed simulation commercially (Bagrodia, 1996; 

Ferscha et al., 2001; Fujimoto, 1993).

• The confluence of the parallel and distributed simulation strategy, the 

execution platform and the simulation model on performance is not properly 

understood.

• The interweaving o f  simulation model, platform and strategy attributes and 

their impact on overall simulation performance is overwhelmingly complex.

• The preference among optimistic and conservative synchronization protocols, 

given simulation model and platform attributes, is neither conclusive nor can 

protocol optimizations establish a general rule o f superiority.

• The potential performance gain which can be achieved through the use o f 

shared memory multiprocessors, distributed memory multiprocessors or 

network o f workstations is not conclusive. Neither fast processors (on their 

own) nor fast communication (on its own) can guarantee performance gain.

• The relation o f development cost, performance gain and utility o f  parallel and 

distributed simulation is not well understood. Moreover, the utility aspect has 

almost always been excluded from parallel and distributed simulation research 

work.

• Simulation codes must be developed by computer programmers whose 

expertise lies in parallel and/or distributed computing and not in simulation 

modelling, while the simulation model must be developed by simulation 

practitioners whose expertise lies in simulation modelling and not in computer 

programming. Although this is common to any form o f simulation, distributed 

simulations are especially affected due to the fact that more expertise is 

required to implement a distributed simulation
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• The focus o f much parallel and distributed simulation research remains on the 

design o f a parallel simulation model rather than on the design o f a discrete 

event simulation model for which parallelization can be explored as one 

execution option.

Parallel arid distributed simulation represents a trade-off to the user: the carrot is 

reduced execution time, but the stick is the effort required to modify, or perhaps 

even rewrite, the simulation program to effectively exploit concurrency, not to 

mention the time required to obtain the necessary expertise to accomplish this task 

(Fujimoto, 1999). Many users avoid parallel and distributed simulation because it 

is difficult to specify a large and complicated model using existing tools available 

in this type o f simulation. Very few attempts have been made by commercial 

companies to experiment with parallel and distributed simulation, not to mention 

deploying simulations in the companies (Low et al., 1999). Furthermore, existing 

literature on parallel and distributed simulation is justifiably viewed from the 

outside as having little relevance to industrial simulation (Nicol and Heidelberger, 

1995).

Summary

This chapter provided a description on the basic concepts o f simulation and, 

parallel and distributed simulation. It also discussed limitations o f  sequential 

simulation and presented alternatives to sequential simulation. An introduction to 

parallel and distributed simulation, distributed simulation, enterprise simulation 

and limitations and problems associated with parallel and distributed simulation 

are also included in the chapter. Key issues involved with parallel and distributed 

simulation such as synchronization, model partitioning, and networking aspects 

are presented elsewhere in the thesis in detail. Some o f the problems associated 

with distributed simulation that are mentioned in the last part o f this chapter 

provided a motivation to develop the proposed new methodology for distributed 

enterprise simulation, which will be presented in the next chapter.
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The proposed methodology for distributed 

enterprise simulation

Parallel and distributed simulation provides an attractive 

alternative to sequential simulation when simulating large, 

complex or geographically distributed systems. However, it 

was highlighted in the previous chapter that distributed 

simulation is still not widely used apart from military 

applications. Absence o f a proper methodology to develop 

distributed simulation, complexity o f  it, requirements o f 

more expertise etc. were cited in the literature as reasons 

for lack o f popularity among the general simulation 

community. This chapter proposes a new methodology for 

distributed enterprise simulation by incorporating 

additional activities needed for distributed simulation into 

activities required to carry out a sequential simulation. As 

noted in a previous chapter, an enterprise simulation 

becomes a distributed simulation when more than one 

enterprise simulation models are executed in a distributed 

manner. Therefore the methodology for distributed 

enterprise simulation also can be viewed as a methodology 

for distributed simulation.
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3.1 Introduction

Simulation methodology focuses on the question o f how a simulation model 

should be constructed. Balci (1990) noted that the key to success in a simulation 

study is to follow a comprehensive life cycle which contains key activities to be 

carried out in an organized and well managed manner. Ever-increasing complexity 

o f systems being simulated can only be managed by following a structured 

approach to conduct the simulation study. Simulation modelling methodologies or 

simulation life cycles have been investigated for more than four decades. Different 

authors have presented a number o f methodologies over this period. However, 

almost all o f these were focused on sequential simulation and not on parallel and 

distributed simulation. Sawhney (2000) pointed out that current simulation 

modelling methodologies are not geared towards these types o f complex systems. 

Furthermore Karacal (1998) mentioned that modelling and simulation still lacks 

sound theoretical and methodological foundations. Therefore, the development o f 

efficient discrete event simulation methodologies remains an important area o f 

investigation. Analysis show that the literature on distributed simulation 

(including parallel simulation) concentrated on a few critical issues such as 

synchronization, partitioning, mapping etc. However, it fails to mention how 

systems under investigation are decomposed into logical processes, how 

distributed systems are verified and validated, the importance o f conceptual 

modelling etc. Absence o f formal simulation model building methodologies may 

have partly contributed to parallel and distributed simulation’s failure to gain a 

significant acceptance from the general simulation community. The task o f 

developing a distributed simulation is especially complex as models are generally 

larger and more complicated than traditional sequential simulation models, the 

system under investigation needs to be decomposed into several models, 

distributed simulation models require to be synchronized, and output can be 

generated from more than one model o f the system. Therefore it is desirable to 

have a formal modelling methodology which guides users through the different 

stages required to implement a distributed simulation system in order to simplify 

and streamline the system development process. The proposed methodology for 

distributed enterprise simulation was developed by identifying additional activities 

required for distributed simulation and incorporating them into the key activities 

required to develop a sequential simulation (figure 3.1)
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Key activities of a 
sequential simulation o
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Additional activities 

for a distributed 
simulation

Methodology for 
distributed enterprise 
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Figure 3.1 -  Approach employed to develop the proposed methodology

The objective o f  this chapter is to present a new methodology for distributed 

enterprise simulation. The next section presents the literature on sequential 

simulation methodologies. Additional activities required for distributed simulation 

are discussed in section 3.3. The proposed new methodology for distributed 

enterprise simulation is presented in section 3.4. The last section briefly describes 

the stages o f the proposed methodology. The chapter ends with a summary.

3.2 Sequential simulation methodologies

Methodologies for conducting a simulation have been proposed by a number o f 

authors since early days o f the technology. Whilst they do not always share the 

same terminology, analysis suggests that key activities are common to all. In order 

to identify the key activities required to conduct a successful simulation, a few 

well recognized methodologies were selected and analysed.

3.2.1 Methodology proposed by Robinson (1994)

Robinson (1994) presented a simple methodology which consists o f  4 main phases 

(figure 3.2). Both forward and backward arrows on sides have been used to 

illustrate the iterative nature o f the simulation project.

Model building and testing

Project completion

Problem definition

Experimentation

Figure 3.2 -  Methodology proposed by Robinson (1994)
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The four main phases o f the methodology consist o f a number o f sub activities

Problem identification & setting o f objectives 

Definition o f experimental factors and reports 

Determination o f the scope and level o f the model 

Collection and analysis o f data 

Providing project specifications 

Model building and testing Structuring o f the model

Model building and verification 

Model validation 

Experimentation Performing experiments

Analysis o f results and conclusions 

Project completion Communication o f results

Completing the documentation 

Reviewing the project 

Further work

3.2.2 Key activities of Shannon (1998)

Shannon (1998) listed followings as activities required to complete a simulation 

successfully.

Problem definition 

Project planning 

System definition 

Conceptual model formulation 

Preliminary experimental design 

Input data preparation 

Model translation 

Verification and validation 

Final experimental design 

Experimentation 

Analysis and interpretation 

Implementation

including,

Problem definition
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3.2.3 Methodology proposed by Balci (1990)

Balci (1990) proposed a 10-phase methodology, which he called the life cycle o f a 

simulation study (figure 3.3).

Communicated
Problem

Problem
Formulation

Form ulation Problem 
Verification

Formulated
ProblemDecision Makers

Investigation o f  
Solution Techniques

Feasibility Assessment o f  
Simulation

Acceptability o f  
Simulation Results Proposed Solution 

technique

Integrated Decision 
Support

System Objectives 
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System
Investigation

System and Objectives 
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Qualification
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Conceptual Model
Redefinition

Comm unicative 
M odel V  & V

M odel Representation

M odel
Validation

Data
Validation Communicative Model(s)Simulation Results

Programmed 
Model V & V < Program m ing

Experimentation
Programmed Model

Experim ent Design 
Verification /

Design o f  Experiments
Experimental Model

Figure 3.3 -  Methodology proposed by Balci (1990)

A key feature o f this approach is that most of the activities are centred on 

verification and validation. In addition to activities involved in the simulation 

project, Balci (1990) also included the outcome o f each activity in the 

methodology. Key activities o f the methodology are shown below.

Problem formulation

Investigation o f alternative solution techniques 

System investigation 

Model formulation 

Model representation
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Programming 

Design o f experiments 

Experimentation 

Redefinition (of model)

Verification and Validation are applied to all phases

3.2.4 Methodology proposed by Law and Kelton (1991)

A 10 step simulation methodology proposed by Law and Kelton (1991) is shown 

in figure 3.4.

Formulate prob 
stu

iem and plan the 
dy
* ----------------

Collect data & define model

Construct computer program and 
verify

Making pilot runs

Design experimentsT
 Make production runs j

Analyze output data

I
Document, present and implement 

the resultd

Figure 3.4 -  Methodology proposed by Law and Kelton (1991)

Key activities o f this methodology include:

Problem formulation and planning o f the simulation study 

Data collection and definition o f the conceptual model 

Validation o f conceptual model

Construction and verification o f computer simulation program
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Making pilot runs 

Validation

Design o f experiments 

Making production runs 

Analyzing output data

Documentation, presentation and implementation o f the results

3.2.5 Methodology proposed by Banks et al. (2000)

Verified ?

Validated ?

Production runs and analysis

More runs ?

M odel building Data collection

Coding

Experimental design

Problem definition

Documentation & report results

Implementation

Setting o f  objectives and overall 
project plan

Figure 3.5 -  Methodology proposed by Banks et al. (2000)
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Methodology proposed by Banks et al. (2000) consists o f following steps.

Problem formulation

Setting o f objectives and overall project plan

Data collection

Model building

Coding

Verification

Validation

Experimental design

Production runs and analysis

Need for more runs?

Documentation and reporting o f results 

Implementation

In addition, a number o f  authors including Lilegdon (1996), Maria (1997), 

Nordgren (1995), Sadoun (2000), Sargent (1994) also presented activities required 

for successful sequential simulation.

While some o f the above methodologies are concise with few activities 

(Robinson, 1994), others are lengthy (Bank et al, 2000; Law and Kelton, 1991). 

The latter methodologies elaborate the activities o f the former into a number o f 

activities. Analysis o f simulation methodologies suggests that sequence o f 

activities to be carried out are also not in the same order although the key 

activities required to be carried out are almost the same. A number o f authors 

including Law and Kelton (1991) and Robinson (1994) suggested that data 

collection should be carried out after problem identification and setting o f 

objectives, and before formulation o f the conceptual model. However, Shannon 

(1998) suggested carrying out data collection after completing problem definition, 

project planning, system definition, conceptual model formulation and preliminary 

experimental design. Banks et al. (2000) placed model building and data 

collection at the same level arguing requirements o f data depends on requirements 

o f model building. Some methodologies (Banks et al., 2000; Shannon, 1998) 

proposed conducting verification and validation at latter part o f the methodology 

after construction o f the computer simulation model but before experimentation.
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On the other hand, Law and Kelton (1991) proposed verification and validation to 

be done after completion o f key activities such as formulation o f the conceptual 

model and conversion o f the conceptual model into a computer simulation model. 

Balci (1990) proposed to conduct verification and validation throughout the model 

development process.

Having analyzed above simulation methodologies, the following activities were 

identified as key activities required to conduct a simulation.

• Problem definition and identification o f objectives

• Data collection

• Construction o f conceptual model

• Verification and validation

• Construction o f computer simulation model

• Experimentation

• Output analysis

• Implementation and further work

Problem identification and identification o f objectives was selected as the first 

stage o f the distributed simulation. This stage includes problem definition 

(Robinson, 1994; Shannon, 1998), problem formulation (Balci, 1990; Banks et al., 

2000), project planning, system definition (Shannon, 1998), setting o f  objectives 

(Banks et al., 2000). Data collection was selected as the next activity assuming 

that in order to construct the conceptual model data has to be collected 

beforehand. Preliminary experimental design (Shannon, 1998) is also included 

into this stage as it contains identification o f input data, statistical distributions 

that represent data etc. Construction of the simulation model is presented in all the 

above mentioned sequential simulation methodologies as a separate activity 

except in the methodology presented by Law and Kelton (1991), where data 

collection and defining a conceptual model were incorporated into a single stage. 

However, Balci (1990) presented this stage as two separate stages, namely: model 

formulation and model representation. Verification and validation were proposed 

to be carried out at different levels after completing important stages o f the 

simulation project such as completion o f the conceptual model, partitioning o f  the
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conceptual model into logical processes and transformation o f logical processes 

into computer simulation models. Design o f experiments (Balci, 1990; Law and 

Kelton, 1991), experimental design (Banks et al., 2000), final experimental design 

(Shannon, 1998), experimentation (Balci, 1990; Shannon, 1998), production runs 

(Banks et al., 2000; Law and Kelton, 1991), additional runs (Banks et al., 2000) 

were included in the experimentation stage o f the proposed methodology. Output 

analysis stage includes simulation results (Balci, 1990), analysis o f  output data 

(Law and Kelton, 1991), analysis and interpretation (Shannon, 1998), and results 

analysis (Banks et al., 2000). Implementation and further work consists of project 

completion (Robinson, 1994), redefinition o f the model (Balci, 1990); document, 

present and implement the results (Banks et al., 2000; Law and Kelton, 1990), and 

implementation (Shannon, 1998).

3.3 Additional activities for parallel and distributed simulation

The major difference between sequential simulation and distributed simulation is 

the number o f processors (in workstations) used to execute the simulation. 

Sequential simulation executes as a single model in a single processor. In 

distributed simulation the entire model is partitioned into logical processes and 

executed in more than one workstation in a distributed environment. For the 

purpose o f executing a simulation as a distributed simulation, in addition to the 

key activities mentioned above, the following activities are also required to be 

carried out. These activities were identified by analysing the literature on parallel 

and distributed simulation.

• Partitioning o f the entire model into logical processes

• Deciding on synchronization protocols and networking aspects

• Assigning o f logical processes to different processors

Although distributed simulation has a great potential to improve discrete event 

simulation, it doesn’t provide a simple or standard solution for complex 

simulations. Many authors including Ikonen and Porras (1998) and Pancake 

(1996) complained that distributed simulations (including parallel simulations) are 

effort intensive, complex and costly. Simulationists need to be aware o f  the 

benefits o f distributed simulation as well as its perils and pitfalls before making a
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decision on whether or not to use distributed simulation. Therefore it was decided 

to incorporate an additional activity which guides users to identify an appropriate 

simulation strategy out o f sequential simulation, parallel simulation or distributed 

simulation.

Figure 3.6 shows activities required for a distributed simulation by combining 

above mentioned additional activities into activities required for sequential 

simulation.

Activities required for 
sequential simulation

• Problem definition and •
identification of objectives

• Data collection •
• Construction of conceptual

model •
• Verification and validation
• Construction of computer •

simulation model
• Experimentation
• Output analysis
• Implementation and further work

lilill:;::*,

• Problem definition and identification of objectives
• Determination of appropriate simulation strategy
• Data collection
• Construction of conceptual model
• Verification and validation
• Partitioning of the entire model into logical processes
• Deciding on synchronization protocols and networking aspects
• Assigning of logical processes into different processors
• Construction of computer simulation model
• Experimentation
• Output analysis
• Implementation and further work

Figure 3.6 -  Activities required for a distributed simulation including distributed
enterprise simulation

Additional activities required 
for distributed simulation

Determination of appropriate 
simulation strategy 
Partitioning of the entire model 
into logical processes 
Deciding on synchronization 
protocols and networking aspects 
Assigning of logical processes into 
different processors
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Based on the activities identified in figure 3.6, the new proposed methodology for 

distributed enterprise simulation is presented in the next section.

3.4 The proposed methodology for distributed enterprise simulation

The proposed methodology is shown in figure 3.7 and stages o f the methodology 

are described in the following sections. Key additional activities required for a 

distributed simulation with proposed implementation approaches are presented in 

the next three chapters o f the thesis.

Problem definition & Identification 
o f  objectives

SimSS Process

Sequential
simulation

Parallel and Distributed 
^''-'-^sim ulation

Data collection

Construction o f  conceptual model]

Verification & 
Validation

Partitioning the model into logical 
processes (LPs)

Verification & 
Validation

M apping o f  LPs into processors

Synchronization and N etworking

Program m ing o f  LPs

Verification & 
Validation

Experimentation

O utput analysis

Implementation and further work

Figure 3.7 - The proposed methodology for distributed enterprise simulation
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New approaches are presented for highlighted stages o f the proposed methodology 

(figure 3.7) in order to implement the distributed enterprise simulation in 

simplified and cost effective manner.

3.4.1 Problem definition and identification of objectives

As with any project, without proper understanding o f the problem and a clear set 

o f objectives it is almost impossible for a simulation effort to succeed. This is 

particularly true for distributed simulation (and parallel simulation), since it is 

more complex than conventional sequential simulation. Shannon (1998) noted that 

beginning a simulation project properly may make a critical difference between 

success and failure. Specific questions to be answered by the simulation project, 

systems configurations to be modelled, performance measures used to evaluate 

different system configurations, and the time frame o f the project including cost 

and resources required are to be determined at this stage. In addition, the scope of 

the project and abstraction level o f the model has to be decided too. The scope o f 

the model is vital to success o f the simulation effort as too little detail may result 

in information that may not be accurate enough to achieve the real goal and, a 

model with too much detail requires more effort to create, needs longer run times 

and is more likely to contain errors. Additional resources required for distributed 

simulation such as expertise, computer networks, and special software if required 

also need to be considered at this stage. A number o f authors including Robinson 

(1994) and Sadowski (1991) provided an in-depth discussion of the starting phase 

o f a simulation project. Although these discussions were originally produced for 

sequential simulation, they are also applicable to distributed simulation.

In distributed simulation, more than one model can generate output. In some 

situations part o f the output from a model may need to be restricted to only 

owners o f that model. Therefore it is particularly important to determine which 

models generate output, which part o f the output can be accessed by all the 

interested parties and which part o f the output needs to be restricted.

3.4.2 The Simulation strategy selection (SimSS) process

The second step o f the proposed methodology, the SimSS process helps users to 

determine the most appropriate simulation strategy to be used when executing a
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simulation model. After analyzing advantages and disadvantages o f sequential 

simulation and parallel and distributed simulation, it presents three alternative 

strategies, namely: sequential simulation, distributed simulation and parallel 

simulation. To identify the appropriate simulation strategy, the SimSS process 

employs the analytical hierarchical process (AHP). The SimSS process will be 

presented in detail with illustrations in chapter 4 o f the thesis.

3.4.3 Data collection

At this stage data is to be collected in order to specify model parameters and 

probability distributions. Data is required not only to build the simulation model 

but also to test its validity. Soundness o f the model logic and structure depends 

upon data on which the model is going to be constructed. Amount o f data and 

accuracy o f data required also depend on the experimental requirements o f the 

simulation. Therefore before starting the actual data collection effort, 

experimental design aspects such as measures o f effectiveness to be used in the 

study, what factors going to be varied, how many levels o f  each o f these factors 

will be investigated and the number o f samples need for the study have to be taken 

into account. In addition, consideration should be also given to type o f data 

required, availability o f data, whether data is pertinent and valid, and how to 

collect the data. Moreover, statistical sampling, statistical distributions, random 

number generations are also playing critical role in data collection and preparation 

for a simulation study. More details on input modelling, sampling, data collection 

and statistical distributions are presented by Law and Kelton (1991), Leemis 

(2001), Robinson (1994) and Wilson (1997).

3.4.4 Construction of the conceptual model

The conceptual model that represents the real world or proposed model is a series 

o f mathematical and logical relationships concerning the components and the 

structure o f the system under investigation. A conceptual model is a collection o f  

information that describes a simulation developer’s concept about the simulation 

and its pieces. That information consists o f assumptions, algorithms, 

characteristics, relationships, and data, which describe how the simulation 

developer understands what is to be represented by the simulation (entities, 

actions, tasks, processes, interactions etc.) and how that representation will satisfy
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simulation requirements (Pace 2000). Proper development o f the conceptual 

model is vital as it is the primary mechanism for transforming simulation 

requirements into specifications that can guide the simulation development and 

implementation process. Conceptual modelling is largely software independent 

and particularly important for distributed simulation due to its complicated nature. 

Unfortunately, the literature on distributed simulation has not paid as much 

attention to conceptual modelling as it deserves. An appropriate modelling 

approach and technique must be determined before developing the conceptual 

model. Modelling approaches (such as incremental and hierarchical approaches) 

specify the way models are to be developed. Once the approach is decided then 

the modeller can determine what modelling tools (such as diagrammatic tools, 

Petri nets, and IDEF methodologies) are to be used. Further discussion o f this 

stage along with partitioning o f the conceptual model and mapping o f logical 

processes is presented in chapter 5.

3.4.5 Verification and validation

Verification and validation is an important and well researched area in simulation 

as accuracy and reliability o f outcome o f  the simulation depends on proper 

functioning o f the model as well as validity o f the model and data used. Sargent 

(2000) described verification as ensuring that the computer program o f  the 

computerized model and its implementations are correct. Validation is 

determination that the conceptual model is an accurate representation o f the 

system under investigation. It is often too expensive and time consuming to 

determine that the model is absolutely valid for its purpose. Instead, tests and 

evaluations can be conducted until sufficient confidence is obtained that a model 

can be considered valid for its intended application (Sargent, 2001). Furthermore, 

Carson (2002) noted that validation is not absolute and any model is a 

representation o f the system, and its behaviour is at best an approximation to the 

system’s behaviour.

According to the proposed methodology for distributed enterprise simulation, 

verification and validation are carried out at multiple stages, namely: after 

construction o f  the conceptual model, after partitioning o f the conceptual model 

into logical processes, and after converting logical processes into computer

40



Chapter 3 -  The p roposed  methodology fo r  distributed enterprise simulation

simulation models (figure 3.7). If  errors or omissions are discovered, which is 

almost always the case then the conceptual model or logical processes must be 

modified before proceeding into the next stage. Once logical processes are 

transformed into computer simulation models, individual simulation models are to 

be verified to ensure that they are working without any bugs and validated to 

make sure that they produce intended output. Validation o f sub models may not 

always feasible as they are designed to use parameters from other models as input. 

However, this problem can be overcome by initially designing sub models to 

generate their own input parameters and able to run as independent models, then 

modifying them to receive parameters from other models once they are validated. 

After individual simulation models are verified and validated, the distributed 

simulation model can be validated in conjunction with synchronization 

mechanism (more details are presented in section 7.9.2). Analysis o f the 

simulation literature shows that a number o f authors including Balci (1990 and 

1998), Carson (2002), Law and McComas (2001) and Sargent (2001) presented an 

excellent introduction to verification and validation including verification and 

validation procedures, tools and techniques that can be used for verification and 

validation.

3.4.6 Partitioning and mapping

At this stage, the validated conceptual model is partitioned into several logical 

processes and assigned to processors (of workstations). The first process is 

generally known as partitioning and the latter is known as mapping. The issue o f 

model partitioning and mapping has been paid less attention in the parallel and 

distributed simulation literature compared to the amount o f work devoted to other 

issues such as synchronization (Solcany et al., 1995). The literature on partitioning 

suggests a number o f approaches to partition a programmed simulation model 

(Boukerche and Trooper, 1994; Nandy and Loucks, 1993). Some o f  these 

approaches require execution o f the whole simulation system as a single model 

before partitioning. However, with this new methodology it is proposed to 

partition the conceptual model before transforming into a computer program. The 

proposed approach simplifies the conversion o f logical processes into a computer 

program, and verification and validation o f the system. It also facilitates the 

involvement o f more than one modeller and computer programmer. When
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partitioning, interactions within logical processes and between logical processes 

should be taken into account in order to minimize the inter-processor 

communication, which reduces the load o f the network. Once the system under 

investigation is partitioned into logical processes, they must be validated before 

being mapped into to different processors. More details o f this stage along with 

construction o f the conceptual model is presented in chapter 5.

3.4.7 Synchronization protocols and networking issues

A Synchronized simulation system makes sure that each individual simulation 

model is processed arriving messages in their timestamped order and not in real 

time arriving order. This requirement is referred to as local causality constraint 

(Fujimoto, 1999). To satisfy the local causality constraint, a number of 

synchronization protocols has been proposed. These protocols can be broadly 

classified as conservative or optimistic protocols (Fujimoto, 1990). Conservative 

approaches strictly impose the local causality constraint and guarantee that each 

model will only process events in non-decreasing timestamp order. In contrast, 

optimistic approaches allow violations o f local causality constraint, but are able to 

detect and recover by rolling back to the point where the violation has occurred 

and reprocessing events in timestamped order. Neither conservative nor optimistic 

classes o f synchronization algorithms proved to be strictly better than the other 

(Das, 2000 and Sanchez et al., 1996). The appropriate synchronization protocol 

should be selected based on characteristics o f the model and user requirements. 

(Ferscha et al., 2001; Fujimoto, 1998). In addition, for distributed simulation 

appropriate network topologies and communication protocols should also be 

determined. Chapter 6 presents more details on networking issues and 

synchronization protocols.

3.4.8 Construction of computer simulation model

At this stage validated logical processes are transformed into computer simulation 

models. Although simulation software packages such as Automod, Promodel, 

Arena, Witness are used in sequential simulation, general purpose programming 

languages such as C++, Pascal etc. are often used to develop distributed 

simulation models. This is mainly due to lack o f support offered by simulation 

software packages for special requirements o f distributed simulation such as
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synchronization. However, analysis o f the recent literature (Hibino et al., 2002; 

Lendermann et al., 2001; McLean and Shao, 2001; Taylor et al., 2001; 

Venkateswaran et al., 2001) shows increasing trend o f using commercial 

simulation software along with programming languages and message-passing 

technologies to develop distributed simulation systems. Ability to use commercial 

simulation software packages may also popularize the use o f distributed 

simulation in industrial applications. Chapter 6 discuses the construction o f a 

distributed enterprise simulation model in detail with an illustration using a 

hypothetical case study.

3.4.9 Experimentation

All the work carried out in previous stages will not be fruitful if simulation 

experiments are not carefully planned and designed. Barton (2001) also noted that 

simulation projects could fall short o f their intended goals unless the simulation 

model is exercised intelligently to gain a better understanding o f the likely 

performance o f the system under investigation. Experimentation stage includes 

both designing o f simulation experiments and actual execution o f the simulation 

distributed system. According to Antony (1998) experimental design is a 

systematic and structured approach to experimentation. When designing 

simulation experiments, various issues need to be considered including warm-up 

period, number o f replications and length o f a replication. To improve the 

confidence in the estimate o f system performance obtained through simulation 

experiment, Sherif (1998) suggested that longer runs and more replications need 

to be carried out. Attention should also be paid on starting conditions o f the 

simulation, selection o f samples, sample sizes and ways o f collecting output. 

Barton (2001) presented a five step procedure to carry out simulation experiments. 

Experimental design is also well researched area in simulation and a number o f 

authors including Centeno and Reyes (1998), Kelton (2000), and Wild and 

Pignatiello (1991) presented more details on this area.

In addition, when conducting a distributed simulation starting and stopping o f the 

simulation may needs a careful consideration as more than one simulation model 

have to be started and stopped instead o f a single model in sequential simulation. 

Since the new methodology for distributed simulation proposes to use general
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purpose networked workstations to run distributed simulation models, timing o f 

the simulation experiment may also play an important role. I f  simulation is carried 

out at a time when network traffic is very high, it may affect performance o f the 

simulation as well as overall performance o f the network.

3.4.10 Output analysis

Output analysis is used to estimate measures o f performance for the scenarios that 

are being simulated. The purpose o f analyzing results is to check the extent to 

which the objectives o f the simulation project have been achieved. Various 

techniques such as graphical analysis, tabular forms can be used to organize the 

output from the simulation experiment. If  complex and detailed analysis is 

required, output can be written to a text file or exported to a database or 

spreadsheet package. Since the input processes driving a simulation are usually 

random variables, generally the output generated from the simulation is also in 

random nature. Goldsman and Tokol (2000) noted that raw output data is not 

independent, not identically distributed and also not normally distributed. This 

leads to difficulties o f applying statistical techniques to analyze the simulation 

output. Output analysis techniques depend on whether the simulation is 

terminating or nonterminating. Goldsman and Tokol (2000), Nakayama (2002), 

and Sanchez (2001) presented output analysis techniques in detail.

Unlike in traditional sequential simulation model where output is generated by 

only one model, in a distributed simulation more than one model can generate 

output. Output from individual models can be used to measure performance o f  

different sections o f the enterprise and the aggregated output can be used to 

measure the overall performance o f the enterprise.

3.4.11 Implementation and further work

No simulation study can be considered as successful unless its results have been 

understood, accepted and implemented. The last stage o f the distributed 

simulation methodology includes communication o f results, documentation, 

review o f the project and deciding on further simulation experiments. To 

overcome potential resistance against organizational changes, results o f the 

simulation, and benefits o f implementation should be clearly, concisely and
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convincingly documented ' and presented before implementation starts. 

Furthermore, use o f animation may also help to convince about working o f 

distributed simulation to sceptical audience.

Summary

This chapter presented the proposed new methodology for distributed enterprise 

simulation, and briefly described key stages o f the methodology. Stages which are 

part o f sequential simulation methodologies were described only briefly as these 

are well researched areas. Additional activities required for distributed simulation 

will be presented in subsequent chapters. The next chapter presents the SimSS 

process, which helps users to determine an appropriate simulation strategy out o f 

sequential simulation, parallel simulation and distributed simulation.
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Chapter 4

The Simulation Strategy Selection (SimSS) 

process

The previous chapter presented the proposed methodology 

for distributed enterprise simulation. It was also noted that, 

although (parallel and) distributed simulation provides an 

attractive alternative for sequential simulation, it is more 

complex and requires more effort and cost to implement. 

Therefore, it is desirable to evaluate different simulation 

strategies before making a decision on which simulation 

strategy is to be selected. This chapter presents the 

simulation strategy selection (SimSS) process to determine 

the appropriate simulation strategy out o f parallel 

simulation, distributed simulation and sequential simulation 

(figure 4.1). It also describes the analytic hierarchy process 

(AHP), which was used as the solution method for the 

proposed SimSS process.
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Implementation and further work

Figure 4.1 - The proposed methodology for distributed enterprise simulation
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4.1 Introduction

Distributed simulation (along with parallel simulation) has a great potential to 

improve discrete event simulation. Davis (1999) noted distributed simulation as 

one area that should provide significant opportunity for further development and 

application into this millennium. Research in this area began more than 20 years 

ago as a means o f improving simulation execution time. Yet, it doesn’t provide a 

simple or standard solution for complex simulations. Parallel programming is also 

effort intensive and involves steep learning curves (Pancake, 1996). When 

compared to sequential simulation, parallel and distributed simulation is more 

complex and requires more expertise o f modellers and programmers.

Analysis o f the literature suggests that parallel or distributed simulation is 

employed when speed o f simulation needs to be increased by exploiting the 

inherent parallelism o f the system under investigation, more computational 

resources are required for simulation and/ or simulation needs to be executed in a 

geographically distributed environment etc. However, if the model is required to 

be run in a geographically distributed environment then distributed simulation is 

the only available option for simulation users. Factors that encourage users to 

move into distributed simulation can not be quantified and decisions made are 

often subjective. Generally these decisions depend on the expertise o f  the 

modeller, availability o f  resources including both computational and human, 

enthusiasm o f the management and / or modellers etc. One modeller may decide to 

use distributed simulation for a particular situation while another modeller may 

decide to stick with sequential simulation. Thus, there is a need for a systematic 

approach to select an appropriate simulation strategy by identifying and 

prioritizing relevant criteria, and evaluating the trade-offs between technical, 

economic and performance aspects.

It was noted in the previous paragraph that the decision making process involved 

when selecting distributed simulation (or parallel simulation) is a multi-criterion 

and judgmental one. The role played by each factor varies from one situation to 

another. For an example if the simulation model is relatively small, execution time 

is not critical, and the simulation model can be developed as a single model then 

sequential simulation might be the appropriate strategy. On the other hand, if  the
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model is too complicated to develop as a single model and execution time is 

longer than expected then parallel or distributed simulation might be an 

appropriate alternative. Therefore, it is not feasible to present a definite set o f rules 

to make such decisions. It is further complicated by attributes that are subjective 

and not quantifiable. Multi-criteria decision Making (MCDM) techniques are 

useful in circumstances that necessitate the consideration o f different courses o f 

action, which cannot be evaluated by the measurement o f a simple or single 

dimension.

Many authors including El-Mikawi (1996), Poyhonen and Hamalainen (2001), 

Steuer and Na (2003) and Zanakis et al. (1998) describe a number o f MCDM 

techniques including goal programming, outranking approaches, direct point 

allocation (DIRECT), simple multi-attribute rating technique (SMART), swing 

weighting, trade-off weighting, multiple objective programming, multi-attribute 

utility analysis, multicriteria decision analysis and analytic hierarchy process 

(AHP). Based on simplicity and easy to use, availability o f  software, and 

capabilities o f software available; the AHP was selected as the MCDM technique 

for simulation strategy selection. AHP provides a framework to cope with 

multiple criteria situations involving intuitive, rational, qualitative and quantitative 

aspects (Chan et al., 2001). Since simulation strategy selection involves multiple 

criteria, most o f which are qualitative and subjective, AHP is an appropriate 

technique for the proposed simulation strategy selection process (SimSS).

The objective o f this chapter is to present a new approach to select an appropriate 

simulation strategy from sequential simulation, parallel simulation or distributed 

simulation. The next section describes the AHP, which was used as the solution 

process for the SimSS approach. Section 4.3 presents the SimSS process and three 

scenarios to illustrate the proposed process. The chapter ends with a summary.
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4.2 The analytic hierarchy process (AHP)

The analytic hierarchy process (AHP), developed by Thomas Saaty in 1970s 

allows decision-makers to model a complex problem in a hierarchical structure 

showing the relationships o f the goal, objectives (criteria), sub-objectives, and 

alternatives (figure 4.2). It enables decision-makers to derive ratio scale priorities 

or weights as opposed to arbitrarily assigning them. In doing so, the AHP not only 

supports the decision-makers by enabling them to structure the complexity and 

exercise the judgement, but also allows them to incorporate both objective and 

subjective considerations in the decision process (Forman, 2001). Yusuff et al., 

2001 commented that the AHP provides remarkable versatility and power in 

structuring and analyzing the complex multi-attribute decision problems. The 

AHP has been widely used as a decision making tool in many diverse areas 

including software evaluation, information systems outsourcing, reliability 

evaluation o f distributed computing environments, advanced manufacturing 

systems, project management, competitive bidding processes, and vendor 

selection (Al-Harbi, 2001; Cagno et al., 2001; Chan et al., 2001; Fahmy, 2001; 

Ossadnik and Lange, 1999; Tam and Tummala, 2001; Yang and Huang, 2000; 

Yusuff et al., 2001). Al-Habri (2001), Perez (1995) and Zahedi (1986) discussed 

shortcoming and benefits o f  the AHP.

In AHP, the goal is a statement o f the overall objective. The AHP criteria used as 

basis for the decision are known as objectives. Objectives can be further 

elaborated into sub-objectives if necessary. Pair wise comparisons o f  elements 

(usually alternatives and criteria) can be established using a scale (Table 4.1) 

indicating the strength with which one element dominates another with respect to 

a higher level element. This scaling process can then be translated into the priority 

weights (scores) for comparison o f alternatives. Yusuff et al. (2001) presented the 

following steps o f the AHP solution process based on Saaty’s work.
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Goal

O bjectives

Sub-objectives

Alternatives

Figure 4.2-AHP decision hierarchy

• Determination o f the relative importance o f the attributes (objectives) and the 

sub-attributes (sub-objectives), if any

• Determination o f the relative standing (weight) o f each alternative with respect 

to the sub-objective, if applicable, and then successively with respect to each 

objective.

• Determination o f the overall priority weight (score) o f each alternative.

• Determination o f the consistency indicator(s) in making pair wise

comparisons. This step is optional and AHP provides a measure o f

inconsistency in each set o f judgements. However, Forman (2001) noted that

real world problems are hardly consistent.
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Intensity o f  
im portance

D efinition Explanation

1 Equal importance T w o activities contribute 

equally to  the objective

3 W eak importance o f  one over another E xperience and judgem ent 

slightly favour one activity over  

another

5 Essential or importance E xperience and judgem ent 

strongly favour one activity  

over another

7 V ery strong or demonstrated importance A n activity is favoured very 

strongly over another; its 

dom inance demonstrated in 

practice

9 A bsolute importance The evidence favouring one  

activity over another is o f  the  

highest possib le order o f  

affirmation

2 ,4 ,  6 , 8 Intermediate values between adjacent scale  

values

W hen com prom ise is needed

R eciprocals 

o f  above 

nonzero

I f  activity i has one o f  the nonzero values 

assigned to  it w hen compared w ith activity j ,  

then j  has the reciprocal value when  

com pared with /

A  reasonable assum ption

Table 4.1 -  AHP scale and meaning

In order to simplify the decision making process it was decided to use the AHP 

based software that enables users to calculate the priority levels without manual 

calculations. Ossadnik and Lange (1999) evaluated AHP based software namely: 

AutoMan, Expert Choice and HIPRE 3+ (using AHP), and concluded that Expert 

Choice received the highest priority among the three AHP based software. The 

criteria selected for this evaluation include graphical presentation o f results, 

transformation o f the specific AHP procedure, number o f  hierarchy elements, 

provision o f sensitivity analysis, learnability, user’s effort needed for 

modifications, adaptation o f problem structures, comprehensibility, availability o f  

help, screen displays and initial cost. Therefore, to calculate priorities in the 

simulation strategy selection (SimSS) process, Expert Choice software was
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employed. In pair wise comparison, Expert Choice allows judgments to be entered 

either in numerical, graphical or verbal models. Verbal mode that consists o f 

equal, moderate, strong, very strong, and extreme corresponding to 1,3, 5, 7, and 

9 in numerical scale.

4.3 The simulation strategy selection (SimSS) process

Based on the AHP solution process, the approach presented in figure 4.3 was 

derived to determine the most appropriate simulation strategy.

Calculation o f overall priority weight o f 
alternative strategies with Expert Choice

Determination o f alternatives

Determination o f relative importance of 
objectives in relation to goal

Determination o f relative weights o f each 
alternative with respect to each objective

Determination o f criteria (objectives)

Determination o f the goal

Figure 4.3 -  SimSS process

The goal o f the SimSS process is the determination o f  simulation strategy. 

Distributed simulation, parallel simulation and sequential simulation were selected 

as alternative strategies (figure 4.4). In some instances parallel simulation may 

provides an alternative to distributed simulation and vice versa. However, when 

simulation needs to be executed in a geographically distributed environment, the 

only viable option is distributed simulation.
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4.3.1 Criteria for the SimSS process

Factors that encourage the application o f parallel and distributed simulation 

technologies were used as the criteria (objectives) for the SimSS process. In order 

to identify these factors a sample o f literature was analysed and the followings 

were identified as the widely cited ones.

• Execution time

• Parallelism

• Computational resources

• Geographic distribution

• Complicated model development

• Development time

• Fault tolerance

Fault tolerance was not considered for the SimSS process, as it is more associated 

with independent parallel replications o f simulation than parallel and distributed 

simulation. Development time and complicated model development were grouped 

as complicated model development process. Therefore, the followings were 

selected as factors that encourage users to employ parallel or distributed 

simulation instead o f sequential simulation.

Execution time

This indicates the time taken to run a simulation model. One o f the main 

objectives o f parallel or distributed simulation is to decrease the run time o f a 

simulation. This form o f simulation is expected to reduce the time taken to run a 

simulation with the aid o f more computational resources and exploitation o f the 

inherent parallelism.

Parallelism

In most o f the simulation models, some sub-processes can be executed 

concurrently. Therefore, it is said to be that simulation models are inherently 

parallel. In parallel or distributed simulation, these parallely executable sub

processes are identified and partitioned into separate logical processes, and
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executed simultaneously. More computational resources and exploitation o f 

inherent parallelism contribute to the speedup o f simulations.

Computational resources

Computer memory, speed o f the processor etc. may not be adequate to achieve 

target performances o f  a simulation. In addition, a single processor may not be 

capable to handle the entire simulation model o f a complex system on its own. An 

obvious means o f obtaining better performance is to dedicate more computational 

resources for simulation.

Geographical distribution

In some situations, sub-models o f  a simulation have to be run in geographically 

distributed locations. This may be due to availability o f data, location o f 

organization, management decisions etc. In this case, the only feasible alternative 

will be distributed simulation.

Complicated model development process

For many systems, especially large and complex systems, the model that 

characterizes the desired aspects o f the system may itself be large and complex. 

Complicated models include more elements, interaction, detail etc. To construct a 

complicated model, services o f more than one modeller may be required. Divide 

and conquer approach may provide a better alternative approach for complicated 

models. Partitioned sub-models are easier to comprehend, verify and validate, and 

convert into a computer program.

Execution time and computational resources were the most widely cited reasons. 

Execution time, lack o f available resources and complicated model development 

process can be considered as constraints for sequential simulation while 

availability o f  more computational resources and ability to exploit parallelism act 

as motivators for moving into parallel or distributed simulation. Long simulation 

times, however are typically caused (at least partly) by lack o f  computational 

resources. The need to run a simulation in a geographically distributed manner is a 

deciding factor.
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In order to simplify the process, exploitation o f inherent parallelism was 

eliminated by assuming that parallelism is inherent to most o f the real word 

problems. Based on this assumption and points noted previously in this section, 

following factors were selected as objectives for the SimSS process.

• Execution time

• Computational resources

• Complicated model development process

• Geographic distribution

Figure 4.4 shows the goal, objectives and alternatives for the SimSS process based 

on the AHP solution process.

Distributed
sim ulation

Sequential
sim ulation

Parallel
sim ulation

E xecution
tim e

Com plicated
m odel

developm ent
process

Computationa
resources

G eographic
distribution

Determ ination o f  the Sim ulation strategy

Figure 4.4 - Goal, objectives and alternative strategies

Three scenarios are presented in order to illustrate the SimSS process and to 

highlight the point that the decision on simulation strategy to be employed 

depends on the situation.

4.3.2 Illustration of the SimSS process 
Scenario 1

Partners o f an enterprise prefer to keep their part o f the simulation model in their 

own premises, if possible. The model is complicated and difficult to develop as a 

single model. Execution time and computational resources are not critical factors. 

Tables 4.3 to 4.7 provide necessary pair wise comparisons for scenario 1.
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Direction o f the preference is indicated by direction o f arrows.

O bjective 1 Prefers to O bjective 2 Preference

C om plicated m odel developm ent G eographic distribution *

Com putational resources G eographic distribution Extrem e

E xecution tim e - » G eographic distribution Extrem e

Com putational resources —y C om plicated m odel developm ent V ery strong

E xecution tim e - » C om plicated m odel developm ent V ery strong

E xecution tim e Com putational resources Equal

* Between equal and moderate

Table 4.2 - Pair wise comparison o f objectives with respect to the goal

A lternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation Parallel sim ulation M oderate

Sequential sim ulation Distributed sim ulation M oderate

Parallel sim ulation Distributed sim ulation Equal

Table 4.3 - Pair wise comparison to determine relative preference with respect to

execution time

Alternative 1 Prefers to A lternative 2 Preference

Sequential sim ulation Parallel sim ulation M oderate

Sequential sim ulation Distributed sim ulation M oderate

Parallel sim ulation Distributed sim ulation Equal

Table 4.4 - Pair wise comparison to determine relative preference with respect to

computational resources

Alternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation Parallel sim ulation V ery strong

Sequential sim ulation Distributed sim ulation V ery strong

Parallel sim ulation < r - y Distributed sim ulation Equal

Table 4.5 - Pair wise comparison to determine relative preference with respect to

complicated model development
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Alternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation Parallel sim ulation Equal

Sequential sim ulation -> Distributed sim ulation Extrem e

Parallel sim ulation —> Distributed sim ulation Extrem e

Table 4.6 - Pair wise comparison to determine relative preference with respect to

geographic distribution

Figure 4.5 shows relative weights assigned to different objectives and priorities 

calculated in relation to the goal.
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Figure 4.5 -  Priorities assigned to different alternative for scenario 1

Distributed simulation ranked as the strategy with highest priority. Therefore, the 

most appropriate simulation strategy for this scenario is distributed simulation.

Scenario 2

The model is complicated and difficult to develop as a single model. Execution 

time is longer than expected execution time and was suspected that lack o f 

computational resources prolongs execution time. No specific need to run 

simulation in geographically distributed environment. Tables 4.8 to 4.12 provide 

necessary pair wise comparisons for scenario 2.
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Direction o f  the preference is indicated by direction o f arrows.

O bjective 1 Prefers to O bjective 2 Preference

Com plicated m odel developm ent <r~ G eographic distribution V ery strong

Com putational resources <— G eographic distribution V ery strong

E xecution tim e < - G eographic distribution V ery strong

Com putational resources -> C om plicated m odel developm ent *

E xecution tim e —> C om plicated m odel developm ent *

E xecution tim e —y Com putational resources *

* Between equal and moderate

Table 4.7 - Pair wise comparison o f objectives with respect to the goal

Alternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation —y Parallel sim ulation V ery strong

Sequential sim ulation —y Distributed sim ulation V ery strong

Parallel sim ulation <-> Distributed sim ulation Equal

Table 4.8 - Pair wise comparison to determine relative preference with respect to

execution time

Alternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation Parallel sim ulation V ery strong

Sequential sim ulation *—y Distributed sim ulation V ery strong

Parallel sim ulation <-> Distributed sim ulation Equal

Table 4.9 - Pair wise comparison to determine relative preference with respect to

computational resources

Alternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation -> Parallel sim ulation V ery strong

Sequential sim ulation —y Distributed sim ulation V ery strong ,

Parallel sim ulation <-y Distributed sim ulation Equal

Table 4.10 - Pair wise comparison to determine relative preference with respect to

complicated model development
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Alternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation <-> Parallel sim ulation Equal

Sequential sim ulation -> Distributed sim ulation Extrem e

Parallel sim ulation Distributed sim ulation Extrem e

Table 4.11 - Pair wise comparison to determine relative preference with respect to

geographic distribution

Figure 4.6 displays the relative weights assigned to different objectives and 

priorities calculated in relation to the goal.
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Figure 4.6 -  Priorities assigned to different alternative for scenario 2

For this scenario distributed simulation or parallel simulation provides better 

alternatives. Distributed simulation has a slightly higher priority due to the fact 

that an extreme preference was assign to distributed simulation from parallel 

simulation with respect to geographical distribution

Scenario 3

The model is relatively a simple one when compared to models mentioned in 

scenarios 1 and 2. Available computational resources are satisfactory and there is 

no real need to speedup the simulation. No specific need to run the simulation in 

geographically distributed manner. Tables 4.13 to 4.17 provide necessary pair 

wise comparisons for scenario 3.
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Direction o f the preference is indicated by direction o f arrows.

O bjective 1 Prefers to O bjective 2 Preference

C om plicated m odel developm ent < - G eographic distribution M oderate

Com putational resources < - G eographic distribution M oderate

Execution tim e < - G eographic distribution M oderate

Com putational resources Com plicated m odel developm ent Equal

Execution tim e Com plicated m odel developm ent Equal

E xecution tim e <-> Com putational resources Equal

Table 4.12 - Pair wise comparison o f objectives with respect to the goal

Alternative 1 Prefers to A lternative 2 Preference

Sequential sim ulation <— Parallel sim ulation M oderate

Sequential sim ulation <— Distributed sim ulation M oderate

Parallel sim ulation Distributed sim ulation Equal

Table 4.13 - Pair wise comparison to determine relative preference with respect to

execution time

Alternative 1 Prefers to A lternative 2 Preference

Sequential sim ulation < - Parallel sim ulation M oderate

Sequential sim ulation < - Distributed sim ulation M oderate

Parallel sim ulation Distributed sim ulation Equal

Table 4.14 - Pair wise comparison to determine relative preference with respect to

computational resources

Alternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation <r~ Parallel sim ulation M oderate

Sequential sim ulation <r~ Distributed sim ulation M oderate

Parallel sim ulation O Distributed sim ulation Equal

Table 4.15 - Pair wise comparison to determine relative preference with respect to

complicated model development
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Alternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation Parallel sim ulation Equal

Sequential sim ulation Distributed sim ulation Equal

Parallel sim ulation <-> Distributed sim ulation Equal

Table 4.16 - Pair wise comparison to determine relative preference with respect to

geographic distribution

The relative weights assigned to different objectives and priorities calculated in 

relation to the goal are shown in figure 4.7.
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Figure 4.7 -  Priorities assigned to different alternative for scenario 3

In this scenario, the appropriate strategy would be sequential simulation.

Summary

This chapter presented a new approach to select an appropriate simulation strategy 

from parallel simulation, distributed simulation or sequential simulation, as 

parallel and distributed simulation is not suitable for all simulation problems. It 

was illustrated that there is no one best simulation strategy for all situations and 

the appropriate simulation strategy depends on the situation. I f  it is determined 

that distributed (or parallel) simulation to be employed, then one has to move into 

the next step o f the proposed methodology for distributed enterprise simulation, 

namely the data collection stage. However, this stage is well researched area in the 

simulation literature and was briefly described in chapter 3. The following chapter
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presents the next two stages o f the proposed methodology which involve 

developing the conceptual model, partitioning the conceptual model and assigning 

partitioned logical processes to networked workstations.
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Chapter 5

Conceptual modelling, model partitioning and 

mapping for distributed enterprise simulation

The last chapter presented the simulation strategy selection 

(SimSS) process which helps to determine the appropriate 

simulation strategy from sequential simulation, parallel 

simulation or distributed simulation. If  distributed 

simulation is chosen as the appropriate simulation strategy, 

then the system under investigation needs to be partitioned 

into sub-models or logical processes, and assigned to 

geographically distributed workstations. This chapter 

presents a systematic approach for conceptual modelling, 

model partitioning and mapping for distributed enterprise 

simulations (see the highlighted activities in figure 5.1). It 

pays more attention to conceptual modelling than model 

partitioning and mapping as it is proposed to partition the 

conceptual model before transforming the model into a 

computer simulation model, which is another main 

difference between some o f the existing approaches and the 

proposed methodology.
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Figure 5.1 - The proposed methodology for distributed enterprise simulation
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5.1 Introduction

Modelling is an essential part o f any simulation project, including distributed 

simulation which provides the foundation for distributed enterprise simulation. As 

noted in chapter 4, the main difference between sequential simulation and 

distributed simulation is: while sequential simulation runs as a single model in a 

single workstation, in distributed simulation several models run in geographically 

distributed (and interconnected) workstations. Accordingly, for a simulation to run 

in a geographically distributed environment, the entire simulation model has to be 

partitioned into a number o f logical processes (LPs) or sub-models and assigned 

(mapped) them to different workstations.

One o f the most important issues to be addressed when designing a distributed 

simulation including enterprise simulation is the partitioning o f the simulation 

model into several LPs. Efficiency and effectiveness o f a distributed simulation 

system depend on partitioning o f the system. Performance o f distributed 

simulation will be detrimentally affected if the workload o f one LP is significantly 

higher than the others. Furthermore, increasing the load on the network may result 

in slowing down other applications that run across the network if frequency o f  

interactions between (two) LPs assigned to different workstations is high. Once 

the partitioning process is completed, the resulting LPs need to be assigned to 

different processors, which is known as mapping. In distributed simulation, LPs 

are assigned to processors, which reside on geographically distributed 

workstations. One or more LPs can be assigned to a single processor in order to 

balance the workload among processors. When compared to issues such as 

synchronization, the literature on (parallel and) distributed simulation has not paid 

much attention to conceptual modelling, model partitioning and mapping. 

Moreover, partitioning and mapping algorithms presented in the literature are 

generally complex and some o f the algorithms require running o f the simulation 

code sequentially in order to identify LPs. A simulation is executed in a 

distributed manner because o f its inability to run sequentially due to the size, 

complexity, requirements for more computing resources, or specifically needs to 

run in geographically distributed environment. This creates a dilemma for users 

especially in business organizations, who intend to employ distributed 

simulations. Therefore it is desirable to have a simple yet effective approach for
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model partitioning and mapping when developing distributed enterprise 

simulation.

The objective o f this chapter is to present a new approach for conceptual 

modelling, model partitioning and mapping for distributed enterprise simulation. 

The new approach proposes to partition the conceptual model developed for the 

system under investigation and then map them onto the processors o f 

geographically distributed workstations. The next section provides a brief 

description o f the conceptual model. Modelling approaches and modelling tools 

are presented in section 5.3 and 5.4 respectively. Model partitioning and mapping 

approaches are briefly explained in the following section. Section 5.6 presents the 

proposed approach for model representation, model partitioning and mapping. The 

chapter ends with a summary.

5.2 The conceptual model

A model is an abstract representation o f reality (Whitman et al., 1997). The degree 

to which the simulation results are able to characterize the system under study is 

directly related to the degree the simulation model characterizes the system (Luna, 

1992). For many systems especially complex and large ones, it is desirable to 

build a conceptual model before transforming it into a computer simulation model 

in order to understand the problems, requirements and perhaps alternative 

solutions. Borah (2002) defined the conceptual model as an abstract representation 

o f something generalized from particular instances. A conceptual model is a 

simulation developer’s way o f translating modelling requirements (i.e. what to be 

represented by simulation?) into a detailed design framework (i.e. How it is to be 

done?), from which the software that will make up the simulation can be built 

(Pace, 1999). It can be utilized as a means o f clear and comprehensive 

communication among developers o f simulation, managers, users and other 

stakeholders. Furthermore, the conceptual model is the ultimate expression o f the 

system functionality and should be the basis for testing, verification and validation 

procedures (Haddix, 2001). Firat (2000) summarized the functions o f  conceptual 

models as:
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• Providing a means for verification and validation

• Improving understanding when analyzing new and old systems

• Providing a precise and clear tool for communication between system 

developers and application domain specialists

• Providing documentation o f domain specific information in a formal way

• Making easier later modifications on the system after development since it is

the blueprint o f the system

• Allowing determination o f  conflicts among different perspectives o f 

requirements for the same system and helps to elicit conflicts

Building o f simulation models has long been considered as an art rather than a 

science (Leung and Lai, 1997). Karacal (1998) also noted that despite the 

existence o f well-developed tools and their generalized building blocks, modelling 

is still carried out in an ad hoc and intuitive manner. Although construction o f a 

conceptual model is important when developing sequential simulations, special 

attention needs to be paid when building distributed simulations as this type o f 

simulations are more complex than the former. Past research clearly demonstrated 

a need for developing innovative modelling methods and procedures that will 

assist in the development o f simulation models for large and complex systems 

(Sawhney, 2000). Furthermore, many authors highlighted the need for formal 

simulation model building methodologies for distributed (also parallel) simulation 

(Brandimarte and Cantamessa, 1995; Karacal, 1998; Odhabi et al., 1997; Page, 

1999).

Proper development o f a conceptual model is critical as it describes how a 

simulation developer intends an implementation to satisfy requirements. This 

model is the primary mechanism for transforming simulation requirements into 

specifications that can guide simulation development and implementation process 

(figure 5.2). Therefore special attention is needed when developing the conceptual 

model. A series o f articles presented in recent simulation interoperability 

workshops highlighted the importance o f  conceptual modelling and provided 

guidance on development and evaluation o f conceptual models (Borah, 2000; 

Borah, 2002; Firat, 2000; Haddix, 2001; Pace, 1999 and 2000).
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Figure 5.2 -  Significance o f the conceptual model

When developing a conceptual model, a modelling approach and modelling tools 

have to be determined beforehand. Modelling approaches specify the way models 

are to be developed. Once the approach is determined, the modeller can decide 

what modelling tools are to be used for model building. The resulting model then 

can be transformed into a simulation model. This confirms that simulation 

involves more than merely writing o f a computer program, as highlighted by Page 

and Nance (1994). To overcome the challenge o f modelling complex systems, a 

number o f modelling approaches have been proposed. Most o f these approaches 

can be classified under incremental modelling and hierarchical modelling 

approaches.

5.3 Modelling approaches

5.3.1 Incremental modelling approach

This approach is based on incremental development o f a model with few elements 

and little detail, capturing a holistic view o f the system under investigation. The 

model is therefore initially not large, but might become so as development 

progresses. Pidd (1996) suggested that starting with a small model and adding 

more details is one way to ease the difficulties o f building models for complex 

systems. Randell et al. (1999) mentioned that modularization is a prerequisite for 

incremental model development. Modularization reduces the complexity, and 

allows modelling at a higher level o f abstraction. Pidd and Castro (1998) also 

noted that modularity is the key to coping with the complexity inherent in large 

systems.

Under the incremental model development approach, two ways o f  dividing the 

simulation project into stages can be identified (Randell et al., 1999). One is to 

work vertically first and then horizontally. The other way is to take a holistic view 

o f the system and develop a model, and then add detail later as required. The latter
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approach shares common characteristics with the hierarchical modelling approach, 

which will be discussed later. The top down approach minimizes the risk o f sub 

optimization. Also only subsystems that need to be analyzed further have to be 

added to the main model, leaving others as black boxes. In addition, the 

incremental modelling approach spreads model development cost over the life

time o f the project.

5.3.2 Hierarchical modelling approach

Design o f complex systems is confronted with a problem o f describing system 

objects, their characteristics and interactions in a concise and understandable way 

(Ceric, 1994). One o f the basic strategies for accomplishing this task is the 

hierarchical approach. Furthermore, Pidd and Castro (1998) noted that many large 

systems are inherently hierarchical. A hierarchy essentially defines a type o f 

relation in which the entities are grouped at different levels. Chow and Zeigler 

(1994) pointed out that hierarchical modelling capability is increasingly being 

recognized as the predominant modelling paradigm for future simulation 

developments. Hierarchical modelling develops model elements from higher 

levels into a more detailed description on lower hierarchical levels. It provides a 

way o f managing large scale complex systems by considering them as a collection 

o f sub-systems which are represented by simulation models that are independently 

created, modified and saved (Kiran, 1998).

The model to be simulated depends on decisions relating to the level o f abstraction 

o f the system. The correct level o f abstraction refers to selecting the amount o f 

information that must be included in the model to help address the modelling 

goals (Benjamin et al., 1998). Decomposition (dis-aggregation) and abstraction 

(aggregation) are two important principles o f hierarchical modelling. 

Decomposition refers to adding more details to a selected level o f abstraction 

resulting o f a model with lower level o f abstraction. Aggregation refers to 

summarizing information o f a selected level o f abstraction, resulting in o f a model 

with a higher level o f abstraction (figure 5.3). It reduces the number of 

components and interactions o f the model thus reducing the overall behavioural 

complexity (Fishwick, 1994). Ball (1998) noted that use o f an appropriate level o f 

details (level o f  abstraction) allows building simplified models, which run faster.
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In addition, Ceric (1994), Sargent et al. (1993) and Zupancic (1998), highlighted a 

number o f advantages o f hierarchical decomposition in the hierarchical modelling 

approach, including:

• Possibility o f focusing on each component as a small problem

• Several modellers can work simultaneously on a modelling a simulation 

project

• Information hiding

• Improved communication with users

• Easy to implement modifications and corrections

• The modular structure enables partial testing o f the model

• Easy to document the system

• Enables the application o f different algorithms to different sub-systems

• Reduce effort and time required to develop models

• Allow developing sub-models separately and integrating later permitting 

model reusability

• Assist in model verification and validation process.

Furthermore, hierarchical modelling helps development o f distributed simulations 

by identifying sub-systems (LPs) that can be functioned independently. These LPs 

can be later assigned to different workstations to run the simulation system in a 

geographically distributed environment.

M l Higher level o f  
abstraction

L ow er level o f  
abstraction

Figure 5.3 -  Level o f abstraction
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Hierarchical modular modelling (Luna, 1992; Pidd and Castro, 1998; Sawhney, 

2000; Zeigler, 1986; Zupancic, 1998) is a variation o f hierarchical modelling. In 

addition to the hierarchical approach to model building, it proposes model 

building by adding components/ modules. This allows different components to be 

developed, verified and validated separately (Luna, 1992). It also encourages 

building o f modules simultaneously resulting in o f shorter development times and 

cost savings. Alfieri and Brandimarte (1997) and Zeigler (1987) proposed the use 

o f an object-oriented approach in hierarchical modular modelling. An advantage 

o f using this approach is that there is a better transition from modelling concepts 

to actual software implementation, since objects have a natural match in the real 

world (Alfieri and Brandimarte, 1997).

5.4 Modelling tools

Modelling tools provide a standard means o f describing and analyzing a system. 

This facilitates communication between developer and user, and between 

developers. It also simplifies understanding, modification and maintenance o f 

systems, ensuring good discipline. Pandya (1995) described a modelling tool as a 

communication device that is used to aid generation and classification o f  ideas, 

and/or to analyze the quality o f a design. A number o f modelling tools are 

available to develop a model o f a new or existing system. Some o f the well known 

tools are described below.

5.4.1 Diagrammatic modelling

Diagrammatic models are a particular class o f conceptual models which enable 

graphical representation o f models in two dimensions. This approach uses 

symbols to represent physical elements and activities o f the system under 

investigation, and directed arrows to indicate the direction o f  flow. In the analysis 

phase o f a simulation study, the graphical representation approaches serve as a 

very useful framework with which the modeller can analyze and conceptualize the 

problem and as a communication medium among the people who are involved in 

the project (Kienbaum and Paul, 1994). Ceric (1994) noted that diagrammatic 

modelling methods are one o f the most used and developed class o f conceptual 

modelling methods in discrete event simulation. Reasons that bought popularity to 

diagrammatic modelling include:
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• Conceptually close objects can be represented as physically adjacent, bringing 

to light the strength o f connection in the system.

• Interactions between objects are shown in two dimensions, enabling much 

easier comprehension o f a model than the forced sequential ordering o f objects 

in procedural representations. This is due to a parallelism o f human visual 

system which enables fast visual processing o f the whole model or its 

significant parts.

• Syntax and semantics o f diagrammatic modelling methods are often rather 

simple, which helps the easier and faster model design and understanding.

• Hierarchical model decomposition is possible in most diagrammatic methods, 

which again assists both modelling o f complex systems and model 

understanding.

• Most diagrammatic models enable manual simulation o f system dynamics. 

This feature can help in model validation, and also useful as a simulation 

learning tool too.

Furthermore, diagrammatic structure o f the model looks similar to structure o f the 

simulation model especially if the simulation model is developed using 

commercial simulation software.

In respect to distributed simulation, it is vital to use formal modelling tools to 

develop the conceptual model due to its complex nature. In addition, they are even 

more attractive for the proposed approach for distributed enterprise simulation as 

it is proposed to use commercial simulation software for implementation. Some o f 

the commonly used diagrammatic modelling tools in simulation are briefly 

described below.

5.4.2 Commonly used diagrammatic modelling tools 

Activity cycle diagram

Activity Cycle Diagrams (ACD) have long been used for representation o f the 

flow o f entities within discrete event systems. Apart from using as a model 

representation tool, ACDs can also be used to manually simulate the system. 

Original ACDs make use o f  only two symbols: a circle to represent a dead state
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and a rectangle to represent a live state (figure 5.4). The diagram itself is a map 

which shows the life history o f each class o f entity and graphically displays their 

interactions. Each class o f entity is considered to have a lifecycle which consists 

o f a series o f states. The entities move from state to state as their life proceeds.

L ive
w State w

Figure 5.4 - Symbols o f original ACD

The main advantages o f ACDs include simplicity, ease o f understanding and 

support o f hierarchical modelling approach. However, Pflughoeft and Manur 

(1994) mentioned that advantages o f ACD in its original form were outweighed 

by inefficiencies. ACD o f a complex system is too complicated and cumbersome 

for its intended purpose. The simplicity o f ACDs and their associated limitations 

for developing computer based simulations for complex systems motivated a 

number o f authors to present modified versions o f ACDs. Pooley (1991) proposed 

an extended set o f symbols to represent processes o f a simulation. This modified 

version o f ACD was called as Extended Activity Cycle Diagrams (X-ACDs). 

Kienbaum and Paul (1994) presented Hierarchical Activity Cycle Diagrams (H- 

ACDs) that support object oriented simulation modelling. Pflughoeft and Manur 

(1994) introduced Multi layered ACD approach which decomposes the diagram 

by activities, instead o f entity flows.

Although analysis o f papers presented to recent Winter Simulation Conferences 

(WSC) shows that number o f papers published declined over the past few years, a 

number o f authors including Baldwin et.al. (2000), Eldabi and Paul (2001), 

Odhabi et al. (1997), Odhabi et al. (1998) and Shi (1997) presented papers on 

applications o f ACD.

Petri nets

Petri nets are graphical and mathematical modelling tools that can be used to 

perform static and dynamic analysis o f processes that constitute existing or new 

systems. The concept o f Petri nets originated from works o f Carl A. Petri in 1962.
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Petri nets are used for describing and studying systems that are characterized as 

being concurrent, asynchronous, distributed, parallel, non-deterministic and 

stochastic (Sawhney et al., 1999). Graphical modelling elements o f  Petri nets are 

shown in figure 5.5.

Place Transition Token A rc

Figure 5.5 - Graphical elements o f Petri nets

A place denoted by a circle represents a condition such as input data, input signal, 

resource, condition, or buffer. A transition denoted by a solid bar represents an 

event such as a computational step, task or activity. Arcs are used to connect 

places and transitions in a Petri net. They are directed and are either drawn from a 

place to a transition or from transition to a place. Arcs in a Petri net can also have 

multiplicity which is represented by an integer k. Multiplicity indicates the 

number o f tokens required to fire or enable a transition. Token which is denoted 

by solid small circle provides the dynamic simulation capabilities to Petri nets. 

Without a provision o f  tokens in a Petri net, the dynamic behaviour o f the system 

under consideration can not be simulated and the Petri nets can only be used as a 

visual communication tool.

As with ACDs, several variations to the classical Petri nets such as Timed Petri 

Nets (TPN), Coloured Petri Nets (CPN), High-level Petri Nets (HPN) were 

presented by a number o f authors (Choila and Ferscha, 1993; D ’Souza and 

Khator, 1994; Gerogiannis et al., 1998; Gile and DiCesare, 2001; Vojnar, 1997). 

Pandya (1995) mentioned that Petri nets strike a balance between the speed and 

simplicity o f mathematical programming and the flexibility provided by general 

purpose simulation packages. However, he also highlighted the following 

problems associated with Petri nets too.
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• Lack o f general methodology for constructing Petri nets models from system 

specifications

• Diagrams can become cluttered when modelling complicated systems

• Lack o f general software to support the computer coding o f Petri net models

IDEFO

IDEF is a system definition method developed under sponsorship o f the US air 

force to describe information and structure o f complex manufacturing systems. 

The acronym IDEF stands for ICAM DEFinition where ICAM stands for 

Integrated Computer Aided Manufacturing. IDEF is not a single technique and is a 

family o f techniques extending from IDEFO to IDEF5 including IDEFlx. IDEFO 

was derived from a well-established graphical language, the Structured Analysis 

and Design Technique (SADT) and used as a functional modelling tool for 

analyzing and communicating the functional perspective o f a system. Main 

elements o f IDEFO composed o f a box and an arrow. Boxes are used to represent 

system functions and, data or object interfaces are represented by arrows (see 

figure 5.6).

Control

Input
Function
(A ctivity)

Output

Resource

Figure 5.6 -  Elements o f IDEFO technique

An arrow coming into a box from left depicts input required to perform the 

function

An arrow coming out o f a box on the right depicts output produced by the 

function

An arrow coming into a box from top shows controls that represent conditions, 

circumstances or rules by which the function is driven
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• An arrow coming out o f a the box from bottom show physical resources or 

mechanism required to perform the function

The generation o f  many levels o f details through the model diagram is one o f  the 

most important features o f IDEFO as a modelling technique. The IDEFO model 

starts by representing the whole system as a single box (which is labelled as AO). 

The AO box then can be broken down into more detailed diagrams until the system 

described in the desired level o f detail. As IDEFO modelling technique supports 

hierarchical modelling approach, an abstracted system can be decomposed into a 

more detailed set o f diagrams in a hierarchical manner as shown in figure 5.7.

Pandya et al. (1997) summarized the following benefits and shortcomings o f 

IDEFO.

Benefits

• Modelling o f large and complex systems made possible by decomposing an 

abstracted level o f the system into more detailed level as desired.

• Easy to understand as only few symbols (boxes and arrows) are used to model 

the system.

• Distinguishes between input, output, controls and resources for a particular 

activity.

• Notation o f the model allows an easy development o f computer support.

• Existence o f well documented rules and procedures

Shortcomings

• Only provides a static representation o f the system

• Does not take time and cost to perform an activity into account

• Does not make a distinction between data and material flow
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AO

A2

A3

A21

A22

Figure 5.7 -  Hierarchical decomposition in IDEFO

Other modelling tools

In addition to modelling techniques described earlier, a number o f techniques such 

as activity diagrams, GPSS block diagrams, event graphs etc. can be used to 

develop a conceptual model. More details o f these techniques are presented by 

Buss (1996), Ceric (1994), Pooley (1991) and Schruben (1983). Analysis o f 

articles presented to the Winter Simulation conferences suggest that number o f 

articles publishedana on these techniques declined over past few years.

5.4.3 Modelling methods

Modelling methods propose methodological approaches for modelling. These 

methods are generally used to design new systems, study existing systems etc. In 

addition to some o f the modelling techniques mentioned earlier (such as ACD and 

IDEFO), data flow diagrams, entity relation diagrams etc. are used as tools to 

model systems. For developing a conceptual model for a simulation, these 

methodologies are not required to use fully. Howver, it is desirable to use some o f 

the procedures prescribed in them in order to improve the accuracy to the
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conceptual model. Widely cited modelling methods in the literature include 

SSADM (Structured System Analysis and Design methodology), SADT 

(Structured Analysis and Design technique) and GRAI (Graph with Results and 

Actions Interrelated) methodology (Al-Ahmari and Ridgeway, 1999; Doumeingts 

et al., 1995; Kateel et al., 1996; Pandya, 1995; Pandya et al., 1997).

5.5 Model partitioning and mapping approaches

Improved performance gained by distributing a simulation system into multiple 

processors is largely determined by how well the entire system is divided between 

processors. The problem o f partitioning and mapping involves grouping and 

assignment o f LPs to processors in such a manner that the communication 

overhead is minimized and the processor utilization is maximized (Nandy and 

Loucks, 1992).

There are two approaches for dividing the entire system into a set o f sub models 

(Luksch, 2002 and Nutt, 1990). In functional partitioning, the simulation model is 

partitioned based on functions performed by the simulation system such as 

random number generation, input data and output data handling etc. In a model or 

data partitioning approach the system being simulated is partitioned into a number 

o f sub-models which will be able to be executed in parallel. According to 

Fujimoto (1990), model partitioning approach is generally used for parallel and 

distributed simulation and the partitioned sub-models are known as LPs. As the 

size o f the o f the LPs decreases, the ability o f distributed simulation models to run 

concurrently improves, resulting in higher levels o f speedup. However, the desired 

level o f  performance improvements may not be achieved due to the increased 

load on the network as a result o f more messages need to pass for synchronization 

(Hao et al., 1996) and also for passing parameters between distributed simulation 

models. Therefore both communication overheads and total execution time have 

to be carefully considered when a simulation model is partitioned and mapped. 

Another important factor to be considered is balancing the load o f the distributed 

simulation by uniformly distributing the execution load among the processors.

In the literature the term partitioning has been used for decomposition and 

allocation o f  LPs to a network o f processors. Luksch (1995) and Nutt (1990) used
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the term “data partitioning” for model decomposition. However, Boukerche and 

Tropper (1994 and 2001) and Szynkiewicz (2000) considered partitioning as 

allocating LPs to processors. For the purpose o f decomposing and allocating LPs 

to processors, the following approaches presented in Boukerche and Tropper 

(2001) can be employed.

Random partitioning

With this simple approach, LPs are assigned to processors randomly. Although 

this algorithm is easy and fast to implement, the outcome may be poor. This is due 

to non-consideration o f inter-processor communication. High communication 

overhead may slow down the simulation.

Grid partitioning

The grid partitioning approach reduces the communication overhead by 

combining communicating LPs together. In this algorithm, the process graph is 

sub-divided into grids, and all o f LPs in the same grid are allocated to the same 

cluster.

Strongly connected component partitioning

This approach improves the grid partitioning algorithm by considering the inter

processor communication overheads and the possibility o f inter-processor 

deadlocks.

In addition, a number o f authors including Boukerche and Fabbri (2000), 

Boukerche and Tropper (1994), Choila and Ferscha (1993), Cloutier et al. (1997), 

Hendrickson and Kolda (2000) and Kim et al. (1998) described and discussed 

different partitioning and mapping algorithms.

5.6 Proposed approach for model representation, model partitioning and 

mapping

As was already noted, most o f the distributed simulations were developed with 

general purpose or special simulation languages by employing partitioning and 

mapping algorithms to decompose and assign LPs to workstations (processors). 

However, partitioning algorithms proposed in the literature (Boukerche and

80



Chapter 5  -  Conceptual modelling, m odel partitioning and m apping fo r  distributed enterprise
_______________________________________________________________________________________________________________________________________________________________________ simulation

Fabbri, 2000; Boukerche and Tropper, 1994 and 2001; Cloutier et al., 1997; 

Hendrickson and Kolda, 2000; Kim et al., 1998; Nandy and Loucks, 1992) are 

complex and difficult to implement without a higher level o f expertise in parallel 

and distributed simulation (especially in partitioning), computer programming and 

mathematics. Moreover, most o f these authors did not comment on how to 

implement their proposed algorithms. Some partitioning algorithms including one 

proposed by Nandy and Loucks (1992) require the distributed simulation program 

to run initially as a sequential simulation. This is done to calculate the execution 

times of different elements, frequency o f communication between them and the 

time taken to pass messages. Once the required information is collected, the 

simulation model is partitioned into LPs and mapped onto different processors. 

However, generally in the literature it is not clear how LPs are identified when the 

simulation model is developed. Thus, the simulation community, especially from 

business organisations may find it difficult to implement distributed simulations. 

Although most o f the literature in distributed simulation does not specifically 

mention how to construct simulation models to execute in distributed 

environment, it can be presumed that figure 5.8 generally summarises the existing 

approaches.

Partitioning based on data collected

D evelop  the sim ulation program

M apping

E xecution o f  sim ulation and collect data

Figure 5.8 -  Existing approaches for conceptual modelling, model partitioning and
mapping

Simulations are executed in a distributed manner mainly because the simulation 

model is too large or too complicated to be executed in a single processor 

(workstation). This is especially relevant for enterprise simulation where process 

sequences are often complex and number o f resources employed are large
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(Sirinivasan and Jayaraman, 1997). Furthermore, a simulation model may be 

developed at different sites and then linked together to be executed as a distributed 

simulation. Also different sections or partners o f the enterprise may not want to 

share information with other sections or partners. Therefore, partitioning and 

mapping techniques mentioned previously are not appropriate for the proposed 

approach as it is necessary to partition the conceptual model before transforming it 

into a computer simulation model.

As noted earlier, the main difference between existing approaches and the 

proposed approach is the point o f partitioning carried out in the simulation 

methodology. According to most o f the current approaches partitioning is done 

after the system is converted into a computer program using algorithms in order to 

minimize the communication overheads and optimize the load balance. To 

simplify the distributed simulation development process it was proposed to 

partition the conceptual model into LPs, assign them into processors and then 

transform LPs into computer simulation models. Furthermore, as functions and 

sub-functions can be easily identified in an enterprise, the proposed approach can 

be easily applied when developing a distributed enterprise simulation than 

constructing distributed simulations for highly complex systems such as logic 

circuits, computer networks, telecommunication systems etc.

For the purpose o f the proposed approach for model representation, partitioning 

and mapping o f  enterprise simulations, a LP can be described as follows:

• A single business entity o f the enterprise

• A function o f a business entity 

• .  A sub-fimction

An enterprise could be partitioned in such a way that LPs could function 

independently o f  each other and continue to serve “local” needs o f the business 

functions they represent (Datar, 2000). In this case a simulation model already 

developed for a section could be used to simulate that section o f the enterprise and 

with appropriate modifications could also be connected to simulation models that 

represent other sections o f the enterprise to simulate the whole enterprise. This
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could easily be carried out by keeping simulation models for different sections in 

different physical locations which they represent and running them in a distributed 

manner. The key to design o f such a system is to identify sections o f  an enterprise 

that could function independently. The selected modelling approach and 

modelling tool may play a critical role in decomposing an enterprise into different 

sections that could function in parallel at a selected level o f abstraction.

The hierarchical modelling approach was selected since it provides a way o f  

managing large scale complex systems by considering them as a collection o f  sub

systems (Kiran, 1998). In a distributed simulation system these are represented by 

the simulation models that are independently created, modified and saved.

IDEFO was selected as the modelling technique for the proposed approach for 

conceptual modelling, model partitioning and mapping. IDEFO is simple and able 

to support different abstraction levels. It has been widely used due to its user- 

friendliness, computer support, rigor and conciseness, and well documented rules 

and procedures (Kateel et.al., 1996). Pandya (1995) noted that IDEFO has been 

widely used in industry, resulting in the existence o f a wide user base. A number 

o f authors including Cheng-Leong et al. (1999), Cheng-Leong (1999), Rensburg 

and Zwemstra (1995) and Whiteman et al. (1997) have used it as a model 

representation technique in simulation. Another benefit o f using IDEFO with 

commercial simulation software is that the IDEFO structure o f the model can 

easily be transformed into a simulation model. Figure 5.9 shows a part o f 

simulation model developed by Arena for an IDEFO model. This helps to reduce 

the complexities associated with development o f simulation models particularly 

distributed simulations which, according to the literature are more complicated to 

develop.

With the hierarchical modelling approach and the IDEFO technique, LPs that can 

function independently could be identified based on interactions between different 

sections. In the IDEFO model these interactions are represented by lines between 

boxes that represent different sections o f the enterprise.
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Once sub-models are identified, this could be validated to make sure that the sub

models represent the enterprise when taken as whole. Then the validated sub

models could be mapped out to processors in a network o f workstations before 

being converted into computer simulation models and executed as a distributed 

enterprise simulation. In order to simplify the mapping processes and assuming 

that networked workstations are freely available to assign LPs, it is proposed that 

only one LP is mapped into a (processor of) workstation.

Process 1

Process 2A2

A22

A ssign  1

R atol

Figure 5.9 -  Relationship between IDEFO diagram and Arena simulation model

Based on the ideas presented above, the following approach was proposed for the 

purpose o f conceptual modelling, model partitioning and mapping for distributed 

simulation in order to execute enterprise simulation models (figure 5.10).
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Mapping

Identify an appropriate modelling technique

Validate the sub-models

Identify an appropriate modelling approach

Validate the conceptual model

Identify sections that can function 
independently partition into LPs

Convert LPs into computer simulation 
models

Develop the conceptual model

Figure 5.10 -  Proposed approach for model representation, model partitioning and
mapping

The conceptual model needs to be validated in order to make sure that the 

conceptual model represents the enterprise as intended. After partitioning, sub

models should be again validated to ensure that when integrated they represent the 

system under investigation. The accuracy o f simulation can be also improved with 

this step by step validation approach.

Summary

This chapter presented a simplified approach for model representation, model 

partitioning and mapping for distributed enterprise simulations. Before 

transforming sub-models into computer simulation models, a synchronization 

protocol needs be determined as the programming code for synchronization is 

integrated into simulation models. The next chapter addresses synchronization and 

networking issues in distributed simulation and presents a synchronization 

mechanism which focuses on distributed manufacturing applications.
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The proposed synchronization mechanism for the 

distributed enterprise simulation

Chapter 5 presented a discussion o f conceptual modelling, 

model partitioning and mapping. Before transforming the 

partitioned logical processes into computer simulation 

models and executing them in a distributed simulation 

environment, the infrastructure required for distributed 

simulation and a synchronization approach have to be 

determined. This chapter addresses networking and 

synchronization issues relating to distributed enterprise 

simulation (figure 6.1). It presents brief descriptions on 

network topologies, communication protocols and network 

protocols, synchronization and different synchronization 

protocols. An approximate synchronization mechanism is 

proposed as an alternative for strictly synchronized 

approaches.
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Problem definition & Identification 
of objectives

Ven fi cation & 
Validation

SimSS Process

Parallel and Distributed 
simulation

N Sequential
simulation

Data collection
~ * y * -

Construction o f conceptual model

Partitioning the model into logical 
processes (LPs)

Verification & 
Validation

Mapping of LPs into processors

| Synchronization and Networking |

Programming of LPs

Verification & 
Validation

Experimentation

Output analysis

Implementation and further work

Figure 6.1 - The proposed methodology for distributed enterprise simulation
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6.1 Introduction

To date, much o f the parallel discrete event simulation research focused on 

multiprocessor platforms (Carothers et al., 1997). However, Ikonen and Porras 

(1998) noted that in recent years the use o f networked workstations for distributed 

applications gained more popularity. The cost involved in distributed simulation 

can be kept down as most o f the equipment is already available. Low cost o f 

equipment and incremental scalability are other main advantages o f using a 

distributed system over parallel systems. Hence, the use o f  networks o f 

workstations interconnected through local area network (LAN)/ wide area 

network (WAN) has been evolving into a popular and effective platform for 

distributed simulation. Idle cycles o f workstations can be used to run distributed 

applications on networks o f workstations. Moreover, a network o f workstations 

can be considered as a parallel computer, or ‘hypercomputer’, whose performance 

is similar to that o f a parallel machine but is achieved at much lower cost (Cabillic 

and Puaut 1997).

In distributed simulation, the simulated system is partitioned into a set o f sub 

systems that are simulated by a set o f processors that communicate by sending and 

receiving timestamped messages over the network (Lin, 2000). These messages 

are passed through the network (Figure 6.2). Carothers et al. (1997) noted that 

distributed simulation is one o f the most demanding applications which can be run 

on a computer network. Moreover, workstations and the network itself are subject 

to heavy external loads in an open network computing environment (due to other 

applications executed) (Carothers et al., 1999). This leads to the degradation o f 

performances o f applications executed over the network, including simulation. 

However, Ikonen and Porras (1998) pointed out that disadvantages o f  slow 

communication through a network can be overcome by the proper planning o f the 

simulation system. Distributed simulation is affected by all elements o f a network 

system including software, hardware and communication network. Therefore, 

design o f the network also plays a critical role in performances o f a distributed 

simulation.

88



Chapter 6  -  The proposed  synchronisation mechanism fo r  the distributed enterprise simulation

Processor 2Processor 1 Processor 3

L_

Com m unication sub system

Figure 6.2 -  Distributed simulation and communication network (Dado et al.,

1993)

Interest in parallel and distributed simulation arose first with the problem of 

synchronization and it is a problem that has remained in the focus o f most 

research in the area (Nicol and Fujimoto, 1994). Das (2000) also mentioned that 

most o f the research in distributed simulation (also in parallel simulation) so far is 

centred on design o f synchronization protocols and their evaluation with various 

simulation benchmarks.

Simulations pose unique synchronization constraints due to their underlying sense 

o f time. When the simulation state can be simultaneously changed by different 

processes, actions by one process can affect actions o f another (Nicol, 1993). 

However, the outcome o f a simulation should not depend on the way it is 

simulated. That is, if the same model is simulated using distributed simulation and 

sequential simulation, users must be able to get an identical outcome. In addition, 

it should be repeatable. For this purpose individual simulation models need to be 

synchronized.

The objective o f this chapter is to provide a discussion o f networking issues 

relating to distributed simulation and present an approximate synchronization 

mechanism for distributed enterprise simulation. The next section presents a 

description on computer networks that include network topologies, 

communication protocols and network protocols. Section 6.3 discusses
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synchronization issues and different synchronization protocols. An approximate 

synchronization approach is presented in section 6.4. The chapter ends with a 

summary.

6.2 Computer networks

Based on the geographical area covered, a computer network can be either a LAN, 

WAN or a metropolitan area network (MAN). LAN covers a limited physical area 

(a building, a company, or a campus). WAN covers a wide geographical area and 

can even extend over countries. MAN is an intermediate between former two and 

can be extended to cover a city. In general, LANs provide a much “friendlier” 

environment for distributed simulation systems than WANs or MANs (Fujimoto, 

2000).

When compared against other aspects o f distributed simulation such as 

synchronization and partitioning, possibility o f changing the networking 

infrastructure and networking protocols is less as it is expected to utilize existing 

networks to run distributed enterprise simulation. Following descriptions on 

network topologies and network protocols are presented in order to provide a 

complete set o f literature on issues relating to distributed enterprise simulations.

6.2.1 Network topologies

Different types o f network designs or network topologies are available for 

distributed computer systems. Historically LANs were based on either Bus or 

Ring networks (Figure 6.3). In Bus networks, all stations are connected to a single 

transmission path that spans the whole length o f the network. In ring networks, 

stations are generally connected to a ring using active interfaces. It can be 

considered as a sequence o f point-to-point links closed on itself. Recently, Star 

based or Tree based networks (Figure 6.4) are gaining popularity over Bus and 

Ring based systems. In a Star network, all stations are connected to a central node 

by dedicated links. Links can be established with unshielded twisted pair (UTP) 

cables, shielded twisted pair (STP) cables, Fibre Optics cables, wireless systems 

etc. The tree topology consists o f a hierarchical structure, with stations being the 

leaves o f the tree. Stations are connected to nodes at the next higher level o f the
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structure. A recent phenomenon is the appearance o f switched LANs, such as 

those based on Ethernet or asynchronous transfer mode (ATM) switching 

technology (Fujimoto, 2000). Advantages and disadvantages o f these topologies 

were extensively discussed by Abeysundara and Kamal (1991).

W orkstations

I Repeater

O

R ing topologyBus topology

Figure 6.3 -  Bus topology and Ring topology

-Root node
W orkstations

Central Hub

Interm ediate
nodes

Star topology Tree topology

Figure 6.4 -  Star topology and Tree topology
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6.2.2 Network protocols

Overall performance o f the network (thus o f distributed simulation) depends on 

the type o f  network protocol employed (Sohl, 2002). TCP (Transmission Control 

protocol)/ IP (Internet Protocol), UDP (User Datagram Protocol) and IPX 

(Internetwork Packet Exchange)/ SPX (Sequenced Packet Exchange) are some of 

the network protocols that can be used in a distributed environment. Each protocol 

has its own merits and demerits. TCP is a connection oriented protocol. It 

guarantees that data packets will arrive at their destination error free and in the 

order in which they were sent (Kirchner, 1997). But it also incurs an overhead 

which leads to latencies. On the other hand, UDP is a connectionless protocol 

which merely sends a packet o f data with no guarantee that it will arrive at its 

destination. IPX/SPX is a protocol for Novell based systems. Dewire (1997) 

provided a detailed discussion about different network protocol types, and 

advantages and disadvantages o f them.

As noted previously, simulation developers have only limited control over 

networking aspects and are expected to use existing network topologies and 

protocols. Most o f the networks that exist in small to medium size enterprises are 

fall into star or tree categories and it is expected to use TCP/IP protocol, which is 

the most commonly used protocol for the implementation o f distributed simulation 

system.

6.3 Synchronization

State variables, a global clock and an event list do not exist in a parallel or 

distributed simulation system. On the other hand, individual logical processes 

(LPs) can be considered as sequential simulations with state variables, virtual 

clock and an event list (Mehl and Hammes, 1993). Bagrodia (1996) viewed 

distributed simulation as a collection o f sequential discrete-event simulation 

models, which communicate each other with timestamped messages. A 

synchronized simulation system makes sure that each LP processes arriving 

messages in their timestamped order and not in their real time arriving order. This 

requirement is referred to as the local causality constraint (Fujimoto, 1999). To 

satisfy the local causality constraint, a number o f synchronization algorithms have
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been proposed. Such algorithms can be classified into two classes as synchronous 

and asynchronous (Kim et al., 1997).

6.3.1 Synchronous systems
t

In synchronous systems, synchronization o f communicating subsystems is 

achieved by means o f a global clock whose transitions define points in the time 

when communication transactions can take place. All LPs must have the same 

simulated time under this system. Every LP must process all events in a time 

interval before any o f the LPs are allowed to begin processing events at next time 

step and latter time steps. This strategy considerably simplifies the 

implementation o f correct simulation by avoiding deadlock and need for 

overwhelming number o f messages required by synchronization protocols in 

asynchronous simulation (Ferscha, 1995). The imbalance o f work across LPs in 

certain time steps on the other hand naturally leads to idle times and represent a 

source o f inefficiency (Ferscha and Tripathi, 1994). Also a synchronous 

simulation would constrain the time unit to the smallest time increment o f the 

whole system. Pham et al., 1998 noted that in some cases it is difficult to define a 

global clock for a simulation.

6.3.2 Asynchronous systems

Asynchronous simulation relies on the presence o f events occurring at various 

simulated times that do not affect each other. Concurrent processing o f events 

effectively speeds up a simulation. Righter and Walrand (1989) mentioned that 

asynchronous simulation has received the greatest attention due to its potential 

high performance. However, asynchronous simulations are susceptible to causality 

errors (Ferscha and Tripathi, 1994). Numerous algorithms have been developed 

for synchronization o f asynchronous parallel and distributed simulation in order to 

avoid causality errors. These algorithms are known as synchronization protocols 

and can be broadly classified into two categories: conservative and optimistic 

protocols (Fujimoto, 1999).

6.3.2.1 Conservative synchronization

Historically, first synchronization algorithms were based on conservative 

approaches. The idea o f conservative synchronization was proposed by Chandy in
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1977 and independently by Bryant. Conservative approaches strictly impose the 

local causality constraint and guarantee that each process only processes events in 

non-decreasing timestamp order (Turner, 1998). Fujimoto (1990) noted that no 

causality error can ever occur in an asynchronous simulation if  and only if every 

LP processes events in non-decreasing timestamp order only. With this simple 

mechanism, a LP must block if it does not own any safe event to proceed. 

However, this algorithm does not prevent a simulation from running into a 

deadlock. It is possible that some LPs become blocked and each o f them waits 

indefinitely for each other in a cyclic fashion (Vee and Hsu, 1999). Misra (1986) 

proposed to use null messages to avoid the deadlock. A null message with 

timestamp T sent from a LP is an assurance given by the LP that later it will not 

send a message with a timestamp smaller that T.

The null message algorithm introduced a key property called lookahead utilized 

by virtually all conservative synchronization algorithms (Fujimoto, 1999). 

Lookahead is the amount o f time that a process can look into the future. If  a LP is 

at simulation time T, and it can guarantee that any message it will send in the 

future will have a timestamp o f at least T+L regardless o f what messages it may 

later receive, the LP is said to have a lookahead o f L. Nicol (1996) provided a 

discussion o f different dimensions o f lookahead.

Conservative algorithms can either be deadlock avoidance algorithms or deadlock 

detection and recovery algorithms. Although null messages are used to avoid 

deadlocks, they lead to increase in network traffic. Chandy and Misra (1981) 

introduced a deadlock detection and recovery approach. This algorithm allows 

processors to fall into a deadlock state, then detects the deadlock and breaks it. 

Since the original Chandy and Misra algorithm, a number o f modified algorithms 

was introduced based on the conservative synchronization principle. Boukerche 

and Trooper (2001), Calinescu (1995), Fujimoto (1999), Nicol (1993), Reynolds 

(1988) and Vee and Hsu (1999) described and compared these modified 

algorithms.
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6.3.2.2 Optimistic synchronization

Optimistic synchronization algorithms detect and recover from causality errors 

rather than strictly avoiding them. In contrast to conservative mechanisms, 

optimistic approaches need not determining when it is safe to proceed; instead, 

they determine when an error has occurred and invoke a procedure to recover. The 

best-known optimistic protocol is time warp protocol based on virtual time 

(simulated time) introduced by Jefferson (1985). This protocol executes every 

message as soon as it arrives. I f  a message Mt with an earlier timestamp 

subsequently arrives, the rolls back its state o f the time Mt, and re-execute from 

that point. All messages sent before Mt are cancelled by sending anti-messages. 

To support roll back, Lin (2000) mentioned that an input queue, output queue, a 

local clock and a state queue should be maintained. This leads to increased usage 

o f memory, which is a major drawback o f the time warp protocol. Optimistic 

synchronization approaches including modified ones are described and compared 

by Fujimoto (1990), Fujimoto (1998), Reynolds (1988), and Vee and Hsu (1999).

6.3.2.3 Conservative vs. Optimistic synchronizations

The primary emphasis o f  research in distributed simulation has been on proposing 

and proving correctness o f synchronization schemes. The most crucial question 

for practitioners is the choice o f a synchronization protocol: i.e. conservative or 

optimistic, for a particular simulation problem (Ferscha et al., 2001). Both 

conservative and optimistic protocols have their own merits and drawbacks. The 

implementation o f conservative algorithm is simpler than the implementation o f  

optimistic protocols (Baukerche and Tropper, 2001). However, due to their strict 

adherence to local causality constrain, conservative protocols may not frilly 

exploit the inherent parallelism o f a simulation (Peterson and Willis, 1999; Porras 

et al., 1997). Conservative protocols are also prone to deadlock and null messages 

used to break the deadlock may lead to increase in network traffic resulting in 

latencies. Since optimistic protocols do not strictly adhere to local causality 

constraint, they have more potential to exploit the parallelism o f a simulation. But 

the rollback mechanism used to overcome causality errors is often time 

consuming and needs to keep the state o f a simulation in computer memory, 

resulting in increased requirements for computational and communication 

resources. (Calinescu, 1996; Ferscha et al., 2001). Ferscha (1995) and Fujimoto
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(1998) compared advantages and disadvantages o f two protocols in detail. 

Sanchez et al (1996) compared these protocols based on aggressiveness and risk 

terminology introduced by (Reynolds, 1988). Aggressiveness evaluates a 

protocol’s ability to exploit the parallelism. Risk measures the possibility o f 

causality violations. Conservative algorithms are non-aggressive and non-risk 

while optimistic algorithms are aggressive and risk protocols. It has been 

concluded that neither conservative nor optimistic classes o f synchronization 

algorithms proved to be strictly better than the other (Das, 2000 and Sanchez et 

al., 1996). In light o f this, a new class o f algorithms called hybrid or adaptive 

protocols was introduced (Das, 2000). These protocols take an intermediate 

approach between purely conservative and purely optimistic approaches and 

contain some characteristics o f both main approaches mentioned earlier. Das 

(1996 and 2000) and Hamnes and Tripathi (1994) described a number o f  adaptive 

protocols.

6.4. The proposed synchronization approach

Most o f the distributed simulation systems developed so far are systems created 

for a specific situation using programming languages such as C++, Java, Simula 

etc. Therefore it is possible to save state variables at different time points when 

executed. This enables implementation o f the optimistic synchronization protocol, 

which requires rolling back to a previous simulation point o f time, if  the local 

causality constraint is violated. The simulation engine could be designed in such a 

way that it could predict entity creation times, processing times, delay times etc. 

With these it is also possible to calculate a value for lookahead that is critical for 

the conservative simulation protocol.

Rolling back to a previous time may not always feasible with commercial 

simulation software (which will be used to implement distributed enterprise 

simulation), as saving o f state variables at different points o f time can not be 

easily implemented. Therefore to synchronize different modules that are running 

in distributed simulation environment, a conservative simulation protocol was 

selected. If  minimum processing times for distributed simulation models can be 

calculated, these values could be taken as lookahead values for respective 

simulation models. With them, a null message passing algorithm can be
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implemented to synchronize the distributed simulation system. However, since 

entity creation times, processing times, delay times etc. are generated by 

simulation engine o f  the model based on statistical distributions specified, it might 

not be possible to calculate a definite lookahead value for simulation modules if 

commercial simulation software is to be used. In addition, some applications such 

as distributed manufacturing may not require a strictly synchronized environment. 

In these situations an approximate synchronization approach could be used to 

synchronize a distributed enterprise simulation system as it is more simple and 

straightforward to implement than mechanisms that strictly synchronize the 

system.

6.4.1 An approximate synchronization mechanism for distributed enterprise 

simulations

The approximate synchronization mechanism can be implemented with an 

appropriate message passing mechanism that links different simulation models 

created using commercial simulation software. It does not attempt to execute all 

simulation models in a strictly synchronized environment. Instead different 

models are allowed to run at different but approximately close simulation times 

(STs) without using a lookahead. This is achieved through simulation models 

comparing STs o f their own with STs o f the other models. I f  the simulation time 

o f a model is higher than any other model, the faster model pauses till slower 

running model reaches paused model’s ST. As simulation models proceed in 

different time steps and due to delays take place in message passing, it is 

impossible to force them to run at the same simulation time.

The concept behind this mechanism is simple and could be implemented with any 

simulation system including systems built with most o f the commercial simulation 

software packages. The basic steps o f the mechanism for a distributed simulation 

with only 2 models as follows (figure 6.5).

M odel X M odel Y

Figure 6.5 -  Synchronization o f 2 models
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• Model X sends its simulation time (STx) to model Y

• If  simulation time o f model Y (STy) is higher than STx then model Y sends 

back its simulation time (STy) to model X and pauses the execution o f the 

model Y.

• After (STy - STx) simulation time model X sends a message to resume Model 

Y.

An identical process takes place when Model Y sends its simulation time to 

Model X.

However, if more than two distributed simulation models are to be used, above 

approach may result in generating too many messages leading to increased 

network traffic which may have detrimental effects on performance o f the 

network. The number o f  messages passed for synchronization can be reduced by 

introducing an additional component (TPU -  Time Processing Unit) for 

processing times sent by distributed simulation models (Figure 6.6).

A

A * kk.

C DW

y r A *
B

T im e processing  
unit (TPU)

Figure 6.6 -  Synchronizing mechanism without and with TPU

Instead o f sending ST o f one model to rest o f the models all simulation models 

send their STs to the time processing unit (TPU). After determining the lowest ST, 

it pauses all simulation models except the slowest one. Before pausing, faster 

simulation models send their current STs to the slowest model which uses these 

times for scheduling the resumption o f paused models. Once the ST o f the slowest 

model reaches the ST o f a paused model, it sends a message for resuming the
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paused model. The process continues till all the paused models are resumed. This 

mechanism forces distributed simulation models to run at approximately same ST. 

The TPU consists o f 2 main elements. While the first element requests STs from 

distributed simulation models (figure 6.7), the second element processes the STs 

received from distributed simulation models (figure 6.8).

At least 2 models are 
running?

Reset time variables

Request times

Time to request STs

Figure 6.7 -  Requesting simulation times at TPU of approximate synchronization

algorithm

Figure 6.7 shows how the TPU requests STs from distributed simulation models. 

At predefined time intervals o f the real time clock (time interval can be varied) 

TPU requests STs from simulation models. However, messages that request STs 

are passed to simulation models only if at least 2 simulation models are running in 

the system. I f  messages are sent, variables that store STs (when received from 

simulation models) are reset to zero.

Once a ST is received from a simulation model (responding to the ST request 

message from the TPU), the time processing part o f the TPU updates time 

variables by recording the ST and the name o f the simulation model from which 

the ST was received. It then checks whether all simulation times are received 

(values o f time variables higher than zero) if at least 2 models are running. This is 

carried out in order to preventing deadlock situations as paused simulation models
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also send their STs to the TPU responding to the message o f requesting STs. I f  all 

STs are received and at least 2 models are running, then the TPU determines the 

lowest ST and slowest simulation model. Then it sends messages to faster models 

requesting them to pause with the name o f the slowest model, and updates 

variables by changing the status o f faster models to ‘Pause state’ (figure 6.8).

Receive ST

A t lease 2 models 
are running?

Receive all 
simulation times?

Update variables

Determine the slowest model

Message to faster models to pause with 
name o f  the slowest model

Update variables

Figure 6.8 -  Processing simulation times at TPU of approximate synchronization

algorithm

Part o f the approximate synchronization mechanism is also incorporated into 

individual simulation models that are distributed across the network. Figures 6.11 

to 6.14 show different processes o f the approximate synchronization mechanism 

included in distributed simulation models. When a message is received from the
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TPU requesting ST, individual simulation models send their STs to TPU (figure 

6.9).

Request for ST

Send ST to TPU

Figure 6.9 -  Sending simulation time to TPU from distributed simulation models

As noted in the previous section, these times are processed at the TPU and 

messages are sent to faster models requesting them to pause. If  a model receives a 

message requesting it to pause, it checks whether the model is already in pause 

state. If  not it sends its current ST to the slowest simulation model, updates 

variables to indicate that it is in ‘Paused state’ and pauses itself (figure 6.10).

Message to pause

Already paused

Pause model

Send current ST to slowest model

Update pause status

Figure 6.10 -  Pausing a faster simulation model
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Once the slowest model receives a ST time from a pausing model, it calculates the 

difference between its current ST and ST o f the paused model (PTime). I f  the time 

difference is less than 0.5 STs (The value is an arbitrary figure and can be changed 

if necessary), a message is sent to the paused model to resume. This is carried out 

in order to take delays occurred in message passing into account. If  the ST 

difference is greater than 0.5, the slowest model schedules a message to be sent 

for resuming the paused model after PTime (figure 6.11).

PTime > 0.5

Receive ST from 
pausing model

Schedule to resume 
the model now

Schedule to resume the model after PTime

Calculate time to be paused (PTime)

Figure 6.11 -  Scheduling to resume a pausing model at slowest model

When a message arrives to a paused model requesting it to resume, the model 

updates its state variable from ‘Paused state’ to ‘Resume state’, sends a message 

to the TPU indicating that it resumed, and resumes itself (figure 6.12). The TPU 

updates the status o f the resumed model when it receives such a message. (Figure 

6.13)
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Receive message 
to resume model

Resume the paused model

Send message to TPU to update varuables

Update pause status

Figure 6.12 -  Resuming a paused model

less age indicating 
resumption o f  a , 
^ \m od eU ^ ^

Update pause status

Figure 6.13 -  Updating variables when resuming a model

6.4.2 Illustrating the approximate synchronization mechanism

In order to illustrate the effectiveness o f the approximate synchronization 

mechanism, three distributed simulation models were executed without and with 

the synchronization mechanism. Real time (in seconds) was measured from the 

start o f the simulation at every 10th simulation unit time for each simulation model 

for 500 simulation unit times. Figures 6.14 and 6.15 show graphs without 

synchronizing and with synchronizing respectively. The models were executed in 

a local area network with Tree topology which uses TCP/IP protocol. Windows 

XP Professional was the operating system o f the one workstation and Windows 

2000 professional was the operating system o f the other two workstations. MSMQ .
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2.0 was used as the message passing middleware. MSMQ was employed in 

workgroup mode without a MSMQ server. A detailed discussion o f MSMQ and 

other message passing middleware will be presented in the next chapter (chapter 

7)

3 models without synchronizing
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Figure 6.14 -  Execution o f models without synchronization mechanism '

The figure 6.14 shows that three models are running at different simulation times. 

At 400th simulation time model C was the fastest and model B was the slowest. If  

a messages passed from A and B to C, they may not satisfy the local causality 

constraint.
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3 Models with synchronizing
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Figure 6.15 -  Execution o f models with synchronization mechanism

Figure 6.15 shows that all three models are running at approximately same 

simulation time thus avoiding the occurrence o f the local causality constraint.

Summary

The chapter presented an approximate synchronization mechanism for distributed 

enterprise simulations. In addition, it also briefly described networking and 

synchronization issues relating to distributed simulation. According to the 

proposed methodology for distributed enterprise simulation (figure 6.1), the 

partitioned logical processes can be transformed into computer simulation models 

and executed in a distributed simulation environment. The next chapter illustrates 

the implementation o f  distributed enterprise simulation with a hypothetical case 

study which focuses on distributed manufacturing applications.
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Implementation of the distributed enterprise 

simulation

Chapter 6 described networking and synchronization issues 

relating to distributed enterprise simulation. It also 

proposed an approximate synchronization approach, which 

is particularly suitable for distributed manufacturing 

applications. This chapter presents a detailed approach for 

implementation o f  distributed enterprise simulation (see 

figure 7.1). A brief discussion o f middleware is also 

included as middleware is used for message passing to 

synchronize and pass parameters between simulation 

models distributed across the network. In order to simplify 

the implementation process and to reduce the time and cost 

involved, it was decided to use commercial simulation 

software, and widely available and cost effective 

technologies to implement the distributed enterprise 

simulation. A hypothetical case study focused on 

distributed manufacturing is used to illustrate the proposed 

approach for implementation. Arena, MSMQ and VBA 

used as the commercial simulation software, middleware 

and application program interface (API) respectively for 

implementing the case study presented.
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Problem definition & Identification 
of objectives

Verification & 
Validation

SimSS Process

Parallel and Distributed 
simulation

N Sequential
simulation

Data collection

Construction o f conceptual model

Partitioning the model into logical 
processes (LPs)

Mapping o f LPs into processors

Synchronization and Networking 

2
Programming ofLPs

Verification & 
Validation

Experimentation

I
Output analysis

Implementation and further work

Verification & 
Validation

Figure 7.1 - The proposed methodology for distributed simulation
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7.1 Introduction

During the development o f a distributed simulation, issues such as model 

partitioning, mapping, synchronization, and implementation (mainly the 

technologies and software used) need to be addressed. As noted in previous 

chapters, the new methodology proposes to pursue a different approach in 

developing and implementing distributed enterprise simulations. Generally 

distributed simulations are implemented using either a simulation language such 

as Simula or general purpose languages such as C++ and Java. This calls for not 

only expertise in distributed simulation, but also expertise in programming. 

Moreover, the need for middleware to communicate between distributed models 

further complicates the implementation process. A number o f authors including 

Ikonen and Porras (1998) and Pancake (1996) criticized the implementation 

process o f parallel and distributed simulations as time consuming, effort intensive, 

complex and involving steep learning curves. As a result, distributed simulations 

(along with parallel simulations) are still being utilized primarily in the research 

community, with only a limited penetration in the commercial modelling and 

sequential simulation community (Bass, 1999; Cai and Teo, 1999; Page, 1999; 

Taylor, 1998).

The new methodology for distributed enterprise simulation uses commercial 

simulation software to develop distributed simulation models, and uses a cost 

effective and simplified approach to implement distributed enterprise simulation. 

To illustrate the implementation process a hypothetical case study in distributed 

manufacturing was developed. Distributed manufacturing applications can be 

easily implemented with the proposed methodology, since they are not as 

complicated as logic circuits, telecommunication system etc., and generally do not 

require to be strictly synchronized.

In order to synchronize and pass parameters between simulation models 

distributed across a network, simulation models need to communicate with each 

other. Communication methods provided by operating systems often require 

complex programming. In a distributed simulation, middleware provides a simple 

and reliable solution for this problem. Middleware is a piece o f software that 

interacts between different programs distributed across a network. It provides a
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higher level building block for programming than connection methods provided 

by operating systems by allowing applications to locate transparently across the 

network, providing interactions with another application or service, be 

independent from network service, be reliable and available, and scale up in 

capacity without losing function (Schreiber, 1995).

The objective o f  this chapter is to present a simplified and cost effective approach 

to implement a distributed enterprise simulation. The next section provides a short 

introduction to distributed manufacturing on which the implementation approach 

was based. Sections 7.3, 7.4 and 7.5 respectively provide descriptions on 

middleware, simulation software and API used for the implementation. The 

hypothetical case study on distributed manufacturing is presented in section 7.6 to 

illustrate the implementation o f distributed enterprise simulation. The detailed 

implementation approach is shown in section 7.7. Section 7.8 briefly discusses the 

output from a distributed enterprise simulation as (unlike traditional sequential 

simulation) more than one model can generate output. Validation issues o f 

distributed enterprise simulation is briefly presented in section 7.9. The chapter 

ends with a summary.

7.2 Distributed manufacturing

Confronted with growing competition, the evolution o f new markets and 

increasingly complex global and political scenarios, today’s manufacturing 

organizations are forced to rethink about how they are organized and operated. 

Not only to gain a competitive advantage over their competitors but often merely 

to survive, companies are now looking for innovative ways o f  responding to 

market changes, produce better quality products in more cost effective manner, 

manage product life cycles effectively etc. As a result, enterprises are moving 

towards more open architectures for integrating their activities with those o f their 

suppliers, customers and partners within wide supply chain networks (Shen and 

Norrie, 1998). In manufacturing, companies may form strategic partnerships by 

outsourcing some o f their operational activities, sharing resources or joint 

development o f products and services etc., leading to formation o f virtual 

manufacturing enterprises which operate in distributed manufacturing 

environment.
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Due to their nature and also to the environment they operate, distributed 

manufacturing enterprises (DMEs) are highly complex and heterogeneous. The 

traditional manufacturing control systems have low capacity to adapt and to react 

to the complex and dynamic nature o f DME. Therefore, attempts have made to 

develop distributed manufacturing architectures that can deal with complex and 

dynamic systems. New control and organizational architectures such as Agile, 

Fractal, Bionic, Random, and Holonic manufacturing architectures have been 

introduced over the last few years (Kadar et al., 1998; Leitao and Resviti, 2000 

and 2001; Saad, 2003).

DMEs which are also known as virtual manufacturing enterprises operate in 

geographically distributed environment and connected together with modern 

communication technologies. Virtual manufacturing enterprises are ephemeral 

organizations in which several companies collaborate to produce a single product 

or product line (Venkateswaran et al., 2001). Participating in this type o f 

collaboration allows partner organizations to use their knowledge, resources and 

in particular manufacturing expertise to take advantage o f new business 

opportunities and/or gain a competitive advantage that are on a larger scale than 

an individual partner could handle alone. Generally these types o f  enterprises are 

established without making a long term commitment to other partners and 

individual partners may also carry out their own manufacturing activities 

independent o f activities relating to the DME. To facilitate the creation o f virtual 

manufacturing enterprises, potential partners must be quickly able to evaluate 

whether it will be profitable for them to participate in the proposed enterprise. 

Simulation provides a capability to conduct experiments rapidly to predict and 

evaluate the results o f manufacturing decisions (McLean and Leong, 2001).

Simulation is not a strange tool for decision making in manufacturing. Law and 

McComas (1999) pointed out that manufacturing is one o f  the largest application 

areas o f simulation, with the first uses dating back to at least early 1960s. 

However, traditional sequential simulation alone may not be sufficient to simulate 

these highly complex DME. In such situations, distributed simulation provides a 

promising alternative to construct cross enterprise simulations. Each partner can 

simulate its operation to make sure that it has the capability to perform its
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individual function in the DME. Later these simulation models can be integrated 

into a distributed simulation for simulating the whole enterprise in order to 

evaluate the feasibility and profitability o f the proposed partnership. Use o f 

distributed simulation allows each partner to hide any proprietary information, 

simulate multiple manufacturing systems at different degrees o f abstraction levels, 

link simulation models built using different simulation software, to take advantage 

o f additional computing power, simultaneous access to executing simulation 

models for users in different locations, reuse o f existing simulation models with 

little modifications etc. (Gan et al., 2000; McLean and Riddick, 2000; Taylor et 

al., 2001; Venkateswaran et al., 2001). However, Peng and Chen (1996) noted that 

as a technique, parallel and distributed simulation is not successful in 

manufacturing. Most o f the simulations for DMEs implemented so far are purpose 

build simulators created using programming languages such as C++ or Java, and 

with high end workstations. Furthermore, as noted previously distributed 

simulation itself involves long development time, cost, steep learning curves, and 

is often complex to manage resulting low penetration into industrial applications.

7.3 Middleware

The most important role in the networking subsystem o f a distributed simulation is 

the efficient exchange o f messages (Sohl, 2002). Message passing can be point-to- 

point, broadcast or multicast. The point-to-point method requires the source to 

pass messages directly to the destination. In broadcasting, the source sends 

message to all hosts, which are ‘listening’. This eliminates the repeated and 

multiple connects needed by the point-to-point method. However, this may lead to 

an increase in network traffic resulting latencies. Multicast is an improvement to 

broadcast. It enables the source to pass messages to desired hosts.

Different techniques are used to communicate between simulation sub models. 

HLA (High Level Architecture) uses RTI (Run Time Infrastructure) (Buss and 

Jackson, 1998). Middleware such as CORBA (Common Object Request Broker 

Agent), GRIDS (Generic Runtime Infrastructure for Distributed Simulation) 

(Sudra et al., 2000), CDNS (Collaborative Distributed network Systems) can be 

used to pass messages between simulation models distributed across a network.
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Middleware is a class o f software designed to help managing the complexity and 

heterogeneity inherent in distributed systems. It consists o f a set o f enabling 

services which allow multiple processes running on one or more computers to 

interact across a network. This technology evolved during 1990s to provide for 

interoperability in support o f the move to client/ server architecture (Bray, 2003). 

Bakken (2003) defined middleware as a layer o f software above the operating 

system but below the application program that provides a common programming 

abstraction across a distributed system (see figure 7.2).

Host 1 Host 2

Distributed Application Distributed Application

Middleware API Middleware API

MiddlewareMiddleware

Middleware APIMiddleware API

Operating
System

Operating
System

ProcessingProcessing Storage Comm. StorageComm.

Network

Figure 7.2 -  Middleware layer in context (Bakken, 2003)

Based on programming abstractions and the kinds o f heterogeneity provided 

beyond network and hardware, middleware can be categorized into few different 

forms (Bakken, 2003; Berson, 1996; Dewire, 1997).

7.3.1 Forms of middleware 

Remote Procedure Calls (RPC)

A remote procedure call is a mechanism by which one process can execute 

another process (subroutine) residing on another, usually a remote system possibly
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running a different operating system. It extends the procedure call interface to 

offer the abstraction o f being able to invoke a procedure whose body is across the 

network. RPC systems are usually synchronous, and thus offer no potential for 

parallelism without using multiple threads. They typically have limited exception 

handling facilities.

Message Oriented Middleware (MOM)

Message oriented middleware offers program to program data exchange, enabling 

the creation o f  distributed applications. It provides the abstraction o f a message 

queue that can be accessed across a network. MOM is analogous to email in the 

sense that it is asynchronous and requires the recipients o f messages to interpret 

their meanings and to take appropriate actions. It is very flexible in how it can be 

configured with topology o f programs that deposit and withdraw messages from a 

given queue.

Object Request Brokers (ORB)

This type o f middleware enables the objects that comprise an application to be 

distributed and shared across heterogeneous networks. It provides the abstraction 

o f an object that is remote yet whose methods can be invoked just like those o f an 

object in the same address space as the caller.

In addition, inter process communication (IPC) and transaction processing (TP) 

also can be employed to communicate between remote processes. Based on the 

middleware forms described above, a number o f middleware architectures 

introduced over past few years. Followings are the widely publicized architectures 

summarised by Bray (2003):

7.3.2 Well known middleware architectures 

Distributed Computing environment (DCE)

Developed and maintained by the Open Systems Foundation (OSF), the 

Distributed Computing Environment (DCE) is an integrated distributed 

environment which incorporates technology from industry. The DCE is a set of 

integrated system services that provide an interoperable and flexible distributed 

environment with the primary goal o f solving interoperability problems in
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heterogeneous, networked environments. OSF provides a reference 

implementation (source code) on which all DCE products are based. For physical 

data exchange and communication DCE uses RPC.

The standard interfaces used by the DCE as well as all the source code itself, are 

defined only in the C programming language. Vondrak and beach (2003) noted 

that original DEC products were "developer's kits" that were not robust, did not 

contain the entire set o f DCE features (all lacked distributed file services), and 

were suited mostly for UNIX platforms. Johnson (1991) provides more detail on 

DEC.

Common Object Request Broker Architecture (CORBA)

Common object request broker architecture is a specification o f a standard 

architecture for object request brokers (ORB). CORBA specification was 

developed by Object Management Group, an industry group with over six hundred 

member companies. The ORB handles the interacting objects by behaving as an 

extensive object oriented RPC application program interface (API). Using 

CORBA compliant ORB, a process can transparently invoke a method on another 

object, which can be on the same machine or across a network. The process does 

not need to be aware o f where the object is located, its programming language, its 

operating system or any other aspects that are not part o f an object’s interface. 

CORBA interfaces are developed with Interface Definition language (IDL) which 

is similar to C++. A number o f authors including Minton (2003), OMG (2002) 

and Wallanau (1997) presented more details on CORBA.

Distributed Component Object Model (DCOM)

Distributed component object model (DCOM) is an extension to component 

object model (COM) that allows network based component interaction. COM 

refers to both a specification and implementation developed by Microsoft. With 

DCOM, components operating on a variety o f platforms can interact as long as 

DCOM is available within the environment. Its distributed object abstraction is 

augmented by other Microsoft technologies including Microsoft Transaction 

Server (MST) and Active directory. Similar to DCE and CORBA, communication 

between different objects under DCOM are also based on RPC. COM+ which is
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the evolution o f COM integrates MST services and message queuing into COM, 

and makes COM programming easier through a closer integration with Microsoft 

programming languages such as Visual Basic, Visual C++, and Visual J++.

JavaSoft’s Java/ Remote method Invocation (Java/ RMI) too is a middleware 

architecture based on RPC.

As it was noted DCE, CORBA, DCOM and Java/RMI are based on RPC form o f 

middleware which mainly support synchronous communication between remote 

processes. DCE and CORBA are relatively more matured than DCOM and enjoy 

more acceptability as middleware specifications for them are published by 

industry groups. Furthermore, these architectures support most o f the computing 

platforms. On the other hand, DCOM based technologies have the ability o f 

evolving faster than DCE and CORBA as one vendor developing its own 

proprietary specification. However, still Microsoft Windows (including both 

desktop and server) is the only platform which is fully supported by DCOM.

High Level Architecture (HLA)

HLA is a standard framework that supports simulations composed o f different 

simulation components thus encouraging reusability and interoperability. IEEE 

1516 standards specify HLA as a standard for distributed simulation. For (most of 

the) military applications in distributed simulation HLA has been accepted as the 

standard architecture. However, Strassburger in Taylor et al. (2002) noted that 

HLA as an IEEE standard failed to gain acceptance from non-military users 

mainly due to its relatively high complexity.

The main requirement for middleware in the proposed distributed simulation 

approach is passing messages between distributed simulation models for 

synchronizing the distributed simulation system and for passing parameters. 

While, RPC based middleware can be employed to communicate between 

distributed simulation models, message passing based on MOM may simplify the 

programming task. Unlike RPC, MOM does not require a synchronous connection 

between remote models and is more flexible than the former. Furthermore, MOM 

is well suited for event driven applications.
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Microsoft Message Queue (MSMQ) was selected as the middleware for 

communicating between distributed simulation models. Although MSMQ is a part 

o f Microsoft DCOM/COM+ architecture, it is a MOM. Since MSMQ 2.0 is 

integrated into Windows 2000 (both server and professional versions) and 

Windows XP (as version 3.0) and available as an additional component for 

Windows NT, 95 and 98, it provides an cost effective solution for message 

passing. Application program Interface (API) for MSMQ can be developed with 

Visual Basic, C++ or Visual Basic for Applications (VBA). VBA is also 

integrated into many Microsoft applications such as MS Office, Visio etc. and a 

number o f third party applications including Arena simulation software.

MSMQ workgroup mode can be implemented without MSMQ server mode and 

does not uses directory services offered by Windows 2000 server. However, if 

messages are required routing to a workstation in a different domain, then services 

o f MSMQ server mode is required. The advantage o f workgroup mode is that it 

can be deployed on a Novell environment although distributed simulation needs to 

be restricted to a single domain. MSMQ 3.0 which is integrated into Windows XP 

supports message passing with HTTP protocol. Therefore with MSMQ 3.0 

messages can be passed simulation models distributed across the internet. It also 

supports multicasting o f messages in addition to unicasting.

Applications developed with MSMQ could communicate across heterogeneous 

networks and with computers that may be offline. It provides guaranteed message 

delivery, efficient routing, security, transactional support, and priority based 

messaging and could operate in either domain or workgroup environment 

(Chapell, 1998). In a message queuing system, applications send and receive 

messages to message queues, which could be located in either a local or a remote 

computer. Applications interact with MSMQ via an API. The API developed for 

MSMQ could send messages containing parameters obtained from simulation 

model to a queue in the same computer or directly to another remote computer. 

API that resides in the remote computer extracts these messages from the queue 

and passes parameters to the simulation model.
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The last chapter presented a brief discussion o f network topologies and 

networking protocols. As noted in the same chapter, the likelihood o f changing the 

existing network infrastructure for distribution simulation is low. To emulate the 

networking environment in which generally distributed enterprise simulations are 

expected to be implemented, it was decided to use School o f Engineering’s (of 

Sheffield Hallam University) main network to illustrate the implementation o f the 

case study. The school’s main network which is in the form o f tree topology and 

operates in Novell NetWare environment with TCP/IP protocol. Therefore, 

MSMQ workgroup mode was used to implement the hypothetical case study.

7.4 Simulation software

As noted in chapter 3, there is a growing trend towards using commercial 

simulation software packages to implement distributed simulations. Arena 

simulation software was used to illustrate the implementation o f the case study. 

However, other commercial simulation software such as Automod, Promodel, 

Witness etc. can also be used for this purpose. Arena is one o f the popular 

simulation software packages used in sequential simulation. Takus and Profozich 

(1997) noted that it is a flexible and powerful tool that allows an analyst to capture 

the dynamics o f a system and create animated simulation models. A number o f 

authors including Linn et al., 2002; Venkateswaran et al., 2001 have employed 

Arena to implement distributed simulations. Furthermore, a recent survey carried 

out at Sheffield Hallam University revealed that Arena as the most widely used 

simulation software in both academic and industrial communities (Yapa, 2003).

7.5 Application Program Interface (API)

The API acts as the interface between simulation software and MSMQ. It extracts 

messages that arrive to message queues and pass parameters to the simulation 

model, and obtain parameters from simulation model and pass them as a message 

to a queue in another workstation which is part o f the distributed simulation 

system (figure 7.3). The API for Arena and MSMQ can be written in both Visual 

basic for applications (VBA) and C++. Since programming o f Arena with VBA is 

more straightforward, it was decided to use VBA instead o f C++. VBA also offers 

a programming environment similar to popular Visual Basic programming 

language and, user friendly and easy to learn.
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Figure 7.3 -  MSMQ, API and Simulation model

In order to demonstrate the proposed implementation approach, a hypothetical 

case study was used. Passing product information from one model to another, 

synchronization, implementation o f the distributed enterprise simulation using 

commercial software were the main point to be illustrated. These can be done 

either using a real world case or a hypothetical one. Due to time restrictions 

involved in the research, it was decided to use a hypothetical case study. The main 

differences between hypothetical and real case studies include number o f  product/ 

parts produced, number o f firms involved in the enterprise, process flows for 

different products. However, these issues may not affect what is expected to 

demonstrate through the hypothetical case study as number o f products, parts, 

process flows can be incorporated into the system by modifying individual 

simulations models. Number o f partners in the enterprise can be changed by 

adding or removing simulation models to or from the distributed enterprise 

simulation with slight modifications to other models. Generic names were used for 

processes and work centres as the case is a hypothetical one. One o f  the benefits 

o f the proposed implementation approach is ability to reuse o f simulation models 

already developed using commercial simulation software. To highlight this point, 

the case assumes that already developed simulation models were modified to 

develop the distributed manufacturing simulation system.
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7.6 Hypothetical case study

Three manufacturing firms namely A, B and C are evaluating the feasibility o f 

forming a distributed manufacturing enterprise in order to introduce a high tech 

product called XYZ which potentially has a huge demand in the market. It has 

been recognized that individual firms can not alone produce the product as 

manufacturing process requires highly sophisticated equipment and complicated 

production processes (figure 7.4).

Firm A 
Produces Parts X & Y FirmB 

Further processes Part Y

Firm C 
Produce Part Z 

Final assembly o f XYZ

Figure 7.4 - Proposed distributed manufacturing enterprise

It was agreed that firm A which has more excess capacity is to produce and 

process parts X and Y. Once parts X and Y are processed at firm A, part Y to be 

sent to firm B which uses its patented treatment processes to further process it and 

part X to be sent to firm C. Part Y also sent to C after processing at firm B. At 

firm C part Z is to be produced and, both parts X and Y are further processed and 

assembled together to form product XYX. Parts are transferred in batches o f  100s 

and transfer time is 10 hours.

Production facilities o f firm A consist o f 5 work centres (WCA1 to WCA5). Each 

Work centre contains between 3 to 4 work cells and each work cell is equipped 

with a number o f identical machines. Parts are routed through all work cells in the 

same sequence if they arrive at a work centre. However, parts are not required to 

be processed at all work centres. In addition to parts X and V, firm A also 

produces and processes parts P and Q in order to produce Product PQ. Processing
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sequences and processing times for parts and semi-finished products are given in 

figure 7.5 and table 7.1 respectively.

At work centre 4 Parts P and Q are assembled together to produce PQ and routed 

to Work centre 5 for finishing.

Work Center 
1

Work Center 
2

Work Center 
3

Work Center 
4

Work Center 
5

P

Q

PQ

Q -I I

-CZ}-
•n

Figure 7.5 -  Processing sequences at Firm A

Syntax used for processing times:

NORM() : Normal distribution 

UNIF() : Uniform distribution

TRIA() : Triangular distribution

NORM() : Normal distribution

W ork 
Centre 1

W ork 
Centre 2

W ork 
Centre 3

W ork 
centre 4

W ork 
Centre 5

Part X TRIA(0.5,1,1.5) NORM( 1,0.2) UNIF(0.5,1) TRIA(0.4,1,1.2)

Part Y NORM( 1,0.2) TRIA(0.5,1,1.5) TRIA(0.5,1,1.5)

Part P NORM(1.2,0.4) TRIA(0.6,1,1.7) UNIF(0.8,1.2) TRIA(0.5,1,1.5)

Part Q TRIA(0.7,1,1.8) UNIF(0.5,1)

Product PQ 0 TRIA(0.5,1,1.5)

Table 7.1 - Processing times at Firm A

Six work centres are included in firm B’s production facilities (WCB1 to WCB6). 

Each centre consists o f a number o f machines, a chemical bath and an oven. When 

arrive at a work centre each part or semi finished components are required to be
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processed at all machines, dipped in the chemical bath and baked in the oven. In 

addition to processing o f part Y, firm B also produces product RS by processing 

and assembling parts R and S.

At work centre 5 Parts R and S are assembled together to produce RS and routed 

to Work centre 6 for finishing.

Processing sequences and processing times for parts and semi-finished products 

are given in figure 7.6 and table 7.2 respectively.

Y

R

S

RS

Work Center Work Center Work Center Work Center Work Center Work Center
1 2 3 4 5 6

Figure 7.6 -  Processing sequences at Firm B

W ork 
Centre 1

W ork 
Centre 2

W ork  
Centre 3

W ork  
centre 4

W ork 
Centre 5

W ork 
Centre 6

Part Y NORM(1,0.2) UNIF(0.8,1.2) NORM(1.2,0.3) NORM(1,0.2) UNIF(0.8,1.2) TRIA(0.5,1,1.5)

Part R NORM(l. 1,0.2) UNIF(0.5,1) UNIF(0.7,1.3) NORM(l. 1,0.4) NORM(l .0,0.2)

Part S UNIF(0.5,1) NORM(l. 1,0.2) NORM(l. 1,0.2) NORM(l. 1,0.2)

Product RS 0 TRIA(0.5,1,1.5)

Table 7.2 - Processing times at Firm B

As at firm B, production facilities o f firm C consists o f 6 work centres (WCC1 to 

WCC6). Each centre contains 2 work cells with 4 identical machines. If  a part or 

semi-finished product comes to a work centre, it needs to be routed through both 

work cells. In addition to processing o f part X, Y and Z, and assembling product 

XYZ, firm C also produces product TU by processing and assembling parts T and 

U.
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At work centre 4 Parts T and U are assembled together to produce TU then sent to 

work centres 5 and 6 for further processing and finishing respectively. At work 

centre 5 parts X, Y and Z are assembled together to make product XYZ. Both TU 

and XYZ are sent to Work centre 6 for finishing.

Processing sequences and processing times for parts and semi-finished products 

are given in figure 7.7 and table 7.3 respectively.

XYZ

TU

Work Center Work CenterWork Center Work Center Work Center Work Center

Figure 7.7 -  Processing sequences at Firm C

W ork 
Centre 1

W ork 
Centre 2

W ork 
Centre 3

W ork 
centre 4

W ork 
Centre 5

W ork  
Centre 6

Part X NORM( 1,0.2) UNIF(0.8,1.2) NORM( 1,0.2)

Part Y UNIF(0.8,1.2) NORM( 1,0.2) UNIF(0.8,1.2)

Part Z NORM( 1,0.2) NORM(1,0.2) UNIF(0.8,1.2) NORM( 1,0.2) UNIF(0.8,1.2)

P artT UNIF(0.5,1.4) UNIF(0.5,1.2) NORM(l.1,0.1) NORM(1,0.2)

Part U NORM(l. 1,0.1) NORM(1,0.2) UNIF(0.5,1.4) UNIF(0.5,1.2)

Product XYZ 0 TRIA(0.5,1,1.5)

Product T U 0 TRIA(0.5,1,1.5)

Table 7.3 - Processing times at Firm C

It was revealed that all 3 firms have been using simulation previously for 

analyzing their production systems and have already built simulation models using 

Arena simulation software for their production facilities. Furthermore, all firms
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are reluctant to pass their information about manufacturing processes to other 

firms or third parties. Therefore it was agreed to use existing simulation models, 

modify them to include activities o f the proposed enterprise and execute in 

distributed simulation environment.

7. 7 Implementation

IDEFO conceptual models were developed for the proposed distributed 

manufacturing enterprise and individual firms in order to reflect their activities 

relating to the enterprise (figure 7.8) and independent activities o f individual 

partners (figures 7.9 7.10 and 7.11). In order to simplify the illustration, the 

proposed enterprise was decomposed only up to the level o f work centres.

Process Y, R, S  
& RS (Firm B)

A2

Produce XYZ 
(Enterprise ABC)

 AO

Process X, Y, P, 
Q &.PQ (Firm A)

./_________ Al Process'X, Y, Z, 
T. U, XYZ&TU 

(Firm 6)
___________ \A 3

N O D E: A O

 X

TITLE: A B C  E nterp rise  - D escrip tion  o f  F in n  A , F irm  B &  F in n  C

— R S + -

Y  —  U *

— Z >

NO.:

Figure 7.8 -  Distributed manufacturing enterprise
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WCA1
WCA2

A11 WCA3

A12
A13

WCA4
PQ WCA5

■PQ
A14

A15

TITLE: Operations o fF im i ANODE: A l NO.:

Figure 7.9 -  Manufacturing operations o f Firm A

WCB1
W CB2

W CB3A21
A22

A23

W CB4
W CB5

A24 W CB6 RS
A25

A26

TITLE: Operations o f Firm BNODE: A2 NO.:

Figure 7.10 -  Manufacturing operations o f Firm B
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WCB1
W CB2 u

W CB3A21
A22

A23

WCB4
WCB5

 XYZ-
 TU

TUA24 W CB6
A25

A26

TITLE: Operations o f Firm CNODE: A 3 NO.:

Figure 7.11 -  Manufacturing operations o f Firm C

Arena simulation models already developed by 3 firms (in order to illustrate the 

reusability o f  existing simulation models) were modified to accommodate 

operations o f  the proposed enterprise (by generating inputs from other firms 

within the model itself for validation purposes). They are shown in figures 7.12, 

7.13 and 7.14.

I------i'x Osate 1 j » ■■■ Cfccid* 3

•I_____ h '-v X

Figure 7.12 -  Simulation model o f Firm A
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E riere

Ltava 7

Enlef 4 Match

Figure 7.13 -  Simulation model o f  Firm B

j ; 3U a W 2 '

■Enter 3

Figure 7.14 -  Simulation model o f Firm C

Once the 3 models were validated, they were modified to pass the output to and 

accept input from other models. In order to pass the output, a “VBA block” was 

added to the model. When an entity passes through the “VBA block”, the API 

written for the “VBA block” (see appendix 1) extracts information from the model 

and sends a message to a queue o f the destination model. Parameters on the parts 

and other information such as quantity o f parts transferred as the output can be
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included in messages. Since batches o f 100s are sent, a batch module is added just 

before the “VBA block”. The API o f  the receiving model is designed in such a 

way that when a message arrives to a queue, an event automatically fires and 

extracts the information contained in the message, and passes them to the Arena 

simulation model. Based on the information received, entities are created and 

scheduled for releasing into the simulation model (as parts). In order to validate 

individual simulation models o f firms B and C, “Create modules” were used to 

generate entities for representing input parts receive from other models. Once 

validated, for releasing parts created based on the information received from the 

output model, “Create modules” were replaced with “Create blocks” (with zero 

entities created by the block itself). This was done to facilitate the use o f 

“EntitySendToBlockLabel” command which simplifies releasing o f entities to a 

specific location o f the simulation model. Modified simulation models o f firms A, 

B and C are shown in figures 7.15, 7.16 and 7.27.

Figure 7.15 -  Modified simulation model o f Firm A

127



Chapter  7 —  Implementation o f  the distributed enterprise simulation

Figure 7.16 -  Modified simulation model o f Firm B

t o ?
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Figure 7.17 -M odified simulation model o f Firm C

In order to receive messages relating to information on parts coming from other 

simulation models and messages relating to synchronization o f the distributed 

simulation system, 2 queues were created in each workstation. The first queue (pq 

prefixed with model name) receives messages relating to work in progress 

information and the other queue (sq prefixed with model name) receives messages 

relating to the synchronization mechanism. To synchronize the distributed 

simulation the approximate synchronization mechanism presented in the previous
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chapter (Chapter 7) was incorporated into the VBA code o f Arena simulation 

models. To receive simulation times from distributed simulation models, 3 

message queues were created (tq prefixed with model name) (figure 7.18) for the 

time processing unit (TPU) o f the synchronization mechanism. The TPU was 

modified to start (the loaded simulation model) and stop simulation models. It also 

indicates current simulation times and status o f simulation models (figure 7.19).
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Figure 7.18 -  Arena, MSMQ, API and TPU

TPU

Time Processing Unit
L s^ j

Model A 

P aused  model

Model B 

Slowest Model
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7.7049950427438 5.08878475762671 5.09423730657767

Figure 7.19 -  Modified time processing unit (TPU) o f distributed simulation
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7.8 Output from distributed enterprise simulation

Distributed simulations present new challenges when collecting and analyzing 

output from a simulation system as output is generated by distributed simulation 

models at different locations. With the proposed approach, the output is generated 

at individual simulation models distributed across the network, and for the entire 

system no output is generated from the distributed simulation system itself. In 

order to obtain output for the entire system, the distributed enterprise simulation 

needs to be configured (programmed) to generate the required output after 

identifying what parameters are needed as the output for the proposed enterprise. 

In addition, some o f the information generated may be accessed only at local 

levels mainly in order to hide proprietary information. This highlights the 

necessity o f identifying which part o f the output needs to accessed locally and 

which needs to be integrated to reflect operations o f the whole enterprise. In order 

to illustrate the output generation at different levels, a sample o f  performance 

analysis parameters relating to manufacturing enterprises was selected.

A wide array o f performance measures including throughput, queue length, 

average waiting times, resource utilization, output rate, work in process (WIP), 

cycle time were proposed by a number o f authors (Dahl and Jacob, 2000; Duwayri 

et al., 2001; Eneyo and Panniselvan, 1998; Law and McComas, 1999; Silva et al., 

2000). In order to demonstrate the output generation process for individual models 

and the entire enterprise the following sample performance measures were chosen.

Individual models

• Cycle times for parts & components

• Machine utilization

• Throughput o f parts and components

Distributed manufacturing systems

• Cycle time for products

• Throughput o f the final products
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Output files (<model name>.OUT) generated at individual models were used to 

extract relevant information to calculate parameters required (Program code used 

to generate output, which is integrated to API is given at Appendix 1). 

Performance measures relating to individual models were displayed locally 

together with performance measures for the entire enterprise. Figures 7.20, 7.21 

and 7.22 show sample performance measures generated for three firms o f  the 

proposed enterprise.

Siim plf p rrfn rim iiico  m e a su re s

Sample performance measures for Firm A

Part processing time* a t A 

| P artX  PartY
12.190 9.6303

M achine utilisation ratio at A  - 
M C I M C 2
.82810 .79219

M C3
.81963

M C4
.80036

M C5
.17707

Throughput at A ...............
P artX  PartY
121.00 120.00

Sample performance measures for the enterprise
r  Processing tim es for the en terp rise..................................................................

P artX  P artY  PartZ  Product XYZ

Throughput for the enterprise - 

Product XYZ

Cycle time for the enterprise

Product XYZ 
322.2763

Figure 7.20 -  Sample performance measures at Firm A

Sample performance measures Tor Firm B

"•‘Part processing tim es at B  

PartY  
N:.30.534

- Machine utilisation ratio at B '•••■...........
M C I MC2 MC3
1.0000 .99496 .96210

MC4
.59712

' Throughput at B : 
PartZ

M C5 M C 6
.95798 .57471

Sample performance measures for the enterprise
Processing tim es for the enterprise

PartX  PartY  PartZ  Product XYZ
60.19 83.1143 102.4 76.272

' Throughput for the enterprise 

Pro duct XYZ
: Cycle time for the enterprise 

I | Product XYZ 
| 322.2763

Figure 7.21 -  Sample performance measures at Firm B
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H am pt*  p e r f o rm a n c e  m e a s u r e *  fo r  f i r m  C

Sample performance measures for Firm C

X.I

■ Part procexxing times a t C * 

P artX  P artY
■47.700............................. 43.2SO

P artZ
102.40

ProductXYZ
76 272

Machine utilisation ratio a t C 
M CI M CI
1.0000 ::i;: .99648

MC5
•8 t269  i:

MGS
.99067

Throughput at C - 
ProductXYZ 

' 14.000

Sample performance measures for the enterprise
■■ P rocessing  tim es for the en terp rise..................................................................

PartX  PartY  P a rtZ  ProductXYZ

■ Throughput for the enterprise ■ 

Product XYZ

Cycle tim e for the enterprise 

Product XYZ
322.2763

Figure 7.22 -  Sample performance measures at Firm C

According to the proposed methodology for distributed enterprise simulation, the 

next stage is the verification and validation o f the programmed distributed 

simulation system to make sure that the simulation system represents the system 

under investigation.

7.9 Validation of the distributed enterprise simulation system

Verification and validation is a well researched area in discrete event simulation. 

The existing techniques can be used to verify and validate the conceptual model, 

partitioned models, computer simulation models etc. Since existing verification 

and validation techniques are focused on sequential simulation, some o f  the 

mechanisms such as message passing, synchronization included in the distributed 

enterprise simulation required to be validated using new approaches.

7.9.1 Validation of message passing mechanism

Messages are used for passing work-in-progress between distributed simulation 

models and synchronize the simulation system. In order to do these, a message is 

created with necessary parameters at one workstation and send to the destination 

queue at another workstation. The validation system should make sure that the 

generated message reaches its destination without much delay. This process is 

relatively simple and straightforward as a small program can be used to indicate 

when a message arrives at the destination.
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7.9.2 Validation of the synchronization mechanism

The approximate synchronization mechanism forces distributed simulation models 

to run at approximately same simulation time. The validation system should make 

sure that distributed simulation models run at approximately same simulation 

time. To validate the embedded synchronization mechanism, distributed enterprise 

simulation was executed with and without the synchronization mechanism at 

different execution speeds as shown below.

Model A Run 
speed

Model B Run 
speed

Model C Run 
speed

Case 1 0.007 0.007 0.007
Case 2 0.007 0.007 0.008
Case 3 0.007 0.008 0.007
Case 4 0.008 0.007 0.007

Table 7.4 -  Run speeds to validate the working o f the distributed enterprise 

simulation with the approximate synchronization mechanism

Case 1

All three models were executed at the same run speed (0.007). Figures 7.23 and 

7.24 show distributed enterprise simulation without and with the approximated 

synchronization mechanism respectively.

Case 1 -3  M odels w ith synchronization d isab led

25 -

*2 20 -

Model A 

■«—  Model B 

-±— Model C

5 -

s im u la t io n  t im e

Figure 7.23 -  Three models without the approximate synchronization mechanism
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C ase 1 -3  M odels w ith synchronization  e n a b le d

35 T

30 -

25 -

15 -

10 -

-•— Model A 

-B—  Model B 

-A— Model C

5 -

s im u la t io n  t im e

Figure 7.24 -  Three models with the approximate synchronization mechanism 

Case 2

Models A B and C were executed at 0.007, 0.007 and 0.008 run speeds 

respectively. Figure 7.25 shows distributed enterprise simulation without the 

approximated synchronization mechanism and figure 7.26 shows the same 

simulation with the synchronization mechanism enabled.

C ase 2 -3  M odels w ith synchronization  d isab led

25 -

r? 20 -

10 -

-♦—  Model A 

-b—  Model B 

- k —  Model C

s im u la t io n  t im e

Figure 7.25 -  Three models without the approximate synchronization mechanism
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C ase 2 -3  M odels w ith synchronization  e n a b le d

30 -

25 -

15 -

10 -

Model A
5 -

Model C

s im u la t io n  t im e

Figure 7.26 -  Three models with the approximate synchronization mechanism 

Case 3

Models A B and C were executed at 0.007, 0.008 and 0.008 run speeds 

respectively. Figure 7.27 shows distributed enterprise simulation without the 

approximated synchronization mechanism and figure 7.28 shows the same 

simulation with the synchronization mechanism enabled.

C ase 3 - 3  M odels w ith synchron ization  d isab led

25 -

^  20 -

10 -

Model A 

Model B 

Model C

s im u la t io n  t im e

Figure 7.27 -  Three models without the approximate synchronization mechanism
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C ase 3 - 3 M odels w ith synchronization  e n a b le d

30 -

25 -

E 20  -

£  15 -

10 -

-♦— Model A 

•w—  Model B 

■A— Model C

s im u la t io n  t im e

Figure 7.28 -  Three models with the approximate synchronization mechanism 

Case 4

Models A B and C were executed at 0.008, 0.007 and 0.007 run speeds 

respectively. Figure 7.29 shows distributed enterprise simulation without the 

approximated synchronization mechanism and figure 7.30 shows the same 

simulation with the synchronization mechanism enabled.

C ase 4 - 3 M odels w ith synchron ization  d ia ab le d

20  -

15 -

10 -

-♦ — Model A 

-a—  Model B 

-*—  Model C

s im u la t io n  t im e

Figure 7.29 -  Three models without the approximate synchronization mechanism
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C ase 4 - 3 M odels w ith synchron ization  e n a b le d

30 -

_  25 -

E 20 -

Model A 

-g—  Model B 

•*—  Model C

s im u la t io n  t im e

Figure 7.30 -  Three models with the approximate synchronization mechanism

Accordingly, it shows that for any run speed the approximate synchronization 

mechanism forces distributed simulation models to run approximately at the same 

simulation time. This validates the approximate synchronization mechanism used 

for distributed enterprise simulation.

Summary

This chapter presented detailed work relating to the implementation process o f the 

distributed enterprise simulation. As it was noted in Chapter 1, commercial 

simulation software, and simple and cost effective technologies were utilized to 

implement the distributed simulation. This was done in order to simplify the 

implementation processes and to address some o f the criticisms directed towards 

distributed simulation due to its complexity and high cost to implement, need for 

more expertise etc. A hypothetical case study was used to illustrate the 

implementation. Arena simulation software, VBA and MSMQ were used to 

implement the hypothetical case study presented. Experimentation (warm-up 

period, number o f replications, speed o f the simulation etc.), analysis o f results 

generated from the simulation, and decisions taken based on output analysis can 

be implemented once it was established that the distributed enterprise simulation 

system is valid.
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Chapter 8

Discussion, conclusions and suggestions for 

further work

This is the concluding chapter o f the thesis. Issues raised in 

previous chapters are discussed in this section. In addition, it also 

presents conclusions reached from the research and, provides 

suggestions to enhance the methodology for distributed enterprise 

simulation and to continue the research further.
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8 .1  Introduction

The thesis presented a novel approach for developing enterprise simulation 

models using distributed simulation. It includes a methodology for distributed 

enterprise simulation on which the proposed approach centres and detailed 

approaches:

• For selecting an appropriate simulation strategy

• For conceptual modelling, model partitioning and mapping

• To synchronize a distributed enterprise simulation system

• For implementing the distributed enterprise simulation system

Although research in parallel and distributed simulation has been carried out for 

more than two decades, analysis o f  the literature shows that still the general 

simulation community failed to appreciate it fully. The complexity, time and cost 

involved in developing, need for more expertise, lack o f  a proper methodology 

available for developing parallel and distributed simulation etc. are few o f the 

reasons highlighted in the literature for this lack o f acceptability. Some o f these 

points acted as motivating factors when developing the proposed approach for 

distributed enterprise simulation.

In addition to the widely investigated areas o f (parallel and) distributed simulation 

such as synchronization, this research also explored message passing mechanisms 

and simulation software. Contributions from the thesis for the field o f  parallel and 

distributed simulation include the above mentioned methodology for distributed 

enterprise simulation, the simulation strategy selection (SimSS) process, a 

simplified approach for model partitioning and mapping, the approximate 

synchronization mechanism, and a simplified approach to implement distributed 

enterprise simulations. The following sections provide brief discussions o f these. 

Furthermore, it is expected that the proposed simplified approaches address some 

o f the criticisms directed towards distributed simulation due to its failure to 

penetrate into general simulation applications. The next section offers a discussion 

o f key stages o f  the proposed methodology which was presented in previous 

chapters. Section 8.3 provides conclusions reached from the researched carried
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out. Suggestions for further work in order to improve the research already carried 

out are presented in section 8.4.

8.2 Discussion

8.2.1 The proposed methodology for distributed enterprise simulation

Analysis o f the literature suggested that unlike sequential simulations, the field 

parallel and distributed simulation lacks formal methodologies for developing 

such simulations. A number o f authors highlighted the need for a formal 

methodology. It is expected that the proposed methodology may fulfil this need.

The proposed methodology for distributed enterprise simulation was derived by 

combining additional activities required for parallel and distributed simulation 

with activities required for traditional sequential simulation. Although it was 

developed focusing on distributed enterprise simulation, generally it can be also 

applied when developing distributed simulations and up to some extent parallel 

simulations as well. However, after model partitioning and mapping stage, parallel 

simulation requires different approaches in mapping, programming, message 

passing etc. The proposed methodology is not a purely sequential process, some 

preceding stages need revising if it is found at a particular stage that the proposed 

model/system does not reflect the system under investigation, project objectives 

are not going to be met or system under investigation changed. It is not expected 

that simulationists will strictly adhere to the proposed methodology, but will use it 

as a set o f guidelines when developing distributed enterprise simulations.

The main benefit o f the proposed methodology is that it provides a set o f 

predefined stages to follow when developing distributed enterprise simulations 

thus reducing the associated complexities and simplifying the development 

process. The methodology is especially useful as distributed simulations are 

inherently more complex than sequential simulations. Validity o f  the distributed 

simulation system can be enhanced as verification and validation carried out at 

three stages o f the proposed methodology. Moreover, this also simplifies the 

verification and validation process too. However, applicability o f the proposed 

methodology (particularly latter stages) to develop highly complex systems such
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as logic gates, telecommunication systems, computer networks etc. needs further 

investigation.

8.2.2 The simulation strategy selection (SimSS) process

The proposed simulation strategy selection (SimSS) process helps users to 

determine an appropriate simulation strategy out of sequential simulation, parallel 

simulation and distributed simulation. The main factor that motivated to present 

this process is the complexity o f  (parallel and) distributed simulation. Although 

parallel and distributed simulation provides an attractive alternative for 

conventional sequential simulation when simulating large and complex systems, 

the former is more complicated, effort intensive, costly and requires more 

expertise. Simulation model developers and users need to carefully consider costs 

and benefits o f using parallel or distribution simulation before making decision to 

use it.

The analytic hierarchical process (AHP) provides the basis for the SimSS process. 

The main reasons to use the AHP include: its ability to incorporate subjective 

criteria into the decision making process as well as simplicity and availability o f 

the AHP based software. Expert Choice which provides a simple and user friendly 

interface was chosen for calculating and ranking alternatives. However, 

calculations and ranking can be done manually without using Expert Choice too.

The SimSS process presents three alternatives namely: sequential simulation, 

parallel simulation, and distributed simulation; and four criterions for evaluating 

alternatives namely: execution time, computational resources, complicated model 

development process, and need to execute in geographically distributed manner. 

These criterions were widely cited in the literature as factors that motivate users 

for employing parallel or distributed simulation. First three factors can be 

considered as encouraging factors while the last one acts as a deciding factor. If  a 

simulation model for the system under investigation requires more computational 

resources or too complicated to develop as a single model, either parallel or 

distributed simulation can be used. However, if simulation needs to be executed in 

geographically distributed environment then distributed simulation is the only 

solution available. Users are required evaluating alternatives using a criteria based
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on requirements, resources available and situation. Although the SimSS process 

does not provide a definite solution, it prioritises alternatives based on user’s 

evaluations. It was illustrated in chapter 5 that the simulation strategy depends on 

situational factors such as availability computational resources, required execution 

speed for the simulation, users’ and modellers’ preferences, availability o f 

expertise etc.

The main advantage o f the SimSS process is that it guides simulationists through 

the decision making process in order to select an appropriate simulation strategy. 

It also prevents users employing parallel or distributed simulation unnecessarily 

thus saving time, cost and resources. However, the process can be further 

improved by incorporating additional factors such as availability o f expertise, 

resources etc into the criterion.

8.2.3 Model representation, partitioning and mapping

Model partitioning and mapping are two additional activities which need to be 

carried out for (parallel and) distributed simulation when compared with 

sequential simulation. Factors that affect performance and efficiency o f 

distributed simulation such as size o f a logical process, balance o f  load among 

processors, number o f messages pass among processors etc. are depend on how 

the entire simulation model is partitioned and mapped. Furthermore, a distributed 

simulation may also affect performance o f the computer network on which it runs 

with network traffic generated by the simulation. Therefore, mapping and 

partitioning is one o f the stages that require careful attention when implementing a 

distributed simulation as it affects performance o f both distributed simulation 

itself and the computer network. However, unlike areas such as synchronization, 

the literature has not paid much attention to this important area. Furthermore some 

o f the algorithms presented in the literature require developing the distributed 

simulation programme, executing it sequentially and collecting data for the 

purpose o f partitioning and mapping the simulation model. Although this process 

may help to implement an efficient and high performing distributed simulation, it 

also leaves simulation users in a dilemma due to the fact that distributed 

simulation is used only because the simulation can not be run as a sequential 

simulation.
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The new approach for model representation, partitioning and mapping was 

presented to address some o f the issues noted above. The main difference between 

the proposed approach and existing approaches is that the new approach proposes 

to partition the conceptual model (of the system under investigation) into logical 

processes, then develop simulation models for these partitioned logical processes. 

It proposes to use IDEFO technique for model representation as it is one o f the 

widely used model representation technique in simulation. Furthermore, sub 

sections that can function independently can easily be identified in the IDEFO 

model. At detailed abstraction level, developing the simulation model from the 

IDEFO model is relatively straightforward as processes/ functions o f  the model 

can be represented by blocks and modules o f Arena simulation software which 

was used to develop distributed simulation models. If  the conceptual model is 

developed using Microsoft Visio, the IDEFO model can be directly converted into 

an Arena simulation model.

With the proposed approach, mapping is relatively straightforward and simple 

since only one logical process is assigned to one networked workstation. 

However, with this approach efficiency o f the distributed enterprise simulation 

may affect due to load balancing problems.

The ability to develop distributed simulation models without first developing and 

executing the entire model as a single simulation model, and simplification o f 

model partitioning and mapping process are the main benefits o f  the proposed 

approach. However, this approach may not appropriate when developing 

distributed simulations for highly complex systems as it was developed focusing 

on distributed enterprise simulation and especially on distributed manufacturing 

enterprises.

8.2.4 The approximate synchronisation mechanism

As noted in the chapter 5, synchronisation is one o f the well researched areas in 

parallel and distributed simulation. Also synchronisation is one o f  the factors that 

makes distributed simulation (along with parallel simulation) more complicated. 

Traditionally, synchronisation mechanism is integrated into the simulation 

program itself which enables it to control the behaviour o f the distributed
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simulation system, especially in optimistic synchronisation protocol which 

requires state saving and rolling back to previous simulation times. However with 

the proposed approach, it was difficult to integrate the synchronisation mechanism 

into the core simulation program as commercial simulation software (which 

doesn’t allow changing the simulation engine) was used to implement the 

distributed simulation. In the proposed approach, a part o f the program code that 

used to synchronize simulation models was included with the application program 

interface (API). API is also responsible for passing messages between distributed 

simulation models. On the other hand, also it can be argued that the API is part o f 

the simulation model as it was programmed using Visual Basic for Applications 

(VBA) which is integrated into Arena simulation software.

Synchronization mechanisms make sure that messages from distributed simulation 

models are executed in the timestamped order and not in the order o f arrival. 

However, some applications o f distributed simulation such as distributed 

manufacturing do not required to be executed in strictly synchronized 

environment or not needed to be synchronized at all. The proposed approximate 

synchronisation mechanism is appropriate for systems which do not need a strictly 

synchronised environment. It was developed based on conservative 

synchronization protocol as it is difficult to implement a state saving and roll back 

mechanism (with commercial simulation software) which is the basis for the 

optimistic synchronization approach. As name implies the approximate 

synchronization mechanism does not enforce strictly synchronised environment. 

Instead, it forces distributed simulation models to run approximately at the same 

simulation time.

The proposed mechanism is less complicated to implement than conventional 

synchronization mechanisms. The main benefit o f the approximate 

synchronization approach is its simplicity to develop and implement. Moreover, 

additional distributed simulation models can be incorporated into the system with 

slight modifications as modules that use for the approximate synchronisation 

mechanism are independent o f the main simulation model. As previously 

presented approaches relating to simulation strategy selection and, model 

representation, partitioning and mapping; it is expected that the proposed
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approximate synchronization mechanism also addresses the criticism made 

towards (parallel and) distributed simulation due to its complexity for 

implementing. However, it should be noted that the proposed approach may not 

suitable for all circumstances, especially if simulation requires running in strictly 

synchronized environment. In addition, the mechanism may also less efficient 

when compared to other approaches presented in the literature.

8.2.5 Implementation approach

As noted in previous sections distributed simulation is more complicated to 

implement than sequential simulation, involving long development times, higher 

costs, steep learning curves and requiring more expertise. Mainly due to these 

reasons this type o f simulation is not much used in general industrial and business 

applications. The proposed approached employed technologies and software that 

make the implementation process o f  distributed enterprise simulation relatively 

less complicated and cost effective.

Using o f  programming languages such as Java, C++ or Smalltalk may complicate 

the implementation process o f the DMS. This calls for expertise not only in 

distributed simulation but also in computer programming resulting higher costs 

and longer development times. Moreover message passing middleware has to be 

procured and customised to the distributed simulation system incurring additional 

costs. The proposed approach employs commercial simulation software for 

developing simulation models. Although these packages too are expensive, it can 

be expected that most o f the organisations which intend to use distributed 

simulation already use commercial simulation software packages to simulate their 

operations. Use o f commercial simulation software also simplifies the simulation 

model development process resulting minimum additional expenses. Analysis o f 

the recent literature too shows attempts to use commercial simulation software in 

distributed simulation especially in distributed supply chain simulation. Microsoft 

message queue (MSMQ) also offers a cost effective solution as a message passing 

middleware. Since MSMQ is integrated into Windows 2000 (both professional 

and server) and Windows XP operating systems, and also supports Windows 98 

and 95 as a free add-on saves the cost o f middleware. Visual basic for applications 

(VBA) was used as the application program interface (API) that interacts between
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MSMQ and Arena which was chosen as the commercial simulation software for 

illustrating the implementation process. However, other commercial simulation 

packages such as Automod, Promodel, Witness etc. too can be used instead o f 

Arena. Most o f these packages support either or both C++ or/and VBA. As VBA 

is integrated into both MSMQ and Arena, it was decided to use VBA instead o f 

C++. VBA offers a similar programming interface as popular Visual Basic 

programming language and, also easy to learn and requires less expertise in 

programming.

Simplified and cost effective implementation o f distributed enterprise simulation 

is the main benefit o f the proposed approach. However, it also encourages 

reusability o f existing simulation models developed with commercial simulation 

software. With slight modifications, these models can be adapted into a distributed 

simulation thus saving model development time and cost. Since distributed 

simulation models interact only through messages and functionality o f one model 

is independent o f another, it is possible to integrate simulation models developed 

with different simulation software and/ or with API developed with different 

programming language such as C++, as long as MSMQ uses for message passing. 

This provides an opportunity for different enterprises which use different 

simulation software packages for implementing distributed enterprise simulation 

with existing models and/ or new models without purchasing another package in 

order to use the same simulation software.

Animation is highly useful to visualise the working (ie.. system under 

investigation) and results o f the simulation for managers and employees o f  an 

organisation. In addition, the ability to see the simulation activities while a 

simulation is running offers several more advantages. Users can observe trends 

that cannot be captured using average statistics (that are typically available only at 

the end o f the simulation run). Furthermore, visualization allows user to take 

immediate corrective measures on the model, instead o f waiting until the 

simulation ends, if a modelling problem is observed. This is particularly crucial 

for a distributed enterprise simulation since simulation o f this scale takes 

relatively longer time to complete. Animation capabilities o f  purpose built 

distributed simulators developed with C++ or java may not as effective as
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animation capabilities provided by commercial simulation software packages. 

This is another advantage o f using commercial simulation software.

However, animation effects slow down distributed simulation so that speedups 

expected to gain through distributed simulation may not be able to achieve with 

the proposed implementation approach. Although speedup o f simulation is one o f 

the main reasons to use distributed simulation, it is not the only factor to use such 

simulations. In addition to points noted in previous paragraphs, ability to hide 

confidential or proprietary information, provide more computational resources, 

and to obtain simulation results distributed manner are some o f the reasons that 

encourage the use o f distributed simulation. However, the proposed 

implementation approach may not appropriate to implement highly complex 

systems such as logic circuits, telecommunication systems, computer networks 

etc.

8.3 Conclusions

Based on the discussion presented above, following conclusions can be reached:

• The proposed methodology for distributed enterprise simulation streamlines 

and simplifies the development process o f enterprise simulations.

• The approximate synchronization mechanism presents a less complicated 

synchronisation approach for some distributed simulation applications.

• Use o f commercial simulation software, Microsoft Message Queue (MSMQ) 

and Visual Basic for Applications (VBA) made the implementation process 

simple and cost effective.

• It is also expected this simplified and cost effective approach may address

some o f the criticisms made towards distributed simulation due to its

complexity and association with high costs.

• Due to animation effects and the approximate synchronisation mechanism, 

speedups expected to gain with distributed simulation may not be able to 

achieve.

• It may not be possible to use the proposed approach to develop distributed

simulations for highly complex and large systems.
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8.4 Suggestions for further work

The proposed methodology for distributed enterprise simulation was developed 

with a view o f simplifying the simulation model development process and also 

cutting time and cost involved. However, due to restrictions o f time, some o f the 

additions and refinement to the proposed approach were not able to accomplished. 

In order to improve the methodology and also to understand advantages and 

disadvantages o f it further, followings are suggested:

As noted in the section 8.2.3, if Microsoft Visio is used to develop IDEFO model 

then it can be directly converted into Arena simulation model. This may simplify 

the model development process, as it shortens the distributed enterprise simulation 

development time and calls for less expertise. Therefore, it is suggested to 

implement a system to directly convert the IDEFO model into an Arena simulation 

model.

The proposed approach utilised MSMQ and a commercial simulation software 

package to develop the distributed enterprise simulation. Most o f distributed 

simulations were developed using programming languages such as C++, Java, 

Smalltalk etc and using middleware such as CORBA and HLA. It is desirable to 

compare performance o f distributed simulations developed using the proposed 

approach and conventional approaches. This may help to determine in which 

situations the proposed approach can be employed to implement distributed 

enterprise simulations. It is also suggested to compare performance o f different 

message passing middleware with simulation models developed using commercial 

simulation packages.

For the approximate synchronization mechanism it is worth investigating the 

effect o f changing the time interval between requesting o f simulation times (from 

distributed simulation models) by time processing unit (TPU) on occurrence o f 

synchronization errors. Furthermore, it is also desirable to examine how a 

distributed enterprise simulation developed using commercial simulation software, 

MSMQ and VBA operates in a strictly synchronised environment.
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One o f the most important aspects o f any simulation is to collect the output to 

determine and compare performance parameters. Distributed simulation presents 

new challenge on collecting and analysing the output as output generated in 

distributed manner. Chapter 7 briefly looked into how the output is generated at 

different simulation models are collected and integrated to present performance 

measures for the whole system. However, it is desirable to develop a 

comprehensive mechanism to present performance measures and other output 

measures once the distributed simulation is completed and also while it is running 

if necessary.

This system can be further improved by developing additional mechanism to 

change some parameters that determine working o f the model such as process 

times, delay times, schedules and sequences etc. from a central location rather 

than editing simulation models individually. This may be especially useful if  

models are located at different physical locations. However, this may not be 

possible if  distributed simulation was selected in order to hide any proprietary 

information.

For the purpose o f message passing MSMQ 2.0 was used for the research. 

However MSMQ 3.0 allows message passing through HTTP protocol. This 

provides exciting new opportunities to run distributed enterprise simulation 

models which are connected each other through the internet. As web based 

simulation is a emerging area in simulation, it is desirable to investigate how 

distributed enterprise simulation systems developed with commercial simulation 

software executed over the internet using message passing tools such as MSMQ.

Summary

The concluding chapter o f this thesis presented a discussion o f research carried 

out and conclusions reached. In addition, it also offered suggestions in order to 

improve the research work already conducted.
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Appendix 1 -  Application program interface 
(API) for model B

Option Explicit

Dim BPaused As Integer
Dim sqQueue As MSMQQueue
Dim pqQueue As MSMQQueue
Public WithEvents sqEvent As MSMQEvent
Public WithEvents pqEvent As MSMQEvent

Private Sub ModelLogic_RunBeginSimulation()
'receives parts from A 
Dim qinfo As New MSMQQueuelnfo 
qinfo.PathName = ".\private$\bpq"
Set pqQueue = qinfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE) 
Set pqEvent = New MSMQEvent 
pqQueue.Enab1eNo ti fi cati on pqEvent 
Call ThisDocument.Model.Pause 

End Sub

Private Sub ModelLogic_RunBeginReplication()
'Processes times 
BPaused = 0
Dim sqlnfo As New MSMQQueuelnfo 
sqlnfo.PathName = ".\private$\bsq"
Set sqQueue = sqlnfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE) 
Set sqEvent = New MSMQEvent 
sqQueue.EnableNotification sqEvent 

End Sub

Private Sub ModelLogic_RunEndSimulation()
'collecting total times, MC utilisations and sending to 

TPU
Dim ary(8) As String 
Dim Aarstr As String 
Dim line As String 
Dim i As Integer 
Dim j As Integer 
Dim k As Integer

Open "D:\apr\modified case study\Firm B_sync_2.out" For
Input As #1

For i = 1 To 200 
If EOF(1) Then 

Exit For 
End If

Input #1, line

If Trim(Mid(line, 1, 22)) = "Entity 2.TotalTime" Then
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ary(l) = Trim(Mid(line, 
End If

If Trim(Mid(line, 1, 22)) 
ary(2) = Trim(Mid(line, 

End If

If Trim(Mid(line, 1, 22)) 
ary(3) = Trim(Mid(line, 

End If

If Trim(Mid(line, 1, 22)) 
ary(4) = Trim(Mid(line, 

End If

If Trim(Mid(line, 1, 22)) 
ary(5) = Trim(Mid(line, 

End If

If Trim(Mid(line, 1, 22)) 
ary(6) = Trim(Mid(line, 

End If

If Trim(Mid(line, 1, 22)) 
ary(7) = Trim(Mid(line, 

End If

If Trim(Mid(line, 1, 25)) 
ary(8) = Trim(Mid(line, 

End If

Next i

20, 13))

= "MCI.Utilization" Then 
20, 13))

= "MC2.Utilization" Then 
20, 13))

= "MC3.Utilization" Then 
20, 13))

= "MC4.Utilization" Then 
20, 13))

= "MC5.Utilization" Then 
20, 13))

= "MC6.Utilization" Then 
20, 13))

= "Entity 2.Number0ut" Then 
26, 15))

Close #1

Aarstr = CStr(ary(l))
For j = 2 To 8

Aarstr = Aarstr & & CStr(ary(j))
Next j
Aarstr = Aarstr & ":"

Dim palnfo As New MSMQQueuelnfo 
Dim paDest As MSMQQueue 
Dim pamsgSend As New MSMQMessage 
pamsgSend.Label = "PERFORMANCE" 
pamsgSend.Body = Aarstr
palnfo.FormatName = "DIRECT = OS:ENG-4112-07\private$\btq" 
Set paDest = palnfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE) 
pamsgSend.Send paDest 
paDest.Close

'***assingning values to "sample measures for Firm B" 
UserForml.PTZ = ary(l)
UserForml.MUMC1 = ary(2)
UserForml.MUMC2 = ary(3)
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UserForml.MUMC3 = ary(4)
UserForml.MUMC4 = ary(5)
UserForml.MUMC5 = ary(6)
UserForml.MUMC6 = ary(7)
UserForml.OutZ = ary(8)
UserForm2.CommandButtonl.Enabled = False 
UserForm2.Show 

End Sub

Private Sub ModelLogic_RunPause()
'processes Pause and restart 
Dim sqlnfo As New MSMQQueuelnfo 
sqlnfo.PathName = ".\private$\bsq"
Set sqQueue = sqlnfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE) 
Set sqEvent = New MSMQEvent 
sqQueue.EnableNotification sqEvent 

End Sub

Private Sub ModelLogic_RunResume()
'processes Pause and restart 
Dim sqlnfo As New MSMQQueuelnfo 
sqlnfo.PathName = ".\private$\bsq"
Set sqQueue = sqlnfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE) 
Set sqEvent = New MSMQEvent 
sqQueue.EnableNotification sqEvent 

End Sub

Private Sub pqEvent_Arrived(ByVal Queue As Object, ByVal 
Cursor As Long)

Dim vEntitylndex As Long
Dim vPicturelndex As Long
Dim sTime As Variant
Dim cTime As Double
Dim dTime As Double
Dim aEResults(6) As String
Dim vEresults As String
Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim 1 As Integer
Dim bQueue As MSMQQueue
Set bQueue = Queue
Dim qMsg As MSMQMessage
Set qMsg = New MSMQMessage
Set qMsg = bQueue.Receive(, , ,0)

If qMsg.Label = "EResults" Then 
vEresults = qMsg.Body 
'MsgBox "vEresults"
'MsgBox vEresults 
i = 1 
j = 1
For k = 1 To Len(vEresults)

If Mid(vEresults, k, 1) = Then
aEResults(i) = Mid(vEresults, j, k - j)
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'MsgBox i
'MsgBox aEResults(i) 
i = i + 1 
j = k + 1 

End If 
Next k

UserForml.EPTX.Caption = aEResults(l)
.UserForml. EPTY.Caption = aEResults(2)
UserForml.EPTZ.Caption = aEResults(3)
UserForml.EPTXYZ.Caption = aEResults(4)
UserForml.CTXYZ.Caption = aEResults(5)
UserForml.EOUTXYZ.Caption = aEResults(6)
UserForm2.CommandButtonl.Enabled = True

Else

vPicturelndex =
ThisDocument.Model.SIMAN.SymbolNumber("Picture.yellow 
page")

For i = 1 To 1
vEntitylndex = ThisDocument.Model.SIMAN.EntityCreate 
Call
ThisDocument.Model.SIMAN.EntitySetPicture(vEntitylnde 
x, vPicturelndex)
Call
ThisDocument.Model.SIMAN.EntitySendToBlockLabel(vEnti 
tyIndex, 0, "Alnput")

Next i

End If

bQueue.EnableNotification pqEvent 

End Sub

Private Sub sqEvent_Arrived(ByVal Queue As Object, ByVal 
Cursor As Long)

Dim 1Index As Long 
Dim plndex As Long 
Dim sPTime As Double 
Dim sSATime As Double 
Dim sSBTime As Double 
Dim sSCTime As Double 
Dim EResults(6) As String 

Dim sprQueue As MSMQQueue 
Set sprQueue = Queue 
Dim sprqMsg As MSMQMessage 
Set sprqMsg = sprQueue.Receive(, , ,0)

If sprqMsg.Label = "START" Then 
Call ThisDocument.Model.Go 

End If
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If sprqMsg.Label = "STOP" Then 
Call ThisDocument.Model.End 

End If

'To resume A
If sprqMsg.Label = "PTA" Then

sSBTime = ThisDocument.Model.SIMAN.RunCurrentTime 
sSATime = CDbl(sprqMsg.Body) 
sPTime = sSATime - sSBTime 
If sPTime < 0.5 Then 

sPTime = 0
llndex = ThisDocument.Model.SIMAN.EntityCreate 
plndex =

ThisDocument.Model.SIMAN.SymbolNumber("Picture.Tr 
uck")

Call ThisDocument.Model.SIMAN.EntitySetPicture(llndex, 
plndex)

Call
ThisDocument.Model.SIMAN.EntitySendToBlockLabel(1 
Index, sPTime, "RAblock")

Else
llndex = ThisDocument.Model.SIMAN.EntityCreate 
plndex =

ThisDocument.Model.SIMAN.SymbolNumber("Picture.va 
n")

Call ThisDocument.Model.SIMAN.EntitySetPicture(llndex, 
plndex)

Call
ThisDocument.Model.SIMAN.EntitySendToBlockLabel(1 
Index, sPTime, "RAblock")

End If 
End If

'To resume C 
If sprqMsg.Label = "PTC" Then

sSBTime = ThisDocument.Model.SIMAN.RunCurrentTime 
sSCTime = CDbl(sprqMsg.Body) 
sPTime = sSCTime - sSBTime 
If sPTime < 0.5 Then 

sPTime = 0
llndex = ThisDocument.Model.SIMAN.EntityCreate 
plndex =

ThisDocument.Model.SIMAN.SymbolNumber("Picture.va 
n")

Call ThisDocument.Model.SIMAN.EntitySetPicture(llndex, 
plndex)

Call
ThisDocument.Model.SIMAN.EntitySendToBlockLabel(1 
Index, sPTime, "RCblock")

Else
llndex = ThisDocument.Model.SIMAN.EntityCreate 
plndex =

ThisDocument.Model. SIMAN. SymbolNumber (" Picture. va 
n")
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Call ThisDocument.Model.SIMAN.EntitySetPicture(llndex, 
plndex)

Call
ThisDocument.Model.SIMAN.EntitySendToBlockLabel(1 
Index, sPTime, "RCblock")

End If 
End If

'sending time to TPU 
If sprqMsg.Label = "RT" Then

Dim tblnfo As New MSMQQueuelnfo 
Dim tbDest As MSMQQueue 
Dim tbmsgSend As New MSMQMessage 
tbms gS end.Labe1 = "T "
tbmsgSend.Body = ThisDocument.Model.SIMAN.RunCurrentTime 
tblnfo.FormatName = "DIRECT = OS:ENG-4112- 

07\private$\btq"
Set tbDest = tblnfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE) 
tbmsgSend.Send tbDest 
tbDest.Close 

End If

'pausing B
If sprqMsg.Label = "P" And BPaused = 0 Then

Dim FName As String

If sprqMsg.Body = "A" Then
FName = "DIRECT = OS:ENG-4112-07\private$\asq"

End If

If sprqMsg.Body = "C" Then
'FName = "DIRECT = OS:ENG-4130-12\private$\csq"
FName = "DIRECT = OS:ENG-4112-09-od\private$\csq"

End If

Dim ptlnfo As New MSMQQueuelnfo 
Dim ptDest As MSMQQueue 
Dim ptmsgSend As New MSMQMessage 
ptmsgSend.Label = "PTB"
ptmsgSend.Body = ThisDocument.Model.SIMAN.RunCurrentTime 
ptlnfo.FormatName = FName
Set ptDest = ptlnfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE) 
ptmsgSend.Send ptDest 
ptDest.Close 
BPaused = 1
Call ThisDocument.Model.Pause 

End If

'resuming B
If sprqMsg.Label = "R" Then 

'updating TPU
Dim tpuqlnfo As New MSMQQueuelnfo 
Dim tpuqDest As MSMQQueue
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Dim tpumsgSend As New MSMQMessage 
tpumsgSend.Label = "R" 
tpumsgSend.Body =

ThisDocument.Model.SIMAN.RunCurrentTime
tpuqlnfo.FormatName = "DIRECT = OS:ENG-4112- 

07 \private$\btq"
Set tpuqDest =•tpuqlnfo.Open(MO SEND ACCESS, 

MQ_DENY_NONE)
tpumsgSend.Send tpuqDest 
tpuqDest.Close 
BPaused = 0
Call ThisDocument.Model.Go 

End If

sprQueue.EnableNotification sqEvent 
End Sub

Private Sub VBA_Block_l_Fire()
'passing parts to C 
Dim cqlnfo As New MSMQQueuelnfo 
Set cqlnfo = New MSMQQueuelnfo 
Dim cTime As Double
cTime = ThisDocument.Model.SIMAN;RunCurrentTime 
'cqlnfo.FormatName = "DIRECT = OS:ENG-413 0- 

12\private$\cpq"
cqlnfo.FormatName = "DIRECT = OS:ENG-4112-09- 

od\private$\cpq"
Dim cqQueue As MSMQQueue
Set cqQueue = cqlnfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE) 
Dim cqMsg As MSMQMessage 
Set cqMsg = New MSMQMessage 
cqMsg.Label = "B" 
cqMsg.Body = cTime 
cqMsg.Send cqQueue 
cqQueue.Close 

End Sub

Private Sub VBA_Block_2_Fire()
'Resumes the model A
Dim saqlnfo As New MSMQQueuelnfo
Dim saqDest As MSMQQueue
Dim samsgSend As New MSMQMessage
samsgSend.Label = "R"
samsgSend.Body = ThisDocument.Model.SIMAN.RunCurrentTime 
saqlnfo.FormatName = "DIRECT = OS:ENG-4112- 

07\private$\asq"
Set saqDest = saqlnfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE) 
samsgSend.Send saqDest 
saqDest.Close 

End Sub

Private Sub VBA_Block_3_Fire()
'Resumes the model C
Dim scqlnfo As New MSMQQueuelnfo
Dim scqDest As MSMQQueue
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Dim scmsgSend As New MSMQMessage 
scmsgSend.Label = "R"
scmsgSend.Body = ThisDocument.Model.SIMAN.RunCurrentTime 
'scqlnfo.FormatName = "DIRECT = OS:ENG-4130- 

12\private$\csq"
scqlnfo.FormatName = "DIRECT = OS:ENG-4112-09- 

od\private$\csq"
Set scqDest = scqlnfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE) 
scmsgSend.Send scqDest 
scqDest.Close 

End Sub

174


