
Modelling large scale enterprises : A distributed simulation
approach.

WICKRAMARACHCHI, A.P.R.

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20530/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

WICKRAMARACHCHI, A.P.R. (2004). Modelling large scale enterprises : A
distributed simulation approach. Doctoral, Sheffield Hallam University (United
Kingdom)..

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Fines are charged at 5 0 p per hour

0 A SEP 2907,smT

REFERENCE

ProQuest Number: 10701177

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com ple te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10701177

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Modelling large scale enterprises: A
distributed simulation approach

A.P.R. Wickramarachchi.

A thesis is submitted in partial fulfilment of the
requirements of Sheffield Hallam University for the degree

of Doctor of Philosophy

Abstract

Distributed simulation provides an alternative solution when today’s highly

complicated systems including manufacturing are to be simulated. Complexities

involved in implementation, the need for more expertise, high development cost

and long implementation time etc. along with a lack o f guidelines for developing

distributed simulation, and the complexity o f tools and techniques used to

implement schemes, resulted in the lack o f acceptance for distributed simulation

among the general simulation community. In order to address some o f these

issues, a new approach is proposed for modelling and simulating large scale

enterprises using distributed simulation. The proposed approach which includes a

comprehensive methodology for distributed enterprise simulation, developed by

combining activities required for traditional sequential simulation with additional

activities required for distributed simulation.

The thesis elaborates the additional activities required for distributed simulation in

different chapters with simplified approaches for carrying out these activities.

These include an approach to decide the appropriate simulation strategy (SimSS

process), a simplified approach to modelling and model partitioning, a

synchronization mechanism that approximately synchronizes the distributed

enterprise simulation and an approach for developing distributed simulation using

tools and technologies which are popular, well accepted and also cost effective.

The differences between the traditional distributed simulation approaches and the

proposed methodology include: partitioning o f the conceptual model into logical

processes before transforming them into computer simulation models, use o f

commercial simulation software to implement the distributed simulation, and use

o f cost effective and popular middleware and programming languages. Illustration

o f the proposed approaches focuses on distributed manufacturing applications.

Acknowledgement

I would like to express my deepest gratitude and appreciation to my director o f

studies, Dr Sameh M. Saad for his support, guidance and constructive criticism.

My appreciation also extended to Professor Terrence Perera for his support and

assistance.

My wife Suranga and son Sahan deserve a huge thank you for their support and

sacrifices. Last but not least I would like to thank my colleagues, Asian

Development Bank and University o f Kelaniya, Sri Lanka for the support and the

help provided.

Table of contents

1. Introduction 1

1.1 Introduction .. 2

1.2 Rationale ... 3

1.3 Objectives o f the research .. 4

1.4 Expected contribution from the research 5

1.5 Structure o f the thesis ... 5

2. Parallel and distributed simulation 8

2.1 Introduction ... 9

2.2 Basic concepts in simulation ... 11

2.2.1 Terminology for simulation ... 11

2.2.2 Deterministic and stochastic models 11

2.2.3 Continuous and discrete models .. 12

2.3 Discrete event simulation ... 12

2.4 Sequential simulation ... 14

2.4.1 Short comings o f sequential simulation 14

2.4.2 Alternatives for sequential simulation 16

2.5 Parallel and distributed simulation .. 18

2.6 Distributed simulation 20

2.7 Enterprise simulation ... 22

2.8 Limitations o f parallel and distributed simulation 23

3. The proposed methodology for distributed enterprise simulation 26

3.1 Introduction .. 27

3.2 Sequential simulation methodologies ... 28

3.2.1 Methodology proposed by Robinson (1994) 28

3.2.2 Key activities o f Shannon (1998) 29

3.2.3 Methodology proposed by Balci (1990) 30

3.2.4 Methodology proposed by Law and Kelton (1991) 31

3.2.5 Methodology proposed by Banks et al. (2000) 32

3.3 Additional activities for parallel and distributed simulation 35

3.4 The proposed methodology for distributed enterprise

simulation 37

3.4.1 Problem identification and identification o f objectives ... 38

3.4.2 The simulation strategy selection (SimSS) process 38

3.4.3 Data collection .. 39

3.4.4 Construction o f the conceptual model 39

3.4.5 Verification and validation ... 40

3.4.6 Partitioning and mapping .. 41

3.4.7 Synchronisation protocols and networking issues 42

3.4.8 Construction o f computer simulation model 42

3.4.9 Experimentation ... 43

3.4.10 Output analysis .. 44

3.4.11 Implementation and further work 44

4. The simulation strategy selection (SimSS) process 46

4.1 Introduction .. 48

4.2 Analytic hierarchy process (AHP) .. 49

4.3 Simulation strategy selection (SimSS) process 53

4.3.1 Criterion for SimSS process ... 54

4.3.2 Illustration o f SimSS process ... 56

5. Conceptual modelling, model partitioning and mapping for 64

distributed enterprise simulation

5.1 Introduction ... 66

5.2 Conceptual model ... 67

5.3 Modelling approaches .. 69

5.3.1 Incremental modelling approach ... 69

5.3.2 Hierarchical modelling approach ... 70

5.4 Modelling tools .. 72

5.4.1 Diagrammatic modelling .. 72

5.4.2 Commonly used diagrammatic modelling tools 73

iv

5.4.3 Modelling methods 78

5.5 Model partitioning and mapping approaches 79

5.6 Proposed approach for model representation,

model partitioning and mapping 80

6. The proposed synchronisation mechanism for

distributed enterprise simulation 86

6.1 Introduction 88

6.2 Computer networks .. 90

6.2.1 Network topologies .. 90

6.3.2 Network protocols ... 92

6.3 Synchronization 92

6.3.1 Synchronous systems ... 93

6.3.2 Asynchronous systems ... 93

6.3.2.1 Conservative synchronization 93

6.3.2.2 Optimistic synchronization .. 95

6.3.2.3 Conservative vs. Optimistic approaches 95

6.4 The proposed synchronization approach 96

6.4.1 An approximate synchronization mechanism for

distributed enterprise simulations 97

6.4.2 Illustrating the approximate synchronization mechanism 103

7. Implementation of the Distributed enterprise simulation 106

7.1 Introduction .. 108

7.2 Distributed manufacturing .. 109

7.3 Middleware ... I l l

7.3.1 Forms o f middleware ... 112

7.3.2 Well known middleware architectures 113

7.4 Simulation software .. 117

7.5 Application program interface (API) ... 117

7.6 Hypothetical case study .. 119

7.7 Implementation 123

7.8 Output from distributed enterprise simulation 130

v

7.9 Validation o f the distributed enterprise simulation model 132

7.9.1 Validation o f the message passing mechanism 132

7.9.2 Validation o f the synchronization mechanism 133

8. Discussion, conclusion and suggestion for further work 138

8.1 Introduction .. 139

8.2 Discussion ... 140

8.2.1 Proposed methodology for distributed enterprise

simulation 140

8.2.2 Simulation strategy selection (SimSS) process 141

8.2.3 Model representation, partitioning and mapping 142

8.2.4 Approximate synchronization mechanism 143

8.2.5 Implementation approach ... 145

8.3 Conclusions ... 147

8.4 Suggestions for further work ... 148

References 150

Appendix 167

Appendix 1 - Application program interface (API) for Model B ... 167

vi

Publications made from the thesis

Saad S. M., T. Perera and R. Wickramarachchi. 2002. A new methodology for

parallel and distributed simulation, proceedings o f the 2002 International

Conference on Responsive Manufacturing.

Saad S. M., T. Perera and R. Wickramarachchi. 2002. A strategy selection

approach in parallel and distributed simulation environment, International Journal

o f Advance Manufacturing Systems. Vol 6, No.2

Saad, S. M., T. Perera, and R. Wickramarachchi. 2003. Simulation o f distributed

manufacturing enterprises: A new approach. Proceedings o f 2003 Winter

Simulation Conference, 1167-1172

Saad, S. M., T. Perera, and R. Wickramarachchi. 2003, A simplified approach for

modelling and simulating large scale enterprises, European Simulation

Symposium

Saad, S. M., T. Perera, and R. Wickramarachchi. 2004, A simplified approach to

develop distributed manufacturing simulations, 2nd International Conference on

Manufacturing Research (ICMR 2004)

Saad, S. M., T. Perera, and R. Wickramarachchi. 2004, A simplified approach for

modelling and simulation o f large scale enterprises, submitted for Special Issue o f

the Transactions o f the Society fo r Modeling and Simulation International

Chapter 1

Introduction

This chapter, as the first chapter o f the thesis provides an

introduction to the thesis as well as a rationale for the

research carried out. Objectives o f the research,

contribution o f the research and structure o f the thesis are

also included in this chapter.

Chapter 1 - Introduction

1.1 Introduction

Simulation is one o f the most powerful tools available to decision makers

responsible for the design and operation o f many diverse areas o f applications.

The system under study can be anything from aerodynamic properties o f a new

aircraft under development to intricacies o f protein folding into a complex three

dimensional shape. However, the size and complexity o f many o f today’s

simulation models place severe demands on the computational resources required.

Many researchers have concluded that the traditional sequential simulation has

reached its limit in simulating highly complicated and large applications.

Distributed simulation (along with parallel simulation) provides an alternative

solution when today’s highly complex systems are to be simulated by

decomposing a simulation model into a number o f sub-models and executing them

in parallel. Furthermore, a parallel or distributed simulation model is more

realistic and natural for many real world applications. Distributed simulation

provides a means o f executing simulation models scattered over a building, a

campus, a city, a country or even the world. It is the only solution available when

simulation models need to exist in different places due to various reasons such as

security concerns about the confidentiality o f information contained in simulation

models, simultaneous access to executing simulation models for users in different

locations etc. Distributed simulation plays an important role in enterprise

simulation. Enterprise simulation refers to a dynamic model or simulation which

is constructed with a top-down perspective and is intended to provide an overall

view o f the workings o f an enterprise. In fact, an enterprise simulation model

becomes a distributed simulation model when there are two or more simulation

models o f the enterprise executed in a network. Therefore the term ‘distributed

simulation’ instead o f ‘enterprise simulation’ will be used in the thesis for

literature or applications are common to both types o f simulations.

This research presents a comprehensive approach for modelling large scale

enterprises through distributed simulation. Although the proposed approach

focuses on enterprise simulation, it can be employed to develop general

distributed simulation models as well.

2

Chapter 1 - Introduction

The objective o f this chapter is to provide an introduction to the thesis. The next

section explains the rationale for the research. Objectives o f the research and

contributions made by the research are presented in sections 1.3 and 1.4

respectively. The last section provides the structure o f the thesis. The chapter ends

with a summary.

1.2 Rationale

Although distributed simulation provides an attractive alternative when simulating

large, complex or geographically distributed systems, it is more complex to

manage than traditional sequential simulation since inter-processor

communication and synchronisation issues required to be addressed. A number o f

authors have criticised distributed simulation (along with parallel simulation) for

the complexity, lack o f availability o f design and development tools, lack of

acceptance by the general simulation community, lack o f use in industrial

applications etc. Fujimoto (1993a) commented that despite over a decade and a

half o f research and several successes, this area o f simulation has not had a

significant impact on the general simulation community. He also predicted that

unless new inroads are made in reducing the effort and expertise required to

develop (parallel and) distributed simulation models, the field will continue to

have limited application, and will remain as a specialised technique used by only a

handful o f researchers. Although these comments were made almost a decade ago

still many authors including Bass (1999), Low et al. (1999), Nicol and

Heidelberger (1995), Pham et al. (1998) and Taylor (2002) echo similar

sentiments. In spite o f a great deal o f effort made by the research community,

parallel and distributed simulation techniques have not yet been widely used in the

industry (Cai and Teo, 1999) and remains a relatively unknown field to those not

directly researching in this area (Taylor, 1998). Bass (1999) noted that the

complexity and difficulties o f implementation have inhibited the commercial

success o f many parallel and distributed applications. Bagrodia (1996) complained

that the design o f efficient parallel discrete event simulation models often appears

to be a mysterious art primarily practiced by researchers who have been rigorously

ordained in this task.

3

Chapter 1 - Introduction

Fujimoto (1993b) concluded that (parallel and) distributed simulation thrives only

if the parallel and distributed research community makes the transition process

easier for the discrete event community. Turner (1998) noted that, it is generally

recognised that the future success o f parallel and distributed simulation depends

on the extent to which it is possible to reduce the effort and expertise required to

develop simulations. This requires simple tools such as user friendly simulation

software packages, popular programming languages as well as modelling

methodologies that guide parallel and distributed simulation users.

Simulation methodology plays a crucial part in any simulation project, particularly

in distributed simulation due to its complex nature. Abrams (1993) highlighted the

importance o f modelling for parallel and distributed simulation and noted that

model design and program design are not independent tasks. Page and Nance

(1994) noted that the importance and role o f the conceptual framework within the

model development process has had little recognition in the parallel and

distributed simulation community. Simulation modelling methodologies have

been investigated for more than four decades. Different authors have presented a

number o f methodologies over this period. However, almost all o f these were

focused on sequential simulation and not on distributed simulation (or parallel

simulation either). Therefore it is desirable to investigate methodologies for

distributed simulation as this form o f simulation is much more complex than

traditional sequential simulation. The highly complex nature o f this type o f

simulation calls for more attention into the distributed simulation model

development process. Furthermore, less complicated approaches for implementing

distributed simulation could play a significant role in addressing some o f the

previously highlighted issues.

1.3 Objectives of the research

• Present a new methodology for distributed simulation in order to develop large

scale enterprise simulation models.

• Simplify the implementation process o f distributed enterprise simulation.

• Implement the proposed methodology for distributed simulation using widely

available, popular, and cost effective tools and technologies.

4

Chapter 1 - Introduction

1.4 Expected contribution from the research

• A new methodology for distributed enterprise simulation (Chapter 3).

• A process for determining an appropriate simulation strategy (Chapter 4).

• A simplified approach for partitioning enterprise models (Chapter 5).

• An approximate synchronization mechanism for enterprise simulation

(Chapter 6).

• An approach to implementation o f enterprise simulation models using cost

effective, widely used and popular simulation software, middleware and

programming language (Chapter 7).

It should be noted that in this thesis the term parallel and distributed simulation

will be used instead o f distributed simulation as most o f the concepts discussed

are also relevant to parallel and distributed simulation.

Since different topics are covered in different chapters o f the thesis, it was decided

not to include a separate literature review chapter. Instead, the background

literature relating to different chapters was included within the individual chapters

in order to enhance the logical organization of materials presented in the thesis.

1.5 Structure of the thesis

Chapter 1 - Introduction

Provides a rationale for the research carried out, objectives o f the research and

contributions made by research.

Chapter 2 - Parallel and distributed simulation

Presents an introduction to parallel and distributed simulation, distributed

simulation, enterprise simulation, and limitations o f parallel and distributed

simulation. Discrete event simulation which is the foundation o f distributed

simulation is also discussed in chapter 2. In addition, it also discusses sequential

simulation and limitations o f sequential simulation briefly.

5

Chapter 1 - Introduction

Chapter 3 - The new proposed methodology for distributed enterprise

simulation

The research carried out for the thesis revolved around the methodology for

distributed enterprise simulation. This chapter explains how the proposed

methodology developed by combining activities required for sequential simulation

with additional activities required for distributed simulation. It presents the

literature relating to sequential simulation methodologies, and additional activities

needed for distributed simulation before presenting the new methodology. Then it

briefly describes stages o f the proposed methodology. Subsequent chapters

elaborate the key stages o f the proposed methodology.

Chapter 4 - The simulation strategy selection (SimSS) process

This chapter provides the user with the SimSS process for determining the most

appropriate simulation strategy out o f parallel simulation, sequential simulation

and distributed simulation. The analytical hierarchy process (AHP) based SimSS

process concludes that there is no one best simulation strategy for all situations

and the appropriate simulation strategy depends on the situation. Before

presenting the SimSS process, the chapter presents literature on the AHP.

Chapter 5 - Conceptual modelling, model partitioning and mapping for

distributed enterprise simulations

This chapter briefly discusses literature on modelling methodologies, modelling

tools, partitioning and mapping approaches. A simplified approach is proposed for

development o f the conceptual model for enterprises, partitioning the conceptual

model and mapping o f the partitioned logical processes.

Chapter 6 - The proposed synchronization mechanism for distributed

enterprise simulation

Synchronisation is one o f the most important issues to be addressed when

developing distributed simulations. The literature relating to synchronisation is

presented before proposing an approximate synchronisation approach for

distributed simulation. In addition, the literature on networking issues is also

discussed briefly in his chapter as distributed enterprise simulation relies on

networking infrastructure.

6

Chapter 1 - Introduction

Chapter 7 - Construction of the distributed enterprise simulation model

This chapter describes the approach employed to implement the enterprise

simulation using widely available, popular and cost effective technologies and

tools. Microsoft Message Queue (MSMQ), Arena and Visual Basic for

Applications (VBA) were used as the message passing middleware to connect

simulation models, simulation software to build simulation models and VBA to

write an interface between MSMQ and Arena respectively. A hypothetical case

study is presented to illustrate the implementation process. The chapter also

provides a brief discussion o f middleware, which is used to communicate between

distributed simulation models.

Chapter 8 - Discussion, conclusion and recommendations for further work

The chapter discusses the proposed approaches presented in previous chapters

including benefits and shortcomings. Suggestions are also made for improving the

work carried out and further work that can be carried out is also included in this

chapter.

Summary

This chapter has provided an introduction to the thesis. As noted in the rationale,

the research is focused on distributed enterprise simulation methodology, which

provides an architecture for the development o f enterprise simulation models. The

next chapter briefly describes discrete event simulation since distributed

simulation is based on the fundamentals o f the former and also provides an

introduction to parallel and distributed simulation.

7

Chapter 2

Parallel and distributed simulation

This chapter presents an introduction to the general concepts o f simulation and to

parallel and distributed simulation. Although the research focused on distributed

simulation and in particular distributed enterprise simulation, most o f the issues

involved are also common to parallel simulation. One notable exception is the

location where partitioned model components reside. The literature also uses the

term ‘parallel and distributed simulation’ to refer to distributed simulation. The

chapter includes basic concepts in simulation, introductions to sequential

simulation, parallel and distributed simulation, distributed simulation, and

enterprise simulation which is an application o f distributed simulation. A brief

discussion o f limitations o f parallel and distributed simulation which provided a

motivation for this research is also presented in this chapter.

8

Chapter 2 - Parallel and distributed simulation

2 .1 Introduction

Since the beginning o f civilization, people have tried to understand the principles

and systems o f the environment. An essential tool to this endeavour has been the

development o f models. In order to model a system, it is necessary to understand

the concept o f a system and the system constraints. A system is defined as a group

o f objects that are joined together in some interactions or interdependence toward

an accomplishment o f some purpose. A system is often affected by changes

occurring outside o f the system. Such changes are said to occur in the system

environment. Depending on the purpose o f the study, it has to be decided on the

boundary between the modelled system and its environment.

A model is a representation o f the construction and working o f some systems o f

interest, and is similar to but simpler than the system it represents (Maria, 1997).

A model should be a close approximation to the real system and incorporate most

o f its salient features. However, it should not be so complex that it is impossible to

understand and experiment with it.

A model:

• Acts as a communication vehicle, making available a description o f the

behaviour o f a system.

• Enables users to gain insight and understanding regarding the behaviour o f a

system.

• Provides means for the analysis and the evaluation o f the system as well as the

prediction o f its future behaviour.

Simulation is defined as an imitation o f the operation o f a real-world or imaginary

process or system over time (Banks, 2000). According to Shannon (1998)

simulation is the process o f designing a model o f a real system and conducting

experiments with this model for the purpose o f understanding the behaviour o f the

system and/or evaluating various strategies for the operation o f the system. The

process o f executing a model on a computer system in order to derive answers to

questions regarding the operations o f modelled systems is referred to as computer

simulation. A model adapted for simulation on a computer is known as computer

9

Chapter 2 - Parallel and distributed simulation

simulation model or simply as a simulation model. The complexity o f organized

enterprises has enhanced the attractiveness o f computer simulation as a problem

solving and design tool, and many contemporary systems could only be

understood and manipulated using computer modelling and simulation techniques.

Shannon (1998) also mentioned that it is one o f the most powerful tools available

to decision makers responsible for the design and operation o f complex processes

and systems. Law and Kelton (1991) noted that as a technique, simulation is one

o f the most widely used in Operations Research and Management Science.

Simulation has a long history and has been used since around 3000 BC, when the

Chinese war games Wei-Hei were developed. The history o f computer based

simulation dates back to 1950s (Pidd, 1994) and many fields now rely on

extensive use o f simulation to test new ideas and options. The gaming industry is

exploding with virtual reality and interactive simulations based futuristic games.

Interactive simulators have been used for pilot training for years and are

increasingly being used for training on advanced equipment. A wide range o f

simulation applications is available to users in the manufacturing industry. The

field o f simulation will continue to grow and the technology will move from the

domain of more expensive and complex industrial, defence and gaming systems to

many aspects o f our lives (Jain, 1999). Furthermore, recent technological

advances have enabled simulation to be utilized in contexts barely conceivable

only a few years ago. Simulation models are now executed not only as

conventional ‘sequential simulation’, but also executed on distributed networks

and multiprocessors.

The objective o f this chapter is to present an introduction to parallel and

distributed simulation, and the foundations o f it. The next section describes basic

concepts in simulation. Discrete event simulation, on which parallel and

distributed simulation is based, is discussed in section 1.3. Section 1.4 presents

sequential simulation, limitations o f sequential simulation and alternatives to

sequential simulation. An introduction to parallel and distributed simulation is

provided in section 1.5. The next section describes distributed simulation, and

enterprise simulation which is an application o f distributed simulation. The last

10

Chapter 2 - Parallel and distributed simulation

section o f the chapter presents a brief discussion o f limitations o f parallel and

distributed simulation. The chapter ends with a summary.

2.2 Basic concepts in simulation

2.2.1 Terminology for simulation

Entity:

Attributes:

System:

Model:

System state:

Set:

Event:

Resources:

Activity:

Delay:

These descriptions are based on Banks et al. (1996), Carson (1992) and Ingalls

(2002).

2.2.2 Deterministic and stochastic models

If a simulation model does not contain any probabilistic or random components, it

is called a deterministic model. In deterministic models, the output is determined

Any object or component that requires explicit representation in

the model. Entities cause changes in the state o f the simulation.

Attributes are characteristics o f a given entity which are unique

to that entity. They are critical to the understanding o f the

performance and function o f entities in the simulation.

A collection o f entities that interact together over time to

accomplish one or more goals.

An abstract representation o f a system, usually containing logical

and/ or mathematical relationships which describe a system in

terms o f state, entities and their attributes, sets, events, activities,

and delays.

A collection o f variables that contains all the information

necessary to describe the system at any time.

A collection o f (permanently or temporarily) associated entities,

ordered in some logical fashion.

An instantaneous occurrence that changes the state o f a system,

a resource is a type o f entity that provides service to other

entities.

An activity is a definite duration o f time that is explicitly defined

by the modeller.

A delay is an indefinite duration o f time that is caused by some

combination o f system conditions.

11

Chapter 2 - Parallel and distributed simulation

once the set o f input quantities and relationships in the model have been specified.

However, events in most o f the real world systems occur randomly. Therefore

these systems must be modelled as having at least some random input

components. This type o f simulation model is known as a stochastic simulation

model.

2.2.3 Continuous and discrete models

If the state of the system does not change but remains stable over time (i.e. the

system is in an equilibrium state), the system is characterized as a static system.

Systems with dynamic behaviour (i.e. systems whose state change over time) are

typically classified either as continuous or discrete systems. In continuous

systems, state changes occur continuously over time. In discrete systems, state

changes are assumed to take place only at a set o f discrete instants in time rather

than continuously. But in reality, very few real world systems are likely to be

entirely discrete or continuous. However, by selecting a certain scope o f the

respective simulation task one type usually dominates this subsystem (Korn et al.,

1999).

2.3 Discrete event simulation

Two types o f discrete event simulations emerged that could be distinguished with

respect to the way simulation time is progressed (Ferscha and Tripathi, 1994). In

time driven discrete event simulation, simulated time is advanced in time steps o f

constant units. With this type o f simulation observation o f the simulated dynamic

system is ‘discretised’ by unitary time intervals. Event driven discrete simulation

‘discretised’ the observations o f the simulated system at event occurrence instants.

This type o f simulation is generally referred to as discrete event simulation.

The behaviour o f discrete event dynamic systems can not easily be described by

partial differential equations. Several mathematical notations and techniques have

been developed to allow the mathematical modelling o f discrete event systems

including Markov processes, Petri nets, Queuing theory and Finite state

mechanics. However, mathematical models are often unable to capture the

dynamic behaviour and other important aspects o f the system in sufficient detail.

Moreover, for most real discrete event systems, mathematical models have no

12

Chapter 2 - Parallel and distributed simulation

simple and practical, analytical or numerical solutions (Theodoropoulos, 1995). In

these situations, simulation modelling and analysis may be the most appropriate

alternative for assessing performance o f such complex systems (Davis, 1999).

Discrete event simulation has several advantages over mathematical modelling

and prototyping (Carson, 1992; Korn, 1999; Shannon, 1992; Shannon, 1998;

Thesen and Travis, 1990) including:

• It facilitates the testing and evaluation o f systems where the system does not

exist. In such cases mathematical modelling is almost impossible, and

prototyping is expensive and time consuming. It is generally easier, faster and

cheaper to design, build and implement a simulation model.

• Provides higher degree o f flexibility than prototypes, as it can be easily

modified. Thus it makes possible for efficient experimentation with new

situations, providing answers to “w hat-if’ type questions which would

otherwise be too time consuming and expensive to contemplate. As a result, it

can reduce both system development time and costs.

• Allows the representation o f the system at any level o f detail sufficient to meet

the objectives o f the designer by supporting hierarchical design approaches.

• Facilitates the study o f dynamic behaviour o f systems by allowing the

manipulation o f time. Time could be compressed or expanded thus providing a

rapid view at long time horizons in the past or future o f the system under

consideration.

• Enhances designers’ understanding o f the system since the process o f discrete

event simulation model building requires a detailed description o f the system.

Discrete event simulation is based on following building blocks (Pidd, 1994):

• Individual entities

The behaviour o f the model is composed o f the behaviour o f individual objects

o f interest, which are usually called entities. The simulation program tracks

the behaviour of each of these entities through simulated time. The entities

could be truly individual objects such as machines, people, vehicles or could

be a group o f such objects (i.e. a crowd, a machine shop, a convoy o f

vehicles).

13

Chapter 2 - P arallel and distributed simulation

• Discrete events

Each entity’s behaviour is modelled as a sequence o f events, where an event is

a point o f time at which the entity changes its state. The flow o f simulation

time in a discrete event simulation is not smooth. As it moves from one event

time to another, time intervals may be irregular. A simulation event may be

viewed as modelling an event in the physical system, which causes a state

transition to take place.

• Stochastic behaviour

The intervals between events are not always predictable.

2.4 Sequential simulation

In sequential simulation, events are simulated in the order o f times at which they

occur. Typically a sequential discrete event simulation utilizes three main

elements:

• Global clock

Keep track o f the progress o f the simulation in terms o f logical or simulated

time.

• State variables

Describe the state o f the simulation at any particular point in simulated time.

• Event list

Contains all events which have been scheduled but have not yet occurred.

Each scheduled event is assigned a timestamp, which indicates the point in

simulated time at which the event occurs. Simulation o f an event may change the

event list by scheduling or cancelling pending events. Simulation is carried out by

repeatedly removing the next event from the event list, advancing the simulation

clock to the time at which the next event is scheduled to occur, and simulating the

next event.

2.4.1. Shortcomings of sequential simulation

Simulation o f a discrete event system may have a number o f objectives to achieve,

such as understanding the behaviour o f the system, estimating the average

performance measures and guiding the selection o f design parameters (Righter

14

Chapter 2 - Parallel and distributed simulation

and Walrand, 1989). However, any simulation tool will be o f limited value if it is

complicated and difficult to develop and if a simulation takes a very long time to

complete. Unfortunately, simulations o f large-scale systems are very complicated

to develop and take a long time to complete thus greatly restricting the number

and scale o f experiments that can be performed. Although the speed o f sequential

processors increases every year, the complexity o f the systems also increases

every year. Many o f today’s simulation models place severe demands on the

computational resources required (Turner, 1998). Kim et al. (1997) and Fujimoto

(1998) noted that simulation o f large, complex systems remains a major stumbling

block due to its prohibitive computational costs. Complex simulations are slow to

develop and slow to run (Carothers, 1999; Righter and Walrand, 1989). The

following points summarize problems associated with traditional sequential

simulation.

• Complexity o f systems

As mentioned above, simulation models o f complex systems are also complex.

One solution for complex systems is to model the system at a higher level o f

abstraction in order to reduce details. Most o f the time this is not considered a

satisfactory approach as it does not allow the user to incorporate the required

details and may end up with an over-simplified version o f the system to be

investigated. Complex sequential simulation models are difficult to develop

and most o f the times are unacceptably slow when executing.

• Computational resources

Generally, complex sequential simulations are slow to run due to their

requirements for more resources in terms o f more processing power, more

memory, and more disk space. I f the sequential simulation is executed in a

single computer, resources available for the simulation are restricted to the

resources available in a single machine. However, for a complex simulation

model resources available in a single computer may not be adequate and an

obvious means o f obtaining a faster simulation is to dedicate more resources to

it.

• Parallelism

Since most simulations are o f systems which consist o f many components

operating in parallel, it could be reasonably assumed o f that the inherent

15

Chapter 2 - Parallel and distributed simulation

parallelism in the system could be exploited, thus improving the efficiency o f

the simulation. However, sequential simulation models could not exploit this

inherent parallelism as they execute events one after another.

Pham et al. (1998) pointed out that the systems we desire to simulate today are so

complex that the tasks o f executing these simulation models are often beyond the

capability o f sequential simulators and in many cases sequential simulation has

now reached its limits.

2.4.2. Alternatives to sequential simulation

Although the sequential approach to discrete event simulation is based on a very

efficient algorithm, it has been unable to provide a satisfactory means of

simulating large and complex systems (Calinescu, 1996). In order to overcome

this limitation, parallel approaches to discrete event simulation have been

considered since the early 1980’s by decomposing a simulation for processing on

multiple processors. Some o f these approaches that were cited in the literature are

outlined below (Calinescu, 1996; Hamilton et al., 1997; Koh et al., 1996; Lin,

1993; Righter and Walrand, 1989; Vee and Hsu, 1999).

• Parallelizing compilers

In this approach, Parallelizing compilers are used to exploit the parallelism

available in a given sequential simulation program. It requires no changes in

the code for sequential simulation, and thus is readily applicable to many

existing sequential simulation programs. However, since the compiler

completely ignores the structure o f the problem, the parallelism exploited is

quite limited. The program may have to be rewritten to exploit more

parallelism o f the underlying problem.

• Replicated trials (Parallel Independent replicated Simulation - PIRS)

Under this approach, a number o f sequential simulations is run independently

on the same number o f processors, and their results are averaged in the end.

Since no coordination is required among the trials, high efficiency could be

expected. However, the parameters o f all simulation runs must be decided

before any run takes place and this does not encourage interactive decision

making. In addition, the computational resources available in computers may

16

Chapter 2 - Parallel and distributed simulation

impose a severe restriction on the size and complexity o f simulations that

could be executed this way.

• Distributed functions

With this approach, the essential subtasks o f a simulation are assigned to a

number o f processors. The subtasks may include random number generation,

event set processing, file manipulation, statistics collection etc. This approach

requires minimum changes in the code for sequential simulation. However,

since the number o f such subtasks is limited, not much parallelism could be

exploited. Furthermore, the workload among the processors is also difficult to

balance.

• Distributed events (with central event list)

Under this approach, a processor which becomes available continues to

process the event with the earliest timestamp in a global event list. The global

event list may be maintained either in a distributed manner or by a particular

processor. To avoid errors o f timing, each processor has to ensure that the

event with earliest timestamp in the list will not be cancelled by some events

currently processed by other processors. It also has to ensure that processing

this event with other events currently being processed by other processors is

consistant with the semantics o f the system being simulated. This requires

knowledge o f the simulation model, which may not be extracted easily. The

global event list can become a bottleneck if many processors are involved in

the simulation.

• Distributed model components

In this approach, the simulation model is decomposed into loosely coupled

components and is assigned the simulation o f each component to a process,

where one or few processes could be run in a single processor. This

decomposition approach is attractive because it is applicable to any model and

shows the greatest potential in offering scalable performance for large models,

and also for its ability to exploit the inherent parallelism o f the simulation

model. Since a number of processes runs in parallel, it is required to

synchronize the simulation in order to make sure that the simulation

progresses correctly.

17

Chapter 2 - Parallel and distributed simulation

Among these approaches the distributed model component approach shows the

greatest potential and is considered the most promising approach for performing

discrete event simulation in parallel (Hamilton et al., 1997; Righter and Walrand,

1989). Since the event list is also decomposed into individual ones, the event list

would not become a bottleneck as in the distributed events approach and a higher

degree o f parallelism is expected since this approach encourages concurrent

processing o f events with different timestamps (Vee and Hsu, 1999). This

approach is generally known as parallel and distributed simulation.

2.5 Parallel and distributed simulation

The field o f computer simulation is still growing. As technology develops, old

forms o f simulations are made faster, and new branches o f simulation emerge.

This involves taking existing simulation concepts and blending these concepts

with those outside o f the simulation discipline (Fishwick, 1994). Parallel and

distributed simulation combines parallel and distributed computing technologies

from computer science with simulation concepts. Pasquini and Rego (1998)

pointed that it offers great promise for meeting the simulation needs o f developers

o f increasingly complex systems.

The idea o f parallel and distributed simulation was first proposed by K.M. Chandy

and R.E. Bryant independently. Papers presented by Chandy and Misra in 1979

and Bryant in 1977 contained basic ideas o f parallel simulation, the problem o f

deadlock and schemes for deadlock resolution, detection and recovery

(Overeinder et al., 1991). Jefferson (1985) proposed an alternative scheme for

parallel and distributed simulation.

In this thesis the terms parallel simulation and distributed simulation are defined

as follows: Parallel discrete event simulation (simply parallel simulation) is

concerned with the execution o f simulation programs on multiprocessor

computing platforms. Distributed simulation is concerned with the execution o f

simulation on geographically distributed computers interconnected via a Local

Area network (LAN) and/or Wide Area Network (WAN) (Fujimoto, 2001).

Generally, the term parallel and distributed simulation is used to refer to either or

both o f parallel simulation and distributed simulations.

18

Chapter 2 - Parallel and distributed simulation

Parallel and distributed simulation offers a radically different approach to

simulation. In parallel and distributed simulation the system under investigation is

partitioned into a number o f sub systems. I f the system under investigation is a

physical system, then the system being simulated is known as the physical system

and is considered as a collection o f physical processes. In parallel and distributed

simulation, physical processes are represented by logical processes (LPs). Hence

parallel and distributed simulation could be viewed as a collection o f LPs that

communicate with each other by passing o f timestamped messages. When

compared to sequential simulation, it is more complex and requires more expertise

of modellers and programmers. Furthermore, a global clock and a global event list

do not exist in a parallel or distributed simulation system. However, individual

LPs can be considered as sequential simulations with local state variables, a

virtual clock and an event list (Mehl, and Hammes, 1993). Bagrodia (1996) also

viewed parallel and distributed simulation as a collection o f sequential discrete-

event simulation models, which communicate with each other using timestamped

messages. Since LPs are executed in parallel, their simulation time may advance

asynchronously. Thus, a LP may not always receive messages with increasing

timestamps. However, in order to simulate a physical system correctly, each LP

has to process its incoming messages in its global timestamped order (Cai and

Teo, 1999). A synchronized simulation system makes sure that each LP is

processing arriving messages in their timestamped order and not in their real time

arriving order. This requirement is referred to as the local causality constraint

(Fujimoto, 1999). Synchronization mechanisms should allow parallel and

distributed simulation to extract maximum possible parallelism and minimize the

associated overheads (Sanchez et al., 1996). As synchronization is one o f the main

issues in parallel and distributed simulation, a more detailed discussion o f

synchronization will be presented in chapter 6.

Parallel and distributed simulation has attracted a considerable amount o f interest

in recent years due to large and complex simulations in engineering, computer

science, economics, and military applications that consume enormous amounts of

time on sequential machines. Lin (2000) noted that since (sequential) simulation is

time consuming, it is natural for attempting to use multiple processors to speedup

the simulation process. Furthermore, it offers means o f exploiting inherent

19

Chapter 2 - Parallel and distributed simulation

parallelism in real world systems. Dado et al. (1993) also noted that the need for

performance, natural concurrency and impact on parallel computation has caused

a growing interest in (parallel or) distributed execution o f single discrete event

simulation. Another potential benefit o f utilizing multiple processors is increased

tolerance to failures. If one processor fails, it may be possible for other processors

to continue the simulation provided that critical elements do not reside on the

failed processor (Fujimoto, 1999). Moreover, many researchers agree that a

parallel or distributed model is more realistic and natural for many real world

applications (Bass, 1999). Davis (1999) mentioned distributed simulation as one

area that should provide significant opportunity for further development and

application into this millennium. Pidd et al. (1999) predicted that in the future

distributed simulation can be evolved into component-based simulation on the

web.

As noted earlier, distributed simulations are implemented on workstations

connected through a LAN or wide area network WAN. However, LAN based

machines have greater communication latencies, although this is gradually being

decreased with new networking technologies. WAN based machines experience

the highest communication latencies. Communication latency is important, since it

is one factor that dictates the efficiency o f the simulation system. LAN and WAN

based systems often contain computers from different manufacturers. On the other

hand, multiprocessor systems are relatively expensive when compared to LAN or

WAN based systems. Hence, the use o f networked workstations interconnected

through LAN/ WAN has been evolving into a popular and effective platform for

concurrent execution o f simulation models.

2.6 Distributed simulation

Although, parallel computers are much more widely available than was the case a

decade ago, they are far from universal and, their use is not straightforward and

may require yet more specialist knowledge (Cassel an'd Pidd, 2001). The

proliferation o f inexpensive and powerful workstations has continued at a rapid

rate in the last few years. In recent years the use o f networked workstations for

distributed applications is gaining popularity (Ikonen and Porras, 1998). The cost

o f this method can be kept down, as most o f the equipment is already available.

20

Chapter 2 - Parallel and distributed simulation

The low cost o f equipment and incremental scalability are the other main

advantages o f using a distributed system. Generally, most o f the time workstations

are used for small tasks or they are idle and these idle cycles could be utilized to

run parallel application on networks o f workstations. The network o f workstations

can be considered as a parallel computer, or ‘hypercomputer’, whose performance

is similar to that of a parallel machine but is achieved at much lower cost (Cabillic

and Puaut 1997). Furthermore, network computing environments retain their

ability to serve as a general purpose computing platform and run commercially

available software products. Fujimoto (1999) presented several reasons that

encourage distributing the execution o f simulation across multiple computers.

• Reduced execution time

Execution time could be reduced by subdividing a large simulation into many

sub-models that can execute concurrently. This is possible due to availability

o f more computational resources and exploitation o f parallelism inherent to

most o f the real world systems. However, it must be noted that parallel

simulation reduces execution time further with its low communication

latencies.

• Geographic distribution

Executing the simulation program on a set o f geographically distributed

computers enables creation o f a virtual single simulation program o f which

components are distributed across different physical sites. Allowing the user to

keep sub-models o f the simulation where they belong may alleviate security

concerns about leaking o f sensitive information and simplify the sub-model

maintenance process.

• Ability to connect computers from different manufacturers.

Unlike in parallel computers which use processors from the same

manufacturer, distributed simulation allows connecting o f different computers

from different manufacturers. This also helps to keep costs at lower level.

Panda and Ni (1997) noted that since LAN technology was not initially developed

for parallel processing the communication overheads among workstations are still

quite high. Low communication speeds, shortage o f network bandwidth and the

ever increasing demand for network resources may result in slowing down the

21

Chapter 2 - Parallel and distributed simulation

execution speed o f the distributed simulation model. Although the networked

workstations will be slower than dedicated machines, they may be fast enough and

may require much less specialist expertise to put them to use, at a fraction o f a

cost o f the price needed for a dedicated parallel processing computer (Cassel and

Pidd, 2001). Thus, investigating the use o f distributed simulation using standard

networking technologies seems to make much sense.

The research was focused on enterprise simulation. However, as noted in the

previous chapter enterprise simulation model becomes a distributed simulation

model when simulation models o f two or more enterprises are linked together and

executed in distributed environment.

2.7 Enterprise simulation

Historically, discrete-event simulation has been view as a standalone project based

technology. However, as technology advances at rapid pace, it is envisioned that

the next wave o f simulation applications may bring simulation to a higher level o f

applicability in the business application arena. Mastaglio (1999) highlighted

simulating business enterprises as the next major application approach to use

simulation technology effectively. Enterprise simulation which is considered as an

important application o f distributed simulation does so by promising to extend the

benefits o f simulation modelling and analysis as it is performed today. Moreover,

advances in distributed simulation concepts and networking technology can

provide much needed push to enterprise simulation by serving as enablers. The

success o f enterprise simulation in simulating war games back in 1990 proved its

role in analyzing the behaviour o f complex systems, which by definition are

comprised o f a number o f independent systems.

Although the term enterprise simulation or something similar is being used with

ever-increasing frequency, the field lacks a clear definition and discussion o f the

theoretical basis for what is meant by the term. Enterprise simulation can be

viewed as a simulation, which is constructed with a top-down perspective and is

intended to provide an overall conceptual view o f the workings o f the enterprise

(Mastaglio, 1999; Meilke, 1999). It provides decision-makers a virtual

environment in which they can quickly, economically, and safely test and improve

22

Chapter 2 - Parallel and distributed simulation

their understanding and expertise about the environment. For this purpose,

different functions in an enterprise should be identified, modelled and integrated

together to run as a single simulation system with distributed simulation

technologies. Datar (2000) noted that an enterprise simulation model becomes a

distributed simulation model when there are two or more simulation models o f the

enterprise in the network. If the enterprise consists o f more than one organization,

the use o f geographically distributed enterprise simulation allows each partner to

hide any proprietary information in the implementation o f the individual

simulation. Furthermore, it also allows simulation o f multiple systems at different

degrees o f abstraction level, to link simulation models built using different

simulation software, to take advantage o f additional computing power,

simultaneous access to executing simulation models for users in different

locations, to reuse of existing simulation modes with little modifications etc. (Gan

et. al., 2000; McLean and Riddick, 2000; Taylor et. al., 2001; Venkateswaran et.

al., 2001).

2.8 Limitations of parallel and distributed simulation

Parallel and distributed simulation research began more than 20 years ago as a

means o f speeding up the execution o f discrete event simulation by distributing

simulation workload across a number o f processors. It offers a great promise for

meeting the simulation needs o f developers o f increasingly complex systems

(Pasquini and Rego, 1998). However, the widespread interest in parallel and

distributed simulation in the research community did not bring about the

widespread deployment o f it in real world applications (Fujimoto, 1993). Bagrodia

(1996) complained that the design o f efficient parallel discrete event simulation

models often appears to be a mysterious art practiced primarily by academic

researchers who have been rigorously ordained in this task. Presumably more than

1500 research papers have appeared (since the pioneering work by Chandy and

Misra, and Jefferson) which have significantly contributed in the scientific sense,

but nevertheless failed to bring the field to an industrial and/or commercial

success (Ferscha et al., 2001). Ikonen and Porras (1998) noted that distributed

simulation is generally not considered as an option when companies are deciding

about their simulation methods. Execution o f a discrete event program on a

parallel computer is no trivial task. Even though the system being simulated often

23

Chapter 2 - Parallel and distributed simulation

contains much intrinsic parallelism, translating this into concurrent execution o f

the simulator has proven to be challenging (Fujimoto, 1993). Pancake (1996) also

noted that, although parallelism is an intuitive and appealing concept, in practice

parallelism carries a high price tag. Parallel programming involves a steep

learning curve and is also effort intensive.

Following are some o f the reasons cited in the literature which contributed to lack

o f success o f parallel and distributed simulation commercially (Bagrodia, 1996;

Ferscha et al., 2001; Fujimoto, 1993).

• The confluence of the parallel and distributed simulation strategy, the

execution platform and the simulation model on performance is not properly

understood.

• The interweaving o f simulation model, platform and strategy attributes and

their impact on overall simulation performance is overwhelmingly complex.

• The preference among optimistic and conservative synchronization protocols,

given simulation model and platform attributes, is neither conclusive nor can

protocol optimizations establish a general rule o f superiority.

• The potential performance gain which can be achieved through the use o f

shared memory multiprocessors, distributed memory multiprocessors or

network o f workstations is not conclusive. Neither fast processors (on their

own) nor fast communication (on its own) can guarantee performance gain.

• The relation o f development cost, performance gain and utility o f parallel and

distributed simulation is not well understood. Moreover, the utility aspect has

almost always been excluded from parallel and distributed simulation research

work.

• Simulation codes must be developed by computer programmers whose

expertise lies in parallel and/or distributed computing and not in simulation

modelling, while the simulation model must be developed by simulation

practitioners whose expertise lies in simulation modelling and not in computer

programming. Although this is common to any form o f simulation, distributed

simulations are especially affected due to the fact that more expertise is

required to implement a distributed simulation

24

Chapter 2 - Parallel and distributed simulation

• The focus o f much parallel and distributed simulation research remains on the

design o f a parallel simulation model rather than on the design o f a discrete

event simulation model for which parallelization can be explored as one

execution option.

Parallel arid distributed simulation represents a trade-off to the user: the carrot is

reduced execution time, but the stick is the effort required to modify, or perhaps

even rewrite, the simulation program to effectively exploit concurrency, not to

mention the time required to obtain the necessary expertise to accomplish this task

(Fujimoto, 1999). Many users avoid parallel and distributed simulation because it

is difficult to specify a large and complicated model using existing tools available

in this type o f simulation. Very few attempts have been made by commercial

companies to experiment with parallel and distributed simulation, not to mention

deploying simulations in the companies (Low et al., 1999). Furthermore, existing

literature on parallel and distributed simulation is justifiably viewed from the

outside as having little relevance to industrial simulation (Nicol and Heidelberger,

1995).

Summary

This chapter provided a description on the basic concepts o f simulation and,

parallel and distributed simulation. It also discussed limitations o f sequential

simulation and presented alternatives to sequential simulation. An introduction to

parallel and distributed simulation, distributed simulation, enterprise simulation

and limitations and problems associated with parallel and distributed simulation

are also included in the chapter. Key issues involved with parallel and distributed

simulation such as synchronization, model partitioning, and networking aspects

are presented elsewhere in the thesis in detail. Some o f the problems associated

with distributed simulation that are mentioned in the last part o f this chapter

provided a motivation to develop the proposed new methodology for distributed

enterprise simulation, which will be presented in the next chapter.

25

Chapter 3

The proposed methodology for distributed

enterprise simulation

Parallel and distributed simulation provides an attractive

alternative to sequential simulation when simulating large,

complex or geographically distributed systems. However, it

was highlighted in the previous chapter that distributed

simulation is still not widely used apart from military

applications. Absence o f a proper methodology to develop

distributed simulation, complexity o f it, requirements o f

more expertise etc. were cited in the literature as reasons

for lack o f popularity among the general simulation

community. This chapter proposes a new methodology for

distributed enterprise simulation by incorporating

additional activities needed for distributed simulation into

activities required to carry out a sequential simulation. As

noted in a previous chapter, an enterprise simulation

becomes a distributed simulation when more than one

enterprise simulation models are executed in a distributed

manner. Therefore the methodology for distributed

enterprise simulation also can be viewed as a methodology

for distributed simulation.

26

Chapter 3 - The proposed methodology fo r distributed enterprise simulation

3.1 Introduction

Simulation methodology focuses on the question o f how a simulation model

should be constructed. Balci (1990) noted that the key to success in a simulation

study is to follow a comprehensive life cycle which contains key activities to be

carried out in an organized and well managed manner. Ever-increasing complexity

o f systems being simulated can only be managed by following a structured

approach to conduct the simulation study. Simulation modelling methodologies or

simulation life cycles have been investigated for more than four decades. Different

authors have presented a number o f methodologies over this period. However,

almost all o f these were focused on sequential simulation and not on parallel and

distributed simulation. Sawhney (2000) pointed out that current simulation

modelling methodologies are not geared towards these types o f complex systems.

Furthermore Karacal (1998) mentioned that modelling and simulation still lacks

sound theoretical and methodological foundations. Therefore, the development o f

efficient discrete event simulation methodologies remains an important area o f

investigation. Analysis show that the literature on distributed simulation

(including parallel simulation) concentrated on a few critical issues such as

synchronization, partitioning, mapping etc. However, it fails to mention how

systems under investigation are decomposed into logical processes, how

distributed systems are verified and validated, the importance o f conceptual

modelling etc. Absence o f formal simulation model building methodologies may

have partly contributed to parallel and distributed simulation’s failure to gain a

significant acceptance from the general simulation community. The task o f

developing a distributed simulation is especially complex as models are generally

larger and more complicated than traditional sequential simulation models, the

system under investigation needs to be decomposed into several models,

distributed simulation models require to be synchronized, and output can be

generated from more than one model o f the system. Therefore it is desirable to

have a formal modelling methodology which guides users through the different

stages required to implement a distributed simulation system in order to simplify

and streamline the system development process. The proposed methodology for

distributed enterprise simulation was developed by identifying additional activities

required for distributed simulation and incorporating them into the key activities

required to develop a sequential simulation (figure 3.1)

27

Chapter 3 - The proposed methodology fo r distributed enterprise simulation

Key activities of a
sequential simulation o

 \
Additional activities

for a distributed
simulation

Methodology for
distributed enterprise

simulation
\)

Figure 3.1 - Approach employed to develop the proposed methodology

The objective o f this chapter is to present a new methodology for distributed

enterprise simulation. The next section presents the literature on sequential

simulation methodologies. Additional activities required for distributed simulation

are discussed in section 3.3. The proposed new methodology for distributed

enterprise simulation is presented in section 3.4. The last section briefly describes

the stages o f the proposed methodology. The chapter ends with a summary.

3.2 Sequential simulation methodologies

Methodologies for conducting a simulation have been proposed by a number o f

authors since early days o f the technology. Whilst they do not always share the

same terminology, analysis suggests that key activities are common to all. In order

to identify the key activities required to conduct a successful simulation, a few

well recognized methodologies were selected and analysed.

3.2.1 Methodology proposed by Robinson (1994)

Robinson (1994) presented a simple methodology which consists o f 4 main phases

(figure 3.2). Both forward and backward arrows on sides have been used to

illustrate the iterative nature o f the simulation project.

Model building and testing

Project completion

Problem definition

Experimentation

Figure 3.2 - Methodology proposed by Robinson (1994)

28

Chapter 3 - The proposed methodology fo r distributed enterprise simulation

The four main phases o f the methodology consist o f a number o f sub activities

Problem identification & setting o f objectives

Definition o f experimental factors and reports

Determination o f the scope and level o f the model

Collection and analysis o f data

Providing project specifications

Model building and testing Structuring o f the model

Model building and verification

Model validation

Experimentation Performing experiments

Analysis o f results and conclusions

Project completion Communication o f results

Completing the documentation

Reviewing the project

Further work

3.2.2 Key activities of Shannon (1998)

Shannon (1998) listed followings as activities required to complete a simulation

successfully.

Problem definition

Project planning

System definition

Conceptual model formulation

Preliminary experimental design

Input data preparation

Model translation

Verification and validation

Final experimental design

Experimentation

Analysis and interpretation

Implementation

including,

Problem definition

29

Chapter 3 - The proposed methodology fo r distributed enterprise simulation

3.2.3 Methodology proposed by Balci (1990)

Balci (1990) proposed a 10-phase methodology, which he called the life cycle o f a

simulation study (figure 3.3).

Communicated
Problem

Problem
Formulation

Form ulation Problem
Verification

Formulated
ProblemDecision Makers

Investigation o f
Solution Techniques

Feasibility Assessment o f
Simulation

Acceptability o f
Simulation Results Proposed Solution

technique

Integrated Decision
Support

System Objectives
D efinition Verification

System
Investigation

System and Objectives
Definition M odel Formulation

M odel
Qualification

S U,

Conceptual Model
Redefinition

Comm unicative
M odel V & V

M odel Representation

M odel
Validation

Data
Validation Communicative Model(s)Simulation Results

Programmed
Model V & V < Program m ing

Experimentation
Programmed Model

Experim ent Design
Verification /

Design o f Experiments
Experimental Model

Figure 3.3 - Methodology proposed by Balci (1990)

A key feature o f this approach is that most of the activities are centred on

verification and validation. In addition to activities involved in the simulation

project, Balci (1990) also included the outcome o f each activity in the

methodology. Key activities o f the methodology are shown below.

Problem formulation

Investigation o f alternative solution techniques

System investigation

Model formulation

Model representation

30

Chapter 3 - The proposed methodology fo r distributed enterprise simulation

Programming

Design o f experiments

Experimentation

Redefinition (of model)

Verification and Validation are applied to all phases

3.2.4 Methodology proposed by Law and Kelton (1991)

A 10 step simulation methodology proposed by Law and Kelton (1991) is shown

in figure 3.4.

Formulate prob
stu

iem and plan the
dy
* ----------------

Collect data & define model

Construct computer program and
verify

Making pilot runs

Design experimentsT
 Make production runs j

Analyze output data

I
Document, present and implement

the resultd

Figure 3.4 - Methodology proposed by Law and Kelton (1991)

Key activities o f this methodology include:

Problem formulation and planning o f the simulation study

Data collection and definition o f the conceptual model

Validation o f conceptual model

Construction and verification o f computer simulation program

31

Chapter 3 — The proposed methodology fo r distributed enterprise simulation

Making pilot runs

Validation

Design o f experiments

Making production runs

Analyzing output data

Documentation, presentation and implementation o f the results

3.2.5 Methodology proposed by Banks et al. (2000)

Verified ?

Validated ?

Production runs and analysis

More runs ?

M odel building Data collection

Coding

Experimental design

Problem definition

Documentation & report results

Implementation

Setting o f objectives and overall
project plan

Figure 3.5 - Methodology proposed by Banks et al. (2000)

32

Chapter 3 - The proposed methodology fo r distributed enterprise simulation

Methodology proposed by Banks et al. (2000) consists o f following steps.

Problem formulation

Setting o f objectives and overall project plan

Data collection

Model building

Coding

Verification

Validation

Experimental design

Production runs and analysis

Need for more runs?

Documentation and reporting o f results

Implementation

In addition, a number o f authors including Lilegdon (1996), Maria (1997),

Nordgren (1995), Sadoun (2000), Sargent (1994) also presented activities required

for successful sequential simulation.

While some o f the above methodologies are concise with few activities

(Robinson, 1994), others are lengthy (Bank et al, 2000; Law and Kelton, 1991).

The latter methodologies elaborate the activities o f the former into a number o f

activities. Analysis o f simulation methodologies suggests that sequence o f

activities to be carried out are also not in the same order although the key

activities required to be carried out are almost the same. A number o f authors

including Law and Kelton (1991) and Robinson (1994) suggested that data

collection should be carried out after problem identification and setting o f

objectives, and before formulation o f the conceptual model. However, Shannon

(1998) suggested carrying out data collection after completing problem definition,

project planning, system definition, conceptual model formulation and preliminary

experimental design. Banks et al. (2000) placed model building and data

collection at the same level arguing requirements o f data depends on requirements

o f model building. Some methodologies (Banks et al., 2000; Shannon, 1998)

proposed conducting verification and validation at latter part o f the methodology

after construction o f the computer simulation model but before experimentation.

33

Chapter 3 - The proposed methodology fo r distributed enterprise simulation

On the other hand, Law and Kelton (1991) proposed verification and validation to

be done after completion o f key activities such as formulation o f the conceptual

model and conversion o f the conceptual model into a computer simulation model.

Balci (1990) proposed to conduct verification and validation throughout the model

development process.

Having analyzed above simulation methodologies, the following activities were

identified as key activities required to conduct a simulation.

• Problem definition and identification o f objectives

• Data collection

• Construction o f conceptual model

• Verification and validation

• Construction o f computer simulation model

• Experimentation

• Output analysis

• Implementation and further work

Problem identification and identification o f objectives was selected as the first

stage o f the distributed simulation. This stage includes problem definition

(Robinson, 1994; Shannon, 1998), problem formulation (Balci, 1990; Banks et al.,

2000), project planning, system definition (Shannon, 1998), setting o f objectives

(Banks et al., 2000). Data collection was selected as the next activity assuming

that in order to construct the conceptual model data has to be collected

beforehand. Preliminary experimental design (Shannon, 1998) is also included

into this stage as it contains identification o f input data, statistical distributions

that represent data etc. Construction of the simulation model is presented in all the

above mentioned sequential simulation methodologies as a separate activity

except in the methodology presented by Law and Kelton (1991), where data

collection and defining a conceptual model were incorporated into a single stage.

However, Balci (1990) presented this stage as two separate stages, namely: model

formulation and model representation. Verification and validation were proposed

to be carried out at different levels after completing important stages o f the

simulation project such as completion o f the conceptual model, partitioning o f the

34

Chapter 3 - The proposed methodology fo r distributed enterprise simulation

conceptual model into logical processes and transformation o f logical processes

into computer simulation models. Design o f experiments (Balci, 1990; Law and

Kelton, 1991), experimental design (Banks et al., 2000), final experimental design

(Shannon, 1998), experimentation (Balci, 1990; Shannon, 1998), production runs

(Banks et al., 2000; Law and Kelton, 1991), additional runs (Banks et al., 2000)

were included in the experimentation stage o f the proposed methodology. Output

analysis stage includes simulation results (Balci, 1990), analysis o f output data

(Law and Kelton, 1991), analysis and interpretation (Shannon, 1998), and results

analysis (Banks et al., 2000). Implementation and further work consists of project

completion (Robinson, 1994), redefinition o f the model (Balci, 1990); document,

present and implement the results (Banks et al., 2000; Law and Kelton, 1990), and

implementation (Shannon, 1998).

3.3 Additional activities for parallel and distributed simulation

The major difference between sequential simulation and distributed simulation is

the number o f processors (in workstations) used to execute the simulation.

Sequential simulation executes as a single model in a single processor. In

distributed simulation the entire model is partitioned into logical processes and

executed in more than one workstation in a distributed environment. For the

purpose o f executing a simulation as a distributed simulation, in addition to the

key activities mentioned above, the following activities are also required to be

carried out. These activities were identified by analysing the literature on parallel

and distributed simulation.

• Partitioning o f the entire model into logical processes

• Deciding on synchronization protocols and networking aspects

• Assigning o f logical processes to different processors

Although distributed simulation has a great potential to improve discrete event

simulation, it doesn’t provide a simple or standard solution for complex

simulations. Many authors including Ikonen and Porras (1998) and Pancake

(1996) complained that distributed simulations (including parallel simulations) are

effort intensive, complex and costly. Simulationists need to be aware o f the

benefits o f distributed simulation as well as its perils and pitfalls before making a

35

Chapter 3 - The proposed methodology fo r distributed enterprise simulation

decision on whether or not to use distributed simulation. Therefore it was decided

to incorporate an additional activity which guides users to identify an appropriate

simulation strategy out o f sequential simulation, parallel simulation or distributed

simulation.

Figure 3.6 shows activities required for a distributed simulation by combining

above mentioned additional activities into activities required for sequential

simulation.

Activities required for
sequential simulation

• Problem definition and •
identification of objectives

• Data collection •
• Construction of conceptual

model •
• Verification and validation
• Construction of computer •

simulation model
• Experimentation
• Output analysis
• Implementation and further work

lilill:;::*,

• Problem definition and identification of objectives
• Determination of appropriate simulation strategy
• Data collection
• Construction of conceptual model
• Verification and validation
• Partitioning of the entire model into logical processes
• Deciding on synchronization protocols and networking aspects
• Assigning of logical processes into different processors
• Construction of computer simulation model
• Experimentation
• Output analysis
• Implementation and further work

Figure 3.6 - Activities required for a distributed simulation including distributed
enterprise simulation

Additional activities required
for distributed simulation

Determination of appropriate
simulation strategy
Partitioning of the entire model
into logical processes
Deciding on synchronization
protocols and networking aspects
Assigning of logical processes into
different processors

Chapter 3 — The proposed methodology fo r distributed enterprise simulation

Based on the activities identified in figure 3.6, the new proposed methodology for

distributed enterprise simulation is presented in the next section.

3.4 The proposed methodology for distributed enterprise simulation

The proposed methodology is shown in figure 3.7 and stages o f the methodology

are described in the following sections. Key additional activities required for a

distributed simulation with proposed implementation approaches are presented in

the next three chapters o f the thesis.

Problem definition & Identification
o f objectives

SimSS Process

Sequential
simulation

Parallel and Distributed
^''-'-^sim ulation

Data collection

Construction o f conceptual model]

Verification &
Validation

Partitioning the model into logical
processes (LPs)

Verification &
Validation

M apping o f LPs into processors

Synchronization and N etworking

Program m ing o f LPs

Verification &
Validation

Experimentation

O utput analysis

Implementation and further work

Figure 3.7 - The proposed methodology for distributed enterprise simulation

37

Chapter 3 — The proposed methodology fo r distributed enterprise simulation

New approaches are presented for highlighted stages o f the proposed methodology

(figure 3.7) in order to implement the distributed enterprise simulation in

simplified and cost effective manner.

3.4.1 Problem definition and identification of objectives

As with any project, without proper understanding o f the problem and a clear set

o f objectives it is almost impossible for a simulation effort to succeed. This is

particularly true for distributed simulation (and parallel simulation), since it is

more complex than conventional sequential simulation. Shannon (1998) noted that

beginning a simulation project properly may make a critical difference between

success and failure. Specific questions to be answered by the simulation project,

systems configurations to be modelled, performance measures used to evaluate

different system configurations, and the time frame o f the project including cost

and resources required are to be determined at this stage. In addition, the scope of

the project and abstraction level o f the model has to be decided too. The scope o f

the model is vital to success o f the simulation effort as too little detail may result

in information that may not be accurate enough to achieve the real goal and, a

model with too much detail requires more effort to create, needs longer run times

and is more likely to contain errors. Additional resources required for distributed

simulation such as expertise, computer networks, and special software if required

also need to be considered at this stage. A number o f authors including Robinson

(1994) and Sadowski (1991) provided an in-depth discussion of the starting phase

o f a simulation project. Although these discussions were originally produced for

sequential simulation, they are also applicable to distributed simulation.

In distributed simulation, more than one model can generate output. In some

situations part o f the output from a model may need to be restricted to only

owners o f that model. Therefore it is particularly important to determine which

models generate output, which part o f the output can be accessed by all the

interested parties and which part o f the output needs to be restricted.

3.4.2 The Simulation strategy selection (SimSS) process

The second step o f the proposed methodology, the SimSS process helps users to

determine the most appropriate simulation strategy to be used when executing a

38

Chapter 3 - The proposed methodology fo r distributed enterprise simulation

simulation model. After analyzing advantages and disadvantages o f sequential

simulation and parallel and distributed simulation, it presents three alternative

strategies, namely: sequential simulation, distributed simulation and parallel

simulation. To identify the appropriate simulation strategy, the SimSS process

employs the analytical hierarchical process (AHP). The SimSS process will be

presented in detail with illustrations in chapter 4 o f the thesis.

3.4.3 Data collection

At this stage data is to be collected in order to specify model parameters and

probability distributions. Data is required not only to build the simulation model

but also to test its validity. Soundness o f the model logic and structure depends

upon data on which the model is going to be constructed. Amount o f data and

accuracy o f data required also depend on the experimental requirements o f the

simulation. Therefore before starting the actual data collection effort,

experimental design aspects such as measures o f effectiveness to be used in the

study, what factors going to be varied, how many levels o f each o f these factors

will be investigated and the number o f samples need for the study have to be taken

into account. In addition, consideration should be also given to type o f data

required, availability o f data, whether data is pertinent and valid, and how to

collect the data. Moreover, statistical sampling, statistical distributions, random

number generations are also playing critical role in data collection and preparation

for a simulation study. More details on input modelling, sampling, data collection

and statistical distributions are presented by Law and Kelton (1991), Leemis

(2001), Robinson (1994) and Wilson (1997).

3.4.4 Construction of the conceptual model

The conceptual model that represents the real world or proposed model is a series

o f mathematical and logical relationships concerning the components and the

structure o f the system under investigation. A conceptual model is a collection o f

information that describes a simulation developer’s concept about the simulation

and its pieces. That information consists o f assumptions, algorithms,

characteristics, relationships, and data, which describe how the simulation

developer understands what is to be represented by the simulation (entities,

actions, tasks, processes, interactions etc.) and how that representation will satisfy

39

Chapter 3 - The proposed methodology fo r distributed enterprise simulation

simulation requirements (Pace 2000). Proper development o f the conceptual

model is vital as it is the primary mechanism for transforming simulation

requirements into specifications that can guide the simulation development and

implementation process. Conceptual modelling is largely software independent

and particularly important for distributed simulation due to its complicated nature.

Unfortunately, the literature on distributed simulation has not paid as much

attention to conceptual modelling as it deserves. An appropriate modelling

approach and technique must be determined before developing the conceptual

model. Modelling approaches (such as incremental and hierarchical approaches)

specify the way models are to be developed. Once the approach is decided then

the modeller can determine what modelling tools (such as diagrammatic tools,

Petri nets, and IDEF methodologies) are to be used. Further discussion o f this

stage along with partitioning o f the conceptual model and mapping o f logical

processes is presented in chapter 5.

3.4.5 Verification and validation

Verification and validation is an important and well researched area in simulation

as accuracy and reliability o f outcome o f the simulation depends on proper

functioning o f the model as well as validity o f the model and data used. Sargent

(2000) described verification as ensuring that the computer program o f the

computerized model and its implementations are correct. Validation is

determination that the conceptual model is an accurate representation o f the

system under investigation. It is often too expensive and time consuming to

determine that the model is absolutely valid for its purpose. Instead, tests and

evaluations can be conducted until sufficient confidence is obtained that a model

can be considered valid for its intended application (Sargent, 2001). Furthermore,

Carson (2002) noted that validation is not absolute and any model is a

representation o f the system, and its behaviour is at best an approximation to the

system’s behaviour.

According to the proposed methodology for distributed enterprise simulation,

verification and validation are carried out at multiple stages, namely: after

construction o f the conceptual model, after partitioning o f the conceptual model

into logical processes, and after converting logical processes into computer

40

Chapter 3 - The p roposed methodology fo r distributed enterprise simulation

simulation models (figure 3.7). If errors or omissions are discovered, which is

almost always the case then the conceptual model or logical processes must be

modified before proceeding into the next stage. Once logical processes are

transformed into computer simulation models, individual simulation models are to

be verified to ensure that they are working without any bugs and validated to

make sure that they produce intended output. Validation o f sub models may not

always feasible as they are designed to use parameters from other models as input.

However, this problem can be overcome by initially designing sub models to

generate their own input parameters and able to run as independent models, then

modifying them to receive parameters from other models once they are validated.

After individual simulation models are verified and validated, the distributed

simulation model can be validated in conjunction with synchronization

mechanism (more details are presented in section 7.9.2). Analysis o f the

simulation literature shows that a number o f authors including Balci (1990 and

1998), Carson (2002), Law and McComas (2001) and Sargent (2001) presented an

excellent introduction to verification and validation including verification and

validation procedures, tools and techniques that can be used for verification and

validation.

3.4.6 Partitioning and mapping

At this stage, the validated conceptual model is partitioned into several logical

processes and assigned to processors (of workstations). The first process is

generally known as partitioning and the latter is known as mapping. The issue o f

model partitioning and mapping has been paid less attention in the parallel and

distributed simulation literature compared to the amount o f work devoted to other

issues such as synchronization (Solcany et al., 1995). The literature on partitioning

suggests a number o f approaches to partition a programmed simulation model

(Boukerche and Trooper, 1994; Nandy and Loucks, 1993). Some o f these

approaches require execution o f the whole simulation system as a single model

before partitioning. However, with this new methodology it is proposed to

partition the conceptual model before transforming into a computer program. The

proposed approach simplifies the conversion o f logical processes into a computer

program, and verification and validation o f the system. It also facilitates the

involvement o f more than one modeller and computer programmer. When

41

Chapter 3 - The proposed methodology fo r distributed enterprise simulation

partitioning, interactions within logical processes and between logical processes

should be taken into account in order to minimize the inter-processor

communication, which reduces the load o f the network. Once the system under

investigation is partitioned into logical processes, they must be validated before

being mapped into to different processors. More details o f this stage along with

construction o f the conceptual model is presented in chapter 5.

3.4.7 Synchronization protocols and networking issues

A Synchronized simulation system makes sure that each individual simulation

model is processed arriving messages in their timestamped order and not in real

time arriving order. This requirement is referred to as local causality constraint

(Fujimoto, 1999). To satisfy the local causality constraint, a number of

synchronization protocols has been proposed. These protocols can be broadly

classified as conservative or optimistic protocols (Fujimoto, 1990). Conservative

approaches strictly impose the local causality constraint and guarantee that each

model will only process events in non-decreasing timestamp order. In contrast,

optimistic approaches allow violations o f local causality constraint, but are able to

detect and recover by rolling back to the point where the violation has occurred

and reprocessing events in timestamped order. Neither conservative nor optimistic

classes o f synchronization algorithms proved to be strictly better than the other

(Das, 2000 and Sanchez et al., 1996). The appropriate synchronization protocol

should be selected based on characteristics o f the model and user requirements.

(Ferscha et al., 2001; Fujimoto, 1998). In addition, for distributed simulation

appropriate network topologies and communication protocols should also be

determined. Chapter 6 presents more details on networking issues and

synchronization protocols.

3.4.8 Construction of computer simulation model

At this stage validated logical processes are transformed into computer simulation

models. Although simulation software packages such as Automod, Promodel,

Arena, Witness are used in sequential simulation, general purpose programming

languages such as C++, Pascal etc. are often used to develop distributed

simulation models. This is mainly due to lack o f support offered by simulation

software packages for special requirements o f distributed simulation such as

42

Chapter 3 - The proposed methodology fo r distributed enterprise simulation

synchronization. However, analysis o f the recent literature (Hibino et al., 2002;

Lendermann et al., 2001; McLean and Shao, 2001; Taylor et al., 2001;

Venkateswaran et al., 2001) shows increasing trend o f using commercial

simulation software along with programming languages and message-passing

technologies to develop distributed simulation systems. Ability to use commercial

simulation software packages may also popularize the use o f distributed

simulation in industrial applications. Chapter 6 discuses the construction o f a

distributed enterprise simulation model in detail with an illustration using a

hypothetical case study.

3.4.9 Experimentation

All the work carried out in previous stages will not be fruitful if simulation

experiments are not carefully planned and designed. Barton (2001) also noted that

simulation projects could fall short o f their intended goals unless the simulation

model is exercised intelligently to gain a better understanding o f the likely

performance o f the system under investigation. Experimentation stage includes

both designing o f simulation experiments and actual execution o f the simulation

distributed system. According to Antony (1998) experimental design is a

systematic and structured approach to experimentation. When designing

simulation experiments, various issues need to be considered including warm-up

period, number o f replications and length o f a replication. To improve the

confidence in the estimate o f system performance obtained through simulation

experiment, Sherif (1998) suggested that longer runs and more replications need

to be carried out. Attention should also be paid on starting conditions o f the

simulation, selection o f samples, sample sizes and ways o f collecting output.

Barton (2001) presented a five step procedure to carry out simulation experiments.

Experimental design is also well researched area in simulation and a number o f

authors including Centeno and Reyes (1998), Kelton (2000), and Wild and

Pignatiello (1991) presented more details on this area.

In addition, when conducting a distributed simulation starting and stopping o f the

simulation may needs a careful consideration as more than one simulation model

have to be started and stopped instead o f a single model in sequential simulation.

Since the new methodology for distributed simulation proposes to use general

43

Chapter 3 - The p roposed methodology fo r distributed enterprise simulation

purpose networked workstations to run distributed simulation models, timing o f

the simulation experiment may also play an important role. I f simulation is carried

out at a time when network traffic is very high, it may affect performance o f the

simulation as well as overall performance o f the network.

3.4.10 Output analysis

Output analysis is used to estimate measures o f performance for the scenarios that

are being simulated. The purpose o f analyzing results is to check the extent to

which the objectives o f the simulation project have been achieved. Various

techniques such as graphical analysis, tabular forms can be used to organize the

output from the simulation experiment. If complex and detailed analysis is

required, output can be written to a text file or exported to a database or

spreadsheet package. Since the input processes driving a simulation are usually

random variables, generally the output generated from the simulation is also in

random nature. Goldsman and Tokol (2000) noted that raw output data is not

independent, not identically distributed and also not normally distributed. This

leads to difficulties o f applying statistical techniques to analyze the simulation

output. Output analysis techniques depend on whether the simulation is

terminating or nonterminating. Goldsman and Tokol (2000), Nakayama (2002),

and Sanchez (2001) presented output analysis techniques in detail.

Unlike in traditional sequential simulation model where output is generated by

only one model, in a distributed simulation more than one model can generate

output. Output from individual models can be used to measure performance o f

different sections o f the enterprise and the aggregated output can be used to

measure the overall performance o f the enterprise.

3.4.11 Implementation and further work

No simulation study can be considered as successful unless its results have been

understood, accepted and implemented. The last stage o f the distributed

simulation methodology includes communication o f results, documentation,

review o f the project and deciding on further simulation experiments. To

overcome potential resistance against organizational changes, results o f the

simulation, and benefits o f implementation should be clearly, concisely and

44

Chapter 3 - The proposed methodology fo r distributed enterprise simulation

convincingly documented ' and presented before implementation starts.

Furthermore, use o f animation may also help to convince about working o f

distributed simulation to sceptical audience.

Summary

This chapter presented the proposed new methodology for distributed enterprise

simulation, and briefly described key stages o f the methodology. Stages which are

part o f sequential simulation methodologies were described only briefly as these

are well researched areas. Additional activities required for distributed simulation

will be presented in subsequent chapters. The next chapter presents the SimSS

process, which helps users to determine an appropriate simulation strategy out o f

sequential simulation, parallel simulation and distributed simulation.

45

Chapter 4

The Simulation Strategy Selection (SimSS)

process

The previous chapter presented the proposed methodology

for distributed enterprise simulation. It was also noted that,

although (parallel and) distributed simulation provides an

attractive alternative for sequential simulation, it is more

complex and requires more effort and cost to implement.

Therefore, it is desirable to evaluate different simulation

strategies before making a decision on which simulation

strategy is to be selected. This chapter presents the

simulation strategy selection (SimSS) process to determine

the appropriate simulation strategy out o f parallel

simulation, distributed simulation and sequential simulation

(figure 4.1). It also describes the analytic hierarchy process

(AHP), which was used as the solution method for the

proposed SimSS process.

46

Chapter 4 - The Simulation strategy selection (SimSS) process

Problem definition & Identification
o f objectives

SimSS Process

Parallel and Distributed
simulation

N Sequential
simulation

Data collection

Construction of conceptual model

Ven fi cation &
Validation

Partitioning the model into logical
processes (LPs)

Verification &
Validation

Mapping of LPs into processors

Synchronization and Networking

 T
Programming o f LPs

Ven fi cation &
Validation

Expenmentation

Output analysis

Implementation and further work

Figure 4.1 - The proposed methodology for distributed enterprise simulation

47

Chapter 4 - The Simulation strategy selection (SimSS) process

4.1 Introduction

Distributed simulation (along with parallel simulation) has a great potential to

improve discrete event simulation. Davis (1999) noted distributed simulation as

one area that should provide significant opportunity for further development and

application into this millennium. Research in this area began more than 20 years

ago as a means o f improving simulation execution time. Yet, it doesn’t provide a

simple or standard solution for complex simulations. Parallel programming is also

effort intensive and involves steep learning curves (Pancake, 1996). When

compared to sequential simulation, parallel and distributed simulation is more

complex and requires more expertise o f modellers and programmers.

Analysis o f the literature suggests that parallel or distributed simulation is

employed when speed o f simulation needs to be increased by exploiting the

inherent parallelism o f the system under investigation, more computational

resources are required for simulation and/ or simulation needs to be executed in a

geographically distributed environment etc. However, if the model is required to

be run in a geographically distributed environment then distributed simulation is

the only available option for simulation users. Factors that encourage users to

move into distributed simulation can not be quantified and decisions made are

often subjective. Generally these decisions depend on the expertise o f the

modeller, availability o f resources including both computational and human,

enthusiasm o f the management and / or modellers etc. One modeller may decide to

use distributed simulation for a particular situation while another modeller may

decide to stick with sequential simulation. Thus, there is a need for a systematic

approach to select an appropriate simulation strategy by identifying and

prioritizing relevant criteria, and evaluating the trade-offs between technical,

economic and performance aspects.

It was noted in the previous paragraph that the decision making process involved

when selecting distributed simulation (or parallel simulation) is a multi-criterion

and judgmental one. The role played by each factor varies from one situation to

another. For an example if the simulation model is relatively small, execution time

is not critical, and the simulation model can be developed as a single model then

sequential simulation might be the appropriate strategy. On the other hand, if the

48

Chapter 4 - The Simulation strategy selection (SimSS) process

model is too complicated to develop as a single model and execution time is

longer than expected then parallel or distributed simulation might be an

appropriate alternative. Therefore, it is not feasible to present a definite set o f rules

to make such decisions. It is further complicated by attributes that are subjective

and not quantifiable. Multi-criteria decision Making (MCDM) techniques are

useful in circumstances that necessitate the consideration o f different courses o f

action, which cannot be evaluated by the measurement o f a simple or single

dimension.

Many authors including El-Mikawi (1996), Poyhonen and Hamalainen (2001),

Steuer and Na (2003) and Zanakis et al. (1998) describe a number o f MCDM

techniques including goal programming, outranking approaches, direct point

allocation (DIRECT), simple multi-attribute rating technique (SMART), swing

weighting, trade-off weighting, multiple objective programming, multi-attribute

utility analysis, multicriteria decision analysis and analytic hierarchy process

(AHP). Based on simplicity and easy to use, availability o f software, and

capabilities o f software available; the AHP was selected as the MCDM technique

for simulation strategy selection. AHP provides a framework to cope with

multiple criteria situations involving intuitive, rational, qualitative and quantitative

aspects (Chan et al., 2001). Since simulation strategy selection involves multiple

criteria, most o f which are qualitative and subjective, AHP is an appropriate

technique for the proposed simulation strategy selection process (SimSS).

The objective o f this chapter is to present a new approach to select an appropriate

simulation strategy from sequential simulation, parallel simulation or distributed

simulation. The next section describes the AHP, which was used as the solution

process for the SimSS approach. Section 4.3 presents the SimSS process and three

scenarios to illustrate the proposed process. The chapter ends with a summary.

49

Chapter 4 - The Simulation strategy selection (SimSS) process

4.2 The analytic hierarchy process (AHP)

The analytic hierarchy process (AHP), developed by Thomas Saaty in 1970s

allows decision-makers to model a complex problem in a hierarchical structure

showing the relationships o f the goal, objectives (criteria), sub-objectives, and

alternatives (figure 4.2). It enables decision-makers to derive ratio scale priorities

or weights as opposed to arbitrarily assigning them. In doing so, the AHP not only

supports the decision-makers by enabling them to structure the complexity and

exercise the judgement, but also allows them to incorporate both objective and

subjective considerations in the decision process (Forman, 2001). Yusuff et al.,

2001 commented that the AHP provides remarkable versatility and power in

structuring and analyzing the complex multi-attribute decision problems. The

AHP has been widely used as a decision making tool in many diverse areas

including software evaluation, information systems outsourcing, reliability

evaluation o f distributed computing environments, advanced manufacturing

systems, project management, competitive bidding processes, and vendor

selection (Al-Harbi, 2001; Cagno et al., 2001; Chan et al., 2001; Fahmy, 2001;

Ossadnik and Lange, 1999; Tam and Tummala, 2001; Yang and Huang, 2000;

Yusuff et al., 2001). Al-Habri (2001), Perez (1995) and Zahedi (1986) discussed

shortcoming and benefits o f the AHP.

In AHP, the goal is a statement o f the overall objective. The AHP criteria used as

basis for the decision are known as objectives. Objectives can be further

elaborated into sub-objectives if necessary. Pair wise comparisons o f elements

(usually alternatives and criteria) can be established using a scale (Table 4.1)

indicating the strength with which one element dominates another with respect to

a higher level element. This scaling process can then be translated into the priority

weights (scores) for comparison o f alternatives. Yusuff et al. (2001) presented the

following steps o f the AHP solution process based on Saaty’s work.

50

Chapter 4 - The Simulation strategy selection (SimSS) process

Goal

O bjectives

Sub-objectives

Alternatives

Figure 4.2-AHP decision hierarchy

• Determination o f the relative importance o f the attributes (objectives) and the

sub-attributes (sub-objectives), if any

• Determination o f the relative standing (weight) o f each alternative with respect

to the sub-objective, if applicable, and then successively with respect to each

objective.

• Determination o f the overall priority weight (score) o f each alternative.

• Determination o f the consistency indicator(s) in making pair wise

comparisons. This step is optional and AHP provides a measure o f

inconsistency in each set o f judgements. However, Forman (2001) noted that

real world problems are hardly consistent.

51

Chapter 4 - The Simulation strategy selection (SimSS) process

Intensity o f
im portance

D efinition Explanation

1 Equal importance T w o activities contribute

equally to the objective

3 W eak importance o f one over another E xperience and judgem ent

slightly favour one activity over

another

5 Essential or importance E xperience and judgem ent

strongly favour one activity

over another

7 V ery strong or demonstrated importance A n activity is favoured very

strongly over another; its

dom inance demonstrated in

practice

9 A bsolute importance The evidence favouring one

activity over another is o f the

highest possib le order o f

affirmation

2 ,4 , 6 , 8 Intermediate values between adjacent scale

values

W hen com prom ise is needed

R eciprocals

o f above

nonzero

I f activity i has one o f the nonzero values

assigned to it w hen compared w ith activity j ,

then j has the reciprocal value when

com pared with /

A reasonable assum ption

Table 4.1 - AHP scale and meaning

In order to simplify the decision making process it was decided to use the AHP

based software that enables users to calculate the priority levels without manual

calculations. Ossadnik and Lange (1999) evaluated AHP based software namely:

AutoMan, Expert Choice and HIPRE 3+ (using AHP), and concluded that Expert

Choice received the highest priority among the three AHP based software. The

criteria selected for this evaluation include graphical presentation o f results,

transformation o f the specific AHP procedure, number o f hierarchy elements,

provision o f sensitivity analysis, learnability, user’s effort needed for

modifications, adaptation o f problem structures, comprehensibility, availability o f

help, screen displays and initial cost. Therefore, to calculate priorities in the

simulation strategy selection (SimSS) process, Expert Choice software was

52

Chapter 4 - The Simulation strategy selection (SimSS) process

employed. In pair wise comparison, Expert Choice allows judgments to be entered

either in numerical, graphical or verbal models. Verbal mode that consists o f

equal, moderate, strong, very strong, and extreme corresponding to 1,3, 5, 7, and

9 in numerical scale.

4.3 The simulation strategy selection (SimSS) process

Based on the AHP solution process, the approach presented in figure 4.3 was

derived to determine the most appropriate simulation strategy.

Calculation o f overall priority weight o f
alternative strategies with Expert Choice

Determination o f alternatives

Determination o f relative importance of
objectives in relation to goal

Determination o f relative weights o f each
alternative with respect to each objective

Determination o f criteria (objectives)

Determination o f the goal

Figure 4.3 - SimSS process

The goal o f the SimSS process is the determination o f simulation strategy.

Distributed simulation, parallel simulation and sequential simulation were selected

as alternative strategies (figure 4.4). In some instances parallel simulation may

provides an alternative to distributed simulation and vice versa. However, when

simulation needs to be executed in a geographically distributed environment, the

only viable option is distributed simulation.

53

Chapter 4 - The Simulation strategy selection (SimSS) process

4.3.1 Criteria for the SimSS process

Factors that encourage the application o f parallel and distributed simulation

technologies were used as the criteria (objectives) for the SimSS process. In order

to identify these factors a sample o f literature was analysed and the followings

were identified as the widely cited ones.

• Execution time

• Parallelism

• Computational resources

• Geographic distribution

• Complicated model development

• Development time

• Fault tolerance

Fault tolerance was not considered for the SimSS process, as it is more associated

with independent parallel replications o f simulation than parallel and distributed

simulation. Development time and complicated model development were grouped

as complicated model development process. Therefore, the followings were

selected as factors that encourage users to employ parallel or distributed

simulation instead o f sequential simulation.

Execution time

This indicates the time taken to run a simulation model. One o f the main

objectives o f parallel or distributed simulation is to decrease the run time o f a

simulation. This form o f simulation is expected to reduce the time taken to run a

simulation with the aid o f more computational resources and exploitation o f the

inherent parallelism.

Parallelism

In most o f the simulation models, some sub-processes can be executed

concurrently. Therefore, it is said to be that simulation models are inherently

parallel. In parallel or distributed simulation, these parallely executable sub

processes are identified and partitioned into separate logical processes, and

54

Chapter 4 — The Simulation strategy selection (SimSS) process

executed simultaneously. More computational resources and exploitation o f

inherent parallelism contribute to the speedup o f simulations.

Computational resources

Computer memory, speed o f the processor etc. may not be adequate to achieve

target performances o f a simulation. In addition, a single processor may not be

capable to handle the entire simulation model o f a complex system on its own. An

obvious means o f obtaining better performance is to dedicate more computational

resources for simulation.

Geographical distribution

In some situations, sub-models o f a simulation have to be run in geographically

distributed locations. This may be due to availability o f data, location o f

organization, management decisions etc. In this case, the only feasible alternative

will be distributed simulation.

Complicated model development process

For many systems, especially large and complex systems, the model that

characterizes the desired aspects o f the system may itself be large and complex.

Complicated models include more elements, interaction, detail etc. To construct a

complicated model, services o f more than one modeller may be required. Divide

and conquer approach may provide a better alternative approach for complicated

models. Partitioned sub-models are easier to comprehend, verify and validate, and

convert into a computer program.

Execution time and computational resources were the most widely cited reasons.

Execution time, lack o f available resources and complicated model development

process can be considered as constraints for sequential simulation while

availability o f more computational resources and ability to exploit parallelism act

as motivators for moving into parallel or distributed simulation. Long simulation

times, however are typically caused (at least partly) by lack o f computational

resources. The need to run a simulation in a geographically distributed manner is a

deciding factor.

55

Chapter 4 - The Simulation strategy selection (SimSS) process

In order to simplify the process, exploitation o f inherent parallelism was

eliminated by assuming that parallelism is inherent to most o f the real word

problems. Based on this assumption and points noted previously in this section,

following factors were selected as objectives for the SimSS process.

• Execution time

• Computational resources

• Complicated model development process

• Geographic distribution

Figure 4.4 shows the goal, objectives and alternatives for the SimSS process based

on the AHP solution process.

Distributed
sim ulation

Sequential
sim ulation

Parallel
sim ulation

E xecution
tim e

Com plicated
m odel

developm ent
process

Computationa
resources

G eographic
distribution

Determ ination o f the Sim ulation strategy

Figure 4.4 - Goal, objectives and alternative strategies

Three scenarios are presented in order to illustrate the SimSS process and to

highlight the point that the decision on simulation strategy to be employed

depends on the situation.

4.3.2 Illustration of the SimSS process
Scenario 1

Partners o f an enterprise prefer to keep their part o f the simulation model in their

own premises, if possible. The model is complicated and difficult to develop as a

single model. Execution time and computational resources are not critical factors.

Tables 4.3 to 4.7 provide necessary pair wise comparisons for scenario 1.

56

Chapter 4 - The Simulation strategy selection (SimSS) process

Direction o f the preference is indicated by direction o f arrows.

O bjective 1 Prefers to O bjective 2 Preference

C om plicated m odel developm ent G eographic distribution *

Com putational resources G eographic distribution Extrem e

E xecution tim e - » G eographic distribution Extrem e

Com putational resources —y C om plicated m odel developm ent V ery strong

E xecution tim e - » C om plicated m odel developm ent V ery strong

E xecution tim e Com putational resources Equal

* Between equal and moderate

Table 4.2 - Pair wise comparison o f objectives with respect to the goal

A lternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation Parallel sim ulation M oderate

Sequential sim ulation Distributed sim ulation M oderate

Parallel sim ulation Distributed sim ulation Equal

Table 4.3 - Pair wise comparison to determine relative preference with respect to

execution time

Alternative 1 Prefers to A lternative 2 Preference

Sequential sim ulation Parallel sim ulation M oderate

Sequential sim ulation Distributed sim ulation M oderate

Parallel sim ulation Distributed sim ulation Equal

Table 4.4 - Pair wise comparison to determine relative preference with respect to

computational resources

Alternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation Parallel sim ulation V ery strong

Sequential sim ulation Distributed sim ulation V ery strong

Parallel sim ulation < r - y Distributed sim ulation Equal

Table 4.5 - Pair wise comparison to determine relative preference with respect to

complicated model development

57

Chapter 4 - The Simulation strategy selection (SimSS) process

Alternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation Parallel sim ulation Equal

Sequential sim ulation -> Distributed sim ulation Extrem e

Parallel sim ulation —> Distributed sim ulation Extrem e

Table 4.6 - Pair wise comparison to determine relative preference with respect to

geographic distribution

Figure 4.5 shows relative weights assigned to different objectives and priorities

calculated in relation to the goal.

Expert Choice 2000 E:\RUWAN\RC5EARCJ i\SC | . < S :

File Edit Assessment Synthesize Sensitivity-Graphs Jfiew Go Iools Help

J-JSl xj

O | ^fcedraw & a" | ®
& j 3*1 ii ABC = "j §=• j Y*«*J j

' i i P i l l l l l l f l l l Al(ernative$: Ideal mode

Distributed simulation .619
Parallel simulation .292
Sequential simulation .089

Information Document

; □ Execution tim e (L: .052)
; O Computational resources (L: .052)
: O Complicated model developm ent (L: .300)

□ Geographic distribution (L: .595)

■ <i __ 1 jl! 4

Figure 4.5 - Priorities assigned to different alternative for scenario 1

Distributed simulation ranked as the strategy with highest priority. Therefore, the

most appropriate simulation strategy for this scenario is distributed simulation.

Scenario 2

The model is complicated and difficult to develop as a single model. Execution

time is longer than expected execution time and was suspected that lack o f

computational resources prolongs execution time. No specific need to run

simulation in geographically distributed environment. Tables 4.8 to 4.12 provide

necessary pair wise comparisons for scenario 2.

58

Chapter 4 - The Simulation strategy selection (SimSS) process

Direction o f the preference is indicated by direction o f arrows.

O bjective 1 Prefers to O bjective 2 Preference

Com plicated m odel developm ent <r~ G eographic distribution V ery strong

Com putational resources <— G eographic distribution V ery strong

E xecution tim e < - G eographic distribution V ery strong

Com putational resources -> C om plicated m odel developm ent *

E xecution tim e —> C om plicated m odel developm ent *

E xecution tim e —y Com putational resources *

* Between equal and moderate

Table 4.7 - Pair wise comparison o f objectives with respect to the goal

Alternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation —y Parallel sim ulation V ery strong

Sequential sim ulation —y Distributed sim ulation V ery strong

Parallel sim ulation <-> Distributed sim ulation Equal

Table 4.8 - Pair wise comparison to determine relative preference with respect to

execution time

Alternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation Parallel sim ulation V ery strong

Sequential sim ulation *—y Distributed sim ulation V ery strong

Parallel sim ulation <-> Distributed sim ulation Equal

Table 4.9 - Pair wise comparison to determine relative preference with respect to

computational resources

Alternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation -> Parallel sim ulation V ery strong

Sequential sim ulation —y Distributed sim ulation V ery strong ,

Parallel sim ulation <-y Distributed sim ulation Equal

Table 4.10 - Pair wise comparison to determine relative preference with respect to

complicated model development

59

Chapter 4 - The Simulation strategy selection (SimSS) process

Alternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation <-> Parallel sim ulation Equal

Sequential sim ulation -> Distributed sim ulation Extrem e

Parallel sim ulation Distributed sim ulation Extrem e

Table 4.11 - Pair wise comparison to determine relative preference with respect to

geographic distribution

Figure 4.6 displays the relative weights assigned to different objectives and

priorities calculated in relation to the goal.

Expert Choice 2000 E:\ruwan\research\5cenario

File |dit Assessment Synthesize SensitMv-Graphs View Go lools Help

<=lQLxj

D S J1 £3 1 Redraw

&) 3H j ABC) = 'j ==■) Y=1M j M j

Alternatives: Idea! mode

Distributed simulation .471
Parallel simulation .458
Sequential simulation .0 7 1 1

Information Document

< Execution tim e (L: .217)
! □C om putational resources (L: .306)
j H Complicated model developm ent (L: .433)
! H Geographic distribution (L: .044)

: <1 .. m] ill..nii

Figure 4.6 - Priorities assigned to different alternative for scenario 2

For this scenario distributed simulation or parallel simulation provides better

alternatives. Distributed simulation has a slightly higher priority due to the fact

that an extreme preference was assign to distributed simulation from parallel

simulation with respect to geographical distribution

Scenario 3

The model is relatively a simple one when compared to models mentioned in

scenarios 1 and 2. Available computational resources are satisfactory and there is

no real need to speedup the simulation. No specific need to run the simulation in

geographically distributed manner. Tables 4.13 to 4.17 provide necessary pair

wise comparisons for scenario 3.

60

Chapter 4 - The Simulation strategy selection (SimSS) process

Direction o f the preference is indicated by direction o f arrows.

O bjective 1 Prefers to O bjective 2 Preference

C om plicated m odel developm ent < - G eographic distribution M oderate

Com putational resources < - G eographic distribution M oderate

Execution tim e < - G eographic distribution M oderate

Com putational resources Com plicated m odel developm ent Equal

Execution tim e Com plicated m odel developm ent Equal

E xecution tim e <-> Com putational resources Equal

Table 4.12 - Pair wise comparison o f objectives with respect to the goal

Alternative 1 Prefers to A lternative 2 Preference

Sequential sim ulation <— Parallel sim ulation M oderate

Sequential sim ulation <— Distributed sim ulation M oderate

Parallel sim ulation Distributed sim ulation Equal

Table 4.13 - Pair wise comparison to determine relative preference with respect to

execution time

Alternative 1 Prefers to A lternative 2 Preference

Sequential sim ulation < - Parallel sim ulation M oderate

Sequential sim ulation < - Distributed sim ulation M oderate

Parallel sim ulation Distributed sim ulation Equal

Table 4.14 - Pair wise comparison to determine relative preference with respect to

computational resources

Alternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation <r~ Parallel sim ulation M oderate

Sequential sim ulation <r~ Distributed sim ulation M oderate

Parallel sim ulation O Distributed sim ulation Equal

Table 4.15 - Pair wise comparison to determine relative preference with respect to

complicated model development

61

Chapter 4 - The Simulation strategy selection (SimSS) process

Alternative 1 Prefers to Alternative 2 Preference

Sequential sim ulation Parallel sim ulation Equal

Sequential sim ulation Distributed sim ulation Equal

Parallel sim ulation <-> Distributed sim ulation Equal

Table 4.16 - Pair wise comparison to determine relative preference with respect to

geographic distribution

The relative weights assigned to different objectives and priorities calculated in

relation to the goal are shown in figure 4.7.

J File g i t Assessment Synthesize Sensitivity-Graphs View Go Tods He

I p E l l i i l l i B

l i i i l i ™ Alternatives: Idea! mode

Distributed simulation .222
Parallel simulation .222
Sequential simulation .556

Information Document

; □ Execution tim e (L: .300)
: □ Computational resources (L: .300)
; Q Complicated model developm ent (L: .300)
L □ Geographic distribution (L: .100)

| - J

Figure 4.7 - Priorities assigned to different alternative for scenario 3

In this scenario, the appropriate strategy would be sequential simulation.

Summary

This chapter presented a new approach to select an appropriate simulation strategy

from parallel simulation, distributed simulation or sequential simulation, as

parallel and distributed simulation is not suitable for all simulation problems. It

was illustrated that there is no one best simulation strategy for all situations and

the appropriate simulation strategy depends on the situation. I f it is determined

that distributed (or parallel) simulation to be employed, then one has to move into

the next step o f the proposed methodology for distributed enterprise simulation,

namely the data collection stage. However, this stage is well researched area in the

simulation literature and was briefly described in chapter 3. The following chapter

62

___ Chapter 4 - The Simulation strategy selection (SimSS) process

presents the next two stages o f the proposed methodology which involve

developing the conceptual model, partitioning the conceptual model and assigning

partitioned logical processes to networked workstations.

63

Chapter 5

Conceptual modelling, model partitioning and

mapping for distributed enterprise simulation

The last chapter presented the simulation strategy selection

(SimSS) process which helps to determine the appropriate

simulation strategy from sequential simulation, parallel

simulation or distributed simulation. If distributed

simulation is chosen as the appropriate simulation strategy,

then the system under investigation needs to be partitioned

into sub-models or logical processes, and assigned to

geographically distributed workstations. This chapter

presents a systematic approach for conceptual modelling,

model partitioning and mapping for distributed enterprise

simulations (see the highlighted activities in figure 5.1). It

pays more attention to conceptual modelling than model

partitioning and mapping as it is proposed to partition the

conceptual model before transforming the model into a

computer simulation model, which is another main

difference between some o f the existing approaches and the

proposed methodology.

64

Chapter 5 - Conceptual modelling, m odel partitioning and m apping fo r distributed enterprise
_________________________________ simulation

^G onstructio iro£concc^

Verification &
Validation

Verification &
Validation

| Mapping of LPs into processors

Verification &
Validation

Parallel and Distributed
simulation

Sequential
simulation

SimSS Process

Experimentation

Programming of LPs

Synchronization and Networking

Data collection

Output analysis

Implementation and further work

Problem definition & Identification
of objectives

Partitioning the model into
logical processes (LPs)

Figure 5.1 - The proposed methodology for distributed enterprise simulation

65

Chapter 5 - Conceptual modelling, m odel partitioning and m apping fo r distributed enterprise
___ simulation

5.1 Introduction

Modelling is an essential part o f any simulation project, including distributed

simulation which provides the foundation for distributed enterprise simulation. As

noted in chapter 4, the main difference between sequential simulation and

distributed simulation is: while sequential simulation runs as a single model in a

single workstation, in distributed simulation several models run in geographically

distributed (and interconnected) workstations. Accordingly, for a simulation to run

in a geographically distributed environment, the entire simulation model has to be

partitioned into a number o f logical processes (LPs) or sub-models and assigned

(mapped) them to different workstations.

One o f the most important issues to be addressed when designing a distributed

simulation including enterprise simulation is the partitioning o f the simulation

model into several LPs. Efficiency and effectiveness o f a distributed simulation

system depend on partitioning o f the system. Performance o f distributed

simulation will be detrimentally affected if the workload o f one LP is significantly

higher than the others. Furthermore, increasing the load on the network may result

in slowing down other applications that run across the network if frequency o f

interactions between (two) LPs assigned to different workstations is high. Once

the partitioning process is completed, the resulting LPs need to be assigned to

different processors, which is known as mapping. In distributed simulation, LPs

are assigned to processors, which reside on geographically distributed

workstations. One or more LPs can be assigned to a single processor in order to

balance the workload among processors. When compared to issues such as

synchronization, the literature on (parallel and) distributed simulation has not paid

much attention to conceptual modelling, model partitioning and mapping.

Moreover, partitioning and mapping algorithms presented in the literature are

generally complex and some o f the algorithms require running o f the simulation

code sequentially in order to identify LPs. A simulation is executed in a

distributed manner because o f its inability to run sequentially due to the size,

complexity, requirements for more computing resources, or specifically needs to

run in geographically distributed environment. This creates a dilemma for users

especially in business organizations, who intend to employ distributed

simulations. Therefore it is desirable to have a simple yet effective approach for

66

Chapter 5 — Conceptual modelling, m odel partitioning and m apping fo r distributed enterprise
___ simulation

model partitioning and mapping when developing distributed enterprise

simulation.

The objective o f this chapter is to present a new approach for conceptual

modelling, model partitioning and mapping for distributed enterprise simulation.

The new approach proposes to partition the conceptual model developed for the

system under investigation and then map them onto the processors o f

geographically distributed workstations. The next section provides a brief

description o f the conceptual model. Modelling approaches and modelling tools

are presented in section 5.3 and 5.4 respectively. Model partitioning and mapping

approaches are briefly explained in the following section. Section 5.6 presents the

proposed approach for model representation, model partitioning and mapping. The

chapter ends with a summary.

5.2 The conceptual model

A model is an abstract representation o f reality (Whitman et al., 1997). The degree

to which the simulation results are able to characterize the system under study is

directly related to the degree the simulation model characterizes the system (Luna,

1992). For many systems especially complex and large ones, it is desirable to

build a conceptual model before transforming it into a computer simulation model

in order to understand the problems, requirements and perhaps alternative

solutions. Borah (2002) defined the conceptual model as an abstract representation

o f something generalized from particular instances. A conceptual model is a

simulation developer’s way o f translating modelling requirements (i.e. what to be

represented by simulation?) into a detailed design framework (i.e. How it is to be

done?), from which the software that will make up the simulation can be built

(Pace, 1999). It can be utilized as a means o f clear and comprehensive

communication among developers o f simulation, managers, users and other

stakeholders. Furthermore, the conceptual model is the ultimate expression o f the

system functionality and should be the basis for testing, verification and validation

procedures (Haddix, 2001). Firat (2000) summarized the functions o f conceptual

models as:

67

Chapter 5 - Conceptual modelling, model partitioning and mapping fo r distributed enterprise
_____________________________ simulation

• Providing a means for verification and validation

• Improving understanding when analyzing new and old systems

• Providing a precise and clear tool for communication between system

developers and application domain specialists

• Providing documentation o f domain specific information in a formal way

• Making easier later modifications on the system after development since it is

the blueprint o f the system

• Allowing determination o f conflicts among different perspectives o f

requirements for the same system and helps to elicit conflicts

Building o f simulation models has long been considered as an art rather than a

science (Leung and Lai, 1997). Karacal (1998) also noted that despite the

existence o f well-developed tools and their generalized building blocks, modelling

is still carried out in an ad hoc and intuitive manner. Although construction o f a

conceptual model is important when developing sequential simulations, special

attention needs to be paid when building distributed simulations as this type o f

simulations are more complex than the former. Past research clearly demonstrated

a need for developing innovative modelling methods and procedures that will

assist in the development o f simulation models for large and complex systems

(Sawhney, 2000). Furthermore, many authors highlighted the need for formal

simulation model building methodologies for distributed (also parallel) simulation

(Brandimarte and Cantamessa, 1995; Karacal, 1998; Odhabi et al., 1997; Page,

1999).

Proper development o f a conceptual model is critical as it describes how a

simulation developer intends an implementation to satisfy requirements. This

model is the primary mechanism for transforming simulation requirements into

specifications that can guide simulation development and implementation process

(figure 5.2). Therefore special attention is needed when developing the conceptual

model. A series o f articles presented in recent simulation interoperability

workshops highlighted the importance o f conceptual modelling and provided

guidance on development and evaluation o f conceptual models (Borah, 2000;

Borah, 2002; Firat, 2000; Haddix, 2001; Pace, 1999 and 2000).

68

Chapter 5 - Conceptual modelling, m odel partitioning and m apping fo r distributed enterprise
_____________________________________ simulation

R eal/
H ypothetical

System

\

Conceptual
M odel

\ J

s N

Sim ulation
m odel

J

Figure 5.2 - Significance o f the conceptual model

When developing a conceptual model, a modelling approach and modelling tools

have to be determined beforehand. Modelling approaches specify the way models

are to be developed. Once the approach is determined, the modeller can decide

what modelling tools are to be used for model building. The resulting model then

can be transformed into a simulation model. This confirms that simulation

involves more than merely writing o f a computer program, as highlighted by Page

and Nance (1994). To overcome the challenge o f modelling complex systems, a

number o f modelling approaches have been proposed. Most o f these approaches

can be classified under incremental modelling and hierarchical modelling

approaches.

5.3 Modelling approaches

5.3.1 Incremental modelling approach

This approach is based on incremental development o f a model with few elements

and little detail, capturing a holistic view o f the system under investigation. The

model is therefore initially not large, but might become so as development

progresses. Pidd (1996) suggested that starting with a small model and adding

more details is one way to ease the difficulties o f building models for complex

systems. Randell et al. (1999) mentioned that modularization is a prerequisite for

incremental model development. Modularization reduces the complexity, and

allows modelling at a higher level o f abstraction. Pidd and Castro (1998) also

noted that modularity is the key to coping with the complexity inherent in large

systems.

Under the incremental model development approach, two ways o f dividing the

simulation project into stages can be identified (Randell et al., 1999). One is to

work vertically first and then horizontally. The other way is to take a holistic view

o f the system and develop a model, and then add detail later as required. The latter

69

Chapter 5 - Conceptual modelling, m odel partitioning and m apping fo r distributed enterprise
__ simulation

approach shares common characteristics with the hierarchical modelling approach,

which will be discussed later. The top down approach minimizes the risk o f sub

optimization. Also only subsystems that need to be analyzed further have to be

added to the main model, leaving others as black boxes. In addition, the

incremental modelling approach spreads model development cost over the life

time o f the project.

5.3.2 Hierarchical modelling approach

Design o f complex systems is confronted with a problem o f describing system

objects, their characteristics and interactions in a concise and understandable way

(Ceric, 1994). One o f the basic strategies for accomplishing this task is the

hierarchical approach. Furthermore, Pidd and Castro (1998) noted that many large

systems are inherently hierarchical. A hierarchy essentially defines a type o f

relation in which the entities are grouped at different levels. Chow and Zeigler

(1994) pointed out that hierarchical modelling capability is increasingly being

recognized as the predominant modelling paradigm for future simulation

developments. Hierarchical modelling develops model elements from higher

levels into a more detailed description on lower hierarchical levels. It provides a

way o f managing large scale complex systems by considering them as a collection

o f sub-systems which are represented by simulation models that are independently

created, modified and saved (Kiran, 1998).

The model to be simulated depends on decisions relating to the level o f abstraction

o f the system. The correct level o f abstraction refers to selecting the amount o f

information that must be included in the model to help address the modelling

goals (Benjamin et al., 1998). Decomposition (dis-aggregation) and abstraction

(aggregation) are two important principles o f hierarchical modelling.

Decomposition refers to adding more details to a selected level o f abstraction

resulting o f a model with lower level o f abstraction. Aggregation refers to

summarizing information o f a selected level o f abstraction, resulting in o f a model

with a higher level o f abstraction (figure 5.3). It reduces the number of

components and interactions o f the model thus reducing the overall behavioural

complexity (Fishwick, 1994). Ball (1998) noted that use o f an appropriate level o f

details (level o f abstraction) allows building simplified models, which run faster.

70

Chapter 5 - Conceptual modelling, m odel partitioning and m apping fo r distributed enterprise
____________________ simulation

In addition, Ceric (1994), Sargent et al. (1993) and Zupancic (1998), highlighted a

number o f advantages o f hierarchical decomposition in the hierarchical modelling

approach, including:

• Possibility o f focusing on each component as a small problem

• Several modellers can work simultaneously on a modelling a simulation

project

• Information hiding

• Improved communication with users

• Easy to implement modifications and corrections

• The modular structure enables partial testing o f the model

• Easy to document the system

• Enables the application o f different algorithms to different sub-systems

• Reduce effort and time required to develop models

• Allow developing sub-models separately and integrating later permitting

model reusability

• Assist in model verification and validation process.

Furthermore, hierarchical modelling helps development o f distributed simulations

by identifying sub-systems (LPs) that can be functioned independently. These LPs

can be later assigned to different workstations to run the simulation system in a

geographically distributed environment.

M l Higher level o f
abstraction

L ow er level o f
abstraction

Figure 5.3 - Level o f abstraction

71

Chapter 5 - Conceptual modelling, m odel partitioning and m apping fo r distributed enterprise
___ simulation

Hierarchical modular modelling (Luna, 1992; Pidd and Castro, 1998; Sawhney,

2000; Zeigler, 1986; Zupancic, 1998) is a variation o f hierarchical modelling. In

addition to the hierarchical approach to model building, it proposes model

building by adding components/ modules. This allows different components to be

developed, verified and validated separately (Luna, 1992). It also encourages

building o f modules simultaneously resulting in o f shorter development times and

cost savings. Alfieri and Brandimarte (1997) and Zeigler (1987) proposed the use

o f an object-oriented approach in hierarchical modular modelling. An advantage

o f using this approach is that there is a better transition from modelling concepts

to actual software implementation, since objects have a natural match in the real

world (Alfieri and Brandimarte, 1997).

5.4 Modelling tools

Modelling tools provide a standard means o f describing and analyzing a system.

This facilitates communication between developer and user, and between

developers. It also simplifies understanding, modification and maintenance o f

systems, ensuring good discipline. Pandya (1995) described a modelling tool as a

communication device that is used to aid generation and classification o f ideas,

and/or to analyze the quality o f a design. A number o f modelling tools are

available to develop a model o f a new or existing system. Some o f the well known

tools are described below.

5.4.1 Diagrammatic modelling

Diagrammatic models are a particular class o f conceptual models which enable

graphical representation o f models in two dimensions. This approach uses

symbols to represent physical elements and activities o f the system under

investigation, and directed arrows to indicate the direction o f flow. In the analysis

phase o f a simulation study, the graphical representation approaches serve as a

very useful framework with which the modeller can analyze and conceptualize the

problem and as a communication medium among the people who are involved in

the project (Kienbaum and Paul, 1994). Ceric (1994) noted that diagrammatic

modelling methods are one o f the most used and developed class o f conceptual

modelling methods in discrete event simulation. Reasons that bought popularity to

diagrammatic modelling include:

72

Chapter 5 - Conceptual modelling, m odel partitioning and mapping fo r distributed enterprise
___ simidation

• Conceptually close objects can be represented as physically adjacent, bringing

to light the strength o f connection in the system.

• Interactions between objects are shown in two dimensions, enabling much

easier comprehension o f a model than the forced sequential ordering o f objects

in procedural representations. This is due to a parallelism o f human visual

system which enables fast visual processing o f the whole model or its

significant parts.

• Syntax and semantics o f diagrammatic modelling methods are often rather

simple, which helps the easier and faster model design and understanding.

• Hierarchical model decomposition is possible in most diagrammatic methods,

which again assists both modelling o f complex systems and model

understanding.

• Most diagrammatic models enable manual simulation o f system dynamics.

This feature can help in model validation, and also useful as a simulation

learning tool too.

Furthermore, diagrammatic structure o f the model looks similar to structure o f the

simulation model especially if the simulation model is developed using

commercial simulation software.

In respect to distributed simulation, it is vital to use formal modelling tools to

develop the conceptual model due to its complex nature. In addition, they are even

more attractive for the proposed approach for distributed enterprise simulation as

it is proposed to use commercial simulation software for implementation. Some o f

the commonly used diagrammatic modelling tools in simulation are briefly

described below.

5.4.2 Commonly used diagrammatic modelling tools

Activity cycle diagram

Activity Cycle Diagrams (ACD) have long been used for representation o f the

flow o f entities within discrete event systems. Apart from using as a model

representation tool, ACDs can also be used to manually simulate the system.

Original ACDs make use o f only two symbols: a circle to represent a dead state

73

Chapter 5 - Conceptual modelling, m odel partitioning and m apping fo r distributed enterprise
___ simulation

and a rectangle to represent a live state (figure 5.4). The diagram itself is a map

which shows the life history o f each class o f entity and graphically displays their

interactions. Each class o f entity is considered to have a lifecycle which consists

o f a series o f states. The entities move from state to state as their life proceeds.

L ive
w State w

Figure 5.4 - Symbols o f original ACD

The main advantages o f ACDs include simplicity, ease o f understanding and

support o f hierarchical modelling approach. However, Pflughoeft and Manur

(1994) mentioned that advantages o f ACD in its original form were outweighed

by inefficiencies. ACD o f a complex system is too complicated and cumbersome

for its intended purpose. The simplicity o f ACDs and their associated limitations

for developing computer based simulations for complex systems motivated a

number o f authors to present modified versions o f ACDs. Pooley (1991) proposed

an extended set o f symbols to represent processes o f a simulation. This modified

version o f ACD was called as Extended Activity Cycle Diagrams (X-ACDs).

Kienbaum and Paul (1994) presented Hierarchical Activity Cycle Diagrams (H-

ACDs) that support object oriented simulation modelling. Pflughoeft and Manur

(1994) introduced Multi layered ACD approach which decomposes the diagram

by activities, instead o f entity flows.

Although analysis o f papers presented to recent Winter Simulation Conferences

(WSC) shows that number o f papers published declined over the past few years, a

number o f authors including Baldwin et.al. (2000), Eldabi and Paul (2001),

Odhabi et al. (1997), Odhabi et al. (1998) and Shi (1997) presented papers on

applications o f ACD.

Petri nets

Petri nets are graphical and mathematical modelling tools that can be used to

perform static and dynamic analysis o f processes that constitute existing or new

systems. The concept o f Petri nets originated from works o f Carl A. Petri in 1962.

74

Chapter 5 - Conceptual modelling, m odel partitioning and m apping fo r distributed enterprise
 _____________________ simulation

Petri nets are used for describing and studying systems that are characterized as

being concurrent, asynchronous, distributed, parallel, non-deterministic and

stochastic (Sawhney et al., 1999). Graphical modelling elements o f Petri nets are

shown in figure 5.5.

Place Transition Token A rc

Figure 5.5 - Graphical elements o f Petri nets

A place denoted by a circle represents a condition such as input data, input signal,

resource, condition, or buffer. A transition denoted by a solid bar represents an

event such as a computational step, task or activity. Arcs are used to connect

places and transitions in a Petri net. They are directed and are either drawn from a

place to a transition or from transition to a place. Arcs in a Petri net can also have

multiplicity which is represented by an integer k. Multiplicity indicates the

number o f tokens required to fire or enable a transition. Token which is denoted

by solid small circle provides the dynamic simulation capabilities to Petri nets.

Without a provision o f tokens in a Petri net, the dynamic behaviour o f the system

under consideration can not be simulated and the Petri nets can only be used as a

visual communication tool.

As with ACDs, several variations to the classical Petri nets such as Timed Petri

Nets (TPN), Coloured Petri Nets (CPN), High-level Petri Nets (HPN) were

presented by a number o f authors (Choila and Ferscha, 1993; D ’Souza and

Khator, 1994; Gerogiannis et al., 1998; Gile and DiCesare, 2001; Vojnar, 1997).

Pandya (1995) mentioned that Petri nets strike a balance between the speed and

simplicity o f mathematical programming and the flexibility provided by general

purpose simulation packages. However, he also highlighted the following

problems associated with Petri nets too.

75

Chapter 5 - Conceptual modelling, model partitioning and m apping fo r distributed enterprise
 simulation

• Lack o f general methodology for constructing Petri nets models from system

specifications

• Diagrams can become cluttered when modelling complicated systems

• Lack o f general software to support the computer coding o f Petri net models

IDEFO

IDEF is a system definition method developed under sponsorship o f the US air

force to describe information and structure o f complex manufacturing systems.

The acronym IDEF stands for ICAM DEFinition where ICAM stands for

Integrated Computer Aided Manufacturing. IDEF is not a single technique and is a

family o f techniques extending from IDEFO to IDEF5 including IDEFlx. IDEFO

was derived from a well-established graphical language, the Structured Analysis

and Design Technique (SADT) and used as a functional modelling tool for

analyzing and communicating the functional perspective o f a system. Main

elements o f IDEFO composed o f a box and an arrow. Boxes are used to represent

system functions and, data or object interfaces are represented by arrows (see

figure 5.6).

Control

Input
Function
(A ctivity)

Output

Resource

Figure 5.6 - Elements o f IDEFO technique

An arrow coming into a box from left depicts input required to perform the

function

An arrow coming out o f a box on the right depicts output produced by the

function

An arrow coming into a box from top shows controls that represent conditions,

circumstances or rules by which the function is driven

76

Chapter 5 - Conceptual modelling, m odel partitioning and mapping fo r distributed enterprise
___ simulation

• An arrow coming out o f a the box from bottom show physical resources or

mechanism required to perform the function

The generation o f many levels o f details through the model diagram is one o f the

most important features o f IDEFO as a modelling technique. The IDEFO model

starts by representing the whole system as a single box (which is labelled as AO).

The AO box then can be broken down into more detailed diagrams until the system

described in the desired level o f detail. As IDEFO modelling technique supports

hierarchical modelling approach, an abstracted system can be decomposed into a

more detailed set o f diagrams in a hierarchical manner as shown in figure 5.7.

Pandya et al. (1997) summarized the following benefits and shortcomings o f

IDEFO.

Benefits

• Modelling o f large and complex systems made possible by decomposing an

abstracted level o f the system into more detailed level as desired.

• Easy to understand as only few symbols (boxes and arrows) are used to model

the system.

• Distinguishes between input, output, controls and resources for a particular

activity.

• Notation o f the model allows an easy development o f computer support.

• Existence o f well documented rules and procedures

Shortcomings

• Only provides a static representation o f the system

• Does not take time and cost to perform an activity into account

• Does not make a distinction between data and material flow

77

Chapter 5 - Conceptual modelling, m odel partitioning and mapping fo r distributed enterprise
__________________________ simulation

AO

A2

A3

A21

A22

Figure 5.7 - Hierarchical decomposition in IDEFO

Other modelling tools

In addition to modelling techniques described earlier, a number o f techniques such

as activity diagrams, GPSS block diagrams, event graphs etc. can be used to

develop a conceptual model. More details o f these techniques are presented by

Buss (1996), Ceric (1994), Pooley (1991) and Schruben (1983). Analysis o f

articles presented to the Winter Simulation conferences suggest that number o f

articles publishedana on these techniques declined over past few years.

5.4.3 Modelling methods

Modelling methods propose methodological approaches for modelling. These

methods are generally used to design new systems, study existing systems etc. In

addition to some o f the modelling techniques mentioned earlier (such as ACD and

IDEFO), data flow diagrams, entity relation diagrams etc. are used as tools to

model systems. For developing a conceptual model for a simulation, these

methodologies are not required to use fully. Howver, it is desirable to use some o f

the procedures prescribed in them in order to improve the accuracy to the

78

Chapter 5 - Conceptual modelling, model partitioning and mapping fo r distributed enterprise
___ simulation

conceptual model. Widely cited modelling methods in the literature include

SSADM (Structured System Analysis and Design methodology), SADT

(Structured Analysis and Design technique) and GRAI (Graph with Results and

Actions Interrelated) methodology (Al-Ahmari and Ridgeway, 1999; Doumeingts

et al., 1995; Kateel et al., 1996; Pandya, 1995; Pandya et al., 1997).

5.5 Model partitioning and mapping approaches

Improved performance gained by distributing a simulation system into multiple

processors is largely determined by how well the entire system is divided between

processors. The problem o f partitioning and mapping involves grouping and

assignment o f LPs to processors in such a manner that the communication

overhead is minimized and the processor utilization is maximized (Nandy and

Loucks, 1992).

There are two approaches for dividing the entire system into a set o f sub models

(Luksch, 2002 and Nutt, 1990). In functional partitioning, the simulation model is

partitioned based on functions performed by the simulation system such as

random number generation, input data and output data handling etc. In a model or

data partitioning approach the system being simulated is partitioned into a number

o f sub-models which will be able to be executed in parallel. According to

Fujimoto (1990), model partitioning approach is generally used for parallel and

distributed simulation and the partitioned sub-models are known as LPs. As the

size o f the o f the LPs decreases, the ability o f distributed simulation models to run

concurrently improves, resulting in higher levels o f speedup. However, the desired

level o f performance improvements may not be achieved due to the increased

load on the network as a result o f more messages need to pass for synchronization

(Hao et al., 1996) and also for passing parameters between distributed simulation

models. Therefore both communication overheads and total execution time have

to be carefully considered when a simulation model is partitioned and mapped.

Another important factor to be considered is balancing the load o f the distributed

simulation by uniformly distributing the execution load among the processors.

In the literature the term partitioning has been used for decomposition and

allocation o f LPs to a network o f processors. Luksch (1995) and Nutt (1990) used

79

Chapter 5 - Conceptual modelling, m odel partitioning and mapping fo r distributed enterprise
___ simulation

the term “data partitioning” for model decomposition. However, Boukerche and

Tropper (1994 and 2001) and Szynkiewicz (2000) considered partitioning as

allocating LPs to processors. For the purpose o f decomposing and allocating LPs

to processors, the following approaches presented in Boukerche and Tropper

(2001) can be employed.

Random partitioning

With this simple approach, LPs are assigned to processors randomly. Although

this algorithm is easy and fast to implement, the outcome may be poor. This is due

to non-consideration o f inter-processor communication. High communication

overhead may slow down the simulation.

Grid partitioning

The grid partitioning approach reduces the communication overhead by

combining communicating LPs together. In this algorithm, the process graph is

sub-divided into grids, and all o f LPs in the same grid are allocated to the same

cluster.

Strongly connected component partitioning

This approach improves the grid partitioning algorithm by considering the inter

processor communication overheads and the possibility o f inter-processor

deadlocks.

In addition, a number o f authors including Boukerche and Fabbri (2000),

Boukerche and Tropper (1994), Choila and Ferscha (1993), Cloutier et al. (1997),

Hendrickson and Kolda (2000) and Kim et al. (1998) described and discussed

different partitioning and mapping algorithms.

5.6 Proposed approach for model representation, model partitioning and

mapping

As was already noted, most o f the distributed simulations were developed with

general purpose or special simulation languages by employing partitioning and

mapping algorithms to decompose and assign LPs to workstations (processors).

However, partitioning algorithms proposed in the literature (Boukerche and

80

Chapter 5 - Conceptual modelling, m odel partitioning and m apping fo r distributed enterprise
___ simulation

Fabbri, 2000; Boukerche and Tropper, 1994 and 2001; Cloutier et al., 1997;

Hendrickson and Kolda, 2000; Kim et al., 1998; Nandy and Loucks, 1992) are

complex and difficult to implement without a higher level o f expertise in parallel

and distributed simulation (especially in partitioning), computer programming and

mathematics. Moreover, most o f these authors did not comment on how to

implement their proposed algorithms. Some partitioning algorithms including one

proposed by Nandy and Loucks (1992) require the distributed simulation program

to run initially as a sequential simulation. This is done to calculate the execution

times of different elements, frequency o f communication between them and the

time taken to pass messages. Once the required information is collected, the

simulation model is partitioned into LPs and mapped onto different processors.

However, generally in the literature it is not clear how LPs are identified when the

simulation model is developed. Thus, the simulation community, especially from

business organisations may find it difficult to implement distributed simulations.

Although most o f the literature in distributed simulation does not specifically

mention how to construct simulation models to execute in distributed

environment, it can be presumed that figure 5.8 generally summarises the existing

approaches.

Partitioning based on data collected

D evelop the sim ulation program

M apping

E xecution o f sim ulation and collect data

Figure 5.8 - Existing approaches for conceptual modelling, model partitioning and
mapping

Simulations are executed in a distributed manner mainly because the simulation

model is too large or too complicated to be executed in a single processor

(workstation). This is especially relevant for enterprise simulation where process

sequences are often complex and number o f resources employed are large

81

Chapter 5 - Conceptual modelling, m odel partitioning and m apping fo r distributed enterprise
___ simulation

(Sirinivasan and Jayaraman, 1997). Furthermore, a simulation model may be

developed at different sites and then linked together to be executed as a distributed

simulation. Also different sections or partners o f the enterprise may not want to

share information with other sections or partners. Therefore, partitioning and

mapping techniques mentioned previously are not appropriate for the proposed

approach as it is necessary to partition the conceptual model before transforming it

into a computer simulation model.

As noted earlier, the main difference between existing approaches and the

proposed approach is the point o f partitioning carried out in the simulation

methodology. According to most o f the current approaches partitioning is done

after the system is converted into a computer program using algorithms in order to

minimize the communication overheads and optimize the load balance. To

simplify the distributed simulation development process it was proposed to

partition the conceptual model into LPs, assign them into processors and then

transform LPs into computer simulation models. Furthermore, as functions and

sub-functions can be easily identified in an enterprise, the proposed approach can

be easily applied when developing a distributed enterprise simulation than

constructing distributed simulations for highly complex systems such as logic

circuits, computer networks, telecommunication systems etc.

For the purpose o f the proposed approach for model representation, partitioning

and mapping o f enterprise simulations, a LP can be described as follows:

• A single business entity o f the enterprise

• A function o f a business entity

• . A sub-fimction

An enterprise could be partitioned in such a way that LPs could function

independently o f each other and continue to serve “local” needs o f the business

functions they represent (Datar, 2000). In this case a simulation model already

developed for a section could be used to simulate that section o f the enterprise and

with appropriate modifications could also be connected to simulation models that

represent other sections o f the enterprise to simulate the whole enterprise. This

82

Chapter 5 - Conceptual modelling, m odel partitioning and m apping fo r distributed enterprise
 simulation

could easily be carried out by keeping simulation models for different sections in

different physical locations which they represent and running them in a distributed

manner. The key to design o f such a system is to identify sections o f an enterprise

that could function independently. The selected modelling approach and

modelling tool may play a critical role in decomposing an enterprise into different

sections that could function in parallel at a selected level o f abstraction.

The hierarchical modelling approach was selected since it provides a way o f

managing large scale complex systems by considering them as a collection o f sub

systems (Kiran, 1998). In a distributed simulation system these are represented by

the simulation models that are independently created, modified and saved.

IDEFO was selected as the modelling technique for the proposed approach for

conceptual modelling, model partitioning and mapping. IDEFO is simple and able

to support different abstraction levels. It has been widely used due to its user-

friendliness, computer support, rigor and conciseness, and well documented rules

and procedures (Kateel et.al., 1996). Pandya (1995) noted that IDEFO has been

widely used in industry, resulting in the existence o f a wide user base. A number

o f authors including Cheng-Leong et al. (1999), Cheng-Leong (1999), Rensburg

and Zwemstra (1995) and Whiteman et al. (1997) have used it as a model

representation technique in simulation. Another benefit o f using IDEFO with

commercial simulation software is that the IDEFO structure o f the model can

easily be transformed into a simulation model. Figure 5.9 shows a part o f

simulation model developed by Arena for an IDEFO model. This helps to reduce

the complexities associated with development o f simulation models particularly

distributed simulations which, according to the literature are more complicated to

develop.

With the hierarchical modelling approach and the IDEFO technique, LPs that can

function independently could be identified based on interactions between different

sections. In the IDEFO model these interactions are represented by lines between

boxes that represent different sections o f the enterprise.

83

Chapter 5 — Conceptual modelling, model partitioning and m apping fo r distributed enterprise
_____________________ simulation

Once sub-models are identified, this could be validated to make sure that the sub

models represent the enterprise when taken as whole. Then the validated sub

models could be mapped out to processors in a network o f workstations before

being converted into computer simulation models and executed as a distributed

enterprise simulation. In order to simplify the mapping processes and assuming

that networked workstations are freely available to assign LPs, it is proposed that

only one LP is mapped into a (processor of) workstation.

Process 1

Process 2A2

A22

A ssign 1

R atol

Figure 5.9 - Relationship between IDEFO diagram and Arena simulation model

Based on the ideas presented above, the following approach was proposed for the

purpose o f conceptual modelling, model partitioning and mapping for distributed

simulation in order to execute enterprise simulation models (figure 5.10).

84

Chapter 5 - Conceptual modelling, m odel partitioning and m apping fo r distributed enterprise
___ simulation

Mapping

Identify an appropriate modelling technique

Validate the sub-models

Identify an appropriate modelling approach

Validate the conceptual model

Identify sections that can function
independently partition into LPs

Convert LPs into computer simulation
models

Develop the conceptual model

Figure 5.10 - Proposed approach for model representation, model partitioning and
mapping

The conceptual model needs to be validated in order to make sure that the

conceptual model represents the enterprise as intended. After partitioning, sub

models should be again validated to ensure that when integrated they represent the

system under investigation. The accuracy o f simulation can be also improved with

this step by step validation approach.

Summary

This chapter presented a simplified approach for model representation, model

partitioning and mapping for distributed enterprise simulations. Before

transforming sub-models into computer simulation models, a synchronization

protocol needs be determined as the programming code for synchronization is

integrated into simulation models. The next chapter addresses synchronization and

networking issues in distributed simulation and presents a synchronization

mechanism which focuses on distributed manufacturing applications.

85

Chapter 6

The proposed synchronization mechanism for the

distributed enterprise simulation

Chapter 5 presented a discussion o f conceptual modelling,

model partitioning and mapping. Before transforming the

partitioned logical processes into computer simulation

models and executing them in a distributed simulation

environment, the infrastructure required for distributed

simulation and a synchronization approach have to be

determined. This chapter addresses networking and

synchronization issues relating to distributed enterprise

simulation (figure 6.1). It presents brief descriptions on

network topologies, communication protocols and network

protocols, synchronization and different synchronization

protocols. An approximate synchronization mechanism is

proposed as an alternative for strictly synchronized

approaches.

86

Chapter 6 — The proposed synchronisation mechanism fo r the distributed enterprise simulation

Problem definition & Identification
of objectives

Ven fi cation &
Validation

SimSS Process

Parallel and Distributed
simulation

N Sequential
simulation

Data collection
~ * y * -

Construction o f conceptual model

Partitioning the model into logical
processes (LPs)

Verification &
Validation

Mapping of LPs into processors

| Synchronization and Networking |

Programming of LPs

Verification &
Validation

Experimentation

Output analysis

Implementation and further work

Figure 6.1 - The proposed methodology for distributed enterprise simulation

87

Chapter 6 - The proposed synchronisation mechanism fo r the distributed enterprise simulation

6.1 Introduction

To date, much o f the parallel discrete event simulation research focused on

multiprocessor platforms (Carothers et al., 1997). However, Ikonen and Porras

(1998) noted that in recent years the use o f networked workstations for distributed

applications gained more popularity. The cost involved in distributed simulation

can be kept down as most o f the equipment is already available. Low cost o f

equipment and incremental scalability are other main advantages o f using a

distributed system over parallel systems. Hence, the use o f networks o f

workstations interconnected through local area network (LAN)/ wide area

network (WAN) has been evolving into a popular and effective platform for

distributed simulation. Idle cycles o f workstations can be used to run distributed

applications on networks o f workstations. Moreover, a network o f workstations

can be considered as a parallel computer, or ‘hypercomputer’, whose performance

is similar to that o f a parallel machine but is achieved at much lower cost (Cabillic

and Puaut 1997).

In distributed simulation, the simulated system is partitioned into a set o f sub

systems that are simulated by a set o f processors that communicate by sending and

receiving timestamped messages over the network (Lin, 2000). These messages

are passed through the network (Figure 6.2). Carothers et al. (1997) noted that

distributed simulation is one o f the most demanding applications which can be run

on a computer network. Moreover, workstations and the network itself are subject

to heavy external loads in an open network computing environment (due to other

applications executed) (Carothers et al., 1999). This leads to the degradation o f

performances o f applications executed over the network, including simulation.

However, Ikonen and Porras (1998) pointed out that disadvantages o f slow

communication through a network can be overcome by the proper planning o f the

simulation system. Distributed simulation is affected by all elements o f a network

system including software, hardware and communication network. Therefore,

design o f the network also plays a critical role in performances o f a distributed

simulation.

88

Chapter 6 - The proposed synchronisation mechanism fo r the distributed enterprise simulation

Processor 2Processor 1 Processor 3

L_

Com m unication sub system

Figure 6.2 - Distributed simulation and communication network (Dado et al.,

1993)

Interest in parallel and distributed simulation arose first with the problem of

synchronization and it is a problem that has remained in the focus o f most

research in the area (Nicol and Fujimoto, 1994). Das (2000) also mentioned that

most o f the research in distributed simulation (also in parallel simulation) so far is

centred on design o f synchronization protocols and their evaluation with various

simulation benchmarks.

Simulations pose unique synchronization constraints due to their underlying sense

o f time. When the simulation state can be simultaneously changed by different

processes, actions by one process can affect actions o f another (Nicol, 1993).

However, the outcome o f a simulation should not depend on the way it is

simulated. That is, if the same model is simulated using distributed simulation and

sequential simulation, users must be able to get an identical outcome. In addition,

it should be repeatable. For this purpose individual simulation models need to be

synchronized.

The objective o f this chapter is to provide a discussion o f networking issues

relating to distributed simulation and present an approximate synchronization

mechanism for distributed enterprise simulation. The next section presents a

description on computer networks that include network topologies,

communication protocols and network protocols. Section 6.3 discusses

89

Chapter 6 - The proposed synchronisation mechanism fo r the distributed enterprise simulation

synchronization issues and different synchronization protocols. An approximate

synchronization approach is presented in section 6.4. The chapter ends with a

summary.

6.2 Computer networks

Based on the geographical area covered, a computer network can be either a LAN,

WAN or a metropolitan area network (MAN). LAN covers a limited physical area

(a building, a company, or a campus). WAN covers a wide geographical area and

can even extend over countries. MAN is an intermediate between former two and

can be extended to cover a city. In general, LANs provide a much “friendlier”

environment for distributed simulation systems than WANs or MANs (Fujimoto,

2000).

When compared against other aspects o f distributed simulation such as

synchronization and partitioning, possibility o f changing the networking

infrastructure and networking protocols is less as it is expected to utilize existing

networks to run distributed enterprise simulation. Following descriptions on

network topologies and network protocols are presented in order to provide a

complete set o f literature on issues relating to distributed enterprise simulations.

6.2.1 Network topologies

Different types o f network designs or network topologies are available for

distributed computer systems. Historically LANs were based on either Bus or

Ring networks (Figure 6.3). In Bus networks, all stations are connected to a single

transmission path that spans the whole length o f the network. In ring networks,

stations are generally connected to a ring using active interfaces. It can be

considered as a sequence o f point-to-point links closed on itself. Recently, Star

based or Tree based networks (Figure 6.4) are gaining popularity over Bus and

Ring based systems. In a Star network, all stations are connected to a central node

by dedicated links. Links can be established with unshielded twisted pair (UTP)

cables, shielded twisted pair (STP) cables, Fibre Optics cables, wireless systems

etc. The tree topology consists o f a hierarchical structure, with stations being the

leaves o f the tree. Stations are connected to nodes at the next higher level o f the

90

Chapter 6 — The proposed synchronisation mechanism fo r the distributed enterprise simulation

structure. A recent phenomenon is the appearance o f switched LANs, such as

those based on Ethernet or asynchronous transfer mode (ATM) switching

technology (Fujimoto, 2000). Advantages and disadvantages o f these topologies

were extensively discussed by Abeysundara and Kamal (1991).

W orkstations

I Repeater

O

R ing topologyBus topology

Figure 6.3 - Bus topology and Ring topology

-Root node
W orkstations

Central Hub

Interm ediate
nodes

Star topology Tree topology

Figure 6.4 - Star topology and Tree topology

91

Chapter 6 - The proposed synchronisation mechanism fo r the distributed enterprise simulation

6.2.2 Network protocols

Overall performance o f the network (thus o f distributed simulation) depends on

the type o f network protocol employed (Sohl, 2002). TCP (Transmission Control

protocol)/ IP (Internet Protocol), UDP (User Datagram Protocol) and IPX

(Internetwork Packet Exchange)/ SPX (Sequenced Packet Exchange) are some of

the network protocols that can be used in a distributed environment. Each protocol

has its own merits and demerits. TCP is a connection oriented protocol. It

guarantees that data packets will arrive at their destination error free and in the

order in which they were sent (Kirchner, 1997). But it also incurs an overhead

which leads to latencies. On the other hand, UDP is a connectionless protocol

which merely sends a packet o f data with no guarantee that it will arrive at its

destination. IPX/SPX is a protocol for Novell based systems. Dewire (1997)

provided a detailed discussion about different network protocol types, and

advantages and disadvantages o f them.

As noted previously, simulation developers have only limited control over

networking aspects and are expected to use existing network topologies and

protocols. Most o f the networks that exist in small to medium size enterprises are

fall into star or tree categories and it is expected to use TCP/IP protocol, which is

the most commonly used protocol for the implementation o f distributed simulation

system.

6.3 Synchronization

State variables, a global clock and an event list do not exist in a parallel or

distributed simulation system. On the other hand, individual logical processes

(LPs) can be considered as sequential simulations with state variables, virtual

clock and an event list (Mehl and Hammes, 1993). Bagrodia (1996) viewed

distributed simulation as a collection o f sequential discrete-event simulation

models, which communicate each other with timestamped messages. A

synchronized simulation system makes sure that each LP processes arriving

messages in their timestamped order and not in their real time arriving order. This

requirement is referred to as the local causality constraint (Fujimoto, 1999). To

satisfy the local causality constraint, a number o f synchronization algorithms have

92

Chapter 6 - The proposed synchronisation mechanism fo r the distributed enterprise simulation

been proposed. Such algorithms can be classified into two classes as synchronous

and asynchronous (Kim et al., 1997).

6.3.1 Synchronous systems
t

In synchronous systems, synchronization o f communicating subsystems is

achieved by means o f a global clock whose transitions define points in the time

when communication transactions can take place. All LPs must have the same

simulated time under this system. Every LP must process all events in a time

interval before any o f the LPs are allowed to begin processing events at next time

step and latter time steps. This strategy considerably simplifies the

implementation o f correct simulation by avoiding deadlock and need for

overwhelming number o f messages required by synchronization protocols in

asynchronous simulation (Ferscha, 1995). The imbalance o f work across LPs in

certain time steps on the other hand naturally leads to idle times and represent a

source o f inefficiency (Ferscha and Tripathi, 1994). Also a synchronous

simulation would constrain the time unit to the smallest time increment o f the

whole system. Pham et al., 1998 noted that in some cases it is difficult to define a

global clock for a simulation.

6.3.2 Asynchronous systems

Asynchronous simulation relies on the presence o f events occurring at various

simulated times that do not affect each other. Concurrent processing o f events

effectively speeds up a simulation. Righter and Walrand (1989) mentioned that

asynchronous simulation has received the greatest attention due to its potential

high performance. However, asynchronous simulations are susceptible to causality

errors (Ferscha and Tripathi, 1994). Numerous algorithms have been developed

for synchronization o f asynchronous parallel and distributed simulation in order to

avoid causality errors. These algorithms are known as synchronization protocols

and can be broadly classified into two categories: conservative and optimistic

protocols (Fujimoto, 1999).

6.3.2.1 Conservative synchronization

Historically, first synchronization algorithms were based on conservative

approaches. The idea o f conservative synchronization was proposed by Chandy in

93

Chapter 6 - The proposed synchronisation mechanism fo r the distributed enterprise simulation

1977 and independently by Bryant. Conservative approaches strictly impose the

local causality constraint and guarantee that each process only processes events in

non-decreasing timestamp order (Turner, 1998). Fujimoto (1990) noted that no

causality error can ever occur in an asynchronous simulation if and only if every

LP processes events in non-decreasing timestamp order only. With this simple

mechanism, a LP must block if it does not own any safe event to proceed.

However, this algorithm does not prevent a simulation from running into a

deadlock. It is possible that some LPs become blocked and each o f them waits

indefinitely for each other in a cyclic fashion (Vee and Hsu, 1999). Misra (1986)

proposed to use null messages to avoid the deadlock. A null message with

timestamp T sent from a LP is an assurance given by the LP that later it will not

send a message with a timestamp smaller that T.

The null message algorithm introduced a key property called lookahead utilized

by virtually all conservative synchronization algorithms (Fujimoto, 1999).

Lookahead is the amount o f time that a process can look into the future. If a LP is

at simulation time T, and it can guarantee that any message it will send in the

future will have a timestamp o f at least T+L regardless o f what messages it may

later receive, the LP is said to have a lookahead o f L. Nicol (1996) provided a

discussion o f different dimensions o f lookahead.

Conservative algorithms can either be deadlock avoidance algorithms or deadlock

detection and recovery algorithms. Although null messages are used to avoid

deadlocks, they lead to increase in network traffic. Chandy and Misra (1981)

introduced a deadlock detection and recovery approach. This algorithm allows

processors to fall into a deadlock state, then detects the deadlock and breaks it.

Since the original Chandy and Misra algorithm, a number o f modified algorithms

was introduced based on the conservative synchronization principle. Boukerche

and Trooper (2001), Calinescu (1995), Fujimoto (1999), Nicol (1993), Reynolds

(1988) and Vee and Hsu (1999) described and compared these modified

algorithms.

94

Chapter 6 - The proposed synchronisation mechanism fo r the distributed enterprise simulation

6.3.2.2 Optimistic synchronization

Optimistic synchronization algorithms detect and recover from causality errors

rather than strictly avoiding them. In contrast to conservative mechanisms,

optimistic approaches need not determining when it is safe to proceed; instead,

they determine when an error has occurred and invoke a procedure to recover. The

best-known optimistic protocol is time warp protocol based on virtual time

(simulated time) introduced by Jefferson (1985). This protocol executes every

message as soon as it arrives. I f a message Mt with an earlier timestamp

subsequently arrives, the rolls back its state o f the time Mt, and re-execute from

that point. All messages sent before Mt are cancelled by sending anti-messages.

To support roll back, Lin (2000) mentioned that an input queue, output queue, a

local clock and a state queue should be maintained. This leads to increased usage

o f memory, which is a major drawback o f the time warp protocol. Optimistic

synchronization approaches including modified ones are described and compared

by Fujimoto (1990), Fujimoto (1998), Reynolds (1988), and Vee and Hsu (1999).

6.3.2.3 Conservative vs. Optimistic synchronizations

The primary emphasis o f research in distributed simulation has been on proposing

and proving correctness o f synchronization schemes. The most crucial question

for practitioners is the choice o f a synchronization protocol: i.e. conservative or

optimistic, for a particular simulation problem (Ferscha et al., 2001). Both

conservative and optimistic protocols have their own merits and drawbacks. The

implementation o f conservative algorithm is simpler than the implementation o f

optimistic protocols (Baukerche and Tropper, 2001). However, due to their strict

adherence to local causality constrain, conservative protocols may not frilly

exploit the inherent parallelism o f a simulation (Peterson and Willis, 1999; Porras

et al., 1997). Conservative protocols are also prone to deadlock and null messages

used to break the deadlock may lead to increase in network traffic resulting in

latencies. Since optimistic protocols do not strictly adhere to local causality

constraint, they have more potential to exploit the parallelism o f a simulation. But

the rollback mechanism used to overcome causality errors is often time

consuming and needs to keep the state o f a simulation in computer memory,

resulting in increased requirements for computational and communication

resources. (Calinescu, 1996; Ferscha et al., 2001). Ferscha (1995) and Fujimoto

95

Chapter 6 - The proposed synchronisation mechanism fo r the distributed enterprise simulation

(1998) compared advantages and disadvantages o f two protocols in detail.

Sanchez et al (1996) compared these protocols based on aggressiveness and risk

terminology introduced by (Reynolds, 1988). Aggressiveness evaluates a

protocol’s ability to exploit the parallelism. Risk measures the possibility o f

causality violations. Conservative algorithms are non-aggressive and non-risk

while optimistic algorithms are aggressive and risk protocols. It has been

concluded that neither conservative nor optimistic classes o f synchronization

algorithms proved to be strictly better than the other (Das, 2000 and Sanchez et

al., 1996). In light o f this, a new class o f algorithms called hybrid or adaptive

protocols was introduced (Das, 2000). These protocols take an intermediate

approach between purely conservative and purely optimistic approaches and

contain some characteristics o f both main approaches mentioned earlier. Das

(1996 and 2000) and Hamnes and Tripathi (1994) described a number o f adaptive

protocols.

6.4. The proposed synchronization approach

Most o f the distributed simulation systems developed so far are systems created

for a specific situation using programming languages such as C++, Java, Simula

etc. Therefore it is possible to save state variables at different time points when

executed. This enables implementation o f the optimistic synchronization protocol,

which requires rolling back to a previous simulation point o f time, if the local

causality constraint is violated. The simulation engine could be designed in such a

way that it could predict entity creation times, processing times, delay times etc.

With these it is also possible to calculate a value for lookahead that is critical for

the conservative simulation protocol.

Rolling back to a previous time may not always feasible with commercial

simulation software (which will be used to implement distributed enterprise

simulation), as saving o f state variables at different points o f time can not be

easily implemented. Therefore to synchronize different modules that are running

in distributed simulation environment, a conservative simulation protocol was

selected. If minimum processing times for distributed simulation models can be

calculated, these values could be taken as lookahead values for respective

simulation models. With them, a null message passing algorithm can be

96

Chapter 6 - The proposed synchronisation mechanism fo r the distributed enterprise simulation

implemented to synchronize the distributed simulation system. However, since

entity creation times, processing times, delay times etc. are generated by

simulation engine o f the model based on statistical distributions specified, it might

not be possible to calculate a definite lookahead value for simulation modules if

commercial simulation software is to be used. In addition, some applications such

as distributed manufacturing may not require a strictly synchronized environment.

In these situations an approximate synchronization approach could be used to

synchronize a distributed enterprise simulation system as it is more simple and

straightforward to implement than mechanisms that strictly synchronize the

system.

6.4.1 An approximate synchronization mechanism for distributed enterprise

simulations

The approximate synchronization mechanism can be implemented with an

appropriate message passing mechanism that links different simulation models

created using commercial simulation software. It does not attempt to execute all

simulation models in a strictly synchronized environment. Instead different

models are allowed to run at different but approximately close simulation times

(STs) without using a lookahead. This is achieved through simulation models

comparing STs o f their own with STs o f the other models. I f the simulation time

o f a model is higher than any other model, the faster model pauses till slower

running model reaches paused model’s ST. As simulation models proceed in

different time steps and due to delays take place in message passing, it is

impossible to force them to run at the same simulation time.

The concept behind this mechanism is simple and could be implemented with any

simulation system including systems built with most o f the commercial simulation

software packages. The basic steps o f the mechanism for a distributed simulation

with only 2 models as follows (figure 6.5).

M odel X M odel Y

Figure 6.5 - Synchronization o f 2 models

97

Chapter 6 - The proposed synchronisation mechanism fo r the distributed enterprise simulation

• Model X sends its simulation time (STx) to model Y

• If simulation time o f model Y (STy) is higher than STx then model Y sends

back its simulation time (STy) to model X and pauses the execution o f the

model Y.

• After (STy - STx) simulation time model X sends a message to resume Model

Y.

An identical process takes place when Model Y sends its simulation time to

Model X.

However, if more than two distributed simulation models are to be used, above

approach may result in generating too many messages leading to increased

network traffic which may have detrimental effects on performance o f the

network. The number o f messages passed for synchronization can be reduced by

introducing an additional component (TPU - Time Processing Unit) for

processing times sent by distributed simulation models (Figure 6.6).

A

A * kk.

C DW

y r A *
B

T im e processing
unit (TPU)

Figure 6.6 - Synchronizing mechanism without and with TPU

Instead o f sending ST o f one model to rest o f the models all simulation models

send their STs to the time processing unit (TPU). After determining the lowest ST,

it pauses all simulation models except the slowest one. Before pausing, faster

simulation models send their current STs to the slowest model which uses these

times for scheduling the resumption o f paused models. Once the ST o f the slowest

model reaches the ST o f a paused model, it sends a message for resuming the

98

Chapter 6 - The proposed synchronisation mechanism fo r the distributed enterprise simulation

paused model. The process continues till all the paused models are resumed. This

mechanism forces distributed simulation models to run at approximately same ST.

The TPU consists o f 2 main elements. While the first element requests STs from

distributed simulation models (figure 6.7), the second element processes the STs

received from distributed simulation models (figure 6.8).

At least 2 models are
running?

Reset time variables

Request times

Time to request STs

Figure 6.7 - Requesting simulation times at TPU of approximate synchronization

algorithm

Figure 6.7 shows how the TPU requests STs from distributed simulation models.

At predefined time intervals o f the real time clock (time interval can be varied)

TPU requests STs from simulation models. However, messages that request STs

are passed to simulation models only if at least 2 simulation models are running in

the system. I f messages are sent, variables that store STs (when received from

simulation models) are reset to zero.

Once a ST is received from a simulation model (responding to the ST request

message from the TPU), the time processing part o f the TPU updates time

variables by recording the ST and the name o f the simulation model from which

the ST was received. It then checks whether all simulation times are received

(values o f time variables higher than zero) if at least 2 models are running. This is

carried out in order to preventing deadlock situations as paused simulation models

99

Chapter 6 - The proposed synchronisation mechanism fo r the distributed enterprise simulation

also send their STs to the TPU responding to the message o f requesting STs. I f all

STs are received and at least 2 models are running, then the TPU determines the

lowest ST and slowest simulation model. Then it sends messages to faster models

requesting them to pause with the name o f the slowest model, and updates

variables by changing the status o f faster models to ‘Pause state’ (figure 6.8).

Receive ST

A t lease 2 models
are running?

Receive all
simulation times?

Update variables

Determine the slowest model

Message to faster models to pause with
name o f the slowest model

Update variables

Figure 6.8 - Processing simulation times at TPU of approximate synchronization

algorithm

Part o f the approximate synchronization mechanism is also incorporated into

individual simulation models that are distributed across the network. Figures 6.11

to 6.14 show different processes o f the approximate synchronization mechanism

included in distributed simulation models. When a message is received from the

100

Chapter 6 — The proposed synchronisation mechanism fo r the distributed enterprise simulation

TPU requesting ST, individual simulation models send their STs to TPU (figure

6.9).

Request for ST

Send ST to TPU

Figure 6.9 - Sending simulation time to TPU from distributed simulation models

As noted in the previous section, these times are processed at the TPU and

messages are sent to faster models requesting them to pause. If a model receives a

message requesting it to pause, it checks whether the model is already in pause

state. If not it sends its current ST to the slowest simulation model, updates

variables to indicate that it is in ‘Paused state’ and pauses itself (figure 6.10).

Message to pause

Already paused

Pause model

Send current ST to slowest model

Update pause status

Figure 6.10 - Pausing a faster simulation model

101

Chapter 6 - The proposed synchronisation mechanism fo r the distributed enterprise simulation

Once the slowest model receives a ST time from a pausing model, it calculates the

difference between its current ST and ST o f the paused model (PTime). I f the time

difference is less than 0.5 STs (The value is an arbitrary figure and can be changed

if necessary), a message is sent to the paused model to resume. This is carried out

in order to take delays occurred in message passing into account. If the ST

difference is greater than 0.5, the slowest model schedules a message to be sent

for resuming the paused model after PTime (figure 6.11).

PTime > 0.5

Receive ST from
pausing model

Schedule to resume
the model now

Schedule to resume the model after PTime

Calculate time to be paused (PTime)

Figure 6.11 - Scheduling to resume a pausing model at slowest model

When a message arrives to a paused model requesting it to resume, the model

updates its state variable from ‘Paused state’ to ‘Resume state’, sends a message

to the TPU indicating that it resumed, and resumes itself (figure 6.12). The TPU

updates the status o f the resumed model when it receives such a message. (Figure

6.13)

102

Chapter 6 — The proposed synchronisation mechanism fo r the distributed enterprise simulation

Receive message
to resume model

Resume the paused model

Send message to TPU to update varuables

Update pause status

Figure 6.12 - Resuming a paused model

less age indicating
resumption o f a ,
^ \m od eU ^ ^

Update pause status

Figure 6.13 - Updating variables when resuming a model

6.4.2 Illustrating the approximate synchronization mechanism

In order to illustrate the effectiveness o f the approximate synchronization

mechanism, three distributed simulation models were executed without and with

the synchronization mechanism. Real time (in seconds) was measured from the

start o f the simulation at every 10th simulation unit time for each simulation model

for 500 simulation unit times. Figures 6.14 and 6.15 show graphs without

synchronizing and with synchronizing respectively. The models were executed in

a local area network with Tree topology which uses TCP/IP protocol. Windows

XP Professional was the operating system o f the one workstation and Windows

2000 professional was the operating system o f the other two workstations. MSMQ .

103

Chapter 6 - The proposed synchronisation mechanism fo r the distributed enterprise simulation

2.0 was used as the message passing middleware. MSMQ was employed in

workgroup mode without a MSMQ server. A detailed discussion o f MSMQ and

other message passing middleware will be presented in the next chapter (chapter

7)

3 models without synchronizing

35 --

30 -

e
a 25 -
B

' 20 -

Model A

Model B

Model C

o o o
o

o o
O s

o<N O
00

o o ot- o
o

o oON
Sim ulation tim e units

Figure 6.14 - Execution o f models without synchronization mechanism '

The figure 6.14 shows that three models are running at different simulation times.

At 400th simulation time model C was the fastest and model B was the slowest. If

a messages passed from A and B to C, they may not satisfy the local causality

constraint.

104

Chapter 6 - The proposed synchronisation mechanism fo r the distributed enterprise simulation

3 Models with synchronizing

40 T

35 -

0 30 -

E
'w '
QJ
E 20 -

Model A

Model B

Model C

o oo oTj* o
o

o
VO

o
Os

om ooo O o
o

o
vo

o
Os

Simulation time units

Figure 6.15 - Execution o f models with synchronization mechanism

Figure 6.15 shows that all three models are running at approximately same

simulation time thus avoiding the occurrence o f the local causality constraint.

Summary

The chapter presented an approximate synchronization mechanism for distributed

enterprise simulations. In addition, it also briefly described networking and

synchronization issues relating to distributed simulation. According to the

proposed methodology for distributed enterprise simulation (figure 6.1), the

partitioned logical processes can be transformed into computer simulation models

and executed in a distributed simulation environment. The next chapter illustrates

the implementation o f distributed enterprise simulation with a hypothetical case

study which focuses on distributed manufacturing applications.

105

Chapter 7

Implementation of the distributed enterprise

simulation

Chapter 6 described networking and synchronization issues

relating to distributed enterprise simulation. It also

proposed an approximate synchronization approach, which

is particularly suitable for distributed manufacturing

applications. This chapter presents a detailed approach for

implementation o f distributed enterprise simulation (see

figure 7.1). A brief discussion o f middleware is also

included as middleware is used for message passing to

synchronize and pass parameters between simulation

models distributed across the network. In order to simplify

the implementation process and to reduce the time and cost

involved, it was decided to use commercial simulation

software, and widely available and cost effective

technologies to implement the distributed enterprise

simulation. A hypothetical case study focused on

distributed manufacturing is used to illustrate the proposed

approach for implementation. Arena, MSMQ and VBA

used as the commercial simulation software, middleware

and application program interface (API) respectively for

implementing the case study presented.

106

Chapter 7 — Implementation o f the distributed enterprise simulation

Problem definition & Identification
of objectives

Verification &
Validation

SimSS Process

Parallel and Distributed
simulation

N Sequential
simulation

Data collection

Construction o f conceptual model

Partitioning the model into logical
processes (LPs)

Mapping o f LPs into processors

Synchronization and Networking

2
Programming ofLPs

Verification &
Validation

Experimentation

I
Output analysis

Implementation and further work

Verification &
Validation

Figure 7.1 - The proposed methodology for distributed simulation

107

Chapter 7 — Implementation o f the distributed enterprise simulation

7.1 Introduction

During the development o f a distributed simulation, issues such as model

partitioning, mapping, synchronization, and implementation (mainly the

technologies and software used) need to be addressed. As noted in previous

chapters, the new methodology proposes to pursue a different approach in

developing and implementing distributed enterprise simulations. Generally

distributed simulations are implemented using either a simulation language such

as Simula or general purpose languages such as C++ and Java. This calls for not

only expertise in distributed simulation, but also expertise in programming.

Moreover, the need for middleware to communicate between distributed models

further complicates the implementation process. A number o f authors including

Ikonen and Porras (1998) and Pancake (1996) criticized the implementation

process o f parallel and distributed simulations as time consuming, effort intensive,

complex and involving steep learning curves. As a result, distributed simulations

(along with parallel simulations) are still being utilized primarily in the research

community, with only a limited penetration in the commercial modelling and

sequential simulation community (Bass, 1999; Cai and Teo, 1999; Page, 1999;

Taylor, 1998).

The new methodology for distributed enterprise simulation uses commercial

simulation software to develop distributed simulation models, and uses a cost

effective and simplified approach to implement distributed enterprise simulation.

To illustrate the implementation process a hypothetical case study in distributed

manufacturing was developed. Distributed manufacturing applications can be

easily implemented with the proposed methodology, since they are not as

complicated as logic circuits, telecommunication system etc., and generally do not

require to be strictly synchronized.

In order to synchronize and pass parameters between simulation models

distributed across a network, simulation models need to communicate with each

other. Communication methods provided by operating systems often require

complex programming. In a distributed simulation, middleware provides a simple

and reliable solution for this problem. Middleware is a piece o f software that

interacts between different programs distributed across a network. It provides a

108

Chapter 7 - Implementation o f the distributed enterprise simulation

higher level building block for programming than connection methods provided

by operating systems by allowing applications to locate transparently across the

network, providing interactions with another application or service, be

independent from network service, be reliable and available, and scale up in

capacity without losing function (Schreiber, 1995).

The objective o f this chapter is to present a simplified and cost effective approach

to implement a distributed enterprise simulation. The next section provides a short

introduction to distributed manufacturing on which the implementation approach

was based. Sections 7.3, 7.4 and 7.5 respectively provide descriptions on

middleware, simulation software and API used for the implementation. The

hypothetical case study on distributed manufacturing is presented in section 7.6 to

illustrate the implementation o f distributed enterprise simulation. The detailed

implementation approach is shown in section 7.7. Section 7.8 briefly discusses the

output from a distributed enterprise simulation as (unlike traditional sequential

simulation) more than one model can generate output. Validation issues o f

distributed enterprise simulation is briefly presented in section 7.9. The chapter

ends with a summary.

7.2 Distributed manufacturing

Confronted with growing competition, the evolution o f new markets and

increasingly complex global and political scenarios, today’s manufacturing

organizations are forced to rethink about how they are organized and operated.

Not only to gain a competitive advantage over their competitors but often merely

to survive, companies are now looking for innovative ways o f responding to

market changes, produce better quality products in more cost effective manner,

manage product life cycles effectively etc. As a result, enterprises are moving

towards more open architectures for integrating their activities with those o f their

suppliers, customers and partners within wide supply chain networks (Shen and

Norrie, 1998). In manufacturing, companies may form strategic partnerships by

outsourcing some o f their operational activities, sharing resources or joint

development o f products and services etc., leading to formation o f virtual

manufacturing enterprises which operate in distributed manufacturing

environment.

109

Chapter 7 —Implementation o f the distributed enterprise simulation

Due to their nature and also to the environment they operate, distributed

manufacturing enterprises (DMEs) are highly complex and heterogeneous. The

traditional manufacturing control systems have low capacity to adapt and to react

to the complex and dynamic nature o f DME. Therefore, attempts have made to

develop distributed manufacturing architectures that can deal with complex and

dynamic systems. New control and organizational architectures such as Agile,

Fractal, Bionic, Random, and Holonic manufacturing architectures have been

introduced over the last few years (Kadar et al., 1998; Leitao and Resviti, 2000

and 2001; Saad, 2003).

DMEs which are also known as virtual manufacturing enterprises operate in

geographically distributed environment and connected together with modern

communication technologies. Virtual manufacturing enterprises are ephemeral

organizations in which several companies collaborate to produce a single product

or product line (Venkateswaran et al., 2001). Participating in this type o f

collaboration allows partner organizations to use their knowledge, resources and

in particular manufacturing expertise to take advantage o f new business

opportunities and/or gain a competitive advantage that are on a larger scale than

an individual partner could handle alone. Generally these types o f enterprises are

established without making a long term commitment to other partners and

individual partners may also carry out their own manufacturing activities

independent o f activities relating to the DME. To facilitate the creation o f virtual

manufacturing enterprises, potential partners must be quickly able to evaluate

whether it will be profitable for them to participate in the proposed enterprise.

Simulation provides a capability to conduct experiments rapidly to predict and

evaluate the results o f manufacturing decisions (McLean and Leong, 2001).

Simulation is not a strange tool for decision making in manufacturing. Law and

McComas (1999) pointed out that manufacturing is one o f the largest application

areas o f simulation, with the first uses dating back to at least early 1960s.

However, traditional sequential simulation alone may not be sufficient to simulate

these highly complex DME. In such situations, distributed simulation provides a

promising alternative to construct cross enterprise simulations. Each partner can

simulate its operation to make sure that it has the capability to perform its

110

Chapter 7 — Implementation o f the distributed enterprise simulation

individual function in the DME. Later these simulation models can be integrated

into a distributed simulation for simulating the whole enterprise in order to

evaluate the feasibility and profitability o f the proposed partnership. Use o f

distributed simulation allows each partner to hide any proprietary information,

simulate multiple manufacturing systems at different degrees o f abstraction levels,

link simulation models built using different simulation software, to take advantage

o f additional computing power, simultaneous access to executing simulation

models for users in different locations, reuse o f existing simulation models with

little modifications etc. (Gan et al., 2000; McLean and Riddick, 2000; Taylor et

al., 2001; Venkateswaran et al., 2001). However, Peng and Chen (1996) noted that

as a technique, parallel and distributed simulation is not successful in

manufacturing. Most o f the simulations for DMEs implemented so far are purpose

build simulators created using programming languages such as C++ or Java, and

with high end workstations. Furthermore, as noted previously distributed

simulation itself involves long development time, cost, steep learning curves, and

is often complex to manage resulting low penetration into industrial applications.

7.3 Middleware

The most important role in the networking subsystem o f a distributed simulation is

the efficient exchange o f messages (Sohl, 2002). Message passing can be point-to-

point, broadcast or multicast. The point-to-point method requires the source to

pass messages directly to the destination. In broadcasting, the source sends

message to all hosts, which are ‘listening’. This eliminates the repeated and

multiple connects needed by the point-to-point method. However, this may lead to

an increase in network traffic resulting latencies. Multicast is an improvement to

broadcast. It enables the source to pass messages to desired hosts.

Different techniques are used to communicate between simulation sub models.

HLA (High Level Architecture) uses RTI (Run Time Infrastructure) (Buss and

Jackson, 1998). Middleware such as CORBA (Common Object Request Broker

Agent), GRIDS (Generic Runtime Infrastructure for Distributed Simulation)

(Sudra et al., 2000), CDNS (Collaborative Distributed network Systems) can be

used to pass messages between simulation models distributed across a network.

I l l

Chapter 7 — Implementation o f the distributed enterprise simulation

Middleware is a class o f software designed to help managing the complexity and

heterogeneity inherent in distributed systems. It consists o f a set o f enabling

services which allow multiple processes running on one or more computers to

interact across a network. This technology evolved during 1990s to provide for

interoperability in support o f the move to client/ server architecture (Bray, 2003).

Bakken (2003) defined middleware as a layer o f software above the operating

system but below the application program that provides a common programming

abstraction across a distributed system (see figure 7.2).

Host 1 Host 2

Distributed Application Distributed Application

Middleware API Middleware API

MiddlewareMiddleware

Middleware APIMiddleware API

Operating
System

Operating
System

ProcessingProcessing Storage Comm. StorageComm.

Network

Figure 7.2 - Middleware layer in context (Bakken, 2003)

Based on programming abstractions and the kinds o f heterogeneity provided

beyond network and hardware, middleware can be categorized into few different

forms (Bakken, 2003; Berson, 1996; Dewire, 1997).

7.3.1 Forms of middleware

Remote Procedure Calls (RPC)

A remote procedure call is a mechanism by which one process can execute

another process (subroutine) residing on another, usually a remote system possibly

112

Chapter 7 - Implementation o f the distributed enterprise simulation

running a different operating system. It extends the procedure call interface to

offer the abstraction o f being able to invoke a procedure whose body is across the

network. RPC systems are usually synchronous, and thus offer no potential for

parallelism without using multiple threads. They typically have limited exception

handling facilities.

Message Oriented Middleware (MOM)

Message oriented middleware offers program to program data exchange, enabling

the creation o f distributed applications. It provides the abstraction o f a message

queue that can be accessed across a network. MOM is analogous to email in the

sense that it is asynchronous and requires the recipients o f messages to interpret

their meanings and to take appropriate actions. It is very flexible in how it can be

configured with topology o f programs that deposit and withdraw messages from a

given queue.

Object Request Brokers (ORB)

This type o f middleware enables the objects that comprise an application to be

distributed and shared across heterogeneous networks. It provides the abstraction

o f an object that is remote yet whose methods can be invoked just like those o f an

object in the same address space as the caller.

In addition, inter process communication (IPC) and transaction processing (TP)

also can be employed to communicate between remote processes. Based on the

middleware forms described above, a number o f middleware architectures

introduced over past few years. Followings are the widely publicized architectures

summarised by Bray (2003):

7.3.2 Well known middleware architectures

Distributed Computing environment (DCE)

Developed and maintained by the Open Systems Foundation (OSF), the

Distributed Computing Environment (DCE) is an integrated distributed

environment which incorporates technology from industry. The DCE is a set of

integrated system services that provide an interoperable and flexible distributed

environment with the primary goal o f solving interoperability problems in

113

Chapter 7 - Implementation o f the distributed enterprise simulation

heterogeneous, networked environments. OSF provides a reference

implementation (source code) on which all DCE products are based. For physical

data exchange and communication DCE uses RPC.

The standard interfaces used by the DCE as well as all the source code itself, are

defined only in the C programming language. Vondrak and beach (2003) noted

that original DEC products were "developer's kits" that were not robust, did not

contain the entire set o f DCE features (all lacked distributed file services), and

were suited mostly for UNIX platforms. Johnson (1991) provides more detail on

DEC.

Common Object Request Broker Architecture (CORBA)

Common object request broker architecture is a specification o f a standard

architecture for object request brokers (ORB). CORBA specification was

developed by Object Management Group, an industry group with over six hundred

member companies. The ORB handles the interacting objects by behaving as an

extensive object oriented RPC application program interface (API). Using

CORBA compliant ORB, a process can transparently invoke a method on another

object, which can be on the same machine or across a network. The process does

not need to be aware o f where the object is located, its programming language, its

operating system or any other aspects that are not part o f an object’s interface.

CORBA interfaces are developed with Interface Definition language (IDL) which

is similar to C++. A number o f authors including Minton (2003), OMG (2002)

and Wallanau (1997) presented more details on CORBA.

Distributed Component Object Model (DCOM)

Distributed component object model (DCOM) is an extension to component

object model (COM) that allows network based component interaction. COM

refers to both a specification and implementation developed by Microsoft. With

DCOM, components operating on a variety o f platforms can interact as long as

DCOM is available within the environment. Its distributed object abstraction is

augmented by other Microsoft technologies including Microsoft Transaction

Server (MST) and Active directory. Similar to DCE and CORBA, communication

between different objects under DCOM are also based on RPC. COM+ which is

114

Chapter 7 — Implementation o f the distributed enterprise simulation

the evolution o f COM integrates MST services and message queuing into COM,

and makes COM programming easier through a closer integration with Microsoft

programming languages such as Visual Basic, Visual C++, and Visual J++.

JavaSoft’s Java/ Remote method Invocation (Java/ RMI) too is a middleware

architecture based on RPC.

As it was noted DCE, CORBA, DCOM and Java/RMI are based on RPC form o f

middleware which mainly support synchronous communication between remote

processes. DCE and CORBA are relatively more matured than DCOM and enjoy

more acceptability as middleware specifications for them are published by

industry groups. Furthermore, these architectures support most o f the computing

platforms. On the other hand, DCOM based technologies have the ability o f

evolving faster than DCE and CORBA as one vendor developing its own

proprietary specification. However, still Microsoft Windows (including both

desktop and server) is the only platform which is fully supported by DCOM.

High Level Architecture (HLA)

HLA is a standard framework that supports simulations composed o f different

simulation components thus encouraging reusability and interoperability. IEEE

1516 standards specify HLA as a standard for distributed simulation. For (most of

the) military applications in distributed simulation HLA has been accepted as the

standard architecture. However, Strassburger in Taylor et al. (2002) noted that

HLA as an IEEE standard failed to gain acceptance from non-military users

mainly due to its relatively high complexity.

The main requirement for middleware in the proposed distributed simulation

approach is passing messages between distributed simulation models for

synchronizing the distributed simulation system and for passing parameters.

While, RPC based middleware can be employed to communicate between

distributed simulation models, message passing based on MOM may simplify the

programming task. Unlike RPC, MOM does not require a synchronous connection

between remote models and is more flexible than the former. Furthermore, MOM

is well suited for event driven applications.

115

Chapter 7 - Implementation o f the distributed enterprise simulation

Microsoft Message Queue (MSMQ) was selected as the middleware for

communicating between distributed simulation models. Although MSMQ is a part

o f Microsoft DCOM/COM+ architecture, it is a MOM. Since MSMQ 2.0 is

integrated into Windows 2000 (both server and professional versions) and

Windows XP (as version 3.0) and available as an additional component for

Windows NT, 95 and 98, it provides an cost effective solution for message

passing. Application program Interface (API) for MSMQ can be developed with

Visual Basic, C++ or Visual Basic for Applications (VBA). VBA is also

integrated into many Microsoft applications such as MS Office, Visio etc. and a

number o f third party applications including Arena simulation software.

MSMQ workgroup mode can be implemented without MSMQ server mode and

does not uses directory services offered by Windows 2000 server. However, if

messages are required routing to a workstation in a different domain, then services

o f MSMQ server mode is required. The advantage o f workgroup mode is that it

can be deployed on a Novell environment although distributed simulation needs to

be restricted to a single domain. MSMQ 3.0 which is integrated into Windows XP

supports message passing with HTTP protocol. Therefore with MSMQ 3.0

messages can be passed simulation models distributed across the internet. It also

supports multicasting o f messages in addition to unicasting.

Applications developed with MSMQ could communicate across heterogeneous

networks and with computers that may be offline. It provides guaranteed message

delivery, efficient routing, security, transactional support, and priority based

messaging and could operate in either domain or workgroup environment

(Chapell, 1998). In a message queuing system, applications send and receive

messages to message queues, which could be located in either a local or a remote

computer. Applications interact with MSMQ via an API. The API developed for

MSMQ could send messages containing parameters obtained from simulation

model to a queue in the same computer or directly to another remote computer.

API that resides in the remote computer extracts these messages from the queue

and passes parameters to the simulation model.

116

Chapter 7 - Implementation o f the distributed enterprise simulation

The last chapter presented a brief discussion o f network topologies and

networking protocols. As noted in the same chapter, the likelihood o f changing the

existing network infrastructure for distribution simulation is low. To emulate the

networking environment in which generally distributed enterprise simulations are

expected to be implemented, it was decided to use School o f Engineering’s (of

Sheffield Hallam University) main network to illustrate the implementation o f the

case study. The school’s main network which is in the form o f tree topology and

operates in Novell NetWare environment with TCP/IP protocol. Therefore,

MSMQ workgroup mode was used to implement the hypothetical case study.

7.4 Simulation software

As noted in chapter 3, there is a growing trend towards using commercial

simulation software packages to implement distributed simulations. Arena

simulation software was used to illustrate the implementation o f the case study.

However, other commercial simulation software such as Automod, Promodel,

Witness etc. can also be used for this purpose. Arena is one o f the popular

simulation software packages used in sequential simulation. Takus and Profozich

(1997) noted that it is a flexible and powerful tool that allows an analyst to capture

the dynamics o f a system and create animated simulation models. A number o f

authors including Linn et al., 2002; Venkateswaran et al., 2001 have employed

Arena to implement distributed simulations. Furthermore, a recent survey carried

out at Sheffield Hallam University revealed that Arena as the most widely used

simulation software in both academic and industrial communities (Yapa, 2003).

7.5 Application Program Interface (API)

The API acts as the interface between simulation software and MSMQ. It extracts

messages that arrive to message queues and pass parameters to the simulation

model, and obtain parameters from simulation model and pass them as a message

to a queue in another workstation which is part o f the distributed simulation

system (figure 7.3). The API for Arena and MSMQ can be written in both Visual

basic for applications (VBA) and C++. Since programming o f Arena with VBA is

more straightforward, it was decided to use VBA instead o f C++. VBA also offers

a programming environment similar to popular Visual Basic programming

language and, user friendly and easy to learn.

117

Chapter 7 -Im plem entation o f the distributed enterprise simulation

H ost 1

Simulation m odel

rrr
API

Queue 1

3
13

&

Queue 2

3
3

3
in

H ost 2

Sim ulation m odel

TT
API

m m m
3ueue 1

E l
E l

lE J i

Queue 2

3
3

ill

Network

Figure 7.3 - MSMQ, API and Simulation model

In order to demonstrate the proposed implementation approach, a hypothetical

case study was used. Passing product information from one model to another,

synchronization, implementation o f the distributed enterprise simulation using

commercial software were the main point to be illustrated. These can be done

either using a real world case or a hypothetical one. Due to time restrictions

involved in the research, it was decided to use a hypothetical case study. The main

differences between hypothetical and real case studies include number o f product/

parts produced, number o f firms involved in the enterprise, process flows for

different products. However, these issues may not affect what is expected to

demonstrate through the hypothetical case study as number o f products, parts,

process flows can be incorporated into the system by modifying individual

simulations models. Number o f partners in the enterprise can be changed by

adding or removing simulation models to or from the distributed enterprise

simulation with slight modifications to other models. Generic names were used for

processes and work centres as the case is a hypothetical one. One o f the benefits

o f the proposed implementation approach is ability to reuse o f simulation models

already developed using commercial simulation software. To highlight this point,

the case assumes that already developed simulation models were modified to

develop the distributed manufacturing simulation system.

118

Chapter 7 - Implementation o f the distributed enterprise simulation

7.6 Hypothetical case study

Three manufacturing firms namely A, B and C are evaluating the feasibility o f

forming a distributed manufacturing enterprise in order to introduce a high tech

product called XYZ which potentially has a huge demand in the market. It has

been recognized that individual firms can not alone produce the product as

manufacturing process requires highly sophisticated equipment and complicated

production processes (figure 7.4).

Firm A
Produces Parts X & Y FirmB

Further processes Part Y

Firm C
Produce Part Z

Final assembly o f XYZ

Figure 7.4 - Proposed distributed manufacturing enterprise

It was agreed that firm A which has more excess capacity is to produce and

process parts X and Y. Once parts X and Y are processed at firm A, part Y to be

sent to firm B which uses its patented treatment processes to further process it and

part X to be sent to firm C. Part Y also sent to C after processing at firm B. At

firm C part Z is to be produced and, both parts X and Y are further processed and

assembled together to form product XYX. Parts are transferred in batches o f 100s

and transfer time is 10 hours.

Production facilities o f firm A consist o f 5 work centres (WCA1 to WCA5). Each

Work centre contains between 3 to 4 work cells and each work cell is equipped

with a number o f identical machines. Parts are routed through all work cells in the

same sequence if they arrive at a work centre. However, parts are not required to

be processed at all work centres. In addition to parts X and V, firm A also

produces and processes parts P and Q in order to produce Product PQ. Processing

119

Chapter 7 - Implementation o f the distributed enterprise simulation

sequences and processing times for parts and semi-finished products are given in

figure 7.5 and table 7.1 respectively.

At work centre 4 Parts P and Q are assembled together to produce PQ and routed

to Work centre 5 for finishing.

Work Center
1

Work Center
2

Work Center
3

Work Center
4

Work Center
5

P

Q

PQ

Q -I I

-CZ}-
•n

Figure 7.5 - Processing sequences at Firm A

Syntax used for processing times:

NORM() : Normal distribution

UNIF() : Uniform distribution

TRIA() : Triangular distribution

NORM() : Normal distribution

W ork
Centre 1

W ork
Centre 2

W ork
Centre 3

W ork
centre 4

W ork
Centre 5

Part X TRIA(0.5,1,1.5) NORM(1,0.2) UNIF(0.5,1) TRIA(0.4,1,1.2)

Part Y NORM(1,0.2) TRIA(0.5,1,1.5) TRIA(0.5,1,1.5)

Part P NORM(1.2,0.4) TRIA(0.6,1,1.7) UNIF(0.8,1.2) TRIA(0.5,1,1.5)

Part Q TRIA(0.7,1,1.8) UNIF(0.5,1)

Product PQ 0 TRIA(0.5,1,1.5)

Table 7.1 - Processing times at Firm A

Six work centres are included in firm B’s production facilities (WCB1 to WCB6).

Each centre consists o f a number o f machines, a chemical bath and an oven. When

arrive at a work centre each part or semi finished components are required to be

120

Chapter 7 - Implementation o f the distributed enterprise simulation

processed at all machines, dipped in the chemical bath and baked in the oven. In

addition to processing o f part Y, firm B also produces product RS by processing

and assembling parts R and S.

At work centre 5 Parts R and S are assembled together to produce RS and routed

to Work centre 6 for finishing.

Processing sequences and processing times for parts and semi-finished products

are given in figure 7.6 and table 7.2 respectively.

Y

R

S

RS

Work Center Work Center Work Center Work Center Work Center Work Center
1 2 3 4 5 6

Figure 7.6 - Processing sequences at Firm B

W ork
Centre 1

W ork
Centre 2

W ork
Centre 3

W ork
centre 4

W ork
Centre 5

W ork
Centre 6

Part Y NORM(1,0.2) UNIF(0.8,1.2) NORM(1.2,0.3) NORM(1,0.2) UNIF(0.8,1.2) TRIA(0.5,1,1.5)

Part R NORM(l. 1,0.2) UNIF(0.5,1) UNIF(0.7,1.3) NORM(l. 1,0.4) NORM(l .0,0.2)

Part S UNIF(0.5,1) NORM(l. 1,0.2) NORM(l. 1,0.2) NORM(l. 1,0.2)

Product RS 0 TRIA(0.5,1,1.5)

Table 7.2 - Processing times at Firm B

As at firm B, production facilities o f firm C consists o f 6 work centres (WCC1 to

WCC6). Each centre contains 2 work cells with 4 identical machines. If a part or

semi-finished product comes to a work centre, it needs to be routed through both

work cells. In addition to processing o f part X, Y and Z, and assembling product

XYZ, firm C also produces product TU by processing and assembling parts T and

U.

121

Chapter 7 - Implementation o f the distributed enterprise simulation

At work centre 4 Parts T and U are assembled together to produce TU then sent to

work centres 5 and 6 for further processing and finishing respectively. At work

centre 5 parts X, Y and Z are assembled together to make product XYZ. Both TU

and XYZ are sent to Work centre 6 for finishing.

Processing sequences and processing times for parts and semi-finished products

are given in figure 7.7 and table 7.3 respectively.

XYZ

TU

Work Center Work CenterWork Center Work Center Work Center Work Center

Figure 7.7 - Processing sequences at Firm C

W ork
Centre 1

W ork
Centre 2

W ork
Centre 3

W ork
centre 4

W ork
Centre 5

W ork
Centre 6

Part X NORM(1,0.2) UNIF(0.8,1.2) NORM(1,0.2)

Part Y UNIF(0.8,1.2) NORM(1,0.2) UNIF(0.8,1.2)

Part Z NORM(1,0.2) NORM(1,0.2) UNIF(0.8,1.2) NORM(1,0.2) UNIF(0.8,1.2)

P artT UNIF(0.5,1.4) UNIF(0.5,1.2) NORM(l.1,0.1) NORM(1,0.2)

Part U NORM(l. 1,0.1) NORM(1,0.2) UNIF(0.5,1.4) UNIF(0.5,1.2)

Product XYZ 0 TRIA(0.5,1,1.5)

Product T U 0 TRIA(0.5,1,1.5)

Table 7.3 - Processing times at Firm C

It was revealed that all 3 firms have been using simulation previously for

analyzing their production systems and have already built simulation models using

Arena simulation software for their production facilities. Furthermore, all firms

122

Chapter 7 -Im plem entation o f the distributed enterprise simulation

are reluctant to pass their information about manufacturing processes to other

firms or third parties. Therefore it was agreed to use existing simulation models,

modify them to include activities o f the proposed enterprise and execute in

distributed simulation environment.

7. 7 Implementation

IDEFO conceptual models were developed for the proposed distributed

manufacturing enterprise and individual firms in order to reflect their activities

relating to the enterprise (figure 7.8) and independent activities o f individual

partners (figures 7.9 7.10 and 7.11). In order to simplify the illustration, the

proposed enterprise was decomposed only up to the level o f work centres.

Process Y, R, S
& RS (Firm B)

A2

Produce XYZ
(Enterprise ABC)

 AO

Process X, Y, P,
Q &.PQ (Firm A)

./_________ Al Process'X, Y, Z,
T. U, XYZ&TU

(Firm 6)
___________ \A 3

N O D E: A O

 X

TITLE: A B C E nterp rise - D escrip tion o f F in n A , F irm B & F in n C

— R S + -

Y — U *

— Z >

NO.:

Figure 7.8 - Distributed manufacturing enterprise

123

Chapter 7 - Implementation o f the distributed enterprise simulation

WCA1
WCA2

A11 WCA3

A12
A13

WCA4
PQ WCA5

■PQ
A14

A15

TITLE: Operations o fF im i ANODE: A l NO.:

Figure 7.9 - Manufacturing operations o f Firm A

WCB1
W CB2

W CB3A21
A22

A23

W CB4
W CB5

A24 W CB6 RS
A25

A26

TITLE: Operations o f Firm BNODE: A2 NO.:

Figure 7.10 - Manufacturing operations o f Firm B

124

Chapter 7 - Implementation o f the distributed enterprise simulation

WCB1
W CB2 u

W CB3A21
A22

A23

WCB4
WCB5

 XYZ-
 TU

TUA24 W CB6
A25

A26

TITLE: Operations o f Firm CNODE: A 3 NO.:

Figure 7.11 - Manufacturing operations o f Firm C

Arena simulation models already developed by 3 firms (in order to illustrate the

reusability o f existing simulation models) were modified to accommodate

operations o f the proposed enterprise (by generating inputs from other firms

within the model itself for validation purposes). They are shown in figures 7.12,

7.13 and 7.14.

I------i'x Osate 1 j » ■■■ Cfccid* 3

•I_____ h '-v X

Figure 7.12 - Simulation model o f Firm A

125

Chapter 7 - Implementation o f the distributed enterprise simulation

E riere

Ltava 7

Enlef 4 Match

Figure 7.13 - Simulation model o f Firm B

j ; 3U a W 2 '

■Enter 3

Figure 7.14 - Simulation model o f Firm C

Once the 3 models were validated, they were modified to pass the output to and

accept input from other models. In order to pass the output, a “VBA block” was

added to the model. When an entity passes through the “VBA block”, the API

written for the “VBA block” (see appendix 1) extracts information from the model

and sends a message to a queue o f the destination model. Parameters on the parts

and other information such as quantity o f parts transferred as the output can be

126

Chapter 7 - Implementation o f the distributed enterprise simulation

included in messages. Since batches o f 100s are sent, a batch module is added just

before the “VBA block”. The API o f the receiving model is designed in such a

way that when a message arrives to a queue, an event automatically fires and

extracts the information contained in the message, and passes them to the Arena

simulation model. Based on the information received, entities are created and

scheduled for releasing into the simulation model (as parts). In order to validate

individual simulation models o f firms B and C, “Create modules” were used to

generate entities for representing input parts receive from other models. Once

validated, for releasing parts created based on the information received from the

output model, “Create modules” were replaced with “Create blocks” (with zero

entities created by the block itself). This was done to facilitate the use o f

“EntitySendToBlockLabel” command which simplifies releasing o f entities to a

specific location o f the simulation model. Modified simulation models o f firms A,

B and C are shown in figures 7.15, 7.16 and 7.27.

Figure 7.15 - Modified simulation model o f Firm A

127

Chapter 7 — Implementation o f the distributed enterprise simulation

Figure 7.16 - Modified simulation model o f Firm B

t o ?
“ \ __

3 ~ i _

~ 3 - |_

| i Enter 5

—§ >. Entef 1 F l f Z

Figure 7.17 -M odified simulation model o f Firm C

In order to receive messages relating to information on parts coming from other

simulation models and messages relating to synchronization o f the distributed

simulation system, 2 queues were created in each workstation. The first queue (pq

prefixed with model name) receives messages relating to work in progress

information and the other queue (sq prefixed with model name) receives messages

relating to the synchronization mechanism. To synchronize the distributed

simulation the approximate synchronization mechanism presented in the previous

128

Chapter 7 - Implementation o f the distributed enterprise simulation

chapter (Chapter 7) was incorporated into the VBA code o f Arena simulation

models. To receive simulation times from distributed simulation models, 3

message queues were created (tq prefixed with model name) (figure 7.18) for the

time processing unit (TPU) o f the synchronization mechanism. The TPU was

modified to start (the loaded simulation model) and stop simulation models. It also

indicates current simulation times and status o f simulation models (figure 7.19).

Host 1

Arena model o f
Firm A

TIT
111VEA API III

1 3

E l
TTT

3
1 3

iMb

Host 2

Arena model of
Firm B

TTT
VBA API

M S
B p q B s q

3
3

3

3
3

in

Host 1

Arena model o f
Firm C

“ S i r- - i n

V B A ,^ m
i U 3 J

C p q C s q

3 3
3 3

A A
M ,

3 ^ III ^ 3
y T

etwork

3
l i t

1

A t q

r f s t i
TTT

3
3

B t q
TTT

C t q

mi T12iJT- | i | - |

TPU

Figure 7.18 - Arena, MSMQ, API and TPU

TPU

Time Processing Unit
L s^ j

Model A

P aused model

Model B

Slowest Model

Model C

P aused model

7.7049950427438 5.08878475762671 5.09423730657767

Figure 7.19 - Modified time processing unit (TPU) o f distributed simulation

129

Chapter 7 - Implementation o f the distributed enterprise simulation

7.8 Output from distributed enterprise simulation

Distributed simulations present new challenges when collecting and analyzing

output from a simulation system as output is generated by distributed simulation

models at different locations. With the proposed approach, the output is generated

at individual simulation models distributed across the network, and for the entire

system no output is generated from the distributed simulation system itself. In

order to obtain output for the entire system, the distributed enterprise simulation

needs to be configured (programmed) to generate the required output after

identifying what parameters are needed as the output for the proposed enterprise.

In addition, some o f the information generated may be accessed only at local

levels mainly in order to hide proprietary information. This highlights the

necessity o f identifying which part o f the output needs to accessed locally and

which needs to be integrated to reflect operations o f the whole enterprise. In order

to illustrate the output generation at different levels, a sample o f performance

analysis parameters relating to manufacturing enterprises was selected.

A wide array o f performance measures including throughput, queue length,

average waiting times, resource utilization, output rate, work in process (WIP),

cycle time were proposed by a number o f authors (Dahl and Jacob, 2000; Duwayri

et al., 2001; Eneyo and Panniselvan, 1998; Law and McComas, 1999; Silva et al.,

2000). In order to demonstrate the output generation process for individual models

and the entire enterprise the following sample performance measures were chosen.

Individual models

• Cycle times for parts & components

• Machine utilization

• Throughput o f parts and components

Distributed manufacturing systems

• Cycle time for products

• Throughput o f the final products

130

Chapter 7 - Implementation o f the distributed enterprise simulation

Output files (<model name>.OUT) generated at individual models were used to

extract relevant information to calculate parameters required (Program code used

to generate output, which is integrated to API is given at Appendix 1).

Performance measures relating to individual models were displayed locally

together with performance measures for the entire enterprise. Figures 7.20, 7.21

and 7.22 show sample performance measures generated for three firms o f the

proposed enterprise.

Siim plf p rrfn rim iiico m e a su re s

Sample performance measures for Firm A

Part processing time* a t A

| P artX PartY
12.190 9.6303

M achine utilisation ratio at A -
M C I M C 2
.82810 .79219

M C3
.81963

M C4
.80036

M C5
.17707

Throughput at A
P artX PartY
121.00 120.00

Sample performance measures for the enterprise
r Processing tim es for the en terp rise..

P artX P artY PartZ Product XYZ

Throughput for the enterprise -

Product XYZ

Cycle time for the enterprise

Product XYZ
322.2763

Figure 7.20 - Sample performance measures at Firm A

Sample performance measures Tor Firm B

"•‘Part processing tim es at B

PartY
N:.30.534

- Machine utilisation ratio at B '•••■...........
M C I MC2 MC3
1.0000 .99496 .96210

MC4
.59712

' Throughput at B :
PartZ

M C5 M C 6
.95798 .57471

Sample performance measures for the enterprise
Processing tim es for the enterprise

PartX PartY PartZ Product XYZ
60.19 83.1143 102.4 76.272

' Throughput for the enterprise

Pro duct XYZ
: Cycle time for the enterprise

I | Product XYZ
| 322.2763

Figure 7.21 - Sample performance measures at Firm B

131

Chapter 7 - Implementation o f the distributed enterprise simulation

H am pt* p e r f o rm a n c e m e a s u r e * fo r f i r m C

Sample performance measures for Firm C

X.I

■ Part procexxing times a t C *

P artX P artY
■47.700............................. 43.2SO

P artZ
102.40

ProductXYZ
76 272

Machine utilisation ratio a t C
M CI M CI
1.0000 ::i;: .99648

MC5
•8 t269 i:

MGS
.99067

Throughput at C -
ProductXYZ

' 14.000

Sample performance measures for the enterprise
■■ P rocessing tim es for the en terp rise..

PartX PartY P a rtZ ProductXYZ

■ Throughput for the enterprise ■

Product XYZ

Cycle tim e for the enterprise

Product XYZ
322.2763

Figure 7.22 - Sample performance measures at Firm C

According to the proposed methodology for distributed enterprise simulation, the

next stage is the verification and validation o f the programmed distributed

simulation system to make sure that the simulation system represents the system

under investigation.

7.9 Validation of the distributed enterprise simulation system

Verification and validation is a well researched area in discrete event simulation.

The existing techniques can be used to verify and validate the conceptual model,

partitioned models, computer simulation models etc. Since existing verification

and validation techniques are focused on sequential simulation, some o f the

mechanisms such as message passing, synchronization included in the distributed

enterprise simulation required to be validated using new approaches.

7.9.1 Validation of message passing mechanism

Messages are used for passing work-in-progress between distributed simulation

models and synchronize the simulation system. In order to do these, a message is

created with necessary parameters at one workstation and send to the destination

queue at another workstation. The validation system should make sure that the

generated message reaches its destination without much delay. This process is

relatively simple and straightforward as a small program can be used to indicate

when a message arrives at the destination.

132

Chapter 7 -Im plem entation o f the distributed enterprise simulation

7.9.2 Validation of the synchronization mechanism

The approximate synchronization mechanism forces distributed simulation models

to run at approximately same simulation time. The validation system should make

sure that distributed simulation models run at approximately same simulation

time. To validate the embedded synchronization mechanism, distributed enterprise

simulation was executed with and without the synchronization mechanism at

different execution speeds as shown below.

Model A Run
speed

Model B Run
speed

Model C Run
speed

Case 1 0.007 0.007 0.007
Case 2 0.007 0.007 0.008
Case 3 0.007 0.008 0.007
Case 4 0.008 0.007 0.007

Table 7.4 - Run speeds to validate the working o f the distributed enterprise

simulation with the approximate synchronization mechanism

Case 1

All three models were executed at the same run speed (0.007). Figures 7.23 and

7.24 show distributed enterprise simulation without and with the approximated

synchronization mechanism respectively.

Case 1 -3 M odels w ith synchronization d isab led

25 -

*2 20 -

Model A

■«— Model B

-±— Model C

5 -

s im u la t io n t im e

Figure 7.23 - Three models without the approximate synchronization mechanism

133

Chapter 7 — Implementation o f the distributed enterprise simulation

C ase 1 -3 M odels w ith synchronization e n a b le d

35 T

30 -

25 -

15 -

10 -

-•— Model A

-B— Model B

-A— Model C

5 -

s im u la t io n t im e

Figure 7.24 - Three models with the approximate synchronization mechanism

Case 2

Models A B and C were executed at 0.007, 0.007 and 0.008 run speeds

respectively. Figure 7.25 shows distributed enterprise simulation without the

approximated synchronization mechanism and figure 7.26 shows the same

simulation with the synchronization mechanism enabled.

C ase 2 -3 M odels w ith synchronization d isab led

25 -

r? 20 -

10 -

-♦— Model A

-b— Model B

- k — Model C

s im u la t io n t im e

Figure 7.25 - Three models without the approximate synchronization mechanism

134

Chapter 7 - Implementation o f the distributed enterprise simulation

C ase 2 -3 M odels w ith synchronization e n a b le d

30 -

25 -

15 -

10 -

Model A
5 -

Model C

s im u la t io n t im e

Figure 7.26 - Three models with the approximate synchronization mechanism

Case 3

Models A B and C were executed at 0.007, 0.008 and 0.008 run speeds

respectively. Figure 7.27 shows distributed enterprise simulation without the

approximated synchronization mechanism and figure 7.28 shows the same

simulation with the synchronization mechanism enabled.

C ase 3 - 3 M odels w ith synchron ization d isab led

25 -

^ 20 -

10 -

Model A

Model B

Model C

s im u la t io n t im e

Figure 7.27 - Three models without the approximate synchronization mechanism

135

Chapter 7 — Implementation o f the distributed enterprise simulation

C ase 3 - 3 M odels w ith synchronization e n a b le d

30 -

25 -

E 20 -

£ 15 -

10 -

-♦— Model A

•w— Model B

■A— Model C

s im u la t io n t im e

Figure 7.28 - Three models with the approximate synchronization mechanism

Case 4

Models A B and C were executed at 0.008, 0.007 and 0.007 run speeds

respectively. Figure 7.29 shows distributed enterprise simulation without the

approximated synchronization mechanism and figure 7.30 shows the same

simulation with the synchronization mechanism enabled.

C ase 4 - 3 M odels w ith synchron ization d ia ab le d

20 -

15 -

10 -

-♦ — Model A

-a— Model B

-*— Model C

s im u la t io n t im e

Figure 7.29 - Three models without the approximate synchronization mechanism

136

Chapter 7 — Implementation o f the distributed enterprise simulation

C ase 4 - 3 M odels w ith synchron ization e n a b le d

30 -

_ 25 -

E 20 -

Model A

-g— Model B

•*— Model C

s im u la t io n t im e

Figure 7.30 - Three models with the approximate synchronization mechanism

Accordingly, it shows that for any run speed the approximate synchronization

mechanism forces distributed simulation models to run approximately at the same

simulation time. This validates the approximate synchronization mechanism used

for distributed enterprise simulation.

Summary

This chapter presented detailed work relating to the implementation process o f the

distributed enterprise simulation. As it was noted in Chapter 1, commercial

simulation software, and simple and cost effective technologies were utilized to

implement the distributed simulation. This was done in order to simplify the

implementation processes and to address some o f the criticisms directed towards

distributed simulation due to its complexity and high cost to implement, need for

more expertise etc. A hypothetical case study was used to illustrate the

implementation. Arena simulation software, VBA and MSMQ were used to

implement the hypothetical case study presented. Experimentation (warm-up

period, number o f replications, speed o f the simulation etc.), analysis o f results

generated from the simulation, and decisions taken based on output analysis can

be implemented once it was established that the distributed enterprise simulation

system is valid.

137

Chapter 8

Discussion, conclusions and suggestions for

further work

This is the concluding chapter o f the thesis. Issues raised in

previous chapters are discussed in this section. In addition, it also

presents conclusions reached from the research and, provides

suggestions to enhance the methodology for distributed enterprise

simulation and to continue the research further.

138

Chapter 8 - Discussion, conclusions and suggestions fo r further work

8 .1 Introduction

The thesis presented a novel approach for developing enterprise simulation

models using distributed simulation. It includes a methodology for distributed

enterprise simulation on which the proposed approach centres and detailed

approaches:

• For selecting an appropriate simulation strategy

• For conceptual modelling, model partitioning and mapping

• To synchronize a distributed enterprise simulation system

• For implementing the distributed enterprise simulation system

Although research in parallel and distributed simulation has been carried out for

more than two decades, analysis o f the literature shows that still the general

simulation community failed to appreciate it fully. The complexity, time and cost

involved in developing, need for more expertise, lack o f a proper methodology

available for developing parallel and distributed simulation etc. are few o f the

reasons highlighted in the literature for this lack o f acceptability. Some o f these

points acted as motivating factors when developing the proposed approach for

distributed enterprise simulation.

In addition to the widely investigated areas o f (parallel and) distributed simulation

such as synchronization, this research also explored message passing mechanisms

and simulation software. Contributions from the thesis for the field o f parallel and

distributed simulation include the above mentioned methodology for distributed

enterprise simulation, the simulation strategy selection (SimSS) process, a

simplified approach for model partitioning and mapping, the approximate

synchronization mechanism, and a simplified approach to implement distributed

enterprise simulations. The following sections provide brief discussions o f these.

Furthermore, it is expected that the proposed simplified approaches address some

o f the criticisms directed towards distributed simulation due to its failure to

penetrate into general simulation applications. The next section offers a discussion

o f key stages o f the proposed methodology which was presented in previous

chapters. Section 8.3 provides conclusions reached from the researched carried

139

Chapter 8 - Discussion, conclusions and suggestions fo r further work

out. Suggestions for further work in order to improve the research already carried

out are presented in section 8.4.

8.2 Discussion

8.2.1 The proposed methodology for distributed enterprise simulation

Analysis o f the literature suggested that unlike sequential simulations, the field

parallel and distributed simulation lacks formal methodologies for developing

such simulations. A number o f authors highlighted the need for a formal

methodology. It is expected that the proposed methodology may fulfil this need.

The proposed methodology for distributed enterprise simulation was derived by

combining additional activities required for parallel and distributed simulation

with activities required for traditional sequential simulation. Although it was

developed focusing on distributed enterprise simulation, generally it can be also

applied when developing distributed simulations and up to some extent parallel

simulations as well. However, after model partitioning and mapping stage, parallel

simulation requires different approaches in mapping, programming, message

passing etc. The proposed methodology is not a purely sequential process, some

preceding stages need revising if it is found at a particular stage that the proposed

model/system does not reflect the system under investigation, project objectives

are not going to be met or system under investigation changed. It is not expected

that simulationists will strictly adhere to the proposed methodology, but will use it

as a set o f guidelines when developing distributed enterprise simulations.

The main benefit o f the proposed methodology is that it provides a set o f

predefined stages to follow when developing distributed enterprise simulations

thus reducing the associated complexities and simplifying the development

process. The methodology is especially useful as distributed simulations are

inherently more complex than sequential simulations. Validity o f the distributed

simulation system can be enhanced as verification and validation carried out at

three stages o f the proposed methodology. Moreover, this also simplifies the

verification and validation process too. However, applicability o f the proposed

methodology (particularly latter stages) to develop highly complex systems such

140

Chapter 8 - Discussion, conclusions and suggestions fo r further work

as logic gates, telecommunication systems, computer networks etc. needs further

investigation.

8.2.2 The simulation strategy selection (SimSS) process

The proposed simulation strategy selection (SimSS) process helps users to

determine an appropriate simulation strategy out of sequential simulation, parallel

simulation and distributed simulation. The main factor that motivated to present

this process is the complexity o f (parallel and) distributed simulation. Although

parallel and distributed simulation provides an attractive alternative for

conventional sequential simulation when simulating large and complex systems,

the former is more complicated, effort intensive, costly and requires more

expertise. Simulation model developers and users need to carefully consider costs

and benefits o f using parallel or distribution simulation before making decision to

use it.

The analytic hierarchical process (AHP) provides the basis for the SimSS process.

The main reasons to use the AHP include: its ability to incorporate subjective

criteria into the decision making process as well as simplicity and availability o f

the AHP based software. Expert Choice which provides a simple and user friendly

interface was chosen for calculating and ranking alternatives. However,

calculations and ranking can be done manually without using Expert Choice too.

The SimSS process presents three alternatives namely: sequential simulation,

parallel simulation, and distributed simulation; and four criterions for evaluating

alternatives namely: execution time, computational resources, complicated model

development process, and need to execute in geographically distributed manner.

These criterions were widely cited in the literature as factors that motivate users

for employing parallel or distributed simulation. First three factors can be

considered as encouraging factors while the last one acts as a deciding factor. If a

simulation model for the system under investigation requires more computational

resources or too complicated to develop as a single model, either parallel or

distributed simulation can be used. However, if simulation needs to be executed in

geographically distributed environment then distributed simulation is the only

solution available. Users are required evaluating alternatives using a criteria based

141

Chapter 8 - Discussion, conclusions and suggestions fo r further work

on requirements, resources available and situation. Although the SimSS process

does not provide a definite solution, it prioritises alternatives based on user’s

evaluations. It was illustrated in chapter 5 that the simulation strategy depends on

situational factors such as availability computational resources, required execution

speed for the simulation, users’ and modellers’ preferences, availability o f

expertise etc.

The main advantage o f the SimSS process is that it guides simulationists through

the decision making process in order to select an appropriate simulation strategy.

It also prevents users employing parallel or distributed simulation unnecessarily

thus saving time, cost and resources. However, the process can be further

improved by incorporating additional factors such as availability o f expertise,

resources etc into the criterion.

8.2.3 Model representation, partitioning and mapping

Model partitioning and mapping are two additional activities which need to be

carried out for (parallel and) distributed simulation when compared with

sequential simulation. Factors that affect performance and efficiency o f

distributed simulation such as size o f a logical process, balance o f load among

processors, number o f messages pass among processors etc. are depend on how

the entire simulation model is partitioned and mapped. Furthermore, a distributed

simulation may also affect performance o f the computer network on which it runs

with network traffic generated by the simulation. Therefore, mapping and

partitioning is one o f the stages that require careful attention when implementing a

distributed simulation as it affects performance o f both distributed simulation

itself and the computer network. However, unlike areas such as synchronization,

the literature has not paid much attention to this important area. Furthermore some

o f the algorithms presented in the literature require developing the distributed

simulation programme, executing it sequentially and collecting data for the

purpose o f partitioning and mapping the simulation model. Although this process

may help to implement an efficient and high performing distributed simulation, it

also leaves simulation users in a dilemma due to the fact that distributed

simulation is used only because the simulation can not be run as a sequential

simulation.

142

Chapter 8 - Discussion, conclusions and suggestions fo r further work

The new approach for model representation, partitioning and mapping was

presented to address some o f the issues noted above. The main difference between

the proposed approach and existing approaches is that the new approach proposes

to partition the conceptual model (of the system under investigation) into logical

processes, then develop simulation models for these partitioned logical processes.

It proposes to use IDEFO technique for model representation as it is one o f the

widely used model representation technique in simulation. Furthermore, sub

sections that can function independently can easily be identified in the IDEFO

model. At detailed abstraction level, developing the simulation model from the

IDEFO model is relatively straightforward as processes/ functions o f the model

can be represented by blocks and modules o f Arena simulation software which

was used to develop distributed simulation models. If the conceptual model is

developed using Microsoft Visio, the IDEFO model can be directly converted into

an Arena simulation model.

With the proposed approach, mapping is relatively straightforward and simple

since only one logical process is assigned to one networked workstation.

However, with this approach efficiency o f the distributed enterprise simulation

may affect due to load balancing problems.

The ability to develop distributed simulation models without first developing and

executing the entire model as a single simulation model, and simplification o f

model partitioning and mapping process are the main benefits o f the proposed

approach. However, this approach may not appropriate when developing

distributed simulations for highly complex systems as it was developed focusing

on distributed enterprise simulation and especially on distributed manufacturing

enterprises.

8.2.4 The approximate synchronisation mechanism

As noted in the chapter 5, synchronisation is one o f the well researched areas in

parallel and distributed simulation. Also synchronisation is one o f the factors that

makes distributed simulation (along with parallel simulation) more complicated.

Traditionally, synchronisation mechanism is integrated into the simulation

program itself which enables it to control the behaviour o f the distributed

143

Chapter 8 — Discussion, conclusions and suggestions fo r further work

simulation system, especially in optimistic synchronisation protocol which

requires state saving and rolling back to previous simulation times. However with

the proposed approach, it was difficult to integrate the synchronisation mechanism

into the core simulation program as commercial simulation software (which

doesn’t allow changing the simulation engine) was used to implement the

distributed simulation. In the proposed approach, a part o f the program code that

used to synchronize simulation models was included with the application program

interface (API). API is also responsible for passing messages between distributed

simulation models. On the other hand, also it can be argued that the API is part o f

the simulation model as it was programmed using Visual Basic for Applications

(VBA) which is integrated into Arena simulation software.

Synchronization mechanisms make sure that messages from distributed simulation

models are executed in the timestamped order and not in the order o f arrival.

However, some applications o f distributed simulation such as distributed

manufacturing do not required to be executed in strictly synchronized

environment or not needed to be synchronized at all. The proposed approximate

synchronisation mechanism is appropriate for systems which do not need a strictly

synchronised environment. It was developed based on conservative

synchronization protocol as it is difficult to implement a state saving and roll back

mechanism (with commercial simulation software) which is the basis for the

optimistic synchronization approach. As name implies the approximate

synchronization mechanism does not enforce strictly synchronised environment.

Instead, it forces distributed simulation models to run approximately at the same

simulation time.

The proposed mechanism is less complicated to implement than conventional

synchronization mechanisms. The main benefit o f the approximate

synchronization approach is its simplicity to develop and implement. Moreover,

additional distributed simulation models can be incorporated into the system with

slight modifications as modules that use for the approximate synchronisation

mechanism are independent o f the main simulation model. As previously

presented approaches relating to simulation strategy selection and, model

representation, partitioning and mapping; it is expected that the proposed

144

Chapter 8 - Discussion, conclusions and suggestions fo r further work

approximate synchronization mechanism also addresses the criticism made

towards (parallel and) distributed simulation due to its complexity for

implementing. However, it should be noted that the proposed approach may not

suitable for all circumstances, especially if simulation requires running in strictly

synchronized environment. In addition, the mechanism may also less efficient

when compared to other approaches presented in the literature.

8.2.5 Implementation approach

As noted in previous sections distributed simulation is more complicated to

implement than sequential simulation, involving long development times, higher

costs, steep learning curves and requiring more expertise. Mainly due to these

reasons this type o f simulation is not much used in general industrial and business

applications. The proposed approached employed technologies and software that

make the implementation process o f distributed enterprise simulation relatively

less complicated and cost effective.

Using o f programming languages such as Java, C++ or Smalltalk may complicate

the implementation process o f the DMS. This calls for expertise not only in

distributed simulation but also in computer programming resulting higher costs

and longer development times. Moreover message passing middleware has to be

procured and customised to the distributed simulation system incurring additional

costs. The proposed approach employs commercial simulation software for

developing simulation models. Although these packages too are expensive, it can

be expected that most o f the organisations which intend to use distributed

simulation already use commercial simulation software packages to simulate their

operations. Use o f commercial simulation software also simplifies the simulation

model development process resulting minimum additional expenses. Analysis o f

the recent literature too shows attempts to use commercial simulation software in

distributed simulation especially in distributed supply chain simulation. Microsoft

message queue (MSMQ) also offers a cost effective solution as a message passing

middleware. Since MSMQ is integrated into Windows 2000 (both professional

and server) and Windows XP operating systems, and also supports Windows 98

and 95 as a free add-on saves the cost o f middleware. Visual basic for applications

(VBA) was used as the application program interface (API) that interacts between

145

Chapter 8 — Discussion, conclusions an d suggestions fo r further work

MSMQ and Arena which was chosen as the commercial simulation software for

illustrating the implementation process. However, other commercial simulation

packages such as Automod, Promodel, Witness etc. too can be used instead o f

Arena. Most o f these packages support either or both C++ or/and VBA. As VBA

is integrated into both MSMQ and Arena, it was decided to use VBA instead o f

C++. VBA offers a similar programming interface as popular Visual Basic

programming language and, also easy to learn and requires less expertise in

programming.

Simplified and cost effective implementation o f distributed enterprise simulation

is the main benefit o f the proposed approach. However, it also encourages

reusability o f existing simulation models developed with commercial simulation

software. With slight modifications, these models can be adapted into a distributed

simulation thus saving model development time and cost. Since distributed

simulation models interact only through messages and functionality o f one model

is independent o f another, it is possible to integrate simulation models developed

with different simulation software and/ or with API developed with different

programming language such as C++, as long as MSMQ uses for message passing.

This provides an opportunity for different enterprises which use different

simulation software packages for implementing distributed enterprise simulation

with existing models and/ or new models without purchasing another package in

order to use the same simulation software.

Animation is highly useful to visualise the working (ie.. system under

investigation) and results o f the simulation for managers and employees o f an

organisation. In addition, the ability to see the simulation activities while a

simulation is running offers several more advantages. Users can observe trends

that cannot be captured using average statistics (that are typically available only at

the end o f the simulation run). Furthermore, visualization allows user to take

immediate corrective measures on the model, instead o f waiting until the

simulation ends, if a modelling problem is observed. This is particularly crucial

for a distributed enterprise simulation since simulation o f this scale takes

relatively longer time to complete. Animation capabilities o f purpose built

distributed simulators developed with C++ or java may not as effective as

146

Chapter 8 - Discussion, conclusions and suggestions fo r further work

animation capabilities provided by commercial simulation software packages.

This is another advantage o f using commercial simulation software.

However, animation effects slow down distributed simulation so that speedups

expected to gain through distributed simulation may not be able to achieve with

the proposed implementation approach. Although speedup o f simulation is one o f

the main reasons to use distributed simulation, it is not the only factor to use such

simulations. In addition to points noted in previous paragraphs, ability to hide

confidential or proprietary information, provide more computational resources,

and to obtain simulation results distributed manner are some o f the reasons that

encourage the use o f distributed simulation. However, the proposed

implementation approach may not appropriate to implement highly complex

systems such as logic circuits, telecommunication systems, computer networks

etc.

8.3 Conclusions

Based on the discussion presented above, following conclusions can be reached:

• The proposed methodology for distributed enterprise simulation streamlines

and simplifies the development process o f enterprise simulations.

• The approximate synchronization mechanism presents a less complicated

synchronisation approach for some distributed simulation applications.

• Use o f commercial simulation software, Microsoft Message Queue (MSMQ)

and Visual Basic for Applications (VBA) made the implementation process

simple and cost effective.

• It is also expected this simplified and cost effective approach may address

some o f the criticisms made towards distributed simulation due to its

complexity and association with high costs.

• Due to animation effects and the approximate synchronisation mechanism,

speedups expected to gain with distributed simulation may not be able to

achieve.

• It may not be possible to use the proposed approach to develop distributed

simulations for highly complex and large systems.

147

Chapter 8 - Discussion, conclusions and suggestions fo r further work

8.4 Suggestions for further work

The proposed methodology for distributed enterprise simulation was developed

with a view o f simplifying the simulation model development process and also

cutting time and cost involved. However, due to restrictions o f time, some o f the

additions and refinement to the proposed approach were not able to accomplished.

In order to improve the methodology and also to understand advantages and

disadvantages o f it further, followings are suggested:

As noted in the section 8.2.3, if Microsoft Visio is used to develop IDEFO model

then it can be directly converted into Arena simulation model. This may simplify

the model development process, as it shortens the distributed enterprise simulation

development time and calls for less expertise. Therefore, it is suggested to

implement a system to directly convert the IDEFO model into an Arena simulation

model.

The proposed approach utilised MSMQ and a commercial simulation software

package to develop the distributed enterprise simulation. Most o f distributed

simulations were developed using programming languages such as C++, Java,

Smalltalk etc and using middleware such as CORBA and HLA. It is desirable to

compare performance o f distributed simulations developed using the proposed

approach and conventional approaches. This may help to determine in which

situations the proposed approach can be employed to implement distributed

enterprise simulations. It is also suggested to compare performance o f different

message passing middleware with simulation models developed using commercial

simulation packages.

For the approximate synchronization mechanism it is worth investigating the

effect o f changing the time interval between requesting o f simulation times (from

distributed simulation models) by time processing unit (TPU) on occurrence o f

synchronization errors. Furthermore, it is also desirable to examine how a

distributed enterprise simulation developed using commercial simulation software,

MSMQ and VBA operates in a strictly synchronised environment.

148

Chapter 8 - Discussion, conclusions and suggestions fo r further work

One o f the most important aspects o f any simulation is to collect the output to

determine and compare performance parameters. Distributed simulation presents

new challenge on collecting and analysing the output as output generated in

distributed manner. Chapter 7 briefly looked into how the output is generated at

different simulation models are collected and integrated to present performance

measures for the whole system. However, it is desirable to develop a

comprehensive mechanism to present performance measures and other output

measures once the distributed simulation is completed and also while it is running

if necessary.

This system can be further improved by developing additional mechanism to

change some parameters that determine working o f the model such as process

times, delay times, schedules and sequences etc. from a central location rather

than editing simulation models individually. This may be especially useful if

models are located at different physical locations. However, this may not be

possible if distributed simulation was selected in order to hide any proprietary

information.

For the purpose o f message passing MSMQ 2.0 was used for the research.

However MSMQ 3.0 allows message passing through HTTP protocol. This

provides exciting new opportunities to run distributed enterprise simulation

models which are connected each other through the internet. As web based

simulation is a emerging area in simulation, it is desirable to investigate how

distributed enterprise simulation systems developed with commercial simulation

software executed over the internet using message passing tools such as MSMQ.

Summary

The concluding chapter o f this thesis presented a discussion o f research carried

out and conclusions reached. In addition, it also offered suggestions in order to

improve the research work already conducted.

149

References

Abeysunadara, B. W. and A. E. Kamal 1991. High speed local area networks and
their performance: A survey, ACM Computing surveys, vol. 23, no. 2, 221-264.

Abrams, M. 1993. Parallel discrete event simulation: fact or fiction, ORSA
Journal on Computing, vol. 5, no. 3, 231-233.

Al-Ahmari, A. M. A. and K. Ridgeway 1999. An integrated modelling method to
support manufacturing systems analysis and design, Computers in Industry, vol.
38, no. 3, 209-223.

Al-Habri, K. M. A.-S. 2001. Application o f the AHP in project management,
International Journal o f Project Management, vol. 19, no. 1, 19-27.

Alfieri, A. and P. Brandimarte 1997. Object-oriented modelling and simulation o f
integrated production/ distribution systems, Computer Integrated Manufacturing
Systems, vol. 10, no. 4, 261-266.

Antony, J. 1998. Some key things industrial engineers should know about
experimental design, Logistics Information Management, vol. 11, no. 6, 386-392.

Bagrodia, R. L. 1996. Perils and pitfalls o f parallel discrete-event simulation. In
Proceedings o f 1996 Winter Simulation Conference, ed. J. M. Charnes, D. J.
Morrice, D. T. Brunner, and J. J. Swain. 136-143. Coronado, CA, USA.

Bakken, D. E. 2003. Middleware, in To appear in Encyclopaedia o f Distributed
Computing, ed. J. Urban and P. Dasgupta, Kluwer Academic Press.

Balci, O. 1990. Guidelines for successful simulation studies. In Proceedings o f
1990 Winter Simulation Conference, ed. O. Balci, R. P. Sadowski, and R. E.
Nance. 25-32. New Orleans, LA, USA.

Balci, O. 1998. Verification, validation and accreditation. In Proceedings o f 1998
Winter Simulation Conference, ed. J. S. Carson, M. S. Manivannan, D. J.
Medeiros, and E. F. Watson. 41-48. Washington DC, USA.

Baldwin, L. P., T. Eldabi, V. Hlupic, and Z. Irani 2000. Enhancing simulation
software for use in manufacturing, Logistics Information Management, vol. 13,
no. 5, 263-270.

Ball, P. 1998. Abstracting performance in hierarchical manufacturing simulation,
Journal o f Materials Processing Technology, vol. 76, 246-251.

Banks, J., Carson, J. S., and B. L. Nelson 1996. Discrete Event System Simulation
Prentice-Hall.

150

References

Banks, J. 2000. Introduction to simulation. In Proceedings o f 2000 Winter
Simulation Conference, ed. P. A. Fishwick, K. Kang, J. A. Joines, and R. H.
Barton. 9-16. Orlando, FL, USA.

Banks, J., Carson, J. S., Nelson, B. L., and D. M. Nicol 2000. Discrete Event
System Simulation Prentice-Hall, New Jersey.

Barton, R. R. 2001. Designing simulation experiments. In Proceedings o f 2001
Winter Simulation Conference, ed. M. Rohrer, D. Medeiros, B. A. Peters, and J.
Smith. 47-52. Arlington, VA, USA.

Bass, J. 1999. Design environments for parallel and distributed processing. In
Proceedings o f 1999 Euromicro Workshop on Parallel and Distributed
processing, Funchal, Portugal.

Benjamin, P. C., M. Erraguntla, D. Delen, and R. J. Mayer 1998. Simulation
modeling at multiple levels o f abstraction. In Proceedings o f 1998 Winter
Simulation Conference, ed. D. J. Medeiros, E. F. Watson, J. S. Carson, and M. S.
Manivannan. 391-398. Washington DC, USA.

Berson, A. 1996. Client Sever Architecture McGraw-Hill.

Borah, J. 2000. Conceptual modelling - How do we move forward? - The next
step. In Proceedings o f2002 Simulation Interoperability Workshops,

Borah, J. 2002. Conceptual modelling - The missing link o f simulation
development. In Proceedings o f2002 Simulation Interoperability Workshops,

Boukerche, A. and C. Trooper 1994. A static partitioning and mapping algorithm
for conservative parallel simulations. In Proceedings o f 1994 Workshop on
Parallel and Distributed Simulation. 164-172. Edinburgh, Scotland, United
Kingdom.

Boukerche, A. and A. Fabbri 2000. Reducing rollbacks through partitioning in
PCS parallel simulation, Simulation, vol. 75, no. 1, 43-55.

Boukerche, A. and C. Trooper 2001. Local versus global lookahead in
conservative parallel simulations, Parallel Computing, vol. 27, no. 8, 1033-1055.

Brandimarte, P. and M. Cantamessa 1995. Methodologies for designing CIM
systems: A critique, Computers in Industry, vol. 25, no. 3, 281-293.

Bray, M., 2003. Middleware, http://www.sei.cmu.edu/str/descriptions/-
middleware. html, Last accessed in June 2003.

Buss, A. 1996. Modelling with event graphs. In Proceedings o f 1996 Winter
Simulation Conference, ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J.
Swain. 153-160. Coronado, CA, USA.

151

http://www.sei.cmu.edu/str/descriptions/-

References

Buss, A. and L. Jackson 1998. Distributed sim ulation m odeling: A com parison o f H LA,

CO RBA , and RM I. In Proceedings o f 1998 Winter Simulation Conference, ed. J. S.
Carson, M. S. Manivannan, D. J. Medeiros, and E. F. Watson. 23-29. Washington
DC, USA.

Cabillic, G. and I. Puaut 1997. Stardust: An environment for parallel
programming on networks o f heterogeneous workstations, Journal o f Parallel and
Distributed Computing, vol. 40, no. 1, 65-80.

Cagno, E., F. Caron, and A. Perego 2001. Multi-criteria assessment o f the
probability o f winning in the competitive bidding process, International Journal
o f Project Management, vol. 19, no. 6, 313-324.

Cai, W. and Y. M. Teo 1999. Parallel and distributed simulation minitrack. In
Proceedings o f 1999 Hawai International Conference on System Science.

Calinescu, R. 1995. Conservative discrete event simulation on bulk synchronous
parallel architecture, Programming Research Group, Oxford University
Computing Laboratory, PRG-TR-16-95.

Calinescu, R. 1996, Bulk synchronous parallel algorithms fo r optimistic discrete
event simulation, Programming Research Group, Oxford University Computing
Laboratory, PRG-TR-8-96.

Carothers, C. D., B. Topol, R. M. Fujimoto, J. T. Stasko, and V. Sunderam 1997.
Visualising parallel simulations in network computing environments: A case
study. In Proceedings o f 1997 Winter Simulation Conference, ed. D. H. Withers,
B. L. Nelson, S. Andradottir, and K. J. Healy. 110-117. Atlanta, GA, USA.

Carothers, C. D. 1999. Joint special issue on parallel and distributed simulation,
Transactions o f the Society fo r Computer Simulation International, vol. 16, no. 1,
1- 2 .

Carothers, C. D., B. Topol, R. M. Fujimoto, J. T. Stasko, and V. Sunderam 1999.
Visualising parallel simulations that execute in network computing environments,
Future Generation Computer Systems, vol. 15. no. 4, 513-529

Carson, J. S. 1992. Modelling. In Proceedings o f 1992 Winter Simulation
Conference, ed. R. C. Crain, J. R. Wilson, J. J. Swain, and D. Glodsman. 82-87.
Arlington, VA, USA.

Carson, J. S. 2002. Model verification and validation. In Proceedings o f 2002
Winter Simulation Conference, ed. J. L. Snowdon, J. M. Charnes, E. Yucesan, and
C. Chen. 52-58. San Diego, C A , USA.

Cassel, R. A. and M. Pidd 2001. Distributed discrete event simulation using the
three-phase approach and Java, Simulation: Practice and Theory, vol. 8, no. 8,
491-507.

152

References

Centeno, M. A. and M. F. Reyes 1998. So you have your model: What to do next?
A tutorial on simulation output analysis. In Proceedings o f 1998 Winter
Simulation Conference, ed. J. S. Carson, M. S. Manivannan, D. J. Medeiros, and
E. F. Watson. 23-29. Washington DC, USA.

Ceric, V. 1994. Hierarchical abilities o f diagrammatic representation o f discrete
event simulation models. In Proceedings o f 1994 Winter Simulation Conference,
ed. D. A. Sadowski, A. F. Seila, J. D. Tew, and S. Manivannan. 589-594. Orlando,
FL, USA.

Chan, F. T. S., R. W. L. Ip, and H. Lau 2001. Integration o f expert systems with
analytic hierarchy process for the design o f material handling equipment selection
system, Journal o f Materials Processing Technology, vol. 116, no. 2-3, 137-145.

Chandy, K. M. and J. Misra 1981. Asynchronous distributed simulation via a
sequence o f parallel computers, Communications o f the ACM, vol. 24, no. 4, 198-
206.

Chappell, D. 1998. Microsoft message queue is a fast, efficient choice for your
distributed applications, Microsoft Systems Journal, July, 1998

Cheng-Leong, A. 1999. Enactment o f IDEF models, International Journal o f
Production Research, vol. 37, no. 15, 3383-3397.

Cheng-Leong, A., K. L. Pheng, and G. R. K. Leng 1999. IDEF*: a comprehensive
modelling methodology for the development o f manufacturing enterprise systems,
International Journal o f Production Research, vol. 37, no. 17, 3839-3859.

Chiola, G. and A. Ferscha 1993. Distributed simulation o f Petri nets, IEEE
Parallel and Distributed Technology, vol. 1, no. 3, 33-50.

Chow, A. H. and B. P. Zeigler 1994. Parallel DEVS: A parallel, hierachical,
modular modeling formalism, In Proceedings o f 1994 Winter Simulation
Conference, ed. D. A. Sadowski, A. F. Seila, J. D. Tew, and S. Manivannan. 716-
722. Orlando, FL, USA.

Cloutier, J., E. Cerny, and F. Guertin 1997. Model partitioning and the
performance o f distributed timewarp simulation o f logic circuits, Simulation:
Practice and Theory, vol. 5, no. 1, 83-99.

D'Souza, A. and S. K. Khator 1994. A survey o f Petri net applications in
modelling controls for automated manufacturing systems, Computers in Industry,
vol. 24, no. 5, 5-16.

Dado, B., P. Menhart, and J. Safarik 1993. Distributed simulation: A simulation
system for discrete event systems, IF IP Transactions (Computer Science and
Technology) 343-353.

Dahl, T. A. and B. F. Jacob 2000. Confident decision making and improved
throughput for cereal manufacturing with simulation. In Proceedings o f 2000
Winter Simulation Conference, ed. P. A. Fishwick, K. Kang, J. A. Joines, and R.
H. Barton. 1329-1332. Orlando, FL, USA.

153

References

Das, S. R. 1996. Adaptive protocols for parallel discrete event simulation. In
Proceedings o f 1996 Winter Simulation Conference, ed. J. M. Charnes, D. J.
Morrice, D. T. Brunner, and J. J. Swain. 186-193. Coronado, CA, USA.

Das, S. R. 2000. Adaptive protocols for parallel discrete event simulation, Journal
o f Operational Research Society, vol. 51, 385-394.

Datar, M. M. 2000. Enterprise simulation: Framework for strategic applications.
In Proceedings o f 2000 Winter Simulation Conference, ed. P. A. Fishwick, K.
Kang, J. A. Joines, and R. H. Barton. 2010-2014. Orlando, FL, USA.

Davis, W. J. 1999. Simulation: Technologies in the new millennium. In
Proceedings o f Winter Simulation Conference, ed. D. T. Sturrock, G. W. Evans, P.
A. Farrington, and H. B. Nemhard. 141-147. Phoenix, AZ, USA.

Dewire, D. T. 1997. Second Generation Client/Server Computing McGraw-Hill.

Doumeihgts, G., B. Vallespir, and D. Chen 1995. Methodologies for designing
CIM systems: A survey, Computers in Industry no. 25, 263-280.

Duwayri, Z., M. Mollaghasemi, and D. Nazzal 2001. Scheduling setup changing
at bottleneck facilities in semiconductor manufacturing. In Proceedings o f 2001
Winter Simulation Conference, ed. M. Rohrer, D. Medeiros, B. A. Peters, and J.
Smith. 1208-1214. Arlington, VA, USA.

El-Mikawi, M. 1996. A methodology for evaluation o f the use o f advanced
composites in structural civil engineering applications, Composites: Part B, vol.
27, no. 3-4, 203-215.

Eldabi, T. and R. J. Paul 2001. A proposed approach for modelling healthcare
systems for understanding. In Proceedings o f 2001 Winter Simulation Conference,
ed. M. Rohrer, D. Medeiros, B. A. Peters, and J. Smith. 1412-1420. Arlington,
VA, USA.

Eneyo, E. S. and G. P. Pannirselvam 1998. The use o f simulation in facility layout
design: A practical consulting experience. In Proceedings o f 1998 Winter
Simulation Conference, ed. J. S. Carson, M. S. Manivannan, D. J. Medeiros, and
E. F. Watson. 1527-1532. Washington DC, USA.

Fahmy, H. M. A. 2001. Reliability evaluation in distributed computing
environments using AHP, Computer Networks, vol. 37, no. 5-6, 597-615.

Ferscha, A. and A. Tripathi 1994. Parallel and distributed simulation o f discrete
event systems, Technical Report, Department o f Computer Science, University o f
Maryland, USA, CS-TR-3336.

Ferscha, A. 1995. Parallel and distributed simulation o f discrete event systems, in
Parallel and Distributed Computing Hand Book, First edn, McGraw-Hill, 1003-
1041.

Ferscha, A., J. Johnson, and S. J. Turner 2001. Distributed simulation
performance data mining, Future Generation Computer Systems, vol. 18, 157-174.

154

References

Firat, C. 2000. Conceptual modelling and conceptual analysis in HLA. In
Proceedings o f2000 Simulation Interoperability Workshops. 17-22.

Fishwick, P. A. 1994. Simulation model design. In Proceedings o f 1994 Winter
Simulation Conference, ed. D. A. Sadowski, A. F. Seila, J. D. Tew, and S.
Manivannan. 173-175. Orlando, FL, USA.

Forman, E. H. 2001. Decision by Objectives, http://mdm.gwu.edu/forman/,

Fujimoto, R. M. 1990. Parallel discrete event simulation, Communications o f the
ACM, vol. 33, no. 10,30-53.

Fujimoto, R. M.1993. Parallel and distributed discrete event simulation:
Algorithms and applications. In Proceedings o f 1993 Winter Simulation
Conference, ed. E. C. Russell, W. E. Biles, G. W. Evans, and M. Mollaghasemi.
106-114. Los Angeles, CA, USA.

Fujimoto, R. M. 1993a. Parallel discrete event simulation: Will the field survive?,
ORSA Journal on Computing, vol. 5, no. 3, 213-230.

Fujimoto, R. M. 1993b. Future directions in parallel simulation research, ORSA
Journal on Computing, vol. 5, no. 3, 245-248.

Fujimoto, R. M. 1998. Parallel and distributed simulation, in Handbook o f
Simulation, first edn, ed. J. Banks, 429-464, John Wiley & Sons.

Fujimoto, R. M. 1999. Parallel and distributed simulation. In Proceedings o f 1999
Winter Simulation Conference, ed. D. T. Sturrock, G. W. Evans, P. A. Farrington,
and H. B. Nembhard. 121-132. Phoenix, AZ, USA.

Fujimoto, R. M. 2000. Parallel and Distributed Simulation Systems, First edn,
John Wiley.

Fujimoto, R. M. 2001. Parallel and distributed simulation systems. In Proceedings
o f 2001 Winter Simulation Conference, ed. M. Rohrer, D. Medeiros, B. A. Peters,
and J. Smith. 147-157. Arlington, VA, USA.

Gan, B. P., L. Liu, S. Jain, S. J. Turner, W. Cai, and W.-J. Hsu 2000. Distributed
supply chain simulation across enterprise boundaries. In Proceedings o f 2000
Winter Simulation Conference, ed. P. A. Fishwick, K. Kang, J. A. Joines, and R.
H. Barton. 1245-1251. Orlando, FL, USA.

Gerogiannis, V. C., A. D. Kameas, and P. E. Pintelas 1998. Comparative study
and categorization o f high-level Petri nets, Journal o f Systems and Software, vol.
43, no. 2, 133-160.

Gile, M. R. and F. DiCesare, 2001, Toward distributed simulation o f complex
discrete event systems represented by colored Petri nets: A review,
http://citeseer.nj.nec.com/! 1819.html,

155

http://mdm.gwu.edu/forman/
http://citeseer.nj.nec.com/

References

Goldsman, D. and G. Tokol. 2000. Output analysis procedures for computer
simulation. In Proceedings o f 2000 Winter Simulation Conference, ed. P. A.
Fishwick, K. Kang, J. A. Joines, and R. H. Barton. 39-45. Orlando, FL, USA.

Haddix, F. 2001. Conceptual modelling revisited: A developmental model
approach for modelling & simulation. In Proceedings o f 2001 Simulation
Interoperability Workshops,

Hamilton, J. A. Jr., Nash, D. A., and Pooch, U. W. 1997. Distributed Simulation,
CRC Press, New York.

Hamnes, D. O. and A. Tripathi 1994. Investigation in adaptive distributed
simulation. In Proceedings o f 1994 Workshop on Parallel and Distributed
Simulation. 20-23. Edinburgh, Scotland, United Kingdom.

Hao, F., K. Wilson, R. M. Fujimoto, and E. Zegura 1996. Logical process size in
parallel simulation. In Proceedings o f 1996 Winter Simulation Conference, ed. J.
M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain. 645-652. Coronado,
CA, USA.

Hendrickson, B. and T. G. Kolda 2000. Graph partitioning models for parallel
computing, Parallel Computing, vol. 26, no. 12, 1519-1534.

Hibino, H., Y. Fukuda, Y. Yura, K. Mitsuyuki, and K. Kaneda 2002.
Manufacturing adapter o f distributed simulation systems using HLA. In
Proceedings o f 2002 Winter Simulation Conference, ed. J. L. Snowdon, J. M.
Charnes, E. Yucesan, and C. Chen. 1099-1107. San Diego, C A , USA.

Ikonen, J. and J. Porras 1998. Applying distributed simulation. In Proceedings o f
1998 European Simulation Symposium.

Ingalls, R. G. 2002. Introduction to simulation. In Proceedings o f 2002 Winter
Simulation Conference, ed. J. L. Snowdon, J. M. Charnes, E. Yucesan, and C.
Chen. 7-16. San Diego, CA , USA.

Jain, S. 1999. Simulation in the next millennium. In Proceedings o f 1999 Winter
Simulation Conference, ed. D. T. Sturrock, G. W. Evans, P. A. Farrington, and H.
B. Nembhard. 1478-1484. Phoenix, AZ, USA.

Jefferson, D. R. 1985. Virtual time, ACM Transactions on Programming
Languages and Systems, vol. 7, no. 3, 404-425.

Johnson, B. C. 1991, A distributed computing environment framework: An OFS
perspective, Open Software Foundation.

Kadar, B., L. Monostori, and E. Szelke 1998. An object-oriented framework for
developing distributed manufacturing architecture, Journal o f Intelligent
Manufacturing, vol. 9, no. 2, 173-179.

Karacal, S. C. 1998. A novel approach to simulation modelling, Computers and
Industrial Engineering, vol. 34, no. 3, 573-587.

156

References

Kateel, G., M. Kamath, and D. Pratt 1996. An overview o f CIM enterprise
modelling methodologies. In Proceedings o f 1996 Winter Simulation Conference,
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain. 1000-1007.
Coronado, CA, USA.

Kelton, W. D. 2000. Experimental design for simulations. In Proceedings o f 2000
Winter Simulation Conference, ed. P. A. Fishwick, K. Kang, J. A. Joines, and R.
H. Barton. 32-38. Orlando, FL, USA.

Kienbaum, G. and R. J. Paul 1994. H-ACD: Hierarchical activity cycle diagrams
for object oriented simulation modelling. In Proceedings o f 1994 Winter
Simulation Conference, ed. D. A. Sadowski, A. F. Seila, J. D. Tew, and S.
Manivannan. 600-610. Orlando, FL, USA.

Kim, K. H., Y. R. Seong, T. G. Kim, and K. H. Park 1997. Ordering o f
simultaneous events in distributed DEVS simulation, Simulation: Practice and
Theory, vol. 5, no. 3, 253-268.

Kim, K. H., T. G. Kim, and K. H. Park 1998. Hierarchical partitioning algorithm
for optimistic distributed simulation o f DEVS models, Journal o f Systems
Architecture, vol. 44, no. 6-7, 433-455.

Kiran, A. S. 1998. Hierarchical modelling: A simulation based application. In
proceedings o f the IEEE International Conference on Systems, Man and
Cybernetics. 3079-3089.

Kirchner, T. B. 1997. Distributed processing applied to ecological modelling,
Simulation: Practice and Theory, vol. 5, no. 1, 35-47.

Koh, K.-H., R. De Souza, and N.-C. Ho 1996. Multi-processor distributed
simulation for job-shop scheduling: boon or bane?, International Journal o f
Computer Integrated Manufacturing, vol. 9, no. 6, 432-442.

Korn, S., G. R. Burns, and D. K. Harrison 1999. The application o f multiparadigm
simulation techniques to manufacturing processes, International Journal o f
Advanced Manufacturing Technology, vol. 15, 869-875.

Law, A. M. & Kelton, W. D. 1991. Simulation Modelling and Analysis McGraw-
Hill, New York.

Law, A. M. and M. G. McComas 1998. Simulation o f manufacturing systems. In
Proceedings o f 1998 Winter Simulation Conference, ed. J. S. Carson, M. S.
Manivannan, D. J. Medeiros, and E. F. Watson. 49-52. Washington DC, USA.

Law, A. M. and M. G. McComas 1999. Simulation o f manufacturing systems. In
Proceedings o f 1999 Winter Simulation Conference, ed. D. T. Sturrock, G. W.
Evans, P. A. Farrington, and H. B. Nemhard. 56-59. Phoenix, AZ, USA.

Law, A. M. and M. G. McComas 2001. How to build valid and credible
simulation models. In Proceedings o f 2001 Winter Simulation Conference, ed. M.
Rohrer, D. Medeiros, B. A. Peters, and J. Smith. 22-29. Arlington, VA, USA.

157

References

Leemis, L. 2001. Input modelling techniques for discrete-event simulations. In
Proceedings o f 2001 Winter Simulation Conference, ed. M. Rohrer, D. Medeiros,
B. A. Peters, and J. Smith. 62-73. Arlington, VA, USA.

Leitao, P. and F. Restivo 2000. A framework for distributed manufacturing
application. In Proceedings o f2000 Advanced Summer Institute (ASI) Conference.
1-7. Bordeaux, France.

Lendermann, P., B. P. Gan, and L. F. McGinnis 2001. Distributed simulation with
incorporated APS procedures for high-fidelity supply chain optimization. In
Proceedings o f 2001 Winter Simulation Conference, ed. M. Rohrer, D. Medeiros,
B. A. Peters, and J. Smith. 1138-1145. Arlington, VA, USA.

Leung, J. W. and K. K. Lai 1997. A structured methodology to build discrete-
event simulation models, Asia-Pacific Journal o f Operational Research, vol. 14,
no. 1, 19-37.

Lilegdon, W. R. 1996. Simulation works: A panel discussion. In Proceedings o f
1996 Winter Simulation Conference, ed. J. M. Charnes, D. J. Morrice, D. T.
Brunner, and J. J. Swain. 1337-1340. Coronado, CA, USA.

Lin, Y.-B. 1993. Special issue on parallel discrete event simulation, Journal o f
Parallel and Distributed Computing, vol. 18, no. 4, 391-394.

Lin, Y.-B. and P. A. Fishwick 1996. Asynchronous parallel discrete event
simulation, IEEE Transaction o f the Systems, Man and Cybernetics, vol. 24, no. 6,
397-412.

Lin, Y.-B. 2000. Design issues for optimistic distributed discrete event simulation,
Journal o f Information Science and Engineering, vol. 16, 243-269.

Linn, R. J., C.-S. Chen, and J. A. Lozan 2002. Development o f distributed
simulation model for the Transporter entity in a supply chain process. In
Proceedings o f 2002 Winter Simulation Conference, ed. J. L. Snowdon, J. M.
Charnes, E. Yucesan, and C. Chen. 1319-1326. San Diego, C A , USA.

Low, Y.-H., C.-C. Lim, W. Cai, S.-Y. Huang, S. Jain, and S. J. Turner 1999.
Survey o f languages and runtime libraries for parallel discrete-event simulation,
Simulation, vol. 72, no. 3, 170-186.

Luksch, P., 1995, Parallel logic simulation on distributed memory
multiprocessors: classification and evaluation o f different approaches,
http://citeseer.nj.nec.com/luksch95parallel.html.

Luksch, P. 2002, A test environment for the evaluation o f different approaches to
distributed logic simulation, http://citeseer.nj.nec.com/379268.html.

Luna, J. J. 1992. Hierarchical, modular concepts applied to an object-oriented
simulation model development environment. In Proceedings o f 1992 Winter
Simulation Conference, ed. R. C. Crain, J. R. Wilson, J. J. Swain, and D.
Glodsman. 694-699. Arlington, VA, USA.

158

http://citeseer.nj.nec.com/luksch95parallel.html
http://citeseer.nj.nec.com/379268.html

References

Maria, A. 1997. Introduction to modelling and simulation. In Proceedings o f 1997
Winter Simulation Conference, ed. D. H. Withers, B. L. Nelson, S. Andradottir,
and K. J. Healy. 7-13. Atlanta, GA, USA.

Mastaglio, T. W. 1999. Enterprise simulations: Theoretical foundations and a
practical perspective. In Proceedings o f 1999 Winter Simulation Conference, ed.
D. T. Sturrock, G. W. Evans, P. A. Farrington, and H. B. Nemhard. 1485-1489.
Phoenix, AZ, USA.

McLean, C. and F. Riddick 2000. The IMS mission architecture for distributed
manufacturing simulation. In Proceedings o f 2000 Winter Simulation Conference,
ed. P. A. Fishwick, K. Kang, J. A. Joines, and R. H. Barton. 1539-1548. Orlando,
FL, USA.

McLean, C. and S. Leong 2001. The role o f simulation in strategic manufacturing.
In Proceedings o f 2001 International Working Conference on Strategic
Manufacturing. 239-250. Aalborg, Denmark.

McLean, C. and G. Shao 2001. Simulation o f shipbuilding operations. In
Proceedings o f 2001 Winter Simulation Conference, ed. M. Rohrer, D. Medeiros,
B. A. Peters, and J. Smith. 870-876. Arlington, VA, USA.

Mehl, H. and S. Hammes 1993. Shared variables in distributed simulation. In
Proceedings o f 1993 Workshop on Parallel and Distributed Simulation. 68-75.
San Diego, California, United States.

Mielke, R. R. 1999. Applications for enterprise simulation. In Proceedings o f
1999 Winter Simulation Conference, ed. D. T. Sturrock, G. W. Evans, P. A.
Farrington, and H. B. Nemhard. 1490-1495. Phoenix, AZ, USA.

Minton, G., 2003, programming with CORBA,
http://www.blackmagic.com/people/gabe/prog-with-corba.html.

Misra, J. 1986. Distributed discrete-event simulation, Computing Surveys, vol. 18,
no. 1, 39-65.

Nakayama, M. K. 2002. Simulation output analysis. In Proceedings o f 2002
Winter Simulation Conference, ed. J. L. Snowdon, J. M. Charnes, E. Yucesan, and
C. Chen. 23-33. San Diego, C A , USA.

Nandy, B. and W. M. Loucks 1992. An algorithm for partitioning and mapping
conservative parallel simulation onto multicomputers. In Proceeding o f the 1992
SCS Multiconference on Parallel and Distributed Simulation,

Nandy, B. and W. M. Loucks 1993. On a parallel partitioning technique for use
with conservative parallel simulation. In Proceedings o f 1993 Workshop on
Parallel and Distributed Simulation. 43-51. San Diego, California, United States.

Nicol, D. M. 1993. The cost o f conservative synchronisation in parallel discrete
event simulations, Journal o f the Association fo r Computing Machinery, vol. 40,
no. 2, 304-333.

159

http://www.blackmagic.com/people/gabe/prog-with-corba.html

References

Nicol, D. M. and R. M. Fujimoto 1994. Parallel simulation today, Annals o f
Operations Research, vol. 53, 1-34.

Nicol, D. M. and P. Heidelberger 1995. On extending parallelism to serial
simulators. In Proceedings o f 1995 Workshop on Parallel and Distributed
Simulation. 60-67. New York, United States.

Nicol, D. M. 1996. Principles o f conservative parallel simulation. In Proceedings
o f 1996 Winter Simulation Conference, ed. J. M. Charnes, D. J. Morrice, D. T.
Brunner, and J. J. Swain. 128-135. Coronado, CA, USA.

Nordgren, W. B. 1995. Steps for proper simulation project management. In
Proceedings o f 1995 Winter Simulation Conference , ed. W. R. Lilegdon, D.
Glodsman, C. Alexopoulos, and K. Kang. 68-73. Arlington, VA, USA.

Nutt, G. J. 1990. Distributed simulation design alternatives. In Proceeding o f the
SCS Multiconference on Distributed Simulation.

Odhabi, H. I., R. J. Paul, and R. D. Macredie 1997. The four phase method for
modelling complex systems. In Proceedings o f 1997 Winter Simulation
Conference, ed. D. H. Withers, B. L. Nelson, S. Andradottir, and K. J. Healy. 510-
517. Atlanta, GA, USA.

Odhabi, H. I., R. J. Paul, and R. D. Macredie 1998. Making simulation more
accessible in manufacturing systems through a 'four phase' approach. In
Proceedings o f 1998 Winter Simulation Conference, ed. J. S. Carson, M. S.
Manivannan, D. J. Medeiros, and E. F. Watson. 1069-1075. Washington DC,
USA.

OMG, 2002, CORBA overview, http://www.infosvs.tuwien.ac.at/research/corba
/OMG/arch2.htm#44686 , Last accessed in 2002.

Ossadnik, W. and O. Lange 1999. AHP - based evaluation o f AHP - software,
European Journal o f Operational Research, vol. 118, no. 3, 578-588.

Overeinder, B., B. Hertzberger, and P. Sloot 1991. Parallel discrete event
simulation. In The Workshop on Computer systems, Faculty o f Electrical
Engineering, Eindhoven University, The Netherlands, ed. W. J. Withagen. 19-30.

Pace, D. K. 1999. Conceptual model descriptions. In Proceedings o f 1999
Simulation Interoperability Workshops.

Pace, D. K. 2000. Ideas about simulation conceptual model development, John
Hopkins Applied Technical Digest, vol. 21, no. 3, 327-336.

Page, E. H. and R. E. Nance 1994. Parallel discrete event simulation: A modelling
methodological perspective. In Proceedings o f 1994 Workshop on Parallel and
Distributed Simulation. 88-93. Edinburgh, Scotland, United Kingdom.

Page, E. H. 1999. Panel: Strategic directions in simulation research. In
Proceedings o f 1999 Winter Simulation Conference, ed. D. T. Sturrock, G. W.
Evans, P. A. Farrington, and H. B. Nembhard. 1509-1520. Phoenix, AZ, USA.

160

http://www.infosvs.tuwien.ac.at/research/corba

References

Pancake, C. M. 1996. Is parallelism for you?, IEEE Computational Science and
Engineering, vol. Summer, 1996, 18-37.

Panda, D. K. and L. M. Ni 1997. Special issue on workstation clusters and
network-based computing, Journal o f Parallel and Distributed Computing, vol.
40, no. 1, 1-3.

Pandya, K. V. 1995. Review o f modelling techniques and tools for decision
making in manufacturing management. In IEE Proceedings o f Science, Measures
and Technology.

Pandya, K. V., A. Karlsson, S. Sega, and A. Carrie 1997. Towards the
manufacturing enterprises o f the future, International Journal o f Operations and
Production Management, vol. 17, no. 5, 502-521.

Pasquini, R. and V. Rego 1998. Efficient process interaction with threads in
parallel discrete event simulation. In Proceedings o f 1999 Winter Simulation
Conference, ed. J. S. Carson, M. S. Manivannan, D. J. Medeiros, and E. F.
Watson. 451-458. Washington DC, USA.

Peng, C. and F. F. Chen 1996. Parallel discrete event simulation o f manufacturing
systems: A technology survey, Computers and Industrial Engineering, vol. 31, no.
1/2, 327-330.

Perez, J. 1995. Some comments on Saaty's AHP, Management Science, vol. 41,
no. 6, 1091-1095.

Peterson, G. D. and J. C. Willis 1999. High-performance hardware description
language simulation: Modelling issues and recommended practices, Transactions
o f the Society fo r Computer Simulation International, vol. 16, no. 1,6-15.

Pflughoeft, K. A. and K. Manur 1994. Multi-layered activity cycle diagrams and
their conversions into activity-based simulation code. In Proceedings o f 1994
Winter Simulation Conference, ed. D. A. Sadowski, A. F. Seila, J. D. Tew, and S.
Manivannan. 595-599. Orlando, FL, USA.

Pham, C. D., H. Brunst, and S. Fdida 1998. How can we study large and complex
systems. In Proceedings o f IEEE Annual Simulation Symposium.

Pidd, M. 1994. An introduction to computer simulation. In Proceedings o f 1994
Winter Simulation Conference, ed. D. A. Sadowski, A. F. Seila, J. D. Tew, and S.
Manivannan. 7-14. Orlando, FL, USA.

Pidd, M. 1996. Five simple principles o f modelling. In Proceedings o f 1996
Winter Simulation Conference, ed. J. M. Charnes, D. J. Morrice, D. T. Brunner,
and J. J. Swain. 721-728. Coronado, CA, USA.

Pidd, M. and B. R. Castro 1998. Hierarchical modular modelling in discrete
simulation. In Proceedings o f 1998 Winter Simulation Conference, ed. J. S.
Carson, M. S. Manivannan, D. J. Medeiros, and E. F. Watson. 383-390.
Washington DC, USA.

161

References

Pidd, M., N. Oses, and R. J. Brooks 1999. Component-based simulation on the
web? In Proceedings o f 1999 Winter Simulation Conference, ed. D. T. Sturrock,
G. W. Evans, P. A. Farrington, and H. B. Nemhard 1438-1444. Phoenix, AZ,
USA.

Pooley, R. J. 1991. Aggregation and hierarchical modelling (Part III),
Transactions o f the Society fo r Computer Simulation International, vol. 8, no. 1,
33-41.

Porras, J., V. Hara, J. Harju, and J. Ikonen 1997. Improving the performance o f
the Chandy-Misra parallel simulation algorithm in a distributed workstation
environment. In Proceedings o f 1997 Summer Computer Simulation Conference.

Poyhonen, M. and R. P. Hamalainen 2001. On the convergence o f multiattribute
weighting methods, European Journal o f Operational Research, vol. 129, no. 3,
569-585.

Randell, L. G., L. G. Holst, and G. S. Bolmsjo 1999. Incremental system
development o f large discrete-event simulation models. In Proceedings o f 1999
Winter Simulation Conference, ed. D. T. Sturrock, G. W. Evans, P. A. Farrington,
and H. B. Nemhard. 561-458. Phoenix, AZ, U SA ..

Resenburg, A. V. and N. Zwemstra 1995. Implementing IDEF techniques as
simulation modelling specifications, Computers and Industrial Engineering, vol.
29, no. 1-4, 467-471.

Reynolds, P. F. Jr. 1988. A spectrum o f options for parallel simulation. In
Proceedings o f 1988 Winter Simulation Conference, ed. P. L. Haigh, J. C.
Comfort, and M. A. Abrams. 325-332. San Diego, CA, USA.

Righter, R. and J. C. Walrand 1989. Distributed simulation o f discrete event
systems, Proceedings o f IEEE, vol. 77, no. 1, 99-113.

Robinson, S. 1994. Successful Simulation: A Practical Approach to Simulation
Projects McGraw-Hill.

Saad, S. M. 2003. The reconfiguration issues in manufacturing systems, Journal
o f Materials Processing Technology no. 138, 277-283.

Sadoun, B. 2000. Applied system simulation: a review study, Information
Sciences, vol. 124, no. 1-4, 173-192.

Sadowski, R. P. 1991. Avoiding the problems and pitfalls in simulation. In
Proceedings o f 1991 Winter Simulation Conference, ed. W. D. Kelton, G. M.
Clark, and B. L. Nelson. 48-55. Phoenix, AZ, USA.

Sanchez, S. M. 2001. ABC's o f output analysis. In Proceedings o f 2001 Winter
Simulation Conference, ed. M. Rohrer, D. Medeiros, B. A. Peters, and J. Smith.
30-38. Arlington, VA, USA.

162

References

Sanchez, V., A. Bautista, and F. Tirado 1996. Deblocking event algorithm: a new
approach to conservative parallel discrete event simulation. In Proceedings o f
1996 Euromicro Workshop on Parallel and Distributed processing.

Sargent, R. G., J. H. Mize, d. H. Withers, and B. P. Zeigler 1993. Hierarchical
modelling for discrete event simulation (panel). In Proceedings o f 1993 Winter
Simulation Conference, ed. E. C. Russell, W. E. Biles, G. W. Evans, and M.
Mollaghasemi. 569-572. Los Angeles, CA, USA.

Sargent, R. G. 1994. Verification and validation o f simulation models. In
Proceedings o f 1994 Winter Simulation Conference, ed. D. A. Sadowski, A. F.
Seila, J. D. Tew, and S. Manivannan. 77-87. Orlando, FL, USA.

Sargent, R. G. 2000. Verification, validation, and accreditation o f simulation
models. In Proceedings o f 2000 Winter Simulation Conference, ed. P. A.
Fishwick, K. Kang, J. A. Joines, and R. H. Barton. 50-59. Orlando, FL, USA.

Sargent, R. G. 2001. Some approaches and paradigms for verifying and validating
simulation models. In Proceedings o f 2001 Winter Simulation Conference, ed. M.
Rohrer, D. Medeiros, B. A. Peters, and J. Smith. 106-114. Arlington, VA, USA.

Sawhney, A., O. Abudayyeh, and A. Monga 1999. Modelling and analysis o f a
mail processing plant using Petri nets, Advances in Engineering Software, vol. 30,
543-549.

Sawhney, A. 2000. An integrated modelling methodology for simulation o f large
and complex systems, International Journal o f Modelling and Simulation, vol. 20,
no. 1, 1-11.

Schreiber, R., 1995, Middleware demystified, Datamation, April, 41-45,

Schruben, L. 1983. Simulation modelling with event graphs, Communications o f
the ACM, vol. 26, no. 11, 957-967.

Shannon, R. E. 1992. Introduction to simulation. In Proceedings o f 1992 Winter
Simulation Conference, ed. R. C. Crain, J. R. Wilson, J. J. Swain, and D.
Glodsman. 65-73. Arlington, VA, USA.

Shannon, R. E. 1998. Introduction to the art and science o f simulation. In
Proceedings o f 1998 Winter Simulation Conference, ed. J. S. Carson, M. S.
Manivannan, D. J. Medeiros, and E. F. Watson. 7-14. Washington DC, USA.

Shen, W. and D. H. Norrie 1998. An agent-based approach for manufacturing
enterprise integration and supply chain management. In Proceedings o f 1998
International Conference on the practical Applications o f Agents and Multi-agent
Systems,

Sherif, Y. S. 1998. The design, analysis, and evaluation o f simulation
experiments, International Journal o f Modelling and Simulation, vol. 18, no. 4,
290-297.

163

References

Shi, J. 1997. A conceptual activity cycle-based simulation modelling method. In
Proceedings o f 1997 Winter Simulation Conference, ed. D. H. Withers, B. L.
Nelson, S. Andradottir, and K. J. Healy. 1127-1133. Atlanta, GA, USA.

Silva, L., A. L. Ramos, and P. M. Vilarinho 2000. Using simulation for
manufacturing process reengineering - A practical case study. In Proceedings o f
2000 Winter Simulation Conference, ed. P. A. Fishwick, K. Kang, J. A. Joines,
and R. H. Barton. 1322-1328. Orlando, FL, USA.

Sirinivasan, K. and S. Jayaraman 1997. Integration o f simulation with enterprise
models. In Proceedings o f 1997 Winter Simulation Conference, ed. D. H. Withers,
B. L. Nelson, S. Andradottir, and K. J. Healy. 1352-1356. Atlanta, GA, USA.

i

Sohl, B. A., 2002, Distributed simulation: Concepts and application,
http://www.cecs/csulb/edu/~sohFdistributedsim/dissim/dissim-bogy.html,

Solcany, V., R. Skultety, and J. Safarik 1995. Simulation model decomposition in
conservative parallel discrete event simulation. In Proceedings o f the 1995
European Simulation Multiconference.

Steuer, R. E. and P. Na 2003. Multiple criteria decision making combined with
finance: A categorised bibliographic study, European Journal o f Operational
Research, vol. 150, no. 1, 496-515.

Sudra, R., S. J. E. Taylor, and T. Janahan 2000. Distributed supply chain
simulation in GRIDS. In Proceedings o f 2000 Winter Simulation Conference, ed.
P. A. Fishwick, K. Kang, J. A. Joines, and R. H. Barton. 356-361. Orlando, FL,
USA.

Szynkiewicz, E. N. 2000. Parallel and distributed simulation; Methodology, tools
and applications, in Advances in Multi-agent Systems, ed. R. Schaefer and S.
Sedziwy.

Takus, D. A. and D. M. Profozich 1997. Arena software tutorial. In Proceedings
o f 1997 Winter Simulation Conference, ed. D. H. Withers, B. L. Nelson, S.
Andradottir, and K. J. Healy. 541-544. Atlanta, GA, USA.

Tam, M. C. Y. and V. M. R. Tummala 2001. An application o f the AHP in
vendor selection o f a telecommunication system, Omega: The International
Journal o f management Science, vol. 29, no. 2, 171-182.

Taylor, S. J. E. 1998. Parallel and distributed simulation, Journal o f Systems
Architecture, vol. 44, no. 6-7, 393-394.

Taylor, S. J. E., R. Sudra, T. Janahan, G. Tan, and J. Ladbrook 2001. Towards
COTS distributed simulation using GRIDS. In Proceedings o f 2001 Winter
Simulation Conference, ed. M. Rohrer, D. Medeiros, B. A. Peters, and J. Smith.
1372-1379. Arlington, VA, USA.

164

http://www.cecs/csulb/edu/~sohFdistributedsim/dissim/dissim-bogy.html

References

Taylor, S. J. E. 2002. Distributed simulation and Industry: Potentials and pitfalls
(Panel discussion). In Proceedings o f 2002 Winter Simulation Conference, ed. J.
L. Snowdon, J. M. Charnes, E. Yucesan, and C. Chen. 688-694. San Diego, CA,
USA.

Theodoropoulos, G. K. 1995, Strategies fo r the modelling and simulation o f
asynchronous computer architectures, University o f Manchester, United
Knigdom.

Thesen, A. and L. A. Travis 1990. Introduction to simulation. In Proceeding o f
Winter 1990 Simulation Conference, ed. O. Balci, R. P. Sadowski, and R. E.
Nance. 14-21. New Orleans, L A , USA.

Turner, S. J. 1998. Models o f computation for parallel discrete event simulation,
Journal o f System Architecture, vol. 44, no. 6-7, 395-409.

Vee, V. Y. & W. J. Hsu 1999, Parallel discrete event simulation, Centre for
Advanced Information Systems, Nanyang Technological University, Singapore.

Venkateswaran, J., M. Y. K. Jafferali, and Y. J. Son 2001. Distributed simulation:
An enabling technology for the evaluation o f virtual enterprises. In Proceedings o f
2001 Winter Simulation Conference , ed. M. Rohrer, D. Medeiros, B. A. Peters,
and J. Smith. 856-862. Arlington, VA, USA.

Vojnar, T. 1997. Various Kinds o f Petri Nets in Simulation and Modelling. In
Proceedings o f 1997 Spring International Conference on Modelling and
Simulation o f Systems MOSIS'97.

Vondrak, C. and R. Beach 1997. Distributed Computing Environment,
http://www.sei.cmu.edu/str/descriptions/dce.html, Last accessed in June 2003.

Wallnau, K. 1997. Common object request broker architecture,
http://www.sei.cmu.edu/str/descriptions/corba.html, Last accessed in June 2003.

Whitman, L., B. Huff, and A. Presley 1997. Structured models and dynamic
systems analysis: The integration of the IDEF0/IDEF3 modelling methods and
discrete event simulation. In Proceedings o f 1997 Winter Simulation Conference,
ed. D. H. Withers, B. L. Nelson, S. Andradottir, and K. J. Healy. 518-524. Atlanta,
GA, USA.

Wild, R. H. and J. J. Jr. Pignatiello 1991. An experimental design strategy for
designing robust systems using discrete-event simulation, Simulation, vol. 57, no.
6, 358-368.

Wilson, J. R. 1997. Modelling dependencies in stochastic simulation inputs. In
Proceeding o f the 1997 Winter Simulation Conference, ed. D. H. Withers, B. L.
Nelson, S. Andradottir, and K. J. Healy. 47-52. Atlanta, GA, USA.

Yang, C. and J. B. Huang 2000. A decision model for IS outsourcing,
International Journal o f Information Management, vol. 20, no. 3, 225-239.

165

http://www.sei.cmu.edu/str/descriptions/dce.html
http://www.sei.cmu.edu/str/descriptions/corba.html

References

Yapa, S. 2003. A structured approach to rapid simulation model development. An
on going research leading to a PhD.

YusufF, R. M., K. P. Yee, and M. S. J. Hashmi 2001. A preliminary study on the
potential use o f the analytic hierarchical process (AHP) to predict advanced
manufacturing technology (ATM) implementation, Robotics and Computer
Integrated Manufacturing, vol. 17, no. 5, 421-427.

Zahedi, F. 1986. The analytic hierarchy process - A survey o f the method and its
applications, Interfaces, vol. 16, no. 4, 96-108.

Zanakis, S. H., A. Solomon, N. Wishart, and S. Dublish 1998. Multi-atribute
decision making: A simulation comparison o f select methods, European Journal
o f Operational Research, vol. 107, no. 3, 507-529.

Zeigler, B. P. 1986. Hierarchical modular modelling/ knowledge representation. In
Proceedings o f 1986 Winter Simulation Conference, ed. J. O. Henriksen, S. D.
Roberts, and J. R. Wilson. 129-137. Washington, DC, USA.

Zeigler, B. P. 1987. Hierachical, modular discrete-event modeling in an object-
oriented environment, Simulation, vol. 49, no. 5, 219-330.

Zupancic, B. 1998. Modular hierarchical modelling with SIMCOS language,
Mathematics and Computers in Simulation, vol. 46, no. 1, 67-76.

166

Appendix 1 - Application program interface
(API) for model B

Option Explicit

Dim BPaused As Integer
Dim sqQueue As MSMQQueue
Dim pqQueue As MSMQQueue
Public WithEvents sqEvent As MSMQEvent
Public WithEvents pqEvent As MSMQEvent

Private Sub ModelLogic_RunBeginSimulation()
'receives parts from A
Dim qinfo As New MSMQQueuelnfo
qinfo.PathName = ".\private$\bpq"
Set pqQueue = qinfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
Set pqEvent = New MSMQEvent
pqQueue.Enab1eNo ti fi cati on pqEvent
Call ThisDocument.Model.Pause

End Sub

Private Sub ModelLogic_RunBeginReplication()
'Processes times
BPaused = 0
Dim sqlnfo As New MSMQQueuelnfo
sqlnfo.PathName = ".\private$\bsq"
Set sqQueue = sqlnfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
Set sqEvent = New MSMQEvent
sqQueue.EnableNotification sqEvent

End Sub

Private Sub ModelLogic_RunEndSimulation()
'collecting total times, MC utilisations and sending to

TPU
Dim ary(8) As String
Dim Aarstr As String
Dim line As String
Dim i As Integer
Dim j As Integer
Dim k As Integer

Open "D:\apr\modified case study\Firm B_sync_2.out" For
Input As #1

For i = 1 To 200
If EOF(1) Then

Exit For
End If

Input #1, line

If Trim(Mid(line, 1, 22)) = "Entity 2.TotalTime" Then

167

Appendix 1 -A pp lica tion program interface (API) fo r m odelB

ary(l) = Trim(Mid(line,
End If

If Trim(Mid(line, 1, 22))
ary(2) = Trim(Mid(line,

End If

If Trim(Mid(line, 1, 22))
ary(3) = Trim(Mid(line,

End If

If Trim(Mid(line, 1, 22))
ary(4) = Trim(Mid(line,

End If

If Trim(Mid(line, 1, 22))
ary(5) = Trim(Mid(line,

End If

If Trim(Mid(line, 1, 22))
ary(6) = Trim(Mid(line,

End If

If Trim(Mid(line, 1, 22))
ary(7) = Trim(Mid(line,

End If

If Trim(Mid(line, 1, 25))
ary(8) = Trim(Mid(line,

End If

Next i

20, 13))

= "MCI.Utilization" Then
20, 13))

= "MC2.Utilization" Then
20, 13))

= "MC3.Utilization" Then
20, 13))

= "MC4.Utilization" Then
20, 13))

= "MC5.Utilization" Then
20, 13))

= "MC6.Utilization" Then
20, 13))

= "Entity 2.Number0ut" Then
26, 15))

Close #1

Aarstr = CStr(ary(l))
For j = 2 To 8

Aarstr = Aarstr & & CStr(ary(j))
Next j
Aarstr = Aarstr & ":"

Dim palnfo As New MSMQQueuelnfo
Dim paDest As MSMQQueue
Dim pamsgSend As New MSMQMessage
pamsgSend.Label = "PERFORMANCE"
pamsgSend.Body = Aarstr
palnfo.FormatName = "DIRECT = OS:ENG-4112-07\private$\btq"
Set paDest = palnfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
pamsgSend.Send paDest
paDest.Close

'***assingning values to "sample measures for Firm B"
UserForml.PTZ = ary(l)
UserForml.MUMC1 = ary(2)
UserForml.MUMC2 = ary(3)

168

Appendix 1 -A pp lica tion pro gram interface (API) fo r m odelB

UserForml.MUMC3 = ary(4)
UserForml.MUMC4 = ary(5)
UserForml.MUMC5 = ary(6)
UserForml.MUMC6 = ary(7)
UserForml.OutZ = ary(8)
UserForm2.CommandButtonl.Enabled = False
UserForm2.Show

End Sub

Private Sub ModelLogic_RunPause()
'processes Pause and restart
Dim sqlnfo As New MSMQQueuelnfo
sqlnfo.PathName = ".\private$\bsq"
Set sqQueue = sqlnfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
Set sqEvent = New MSMQEvent
sqQueue.EnableNotification sqEvent

End Sub

Private Sub ModelLogic_RunResume()
'processes Pause and restart
Dim sqlnfo As New MSMQQueuelnfo
sqlnfo.PathName = ".\private$\bsq"
Set sqQueue = sqlnfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)
Set sqEvent = New MSMQEvent
sqQueue.EnableNotification sqEvent

End Sub

Private Sub pqEvent_Arrived(ByVal Queue As Object, ByVal
Cursor As Long)

Dim vEntitylndex As Long
Dim vPicturelndex As Long
Dim sTime As Variant
Dim cTime As Double
Dim dTime As Double
Dim aEResults(6) As String
Dim vEresults As String
Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim 1 As Integer
Dim bQueue As MSMQQueue
Set bQueue = Queue
Dim qMsg As MSMQMessage
Set qMsg = New MSMQMessage
Set qMsg = bQueue.Receive(, , ,0)

If qMsg.Label = "EResults" Then
vEresults = qMsg.Body
'MsgBox "vEresults"
'MsgBox vEresults
i = 1
j = 1
For k = 1 To Len(vEresults)

If Mid(vEresults, k, 1) = Then
aEResults(i) = Mid(vEresults, j, k - j)

169

Appendix 1 -A pp lica tion program interface (API) fo r m odelB

'MsgBox i
'MsgBox aEResults(i)
i = i + 1
j = k + 1

End If
Next k

UserForml.EPTX.Caption = aEResults(l)
.UserForml. EPTY.Caption = aEResults(2)
UserForml.EPTZ.Caption = aEResults(3)
UserForml.EPTXYZ.Caption = aEResults(4)
UserForml.CTXYZ.Caption = aEResults(5)
UserForml.EOUTXYZ.Caption = aEResults(6)
UserForm2.CommandButtonl.Enabled = True

Else

vPicturelndex =
ThisDocument.Model.SIMAN.SymbolNumber("Picture.yellow
page")

For i = 1 To 1
vEntitylndex = ThisDocument.Model.SIMAN.EntityCreate
Call
ThisDocument.Model.SIMAN.EntitySetPicture(vEntitylnde
x, vPicturelndex)
Call
ThisDocument.Model.SIMAN.EntitySendToBlockLabel(vEnti
tyIndex, 0, "Alnput")

Next i

End If

bQueue.EnableNotification pqEvent

End Sub

Private Sub sqEvent_Arrived(ByVal Queue As Object, ByVal
Cursor As Long)

Dim 1Index As Long
Dim plndex As Long
Dim sPTime As Double
Dim sSATime As Double
Dim sSBTime As Double
Dim sSCTime As Double
Dim EResults(6) As String

Dim sprQueue As MSMQQueue
Set sprQueue = Queue
Dim sprqMsg As MSMQMessage
Set sprqMsg = sprQueue.Receive(, , ,0)

If sprqMsg.Label = "START" Then
Call ThisDocument.Model.Go

End If

170

Appendix 1 -A pp lica tion program interface (API) fo r m odelB

If sprqMsg.Label = "STOP" Then
Call ThisDocument.Model.End

End If

'To resume A
If sprqMsg.Label = "PTA" Then

sSBTime = ThisDocument.Model.SIMAN.RunCurrentTime
sSATime = CDbl(sprqMsg.Body)
sPTime = sSATime - sSBTime
If sPTime < 0.5 Then

sPTime = 0
llndex = ThisDocument.Model.SIMAN.EntityCreate
plndex =

ThisDocument.Model.SIMAN.SymbolNumber("Picture.Tr
uck")

Call ThisDocument.Model.SIMAN.EntitySetPicture(llndex,
plndex)

Call
ThisDocument.Model.SIMAN.EntitySendToBlockLabel(1
Index, sPTime, "RAblock")

Else
llndex = ThisDocument.Model.SIMAN.EntityCreate
plndex =

ThisDocument.Model.SIMAN.SymbolNumber("Picture.va
n")

Call ThisDocument.Model.SIMAN.EntitySetPicture(llndex,
plndex)

Call
ThisDocument.Model.SIMAN.EntitySendToBlockLabel(1
Index, sPTime, "RAblock")

End If
End If

'To resume C
If sprqMsg.Label = "PTC" Then

sSBTime = ThisDocument.Model.SIMAN.RunCurrentTime
sSCTime = CDbl(sprqMsg.Body)
sPTime = sSCTime - sSBTime
If sPTime < 0.5 Then

sPTime = 0
llndex = ThisDocument.Model.SIMAN.EntityCreate
plndex =

ThisDocument.Model.SIMAN.SymbolNumber("Picture.va
n")

Call ThisDocument.Model.SIMAN.EntitySetPicture(llndex,
plndex)

Call
ThisDocument.Model.SIMAN.EntitySendToBlockLabel(1
Index, sPTime, "RCblock")

Else
llndex = ThisDocument.Model.SIMAN.EntityCreate
plndex =

ThisDocument.Model. SIMAN. SymbolNumber (" Picture. va
n")

171

Appendix 1 -A pp lica tion program interface (API) fo r m odelB

Call ThisDocument.Model.SIMAN.EntitySetPicture(llndex,
plndex)

Call
ThisDocument.Model.SIMAN.EntitySendToBlockLabel(1
Index, sPTime, "RCblock")

End If
End If

'sending time to TPU
If sprqMsg.Label = "RT" Then

Dim tblnfo As New MSMQQueuelnfo
Dim tbDest As MSMQQueue
Dim tbmsgSend As New MSMQMessage
tbms gS end.Labe1 = "T "
tbmsgSend.Body = ThisDocument.Model.SIMAN.RunCurrentTime
tblnfo.FormatName = "DIRECT = OS:ENG-4112-

07\private$\btq"
Set tbDest = tblnfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
tbmsgSend.Send tbDest
tbDest.Close

End If

'pausing B
If sprqMsg.Label = "P" And BPaused = 0 Then

Dim FName As String

If sprqMsg.Body = "A" Then
FName = "DIRECT = OS:ENG-4112-07\private$\asq"

End If

If sprqMsg.Body = "C" Then
'FName = "DIRECT = OS:ENG-4130-12\private$\csq"
FName = "DIRECT = OS:ENG-4112-09-od\private$\csq"

End If

Dim ptlnfo As New MSMQQueuelnfo
Dim ptDest As MSMQQueue
Dim ptmsgSend As New MSMQMessage
ptmsgSend.Label = "PTB"
ptmsgSend.Body = ThisDocument.Model.SIMAN.RunCurrentTime
ptlnfo.FormatName = FName
Set ptDest = ptlnfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
ptmsgSend.Send ptDest
ptDest.Close
BPaused = 1
Call ThisDocument.Model.Pause

End If

'resuming B
If sprqMsg.Label = "R" Then

'updating TPU
Dim tpuqlnfo As New MSMQQueuelnfo
Dim tpuqDest As MSMQQueue

172

Appendix 1 -A pp lica tion program interface (API) fo r m odelB

Dim tpumsgSend As New MSMQMessage
tpumsgSend.Label = "R"
tpumsgSend.Body =

ThisDocument.Model.SIMAN.RunCurrentTime
tpuqlnfo.FormatName = "DIRECT = OS:ENG-4112-

07 \private$\btq"
Set tpuqDest =•tpuqlnfo.Open(MO SEND ACCESS,

MQ_DENY_NONE)
tpumsgSend.Send tpuqDest
tpuqDest.Close
BPaused = 0
Call ThisDocument.Model.Go

End If

sprQueue.EnableNotification sqEvent
End Sub

Private Sub VBA_Block_l_Fire()
'passing parts to C
Dim cqlnfo As New MSMQQueuelnfo
Set cqlnfo = New MSMQQueuelnfo
Dim cTime As Double
cTime = ThisDocument.Model.SIMAN;RunCurrentTime
'cqlnfo.FormatName = "DIRECT = OS:ENG-413 0-

12\private$\cpq"
cqlnfo.FormatName = "DIRECT = OS:ENG-4112-09-

od\private$\cpq"
Dim cqQueue As MSMQQueue
Set cqQueue = cqlnfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
Dim cqMsg As MSMQMessage
Set cqMsg = New MSMQMessage
cqMsg.Label = "B"
cqMsg.Body = cTime
cqMsg.Send cqQueue
cqQueue.Close

End Sub

Private Sub VBA_Block_2_Fire()
'Resumes the model A
Dim saqlnfo As New MSMQQueuelnfo
Dim saqDest As MSMQQueue
Dim samsgSend As New MSMQMessage
samsgSend.Label = "R"
samsgSend.Body = ThisDocument.Model.SIMAN.RunCurrentTime
saqlnfo.FormatName = "DIRECT = OS:ENG-4112-

07\private$\asq"
Set saqDest = saqlnfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
samsgSend.Send saqDest
saqDest.Close

End Sub

Private Sub VBA_Block_3_Fire()
'Resumes the model C
Dim scqlnfo As New MSMQQueuelnfo
Dim scqDest As MSMQQueue

173

Appendix 1 —A pplicationprogram interface (API) fo r m odelB

Dim scmsgSend As New MSMQMessage
scmsgSend.Label = "R"
scmsgSend.Body = ThisDocument.Model.SIMAN.RunCurrentTime
'scqlnfo.FormatName = "DIRECT = OS:ENG-4130-

12\private$\csq"
scqlnfo.FormatName = "DIRECT = OS:ENG-4112-09-

od\private$\csq"
Set scqDest = scqlnfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)
scmsgSend.Send scqDest
scqDest.Close

End Sub

174

