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Abstract

In this thesis we develop applications of Lattice-Bhatnagar-Krook (LBGK) models

to incompressible flow problems.

We show that in geometries where flow is forced via application of a pressure differ-
ence, a modified Exactly Incompressible LBGK (EILBGK) scheme must be applied
if significant pressure variations occur. We analyse the model’s representation of
the no-slip wall boundary condition for flow in a straight duct and recover a friction
factor in excellent agreement with theory. Simulation of flow over a backward-facing

step produces good agreement with other numerical techniques.

We propose two new LBGK schemes, one directed towards the calculation of depth-
averaged flow quantities and the other which focusses on thermal flows in the

Boussinesq-Oberbeck limit.

Depth-averaged flow facilitates the two-dimensional simulation of three-dimensional
ducts of constant depth. The effect of the unmodelled dimension is accounted for
by including momentum sinks in the momentum equations. We apply the scheme
to flow in a bifurcating duct and results are again in good agreement with other

numerical methods.

We develop a thermal model in which energy is treated efficiently as a passively

advected scalar quantity. This approach results in a model which is more simple



and robust than other previously reported LBGK thermal models. Our scheme is
then validated by application to flow in a straight duct with constant heat flux
applied at the walls. Excellent agreement with theoretical predictions is obtained

for the calculated Nusselt number.
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Chapter 1

Introduction

The flow of fluids has been extensively studied since fluids impact on so many dif-
ferent aspects of everyday life. Until the early 1960’s fluid mechanics was studied
either by purely experimental or purely theoretical means. Analytical solutions of
theoretical models often required simplified calculations and failed to in.clude all the
requisite physics of the flow [1]. Then came computational fluid dynamics (CFD). In
the 1960’s, mathematical advances and increased computational power allowed the
numerical solution of the ezact governing equations. The computer simulation of
flows involving many different physical phenomena became possible and as a result

CFD became and remains a popular and useful tool for many engineers.

CFD has also had an effect on fluid experiments, which have traditionally played a
very important role in the design of systems which depend on flow behaviour. For ex-

ample, wind tunnels are an effective, but increasingly expensive and time consuming,
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way to study scale models of large systems like aircraft or cars. A CFD calculation,
for example, can allow an engineer to test many different configurations relatively
quickly and economically, thus reducing the amount of final experimentation which
needs to be carried out. This example helps to emphasise how CFD complements the
traditional approaches of theory and experiment, and although it is an immensely

powerful and useful technique it probably will never replace experiment completely.

Compared to lattice Boltzmann (LB) techniques, traditional computational fluid
dynamics is a mature subject. As a result it has been developed for many different
types of flows, including incompressible and compressible flows, subsonic and super-
sonic flows, laminar and turbulent flows, as well as multi-component and chemically

reacting flows.

LB methods, introduced as an alternative to lattice gas cellular automata (LGCA),
are consequently viewed in quite a sceptical light by many fluid dynamicists. Such
models are often considered a novel technique offering no real advantage over the
traditional methods. This however is not true, and a testament to this is the ever
expanding body of literature on the subject as LB models are applied to different

types of flow problems.

The work reported in this text investigates the use of lattice Bhatnagar-Gross-Krook
(LBGK) models, a variant of the LB approach, to simulate the governing equations
of incompressible internal pressure-driven flows, in contrast to the traditional ap-
proaches of discretising the same continuum equations and solving via finite-element

or finite-volume techniques.
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LB schemes are simplified kinetic models based upon microscopic or mesoscopic pro-
cesses, so that the averaged microscopic properties obey the desired macroscopic be-
haviour. In molecular dynamics (MD) simulation every particle is tracked. Although
physically realistic, MD is an impractical approach to solving large realistic systems,
even with modern powerful computers, since the number of tracked molecules which
are required is immense. The LB approach avoids such complications and is based on
a very much reduced parameter space. The scheme is also by nature ideally suited
to massively parallel machines and the implementation of boundary conditions is

relatively simple.

1.1 Aims

Whilst it is acknowledged that LB models will never replace traditional CFD meth-
ods, there may be areas in which they can enhance its capabilities and should be
viewed as a potentially useful tool in the computer simulation of fluids. The princi-
pal aim of this project is to study lattice Bhatnagar-Gross-Krook (LBGK) models,
a variant of the LB approach, when applied to flow geometries of engineering im-

portance in an attempt to prove the usefulness of the technique.

Thus we apply LBGK models to the simulation of pressure-driven incompressible
flows up to moderate Reynolds number in industrially-relevant geometries, via a
careful study of the detail of the boundary conditions. Pursuing the theme of in-

dustrial relevance, we also aim to develop a thermal LBGK model which is adapted
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to flows containing negligible viscous dissipation and so can be applied to certain
problems of engineering importance. In the next section we discuss the detailed
structure of this thesis which describes the work carried out in order to achieve the

above aims.

1.2 Qutline of Thesis

The governing hydrodynamic equations which we seek to solve via our LBGK sim-
ulations are introduced in chapter 2. These are the incompressible continuity and
Navier-Stokes equations, an appropriate energy equation and (for some applications)
the equations describing depth-averaged flows. In chapter 3 we introduce lattice gas
cellular automata (LGCA), based upon the seminal work of Frisch et al [2] in the
mid 80’s. We then follow the key developments which have led to LBGK models,
although, LBGK models tend now to be viewed apart from their parent automata

schemes.

In chapter 4 we develop the LBGK models used. We present the theory and fully
derive the macroscopic governing equations for the standard D2Q9 LBGK model, as
introduced by Qian et al [3], then proceed to explain a modified exactly incompress-
ible LBGK (EILBGK) scheme. The use of this section is of central importance when
simulating internal pressure-driven flow. Also in chapter 4 we detail two schemes not
previously reported in the literature which have been developed during the project.

Firstly, an EILBGK scheme suitable for the simulation of depth-averaged flows, and,
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secondly a novel thermal LBGK scheme incorporating a separate energy variable.

Results of simulations applied to the problem of internal pressure-driven flows are
presented in chapter 5. We apply an EILBGK scheme to a backward-facing step,
carefully considering the applied boundary conditions, and make comparisons with

both traditional CFD and experiment up to intermediate Reynolds numbers.

In chapter 6 we validate our depth-averaged EILBGK scheme numerically, then
apply the model to flow in a bifurcating duct and make comparisons with some

standard CFD results.

Finally we present, in chapter 7, results of our thermal LBGK model. We apply
the scheme to a forced convection flow problem and again make comparisons with

analytical solutions and standard CFD results.

Conclusions and suggestions for further work are presented in chapter 8.



Chapter 2

Hydrodynamic Governing

Equations

Since we shall be making arguments based upon the microscopic origin of the gov-
erning equations of hydrodynamics it is appropriate, for the sake of producing a
coherent account, to describe how the macroscopic motion of fluids is modelled and

to provide an overview of derivations of key equations governing fluid flow.

Clearly our treatment cannot be exhaustive. Moreover, we shall focus upon those
approximations within the system of fluid momentum, continuity and energy equa-
tions which are relevant to our applications of internal pressure-driven flow up to
moderate Reynolds number (in the limit of negligible viscous dissipation) and upon

which we rely in later sections.

The present chapter is also the most appropriate place to develop some non-standard
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theoretical results, which we propose to use subsequently without further justification.

volume, dV
control surface, S /
dZ :
A ‘ ¢
control volume, V E
dy :
dx
(a) (b)

Figure 2.1: Flow models used in deriving macroscopic gov-
erning equations.(a)Control volume, V, bounded by control
surface, S. (b)Fluid element of volume, dV.

The macroscopic governing equations can be obtained using various different flow
models, see fig 2.1, which consider either a control volume, V', bounded by a control
surface, S, or an infinitesimal fluid element of volume dV. Either of these models
can be static, with the fluid moving through it, or the volume can move with the
fluid (the same fluid atoms always being contained within the volume). The gov-
erning equations obtained from the various models differ in form, but are none the
less equivalent and can be transformed from one to the other by relatively simple

algebraic manipulations.
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Whether models of type (a) or (b) of figure 2.1 are used, the volume considered is
large enough to contain many millions of atoms of the fluid, yet very small compared

with the scale of the problem.

A system of five equations is required in order to completely describe the motion of
a fluid. These are

1. the continuity equation,

2. the Navier-Stokes equations (3 equations),

3. the energy equation.

2.1 Continuity Equation

The continuity equation is a mathematical expression of the law of conservation
of mass. Consider a fluid element of some volume V,. The mass of fluid flowing

through an elemental area of dA in unit time will be,

pv.dA | (2.1)

where v is fluid velocity.

The vector dA has magnitude equal to the area of the surface element and its
direction is along the normal. The total mass that will be flowing out of the volume,

Vs, enclosed by the surface S, in unit time is

// pv.dA , (2.2)
S

8
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and the decrease in unit time of mass inside V, is,

—%///pdv. (2.3)

Mass must be conserved so (2.2) and (2.3) are equated to give,

_%/‘/[/pdv=éfw.dA. (24)

The surface integral of (2.4) can be transformed into a volume integral using the

Divergence Theorem, so we write (2.2) as,

//pv.dA:///V.pv av . (2.5)
S Vo

Therefore, (2.4) becomes

f/f [%+V.m] v =0, (2.6)
Vo

which must hold for any volume, so the integrand disappears to give,

Op _
i V.(pv) =0, (2.7)

which is the equation of continuity. In tensor notation, with the usual implied
Einstein summation convention on repeated Greek subscripts, (2.7) becomes,
0
o+ Oapra = 0. | (2.8)

2.2 Euler’s Equation

Euler’s equation describes the motion of a perfect fluid, ie. a fluid with no inter-

nal friction (viscosity), and which is thermodynamically reversible. The total force

9
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acting upon a volume element in the fluid is the pressure, p, integrated over the
entire surface of the volume, and again using the Divergence Theorem this can be

expressed as a volume integral as follows,

bre [[pir=—[[vpar, o9
S Vo

whereupon (—Vp) may be expressed as the force per unit volume,

Using Newton’s second law we can now write an equation of motion for our fluid

element,

dv
F=-Vp=p il (2.11)

The velocity derivative that appears in (2.11) has to be carefully considered. It is
not simply the rate of change of velocity at a fired point, but is the rate of change

of velocity of the chosen fluid element as it moves about in space, so,

ov ov ov ov
dv = —a—t-dt+a—$d$+a—ydy+5;dz,
= %Z— dt+ (dr.V)v,
dv ov
= = (v.V)v. (2.12)

In more conventional CFD (2.12) is often referred to as the substantive derivative,

and using this result in (2.11), we obtain,

av 1
5 +(V.V)v= —;Vp . (2.13)

This is Euler’s equation, and may be written in tensor form as,

Ov 1
—5-;- + 1305V, = —; D (2.14)

10
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or, alternatively,

9(pva) _
22) = —3pTleg (2.15)
Haﬁ = plsaﬁ + pvavs , (2.16)

where Il,g, the momentum flux tensor, is considered further in section 2.3.

2.3 Momentum Flux Tensor

The momentum of a unit volume is simply pv. Its rate of change of momentum can

be written,

d(pva)  Ovg dp
ot =p ot +’UQE . (217)

If the continuity equation (2.8) and Euler’s equation (2.14) are substituted in (2.17),

the following results,

0(pva)

5 = ~PU08Va — Oap — vals (pUg)

= —0ap — 6/9 (p’Ua'Up) ’
= —0p (Pbap + pavp) ,

The physical meaning of II,4 is that it is the a-component of the momentum flowing

in unit time through unit area in direction perpendicular to the B-axis [4].

11
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2.4 Navier-Stokes Equations

To derive the equations which govern the momentum of a viscous fluid, the effect
of viscous dissipation must be included by adding additional terms to the equation
which describes the motion of a perfect fluid: Euler’s equation. The continuity
equation does not require any modification, as it is correct for both perfect and

viscous fluids.

A viscous fluid is one in which there is an irreversible dissipation of momentum:
momentum diffuses from positions in the fluid where the momentum is larger to
positions where it is smaller. Internal friction must reduce the momentum flux per

unit area, so the momentum flux tensor Il,g, (2.16), is redefined as,
Haﬂ — Haﬂ - O';ﬂ , (2.19)

where o;ﬂ is the term that accounts for the dissipation of momentum within the

fluid and is known as the viscosity stress tensor.

Viscous type processes only occur where there are velocity gradients within the fluid.
If the velocity gradients are small it is assumed that a;ﬂ is dependent only on the
first derivatives of velocity, and it is a linear function of combinations of 9gv,, which

will be zero when the fluid is in uniform motion.

A fluid should also be free of viscous effects when it is in uniform rotation. If such

a fluid has angular velocity w at a point r the velocity at that point is given by,

v=wATr.

12
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Linear combinations of (3,vg + Osva) and O,v, disappear under both uniform mo-

tion, and uniform rotation.

A general second rank tensor linear in velocity gradients, vanishing for a fluid in

uniform translation and rotation is,
Oup = (0avp + OpUa) + b Oyvy bap (2.20)
which can be expressed alternatively as [4],
g =1 (30,'0,3 + Opva — g Uy 6,15) + (0,0, 0ap (2.21)
where 7 and ¢ are known as the coefficients of viscosity.

The equations describing the motion of a viscous fluid are now obtained by substi-

tuting for the modified momentum flux tensor, Il,4, in Euler’s equation, (2.15).

3y (pa) = ~0pTlap = —0p (P Sap + Prats — 0ng) (2.22)
P (Osvo +vp0pva) = —0ap+0p (n (aa'vﬁ + 9pvq
2
3 7”76049)
+(O0y00p ) . (2.23)

The coefficients of viscosity are usually considered to be constants, and as a result

of this can be moved in front of the differential operators, leaving
1 , 1 1
Opvq + 'Uﬂaﬁ'va = —'/')' oD + Vaﬂva + ; ¢+ 577 aa(aﬂvﬂ) ) (2'24)

which are the Navier-Stokes equations, where v = -Z is the kinematic viscosity of the

fluid.

13
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2.5 Incompressibility

In many cases an assumption that the fluid under study is incompressible is made.
This can be interpreted physically to mean that there is negligible variation in the
fluid density, even with large variations in pressure, p, and the density may be

assumed constant.

This assumption helps to simplify the equations of motion derived in sections 2.2

and 2.4. For constant density, p, the continuity equation becomes,
Vwv=0, (2.25)

and the Navier-Stokes equations simplify to give,

ov 1 2
Y (v.V)v= —;Vp+ vVev . (2.26)

Whilst it is often assumed that p does not vary with p, p can still vary with tempera-
ture T, ie. for the non-isothermal calculations we perform, we shall assume p = p(T')

only.

2.6 Reynolds Number

An important dimensionless quantity is the Reynolds number, Re,

Re= %l- , (2.27)

where U and [ are a characteristic velocity and a characteristic length scale of the
flow respectively, the choice of which is arbitrary and depends on the flow geometry.

14
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In laminar duct flow ! is often taken to be the hydraulic diameter (to be defined

below), and U to be the average velocity across the duct.

The hydraulic diameter, D, is defined as,
4A
D=+, (2.28)

where A is the cross-sectional area, and P is the wetted duct perimeter. For a 2D

rectangular duct of width W (2.28) reduces to,

D=2W. (2.29)

The importance of the Reynolds number becomes clear if we consider Reynolds’ law
of similarity. Two different flows of the same type, ie. with a similar boundary
geometry, are said to be dynamically similar provided they have the same Reynolds
number. So, in two scaled ducts with a sudden assymetric expansion (say), one
containing air and the other water, two dynamically similar flows are obtained if
both systems have equivalent values of Re. This similarity principle is extensively
used in wind tunnel and wave tank experiments to test small models of much larger

structures.

If we normalise lengths to be measured on [/, and velocities on U, the Navier-Stokes

equations in their incompressible form become,

ov* N vid e *) % 1 *2_ %
5 + (V.V*)v* = -V*p +Rev v, (2.30)

where,

Ul
Re—;— and p*=-—
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and all the variables in the above (r*,v*) are now dimensionless and clearly, for
given boundary conditions the solution depends only upon Re. Flows which are
sitmilar can be obtained from one another by changing the normalisation constants

of length and velocity.

2.7 Emergy Equation

In this section we establish an appropriate energy equation for our target application
of internal pressure-driven flow with negligible viscous dissipation. It is appropriate

to consider the fluid equation of state concurrently.

A volume element of inviscid fluid has both kinetic and internal energy, the former

being small for our applications,

1 5

5PY +pe) , (2.31)
¢ being the internal energy per unit mass.

The rate of change of this energy can be expressed as,

o (1 ,
5 (Epv +pe> . (2.32)

To evaluate expression (2.32) we consider first the term due to kinetic energy,

O (L 2\ _Lp00, 0V
at(z,m))—zv 5 TPV (2.33)

By substitution of continuity (2.7) and Euler’s equation (2.14), for the first and
second terms on the rhs of (2.33) respectively, and using the following combination

16
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of the first and second laws of thermodynamics,
1
dh=Tds+ (;) dp , (2.34)

(where h is enthalpy, 7" temperature and s is the entropy), (2.33) may be written [4],

(1 ,\ 1, 1,
B (2;70 ) = =50 V.pv — pv.V (21) +h) + pTv.Vs. (2.35)

To find a form for ﬂ;{l in (2.32) use the first law [4],

de=Tds—pdV=Tds+%dp,

the definition of specific enthalpy h = € + % and the fact that flow of an ideal

(inviscid) fluid must be adiabatic,

ds
o +v.Vs=0,
so that we can write,
0 _ Oe  Op
.a?(ps) - at +63t )
_ ds Paop ap
= p{Tat‘F?at}‘i‘E'gt‘,

= pT (-v.Vs)+ (e + %) (=V.pv) ,
which leads to the desired expression for 2(pe),

ag;e) = —hV.pv — pTv.Vs . (2.36)

Combining (2.35) and (2.36) we obtain an expression of the law of conservation of

energy for an ideal (inviscid) fluid,

% (%mﬂ +pe) =-V. (pv (%vz + h)) : (2.37)
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Energy remains conserved in a viscous fluid of course, but there is now an additional
flux of energy due to the internal friction, v.c' (see below) and an energy flux due

to conductive transport, q,
q=—-kVT, (2.38)
where k is the thermal conductivity.

These fluxes, due to viscosity and conduction, may be incorporated into the perfect

fluid equation in the obvious way to yield the energy equation for a real fluid,

a (1 , _ 1, !
5 (-2—pv +pe) = -V. (pv (21; +h) — V.0 —kVT) . (2.39)

Now, the Navier-Stokes equations, continuity equation and the thermodynamic re-
lationships already discussed may be used, along with the definition of specific en-

thalpy, to transform the left hand side of (2.39) [4],

% <2pv +pe) = V. (pv (211 +h> — V.o —kVT)
ds . OY;

From a comparison of the last equation, (2.40), and equation (2.39) it is immediate

that [4],

oT (-g—j + v.Vs) = U;k'g;vj: + V. (kVT) , (2.41)
which is the general equation of heat transfer. Note that, in the absence of con-
duction or viscosity the ideal fluid equation of conservation of entropy is recovered.
Together with an appropriate equation of state for the flowing fluid, momentum and
continuity equations, energy equation (2.41) is sufficient to close the description of

any fluid.

18
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Now, it is possible to reduce the mathematical complexity of the formulation. pro-
vided certain approximations are valid, and we proceed now to consider, so-called
Boussinesg-Oberbeck flow. Equation (2.41) can be applied to our incompressible flu-
ids after some simplifications. If flow velocity is much lower than the speed of sound,
density changes due to pressure variations may be ignored. This incompressible as-
sumption is effectively to assume that the equation of state is such that the density
of the fluid is independent of the pressure. Density, however, cannot be assumed
independent of temperature for our applications. Consequently fluid density varia-
tion with temperature cannot always be neglected, even at low flow velocities, and
Boussinesq-Oberbeck flow treats density as independent of pressure but dependent

upon temperature. Therefore, using,

c,,:T(—aa—%) and, TVs=¢VT,
\oT /],

equation (2.41) becomes,

PCp (%T-t— + V.VT) = V.(kVT) + a_;ﬁaavﬁ . (2.42)

For small temperature differences 7, k£ and ¢, may be assumed constant. If (2.21)
is substituted for oop in (2.42), the equation of heat transfer for an incompressible
fluid is,

oT o2 v 9
-E +v.VT = XV T+ '2—0; (6ﬁ'va + 6,,1),3) y (2.43)

where the thermal diffusivity, x, is,

x = — . (2.44)
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The contribution from the last term in (2.43) is that due to viscous dissipation,
which is the degradation of mechanical into thermal energy caused by the friction
of adjacent fluid particles moving past each other. However, in the majority of flow
.problems this contribution is not important [5], and can be neglected. Indeed, this
term is smaller than the conduction term in liquids typically by a factor x10~7 [6].
Therefore, within the Boussinesq-Oberbeck flow approximations, the macrodynamic

equation (2.43) reduces further,

8T +v.VT = xV°T . (2.45)

It is central to observe that, in the Boussinesq-Oberbeck equation (2.45) energy ap-
parently behaves as a passively transported scalar quantity, the energy being slaved
to the velocity. Only if buoyancy forces were to be included would the tempera-
ture be coupled back to the velocity through a buoyancy ‘body-force’ term in the

Navier-Stokes equations.

As with the Navier-Stokes equations we can define dimensionless quantities which

characterise flow. One such quantity is the Nusselt number, Nu.

The heat transfer coefficient, h, is defined as,

h= ﬁ , (2.46)

where ¢ is the heat flux, and (7,, — T}) a characteristic temperature difference be-

tween the boundary (wall) and the contacting fluid. The Nusselt number is then

~ defined as,

Ny = — (2.47)



CHAPTER 2. HYDRODYNAMIC GOVERNING EQUATIONS
and is characteristic of the heat transfer ( ! remains a characteristic length).

Another dimensionless quantity which represents an intrinsic fluid property, not
dependent on flow geometry or any other flow property is the Prandtl number, Pr,

where,

=% (2.48)

2.8 Incompressible Depth-Averaged Flow.

Computationally, full three-dimensional simulations can be extremely demanding
and commonly, in an attempt to reduce the complexity of the problem, internal
flows in ducts of constant depth are computed in two-dimensions, without explicitly
modelling the shallow depth of the duct, see figure 2.2. In CFD the results of such
calculations are generally assumed to be depth-averaged quantities, and the influence
of the ‘unmodelled’ dimension is accounted for by using different momentum sink
terms in the flow momentum equations. In this section we explore the basis of these
assumptions and in section 6.2 we proceed to examine the domain of applicability

of 2D calculations to laminar flow by numerical calculation.

In the following analysis Greek subscripts refer only to coordinates z and y in the
explicitly modelled plane, d denotes physical fluid density, and all other symbols
have their usual meaning. Taking isothermal, laminar flow in the shallow duct of
constant depth shown in figure 2.2 to be governed by the continuity and incompress-
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L,

Ly

Figure 2.2: Geometry of depth-averaged flow problem.

ible Navier-Stokes equations (written in conservation form [1]) one may perform a

z-integration to yield,

1 —
00 + 9paT5 + 7~ [0:va]y” = —0a (%) + v3p0pTa
+Ll (azva|z=L,, - azva’z=0) y (249)
1

where the overbar denotes a depth-average quantity,
1 [
Ug = ——/ va(Z,y,2) dz . (2.51)
L, J,

Invoking no-slip boundary conditions on velocity in equations (2.49) and (2.50),
Yo =0V aat z=0,L, a pseudo two-dimensional system is formed, in which,
controlling the depth-averaged quantities, are the incompressible continuity equation

ezactly and a momentum equation similar in form to the incompressible Navier-
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Stokes equations with an additional momentum sink,

aﬁ'ﬁE = 0, (2.52)
0iUq + 0pUaUg = —04 (S—) + v0p05U4 + %Sa , (2.53)
where,
Ov, O,
Sa = V—a—z— . V"é‘; L (254)

We now proceed to define,
Caop = Tq U — Ualp , (2.55)

which enables (2.53) to be written,

0,T5 + T U5 = O, (g) + V30575 + 0pCap +

Sa
— . 2.

I (2.56)
Evidently the depth-averaged velocity and pressure fields are governed by the equa-

tions of two-dimensional fluid flow with an effective body force of the particular

form,

Se

T (2.57)

The second stress term represents the influence of the unmodelled surfaces, and the
first cumulant term an inertial discrepancy. By considering the case of unidirectional
flow parallel to the x-direction, characterised by a peak (central) velocity up, it is

possible to obtain order of magnitude estimates for the two terms in (2.57),

1 S 1 UUQ _ Vg
> T LT, T 12
2
U
08Czp ~ L—Z , (2.58)



CHAPTER 2. HYDRODYNAMIC GOVERNING EQUATIONS

from which a comparison of the stress and cumulant terms follows,

Safl:  vioDy _ 1 ,
6ﬁCz5 Lg U% - Re ’

(2.59)
where Re = 5‘7,“41 is the Reynolds number, calculated from the unmodelled depth,
and A = %’- is the aspect ratio of the duct cross-section. Supported by the results
of section 6.2, it becomes clear from (2.59) that, for ducts of sufficiently large as-
pect ratio, the effective body force impressed on the two-dimensional fluid may be
approximated by the stress term S, of expression (2.57) alone. (This observation
is relevant to the development of our EILBGK scheme (section 4.3) and is further
investigated by numerical techniques in section 6.2.) Our depth-averaged governing
equation reduces to,

? ) + VO30T + 22 (2.60)

0t + 05T U = Oq ( y I’

for large values of aspect ratio A.

For ducts in which aspect ratio A is sufficiently large, we aim to simulate in fwo-
dimensions the parent three-dimensional flow, sampled across the unmodelled z-
direction and take the flow to exhibit that parabolic velocity profile which is a
solution of the incompressible Navier-Stokes equation for flow parallel to two parallel-

plane walls,

v (y2) = %"z (L. - 2) (2.61)

where, of course, uy depends upon the applied pressure gradient [4]. One may now

obtain from (2.61) expressions for the derivatives in definition (2.54),

y P
0z

Ov,

—y —
2=L, 0z

dvuyg
L,

(2.62)

2=0
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In the last equation ug may be eliminated in favour of z-averaged velocity, obtained
from (2.61), whereupon we obtain from (2.52) and (2.53) the equations governing

pseudo two-dimensional flow in a shallow duct of large aspect ratio at steady-state,

O3 = 0, (2.63)

o s = ~0a (2) + o000 - 5w, (2.64)

where an overbar denotes averaging over the shallow z-direction, Greek subscripts
refer only to z,y and the velocity dependent body force in the rhs has its origin in
the stresses from the unmodelled surfaces. In section 4.3 we make appropriate mod-
ifications to an EILBGK scheme which move its governing macroscopic equations

towards equations (2.63) and (2.64).
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Chapter 3

Lattice GGases and Lattice

Boltzmann Models

3.1 Introduction

In this chapter we seek to outline the key developments leading to the kind of LBGK
models used in this thesis. We start with a review of lattice gas cellular automata
(LGCA), since lattice Boltzmann (LB) models have evolved from them (though
LB models are now viewed apart from their parent automata). Notably, it has even
been shown recently, by He et al [7], that the LB algorithms can be obtained directly
from the continuum Boltzmann equation. (The Boltzmann equation is a differential
equation which describes the behaviour of a dilute gas, a gas in which collisions

involving more than two particles are neglected.)
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3.2 Lattice Gas Cellular Automata

In 1986 Frisch et al [8] showed they were able to construct a simple automaton which
was able to simulate both 2D and 3D Navier-Stokes equations. They extended earlier
work of Hardy, Pazzis and Pomeau [9] who had constructed an automaton, known
as the HPP model, based on monoenergetic particles propagating and colliding on
a square lattice, that was suitable for modelling certain physical phenomena (for
example sound waves) but failed to recover the Navier-Stokes equations - a lack of

sufficient symmetry and the conservation of spurious quantities being to blame.

\/W\/vv\ . B

i: i=3
N ie7
/\/\/\/\/\/\/ i=5 i=4

(a) (b)

Figure 3.1: a) Hexagonal lattice for FHP model. b) FHP
unit cell.

Frisch et al found that ‘up-grading’ to a hexagonal lattice introduced sufficient
symmetry to recover equations similar in form to the Navier-Stokes equations (with

constraints on particle number density and simulated flow Mach number).

In the simplest ‘FHP1’ [2] cellular automaton, each node of the lattice, figure 3.1(a),
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is joined to its nearest neighbours by six velocity vectors, referred to as lattice links,
(c; ,where ¢ = 1...6), there being 6 allowed velocities on a hexagonal lattice.
‘Boolean’ particles, of unit mass and velocity, populate the lattice and move along
the links, residing at the nodes at the end of each integer timestep, subject to an
exclusion principle. Only one particle may move along a particular link during any

time step, which leads to a Fermi-Dirac equilibrium distribution.

The evolution of the lattice proceeds in two phases, propagation followed by collision.
During the propagation phase each particle moves one lattice link, to the nearest

node towards which its velocity was pointing,

ni(r +c;,t+ 1) = ni(r, t) (31)

where,

1  for link ¢ being occupied ,

S
I

0 for link ¢ being unoccupied .
During the next stage of evolution collisions are applied at lattice nodes, which
conserve both mass and momentum. See figure 3.2, which shows two and three
particle interactions. Many more collisions which conserve the required properties
are possible, including in ‘FHP2’ [2] collisions with rest particles, which remain at
the node during each time step, see ¢ = 7 in figure 3.1, and are discussed at length
in the literature (see [2] for example). The effect of collision is incorporated into the

evolution equation as follows,

n,-(r +c;t+ 1) = n,-(r, t) + A,(n) . (32)
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(a) (b)

Figure 3.2: a) Two particles collision, two equally possible

output states. b) Three particle interaction.
The collision operator, A;(n), will take the possible values of —1, 0 or +1, describing
the effect of collision on link ¢ as either losing a particle, having no effect or gaining
a particle. For speed, the collision operator relies on lookup tables which contain
the probability, A, that an input state s = {s;, 1 =1...7} will be collided into an

output state s = {s;-, i=1... 7}, and,
A (s - s’) > 0, (3.3)

ZA (s — s') = 1. (3.4)
Vo

Importantly, for lattice gases it is necessary, in order to capture macroscopic hy-
drodynamic behaviour, that collisions between more than two fluid particles be

incorporated [10].

The full collision operator can be shown to have the form [2],

Adm) = (=) & TLnF 0 =00, (35)
s, 8 J
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where £,,r is a boolean scattering matrix, the elements of which take values of 1 or

0, denoting whether a transition s — s  is allowed. It is defined as,

) =A(s—5) . (3.6)

Simulation observables are calculated from ensemble averages over both time and

space, the mean population N;(r,t) being given by,
Ni(r,t) = (n;) .
Density and momentum are respectively defined as,
p(r,t) = ZM(I" £, (3.7)
p(r,thu = 21: N;(r,t)c; . (3.8)

These macroscopic observables can be shown to obey hydrodynamic type behaviour,
ie. to be governed by ‘macroscopic’ equations similar to Navier Stokes and continuity,

(3.9) and (3.10) respectively.

80+ 05 (pug) = 0, (39)
0u(pue) + 35 o(Ppuas) = ~0a (0 (14505 ))
+v(0)85 (pua)
2
(- 5) adtou) . (G10)

Derivations are not presented here, as it is beyond the scope of this thesis (see [2]
and [11]), although reference to these ideas will be made in section 4.1. The ‘FHP’
models have an unphysical density dependent factor g(p) in front of the inertial term

in the lattice Navier-Stokes equations (3.10), which makes the model non-Galilean
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invariant [2]. Moreover, the pressure, first term on the lhs of (3.10), is unphysically
velocity dependent. In (3.10) c? is the speed of sound, v is kinematic viscosity

function (dependent on p) and D the number of dimensions.

The Navier-Stokes equations are obeyed by fluids, so why is it that particles colliding
and propagating on a regular lattice should also obey the same set of macroscopic
governing equations? Different fluids have different intermolecular force laws, but
the collisions undergone by these dissimilar fluid particles all conserve both mass and
momentum. Physically LGCA’s seem to tell us that it is the conservation of these
quantities which allow LGCA models to recover hydrodynamic behaviour. If internal
energy is also conserved during collision equations similar to the heat equation are

also recovered [12].

Lattice gases have many attractive properties. Due to their integer arithmetic they
have no round off error, are unconditionally stable, are ideal for parallel processing
and complex boundary conditions are easily incorporated. They do however also
have many unattractive properties - principally statistical noise. It is necessary to
average over large regions of the lattice, long times and many initial configurations
to extract ‘observables’ (3.7) and (3.8). This is especially true when calculating
quantities such as vorticity, which involve derivatives [13]. Moreover, collision rules
can become extremely complex when more links are added, and, regular three di-
mensional lattices with enough symmetry to ensure isotropy do not exist. (However,
a four dimensional model known as FCHC - face-centred hypercubic unit cell with

unit periodicity in the fourth dimension, consequently only pseudo 3D - with 24
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links exists, but collisions can only be dealt with by special computer hardware
or extremely large lookup tables.) The complexity of LGCA models roughly dou-
ble with each link added [14]. The requirement for the governing equations to be

Galilean invariant is also not easily satisfied.

In subsequent sections we discuss how taking a lattice Boltzmann Equation approach
has helped to overcome these disadvantages of LGCA schemes, whilst retaining most

of the advantages.

3.3 Lattice Boltzmann Approaches

McNamara et al [15] used the Boltzmann molecular chaos assumption, which ne-
glects the correlations between particles entering a collision (colliding particles have
no prior effect on each other). This assumption is applied to ordinary gases of low
density, where the mean-free path is very large (so that most particles come from
distant uncorrelated regions). Particles which have collided will undergo many other
collisions with different particles before they meet again and any correlation from
the first collision will have been lost before a second. Frisch et al [2] in their work
on lattice gases noted this approach appeared to have a very broad validity and
may not be restricted to low densities. Assuming molecular chaos allows the n;’s to
be replaced by single-particle distribution functions, which represent real ensemble
averages over a conceptually infinite number of equivalent systems. These averages

are denoted by N;.
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The evolution equation which describes propagation and collision can be written as,
Ni(r + ¢i, t + 1) = Ni(r, 1) + A;(N) (3.11)

where A;(N) is calculated by simply replacing the n;’s in the LGCA form with the
ensemble averaged N;’s. Equation (3.11) is used directly, without averaging, since
the N;’s are the ensemble averages, and hence free from statistical fluctuations.
Equation (3.11) is the lattice Boltzmann egquation, so called because a first order
Taylor expansion of what is essentially a finite difference equation yields an equation

similar in overall form to the continuum Boltzmann equation of kinetic theory [16],

8tN,- + Ci.VM = A,(N) . (312)

There are two key differences between the continuum Boltzmann equation and its
lattice variant. Obviously the latter is defined on discrete spaces, but it also considers

collisions between more than two particles.

A lattice Boltzmann approach eliminates statistical noise but retains the complex
collision operator used in the equivalent LGCA models, rendering it inefficient for
true 3D simulation, nevertheless, in [15] it is shown that this approach accurately

(within 5%) predicts the decay of shear and sound waves.

In 1989 Higuera et al [17] added the assumption that the distribution function is
close to the equilibrium state, which allows the collision operator to be linearised

and hence simplified. N; is expanded as,
N = N¥(p,v) + N)(Vp,Vv), N N™a, (3.13)
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where N;? is the equilibrium distribution function (for a uniformly translating fluid),
which is discussed in more detail in section 4.1, and is dependent on the local values
of p and v. N**? is the non-equilibrium contribution and can be expanded in powers

of the velocity components,
N = NO 4+ N® 4 0¥, (3.14)
where the superscripts on the N;’s refer to the order of Vv. Non-equilibrium contri-

butions are at most O (N?) for non-linear hydrodynamic regime [17]. The collision

operator is Taylor expanded about equilibrium to give,

A (V) = A (Meq)+§jj§—§,; (N6 M) + z o (PN )

(3.15)
where all derivatives are evaluated at N; = N; 7
Using the requirement that,
A; (N =0, (3.16)
(3.15) reduces to,
0A;
Ai (N) ~ -é-jv—-' (N;eq) ’ (317)
0A; .
6N (N — N; q) (3.18)
~ ZA,.j N; - N{) . (3.19)
J

The scattering matrix A;; is defined by the transition probabilities A (s — s'), and

is given by [17],

Ay = —% Z (s,- - s:) A (s — s’) (%)p—l (1 —d)>P! (sj - s;) , (3.20)
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where p = Y. s;, and b is the number of lattice link vectors. Equation (3.20) is a

reduced expression when compared to (3.5).

The complete evolution equation becomes,

Ni(r+cit+1) = Ny(r,8) + Y Ay (N; = Nj7) . (3.21)
J

The scheme encapsulated in (3.21) allowed more practical 3D simulations, as the
complexity of the collision rules are reduced from 2° to b%. This model does, however,
still suffer from the same constraints as the LGCA models since it is dependent upon
the explicit underlying boolean microdynamics through A4 (s — s') in (3.20), and the

resulting macrodynamic equations are the same.

In 1989 Higuera et al [18] took a different point of view towards the collision operator.
They let the form of the collision operator be dictated by the target macroscopic
equations, not by any underlying LGCA rules. The effect of collision depended only
upon the angle of the collision and could be tuned at will to ensure positive viscosity,

and to remove the constraints imposed by LGCA microdynamics.

Consider a simple model with no rest particles, so that now 7 =1...6. An element
of the collision matrix A;;, denoted by ay, depends only on the angle, 8, between
the link vectors c; and c;. A;; is rotationally invariant and for a FHP lattice 6 can

only take the possible values of 0°, 60°, 120° or 180°. Mass and momentum must of
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course still be conserved hence the following constraints on A;;,

6
>4y =0, (3:22)
i=1
6
ZAijcaia = 0, (323)
i=1

which lead to the following relationships respectively,

ag + 2agp + 20190 + @139 = O, (3.24)

0. (3.25)

Qo + o — G120 — Q180

The non-zero eigenvalues of the resulting symmetric and cyclic matrix can be written

in terms of just ap and agp [18],

A = 6(ao+ae) , (3.26)

o = 6((10 + 2060) ) (327)

where (3.26) is twofold degenerate. The value of A can be shown [18] to be related to

the kinematic viscosity, v, and its value chosen to ensure this quantity to be positive,

V= —-}1- (:1\— + %) . (3.28)

By lowering A close to -2, v can approach zero [20]. Also, o is usually chosen to be
-1 so that N;**? decays as quickly as possible to zero [20]. It should be noted that
numerical instability can occur (especially as v approaches close to zero), since de-
parting from a scheme based on LGCA collisions removes the unconditional stability

present in such models.

For this enhanced collision LB model, the full evolution equation is,

Ni(r +c;,t+1) = Ny(r, ) + Y _ Ay (N; — N§%) (3.29)

J
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where the scattering matrix is pre-calculated and has a limited set of values according
to the proceeding analysis. The lattice Boltzmann model of [18], as presented,
suppresses the statistical fluctuations which are present in lattice gases, but Galilean
invariance is not restored and the pressure still retains a velocity dependence which
is unphysical. Although, by convenient choice of equilibrium distribution function,

the g(p) factor responsible for non-Galilean invariance can be eliminated [14].

Some of the remaining problems (velocity dependent pressure etc.) were addressed
in LB models [19]. However, these efforts were largely over taken when attention

turned to LBGK simulations.

3.4 Lattice Bhatnagar-Gross-Krook Models

The major difficulty in dealing with the Boltzmann equation, in either its contin-
uum or discretised form, is the complicated structure of the collision term. Simpler
models, known as collision models, have been proposed for the collision term. The
Bhatnagar Gross and Krook (BGK) model, [21], makes the assumption that much
of the detail contained within the collision term is not of significant influence during
collision, and it is expected that a simplified collision term (which, nevertheless has
the average properties of the full collision operator) can replace it [22]. In the BGK
model the collision operator is replaced by a scalar relaxation parameter, w, known
as the collision frequency in kinetic theory, and simply assumes the average effect

of collisions is proportional to the departure from equilibrium. Importantly there is
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now freedom to choose an equilibrium distribution, N7?, which leads to the exact

Navier-Stokes equations.
The evolution equation now becomes,
N,-(r + Ci,t + 1) = N,-(r, t) + UJ(]Vieq - N,) . (330)

The BGK collision model was incorporated into LB models, known as LBGK models,
independently, by Qian et al [3] and Chen et al [19], and was shown to lead to correct
hydrodynamic behaviour. The correct continuity equation and second order accurate

Navier-Stokes equations are recovered as follows,

0ip + 05 (pup) =0, (3.31)

8; (pte) + Op (puatip) = —0a (c2p) + 15 (05 (pua) + 8x (pup)] (3-32)

where speed of sound ¢, = —-\}-é—-, and the Okinematic viscosity » = 1 (2 —1). This
approach, using a simple relaxation parameter instead of more complex collision
rules, is computationally much more efficient and provides flexibility in manipulating
transport coefficients. Also the advective terms now satisfy the condition of Galilean

invariance and the pressure is not velocity-dependent.

One advantage of LGCA is they are inherently stable, whereas models using a Boltz-
mann equation (including LBGK models), without their foundation in cellular au-
tomata microdynamics, are subject to numerical instabilities, (although relaxation
schemes are known to have good stability properties). Analysis of the stability of

LBGK models has been carried out by various authors. Sterling et al [23] found
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that stability depends on the distribution of mass on a node between lattice links
of different lengths, the relaxation parameter w and mean velocity. Viscosity must
always be positive, and, there is a maximum stable velocity for fixed values of the
other parameters, the value of which increases with increase in w until a certain value
of w when no increase is observed. This work was extended by Worthing et al [24]

who report that w = 1 provides the optimal accuracy in time.

Since their inception in 1992 LBGK schemes have been the subject of much study.
In the subsequent sections of this chapter we review applications and extensions to

the standard LBGK scheme as introduced in [3,19].

3.4.1 Boundary Conditions

Imposing a wall boundary condition was achieved in LGCA schemes using bounce-
back lattice closure rules, where at a node denoted ‘wall’, during a wall collision the
particles have their direction reversed and are sent back toward the node from which
they came. Wolfram [11] stated that this would be sufficient to ensure no-slip con-
ditions at solid surfaces, and the ease with which bounce-back can be implemented

allows for the simulation of complex geometries such as flow through porous media.

This approach was found only to be first order accurate [25]. Whilst bounce-back
conditions are ‘good’ in so far as they suppress Knudsen layers [25] the effective
zero in macroscopic velocity is located slightly off node. He et al [26] analysed

the velocity near the wall and confirmed this for Poiseuille flow. Attempts have
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been made to improve adherence to the no-slip condition of the fluid medium as
the LBGK scheme is second order accurate and a second order accurate boundary

condition would obviously be preferable.

The problem at simulation lattice edge “wall” nodes is that some of the lattice links
are outside of the system and as such have undefined behaviour. So schemes have

been developed to obtain these unknown distributions to second order.

In 1993 Skordos [27] included velocity gradient terms in the equilibrium distribution
at the ‘wall’ nodes from known values. This resulted in more accurate boundaries
but the scheme was not as stable. A hydrodynamic no-slip condition on walls by
applying a pressure constraint was proposed by Noble et al [28] with increased second
order accuracy. Another second order accurate boundary scheme was proposed by
Inamuro et al [29] who use a counter slip velocity to counteract the slip velocity
which can occur using ordinary bounce-back. These schemes have been studied

analytically by Zou et al [30].

3.5 Applications of the LBGK Scheme

3.5.1 Flow Around a Cylinder

The lattice Boltzmann approach using a linearised collision matrix was validated by
Higuera et al [17]. They simulated flow around a cylinder at moderate Reynolds

number, Re < 80. Time dependent behaviour was observed, and at Re = 77.8
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periodic eddy shedding occured. The flow properties, for example lift and drag
coefficients, agreed reasonably well with experiment. As these types of LB models
are restricted to uniform lattices the circular geometry is only approximate, no-slip
boundary conditions are applied on a ‘jagged’ edge not necessarily lying on the

cylinder.

In 1997 He et al [40] returned to this geometry, and constructed a polar co-ordinate
based lattice using an interpolation-supplemented LBGK model. The circular ge-
ometry of the cylinder was now accurately resolved and the accuracy of the LB

simulation was within experimental accuracy.

3.5.2 Cavity Flow

Lattice Boltzmann models have been applied to many simple flow geometries. Hou
et al [41] simulate two-dimensional cavity flow with good results using a LBGK
scheme. In cavity flow there is a major central recirculation and secondary recir-
culations in the corners, the position and stream function of which vary with Re.
Hou et al use a 2562 lattice with Reynolds numbers in the range 10 — 10, 000.
On comparison with the results of other techniques already in the literature, the
values of the streamlines and the positions of recirculations agree to within 1%.
In [41] compressibility effects are also quantified for different maximum velocities
and found to be small. Miller [42] has also applied the LBGK model to cavity flow
and made