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Abstract

In this thesis we develop applications of Lattice-Bhatnagar-Krook (LBGK) models 

to incompressible flow problems.

We show that in geometries where flow is forced via application of a pressure differ­

ence, a modified Exactly Incompressible LBGK (EILBGK) scheme must be applied 

if significant pressure variations occur. We analyse the model’s representation of 

the no-slip wall boundary condition for flow in a straight duct and recover a friction 

factor in excellent agreement with theory. Simulation of flow over a backward-facing 

step produces good agreement with other numerical techniques.

We propose two new LBGK schemes, one directed towards the calculation of depth- 

averaged flow quantities and the other which focusses on thermal flows in the 

Boussinesq-Oberbeck limit.

Depth-averaged flow facilitates the two-dimensional simulation of three-dimensional 

ducts of constant depth. The effect of the unmodelled dimension is accounted for 

by including momentum sinks in the momentum equations. We apply the scheme 

to flow in a bifurcating duct and results are again in good agreement with other 

numerical methods.

We develop a thermal model in which energy is treated efficiently as a passively 

advected scalar quantity. This approach results in a model which is more simple



and robust than other previously reported LBGK thermal models. Our scheme is 

then validated by application to flow in a straight duct with constant heat flux 

applied at the walls. Excellent agreement with theoretical predictions is obtained 

for the calculated Nusselt number.
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Chapter 1

Introduction

The flow of fluids has been extensively studied since fluids impact on so many dif­

ferent aspects of everyday life. Until the early 1960’s fluid mechanics was studied 

either by purely experimental or purely theoretical means. Analytical solutions of 

theoretical models often required simplified calculations and failed to include all the 

requisite physics of the flow [1]. Then came computational fluid dynamics (CFD). In 

the 1960’s, mathematical advances and increased computational power allowed the 

numerical solution of the exact governing equations. The computer simulation of 

flows involving many different physical phenomena became possible and as a result 

CFD became and remains a popular and useful tool for many engineers.

CFD has also had an effect on fluid experiments, which have traditionally played a 

very important role in the design of systems which depend on flow behaviour. For ex­

ample, wind tunnels are an effective, but increasingly expensive and time consuming,
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CHAPTER 1. INTRODUCTION

way to study scale models of large systems like aircraft or cars. A CFD calculation, 

for example, can allow an engineer to test many different configurations relatively 

quickly and economically, thus reducing the amount of final experimentation which 

needs to be carried out. This example helps to emphasise how CFD complements the 

traditional approaches of theory and experiment, and although it is an immensely 

powerful and useful technique it probably will never replace experiment completely.

Compared to lattice Boltzmann (LB) techniques, traditional computational fluid 

dynamics is a mature subject. As a result it has been developed for many different 

types of flows, including incompressible and compressible flows, subsonic and super­

sonic flows, laminar and turbulent flows, as well as multi-component and chemically 

reacting flows.

LB methods, introduced as an alternative to lattice gas cellular automata (LGCA), 

are consequently viewed in quite a sceptical light by many fluid dynamicists. Such 

models are often considered a novel technique offering no real advantage over the 

traditional methods. This however is not true, and a testament to this is the ever 

expanding body of literature on the subject as LB models are applied to different 

types of flow problems.

The work reported in this text investigates the use of lattice Bhatnagar-Gross-Krook 

(LBGK) models, a variant of the LB approach, to simulate the governing equations 

of incompressible internal pressure-driven flows, in contrast to the traditional ap­

proaches of discretising the same continuum equations and solving via finite-element 

or finite-volume techniques.



CHAPTER 1. INTRODUCTION

LB schemes are simplified kinetic models based upon microscopic or mesoscopic pro­

cesses, so that the averaged microscopic properties obey the desired macroscopic be­

haviour. In molecular dynamics (MD) simulation every particle is tracked. Although 

physically realistic, MD is an impractical approach to solving large realistic systems, 

even with modern powerful computers, since the number of tracked molecules which 

are required is immense. The LB approach avoids such complications and is based on 

a very much reduced parameter space. The scheme is also by nature ideally suited 

to massively parallel machines and the implementation of boundary conditions is 

relatively simple.

1.1 Aims

Whilst it is acknowledged that LB models will never replace traditional CFD meth­

ods, there may be areas in which they can enhance its capabilities and should be 

viewed as a potentially useful tool in the computer simulation of fluids. The princi­

pal aim of this project is to study lattice Bhatnagar-Gross-Krook (LBGK) models, 

a variant of the LB approach, when applied to flow geometries of engineering im­

portance in an attempt to prove the usefulness of the technique.

Thus we apply LBGK models to the simulation of pressure-driven incompressible 

flows up to moderate Reynolds number in industrially-relevant geometries, via a 

careful study of the detail of the boundary conditions. Pursuing the theme of in­

dustrial relevance, we also aim to develop a thermal LBGK model which is adapted

3



CHAPTER 1. INTRODUCTION

to flows containing negligible viscous dissipation and so can be applied to certain 

problems of engineering importance. In the next section we discuss the detailed 

structure of this thesis which describes the work carried out in order to achieve the 

above aims.

1.2 Outline of Thesis

The governing hydrodynamic equations which we seek to solve via our LBGK sim­

ulations are introduced in chapter 2. These are the incompressible continuity and 

Navier-Stokes equations, an appropriate energy equation and (for some applications) 

the equations describing depth-averaged flows. In chapter 3 we introduce lattice gas 

cellular automata (LGCA), based upon the seminal work of Frisch et al [2] in the 

mid 80’s. We then follow the key developments which have led to LBGK models, 

although, LBGK models tend now to be viewed apart from their parent automata 

schemes.

In chapter 4 we develop the LBGK models used. We present the theory and fully 

derive the macroscopic governing equations for the standard D2Q9 LBGK model, as 

introduced by Qian et al [3], then proceed to explain a modified exactly incompress­

ible LBGK (EILBGK) scheme. The use of this section is of central importance when 

simulating internal pressure-driven flow. Also in chapter 4 we detail two schemes not 

previously reported in the literature which have been developed during the project. 

Firstly, an EILBGK scheme suitable for the simulation of depth-averaged flows, and,

4



CHAPTER 1. INTRODUCTION

secondly a novel thermal LBGK scheme incorporating a separate energy variable.

Results of simulations applied to the problem of internal pressure-driven flows are 

presented in chapter 5. We apply an EILBGK scheme to a backward-facing step, 

carefully considering the applied boundary conditions, and make comparisons with 

both traditional CFD and experiment up to intermediate Reynolds numbers.

In chapter 6 we validate our depth-averaged EILBGK scheme numerically, then 

apply the model to flow in a bifurcating duct and make comparisons with some 

standard CFD results.

Finally we present, in chapter 7, results of our thermal LBGK model. We apply 

the scheme to a forced convection flow problem and again make comparisons with 

analytical solutions and standard CFD results.

Conclusions and suggestions for further work are presented in chapter 8.

5



Chapter 2

Hydrodynamic Governing 

Equations

Since we shall be making arguments based upon the microscopic origin of the gov­

erning equations of hydrodynamics it is appropriate, for the sake of producing a 

coherent account, to describe how the macroscopic motion of fluids is modelled and 

to provide an overview of derivations of key equations governing fluid flow.

Clearly our treatment cannot be exhaustive. Moreover, we shall focus upon those 

approximations within the system of fluid momentum, continuity and energy equar 

tions which are relevant to our applications of internal pressure-driven flow up to 

moderate Reynolds number (in the limit of negligible viscous dissipation) and upon 

which we rely in later sections.

The present chapter is also the most appropriate place to develop some non-standard
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theoretical results, which we propose to use subsequently without further justification.

volume, dV
control surface, S

control volume, V

Figure 2.1: Flow models used in deriving macroscopic gov­
erning equations, (a) Control volume, F, bounded by control 
surface, S. (b)Fluid element of volume, dV.

The macroscopic governing equations can be obtained using various different flow 

models, see fig 2.1, which consider either a control volume, V, bounded by a control 

surface, S, or an infinitesimal fluid element of volume dV. Either of these models 

can be static, with the fluid moving through it, or the volume can move with the 

fluid (the same fluid atoms always being contained within the volume). The gov­

erning equations obtained from the various models differ in form, but are none the

less equivalent and can be transformed from one to the other by relatively simple 

algebraic manipulations.

7
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Whether models of type (a) or (b) of figure 2.1 are used, the volume considered is 

large enough to contain many millions of atoms of the fluid, yet very small compared 

with the scale of the problem.

A system of five equations is required in order to completely describe the motion of 

a fluid. These are

1. the continuity equation,

2. the Navier-Stokes equations (3 equations),

3. the energy equation.

2.1 Continuity Equation

The continuity equation is a mathematical expression of the law of conservation 

of mass. Consider a fluid element of some volume V0. The mass of fluid flowing 

through an elemental area of dA  in unit time will be,

p v .d A  , (2.1)

where v is fluid velocity.

The vector dA  has magnitude equal to the area of the surface element and its 

direction is along the normal. The total mass that will be flowing out of the volume, 

V0, enclosed by the surface S, in unit time is
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and the decrease in unit time of mass inside VQ is,

- M I
p d V  . (2.3)

Mass must be conserved so (2.2) and (2.3) are equated to give,

~ i f I I p d V = I I p v - d A -
(2.4)

Vo

The surface integral of (2.4) can be transformed into a volume integral using the 

Divergence Theorem, so we write (2.2) as,

I I p v - d A = I I f v p v d V -
s v0

(2.5)

Therefore, (2.4) becomes

I f f

dp
dt

+ V./ov dV = 0 , (2.6)

Vo

which must hold for any volume, so the integrand disappears to give,

dp
dt +  V.(/3V) =  0 , (2.7)

which is the equation of continuity. In tensor notation, with the usual implied 

Einstein summation convention on repeated Greek subscripts, (2.7) becomes,

dp—  +  dapva =  0 (2.8)

2.2 Euler’s Equation

Euler’s equation describes the motion of a perfect fluid, ie. a fluid with no inter­

nal friction (viscosity), and which is thermodynamically reversible. The total force
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acting upon a volume element in the fluid is the pressure, p , integrated over the 

entire surface of the volume, and again using the Divergence Theorem this can be 

expressed as a volume integral as follows,

Vp dV  , (2.9)
s  v0

whereupon (—Vp) may be expressed as the force per unit volume,

F  =  - V p  . (2.10)

Using Newton’s second law we can now write an equation of motion for our fluid 

element,

F  =  -V p  =  p J  . (2.11)

The velocity derivative that appears in (2.11) has to be carefully considered. It is 

not simply the rate of change of velocity at a fixed point, but is the rate of change 

of velocity of the chosen fluid element as it moves about in space, so,

, dv dv dv dv
dv = —  d t + —  dx + —  dy+  —  dz ,

dt dx dy dz

=  dt +  (dr. V) v ,

%  =  ^  +  (v -V) v - (2-12)

In more conventional CFD (2.12) is often referred to as the substantive derivative,

and using this result in (2.11), we obtain,

dv  1
—  +  (v.V) v =  — Vp . (2.13)
dt p

This is Euler’s equation, and may be written in tensor form as,
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or, alternatively,

=  -dffliafi , (2.15)

n ap = pSap + pVaVp , C2-1̂ )

where IIap, the momentum flux tensor, is considered further in section 2.3.

2.3 Momentum Flux Tensor

The momentum of a unit volume is simply pv. Its rate of change of momentum can 

be written,

dS ^ L  = p^ .  + vJ P .  (2.17)
d t H d t a d t y J

If the continuity equation (2.8) and Euler’s equation (2.14) are substituted in (2.17), 

the following results,

=  —p V pdp V a — d ap  — Va d p  (pVp) ,

=  - d ap -  dp {pvavp) ,

=  -d p  (pSQp +  pvavp) ,

=  -dpUafi . (2.18)

The physical meaning of Uap is that it is the a-component of the momentum flowing

in unit time through unit area in direction perpendicular to the /?-axis [4].

11
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2.4 Navier-Stokes Equations

To derive the equations which govern the momentum of a viscous fluid, the effect 

of viscous dissipation must be included by adding additional terms to the equation 

which describes the motion of a perfect fluid: Euler’s equation. The continuity 

equation does not require any modification, as it is correct for both perfect and 

viscous fluids.

A viscous fluid is one in which there is an irreversible dissipation of momentum: 

momentum diffuses from positions in the fluid where the momentum is larger to 

positions where it is smaller. Internal friction must reduce the momentum flux per 

unit area, so the momentum flux tensor Uap , (2.16), is redefined as,

HQp —> IiQp ~ <jap , (2.19)

where cr'ap is the term that accounts for the dissipation of momentum within the 

fluid and is known as the viscosity stress tensor.

Viscous type processes only occur where there are velocity gradients within the fluid. 

If the velocity gradients are small it is assumed that a'ap is dependent only on the 

first derivatives of velocity, and it is a linear function of combinations of dpva, which 

will be zero when the fluid is in uniform motion.

A fluid should also be free of viscous effects when it is in uniform rotation. If such 

a fluid has angular velocity a; at a point r  the velocity at that point is given by,

v =  w A r .

12
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Linear combinations of (davp +  dpva) and d7v7 disappear under both uniform mo­

tion, and uniform rotation.

A general second rank tensor linear in velocity gradients, vanishing for a fluid in 

uniform translation and rotation is,

a 'aP -  a (daVp +  dpVa) +  b d7V7 Sap , (2.20)

which can be expressed alternatively as [4],

v'ap =  V (d<*vP +  dpvQ -  ^ d7v7 Sap^j +  (d 7v7 Sap , (2.21)

where rj and £ are known as the coefficients of viscosity.

The equations describing the motion of a viscous fluid are now obtained by substi­

tuting for the modified momentum flux tensor, Hap, in Euler’s equation, (2.15).

dt (pva) =  -dpT lap = ~dp (p5ap +  pvavp -  cr'apj , (2 .22)

P (dtva +  vpdpVa) =  - d Qp + d p (^r][d avp +  dpva

+ (d 7v7Sap  ̂ . (2.23)

The coefficients of viscosity are usually considered to be constants, and as a result 

of this can be moved in front of the differential operators, leaving

dtva +  VpdpVa =  --^daP  +  vd 2pVa +  ^ ( c  +  da{dpVp) , (2.24)

which are the Navier-Stokes equations, where v  =  is the kinematic viscosity of the 

fluid.

13
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2.5 Incompressibility

In many cases an assumption that the fluid under study is incompressible is made. 

This can be interpreted physically to mean that there is negligible variation in the 

fluid density, even with large variations in pressure, p, and the density may be 

assumed constant.

This assumption helps to simplify the equations of motion derived in sections 2.2 

and 2.4. For constant density, p, the continuity equation becomes,

V.v =  0 , (2.25)

and the Navier-Stokes equations simplify to give,

^  +  (v.V) v =  - - Vp +  i/V2v . (2.26)
at p

Whilst it is often assumed that p does not vary with p, p can still vary with tempera­

ture T, ie. for the non-isothermal calculations we perform, we shall assume p =  p(T)

only.

2.6 Reynolds Number

An important dimensionless quantity is the Reynolds number, Re ,

Re = —  , (2.27)V

where U and I are a characteristic velocity and a characteristic length scale of the 

flow respectively, the choice of which is arbitrary and depends on the flow geometry.

14
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In laminar duct flow I is often taken to be the hydraulic diameter (to be defined

below), and U to be the average velocity across the duct.

The hydraulic diameter, D , is defined as,

(2.28)

where A  is the cross-sectional area, and P  is the wetted duct perimeter. For a 2D 

rectangular duct of width W  (2.28) reduces to,

The importance of the Reynolds number becomes clear if we consider Reynolds’ law 

of similarity. Two different flows of the same type, ie. with a similar boundary 

geometry, are said to be dynamically similar provided they have the same Reynolds 

number. So, in two scaled ducts with a sudden assymetric expansion (say), one 

containing air and the other water, two dynamically similar flows are obtained if 

both systems have equivalent values of Re. This similarity principle is extensively 

used in wind tunnel and wave tank experiments to test small models of much larger 

structures.

If we normalise lengths to be measured on Z, and velocities on £/, the Navier-Stokes 

equations in their incompressible form become,

D = 2W . (2.29)

(2.30)

where

Re — — and p* =  v
P

pU2 ’

15
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and all the variables in the above (r*,v*) are now dimensionless and clearly, for 

given boundary conditions the solution depends only upon Re. Flows which are 

similar can be obtained from one another by changing the normalisation constants 

of length and velocity.

2.7 Energy Equation

In this section we establish an appropriate energy equation for our target application 

of internal pressure-driven flow with negligible viscous dissipation. It is appropriate 

to consider the fluid equation of state concurrently.

A volume element of inviscid fluid has both kinetic and internal energy, the former 

being small for our applications,

( 2 +  pe) > (2-31)

e being the internal energy per unit mass.

The rate of change of this energy can be expressed as,

To evaluate expression (2.32) we consider first the term due to kinetic energy,

8  ( 1  2 \  1  2 f n  o o \

atU <m) = 2v i  + pv-Tf ( 2 ' 3 3 )

By substitution of continuity (2.7) and Euler’s equation (2.14), for the first and 

second terms on the rhs of (2.33) respectively, and using the following combination

16
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of the first and second laws of thermodynamics,

dh = T d s + G) d p , (2.34)

(where h is enthalpy, T  temperature and s is the entropy), (2.33) may be written [4],

§t ( s ^ 2)  =  _  ;7V-v  (^®2 +  +  pT v -V s • (2-35)

To find a form for in (2.32) use the first law [4],

de = T  ds —p dV — T d s  +  dp ,
Pz

the definition of specific enthalpy h =  e +  jj and the fact that flow of an ideal 

(inviscid) fluid must be adiabatic,

ds _
_ + v . v , = o ,

so that we can write,

d , . ds dp ~ {p s)  =  +

n f r 9 *  4 .  P d P \ - > - r d p
~  P \ T m  + ? a i j + e d i ’

= pT (—v.Vs) +  (e  +  ( -V .p v )  ,

which leads to the desired expression for (ps),

=  —hV.pv -  pT-v.Vs . (2.36)
ot

Combining (2.35) and (2.36) we obtain an expression of the law of conservation of 

energy for an ideal (inviscid) fluid,

l ( V 2+pe) =_v- (** ( r 2+h) ) • (2-37)

17
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Energy remains conserved in a viscous fluid of course, but there is now an additional 

flux of energy due to the internal friction, v .a  (see below) and an energy flux due 

to conductive transport, q,

q  =  - W T  , (2.38)

where k is the thermal conductivity.

These fluxes, due to viscosity and conduction, may be incorporated into the perfect 

fluid equation in the obvious way to yield the energy equation for a real fluid,

§  ( \ p v 2 +  pe) =  -V . (pv  ( i t ) 2 + h \ -  V.cr' -  k V T j  . (2.39)

Now, the Navier-Stokes equations, continuity equation and the thermodynamic re- 

latiouships already discussed may be used, along with the definition of specific en­

thalpy, to transform the left hand side of (2.39) [4],

| ( | l » ’ +  l» )  =  +  - v . y - W T )

+'fl’( ! +v'v' ) _ 4 l S _v<*VT)- «2-«>
From a comparison of the last equation, (2.40), and equation (2.39) it is immediate 

that [4],

‘,t( I +vv*)-4£ +v'(wt)' ( 2 ' 4 1 )

which is the general equation of heat transfer. Note that, in the absence of con­

duction or viscosity the ideal fluid equation of conservation of entropy is recovered. 

Together with an appropriate equation of state for the flowing fluid, momentum and 

continuity equations, energy equation (2.41) is sufficient to close the description of 

any fluid.

18
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Now, it is possible to reduce the mathematical complexity of the formulation pro­

vided certain approximations are valid, and we proceed now to consider, so-called 

Boussinesq-Oberbeck flow. Equation (2.41) can be applied to our incompressible flu­

ids after some simplifications. If flow velocity is much lower than the speed of sound, 

density changes due to pressure variations may be ignored. This incompressible as­

sumption is effectively to assume that the equation of state is such that the density 

of the fluid is independent of the pressure. Density, however, cannot be assumed 

independent of temperature for our applications. Consequently fluid density varia­

tion with temperature cannot always be neglected, even at low flow velocities, and 

Boussinesq-Oberbeck flow treats density as independent of pressure but dependent 

upon temperature. Therefore, using,

For small temperature differences rj, k and Cp may be assumed constant. If (2.21) 

is substituted for oap in (2.42), the equation of heat transfer for an incompressible 

fluid is,

equation (2.41) becomes,

(2.42)

—  +  v.VT =  *V 2r  +  (d0va +  daV f,f , (2.43)

where the thermal diffusivity, x, is,

X =
k_

pCp
(2.44)

19



CHAPTER 2. HYDRODYNAMIC GOVERNING EQUATIONS

The contribution from the last term in (2.43) is that due to viscous dissipation, 

which is the degradation of mechanical into thermal energy caused by the friction 

of adjacent fluid particles moving past each other. However, in the majority of flow 

problems this contribution is not important [5], and can be neglected. Indeed, this 

term is smaller than the conduction term in liquids typically by a factor xlO-7 [6]. 

Therefore, within the Boussinesq-Oberbeck flow approximations, the macrodynamic 

equation (2.43) reduces further,

dtT  +  v.VT =  xV 2T . (2.45)

It is central to observe that, in the Boussinesq-Oberbeck equation (2.45) energy ap­

parently behaves as a passively transported scalar quantity, the energy being slaved 

to the velocity. Only if buoyancy forces were to be included would the tempera­

ture be coupled back to the velocity through a buoyancy ‘body-force’ term in the 

Navier-Stokes equations.

As with the Navier-Stokes equations we can define dimensionless quantities which 

characterise flow. One such quantity is the Nusselt number, Nu.

The heat transfer coefficient, hy is defined as,

h -  q 
(Tw -  Tb)

where q is the heat flux, and (Tw — Tb) a characteristic temperature difference be­

tween the boundary (wall) and the contacting fluid. The Nusselt number is then 

defined as,

N u = j  , (2.47)
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and is characteristic of the heat transfer ( I remains a characteristic length).

Another dimensionless quantity which represents an intrinsic fluid property, not 

dependent on flow geometry or any other flow property is the Prandtl number, P r , 

where,

p r = -  = T z  . (2.48)
X k

2.8 Incompressible Depth-Averaged Flow.

Computationally, full three-dimensional simulations can be extremely demanding 

and commonly, in an attempt to reduce the complexity of the problem, internal 

flows in ducts of constant depth are computed in two-dimensions, without explicitly 

modelling the shallow depth of the duct, see figure 2.2. In CFD the results of such 

calculations are generally assumed to be depth-averaged quantities, and the influence 

of the ‘unmodelled’ dimension is accounted for by using different momentum sink 

terms in the flow momentum equations. In this section we explore the basis of these 

assumptions and in section 6.2 we proceed to examine the domain of applicability 

of 2D calculations to laminar flow by numerical calculation.

In the following analysis Greek subscripts refer only to coordinates x  and y in the 

explicitly modelled plane, d denotes physical fluid density, and all other symbols 

have their usual meaning. Taking isothermal, laminar flow in the shallow duct of 

constant depth shown in figure 2.2 to be governed by the continuity and incompress-

21



CHAPTER 2. HYDRODYNAMIC GOVERNING EQUATIONS

► Y

Figure 2.2: Geometry of depth-averaged flow problem.

ible Navier-Stokes equations (written in conservation form [1]) one may perform a 

^-integration to yield,

dtva +  dpVaVp +  7 “  [vzva]q‘ =  - d a ( § )  +  vdpdpv^Lz \ a /

{ d z v a \z = L z ~  & zV a | z = o )  5 (2.49)

^  +  7 - H o '  =  0 .  (2-50)

where the overbar denotes a depth-average quantity,

  1 r L*
va =  — /  va(x, y, z) dz . (2.51)

■L'z JO

Invoking no-slip boundary conditions on velocity in equations (2.49) and (2.50), 

va =  0 V a  at 2 =  0,L Z, a pseudo two-dimensional system is formed, in which, 

controlling the depth-averaged quantities, are the incompressible continuity equation 

exactly and a momentum equation similar in form to the incompressible Navier-
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Stokes equations with an additional momentum sink,

dpvp 

+  dpv^vj}

=  0 ,

■da ( g )  +  vdpdpVa +  f - S a  ,

(2.52)

(2.53)

where,

Sa = v-dvQ
dz

v dva
z=L, dz

(2.54)
z=0

We now proceed to define,

Cq/3 — Va Vp VaVp (2.55)

which enables (2.53) to be written,

dtva +  dpva vp =  da ( - )  +  vdpdpva +  dpCap +  .\ a j  Lz
(2.56)

Evidently the depth-averaged velocity and pressure fields are governed by the equar 

tions of two-dimensional fluid flow with an effective body force of the particular 

form,

dpCQp + Sa 
Lz '

(2.57)

The second stress term represents the influence of the unmodelled surfaces, and the 

first cumulant term an inertial discrepancy. By considering the case of unidirectional 

flow parallel to the x-direction, characterised by a peak (central) velocity uo, it is 

possible to obtain order of magnitude estimates for the two terms in (2.57),

1
L ,V L,

VUo

LI '
u\

dpCxp ~
Lv

(2.58)
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from which a comparison of the stress and cumulant terms follows,

Sg/Lz vug Ly _  1 A . .
dpCxp ~  L2z u20 Re ’ ( )

where Re =  is the Reynolds number, calculated from the unmodelled depth, 

and A = is the aspect ratio of the duct cross-section. Supported by the results 

of section 6.2, it becomes clear from (2.59) that, for ducts of sufficiently large as­

pect ratio, the effective body force impressed on the two-dimensional fluid may be 

approximated by the stress term Sa of expression (2.57) alone. (This observation 

is relevant to the development of our EILBGK scheme (section 4.3) and is further 

investigated by numerical techniques in section 6.2.) Our depth-averaged governing 

equation reduces to,

dtvta +  vp =  da ( \  ] +  vdpdpv^ + —■ , (2.60)\a J  Lz

for large values of aspect ratio A.

For ducts in which aspect ratio A  is sufficiently large, we aim to simulate in two- 

dimensions the parent three-dimensional flow, sampled across the unmodelled z- 

direction and take the flow to exhibit that parabolic velocity profile which is a 

solution of the incompressible Navier-Stokes equation for flow parallel to two parallel- 

plane walls,

vx(yz) =  (Lz -  z) , (2.61)
z

where, of course, uo depends upon the applied pressure gradient [4]. One may now 

obtain from (2.61) expressions for the derivatives in definition (2.54),
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In the last equation uq may be eliminated in favour of z-averaged velocity, obtained 

from (2.61), whereupon we obtain from (2.52) and (2.53) the equations governing 

pseudo two-dimensional flow in a shallow duct of large aspect ratio at steady-state,

dpvp =  0 , (2.63)

dpvZ vp =  - d a +  vdpdpv^ -  > (2-64)

where an overbar denotes averaging over the shallow ^-direction, Greek subscripts 

refer only to x , y and the velocity dependent body force in the rhs has its origin in 

the stresses from the unmodelled surfaces. In section 4.3 we make appropriate mod­

ifications to an EILBGK scheme which move its governing macroscopic equations 

towards equations (2.63) and (2.64).
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Chapter 3 

Lattice Gases and Lattice 

Boltzmann Models

3.1 Introduction

In this chapter we seek to outline the key developments leading to the kind of LBGK 

models used in this thesis. We start with a review of lattice gas cellular automata 

(LGCA), since lattice Boltzmann (LB) models have evolved from them (though 

LB models are now viewed apart from their parent automata). Notably, it has even 

been shown recently, by He et al [7], that the LB algorithms can be obtained directly 

from the continuum Boltzmann equation. (The Boltzmann equation is a differential 

equation which describes the behaviour of a dilute gas, a gas in which collisions 

involving more than two particles are neglected.)
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3.2 Lattice Gas Cellular Automata

In 1986 Frisch et al [8] showed they were able to construct a simple automaton which 

was able to simulate both 2D and 3D Navier-Stokes equations. They extended earlier 

work of Hardy, Pazzis and Pomeau [9] who had constructed an automaton, known 

as the HPP model, based on monoenergetic particles propagating and colliding on 

a square lattice, that was suitable for modelling certain physical phenomena (for 

example sound waves) but failed to recover the Navier-Stokes equations - a lack of 

sufficient symmetry and the conservation of spurious quantities being to blame.

i=2i=l

i=6 i=3
i=7

i=5 i=4

Figure 3.1: a) Hexagonal lattice for FHP model, b) FHP 
unit cell.

Frisch et al found that ‘up-grading’ to a hexagonal lattice introduced sufficient 

symmetry to recover equations similar in form to the Navier-Stokes equations (with 

constraints on particle number density and simulated flow Mach number).

In the simplest ‘FHP1’ [2] cellular automaton, each node of the lattice, figure 3.1(a),
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is joined to its nearest neighbours by six velocity vectors, referred to as lattice links,

(cx ,where i =  1. . .6) ,  there being 6 allowed velocities on a hexagonal lattice.

‘Boolean’ particles, of unit mass and velocity, populate the lattice and move along 

the links, residing at the nodes at the end of each integer timestep, subject to an 

exclusion principle. Only one particle may move along a particular link during any 

time step, which leads to a Fermi-Dirac equilibrium distribution.

The evolution of the lattice proceeds in two phases, propagation followed by collision.

During the propagation phase each particle moves one lattice link, to the nearest

node towards which its velocity was pointing,

rii(r  +  ci, t  +  1) =  nx(r, t) , (3.1)

where,

!1 for link i being occupied ,

0 for link i being unoccupied .

During the next stage of evolution collisions are applied at lattice nodes, which 

conserve both mass and momentum. See figure 3.2, which shows two and three 

particle interactions. Many more collisions which conserve the required properties 

are possible, including in ‘FHP2’ [2] collisions with rest particles, which remain at 

the node during each time step, see i — 7 in figure 3.1, and are discussed at length 

in the literature (see [2] for example). The effect of collision is incorporated into the 

evolution equation as follows,

m{r  +  cx, t +  1) =  n,-(r, t) +  Ax(n) . (3.2)
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(a) (b)
Figure 3.2: a) Two particles collision, two equally possible 
output states, b) Three particle interaction.

The collision operator, A w i l l  take the possible values of —1, 0 or +1, describing 

the effect of collision on link i as either losing a particle, having no effect or gaining 

a particle. For speed, the collision operator relies on lookup tables which contain 

the probability, A, that an input state s =  {sx-, i = 1. . .  7} will be collided into an 

output state s =  {s’-, i = 1. . .  7}, and,

i ( s - + s ' j  >  0 , (3.3)

$ > ( « - + * )  =  1 .  (3.4)
Vs'

Importantly, for lattice gases it is necessary, in order to capture macroscopic hy­

drodynamic behaviour, that collisions between more than two fluid particles be 

incorporated [10].

The full collision operator can be shown to have the form [2],

A ;(n )  =  “  s <) £ « ' I I  n7  t 1 ~  n i ) (1” ' j) > (3 -5)
s, s' 3
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where is a boolean scattering matrix, the elements of which take values of 1 or 

0, denoting whether a transition s —> s' is allowed. It is defined as,

( U )  =  A  (* -»• «') • (3-6)

Simulation observables are calculated from ensemble averages over both time and 

space, the mean population iVt (r, t) being given by,

Ni{r,t) = {rii) .

Density and momentum are respectively defined as,

p(r,t) =  Y , N , ( r , t )  , (3.7)
i

p(r,t)u  =  Y ^ N i(r ,t)c i .  (3.8)
i

These macroscopic observables can be shown to obey hydrodynamic type behaviour, 

ie. to be governed by ‘macroscopic’ equations similar to Navier Stokes and continuity, 

(3.9) and (3.10) respectively.

dtp +  dp (pup) =  0 , (3.9)

<9f (pua) +  dp (g(p)puaup) =  - d a (c2sp ( l  +  g ( p ) ^

+v(p)d'p (pua)

+  (K p) -  J j )  dadp (pup) . (3.10)

Derivations are not presented here, as it is beyond the scope of this thesis (see [2]

and [11]), although reference to these ideas will be made in section 4.1. The ‘FHP’

models have an unphysical density dependent factor g(p) in front of the inertial term 

in the lattice Navier-Stokes equations (3.10), which makes the model non-Galilean
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invariant [2]. Moreover, the pressure, first term on the lhs of (3.10), is unphysically 

velocity dependent. In (3.10) is the speed of sound, v is kinematic viscosity 

function (dependent on p) and D the number of dimensions.

The Navier-Stokes equations are obeyed by fluids, so why is it that particles colliding 

and propagating on a regular lattice should also obey the same set of macroscopic 

governing equations? Different fluids have different intermolecular force laws, but 

the collisions undergone by these dissimilar fluid particles all conserve both mass and 

momentum. Physically LGCA’s seem to tell us that it is the conservation of these 

quantities which allow LGCA models to recover hydrodynamic behaviour. If internal 

energy is also conserved during collision equations similar to the heat equation are 

also recovered [12].

Lattice gases have many attractive properties. Due to their integer arithmetic they 

have no round off error, are unconditionally stable, are ideal for parallel processing 

and complex boundary conditions are easily incorporated. They do however also 

have many unattractive properties - principally statistical noise. It is necessary to 

average over large regions of the lattice, long times and many initial configurations 

to extract ‘observables’ (3.7) and (3.8). This is especially true when calculating 

quantities such as vorticity, which involve derivatives [13]. Moreover, collision rules 

can become extremely complex when more links are added, and, regular three di­

mensional lattices with enough symmetry to ensure isotropy do not exist. (However, 

a four dimensional model known as FCHC - face-centred hypercubic unit cell with 

unit periodicity in the fourth dimension, consequently only pseudo 3D - with 24
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links exists, but collisions can only be dealt with by special computer hardware 

or extremely large lookup tables.) The complexity of LGCA models roughly dou­

ble with each link added [14]. The requirement for the governing equations to be 

Galilean invariant is also not easily satisfied.

In subsequent sections we discuss how taking a lattice Boltzmann Equation approach 

has helped to overcome these disadvantages of LGCA schemes, whilst retaining most 

of the advantages.

3.3 Lattice Boltzmann Approaches

McNamara et al [15] used the Boltzmann molecular chaos assumption, which ne­

glects the correlations between particles entering a collision (colliding particles have 

no prior effect on each other). This assumption is applied to ordinary gases of low 

density, where the mean-free path is very large (so that most particles come from 

distant uncorrelated regions). Particles which have collided will undergo many other 

collisions with different particles before they meet again and any correlation from 

the first collision will have been lost before a second. Frisch et al [2] in their work 

on lattice gases noted this approach appeared to have a very broad validity and 

may not be restricted to low densities. Assuming molecular chaos allows the nt’s to 

be replaced by single-particle distribution functions, which represent real ensemble 

averages over a conceptually infinite number of equivalent systems. These averages 

are denoted by N{.
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The evolution equation which describes propagation and collision can be written as,

Ni(r +  cz,1 + 1) =  Ni(r, t) +  Ai(N) , (3.11)

where Aj(iV) is calculated by simply replacing the n*’s in the LGCA form with the

ensemble averaged Ni s. Equation (3.11) is used directly, without averaging, since 

the iVj’s are the ensemble averages, and hence free from statistical fluctuations. 

Equation (3.11) is the lattice Boltzmann equation, so called because a first order 

Taylor expansion of what is essentially a finite difference equation yields an equation 

similar in overall form to the continuum Boltzmann equation of kinetic theory [16],

dtNi +  Cj.VAi =  Ai(N ) . (3.12)

There are two key differences between the continuum Boltzmann equation and its

lattice variant. Obviously the latter is defined on discrete spaces, but it also considers 

collisions between more than two particles.

A lattice Boltzmann approach eliminates statistical noise but retains the complex 

collision operator used in the equivalent LGCA models, rendering it inefficient for 

true 3D simulation, nevertheless, in [15] it is shown that this approach accurately 

(within 5%) predicts the decay of shear and sound waves.

In 1989 Higuera et al [17] added the assumption that the distribution function is 

close to the equilibrium state, which allows the collision operator to be linearised 

and hence simplified. Ni is expanded as,

Ni = N*q(p, v) +  N?eq(Vp , Vv) , N eq >  N neq , (3.13)
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where N^q is the equilibrium distribution function (for a uniformly translating fluid), 

which is discussed in more detail in section 4.1, and is dependent on the local values 

of p and v. AT"69 is the non-equilibrium contribution and can be expanded in powers 

of the velocity components,

iV"c? =  n P  +  IVf1 +  0(w3) , (3.14)

where the superscripts on the A^’s refer to the order of Vv. Non-equilibrium contri­

butions are at most O  ( N ^ )  for non-linear hydrodynamic regime [17]. The collision 

operator is Taylor expanded about equilibrium to give,

A , m  _  4 ,  m + £  | | « + < > ) + 1 £  « > » < »

where all derivatives are evaluated at N j  — A/J9.

(3.15)

Using the requirement that,

At- (N lq) =  0 , (3.16)

(3.15) reduces to,

AdN) * ’ ( 3 - 1 7 )

3 3

K ’ (3-18)
3 3

«  £  Ay (Nj -  N ? )  . (3.19)
3

The scattering matrix A# is defined by the transition probabilities A  (s —> s'), and 

is given by [17],

A,7 =  - 5  E ( s< ~ A (s ^  s') ( f ) P l (1 -  d)6' P" 1 ( si  -  °i) . (3-20)
S , S
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where p =  ]T}t- sx, and b is the number of lattice link vectors. Equation (3.20) is a 

reduced expression when compared to (3.5).

The complete evolution equation becomes,

N i(r + a , t  + 1 ) =  Nf(r, t) +  ^  Ay (TV,- -  TV?9) . (3.21)
j

The scheme encapsulated in (3.21) allowed more practical 3D simulations, as the 

complexity of the collision rules are reduced from 2b to b2. This model does, however, 

still suffer from the same constraints as the LGCA models since it is dependent upon 

the explicit underlying boolean microdynamics through A  (s —> s') in (3.20), and the 

resulting macrodynamic equations are the same.

In 1989 Higuera et al [18] took a different point of view towards the collision operator. 

They let the form of the collision operator be dictated by the target macroscopic 

equations, not by any underlying LGCA rules. The effect of collision depended only 

upon the angle of the collision and could be tuned at will to ensure positive viscosity, 

and to remove the constraints imposed by LGCA microdynamics.

Consider a simple model with no rest particles, so that now i — 1. . .  6. An element 

of the collision matrix denoted by a#, depends only on the angle, 6, between 

the link vectors cx- and cj. Ajj is rotationally invariant and for a FHP lattice 6 can 

only take the possible values of 0°, 60°, 120° or 180°. Mass and momentum must of
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course still be conserved hence the following constraints on Aij,

6

5 Z A #  =  (3.22)
z '= l

6

^   ̂AjjCgrig =  0 , (3.23)
Z = 1

which lead to the following relationships respectively,

Go +  2&0O 4- 2oi2o +  ^180 =  0 j (3.24)

CLq +  tt60 ~  g 120 “  &180 =  0 • (3.25)

The non-zero eigenvalues of the resulting symmetric and cyclic matrix can be written 

in terms of just ao and a6o [18],

A =  6 (go +  a6o) ? (3.26)

a =  6(G0 +  2a6o) , (3.27)

where (3.26) is twofold degenerate. The value of A can be shown [18] to be related to 

the kinematic viscosity, v, and its value chosen to ensure this quantity to be positive,

• (“ »

By lowering A close to -2, v can approach zero [20]. Also, a is usually chosen to be

-1 so that N?eq decays as quickly as possible to zero [20]. It should be noted that

numerical instability can occur (especially as v approaches close to zero), since de­

parting from a scheme based on LGCA collisions removes the unconditional stability 

present in such models.

For this enhanced collision LB model, the full evolution equation is,

JV<(r +  ci( t+  1) =  Ni(r, t) + £  Atj (N, -  N ? ) , (3.29)
3
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where the scattering matrix is pre-calculated and has a limited set of values according 

to the proceeding analysis. The lattice Boltzmann model of [18], as presented, 

suppresses the statistical fluctuations which are present in lattice gases, but Galilean 

invariance is not restored and the pressure still retains a velocity dependence which 

is unphysical. Although, by convenient choice of equilibrium distribution function, 

the g(p) factor responsible for non-Galilean invariance can be eliminated [14].

Some of the remaining problems (velocity dependent pressure etc.) were addressed 

in LB models [19]. However, these efforts were largely over taken when attention 

turned to LBGK simulations.

3.4 Lattice Bhatnagar-Gross-Krook Models

The major difficulty in dealing with the Boltzmann equation, in either its contin­

uum or discretised form, is the complicated structure of the collision term. Simpler 

models, known as collision models, have been proposed for the collision term. The 

Bhatnagar Gross and Krook (BGK) model, [21], makes the assumption that much 

of the detail contained within the collision term is not of significant influence during 

collision, and it is expected that a simplified collision term (which, nevertheless has 

the average properties of the full collision operator) can replace it [22]. In the BGK 

model the collision operator is replaced by a scalar relaxation parameter, u, known 

as the collision frequency in kinetic theory, and simply assumes the average effect 

of collisions is proportional to the departure from equilibrium. Importantly there is
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now freedom to choose an equilibrium distribution, N?q, which leads to the exact 

Navier-Stokes equations.

The evolution equation now becomes,

Ni(r +  Cj, t+  1) =  Ni(r, t) + u(N?q -  N{) . (3.30)

The BGK collision model was incorporated into LB models, known as LBGK models, 

independently, by Qian et al [3] and Chen et al [19], and was shown to lead to correct 

hydrodynamic behaviour. The correct continuity equation and second order accurate 

Navier-Stokes equations are recovered as follows,

dtp +  dp (pup) = 0 , (3.31)

dt (pua) +  dp (puaup) =  ~da (c2sp) +  vdp [dp (pua) +  da (pup)\ , (3.32)

where speed of sound cs =  and the Okinematic viscosity v =  1 (^ — l) . This 

approach, using a simple relaxation parameter instead of more complex collision 

rules, is computationally much more efficient and provides flexibility in manipulating 

transport coefficients. Also the advective terms now satisfy the condition of Galilean 

invariance and the pressure is not velocity-dependent.

One advantage of LGCA is they are inherently stable, whereas models using a Boltz­

mann equation (including LBGK models), without their foundation in cellular au­

tomata microdynamics, are subject to numerical instabilities, (although relaxation 

schemes are known to have good stability properties). Analysis of the stability of 

LBGK models has been carried out by various authors. Sterling et al [23] found
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that stability depends on the distribution of mass on a node between lattice links 

of different lengths, the relaxation parameter u  and mean velocity. Viscosity must 

always be positive, and, there is a maximum stable velocity for fixed values of the 

other parameters, the value of which increases with increase in u  until a certain value 

of u  when no increase is observed. This work was extended by Worthing et al [24] 

who report that u  =  1 provides the optimal accuracy in time.

Since their inception in 1992 LBGK schemes have been the subject of much study. 

In the subsequent sections of this chapter we review applications and extensions to 

the standard LBGK scheme as introduced in [3,19].

3.4.1 Boundary Conditions

Imposing a wall boundary condition was achieved in LGCA schemes using bounce- 

back lattice closure rules, where at a node denoted ‘wall’, during a wall collision the 

particles have their direction reversed and are sent back toward the node from which 

they came. Wolfram [11] stated that this would be sufficient to ensure no-slip con­

ditions at solid surfaces, and the ease with which bounce-back can be implemented 

allows for the simulation of complex geometries such as flow through porous media.

This approach was found only to be first order accurate [25]. Whilst bounce-back 

conditions are ‘good’ in so far as they suppress Knudsen layers [25] the effective 

zero in macroscopic velocity is located slightly off node. He et al [26] analysed 

the velocity near the wall and confirmed this for Poiseuille flow. Attempts have
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been made to improve adherence to the no-slip condition of the fluid medium as 

the LBGK scheme is second order accurate and a second order accurate boundary 

condition would obviously be preferable.

The problem at simulation lattice edge “wall” nodes is that some of the lattice links 

are outside of the system and as such have undefined behaviour. So schemes have 

been developed to obtain these unknown distributions to second order.

In 1993 Skordos [27] included velocity gradient terms in the equilibrium distribution 

at the ‘wall’ nodes from known values. This resulted in more accurate boundaries 

but the scheme was not as stable. A hydrodynamic no-slip condition on walls by 

applying a pressure constraint was proposed by Noble et al [28] with increased second 

order accuracy. Another second order accurate boundary scheme was proposed by 

Inamuro et al [29] who use a counter slip velocity to counteract the slip velocity 

which can occur using ordinary bounce-back. These schemes have been studied 

analytically by Zou et al [30].

3.5 Applications of the LBGK Scheme

3.5.1 Flow Around a Cylinder

The lattice Boltzmann approach using a linearised collision matrix was validated by 

Higuera et al [17]. They simulated flow around a cylinder at moderate Reynolds 

number, Re < 80. Time dependent behaviour was observed, and at Re = 77.8
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periodic eddy shedding occured. The flow properties, for example lift and drag 

coefficients, agreed reasonably well with experiment. As these types of LB models 

are restricted to uniform lattices the circular geometry is only approximate, no-slip 

boundary conditions are applied on a ‘jagged’ edge not necessarily lying on the 

cylinder.

In 1997 He et al [40] returned to this geometry, and constructed a polar co-ordinate 

based lattice using an interpolation-supplemented LBGK model. The circular ge­

ometry of the cylinder was now accurately resolved and the accuracy of the LB 

simulation was within experimental accuracy.

3.5.2 Cavity Flow

Lattice Boltzmann models have been applied to many simple flow geometries. Hou 

et al [41] simulate two-dimensional cavity flow with good results using a LBGK 

scheme. In cavity flow there is a major central recirculation and secondary recir­

culations in the corners, the position and stream function of which vary with Re. 

Hou et al use a 2562 lattice with Reynolds numbers in the range 10 —» 10,000. 

On comparison with the results of other techniques already in the literature, the 

values of the streamlines and the positions of recirculations agree to within 1%. 

In [41] compressibility effects are also quantified for different maximum velocities 

and found to be small. Miller [42] has also applied the LBGK model to cavity flow 

and made comparisons for the velocity and pressure fields with analytical solutions 

with excellent agreement.
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3.5.3 Backward Facing Step

Channel flow in which there is a sudden symmetric expansion has been studied by 

Luo et al [43] using a LBGK model. As the Reynolds number is increased the 

symmetry of the bifurcating flow breaks down. In [43] this was observed to occur at 

Re = 46.19 in comparison to the experimentally observed value of Re = 47.3.

Qian et al [44] have studied flow over an asymmetric expansion, or backward-facing 

step, using a standard LBGK scheme. The length of recirculation behind the step is 

measured as a function of step height and Reynolds number. The results compare 

well with experimental data and other numerical methods. The work of [44] helps 

to highlight some important issues surrounding LBGK models, the significance of 

which will become apparent later in this report.

3.6 Extensions of the Standard LBGK Scheme

3.6.1 Higher Order Schemes

The macroscopic equations are predicted using a Chapman-Enskog type analysis 

from which the basic result is that the Navier-Stokes equations are recovered as the 

governing equations of the lattice flow. Application of this method also reveals the 

presence of higher order terms [22] which depart from Navier-Stokes type behaviour. 

Qian et al [31] found these non-linear deviations from the Navier-Stokes equations 

are of the form dpd7uaupu7. The effect of these “hidden” terms is that the behaviour
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of the modelled fluid may differ significantly from that of the target real fluid when 

the flow enters the compressible regime. Chen et al [32] attempted to remove these 

deviations by inserting terms of higher-order in velocity in the equilibrium distribu­

tion. The complexity of the lattice-link geometry was also increased to ensure the 

isotropy of the sixth-rank velocity-moment tensor, whereas previous models only 

required isotropy of velocity-moment tensors up to fourth order. Another recent 

publication by Qian et al [33] has suggested that these non-linear deviations do 

not satisfy Galilean invariance and that this leads to a frame-velocity-dependent 

viscosity. To eliminate these errors Qian et al have included a cubic term in the 

equilibrium distribution along with a tunable parameter, which can be set to elim­

inate the undesired higher-order terms. However, the study reported in this thesis 

is only concerned with incompressible flows and hence the effect of such deviations 

are deliberately restricted.

3.6.2 Exactly-Incom pressible Schemes

The study of incompressible flows can be somewhat restricted by the standard LBGK 

scheme. The incompressible form of the Navier-Stokes equations is recovered only if 

spatial gradients in lattice density may be neglected, and since density maps directly 

onto pressure this limits the range of pressure gradients which can be used accurately 

to force the flow. In consequence, the maximum achievable Reynolds number is 

restricted in flow geometries where there are significant non-uniform pressure drops. 

Frisch et al [2] in their work on LGCA first noted that if velocity was defined in
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terms of a mass current then equations closer to the incompressible Navier-Stokes 

equations would result. This approach was applied to LBGK models independently 

by both Zou et al and Lin et al [30,34], who recover the correct time-independent 

incompressible equations; the correct form of the time derivatives is lost. These 

models are explained in more depth in section 4.2, and results of simulation of 

Poiseuille and cavity flows are reported to be in good agreement with analytical 

solutions, with greatly reduced compressibility errors.

3.6.3 Thermal M odels

LBGK models which incorporate heat transfer have been developed by various re­

search groups, and it is appropriate here briefly to summarise key contributors to 

the evolution of such models.

Pioneering work on LBGK thermohydrodynamics was presented by Alexander et al [35] 

who used a hexagonal lattice with 13 links and defined an internal energy, e, through 

a second moment of JV,-,

pe =  £  N i (Cfa -  «°)2 . (3.33)
i

Third order velocity-dependent terms were included in the equilibrium distribution. 

This is sufficient to recover the energy equation in its standard form with viscous 

dissipation terms. When applied to the problem of simulating Couette flow, where 

there is a temperature gradient between two parallel plates, results are obtained 

which agree very well with theory for small temperature differences.
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Chen et al [32] extended the above work of Alexander et al [35] by including higher- 

order terms in the equilibrium distribution in order to eliminate non-physical higher- 

order deviations, similar in form to those reported by Qian and Orzag [31] for isother­

mal LBGK models. This type of model is constrained to a fixed Prandtl number 

of unity [36] essentially because link energies and momentum densities are forced to 

relax at the same rate.

Chen et al [36] compared results of Couette flow simulations using the lower-order 

model of Alexander et al [35] and the higher-order models of Chen et al [32]. This 

work highlights the need to use the higher-order model for flows which are dominated 

by viscous heating effects. As heating due to friction increases, error in the lower 

order model rapidly increases although the scheme is much more efficient. In this 

work we will be interested only in flow geometries in which viscous heating can be 

considered negligible.

It was noted by McNamara et al [37] that the similarity between the Navier-Stokes 

and temperature equations could be exploited in order to develop LB models which 

treat temperature as an additional velocity component. Such models have improved 

stability properties in comparison with previous thermal models which are notori­

ously unstable, especially in three dimensions. This approach has the added benefit 

that it also allows for the development of models with variable Prandtl number. The 

correct form of the viscous dissipation terms in the temperature equation are not 

recovered. However in the majority of engineering flow geometries such terms are 

usually ignored. Different Prandtl numbers are achieved by allowing for two differ­
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ent relaxation parameters, one to control viscosity as in the isothermal scheme and 

the other to control thermal diffusion, and the results of McNamara et al [37] show 

close agreement with more traditional CFD methods when applied to the problem 

of simulating Rayleigh-Bernard convection.

Shan [38] also adopts the view taken by McNamara et al [37] and treats the energy as 

a passively-advected scalar quantity and employs the Boussinesq approximation. He 

exploits the multi-component flow model of Shan et al [39] and treats the tempera­

ture as an extra component. Again Shan [38] considers Rayleigh-Benard convection, 

and results are seen to be in good agreement with other numerical methods.

3.6.4 Other Applications of LBGK Schemes

Lattice gases and lattice Boltzmann/BGK techniques have been applied to many 

different types of flow problems, which may not be directly relevant to this report 

but which are noteworthy. We will list some of them as it will serve to underline the 

usefulness of the techniques and show that the method is another numerical scheme 

worthy of careful consideration in its own right.

The modelling of multi-component flow is difficult because of the complex interface 

dynamics. These types of flows are important in many engineering applications, and 

LB techniques have been shown to be an alternative method of investigating such 

flows. The first immiscible lattice gas model was introduced by Rothman and Keller 

[45]. Gunstensen et al [20] then extended this work to be based upon a linearised LB
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scheme, and subsequently LBGK-based immiscible models have emerged. Surface 

tension measurements have been shown to be in good agreement with Laplace’s 

formula, and droplet breakup has been studied [46].

Boundary conditions are easily and efficiently implemented in LBGK models (see 

chapters 5, 6 and 7) which allows the scheme to be used for the simulation of porous 

media. Indeed the usefulness of the approach can be seen when considering multi- 

component flow through porous media [20], and can for example help understand 

the physics of oil reclamation and how to improve it. A LBGK model suitable for 

the simulation of granular flow has been reported by Tan et al [47], and a model for 

diffusion-driven reactions has been presented by Qian et al [48].
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Chapter 4

Lattice BGK Theory

In this chapter we derive the standard LBGK scheme as introduced by Qian et al [3] 

and Chen et al [19], and obtain its governing macroscopic equations (the LBGK 

continuity equation and momentum equations) up to second order in velocity. Ex­

tensions to the standard scheme are then presented; firstly a scheme leading to the 

exact incompressible steady-state Navier-Stokes equations is described, followed by a 

novel scheme allowing the direct simulation of depth-averaged flow observables. All 

our analysis is based upon a two-speed square lattice with nearest and next-nearest 

neighbour links, commonly written in the literature as D2Q9, after the notation 

adopted by Qian et al [3].

Thermal LBGK models have been developed by various groups (see section 3.6.3), 

with varying degrees of success. We introduce in this chapter our own novel thermal 

scheme for Boussinesq-Oberbeck flow, in which energy is treated as a passively-
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advected scalar quantity, allowing the LBGK simulation of forced convection flows 

in the Boussinesq-Oberbeck regime, with thermohydrodynamics which, we trust, are 

more robust than that of other thermal LBGK schemes.

4.1 Standard D2Q9 LBGK Scheme

4.1.1 Introduction

The evolution equation describing propagation and the collisions undergone by the 

momentum densities, iV^’s, is as discussed in section 3.4 for a LBGK model,

JV„(R +  Crt,T  +  1) =  Nai(R, T) +  w(Aft(u) -  Nai{R ,T)) , (4.1)

where the subscript a denotes the speed of the link.

Position and time may be approximated by continuous variables, for sufficiently 

large lattices and long time intervals [2,11]. It is possible to define scaled variables 

like t  =  ST where 5 -C 1 and is the small lattice time step, t being physical time. 

The LBGK evolution equation in physical units then becomes,

iVffi(r +  Sch, t + S) =  Nai(r, t) +  a>(A£?(u) -  Nai(r, t)) , (4.2)

where r  is a vector to any node, and cai is a velocity vector associated with a 

lattice link, as defined in figure 4.1. In (4.2) collisions are mimicked in a relaxation 

process during which the particle distributions are allowed to relax to an equilibrium 

value with a time constant A Chapman-Enskog type expansion is applied in
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ai Caix Cffiy ucr
11 0 1 1
12 1 0 1
13 0 -1 1
14 -1 0 1
21 -1 1 2
22 1 1 2
23 1 -1 2
24 -1 -1 2
01 0 0 0

221121

14

Figure 4.1: D2Q9 Lattice Unit Cell.

order to derive a set of partial differential equations which describe the behaviour 

of the macroscopic observable quantities in our LBGK fluid. The Chapman-Enskog 

expansion is used in kinetic theory for solving the continuum Boltzmann equation

in the limit of small Knudsen number, K n, which is defined as the ratio of the
i

real particle mean-free path to a characteristic length scale of the flow. From its 

definition it is clear that K n can vary from 0 —>■ oo, where K n 0 corresponds 

to a fairly dense system and K n —> oo implies a (gas dynamic) flow where there is 

negligible interaction between molecules.

Lattice densities effectively propagate a distance of Sci between collision steps. More­

over, the computational lattice assembled from vectors ct can characterise a simula­

tion’s macroscopic length scale. Thus, under these assumptions the lattice K n can 

be defined as /  |c* | ~  S.

The Chapman-Enskog method is a multiscale technique, and we expect different 

physics to manifest on differing length and time scales in the lattice. On the shortest 

scale (5°) we expect to observe relaxation to local equilibrium. On longer length-
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scales (£") one expects, for example, viscous transport effects to manifest themselves.

For isothermal flows the macroscopically observable quantities, density and momen­

tum, are defined respectively as,

P =  £ ^ >  (4-3)
<7,Z

pu =  £  Naicai . (4.4)
<r,i

A local equilibrium should only depend upon the macroscopic observables p and 

u. For hydrodynamic behaviour, and under the assumption that density and ve­

locity slowly vary with both time and position, a sufficiently general form for the 

equilibrium distribution will be [3],

A^?(u) =  Aa +  B a(ii.Co-i) +  C ^ u .c^ )2 +  Dau2 , (4.5)

where A a, Ba, Ca and Da are lattice-dependent variables yet to be defined. Essen­

tially (4.5) is the simplest form capable of recovering the desired macrodynamics.

A Taylor expansion is now performed on the evolution equation (4.2) up to second 

order, which after some algebra, yields

AT 62
2 4* (Oria^a)

2

Nai = u (N eJ  -  Nai) . (4.6)

The value of Nai will be near its equilibrium value of so Nai may be expanded 

in powers of S following the Chapman-Enskog type procedure,

Nai =  N eJ  + 6N£> + 62N%> + . . .  . (4.7)
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Macroscopic observables are determined by moments of the equilibrium distribution,

J 2 K i = P ,  (4-8)
a,i

and,

Yl/N^Caia ~  PUa i (4-9)
er,i

which requires that non-equilibrium densities, TV”- (n > 1), do not contribute to 

either the local density or momentum,

X X ?  =  0 , (4.10)
er,x

X > i n)c<™ =  ° ,  (4.11)
<7jt

where n > 1. The time derivatives are expanded in an Enskog fashion,

a s + 5 ( 4 . 1 2 )  
dt dt0 dtx

so that from the Taylor-expanded evolution equation (4.6), we obtain at 0(6),

(ft, + caiada)NeJ  = - uN£> , (4.13)

and at 0(52),

ft, N% + ( l  -  I) (ft. +  < w f t ) N $  =  - u ,N%  . (4.14)

Now, tensors (moments of lattice velocity vectors) of the form JX (ĉ qC ^  . . . )  occur 

in the derivation of the governing macroscopic equations. These tensors must be 

isotropic so that any rotation of the coordinate frame is not communicated onto the
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desired form of the macroscopic equations. Sufficient isotropy is guaranteed by the 

following definitions [49],

^  ] CaiaCcriP — 
i

^   ̂CaiaCaipCai'yC'aiS ~  
i

where — ^aP^yS "t” ^ay^pS ^aS^Py

4.1.2 Lattice Continuity Equation

On summing (4.13) over a and i, then applying the relevant constraints we obtain 

the first order mass conservation equation,

dtop + d Q(pua) =  0 . (4.17)

Now consider the second order equation (4.14) and sum over a and i,

dtlp = 0 . (4.18)

The correct form of the continuity equation is recovered if we add (4.17) to £x(4.18) 

and recombine the time derivatives using (4.12), to give, correct to 0 ( J 2),

dtp +  da(puQ) =  0 . (4.19)

4.1.3 Lattice Euler Equation

We obtain the lattice Euler equation, through a first moment of Nai, by first multi­

plying (4.13) by Cffia before summing over a and i , yielding the following conservation
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of momentum equation correct to 0(6),

+ (4.20)

where,

n Z  =  X X 7 < w < v t/J,
a,i

and is the LBGK momentum flux tensor, see section 2.3.

A form for HeJp can be found by substituting into its definition the general form for

the equilibrium distribution (4.5) (for the full derivation see Appendix A),

njjj =  csp5ap +  puaup , (4.21)

where cs is the speed of sound. If (4.21) is substituted back into (4.20) the Euler 

equation is recovered to 0(6),

dtoPUa +  dppuaup =  - d Qp  , (4.22)

where the pressure, p, is given by p  =  c2sp.

4.1.4 Lattice M om entum  Equation

In order to obtain the governing momentum equation with dissipation it is neces­

sary to proceed to 0(62). Multiply (4.14) through by cffIQ and perform the usual

summation to yield, to 0(62),

dh (pua) +  d& ( l  -  | )  n «  =  0 , (4.23)
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where,

O , I

can be evaluated by substituting for its definition which is found by re­

arranging equation (4.13), and in turn substituting the definition of the equilibrium 

distribution function for (see Appendix A for a fuller account of this). The 

result is,

rrW1La/3 w ( 5  -  y  dt ( puJ 5al} +

-  uadp((?sp) -  upda(c]p) -  d1(puaupu1)\ . (4.24)

Next, combine (4.22) with Jx(4.23) and substitute from (4.24) to give the 

following momentum equation, correct to 0(62)

dt(pua) + dp(puaup) =  - d a(c2sp)

+ 6 M (H ) ( M
+MH -  {da(M[j + dppua)

+  ( I  -  c2)  (uadpp +  u0dap) -  d-fipUaUpUi)

(4.25) 

+ 0(S2) .

The speed of sound is taken to be,

c s 3  > (4.26)

which allows (4.25) to be simplified to give the following,

dt(pUa) +  dp(puaup) = -\pa(p) +  g ^  -  1^ dp(dapup +  dppua)

Sdp ^  ^  dy(puaupu7) +  0{62) . (4.27)

55



CHAPTER 4. LATTICE BGK THEORY

We can now identify a lattice kinematic viscosity (in physical units) as,

6
v — - (4.28)

and identify the pressure (lattice fluid equation of state) as,

(4.29)

Ignoring the third term on the right-hand side of (4.27), which is the leading non­

linear error term [31], and writing in lattice units so that 5’s do not appear, we have 

the following governing macroscopic momentum equation,

ter 2 (see equations (2.24) and (2.26)).

LBGK schemes can be derived for other lattice geometries using the preceeding anal­

ysis. For example, the FHP 7-speed model’s triangular (hexagonal) lattice. Figure 

4.2 contains the coefficients that should be used in the equilibrium distribution 

function (4.5) when using a D2Q9 model; Appendix A contains a full account of the 

derivation. If another suitable geometry is to be used the same governing macro­

scopic equations would result, the only difference being the values of the equilibrium 

distribution coefficients, see for example [3].

dt(pua) + dp(puaup) = - d ap +  vdp(dapup +  dppua) , (4.30)

which is obviously of similar form to the Navier-Stokes equations as defined in chap-
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Figure 4.2: D2Q9 equilibrium distribution coefficients.

4.1.5 M apping onto Viscous, Incompressible H ydrodynam ­

ics

In order to develop a correspondence between the LBGK scheme and viscous in­

compressible hydrodynamics it is necessary to establish a mapping of the governing 

equations, (4.19) and (4.30), onto the continuity and incompressible Navier-Stokes 

equations (see chapter 2), which are, we recall

dava =  0 , (4.31)

^  + VpdfiVa = - d a  ( q }  +  vdpdpVa . (4.32)

Neglecting variation of p in all but the pressure term, (4.30) is seen to be isomorphic 

with the incompressible Navier-Stokes equation (4.32). This process now identifies 

the following mappings,

p -> i p ,  (4.33)

v —> u , (4.34)

" - K ! - 1) -  (4 -35)

In hydrodynamics, liquid density d and pressure p are decoupled from one another

8d 
dpby making the assumption =  0, which is valid for a large speed of sound cs
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^cs =  » an<̂  ôr small Mach number M  ^M  =  ^ . Therefore, with a large

value for cs significant pressure changes can occur with negligible density changes 

(and indeed traditional CFD successfully computes pressure-driven athermal flows 

up to intermediate Re, in the incompressible limit). Mappings (4.33), (4.34) and 

(4.35) imply an equation of state p — p /3 for the lattice fluid, and a small speed 

of sound cs =  for the standard D2Q9 lattice fluid. As we shall see in

subsequent chapters, the result of this is that the range of Re accessible to a LBGK 

scheme applied to internal pressure-driven flows, is constrained.

The lattice continuity equation gives divergence-free flow only if dap may be assumed 

small, which is easily seen from considering (4.19),

dauQ =  ~~jdap  • (4.36)

The consequences of this are important for our anticipated applications : a require­

ment of negligible density gradient necessitates a restriction on any pressure gradient 

(essentially because cs is 0(1) and that p = p /3), which allows only low velocity and 

low Re.

4.2 Exactly Incompressible LBGK Scheme

As noted at the end of the last section, for pressure-driven flows, what inhibits ap­

plication of standard LBGK is that a pressure gradient must exist on the lattice 

by a gradient in p, the magnitude of which, when restricted to limit compressibil­

ity effects, constrains the Re obtainable with a given size of lattice. This section
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describes an extension to the standard LBGK scheme which eliminates any need 

to restrict gradients in lattice density as it overcomes the constraint posed by the 

density/pressure relationship.

For lattice gas cellular automata it was stated by Frisch et a l , in [2], that working in 

terms of a mass current to represent velocity would recover macroscopic equations 

which approximate more closely to the incompressible Navier-Stokes equations. This 

idea was applied to LBGK schemes by Zou et al [30] and independently Lin et al [34] 

who used revised macroscopic identifications for density and velocity respectively,

The EILBGK scheme uses the same evolution equation as the standard scheme (4.2), 

however, to ensure that the correct form of the macroscopic governing equations are 

obtained, the equilibrium distribution is subtly modified:

The derivation of the governing equations is suppressed here, as it is a straightfor­

ward extension to the procedure considered in section 4.1 for the standard scheme. 

These governing equations are shown to be [30,34],

(4.37)

(4.38)

N cJ(n)  =  A„p +  Ba(\i.cai) +  Ctr(\i.cai)2 +  Daul . (4.39)

daua = 0 (4.40)

(4.41)
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We consider only the steady-state solutions of (4.40) and (4.41), since incorrect time

Note that both the continuity equation and the advective term in the lattice mo­

mentum equation (4.43) now become exactly incompressible whilst the form for the 

diffusive term is preserved. Within the steady-state, it is now unnecessary to make 

any approximations to obtain viscous incompressible hydrodynamics, as is seen from 

the following revised mappings, (here d denotes the real fluid density)

and (4.35) again, the same form being recovered for kinematic viscosity. LBGK p

The equilibrium distribution coefficients for the D2Q9 geometry EILBGK scheme 

are as stated in figure 4.3.

derivatives emerge in (4.40), and written in lattice units (so that 5’s do not explicitly

appear), the equations become,

daua — 0 , (4.42)

dpuaup = - ~ d ap + v{u)dpdpua , (4.43)
o

where, as in the standard scheme, the kinematic viscosity v of the lattice fluid is,

(4.44)

(4.45)

v u , (4.46)

maps directly onto hydrodynamic p/d  without any association between p and d.
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Figure 4.3: D2Q9 equilibrium distribution coefficients for an 
EILBGK scheme.

4.3 Depth-Averaged Flow LBGK Scheme

In this section we modify a 2-dimensional EILBGK scheme in order to generate the 

required pseudo-body force terms in the macrodynamic momentum equation (4.43), 

governing the depth-averaged velocity. This enables the LBGK scheme to be yet 

further adapted and simulate depth-averaged flow (see chapter 2).

It is known that the addition of a constant term in the LBGK evolution equation 

has the effect of adding a constant body force term to the macroscopic momentum 

equation. (Zou et al [30] utilise this method to simulate Poiseuille flow, by con­

sidering a constant pressure gradient to be a constant body force.) So, we write a 

forcing-enhanced evolution equation as,

Nci(r + Scah t + S) — N ^ t, t) +  -  iV,,.(r, t)) + 5f„ (4.47)

By choosing the form for / fft- to be,

k
fai =  ,

a,j
(4.48)
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its moments should have the following properties,

=  0 , (4.49)

(4.50)

/   ̂f a i caia^ai0  —  0 (4.51)
V<r,i

so that using the usual multiscale Chapman-Enskog analysis applied to LBGK mod­

els, we can easily show that the additional term in (4.47) will only affect 0(6) mo­

mentum equations. Considering the properties of the moments of f d  it is easy to 

show that a modified steady-state Euler equation results, which, since the EILBGK 

scheme fails to recapture the correct time development, we state in time-independent 

form

final macroscopic governing equations of our depth-averaged EILBGK scheme in the 

steady-state is straightforward. After section 4.1, the final macroscopic equations 

are,

in which v(uf) is again given by (4.44). Our depth-averaged EILBGK scheme pre­

serves the exact form of the incompressible continuity equation, and its momentum 

equation is seen to be isomorphic with the depth-averaged flow governing momentum

(4.52)

And with the f d  s contributing no further to 0(62) equations, the derivation of the

dpup =  0 , (4.53)

UpdpUa =  -yp a p  +  V^dpdpUa  +  - u a , (4.54)
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equation (2.64) with the following mapping,

12z/ l  a tr c\
3 Tf" ’ (4-55)

Therefore, the depth parameter &, introduced into (4.47) through (4.48), provides 

the mechanism by which the unmodelled depth of the duct can be controlled in 

simulation. Substituting the EILBGK’s expression for v we obtain, in lattice units,

L. =  6 y p Z ,  =  (4.56)

4.4 Thermal LBGK Model

As we have seen with the standard and Exactly-Incompressible LBGK schemes for 

momentum, the densities are relaxed towards an equilibrium value during the col­

lision step. We introduce the notion that thermalisation of the internal energy 

associated with a particular momentum density N ai occurs on a separate time scale, 

characterised by a/. Because the parent momentum densities, N ai’s, and their as­

sociated internal energy variable, the eai's, may relax on different time scales, one 

may write for the internal energies a separate evolution equation similar in form to 

that which describes the behaviour of the momentum densities,

e(ri(r +  ci, t +  1) =  eri(r,i) — u  ((eai(r,t) — e%(r,t)) , (4.57)

the local internal energy equilibrium distribution, 6% being given we propose by,
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where is the post-collision value of momentum density.

The macroscopic observable quantity 60, which will eventually map onto tempera­

ture, is the total node internal energy defined as,

e 0 = E e<*- (4-59)
a,i

In order to determine the macroscopic heat equation obeyed by the internal energies 

it is again appropriate to use a Chapman-Enskog type expansion,

eai = s7i + f e c i + si$ i +■■■ • (4-60)

To ensure that energy is always locally conserved, the e ^ ’s for n > 1, should not be

allowed to contribute to the internal energy, so we fix their neutrality in this respect

by requiring,

J 3 4 " ) =  0 ,  n > l .  (4.61)
c,i

Therefore,

p
a. i

=  60 . (4.62)

To avoid spurious thermal modes we avoid defining any vector modes associated 

with the 6ai s, and simply write,
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and, as a consequence of this lack of a vector thermal mode we do not fix the

er,i

Now following the usual lattice evolution, evolution equation (4.57) is Taylor ex­

panded to second order,

Note that 5 is the same explicit time-step as used in the evolution of momentum 

densities iV -̂’s.

The time derivatives are treated in exactly the same manner, and thus expanded 

as in (4.12). If expansions (4.60) and (4.12) are substituted in (4.65) and terms to 

0(5) collected, the following 0(5) equation results,

Summing (4.66) over a and i, and applying the relevant constraints, we are left with 

the following first order (0(5)) energy equation,

neutrality of the first moment of the e:^ , for n > 1 note,

X } 4 ”)c<ria ^ 0  , TI>1 (4.64)

*b (Caia&ce)5  777 +  ( Ca ic td a )  £ ai  +

(dto +  caiada) £% = - u e $  . (4.66)

dto£0 +  das0ua =  0 . (4.67)

On extracting 0(52) terms from (4.65) we obtain,

(4.68)

We now sum (4.68) over i and a to yield,

(4.69)
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To obtain a form for da in (4-69) we multiply (4.66) by caia and da

before performing the usual summation (see appendix B for suppressed algebra),

da =  -^ r d t0da (£0ua) -  4- (js<%£0 +  dadp£0uaup>j  . (4.70)

The resulting second order equation becomes,

1 \  1dtls0 + Q ~ dtoda (e0ua) + ( |  “ 

+ -  w7) dadp (£0UaUp ) =  0 •

c j )  C29“£0
(4.71)

To obtain our models governing heat equation we add the 0(6) equation (4.67) to 

6 x 0(52) equation (4.71), recombine the time derivatives (where appropriate), and 

apply the product rule to the spatial derivative in the 0(<5) equation (4.67) in order 

to yield,

dt£0 + uada£0 =  Sx(%e0 

£0d^U^
(4.72)

-  Sc2sxdtoda£0ua

-  5c2xdadp£0uaup .

The isomorphism between (4.72) and the heat equation for Boussinesq-Oberbeck 

flow (2.45) is obvious and we can immediately identify our our model’s thermal 

diffusivity, x, given by,

Note, when written in terms of lattice units 5 does not appear in the previous 

equation.
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As we have already seen, for incompressible flow the LBGK velocity field becomes 

divergence-free if gradients in lattice density are negligible. It is easily shown with 

some simple algebra that the last three terms in (4.72) reduce to zero if the assump­

tion of incompressible flow is invoked, which leaves the following LBGK thermal 

governing equation,

dt£0 +  uadas0 = xd2a£0 ,

Equations (4.74) clearly have, for divergence-free flow, a marked resemblance to the 

Boussinesq-Oberbeck equations.

4.4.1 M apping onto Boussinesq Equations

From section 2.7, equation (2.45) we know that under the Boussinesq approximations 

the macrodynamic energy equation for an incompressible flow is,

dtT  + v.VT =  *V 2T . (4.75)

We now make the following interpretation of our energy variable £0,

£0 pCpT , (4.76)

which will in consequence have physical units of energy. The reason for this interpre­

tation will become clear as we consider appropriate thermal boundary conditions.

On making this replacement, our thermal LBGK governing equation (4.74) is seen 

to be isomorphic with (4.75) multiplied through by pCp (an assumed constant).
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We now consider the definition of the lattice Nusselt number. From (2.47), we know,

a r hi q I
(4 7 7 )

remembering that x  =  k/pCp. We now cast (4.77) in terms of our internal energy 

variable £0, to obtain a lattice Nusselt number,

q I
N u  =  , _  x

(Tw -  Tb) pCpX ’
-  g x l_ 

(£0W -  £0b) X ’
M
X

with the lattice heat transfer coefficient defined through,

(4.78)

h* =  t  " r- . (4.79)
\&0w £0b)

The last equation may be re-interpreted immediately to obtain an identity for the 

lattice Nusselt number,

N u* =  . (4.80)
x(w)

Note that, to recover Boussinesq-type governing equations from the dynamics of 

our second distribution, e6̂,  the parent flow must be divergence-free; that is con­

tain only negligible density gradients, so that if used alongside the standard LBGK 

scheme to evolve the momentum distribution (the N ^ s )  the forcing applied to in­

duce flow should be carefully chosen in order to avoid introducing density gradients 

(see discussion section 5.5).
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Chapter 5 

Internal Pressure Driven Flow 

Simulations

5.1 Introduction

As discussed in section 4.1.5, the standard LBGK scheme recovers the incompress­

ible Navier-Stokes equations only if spatial gradients in lattice density, and therefore 

gradients in pressure, may be neglected. Strictly, this prevents the correct applica­

tion of standard LBGK to systems which contain significant non-uniform pressure 

gradients. The relationship between lattice density and fluid pressure couples the 

pressure and velocity fields so that if density/pressure gradients are not small, sig­

nificant compressibility errors would occur as the velocity field ceases to become 

divergence-free, and as a consequence of this the maximum attainable Re is re-
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stricted.

Spatially-uniform body forces can and have been used to model pressure gradients, 

but this device is, strictly, only valid for mimicking a uniform pressure gradient and 

does not allow the representation of non-uniform variation of pressure throughout 

the system.

The standard LBGK scheme has been reported to achieve, with good accuracy, 

Reynolds numbers of around a few thousand [41,42] in systems with fairly uniform 

pressure (where the primary forcing agency is velocity at flow boundaries), but there 

have been few applications to pressure-driven flows. Hou et al [41] calculate the small 

compressibility effects in a LBGK simulation of two-dimensional lid-driven cavity 

flow. For our application to pressure driven flow, so limiting are compressibility 

effects that we are obliged to use an EILBGK scheme.

By careful application of an EILBGK scheme, we show in this chapter how it is 

possible to overcome the constraint posed by the lattice density /fluid pressure re­

lationship and obtain information about both non-uniform velocity fields and pres­

sure fields. In this chapter we also consider no-slip wall behaviour and apply LBGK 

boundary conditions in closer accord with engineering and CFD practice. With­

out compressibility error, we proceed to simulate flow over a backward-facing step, 

up to much higher Re than that at which standard LBGK begins to exhibit pro­

hibitive compressibility error. We consider our results in the context of standard 

CFD, experiment and some theoretical results.
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Throughout this chapter we shall consider results (from experiment, LBGK and 

CFD etc.) for laminar flow and make no attempt to recover any effect of turbulence.

5.2 Simulation

As shown in section 4.2 the EILBGK scheme fails to capture the correct form of 

the time derivatives in the lattice Navier-Stokes equation, nevertheless we iterate 

the evolution equation over the whole lattice to a steady-state. At long-times the 

pde solved by the EILBGK scheme is correct and indeed many ‘null-transient5 CFD 

calculations in schemes which also miss ‘physical5 time-dependence make the assump­

tion that, if calculable, a steady-state is the steady state, when using fixed forcing 

functions and boundary conditions. The detailed effect of the time-dependence of 

the EILBGK dynamics is not likely to have a significant effect and is a problem with 

several significant technical difficulties [52] which lies beyond our present scope. For 

the results we report in this chapter, convergence was checked by testing the the so­

lution^ sensitivity to its initial conditions. Numerical instability was observed when 

viscosity, z/, became too small, but a full comparison of stability in either scheme is 

an undertaking somewhat beyond the scope of this work.

We also describe the means by which the EILBGK scheme lends itself to the imple­

mentation of boundary conditions which allow measurement of both pressure drops 

and flow fields after appropriate calibration using the friction factor.
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5.2.1 Boundary Conditions

Lattice-Boltzmann methods do not explicitly set domain boundary velocities. In­

stead closure rules are applied on the simulation lattice edge which act (one hopes) 

to impose the desired conditions on the lattice fluid.

In the next section, 5.3, we are particularly concerned with zero velocity (“no­

slip”) closure conditions, and we shall rely especially upon the work of d’Humieres 

et al [52]. In this section we describe our technique of equilibrium forcing, which 

exploits the decoupled lattice density to close boundary-node velocities, u, using 

the equilibrium densities N*j(p, u), without undermining momentum conservation. 

Certain boundary pressures are free to develop to values determined by the equations 

effectively under solution and the explicitly set lattice closure rules. Such open 

boundaries are easily implemented in the EILBGK scheme where lattice site density 

influences pressure and not lattice momentum.

We consider as an appropriate test bench problem, flow past a backward-facing step 

of height H  in a channel of outlet height W  and length Lo, see figure 5.1. At the 

inlet parabolic flow is forced as described above, by over-writing with equilibrium 

densities A^?(p, u) calculated from a chosen inlet pressure, p =  1.8, and the chosen 

inlet velocity profile,

u* = w>-2Hw+m {y- w){v- H)' ( 5 - 1 }

where uo is the maximum velocity. At the outlet (defined at x  =  L0), a velocity 

profile consistent with physical mass conservation is applied, inlet and outlet profile
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600

— u

x
Figure 5.1: The backward-facing step geometry simulated.
The step height H  is one third of the channel width W. The 
lattice used to resolve the geometry was 600 x 30 sites.

maxima being related through uo =  §Uq,

=  ^ r y ( y  -  w ) • (5-2)

Pressure at the outlet was allowed to freely develop, the value of p used in iV f̂ (p, u) 

was the average value across the y-profile at x  =  (L0 — 1). (Note, experiments 

on this system would typically work in reverse, setting the inlet flux and outlet 

pressure.) It is also important to note that care must be exercised when extracting 

information about the pressure and velocity fields. This is due to the fact that 

forcing occurs via the N ^ f  s and not the full AT ’̂s, so data must only be taken 

downstream of the forced inlet (and upstream of the outlet) where the velocity has 

become parabolic, based upon the N ^ s .  For the results reported here a distance of 

W  lattice sites from either end was found to be sufficient and this method of forcing 

using equilibrium densities, it was observed, drove our system towards a parabolic 

profile with good spatial efficiency compared with other methods of driving flow. 

A steady-state density/pressure develops to a measurable value determined by inlet
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conditions and the other boundaries in the system and, after appropriate measures, 

(section 5.3) the non-uniform pressure field resulting from a particular set of inlet 

driving conditions was obtained.

With an open boundary condition, p decays along the simulation consistent with the 

expected reduction in hydrostatic pressure, and viewed from an EILBGK scheme, 

the simulation’s total mass must be allowed to equilibrate to an asymptotic steady- 

state value, figure 5.2. Figure 5.4 shows a typical variation in p along a uniform

32400 r .... .. 11 i ...... .... i i -----

32200

32000 -

31800 1
t

C/5cn a
s

31600 1

co 31400 I ~
3
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& 31200 - A

3o
H 31000 - \

30800 -

30600 -

30400 - i — .. - -  ------ 1 i ........ ..
0 10(XX) 2(XXX) 30000 40000

Timesteps

Figure 5.2: Total EILBGK mass as a function of timesteps 
for the geometry of figure 5.1.

channel of infinite aspect ratio, see figure 5.3, for the EILBGK and standard LBGK
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►

X

Figure 5.3: The infinite aspect ratio duct used to calibrate 
boundary conditions and pressure changes along the duct.

scheme at similar values of Re.

In figure 5.5, we see the associated variations, along the channel, of average velocity 

u. For the EILBGK scheme u is seen to be constant, whereas, in the standard LBGK 

scheme the continuity equation couples density changes with changes in velocity lead­

ing to compressibility effects, even at low Reynolds number, making the acceptable 

limit on compressibility effects the limiting factor on the accessible Reynolds number 

in LBGK hydrodynamics applied using the standard LBGK scheme in the present 

problem.

5.3 Friction Factor

If we consider a straight duct, such as that shown in figure 5.3, along that duct 

there is a gradient in pressure caused by the friction of the fluid against the wall.
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Standard LBGK (Re=78)
EILBGK (Re=73)

1.7

V.C<DQ
-T3OZ

1.6

1.5

1.4

1.3

1.2
600500300 4002001000

Position along channel x

Figure 5.4: Lattice density p plotted as a function of dis­
tance, x, along an infinite aspect ratio duct, forced with an 
open boundary condition outlet. Green (blue) line represents 
p in the El (standard) LBGK scheme.

Prediction of this loss is a very important problem in fluid mechanics.

The pressure gradient, will be a constant and dependent upon Re. So,

£  =  /< * > ,  (5.3)

which we integrate to obtain,

Ap* = Ax*f{Re) . (5.4)

The variables are non-dimensionalised by taking a characteristic length scale to 

be the hydraulic diameter 2 W q ,  s o  x *  — x / 2 W o ,  and dimensionless pressure to be
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Figure 5.5: Average LBGK velocity «(»). Green (blue) line 
represents u in the El (standard) LBGK scheme.

600

p* =  2p/pu2, where u is the average velocity across the duct width.

The pressure drop along a duct of length L q is,

AP = £ r € f ,2Wq 2
(5.5)

where /  is a function known as the friction factor.

For the case of laminar flow in a duct, of geometry shown in figure 5.3, velocity 

is a function of y and has only an ^-component, and p is only a function of x.
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Consequently the Navier-Stokes equations and appropriate boundary conditions are,

“ = 0  at v = ° ’w °-  (5-6)

The pressure gradient is constant along the channel, therefore (5.6) is integrated and 

evaluated using the above boundary conditions to give Poiseuille flow,

< 5 ' ? )

The flux of fluid flowing per unit length (duct discharge) is,

f Wa . w id p  . . . .
q = J0 udv = ~ T * j t e ’ (5'8)

and the average velocity is,

S =  X  =  _ M ^ .  (5.9)
Wo 12t]dx K ’

The pressure gradient decreases in the direction of the flow, and can be written as,

Ap = ~ ^ w f8 ’ 5̂'10^

which can be re-expressed as,

A
y  Re2W 0 2 v ;

From a comparison of (5.11) and (5.5) it is readily apparent that for laminar flow 

in a duct the friction factor is,

96
/  =  g .  M 2 )

The LBGK  friction factor, /*, provides a means by which we investigated a ‘no-slip’ 

closure rule designed to impose a zero-velocity no-slip boundary on the modelled

78



CHAPTER 5. INTERNAL PRESSURE DRIVEN FLOW SIMULATIONS

walls. Lattice friction factor /* was measured by driving flow in an infinite aspect 

ratio straight duct using matched parabolic velocity profiles at the inlet and outlet, 

section 5.2.1. The lattice closure conditions should introduce friction at wall nodes 

if one hopes to generate no-slip conditions on velocity. The rule applied to define 

the sides of the duct and step (‘wall sites’) was a boundary-specific collision in which 

densities on links with a component perpendicular to the lattice line containing the 

boundary are bounced-back or specularly-reflected.

Figure 5.6: D2Q9 unit cell.

Consider a lattice boundary applied in the line y =  y*. For our lattice speed 1 

links lie perpendicular or parallel to this line, see figure 5.6, and were accordingly 

reflected or left unadjusted. The densities on speed 2 links were coded partly to 

reflect specularly (deflect through |  radians) and partly to reverse (reflect through 

7r radians ) with probability (1 — b) and b respectively. Thus our wall collision rule
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is, at steady-state [50],

N2i (x , l/*) =  bN ^ix, y*) +  (1 -  b)N2A(x , y*) , (5.13)

N22{x, V*) = bN2A(x, y*) +  (1 -  b)N23(x, y*) , (5.14)

Nn (x,y*) =  N 13(x,y*) . (5.15)

In [25] it was shown that the above closure rules will not necessarily locate a zero 

of velocity boundary, or wall, in the line of lattice boundary nodes y =  y*. Rather 

the effective wall should be taken to lie off-lattice by a small distance, fixed by the 

bounce-back parameter b and the lattice size, which with L0 and Wo in lattice units, 

for a D2Q9 standard LBGK, an infinite aspect ratio duct may be shown to have a 

diameter D [25,52],

D2 = ( w 0 +  Oî 1 ~ -^ )  +  48v2 -  1 +  -  36i/2^ ~ ^ 2 • (5-16)

Further, for fully-developed flow in a straight duct, theory shows Ap/dLo = 2vVq/D 2 

[52] and after some analysis to determine a lattice v [52] one obtains from (5.11) the 

lattice friction factor in terms of set simulation parameters [52]:

96 /  (72u2 -  1) (1 -  b) (3Wo +  l j y 1
f  - R ~ e \ l +  Wg +&U b W , ~ J  ■ (5‘17)

Theoretically then, a finite fraction of bounce-back, b, introduces frictional stresses, 

a parallel rest layer very near to the lattice edge and determines the friction factor. 

Clearly, for small lattice viscosity v and large duct width Wo, f* -> ■— as b —> 1. By 

ensuring that 72^2 <C Wq , through the value of u  selected, a value of /* in correct 

quantitative relation with Re was obtained by using 6 = 1  throughout, and a zero 

of velocity (no-slip wall) was located very close to the lattice edge.
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Adapting equations (5.5) and (5.12) to EILBGK simulations, in which Ap/p  is

measured Ap, using (5.18), over a range of different Re. From (5.17) one expects

plotting this gradient m(b) over a range of b, see figure 5.7, we obtain results in

Whilst to obtain a consistent pressure drop along the system then, requires the 

use of a particular bounce-back fraction, the velocity field was observed to be less 

sensitive to b. Considering the pattern of flow generated in the backward-facing step 

of section 5.4, varying b between 0 and 1 produced, in qualitative terms, little effect 

on the stream function ip(x,y), where,

and attempts to measure its influence on the re-attachment length also showed b 

to have little effect. Variations in the value of parameter b were observed to have 

a marked effect upon values of the total pressure drop along a given section of the 

system. The pressure field corresponding to a simulation of flow past the expansion

determined by |A p, the total density drop along a length L0 of channel, we obtain 

lattice versions of the same equations,

(5.18)

r  = 96
(5.19)

Re* 5

in which u is the y-averaged lattice fluid velocity, f* was obtained for given b and

a plot of f* vs. 1/Re* to have a gradient controlled by bounce-back fraction b and

agreement with the theoretical form of (5.17) above. Note that the value of collision

scalar u  in use influences the value of b required to give a particular value of /*.

(5.20)
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Figure 5.7: The fraction b of link densities not reflecting 
specularly at wall sites and the corresponding gradient m(b) 
of the plot of lattice friction factor /* versus lattice Reynolds 
Number Re*.

is shown in figure 5.8a. The non-uniformity of the pressure field is clear, and its 

qualitative features were stable.

5.4 C om parison w ith  E xperim en t

We consider as a test-bench problem flow over a backward-facing step. There is a 

large body of experimental data on this geometry, and for the purpose of this study 

we have chosen that of Denham et al [53]. In order to make comparisons with the
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reported experimental data in [53], in this section Reynolds number is defined as 

follows,

Re =  M  , (5.21)
V

where Wo is the width of the channel upstream of the step, and v is the average 

velocity across the narrow channel.

A calibration to assess maximum accessible Reynolds number was carried out by 

fixing the relaxation parameter u  and increasing u through parameter uo, see section 

5.2.1, for a set system size. Compressibility effects were found to be small from an 

inspection of the velocity field in the form of the contour plot of the stream function 

ip(x,y), in the outlet of the channel, well behind the step, as shown in figure 5.8. 

In the exactly incompressible scheme, the streamlines of i/)(x, y) are parallel in this 

region and thus it may be inferred that the velocity field shows no evidence of 

systematic increase in u, as shown in figure 5.5 using a standard scheme to simulate 

duct flow. Moreover the pressure field shown in figure 5.8, from which the extent and 

non-uniformity of the variations is readily apparent, is fully consistent with uniform 

decay. This was observed to remain the case for all values of inlet profile parameter 

uo up to that which induced instability in the EILBGK simulation. A system of size 

600 x 30 was driven with matched equilibrium forcing at inlet, and outlet, using a 

value of u) — 1.9 chosen as a compromise between low viscosity and stability. The 

value of b in use was determined on the basis of the value of /*, measured for flow 

in an infinite aspect ratio duct as in figure 5.3, again with u  =  1.9.

For purposes of comparison with experiment, the length of the duct outlet down-
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Figure 5.8: (a) Pressure field produced from simulation
of back-facing step, (b) Stream function ip(x, y), evaluated 
numerically (using a trapezium rule integration). It can be 
seen that Poiseuille flow redevelops downstream of the step, 
(c) Detail of recirculating region directly behind the step. 
Note that in (a) the end of the step is shown, in both (b) 
& (c) the stream function is shown immediately right of the 
step.

stream of the step (figure 5.1) was determined by trial and error, to be sufficiently 

long such that it had no measurable influence upon the re-attachment length L  of 

the recirculating region behind the expansion. L  was measured in units of the step 

height, as the distance downstream of the step to an interpolated zero in ux.

Figure 5.9 shows dimensionless L /H  as a function of Re. These data were obtained 

from the final steady-state of simulations using u) =  1.9, initialised uniformly to 

Nai = p0N*i(0), with a node density of po = 1.8, and allowed to equilibrate over

40.000 time steps (although flows were observed to have reached equilibrium by

25.000 steps). Stability of the scheme was checked for in the manner discussed at 

the beginning of section 5.2.1. Figure 5.2 shows the time variation of the total lattice
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Figure 5.9: Comparison of reattachment length data obtained from 
LBGK backward-facing step simulations with experimental data of 
Denham et a l .

mass M(t), where,

M (f) = £  • (5-22) 
<r,i

The simulation results in figure 5.9 are overlaid with experimental data lifted from 

pseudo two-dimensional experimental measurements made in the central plane of the 

apparatus represented in figure 2 of reference [53] and with comparable calculations 

made using standard CFD [54]. Whilst agreement with CFD is good, that with the 

experimental data points (admittedly obtained crudely from enlargements of figure 

7a of [53]) shows a less close correspondence, certainly compared with the match
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achieved, between the standard scheme and theory on lid-driven cell geometries 

[41,42]. This disparity possibly originates from the comparatively large pressure 

gradients present in our simulation, which are significantly less in the confined lid- 

driven-cell geometries. The latter essentially experience restricted pressure changes 

because of the confinement of the fluid.

5.5 Discussion and Conclusions

We have applied an EILBGK simulation to internal, pressure-driven flow in which 

non-uniform pressure gradients are to be expected, demonstrating with this approach 

a need to adjust the fraction of bounce-back, &, applied to link densities at no-slip 

boundaries of LBGK simulations to recover correct mechanical stresses at a static 

wall. Adjusting b in this way has allowed the LBGK method to recover a correct 

value of friction factor, /*, for flow in an infinite aspect ratio rectangular duct. 

This value of b significantly influences the measured pressure drops when applying 

modified LBGK simulation to internal, pressure driven flow.

Use of forced boundary conditions allows development of stable, parabolic boundary 

profiles in relatively small regions of lattice and thus introduces an improvement 

in the efficiency of the method. Forced boundary conditions also have inherent 

flexibility (being capable of direct application where a boundary velocity profile 

and pressure are required) and bring LBGK simulation closer to CFD practice. 

For example, a solenoidal flow field is readily established using a forced boundary
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condition, but is tedious to apply using usual traditional LBGK methods. Moreover 

we have seen that it is possible to simulate open boundary conditions in a modified 

scheme with ease, making for simple implementation again more consistent with 

conventional CFD.

Using an EILBGK scheme, by decreasing lattice viscosity and using lattice closure 

rules which allow a fuller control of the pressure field, we have, without compress­

ibility error, achieved Reynolds numbers up to Re «  250. Beyond this value of Re 

there is a loss in stability if the viscosity is too small. By comparison, standard 

LBGK shows compressibility error by Re «  22 for the problem. This is illustrated 

quantitatively in figures 5.10 and 5.11. There are differences in the recirculation 

length calculated by the standard and EILBGK schemes, figure 5.11 shows this to 

be about 10% at Re =  22. But the two schemes differ most noticeably in terms of 

velocity divergence as seen in figure 5.10.

Comparisons of LBGK simulation with particular analytical solutions of the lid- 

driven cavity test bench test problem [42] deal with completely confined fluids so 

that the pressure fields encountered are more homogeneous. This possibly accounts 

for the closer agreement between theory and CFD that these simulations produce, 

over that which we report here with experiment Also work by Armaly et al [55] has 

noted that velocity profiles at the step in the data of [53] strongly deviates from the 

parabolic profile expected for laminar flow, consequently despite the uniformity in its 

geometry the experimental data of [53] may yet retain three-dimensional behaviour. 

Notwithstanding, the data developed for comparison, from traditional numerical
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Figure 5.10: Width-averaged velocity v(x) plotted as a function of 
position X , downstream of the step. Standard scheme data corre­
sponds to an outlet velocity of 0.019356. EILBGK scheme to an 
outlet velocity of 0.019954.

solution of the incompressible Navier-Stokes and continuity equations, is in better 

agreement with our LBGK results and whilst, for our application, the former of­

fers considerably greater efficiency, it appears not to produce significantly better 

agreement with experiment.

Where the pressure field is uniform, standard LBGK can achieve still higher Re 

and also capture hydrodynamic time dependence. EILBGK should thus be seen as 

complementary to the standard approach, a full comparison of the relative accuracy
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(a) (b)
Figure 5.11: Unsmoothed stream function in the region of the pri­
mary vortex, for (a) the EILBGK scheme at Re = 22.7 with L^ = 2.2, 
and (b) standard LBGK at comparable Re = 22.1 with Lh = 2.0. 
The point of re-attachent (arrowed and expressed in units of the 
step-height) was calculated by locating the zero in velocity close to 
the horizontal wall.

and stability being primarily of academic interest only. Where boundary conditions 

permit, the simulator is likely to wish to retain the advantage of hydrodynamic time 

dependence.

Nevertheless, we have shown that for certain applications, modified and appropriately- 

bounded EILBGK schemes offer economic access to a fuller control of the pressure 

field and increased Reynolds number.
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Chapter 6

Depth-Averaged Flow Simulations

6.1 Introduction

In this chapter we proceed to validate the assumptions of section 2.8 numerically, 

particularly the statement that in depth-averaged flow calculations the influence 

of the unmodelled dimension can be accounted for by the stress term Sa alone 

(see (2.54) through (2.60)). Then we present results of EILBGK depth-averaged 

simulations applied to a test simulation of flow in a bifurcating duct, and make 

comparisons with CFD results. As in chapter 5, we make use of the friction factor 

for the purposes of calibration, in the present context to ensure the unmodelled walls 

have the correct influence on the flow field.
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6.2 N um erical Schem e for S teady Incom pressible 

Flow in a  U niform  D uct

To investigate the assumptions of the section 2.8, we consider in this section direct 

numerical and analytical calculations of steady-state incompressible flow in a wide, 

shallow duct.

We consider a long, uniform duct of the geometry shown in figure 6.1, in which

Z

Y

 ___________________________________________________

Figure 6.1: Geometry of depth-averaged flow problem.

Lx ^> Ly Lz. The governing equations for an incompressible fluid in an isothermal 

regime are, as usual,

dfiVp =  0 , (6 .1)

dtva +  d p V p V a  = - d a +  vdpdpVa , (6.2)

where, we remind the reader, d is the density of the actual fluid.
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General arguments are now applied to the velocity and pressure fields. We are 

only interested in steady-state, laminar flow which in this geometry, with a uniform 

cross-section, can have no y or 2 velocity components, from which it follows that the 

pressure gradient is unidirectional in the x-direction. Moreover, consider the second 

term in (6.2),

dpVpVa =  VfidfiVa , 

which reduces further (due to vy =  vz = 0) to become,

dpVpVa =  Vxdxv a .

There only being a x-direction velocity component the subscript a  above becomes 

x, and due to the uniformity of the duct is a function of y and z only. So, there is 

still further simplification and the advective term vanishes altogether,

dpVpva =  0 . (6.3)

The governing equations thus become,

dxvx =  0 , (6.4)

9X ( | )  =  v  (a® +  aj) v x . (6.5)

On the grounds of translational symmetry, the pressure is taken to be,

p(x) = p 0 -  Mx  , (6.6)

where po is a constant, and M  is the gradient in pressure along the system.

On appeal to the definition for the pressure gradient, (6.6), the momentum equation 

reduces, for the problem of flow in a uniform shallow duct, to that of solving Poisson’s
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equation,

77 (dy +  dl) vx =  - M  , (6.7)

note, (6.7) contains the shear viscosity, rj — 3 . We seek a numerical solution and

Z (j subscript)

j+i

i+ l
Y (i subscript)

Figure 6.2: Rectangular grid used for numerical solution of 
depth-averaged flow equations.

discretise the equations on a rectangular mesh, approximating the derivatives in 

(6.7) using central differences. Such an approximation for a first derivative would 

be, using a mesh as shown in figure 6.2,

d ^ { . +  l / 2 J )  =  +  t m

and similarly,

^  {i _  1/ 2 , j )  =  1,3 ) _ (69)
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A  second derivative is simply the rate of change of the first derivatives so,

( V x ( i + l j ) - V x ( i , j ) \  _  ( V x ( i , j ) + V x ( i - l j ) \

" N t O  -  i  ■-------- ^ , ( MO)dy2 I
vx(i + 1 ,j )  -  2vx(i,j)  +  vx(i -  1 ,j)

(6 .11)
I2

Applying the same methodology to the ^-direction (remembering the vertical step 

length is now h), we substitute into our governing equation (6.7) to obtain the finite 

difference form,

_M_ Vx(i + V j ) - 2 v x { h j )  + V x ( i - V j )
7] I 2

vx{i,j + 1 ) -  2vx(i,j) + vx( i,j  -  1) 
h2

which is simply manipulated to give our final finite difference equation,

(6 .12)

=  g (& + P) { h2vx^  +  +  h2vx^  ~ 1’^

3 1) j —1) +  \  . (6.13)V J
Applying the usual no-slip (Dirichlet) boundary condition on vx at the walls, our 

finite-difference scheme (6.13) was iterated to steady-state for a range of duct as­

pects, A  (defined as Ly/L z), and Reynolds number (the latter controlled through 

the size of the pressure gradient M  inducing the flow). Depth-averaged quantities of 

interest were then calculated from trapezium rule integration, and spatial derivatives 

were evaluated from mesh differences. In this way values for the cumulant and stress 

terms, ^  and dpCap in (2.57) were obtained. Figure 6.3 shows the y-averaged value 

of the ratio R, estimated in (2.59) plotted as a function of A/Re. A clear

linear trend emerges for the range of 80 < A < 1400 and 7 < Re < 35,000 used to 

compile this data. These results support the view that for large values of A/Re the
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Figure 6.3: Dimensionless ratio R = / fxLLz\ of stress term 
to cumulant term obtained by finite-difference calculations of 
z-averaged flow in the duct of figure 6.1.

artifice of a fictitious body force is sufficient for flow to be treated in two-dimensions, 

the influence of the formally unmodelled surfaces manifesting itself in an effective 

body force impressed throughout the 2D fluid and represented by stress term Sa of 

expression (2.57) alone.
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6.3 EILBGK Depth-Averaged Flow Experiments

6.3.1 Boundary Conditions

In this section we describe the forcing and calibration used in our EILBGK simula­

tions of depth-averaged flow introduced in section 4.3 and present results. As with 

our pressure-driven flow experiments of chapter 5 the forcing applied over ‘open 

boundaries’ allows the simulator to gain fuller control of the fluid pressure field and 

avoids the use of the more usual approach of a uniformly impressed body force, 

which whilst it is a valid means of forcing flow where the pressure gradient is known 

to be uniform, cannot correctly represent a spatially variable pressure field.

In section 5.2.1 we introduced equilibrium forcing, in which, at an open boundary 

the pressure is allowed to develop to a value consistent with the other set boundaries 

(inlet and outlet velocities being continually set, recall, by fixing A^?(u, p) to a value 

determined by a target boundary velocity).

In this chapter we also implement what we term free profile conditions, which impose 

set pressure drops on the system between open boundaries. Again, at the inlet, 

both a pressure and velocity profile are specified. However, with our free profile 

conditions, a uniform pressure (lattice density) is set at the outlet, by the user, with 

the velocity u  from the node downstream now used to set all boundary densities 

to equilibrium value N*j(u,p), allowing outlet velocity freely to develop, after the 

‘upwinding’ technique of traditional CFD.

96



CHAPTER 6. DEPTH-AVERAGED FLOW SIMULATIONS

Having dealt with open boundaries, we proceed to relate the means by which the 

no-slip boundary conditions required for the ducts’ static, resolved wall were cal­

ibrated with reference to flow friction factor. Indeed, working within an exactly 

incompressible scheme, the friction factor also provides a useful verification of the 

influence of the unmodelled walls, ie. of depth parameter k.

6.3.2 Friction Factor

In chapter 5 we have already investigated the no-slip boundary conditions imposed 

on explicitly modelled walls via the friction factor calculations presented. We may 

now use the friction factor as a check on the simulation’s behaviour in the unmod­

elled z-direction, and as a check upon our interpretation of the role of parameter k, 

discussed in section 4.3.

From chapter 5 we know that for physical duct flows, the friction factor /  relates 

average flow profile velocity u to the pressure Ap developed along the duct and fluid 

viscosity. As we have seen (section 2.8), the profile flow sampled in the unmodelled 

z-direction is parabolic, so,

/  =  J r  , (6-14)a Lq u*

which of course is derived directly from the definition of /  for flow along an infinitely 

deep duct with width Lz and length LQ (see beginning of section 5.3). Also from 

section 5.3 we know that (6.14) may be reduced to,
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where the Reynolds number is based upon hydraulic diameter 2Lz, ie.

_ 2 Lzu
Re = ------- . (6.16)

v

Adapting (6.14) and (6.15) to our EILBGK scheme, in which Ap/d  is determined 

by |A /?, the total lattice density drop along the whole length of channel, we obtain 

a lattice version of equation (6.14),

/* =  S -  (6.1S)

where u is now average lattice fluid velocity and Lq and Lz are measured in lattice 

units.

Consider the steady-state of a 2D lattice of length L q in the x-direction, infinite in

the y-direction, driven with uniform, matched inlet and outlet profiles u q  —  u q x .

Let the inlet density be and consider the outlet sites’ densities to have evolved 

to a steady-state density p^t using equilibrium forcing described in section 5.2.1. 

On general arguments of symmetry,

'Mai?') 2/) ~~ UQ5ax , (6.19)

dxp =  Pin 7  pout . (6.20)
L q

For this situation of uniform translation (no gradients) all link densities will be given 

by their equilibrium form (4.39) so, in modified evolution equation (4.47) we may 

set A i(N ) =  0 and, with (6.19) and (6.20) in mind obtain,

N%(uo, p(x +  caix)) = N%(uo, p(x)) +  - N ‘i{(S)caixux , (6.21)
P
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in which, recall, k parameterises the effect of the unmodelled walls.

Substituting, from (4.39) for N ^ ( uq, p{x+Cix)) and N^(uo, p(x)) we note that, since 

the velocity field is uniform [see (6.19), and, remember in the EILBGK scheme, 

variations in the lattice density are not communicated into site velocities] all terms 

involving Uq cancel from (6.21). After a Taylor expansion and some algebra (6.21) 

yields,

CaiadaP ~  k caiaUa , (6 .22)

which, for the present geometry, reduces to the exact result,

^  ~  ^  ^  =  ku0 . (6.23)
Lq Lq

Equations (6.23) and (4.56) may be substituted into (6.17) to obtain reassurance of 

the result required by hydrodynamics,

/ * - £ ,  (6-24)

here, Re* =  2 uqL z / v (<jS)  is based upon the unmodelled depth of the parent 3D duct.

Using periodic boundary conditions it is straightforward to simulate this semi-infinite 

lattice and, measuring the gradient in lattice density p along the flow direction, to 

calculate f* from (6.17) with Lz obtained from the set value of k through (4.56).

Simulations were performed for values of unmodelled depth parameter k in the

range 0.0008 < k < 0.01, each being driven with a uniform velocity profile ranging 

in 0.023 < v0 < 0.271 in lattice units. The average velocity v was confirmed to 

be of constant value throughout each simulation, 40,000 time steps being sufficient
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easily to ensure a final steady-state. Across all tests performed, u; was set to 1.9 

and pressure drops of the order 3.7 x 1CT1 were recorded. For a particular k value 

the lattice friction factor, /*, and Re were calculated for each velocity profile and 

the values plotted against each other. Over the range of parameters considered the 

gradient m(b) was measured to be extremely close to 96.

Y (EILBGK)
0  1 0  2 0  3 0  4 0  5 0

1.2

0 . 4

Numerical Scheme 
EILBGK

0.2

6 0 00 100 200 3 0 0 4 0 0 5 0 0

Y (Numerical)

Figure 6.4: Z-averaged velocity profiles across the duct of 
figure 6.1 for equivalent Reynolds Number and effective Lz 
(k parameter).

Figure 6.4 shows the depth-averaged velocity sampled across a long, uniform duct 

calculated using modified EILBGK simulation compared with that calculated nu­

merically after section 6.2 for the system of figure 6.1. The close correspondence
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between these two sets of results further underlines the validity of the EILBGK 

model.

6 .3 .3  B ifu r c a t in g  D u c t

We choose as an illustrative example flow near a bifurcation in a shallow duct, 

concentrating on the qualitative dependence upon pressure driving of the deflection 

of the principal flow. With bounce-back conditions (bounce-back factor b = 1) on 

velocity at the resolved walls, solid lines figure 6.5, values of inlet velocity and k 

were chosen so that was large.

Figure 6.5: Diagram showing geometry of bifurcating duct.
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Figure 6.6 shows, through the stream function (see below), the flow profile obtained 

in a bifurcating duct of figure 6.5; and figure 6.7 shows the associated pressure 

field. Open boundary conditions were imposed on the pressure at both outlets with 

Dirichlet conditions on the velocities corresponding to uniform profiles. Also, 

simulations were performed using our free profile conditions where uniform profiles 

were set at the inlet but developed naturally at both outlets. Both approaches to 

setting the boundary conditions yielded qualitatively similar results, but only those 

obtained using the latter boundary conditions are presented here. The length of both 

outlet channels was increased until the qualitative features of the flow in the region of 

the bifurcation were seen to be insensitive to any further elongation. The parameters 

used in simulation were u  — 1.9, k — 0.3 (therefore Lz «  1.0), and Ly =  45. The 

pressures were set to P I  =  0.60, P2 =  0.48 and P3 gradually increased, using the 

values 0.514 , 0.528 and 0.540 until the flow direction was reversed in the horizontal 

exit (see figure 6.6c).

The stream function used to display the velocity field in figures 6.6 was obtained 

from a numerical integration (trapezium rule) approximating,

f  vx{x,y')dy' . (6.25)
Jy'=0

The pressure field corresponding to the flow close to the bifurcation, figures 6.7, 

is clearly non-uniform. The extent to which the pressure varies throughout the 

simulated system is clear, and whilst the qualitative features of this field are stable, 

variations in the value of wall collision parameter b were observed to have a marked 

effect upon numerical values, underlining the importance of calibrating the modelled
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Figure 6.6: Stream lines obtained from EILBGK calculation for laminar flow in a shallow 
bifurcating duct, where ^  «  50. (a) Inlet pressure higher than right hand exit, which is 
higher than top exit. Majority of flow deflected towards top exit, (b) On increasing right 
hand pressure negligible flow through to right exit, (c) On further increase in pressure at 
right hand side exit, flow now enters here as well as inlet.
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Figure 6.7: Pressure contours corresponding to velocity
fields of figures 6.6. Note the uniformity of the pressure gra­
dient in the inlet and outlet.
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wall’s collision step.

For the purposes of comparison, a two-dimensional model of the laminar flow within 

the bifurcating duct was set up using version 1.6 of the PHEONICS flow modelling 

package. The flow domain was represented using a non-uniform 60 x 40 calculational 

grid, in which the solid regions adjacent to the vertical exit of the duct were ‘blocked 

off’ by defining them as regions of zero porosity.

Pressure boundary conditions were defined at the inlet and exit planes of the domain, 

consistent with those assumed in the accompanying analysis. As a consequence of the 

two-dimensional treatment used in this work, the principal flow resistances arising 

from the shear stresses at the unmodelled surfaces of the flow domain could not 

be modelled directly. Therefore it was necessary to represent this effect through 

the use of additional momentum sinks applied to each of the velocity components 

distributed throughout the flow domain.

The form of the fluid momentum sinks used in this work was based on the following 

pressure loss definition,

z l = ~\pHu*wz • (6 -26)

We know from chapter 5 that for flow in a smooth walled duct it can be shown that 

the friction factor /  may be expressed as,
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where,

Re = ^ .  (6.28)V

Using this model described above, the resulting flow field was solved and the pre­

dicted streamlines are presented in figure 6.8 for comparison with those in figure 6.6.

6.4 Discussion and Conclusions.

In this work we have analysed the Navier-Stokes equations and devised, for ducts 

of uniform depth, a condition for the application of laminar, depth-averaged flow 

modelling over fully-resolved three-dimensional calculations.

Modifications to the EILBGK simulation method, mapping the scheme onto the 

structure of a partially-integrated, steady-state Navier-Stokes equation (with new 

associations for the unmodelled depth of duct, which is controlled through our pa­

rameter k) have been presented and shown to recover correct hydrodynamics. It has 

further been demonstrated, both by analytical calculation and by simulation, that 

the parameter k lies in correct relation with pressure jumps obtained by applicar 

tion of open boundaries to the EILBGK scheme applied to internal, pressure-driven 

flows.

Our method increases the capacity of LBGK simulation to deal with flows in which 

the principal (flow inducing) boundary conditions are specified in terms of pres-
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Figure 6.8: Streamlines obtained from CFD calculation of 
bifurcating problem, using same pressures as specified for 
LBGK calculation.
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sure, and has brought LB methods closer to CFD practice : using the core EILBGK 

method again allows one to avoid both the error due to compressibility effects (whilst 

actually calculating pressure jumps) and the artifice of a uniformly imposed body 

force to drive flow. Both these benefits accrue from the manner in which the bound­

ary conditions have been applied and not from any modification to the bulk scheme. 

They are therefore, quite general and not confined to purely depth-averaged flows.

In modifying the EILBGK scheme the possibility of generation of a sink term in the 

continuity equation has been deliberately avoided. Such a term may have proved 

useful in applications of the method to ducts of non-uniform depth and possibly as 

a means to model the shallow water equations.

Our model is still laminar. In traditional CFD the influence of turbulence is incor­

porated usually by some ‘law of the wall’. Turbulence in the layer of fluid in contact 

with the no-slip boundaries of our calculation would undoubtedly modify the stress 

terms of (2.54) but (provided the appropriate Reynolds number could be accessed), 

we suggest that a phenomenological modification is all that obstructs incorporation 

of some turbulent effects.
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Thermal LBGK Simulations

7.1 Introduction

In this chapter we report the results of simulations using our thermal LBGK model 

as introduced in section 4.4.

Applications of LBGK schemes which incorporate energy transport have been re­

stricted to free or natural convection flow problems such as Rayleigh-Bernard con­

vection [37,38,56], or, Couette flow [35,36] so that viscous dissipation terms can be 

studied. Certainly the geometries selected for these test simulations in [35-38,56] 

are of physical interest. However, in many practical situations viscous dissipation is 

often negligible. Moreover previous thermal models are known to be highly unstable 

(much more so than the corresponding isothermal schemes [37]) and as a result, they 

have been used only to treat small temperature variations [57].

109



CHAPTER 7. THERMAL LBGK SIMULATIONS

We find that these limitations can be overcome by treating the temperature through 

a de-coupled internal energy distribution. That is as a passively advected scalar 

quantity. This is the approach we have taken in our thermal model - the macro­

scopic governing temperature equation is effectively solved using a second distribu­

tion, nominated e ^ ’s, which are evolved by a relaxation method similar in nature 

to that controlling the momentum densities (see chapter 4). Note that with this 

approach it is impossible to capture the correct form for viscous dissipation in the 

models’ resulting thermohydrodynamics. However, these effects are often negligible 

in engineering flow geometries.

Our model enjoys the advantage of an adjustable Prandtl number achieved by using 

two different BGK single-time relaxation parameters to model thermal and momen­

tum relaxation. (Other models in the literature achieve this by resorting to more 

complicated collision operators [37,56].)

The model considered in this chapter is conceived, therefore, to simulate fluid flow in 

the Boussinesq-Oberbeck approximation. For flow within this regime we can appeal 

to a particularly useful test-bench calculation with a known solution - the forced flow 

of a fluid between infinite parallel plates, subject to constant heat flux boundary 

conditions. Consequently we are able to make comparison with both analytical 

and standard CFD results for this geometry. We show that our model, constructed 

over a straightforward D2Q9 standard scheme (note that it is not necessary to 

increase the complexity of the unit cell to the extent used in other thermal LBGK 

models [32,36,56]) recovers the correct steady-state Nusselt number, Nu, for the
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geometry simulated. Moreover, our thermal scheme would appear to be as stable as 

the parent isothermal model. (A complete stability analysis is however somewhat 

beyond the present scope of this project, although some analysis has been carried 

out on previous models [37,58].)

7.2 Analytical Results

In order to establish the key analytical results, we derive here the expected Nusselt 

number for constant heat flux boundary conditions at the walls of an infinitely deep 

duct containing parabolic flow, see figure 7.1. Note that the origin of co-ordinates 

is in the centre plane of the duct, as marked in figure 7.1, which is significant when 

we come to measure observable quantities.

Q"

+ ~

Y=0

Y

/ /

Figure 7.1: Geometry used for analytical calculation of Nus­
selt number.
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At steady-state the governing Boussinesq equation for the temperature field is, from 

(2.45)

vadaT  =  Xd lT  , (7.1)

which, on neglecting axial conduction and realising that there will be no y-component 

of velocity (7.1), reduces to the following partial differential equation,

dT & T  _
Vzdx ~ X dy2 '  ̂ ^

The velocity profile across the duct is parabolic with a central maximum designated

^o,

4u0 f  W \ (  W \
v* = - w ( y - T j  { y + T j  ■ (7'3)

On general grounds of translational symmetry (with constant heat flux boundary 

conditions applied at the walls) in the bulk of the channel (away from the inlet), 

one would expect the temperature, T, to increase linearly along the axis length of 

a duct . T  must also exhibit ^/-dependence so we take the following functional form 

for T,

T(x, y) =  Ax  +  f{y) . (7.4)

Substituting (7.3) and (7.4) for vx and T  into (7.2) we obtain,

d2f  4«o ( W  \ (  WA „
dy 2 ~  x W 2 ( 2  y) [ y +  2 )  ’ ( }

integrating, we note that the cross-duct temperature has to be an even function,

d j
dy =  0 , (7.6)

y = 0

112



CHAPTER 7. THERMAL LBGK SIMULATIONS 

which implies that the integration constant is zero,

d £  = j v ! L ( _ l  + W V \ A (77)
dy  XW 2 \  3 +  4 j  ’ ( ' )

To find a form for f (y)  we need to integrate (7.7), and require a boundary condition, 

which we take to be,

T  — Tin , at x  =  y =  0 . (7.8)

Performing the integration we obtain expressions for f (y)  which, when substituted 

in (7.4) yields a form for T(x,y),

n„y)-A, + ̂ ,(-^+' ^ A + T̂  ( „ ,

To determine gradient A  we consider the given wall flux Q”, evaluated at , which 

is calculated from,

Q" =  ■ (7.10)dy

Using (7.9) it is easily shown that,

Finally, from (7.11) and (7.9), the full form of T{x, y) is obtained,

+ Ti n . (7.12)T(x,y)  ZxQ
kv0W

' 4v0 f  yA W 2y2
x  +  ——r +

XW 2 V 12 8

We define the flow-averaged or bulk temperature, 7]>, which would be the measured 

temperature if, at position x , the channel was cut and the out-flowing fluid was 

collected and thoroughly mixed,

„,s,
J-W/2 V* dV 
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which for our geometry becomes,

Tb = 3y Q" 
kvQW

x + 13 v0W 21

560 x
(7.14)

We also require a form for the temperature along the wall Tw,

Tw — t (x ,  y)\w/ 2  j

therefore,

T
w kvQW

x +
5 v0W 2

48 y
+  Ti. (7.15)

We are now able to calculate the heat transfer coefficient, h, defined by

h =
k dT

\Tm -  Th\ dy
(7.16)

W / 2

h = Q'
\TW- T b\ •

(7.17)

On substituting in (7.17) for the relevant terms we find,

, 210 k
h = T T x ~  51 w

(7.18)

If we now cast (7.18) in terms of hydraulic diameter, D , which we know from (2.28) 

reduces to,

D = 2W , (7.19)

for a 2D rectangular duct, equation (7.18) becomes,

t 420 k 
h = - 5 1 X D -

(7.20)
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So, for our 2D straight duct with constant heat flux boundary conditions at the wall 

the Nusselt number is,

h D
N u = —r- — 8.235 . (7.21)

K

The above result is the predicted value of Nusselt number in the Boussinesq-Oberbeck 

regime, for a fully developed flow/temperature profile at large distances of x. In fact 

it is possible to obtain an expression for N u  at all values of x  (including the duct 

‘inlet’ or ‘entry’) for the case of an assumed uniform distribution of temperature 

across the duct at x — 0 [60]-

Figure 7.2 shows the theoretical prediction (green line) for the development of Nus­

selt number along the channel [60]. The non-dimensionalised axial length parameter 

used to calibrate the abscissa is defined as,

* =  > (7.22)R eP r  ’ v '

where D is the hydraulic diameter and x  is physical distance along the channel. Note 

that figure 7.2 shows the solution in the entry length, the distance necessary for the 

flow to become fully developed (ie. subject to assumption (7.4), from an assumed 

uniform profile), to be in the order x — 0.2 [60].

The theoretical result expressed in figure 7.2 is an appropriate result by which we 

can evaluate our thermal LBGK simulations.
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Figure 7.2: Axial development of Nu, entry length x = 0.5.

7.3 Sim ulation

Boussinesq flow assumes that fluid density is significantly influenced by the temper­

ature but not the pressure field of the fluid. Also, in Boussinesq flow, temperature 

variation throughout the fluid is assumed to be small compared with the average 

value of that parameter (temperature). Therefore, to ensure that our test simula­

tions remain within the Boussinesq-Oberbeck regime we must restrict the variation 

in internal energy parameter e0 to be small compared with its average value. This 

can be achieved by setting a large thermal conductivity (large thermal diffusivity)
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through u/ ,  which acts to limit the simulations transverse (cross-duct) internal en­

ergy (temperature) gradient.

Since we shall deliberately seek to restrict variation in our internal energy parameter

to be small, in this and subsequent sections of chapter 7 we shall present results which

refer to a normalised internal energy, defined by,

j ,  \ e0(x,y) -  e0ref
60 ( x’ =  ’ (7 '23)

in which the reference energy, s0ref , is the arbitrary value of 60 measured at the 

origin of the lattice co-ordinates (see figure 7.1) at steady state. This precaution 

also allows one to establish a simple correspondence with the temperature of the 

corresponding real system. We temporarily superscript lattice co-ordinates with an 

asterisk, then clearly,

S0{x*,y’) -  £0re/ _  T ( x , y ) - V eS . .
60ref  T ref  ’ ’

in which T(x , y) is the absolute temperature which would be measured at position

(re, y), equivalent (relative to the system boundary conditions) to a lattice location

(x*,y*) and T ref  is the temperature at the centre of the duct, (0*,0*).

Thus all quantities in figures 7.4 and 7.5 can, through equation (7.23), be interpreted 

as a normalised relative temperature change, which may be converted into a physical 

quantity after a single measurement of an appropriate reference temperature T ref.

By trial and error the value of the thermal diffusivity was adjusted so that a typical 

variation in the internal energy variable, 60,  is of the order 10~5, safely within the 

Boussinesq-Oberbeck regime.
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In terms of computational resource per simulation time-step our thermal scheme is 

little more demanding than the standard or El LBGK schemes for our present appli­

cation. Without buoyancy forces, there is no reciprocal influence of the temperature 

field upon the velocity field, although the latter would be simple to incorporate in 

the form of a body-force. This permits us to allow the LBGK momentum densities 

to evolve to an isothermal steady-state and thereafter to retain them in computer 

memory. Thermal evolution is then commenced, the energy (temperature) field 

being determined by the steady-state velocity field and the thermal boundary con­

ditions (see section 7.3.1). Analagous practice is common in conventional CFD, to 

aid stability and to speed up convergence.

7.3.1 Boundary Conditions

In this subsection we consider the lattice closure conditions applied over the simu­

lation lattice extremities.

First consider the momentum densities. The boundary conditions imposed at the 

horizontal walls, figure 7.1, on the velocity field are an extension of those used for the 

duct of section 5.3. We impose bounce-back conditions on the walls (remembering 

that the actual effective zero of velocity may lie a small distance away from the row 

in which the lattice closure rule is applied [25]).

Since we are using the standard LBGK momentum scheme, in driving the flow one 

is forced to resort to the usual approach of impressing a constant body force (using
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a constant term in evolution equation [30]) throughout the fluid in order to simulate 

a driving pressure gradient [30,50]. This device is perfectly accurate in a uniform 

duct and forces the momentum densities to a divergence-free velocity field along the 

duct. This allows use of wrap-around periodic conditions on the vertical walls of the 

simulation, leading to a velocity field consistent with an infinitely long duct.

Next we consider the boundary conditions applied to the internal energies. At the 

duct inlet (x =  0) the energy profile (e,0’s) was set to a constant value across the 

width of the duct. For the link energies, the individual e ^ ’s were shared pro rata with 

the (known) momentum densities. In the geometries simulated the fully developed 

energy or temperature profile is expected to take the form of an inverted parabola 

(temperature being greater closer to the heated walls and lower in the duct centre - 

see (7.12)) however, published analytical results (see figure 7.2) with which we draw 

comparison in section 7.3.2, table the evolution of Nusselt number axially along the 

duct from a uniform inlet temperature profile /  fully developed velocity boundary 

condition.

The outlet (x =  L0) boundary condition on the energy (temperature) field is based 

upon the gradient in energy along the duct. We expect (and do observe) a linear 

increase in all the e^-’s along the duct, consistent with a linearly increasing average 

temperature (which results from constant flux boundary conditions). Obviously, the 

internal energies do not obey a periodic condition like the momentum densities. At 

the outlet, we extrapolate from the interior and we copy forward all the eai values 

from x  =  L q — 1, then add to them an approximate gradient in effi.
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We have chosen to simulate a system with constant heat flux at the walls and it 

should be noted that the thermal boundary may not necessarily lie in exactly the 

same plane as the no-slip velocity boundary. However, for a relatively wide duct it 

should be possible to minimise the effect of this error. With constant flux conditions 

the fluid in contact with the wall has to accept a fixed amount of energy injected, 

whatever the current value of energy content. We simulate this at all the wall 

nodes, firstly by allowing the link energies to bounce-back (according to the same 

prescription as their parent momentum densities in an isothermal simulation, see 

section 5.3 and [50]) each with an added (fixed) amount of energy. This process is 

applied at links with a component perpendicular to the modelled wall and facing into 

the fluid. This injection of energy totals the same at each node but is weighted by the 

relative momentum density on particular links. This seems a reasonable procedure 

consistent with our intuitive interpretation of the £ai’s as internal energy. For, as 

we have already noted, in our thermal model energy is a passively advected scalar 

quantity so this method of applying constant flux boundary conditions associates 

energy pro-rata with the reflected momentum densities at a wall and represents the 

most obvious way for the fluid to accept the injected heat power. These conditions 

appear most satisfactory for the results presented in this chapter.

The energy field is uniformly initialised to a value equal to that set across the inlet 

boundary, each link being set to eai =  2k x Aft, and the initial density at each 

node is set to p =  1.8. Although a given amount of energy is always being injected 

into the system per unit time, at steady-state the same amount of energy will be 

removed from the system as enters through the inlet and walls at each time step:
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the total system energy, E totai = ]GVx (x,z), reaching a steady-state constant

value. This is observed to occur at around 40,000 time steps (see figure 7.3).
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Figure 7.3: Total thermal LBGK energy as a function of 
time. Note that total system energy has been expressed in 
terms of AE = (Etotai -  E0) where E0 = lim*-^ Etotai. Here 
E0 = 16199.52

The model is currently adapted to complement a standard LBGK scheme for mo­

mentum density evolution, but the Reynolds number in our particular system is 

not restricted: the uniformity of the system allows one accurately to use a uniform 

body-force to mimic the target uniform pressure gradient and thus to achieve high 

Re numbers without the compressibility errors we have noted in previous chapters, 

associated with actual LBGK pressure and density gradients. In any case, for the
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results presented here we are interested in the temperature distributions not so much 

in the pressure drops.

7.3.2 Thermal LBGK Results

Of course the analytical results with which we aim to compare are valid only within 

the Boussinesq approximation. For the results we report in this section, body forcing 

(to generate flow) avoids density variation due to pressure gradients altogether. 

Moreover, as a glance at figures 7.4 and 7.5 will confirm, the relative variation 

in temperature (internal energy) is maintained small with our choice of parameters. 

And of course the scheme contains no viscous dissipation (coupling between advective 

and thermal modes), by design. So the results of this section are described by 

Boussinesq approximation and the analytical results of section 7.2 should apply. 

Nevertheless, as a check we shall show in this section that those assertions made in 

section 7.2 about the general form of the temperature field are valid. The results 

presented all apply to a duct of size 20 x 450, at a Re of 137.2 based on an hydraulic 

diameter of 38 lattice units, an average velocity of 0.0316, and Pr  =  0.16 since 

X  =  1-5 and v — 1.9, see equation (2.48).

Figure 7.4 shows that the energy field calculated by our thermal LBGK model does 

increase linearly along the length of the channel, except near the inlet where there is 

a short development or entry region. These curves are plotted as functions of energy, 

but, as the density field is constant (p = 1.8 Vrr, ?/), and specific heat is assumed to 

be invariant with temperature, the actual temperature field of the lattice fluid will
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Figure 7.4: Blue line shows flow-averaged energy, green lines 
shows extrapolated wall energy for heated laminar duct flow 
problem. Note y-axis in terms of normalised energy variable, 
£0 , as defined in (7.23). Here £0reI = 1.79986.

show that same quantitative behaviour (see mapping for 60 equation (4.76)). It is 

also useful to work in terms of energy variable 60, as this is used to calculate LBGK 

Nusselt number directly, see equation (4.78).

Due to the nature of the simulation the value of 60 at a wall node is not simply 

related to the wall energy (temperature) - this is because the horizontal links at the 

wall do not form any part of the simulation and can take any value. It is safest 

to extrapolate from the interior in order to calculate the wall temperature. This is
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achieved using simple a backward-difference, which appears to be sufficient for our 

purposes but tends to under-estimate the correct wall temperature.

The cross channel variation of 60 is also as expected. Figure 7.5 shows this to be 

parabolic, inverted if compared with the velocity profile, and is in agreement with 

the form derived analytically for T(x, y)  in equation (7.12). The line Y  =  1 is the 

extrapolated wall energy. The energy field requires at least 40,000 time steps to

Simulated Data
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Figure 7.5: Graph showing typical cross-channel variation in 
60, fitted to a parabola. Note that y-axis in terms of £0 /10~5. 
Again, £0reI = 1.79986.

achieve a steady-state N u  number (see figure 7.6). This is a facet of the natural 

time scales of the physical processes (recall we use a large thermal diffusivity) and
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Figure 7.6: Time evolution of thermal LBGK Nusselt
number.

to be expected for a model with correct physical time dependence.

As can be seen from figure 7.6 our LBGK simulation recovers a N u  of 8.243 which is 

in excellent agreement with the theoretical prediction of 8.235, see section 7.2. CFD 

also calculates a value of N u  reasonably close to the analytical one at 8.382 [59].

The value of N u  calculated by our thermal LBGK model appears to be insensitive 

to the value of heat flux, Q", injected at the walls and the mass flow rate, which is 

as required.

The LBGK simulation’s inlet energy condition is different from that applied in de­
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riving the analytical solutions of figure 7.2, which apply away from the boundaries in

an infinitely long channel. In an attempt to observe entry length behaviour we now 

consider how one might obtain a fully-developed uniform energy profile at a desired 

x. As we know from previous chapters one applies a closure rule and hopes that 

correct (target) behaviour develops as a result. In an attempt to allow a uniform 

temperature profile to develop across the duct before injecting a heat flux through 

the horizontal walls, we set zero flux at the walls in the duct entry region 0 < x  <  49, 

then inject a heat flux q between 50 < x < 450. This effective shift of the rc-origin for 

the heat-flux boundary conditions brings the axial development of thermal LBGK, 

in the region x > 50, into closer agreement with that predicted by theory (figure 

7.2). Figure 7.7 shows the resulting axial development of thermal LBGK Nusselt 

number.

We can now use comparison with the known analytical solution, in the region x  > 50, 

to assess where a uniform initial profile has developed in our simulation and take 

this position as our x-origin when calculating the non-dimensional axial distances. 

In our simulations a uniform temperature cross-section was taken to occur between 

x  =  49 and x  =  50. Figure 7.8 shows the axial development of both analytical 

and thermal LBGK Nusselt number in terms of dimensionless length parameter x  

defined by a modified version of equation (7.22),

It can be seen that, after the closure conditions have developed an approximately uni­

form cross-sectional temperature profile, our thermal LBGK model captures entry-

Re Pr
(7.25)

126



CHAPTER 7. THERMAL LBGK SIMULATIONS

50 1 i........... ..."I......  i ..........r i i .......  i ...  “i -

45 + -

40 - _

+

35 - -

zs +
z: 30 - + -
<5nC +c3
C 25 - -
05 +
cn 3 20 + -
z +

15
+

_

+ +

10
+

+ -

5

+
+
+

-  +

0- J - _ i --------------------- 1_ --------- ---„i....  . i ------------------ 1--------------------- 1....... ......... 1 .......J.™

50 100 150 200 250 300 350 400 450
Distance along channel, x

Figure 7.7: Axial development of measured LBGK Nusselt 
number.

length behaviour in reasonable agreement with theory.

7.4 D iscussion and  Conclusions

Using the thermal LBGK scheme developed in chapter 4 we have successfully sim­

ulated a forced convection flow problem. The Nusselt number, Nu, recovered from 

our test application is in very close agreement with the theoretical prediction and 

agrees well with data from more conventional CFD techniques. It has also been 

shown that the axial development of the N u  number agrees well with analytical
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Figure 7.8: Axial development of Nusselt number. Solid 
line represents the analytical prediction, the crosses are our 
thermal LBGK results.

solutions.

The model appears to be as stable as isothermal LBGK schemes, which is not true of 

many other thermal LBGK models, and moreover, our model has easily adjustable 

thermal parameters. Whilst our scheme itself offers no real advantages over CFD 

for the present application, it is a simpler scheme than many of the existing thermal 

LBGK models and retains all the usual advantages of LB applications with more 

complicated boundary conditions.

There are a number of aspects to this promising work which warrant further investi­
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gation. A more accurate extrapolation of the wall temperature would be worthwhile 

- at present the calculation of wall temperature is based on a backwards difference 

and tends slightly to underestimate the correct value. Also, the position of the ther­

mal boundaries need to be located by analytical study of the model. This analysis 

is doubtless arduous and likely to produce only a small correction, but bearing in 

mind the encouraging results presented here probably worthwhile.

A potentially useful modification of the model would be to include pressure driven 

flows, since the current model behaves non-physically if pressure or density varies. 

This could probably be achieved by a modification of the equilibrium distribution.
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Conclusions and Future Work

8.1 Conclusions

In this thesis we have used LBGK models to achieve our aims as outlined in chap­

ter 1. In particular, we have used an EILBGK scheme to simulate incompressible 

pressure-driven flows up to intermediate Reynolds numbers, and, two new schemes 

are introduced, allowing the calculation of depth-averaged flows and another the 

simulation of thermal flows within the Boussinesq-Oberbeck regime.

We showed in chapter 5 that it is necessary to use an EILBGK scheme if non- 

uniform pressure gradients are to be expected, and that careful consideration must 

be paid to the applied static wall boundary conditions to ensure that the correct 

pressure drops can develop. Flow in a straight duct was considered and the correct 

mechanical stresses were recovered at the walls, as measured by the friction factor.
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A simulation of laminar pressure-driven flow over a backward-facing step yielded 

results in good agreement with other more usual numerical techniques. We suggest 

that to apply the standard scheme to this problem is logically inconsistent since one 

certainly cannot claim that the pressure decays uniformly along the channel (chapter 

5) - see next section for further discussion.

In chapter 4 we developed an EILBGK scheme suitable for the simulation of depth- 

averaged flows. The assumption that the effect of the unmodelled surface can be 

approximated by a momentum sink consisting of stress terms alone is numerically 

validated in chapter 6. Application of our EILBGK depth-averaged model to a 

bifurcating duct is presented and again produces good qualitative agreement with 

CFD.

Using our thermal model (also introduced in chapter 4) we have successfully captured 

the correct Nusselt number for the forced convection flow problem of laminar flow 

in a straight duct with constant heat flux boundaries. Our model treats energy as a 

passively-advected scalar quantity, has (in principal) an adjustable Prandtl number 

and, we stress, is valid within the Boussinesq approximation. For the problem 

studied, entry length behaviour is also in good agreement with analytical predictions 

and traditional CFD calculations.

In general then, our primary aims have successfully been achieved, in that we have 

conclusively shown that LBGK models can be used successfully for the simulation 

of incompressible internal pressure-driven flows and certain flow regimes in which 

energy transfer is important. We have shown this to be true provided that the models
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are carefully and appropriately bounded. Many interesting, and indeed unresolved, 

issues have arisen during the course of this work some of which are discussed in the 

next section.

8.2 Future Work

Lattice-Boltzmann methods, being a relatively immature technology in comparison 

with other numerical models used in the modelling of fluids, is beset by many unan­

swered questions. In this section we attempt to highlight key areas which deserve 

more thorough investigation, as a result of the work presented within this report.

As we know from previous chapters, LBGK simulations can be forced by applying 

body-forces, which is achieved by perturbing link densities uniformly over the lattice

[30]. Applied to backward-facing step type geometries this approach can accurately 

represent the pressure upstream and downstream of the step, where the gradient in 

pressure is uniform, in an LBGK simulation with no compressibility effects. Close to 

the step the pressure field is non-uniform, but the velocity field can be investigated 

separately from the pressure field. Qian et al [44] have applied the standard LBGK 

scheme in this manner to the simulation of flow over a backward-facing step, of 

height equal to that of the narrow channel. Results reported in [44] are in better 

agreement with the experimental results of Armaly et al [55], than results presented 

in chapter 5 of this work with the experimental data of Denham et al [53]. This shows 

that whilst standard LBGK is susceptible to error if flow is forced via equilibrium
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forcing, which is outlined in chapter 5, when pressure information is of interest, a 

standard LBGK calculation of velocity alone can generate data in good agreement 

with experiment if body-forcing is applied.

Consequently, future work should concentrate on a comprehensive assessment of the 

real merits of EILBGK versus LBGK applied to the problem of flow over a backward- 

facing step. This geometry is a suitable basis for such an exhaustive comparison 

because, as already noted in this work, there is a large body of experimental data 

available and the geometry results in a non-uniform pressure field. There should 

be a quantitative comparison between experiment, standard LBGK and EILBGK, 

applying to each scheme the most appropriate type of forcing over a range of Re. 

Any such work should be based on the data of [55] for the reasons outlined in the 

conclusions of chapter 5.

The restrictions imposed by the use of a regular lattice is partly responsible for many 

engineers’ reluctance to accept lattice Boltzmann schemes as a useful tool for solving 

CFD type problems [40]. To be a truly useful tool, lattice Boltzmann methods 

will have to include irregular, unstructured and adaptive grids which are important 

in solving many real-life engineering flows which involve complex geometries [61]. 

The use of such grids can dramatically reduce the computational requirement by 

concentrating the distribution of lattice nodes in important areas of the flow domain 

and reducing the distribution elsewhere. In order to obtain this geometrical freedom 

it is necessary to interpolate between the particle positions calculated due to the 

discrete speeds and the sites of the irregular grid. Although this interpolation may
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appear to introduce additional computational requirements, this is outweighed by 

the savings gained in terms of the number of nodes required. Also it is known 

that such methods may introduce false or numerical diffusion and warrants further 

investigation [61]. In [62] He et al propose a non-uniform grid algorithm suitable 

for implementation using a LBGK model, in which collisions take place at the grid 

points after which the densities move according to their velocities. The densities 

at the grid points is not now known but is calculated using interpolation. They 

apply this approach to a 2-dimensional symmetric sudden-expansion using both 

uniform and non-uniform rectangular grids and present results in good agreement 

with experiment. In [62] it is also stressed that their approach should be valid for 

arbitrary grids, although generating unstructured grids can be an extremely difficult 

and time-consuming task in itself. The so-called interpolation-supplemented lattice 

Boltzmann scheme has also been applied to the problem of vortex shedding behind 

a circular cylinder using a polar-circular grid [40]. Results are presented which show 

the method to be in good agreement with theory. Schemes incorporating body- 

fitted curvilinear grids are beginning to emerge [63] as are ones including adaptive 

meshes [64].

To allow LB models to be considered as practical tool for investigating industrial 

applications of practical importance such schemes have to be able to incorporate 

turbulent effects. Indeed suitable schemes are beginning to emerge in the literature

[57]. A complete and comprehensive theory of turbulence does not exist and as a 

result turbulent flow predictions are generally based on semi-empirical models. A 

large range of scales are present in turbulent flows, and with present day computers
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it has been shown that it is wholly impractical to simulate the full three-dimensional 

Navier-Stokes equations on fine enough grids to capture all relevant length scales 

for a realistic flow geometry, hence the need for such models. The direct numerical 

simulation (DNS) of turbulence was attempted using LB methods by Qian et al [14] 

and reported results in good agreement with theoretical predictions at high Re 

numbers. But this direct approach is, again, impractical due to time and memory 

constraints, and is the same for conventional CFD. Consequently, a subgrid-scale 

(SGS) model is required to simulate flows at very high Re. In 1995 Eggels et al [65] 

included the turbulent stress tensor directly in the equilibrium distribution, and 

in 1996 Hou et al [66] developed a SGS model based upon filtering the equilibrium 

distribution using a box filter to result in a space-dependent relaxation time. Results 

are presented for the simulation of two-dimensional cavity flow up to Re of 106 using 

a 2562 lattice.

In conclusion, future work could productively concentrate on applying the above 

irregular grid and turbulence models to engineering geometries and again make 

exhaustive comparisons with both CFD and experiment in an attempt to highlight 

the areas in which a LB approach can be considered a most useful tool.
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Appendix A 

Calculation of Terms in LBGK 

Scheme

In this appendix we derive forms for the equilibrium distribution coefficients, Il^g 

and 11$ as used in chapter 4.

To begin we sum the definition for the equilibrium distribution (4.5) over a and i, 

and use the fact that Aa, Ba, Ca and Da can only be dependent upon p to get the 

following two relationships,

Ao +  AAi +  4A2 =  p , (A.l)

and,

2 C i +  4C*2 +  D q +  4jDi +  4 .D2 == 0 . (A -2)

To obtain a further relationship, we multiply (4.5) by caia and perform the usual
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summation together with the relevant constraints to obtain,

p = 2 B 1 + 4B2 . (A.3)

We now attempt to evaluate the term 11®̂ , by substituting into its definition the 

general form for the equilibrium distribution (4.5), which yields

■̂ a/3 =  [2Ai +  AA2 +  (4C*2 +  2D\ 4- 4D2)u2] Sap +  8C2uaup +  (2Ci — 8C2)uaupSap .

(A.4)

The first term (enclosed in square brackets) on the rhs of (A.4) is identified with the

pressure term in the hydrodynamic momentum flux tensor (2.16), in order to make

this velocity-independent we choose,

4C*2 +  2D\ +  4 .D2 =  0 , (A.5)

and to ensure Galilean invariance,

2Ci -  8C2 =  0 . (A.6)

If we further choose,

8C2 =  p , (A.7)

2Ai +  4A2 — (?s , (A.8)

where c2s is the speed of sound, the LBGK momentum flux tensor is seen to have 

the correct form,

n o/? =  <?sp5ap +  pUoUp . (A.9)

The term must also be evaluated to enable the 0(S2) equations, section 4.1.4,

to be fully derived. Substitute for N $  in the definition of Il^j using a rearranged
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form of the first order equation (4.13) and then a further substitution for N^  is 

needed using (4.5). This results in,

n i j  =  ”  [ cs5ap ( p u 7) +  dt0 (puaup) +  da {2B\ &B2)iip5ap

-\-£d~f{B2Uj)5ap +  4da(B2Up) +  4dp{B2Ua)] , (A. 10)

and again to maintain isotropy the non-isotropic term is eliminated by setting,

2Bi — 8B2 =  0 . (A .ll)

We now have enough information to calculate values for the coefficients Bi & B 2,

B x - f ,  S 2 =  ^ .  (A.12)

The second term inside the brackets in (A. 10) can be re-written as,

dtopuaup =  - u adp{c2sp) -  upda(c2sp) -  d7(puaupuy) , (A.13)

which allows us to re-write 11^ as,

n (1) -  - -
~  w ~  C") ^ ( ^ 7) ^  +  ^ a(pUp) +  ^da{pUp)

-  Uadp{c2p) -  Upda{c2sp) -  d^pUaUpUj)^ . (A.14)

There is a certain amount of freedom in choosing the coefficients Aa, although they 

must satisfy the constraints posed by equations (A.l) and (A.8),

4 1 1
A0 =  gP , Al =  - p  , A 2 = — p . (A.15)

At this stage the coefficients Do, D\ & D2 remain undetermined. For all coefficients

so far calculated, it is the case that for a =  2 the expressions are a quarter of
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those corresponding to the <7 =  1 coefficient. Therefore, since there is still one free 

parameter it can be required that D\ =  4 Which leads to,

A  =  -§<>, A  =  - ! / » ,  A  =  (A.16)
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Derivation of d a  (Ej.cr £ a t c c n a

In this appendix we present the derivation for d a £a ic <ric?j as presented in 

chapter 4.

Multiply the 0(5) equation (4.66) by c^za, da and perform the usual summation,

dadto (e^Caic?) + d a d/3 (e^CaiaCai^ = - J d a (4V C<na) , (B.l)

which is simply rearranged to give,

9a (  ) =  - - T  9adto ( y ^ 4 ? )c<rta ) ~  ^jdadff (  ^  caiaCai0
\  <r,i )  V cr,t /  “  V <r,i

/ 9adt0 (s0ua) , dadp | ^   ̂aJj-caiaCpip J
w w \ P ^  )

(B.2)

The problem now becomes finding a form for term containing To achieve this
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we substitute the momentum density evolution equation and obtain,

^ a ^ /3  ^  ^  ^ N p iC a - ia C c r ip ^  —  d a d p

= dadp

€0

( ) ^  j  N p iC g -u x C ff if i +  CO ^ a i  C er ia C a if}P — P —
c r ,i c r ,t

(B.3)

( K i  + W (K 1  -  K i ) )  C'iaCrip
c r ,t

60

On applying power series expansion to N ffi(first term inside square bracket), we need 

only retain N%- term as any higher would result in a term of 0(53), and we are only 

interested in terms up to 0(62), this leaves,

dadp ( y  ^  Nl/CaiaCaif) ) =  dadfj
P  rr i

(B.4)

We recognise the summation term as the momentum flux tensor, for which we have 

already derived a form for see equation (A.9). Therefore (B.4) becomes,
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