
Test set generation and optimisation using evolutionary
algorithms and cubical calculus.

TAKHAR, Jasbir S.

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20419/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

TAKHAR, Jasbir S. (2003). Test set generation and optimisation using evolutionary
algorithms and cubical calculus. Doctoral, Sheffield Hallam University (United
Kingdom)..

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

REFERENCE

ProQuest Number: 10701065

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com ple te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10701065

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Test Set Generation and Optimisation using

Evolutionary Algorithms and Cubical Calculus

Jasbir S. Takhar

A thesis submitted in partial fulfillment of the requirements of

Sheffield Hallam University

for the degree of Doctor of Philosophy

December 2003

Acknowlegements

I would like to thank, first and foremost, my supervisor Dr. Daphne Gilbert for her inspiration,

encouragement and support throughout my PhD studies. There were many occasions on which her uplifting

words would force me to think about a problem in another way or help me overcome the writer’s block that

many a thesis-writer inevitably experiences. Without her hard work and dedication, this work would not

have been possible.

I would like to acknowledge other members of my supervisory and advisory team for their support

including Dr. Hugh Porteous and Paul Davies of Sheffield Hallam University and Dr. Anthony Hall of Hull

University. I would also like to thank Dr. Mike Thomlinson, who as a senior member of The School of

Science and Mathematics, provided help in both administrative and academic matters, including the

funding that enabled my participation in the IEEE Midwest Symposium on Circuits and Systems in

California, USA. I must also mention Prof. Bob Green and Dr. Hamid Dehghani both, of Sheffield Hallam

University, for providing an excellent laboratory environment in which I conducted much of this work.

The test set minimization algorithm was proven to be successful by minimizing test sets generated by Prof.

Raimund Ubar’s team at Tallin Technical University, Estonia. In particular, I would like to thank Jaan Raik

and Annti Markus for actually generating the test sets and providing technical support. This collaboration

was one of the highlights of this research project as it validated the minimization work.

Dedication

To Mum, Dad, Sam and Didi.

Abstract

As the complexity of modern day integrated circuits rises, many of the challenges associated with digital

testing rise exponentially. VLSI technology continues to advance at a rapid pace, in accordance with

M oore’s Law, posing evermore complex, NP-complete problems for the test community. The testing of ICs

currently accounts for approximately a third of the overall design costs and according to the Semiconductor

Industry Association, the per-transistor test cost will soon exceed the per-transistor production cost. Given

the need to test ICs of ever-increasing complexity and to contain the cost of test, the problems of test

pattern generation, testability analysis and test set minimisation continue to provide formidable challenges

for the research community. This thesis presents original work in these three areas.

Firstly, a new method is presented for generating test patterns for multiple output combinational circuits

based on the Boolean difference method and cubical calculus. The Boolean difference method has been

largely overlooked in automatic test pattern generation algorithms due to its cumbersome, algebraic nature.

It is shown that cubical calculus provides an elegant and economical technique for solving Boolean

difference equations. Formal mathematical techniques are presented involving the Boolean difference and

cubical calculus providing, a test pattern generation method that dispenses with the need for costly circuit

simulations. The methods provide the basis for test generation algorithms which are suitable for computer

implementation.

Secondly, some of the core test pattern generation computations outlined above also provide the basis of a

new method for computing testability measures such as controllability and observability. This method is

effectively a very economical spin-off of the test pattern generation process using Boolean differences and

cubical calculus.

The third and largest part of this thesis introduces a new test set minimization algorithm, GA-MITS, based

on an evolutionary optimization algorithm. This novel approach applies a genetic algorithm to find minimal

or near minimal test sets while maintaining a given fault coverage. The algorithm is designed as a post­

processor to minimise test sets that have been previously generated by an ATPG system and is thus

considered a static approach to the test set minimisation problem. It is shown empirically that GA-MITS is

remarkably successful in minimizing test sets generated for the ISCAS-85 benchmark circuits and hence

potentially capable of reducing the production costs of realistic digital circuits.

Keywords: Digital testing, automatic test pattern generation, ATPG, Boolean difference, cubical calculus,

testability analysis, controllability, observability, test set minimization and compaction, combinatorial

optimization, evolutionary algorithms, genetic algorithms.

iv

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

CHAPTER 1. DIGITAL TESTING..4

1.1 In tr o d u c tio n ... 4

1.2 B asic Ter m ino lo g y .. 12

1.3 Fa u lt M o d e l s ..13

1.3.1 Stuck-at F au lts ..13

1.3.2 Bridging F aults ...14

1.4 T he B a sics of Test Pa ttern Gen era tio n for Co m bin a tio na l Logic C irc u its16

1.4.1 The Sensitive Path C o n cep t '...17

1.4.2 The B oolean D ifference M e th o d ..20

1.5 T est Pa ttern Gen era tio n A lg o rith m s ..23

1.5.1 The D -A lgorithm .. 24

1.5.2 PO D E M - Path O riented D E cision M akin g ... 28

1.5.3 FAN - Fanout-oriented Test G eneration ..31

1.5 .4 A b r ie f com parison o f the D-Algorithm , PO D E M and F A N ..33

1.6 Testability A n a l y s is .. 34

1.7 Re f e r e n c e s .. 36

CHAPTER 2. TEST PATTERN GENERATION FOR MULTIPLE OUTPUT CIRCUITS

USING CUBICAL CALCULUS AND THE BOOLEAN DIFFERENCE..40

2.1 In t r o d u c tio n .. 40

2 .2 Test P attern Generation u sin g B o o lean D ifferences ... 40

2.2.1 Single Output C ase ..40

2.2 .2 M ultiple Output C ase ...43

2.3 Properties o f B o o lean F u nctions with A pplications to the B oo lea n D if f e r e n c e 43

2.4 T he Ca lcu lu s of C u b e s ...4 6

2.4.1 Cubical D efinitions and O pera tions ...46

2.4 .2 G eom etrical V isualisation ..53

2.4 .3 Exam ple to D educe a Minimum C over o f a Function .. 55

2.4 .4 Approxim ate O ptim isation A lgorithm : SH R IN K ... 56

2 .4 .5 The P * A lg o rith m ... 5 8

2 .4 .6 C overs o f Com posite F unctions ...61

2.5 Te st Pa tter n Genera tio n U sing B o o lean D ifferences a n d C u bic a l Ca l c u l u s 62

2.5.1 D erivation o f C overs f o r Test P attern G eneration ..62

2.5.2 Test Set G eneration Algorithm using Cubical Calculus - Single O utput C a se 63

2.5 .3 Test Set G eneration using Cubical Calculus - M ultiple O utput C ase68

2 .6 Testability A n a ly sis u sing C u bic a l C a l c u l u s ..7 6

2.7 S u m m a r y ... 78

1

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

2 .8 R e f e r e n c e s .. 81

CHAPTER 3. GENETIC ALGORITHMS..83

3.1 In tr o d u c tio n .. 83

3 .2 G A T e r m in o l o g y ... 84

3.3 Sea rc h Spa c es a n d F itness L a n d s c a p e s ... 85

3 .4 Genetic A lgorithm F u n d a m e n t a l s ... 85

3.4.1 GA O verv iew ...85

3.4 .2 The Sim ple GA - An E xam ple ... 87

3.5 Th e M ath em a tica l Fo u n da tio n s o f Genetic A l g o r ith m s ...92

3 .6 G A Im plem en tatio n is s u e s ...100

3.6.1 Encoding Schem es.. 101

3.6 .2 The F itness Function ..102

3.6 .3 S election .. 104

3.6 .4 C rossover ... 109

3.6 .5 M utation ... I l l

3 .6 .6 Selection o f GA O perator P robab ilitie s ..112

3.7 G A A pp l ic a t io n s ...113

3.8 S u m m a r y ... 114

3.9 R e f e r e n c e s .. 115

CHAPTER 4. THE DERIVATION OF MINIMAL TEST SETS USING GENETIC

ALGORITHMS.. 120

4.1 In t r o d u c tio n .. 120

4 .2 M o t iv a t io n .. 120

4 .3 Application o f G A s in Co m pu ter A id e d D esig n a n d Test of Integ r a ted C ircuits 121

4 .4 A S u r v e y o f Te st S et M inim isation Tec h n iq ues a n d Alg o rith m s.. 123

4 .5 T h e M inim al Te st S et Pr o blem .. 127

4 .6 GA-M ITS : G enetic A lgorithm b a se d M in im isa t io n o f T e s t S e t s 129

4.6.1 A T PG D ata and the Generation o f a Fault M a tr ix ...132

4.6 .2 Encoding Scheme and Chrom osom e S tructure ...133

4.6 .3 The Fitness Function ..134

4 .6 .4 P aren t Selection Scheme used in G A-M ITS .. 135

4 .6 .5 Selection o fG A P aram eters...137

4 .6 .6 The Use o f Inoculation and E litism ...137

4 .7 C ircuits u se d to Gen era te Fa u lt M atrices for G A -M IT S..137

4.8 T ypical Per fo r m a n ce o f G A -M IT S ... 139

4.9 M inim isation Results for a Fam ily o f S implified RISC Pr o c e sso r s .. 142

2

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

4.10 M inim isation Results for the ISCAS-85 B en c h m a r k Cir c u it s ..144

4.11 GA-MITS D esig n Is s u e s .. 153

4.11.1 Inoculation o f the Initial P opu la tion ... 153

4 .11 .2 The Use o f an Exponential Ranking Schem e within G A-M ITS157

4 .11 .3 Selection o f C rossover O pera tor an d C rossover R ate ...161

4 .11 .4 Selection o f M utation O pera tor an d M utation R a te .. 166

4 .11 .5 Selection o f Population Size and N um ber o f G enerations in a R un167

4.12 S u m m a r y ...169

4 .13 Re f e r e n c e s ..172

CHAPTER 5. CONCLUSION AND FURTHER W ORK...178

APPENDIX A. SOFTWARE LISTING: GA-MITS... 181

APPENDIX B. PUBLICATIONS...191

APPENDIX C. AW ARDS... 202

3

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Chapter 1. Digital Testing

1.1 Introduction

Over the last three decades, the dramatic advances in VLSI technology have produced tremendous

challenges for the test community. As circuits become larger and new fabrication techniques allow

increased gate density, the complexity of digital testing increases exponentially. As this work will

show, many of the problems in digital testing are NP-hard and as a result, their solution requires a

multi-disciplinary approach. Many of these hard problems have been tackled with traditional,

established techniques as well as some of the more recent innovations within the fields of computer

science, engineering, and mathematics. Historically, digital testing has been a game of ‘catch-up’ with

circuit design and manufacture technology. As soon as one test problem is adequately solved, the

blistering pace of VLSI technology introduces new, even more complex problems. This can be seen

today with the rapid approach of nanotechnology which seemingly renders traditional testing

techniques, such as Iddq testing, as ineffective [1].

The microprocessor is the most important class of digital circuit and is, by far, the most complex. The

microprocessor has changed the very fabric of everyday life in most parts of the world and continues to

do so. As digital technology advances, giving rise to higher levels of integration, microprocessors

increasingly find themselves in our everyday lives. In the late 1960s and early 1970s, integrated circuits

and microprocessors superseded the slide-rule. In the 1980s they gave rise to the personal computer that

today, provides more computing power on our desks than was used to put man on the moon. Over the

last decade or so, advances in communications, including the internet and mobile technology, have

changed the way people interact with one another. Looking ahead, the future for digital devices seems

to hold promises of nanotechnology that may be as revolutionary as the microprocessor itself. One of

the common threads in technology research has been to make things smaller and faster. Smaller and

faster integrated circuits enable smaller and more powerful mobile devices for example. However, it is

just this goal that gives rise to the enormous challenges in digital testing.

It is important at this point to understand the seemingly relentless pace of change in VLSI technology as

it will offer the reader some perspective as to why digital testing remains such a fertile topic for

researchers. This continual change in the semiconductor industry will be discussed in the context of the

microprocessor and more specifically, those microprocessors developed by the Intel Corporation. The

astounding evolution of this device over the past thirty years will help the reader understand the nature

of the industry and the tremendous challenges it poses for the test community.

4

Moore’s Law

Gordon Moore, founder of the worlds largest microprocessor company Intel Corporation, made a very

famous observation about the pace of change in the development and manufacture of integrated circuits.

In his now famous paper [2], Moore predicted an exponential growth in transistor density on an

integrated circuit and that this trend would continue for some decades. His observation, which was

christened Moore’s Law states,

The number o f transistors on an integrated circuit doubles approximately every eighteen months, while

the cost o f the circuit decreases by half

Moore made this prediction four years after the very first integrated circuit was developed in 1961 and

over forty years later, his observation still holds true. Figure 1.1 illustrates Moore’s Law at work by

graphically depicting the number of transistors in Intel’s family of microprocessors over the last thirty

years or so.

Pentium s 4 Proc
Pentium ft in P ro cess

Pentium h H Frooe& sot /

transistors
f 100,000,000

MOORE'S LAW
10,000,000

80 6 0
Boos y

4 0 0 4 / y

Pentium R P ro c e sso r

10,000

100,000

1,000,000

1000
1970 1975 1980 1985 1990 1995 2000

(a)

5

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Processor Name Year o f introduction Transistors
4004 1971 2,250
8008 1972 2,500
8080 1974 5,000
8086 1978 29,000
286 1982 120,000
386™ processor 1985 275,000
486™ DX processor 1989 1,180,000
Pentium® processor 1993 3,100,000
Pentium II processor 1997 7,500,000
Pentium III processor 1999 24,000,000
Pentium 4 processor 2000 42,000,000

(b)

Figure 1.1 M oore’s Law illustrated by the history o f Intel microprocessors. Figure

(a) is a curve depicting the data points in (b) and shows the exponential growth in

the number o f transistors on an integrated circuit. Reproduced courtesy o f Intel

Corporation.

The world’s first microprocessor, the Intel 4004 introduced in November 1971, contained 2,250

transistors, ran at a clock speed of 108k Hertz and was able to perform 60,000 calculations per second.

The 4004 is shown in diagram 1.2(a). As can be seen from the above curve, the number o f transistors

increase exponentially over the years and in 2000, Intel introduced the Pentium® 4 processor, which

contained 42 million transistors and ran at an initial clock-speed of 1.5G Hertz. The Pentium 4 is shown

in Figure 1.2(b). Intel states that, if over the same period, increases in car speeds kept pace with the

increases in microprocessor speeds, one could cover the distance from San Francisco to New York (a

distance of approximately 3000 miles) in 13 seconds. This fact alone illustrates the astounding

developments in VLSI technology and gives some indications of the challenges faced by designers and

testers alike.

Moore’s law cannot continue forever as we are approaching the limits o f physics as we know it.

However, there is confidence that integrated circuits will continue to follow the curve for at least

another decade with innovations in process and fabrication technology. In fact, Moore himself, as

recently as February 2003 gave a presentation entitled, “No exponential is forever... but we can delay it

forever” [4], in which he expresses his confidence that the semiconductor industry will overcome many

of the challenges that face it over the next decade and continue to pack ever more transistors on an

integrated circuit. In fact, in early 2003, Intel introduced the latest in its line of microprocessors, the

Pentium 4-M, containing over 70,000,000 transistors.

6

(a)

(b)

Figure 1.2 (a) Intel 4004 microprocessor containing 2,250 transistors, introduced

in 1971. (b) Intel Pentium® 4 microprocessor containing 42,000,000 transistors

introduced in 2000. Reproduced Courtesy o f Intel Corporation.

7

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

All o f this VLSI research and development at the outer edges of our knowledge in such fields as

chemistry, physics, engineering and mathematics is to be celebrated. However, these developments pose

huge challenges for the test community who are in a continuous race to keep up. The costs associated

with testing integrated circuits are huge and are of great concern to the semiconductor industry. In his

paper [5] addressing many of the key issues in test, Kenneth Thompson of Intel, estimates his company

spends a third of its capital expenditure on test and test equipment and he does not see this percentage

decreasing any time soon. As further evidence of the increasing complexity and cost o f test, the

Semiconductor Industry Association (SIA), a well respected authority on the semiconductor industry,

estimates that the cost o f testing integrated circuits will actually surpass the cost of their production.

The graph given in Figure 1.3 illustrates this.

Manufacture

Test

0.0000001

1982 1997 Year

Figure 1.3 Fabrication and cost trends

Integrated circuits are tested using automatic test equipment (ATE), also referred to as testers. It is the

cost o f these testers, according to Thompson [5], that represents a large proportion o f the overall cost of

test. He further states that Intel tests over 50 million microprocessors a year using 300 testers that

consume 7.5 megawatts of electricity, enough to power a small town. Testers are very large, complex

devices and to give the reader and idea of their size, one from a leading manufacturer of test equipment,

Advantest Corporation, is shown in Figure 1.5

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

T66SS

Figure 1.5 Automatic Test Equipment, model T6683, Advantest Corporation.

The purpose of test is, of course, to determine whether a circuit is defect-free and functions as intended.

Under fault-free conditions, a given set o f inputs to a circuit produces a corresponding set of outputs. In

many cases, defects in the circuit will result in a deviation from the expected outputs. It is the detection

of these deviations that is the central objective of post-fabrication digital testing. A circuit is tested by

applying a given set o f inputs, known as a test vector, and observing the output. For a given test vector,

the fault-free output will be known and if the output deviates from this, a fault ewsawill have been

detected in the circuit. The generation of these test vectors is known as test pattern generation. Test

patterns are generated with a given fault (or faults) in mind and by generating a set o f test vectors,

known as a test set, a circuit can be tested for a given percentage of possible faults, known as the fault

coverage. Once a test set has been generated, it is applied to an integrated circuit by automatic test

equipment (ATE), which essentially observes the output in response to an input vector to determine

whether the behaviour is as expected.

The task of generating test vectors for a circuit is one of the final stages of the overall circuit design

life-cycle. Once a circuit design is almost complete, using the description of a circuit and a fault model,

one is able to generate test vectors. Circuits are often designed using high-level description languages

that, much like high-level software language such as C, C++, describe the functionality of a circuit in

both machine and human readable form. One of the most widely used languages is VHDL (Very high

speed integrated circuit Hardware Description Language) [6] and became an IEEE standard in 1987.

Languages such as these enable designers to design and model a circuit. A fault model is an abstraction

of physical faults in a circuit and enables engineers to generate tests for these faults (fault models will

be discussed later). A description of a circuit and a given fault model are the main inputs to a test

pattern generation (ATPG) algorithm. Once a test set has been generated, they are applied to the

manufactured circuits by testers to determine whether they function correctly. A high-level depiction of

this process is given in Figure 1.4.

9

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Fault

Model

VHDL'
t

Test
ATPG

Vectors

Figure 1.4 High-level description o f test pattern generation and test set

application for integrated circuits.

As stated above, one of the roles of ATE is to apply test vectors to an integrated circuit and compare the

output vectors with the expected outputs for a fault free-circuit. This test may only take a fraction of a

second, but when faced with testing many millions of ICs a year, this is a huge cost burden for IC

manufacturers. ATE equipment is itself getting quicker, but as ICs increase in complexity and gate

density, so do the number of possible faults. This in turn often implies that a larger test set has to be

applied by the test equipment to achieve the same level of fault coverage and for a given tester, this

inevitably translates to greater test set application time. Again, the test community is faced with the

challenges of Moore’s Law. Higher test set application times often translate into the need for more test

equipment and therefore higher test costs. So, the need to reduce this test application time is critical for

IC manufacturers in their continual quest for cost control.

Digital testing is a very large and diverse subject area, encompassing many disciplines. This thesis will

describe the original work conducted by the author in three key areas of test; test pattern generation, test

set minimisation and testability analysis.

Test Pattern Generation and Test Set Minimisation

Test pattern generation [7, 8] and test set minimisation [9] are two o f the most important areas within

the field of digital testing. Of course the generation of test vectors is necessary in order to actually test a

circuit but the generation of high quality test vectors can contribute to lowering the cost o f test. Small,

optimised test sets, containing high-quality test vectors that achieve high fault coverage will obviously

10

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

take less time to apply to a circuit than ones that contain more test vectors. Given the complexity of

integrated circuits, the process of actually generating the test patterns, is extremely challenging. The

author will present a new technique for generating test patterns for combinational circuits that combines

the Boolean difference [10] and cubical calculus [11]. The technique applies to multiple output,

combinational circuits using the single-stuck-at fault model. Both the Boolean difference and the

cubical calculus have been in existence for a number of decades but the Boolean difference technique

has been overlooked within test pattern generation because of its cumbersome, algebraic nature.

Cubical calculus is shown to overcome this problem and provides a very competent solution to this

problem. Chapter Two will introduce cubical calculus and the Boolean difference and will provide a

rigorous discussion on this new test pattern generation technique.

The increasing importance o f minimised test sets in lowering test application time has already been

discussed above. With this objective in mind, the author has successfully applied an evolutionary

algorithm [12] to obtain minimised test sets. Chapter Three presents a detailed survey and analysis o f a

particular class o f evolutionary algorithm known as a genetic a lgorithm . Once the reader has obtained

an understanding o f this optimisation method, Chapter Four goes on to describe the general problem

domain of test set minimisation and the application of a genetic algorithm to solve the problem. The

author developed genetic algorithm software to solve this problem for real-world test sets generating by

a research group at Tallinn Technical University, Estonia. The data provided by this group and the

software written by the author is described in Appendix A.

T estability A nalysis

Testability analysis provides a means of determining how difficult a circuit would be to test before it is

actually manufactured. By performing this analysis during the design stage, circuit designers are able to

catch features in a circuit that would make certain faults difficult (or impossible) to detect, resulting in

design modifications at an early (and less expensive) stage in the life-cycle of a circuit. Following the

work on test pattern generation using cubical calculus and the Boolean difference, a new technique for

measuring testability was devised. It was soon realised that much of the core computations in the test

pattern generation algorithm could be applied to calculate measures such as co n tro llab ility and

observab ility [7]. This work is presented in the final part of Chapter Two and will be shown to make

novel use of the Boolean difference and cubical calculus.

The remainder of this chapter will introduce some basic concepts of digital testing and more

specifically, test pattern generation, as this area forms the nucleus of the work in this thesis. Once the

terminology of the field is introduced, some of the basic ideas behind test pattern generation will be

described, some of which have already been mentioned above. Once these preliminary topics have been

covered, the final section in this chapter will introduce three of the most important test pattern

11

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

generation algorithms that form the basis o f many of the commercially available ATPG tools in use

today.

1.2 Basic Terminology

As in most subject areas, there is much jargon and terminology in digital test. Consider the

combinational, digital circuit in Figure 1.5. This circuit contains five logic gates; three AND gates,

labelled G1 to G3, and two OR gates, labelled G4 to G5. The connections to and from the gates are

known as circuit lines, lines or nodes. There are 5 primary inputs, PI1 - PI5 to the circuit and two

primary outputs, POl and P 02. The primary inputs/outputs to the circuit provide a means of

connecting the circuit to the external environment. If the circuit were designed as an integrated circuit

(IC), it would be contained in a plastic case and the primary inputs/outputs would be the pins of the IC,

providing direct access to them.

PI1
G1

P O lG4

PI2
G2

PI3

PI4 G5 P 02
G3

PI5

Figure 1.5 Combinational, digital circuit. The hashed line around the circuit
illustrates the casing or packaging o f an IC.

This circuit also contains three internal lines, labelled 1, 2 and 3 and are the outputs of gates G l, G2

and G3 respectively. There is no direct, external access to these lines as they are completely enclosed

within the IC packaging. In some complex IC designs it is deemed necessary to provide external access

to some internal lines, to aid the test process, but they are still known as internal lines. A feature present

in many digital designs is known as fan-out and is when a circuit line is routed into two or more gates.

Line 2 is an example of fan-out. The primary input PI2 is another example of fan-out but differs slightly

to the fan-out of line 2. In this case one path of the signal PI2 proceeds through gates G2 and G4 and

another path is through G l and G4. The original signal at PI2 recombines at the output of G4, at

primary output POl. This phenomenon of recombination is known as reconvergent fan-out and, as will

be explained later holds special significance from a digital testing perspective.

12

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Testing a digital circuit such as that given above involves applying sets of values to the primary inputs

and comparing the corresponding outputs with the expected behaviour of the circuit. Each set of input

values applied to the circuit is known as a test vector or test pattern and is often referred to as just a

test. For a given test vector the corresponding, expected output is known as the fault-free output. In the

above consider applying the values PI1=0, PI2=0, PI3=1, PI4=0, PI5=1. This set of input values

produce fault free values at outputs POl and P 02 of 0 and 0 respectively. These inputs and the

corresponding fault-free outputs constitute the test vector 00101100. The values 00101 to the left o f the

vertical line correspond to the inputs values at PI1, PI2 and so on and the values to the right correspond

to the corresponding output values, POl and P02.

1.3 Fault Models

Circuit defects due to the manufacturing process for example, manifest themselves electrically as faults.

In order to compile tests for faults one must establish a fault model that defines the relationship between

a defect and a fault. A number of fault models exist and the popular ones will now be discussed.

1.3.1 Stuck-at Faults

One of the most popular fault models is the stuck-at fault model. In this model a line in a circuit is

either permanently set or stuck-at-1 or stuck-at-0. Regardless of the logic value that should be present at

the line under normal working conditions, a defect in the circuit has resulted in the line being stuck-at a

given logic value. The abbreviations s-a-1 and s-a-0 denote stuck-at-1 and stuck-at-0 respectively.

Consider the two input OR gate given in Figure 1.6. Input 1 is stuck-at-0 and when the test vector 1011

is applied to this gate, the actual output is 0 due the fault. In what conditions would a manufacturing

defect result in a stuck-at fault?

s-a-0

Figure 1.6 Two input OR gate.

Figure 1.7 shows the CMOS (Complementary Metal-Oxide Semiconductor) implementation of a two

input NAND gate [8]. The supply line (power line) VM is equivalent to logic 1 and the ground line is

equivalent to logic 0. The symbols 77 to T4 represent transistors.

13

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

— T1

= A.B
A

B

Figure 1.7 CMOS implementation o f a two input NAND gate.

The numbers 1 and 2 signify two distinct defects in the circuit. Defect 1 is that the output of the gate has

been short circuited with the power rail. This defect will result in the fault C s-a-1. Defect 2 on the other

hand is a short circuit between C and the earth rail, resulting in the fault C s-a-0. These short circuit

defects are common due to today’s manufacturing processes and can be conveniently modelled using

the stuck-at fault model.

There are two different stuck-at models. A single stuck-at fault model in which it is assumed that only a

single stuck-at fault is present in any given circuit and the multiple stuck-at model [8] which assumes

multiple faults in a circuit. The model adopted in the present work is the single stuck-at model and this

discussion will therefore be limited to this variant.

1.3.2 Bridging Faults

As integrated circuits become more densely packed with transistors, the probability of short circuits

between circuit lines increases. These short circuits produce permanent faults known as bridging faults

that cannot be modelled as stuck-at faults. Three main types of bridging fault exists. The first is an input

bridging fault where the primary inputs if a circuit are shorted together. A feedback bridging fault

occurs if there is a short circuit between the primary output(s) and inputs(s) o f a circuit. A non-feedback

bridging fault is a short circuit that does not fall into one of the two aforementioned categories. Figure

1.8 illustrates the different type of faults.

14

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

It must be noted that in general bridging faults are layout dependent and only occur between adjacent

circuit lines. They differ from short circuits at the transistor level as described in section 1.3.1.

Figure 1.8 Combinational circuit with an input bridging fault between inputs 2

and 3, a feedback bridging fault between output 7 and input 1 and a non feedback

bridging fault between lines 5 and 6.

Bridging faults cannot be tested using the stuck-at fault model since the bridged lines are able to assume

both logic levels. If under fault free conditions two bridged lines assume the same logic value, then the

circuit operation is unaffected. If however they assume complementary values a conflict arises. The

actual logic values adopted in such a case depends on the technology used to fabricate the circuit as one

logic value will dominate the other. In TTL logic (transistor-transistor logic) logic 0 dominates and if

two bridged lines need to assume complementary values, both will be set to 0. In CMOS however, such

a concept does not always apply and bridging faults have to be analysed at the transistor level [9, 10].

As this is beyond the scope of the present discussion, the reader is directed towards the references.

For s circuit lines, there is a total o f s(s - 1) / 2 single bridging faults and obviously many more multiple

bridging faults. Since the probability of bridging faults is higher for physically adjacent circuit lines, in

general only faults between these lines will be tested for as it would be impractical to try and locate all

bridging faults.

1.3.3 DELAY FAULTS

A number of circuit defects, such as bridging faults, result in faults that affect the logical behaviour of a

circuit. Smaller defects such as only partial short circuits, although they may result in correct logical

behaviour, often result in disrupting the timing o f the circuit. In digital circuits, logic signals flow

through the circuit in synchronisation with the clock signal. The correct timing of the signals through

the circuit are imperative for the circuit to behave in the desired manner. Any delays in the transition of

a signal from logic 0 to 1 or vice versa may disrupt the circuit. It is these transitional delays that are

15

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

known as delay faults. There are two main types of delay faults, gate delay faults [15] and path delay

faults [16]. The main difference between the two models is that the gate delay model can only cope with

delays due to single, isolated defects whereas the path delay model can deal with the affects of

distributed delays due to a number of defects. Delay faults cannot be tested using the stuck-at fault

model as the fault behaviour does not affect the logical operation of a circuit. Other methods for testing

delay faults exist and the reader is directed towards the references for further details [8], [17].

1.4 The Basics of Test Pattern Generation for Combinational Logic Circuits.

In general, electronic components and in particular integrated circuits, are very reliable devices.

However due to imperfections in the manufacturing process that produce ICs, such as the presence of

dust particles in the fabrication plant, faults will occur. Once the IC design has been finalised, the

design engineer compiles a test set that may be applied to a device after it has been manufactured, to

test for any defects.

For a non-redundant (meaning the function realised by the circuit under fault-free and fault conditions

are different) combinational circuit containing n-inputs all faults may be tested by applying all

2" possible test patterns. This process of exhaustive testing, may be realised for small circuits but is

impractical for circuits of say, 30 or more inputs. Exhaustive test pattern generation is obviously NP-

hard since the number of test patterns increase as two to the power of n, the number of primary inputs.

For example to exhaustively test a circuit containing 60 inputs there are 260 possible test vectors. If it

were possible to apply 10,000 tests per second it would take approximately 3.5 million years to test a

single circuit [8]. In practice however, it is unnecessary to apply all possible test vectors since a single

test vector can cover a number of faults. The process of fault simulation [18] is used to determine which

faults are covered by a given test vector. When the fault coverage of the test patterns has been generated

it is possible to calculate the fault coverage of the test set. If there are x possible faults in a circuit and /

faults can be detected by the test set, the fault coverage f c is given by,

f c = -
X

and is often expressed as a percentage. Many test pattern generation algorithms exist and will be

discussed later in this chapter. The majority of them assume the single stuck-at fault model and that the

circuit is non-redundant. In the following discussion, the single stuck-at fault model for non-redundant

circuits will be adopted. At the simplest level, the process of testing a circuit consists of applying

successive sets of values to the primary inputs, and of observing the resulting values appearing at the

primary outputs. In order to assess the test, the outputs from the tests are compared to the fault-free

outputs.

16

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

1.4.1 The Sensitive Path Concept

The first task of all test procedures is to compile a fault list, consisting of all the possible faults that can

occur. As we are adopting the single stuck-at-fault model, it is assumed that these are the only faults

that can occur. A test will then be written which will detect each fault in the fault list. Although each

test may be written with the intention of covering one fault, it will invariably turn out in practice that it

covers other faults in the list. To illustrate the basic principles of test, the circuit in Figure 1.9 (a) will

be used as an example.

a

b

c

(a)

Fault Test Pattern Fault Coverage

a/0 111/1 a/0, zJO, b/0

a/1 011/0 a /1, zJl

b /l 101/0 b /l , zJl

etc. etc. etc.

(b)

Figure 1.9 (a) Circuit realising the Boolean function Z = a b + C (b) Partial

fault list, test pattern and fault coverage table fo r (a)

The Fault List

The first task when testing any circuit is to compile a fault list. The fault list for the above circuit is (the

abbreviation x/0 means node x is stuck at logic value 0),

a/0 a ll b/0 b /l c/0 c/1 d/0 d /l e/0 c/1 zJO zJl

Now we have a fault list, tests must be generated to cover each fault.

17

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Testing isolated logic gates, where one has access to its primary inputs and outputs is a trivial task with

the use of logic probes. However, it is often the case with combinational circuits that they contain

internal nodes that one cannot directly access because they are housed in I.C. casings. In such situations

the sensitive path concept is central to the testing procedure. The concept ensures that a fault at a node

appears at the output of the circuit. If we assume there is an error at input a in Figure 1.9, a path has to

be sensitised between it and the output, making the output dependent only on the value of input a. This

is achieved by manipulating the values of b, c, d and e.

So, to sensitise the path between a and z, we must first transmit the value at input a to the output of the

AND gate (node d) i.e. enable the gate. This is achieved by setting b to 1. Now, to transmit the value of

node d through to z, we must enable the OR gate. This is done by setting node e to 0. To set e to 0 we

have to work backwards and set node c to 1. So by setting, b=c= 1 we have sensitised a path between the

input a and the output z.

Fault Cover and Test Pattern Generation

Once the fault list has been compiled, tests have to be written to cover each fault. There are two

requirements when writing a test.

i) Establish the fault free condition. So if we are testing whether a node is stuck at 1,

we have to set the node at logic value 0 .

ii) Establish a sensitive path between the faulty node and the output.

Let us now write a test pattern for the first fault in the fault list, a/0. The sensitive path has already been

calculated for input a, so to test for a/0 the test pattern is a=b=c= 1, giving a value of 1 at the output z.

The test pattern is written as, 111/1. It was mentioned earlier that some test patterns will cover more

than one fault and this is one of them. As we are seeking the logic value 1 at the output z, we are also in

effect testing z/0. In a similar manner b/0 is covered. The procedure is now repeated for the remaining

faults on the fault list. The table given in Figure 1.9(b) is a partial list o f faults and their corresponding

test vectors along with each test vector’s fault coverage.

Once the test patterns have been derived for all o f the faults a minimal test set is compiled which

consists of the minimal number of tests that will cover all o f the faults. It is this test set that is used in

the final test procedure. As a further example consider a stuck-at-1 fault on lin e /fo r the circuit in

Figure 1.10. To establish the logic value 0 (complementary to the fault condition) on /, logic values a =

b = 1 are required. We must now sensitise a path between line / and the primary output i. To achieve

this the we must set g = h = 0. The primary output i is now dependent on the logic value at / . There is

one final stage left in the test pattern generation process that was not required in the previous example

(due to the simplicity of the circuit) and that is to perform back-propagation (also referred to as back

justification) to set the values of the primary inputs c, d and e required to set the appropriate logic

18

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

values at g and h. The required logic values are; c = 1 or 0, d - 0, e = 0, giving the test patterns 111001

1 and 1100011.

a

f stuck-at-1

b

c

d

e

Figure 1.10. Combinational logic circuit with a stuck-at-1 fault at line f

Reconvergent Fan-Out and Undetectable Faults

Although most faults that may exist in a circuit can be detected, there are certain topological features

that can make faults undetectable or difficult to test. As previously mentioned, testability analysis is a

means to allow circuit designers to identify such features in their design before tape-out (i.e. a design is

finalised).

One such feature is known as reconvergent fan-out and is illustrated in Figure 1.11. The signal at input

b leads to the two NAND gates i.e it ‘fans-out’. The outputs of these two gates then lead to the single

NAND gate preceding the output i.e they reconverge. This causes problems as faults are often masked

and cannot be detected. To illustrate this point, consider the effect o f the fault b/0. Because of the/an-

out, the fault will affect the inputs of both gates 1 and 2, and, because of the values assigned to input a

and c, the fault is transmitted through both gates, and hence affects both inputs of gate 3, the place of

reconvergence. Since gate 3 is a NAND gate, a change of input from 00 to 11 will produce a change of

output from 1 to 0, and hence the fault is transmitted through gate 3. In this case, although neither input

change alone would have produced a change at the output (since 01 and 10 both give the output as 00),

the two acting together result in fault transmission.

19

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

1

Figure 1.11: z = a b .b c

Redundancy in a circuit can also create undetectable faults [8]. Often when one is seeking to sensitise a

path, the situation arises where there are conflicting requirements e.g. a single gate needs to be set at the

two logic values. In such cases testing difficulties have arisen because o f the failure to minimise a

circuit in the design stage.

Although they are not part of the simple stuck-at fault model, bridging faults, where two circuit nodes

are accidentally connected together, are often included. Each node in a bridging fault can assume either

logic value, the result depends on the type of technology used to implement the circuit. For example, in

TTL (Transistor-Transistor Logic), the low node dominates and a high node will be pulled low. If the

fault free value of each node is the same, then the circuit operation is unaffected. If however they are

different, the fault needs to be detected and rectified. Similar techniques to those used for detecting

stuck-at faults such as sensitised path are used to detect bridging faults. Unfortunately, as with

reconvergent fan-out, some bridging faults are impossible to detect. Not all bridging faults can be

included in the fault model. For a few thousand nodes there will be perhaps millions of node pairs. So

in practice, only bridging faults involving adjacent nodes or tracks are included.

1.4.2 The Boolean Difference Method

The Boolean difference [8], [10], [11] method of test pattern generation relies on Boolean algebraic

descriptions of circuit lines. The Boolean difference is essentially an XOR of two closely related

Boolean functions. If g and h are functions then, in the notation of Boolean algebra,

g @ h = gh + gh (1)

20

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

where © denotes the XOR operation. Consider a Boolean function F(X) of a single output circuit,

It must be noted that the left hand side of the above equation is not a derivative, it is simply notation to

represent the Boolean difference with respect to the primary input xt . The most important property of

the Boolean difference which forms the basis of its use in test pattern generation is that

if and only if the output of the function F(X) is different for normal and erroneous settings of the

primary input jq , in which case a fault at the primary input will be detectable, or observable, at the

primary output. Conversely if

is true then F(X) is logically invariant under normal and erroneous settings of xt and a fault in xt

cannot be detected at the primary output.

The solutions of equation (3) provide the input vectors that propagate a fault on line xt to the primary

output. A test for jq exists if the other inputs can be chosen so that a change of logic value at xt

produces a change of logic value at the primary output. To actually generate a test vector for xt stuck-

at-0/ 1, this primary input must first be set to 1/0 and then the fault has to be propagated to the primary

output. By performing a logical AND operation between the logic value at the at-fault-line opposite to

the fault condition and equation (3) one is able to generate test patterns for stuck-at faults at x, . Thus

the test vectors for jq stuck-at-0 and stuck-at-1 are given by the solutions of equations (4) and (5)

respectively.

where X = (x j , and the variables xlf... ,x n represent the primary inputs. The Boolean

difference o f F(X) with respect to xt- is defined by

dF(x)
(2)

(4)

(5)

21

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

The above equations (4) and (5) generate test sets for faults at the primary inputs only. However, the

ability to generate tests for faults at the internal lines of a circuit is of greater interest. For an internal

circuit node, Sj say, the Boolean difference with respect to Sj becomes

where Sj is regarded as a pseudo primary input [6]. The solution of the Boolean equation

dF(x,Sj) /dsj =1 (6)

provides all the input vectors for which a stuck-at fault on Sj alters the primary output.

As in the previous discussion, to generate a test vector for Sj stuck-at-0/1, the node must first be set to

1/0 and the fault propagated to a primary output. An internal node, S j , can be expressed as a function

of the primary inputs, viz. Sj (X) = Sj ,, xn) , and the solution of the Boolean equation

Sj(X) = k (7)

yields the input vectors that set Sj to k for k = 0,1. The input vectors required to propagate a fault at Sj

to a primary output are given by the solutions to (6) above. To generate test patterns for a fault on S j , it

is therefore necessary to solve both equations (6) and (7) simultaneously. Hence, for a circuit with n

inputs and m outputs, the test sets T0 and 7] for Sj stuck-at-0 and stuck-at-1 respectively are given by

the solutions of

. . « dFlX'S:)
To- # - I ' " = 1 (8)

1=1 dSj

H x 'Si)

i=i
T{. SJ(X) . Z — — L = 1 (9)

where Ff (x) denotes the fth output, for i=l,....,m .

In order to actually perform the above Boolean calculations, there are a number of Boolean properties

which are required. A selection of properties taken from [10] are given below.

22

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Aside

property (1):

d[F(X) + G (X)] _
dXj

j F p o g g i e e(X)mx) 9 T O , « ? (*)
dX; dX; dX; ClX:

property (2):

d[F(X) G(X)] = r { X) d G (X) ^ c m dF(X) @ dF(X) dG(X)
dX: dX: dX: dX: dX;

property (3):
dF(X)

dX:
= 1 F(X) depends only on x.

Example 1.1

Under what conditions will an error in x j cause the output to be in error if / (x) = XXX2 + x 3 ?

Since,

F(x)= XxX2 + *3

—— = -̂----- by property (1) above
dx\ dxx

= X3X2 by property (2)
dxj

= x3x2 by property (3)

dx:
where we have u sed = 0 if x t and x t are independent (or if i & j) . The above result means that

dxj

an error in x x will ensure the output is in error if and only if x3x2 = 1 , i.e. * 3=0 and *2= 1. Hence if

Xx is stuck-at-1, we need to set xx = 0 and use x2 = 1, *3 = 0 to detect the fault.

1.5 Test Pattern Generation Algorithms

Like all algorithms, the singular goal of test pattern generation algorithms is to apply the fundamental

understanding of the domain to create efficient, automatic solutions for generating test patterns. The

fundamental understanding of the domain encompasses the behaviour of digital circuits, the different

types of defects within a circuit and of course the abstractions and faults models that have been created

to conceptualise and test a defect. Given this important understanding of the structure of the problem, it

23

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

is left to the researchers to find efficient solutions by use of effective and robust algorithms coupled

with efficient organisation of the underlying data through the use of novel data structures.

Given the size and density of integrated circuits, test pattern generation can be a very complex process

and is a very active area of research. Many different approaches have been used to efficiently generate

test patterns. These approaches include random test pattern generation [19], [20] in which the fault

coverage for randomly generated test patterns, using fault simulation, is determined and used to form

test sets. Pseudo-exhaustive [21] test pattern generation is a technique that tries to generate test patterns

by trying to minimize the time required to exhaustively test a circuit by making use of circuit topology

and input/output dependencies. Mathematical techniques such as graph methods [22] and statistical

methods such as Monte Carlo [23] have also been used. In addition to algorithms based on some of the

aforementioned and more traditional areas of mathematics, newer approaches have also been used in

test pattern generation. These include evolutionary algorithms [24], [25] and cellular automata [26].

Many of the above mentioned approaches are underpinned by the basic processes of digital test pattern

generation as described earlier in this chapter. Path sensitisation, simulation and the use of fault models

are central to many ATPG algorithms regardless of their approach. These basic principles, as well as

one or two others, were developed over the past two or three decades and form the basis of the early

and now fundamental test pattern generation algorithms. Many of the techniques described in the

previous paragraph therefore, also find themselves using these basic principles. The three algorithms

described below, The D-Algorithm, PODEM and FAN, are widely recognized as the gold standard

within the field of automatic test pattern generation and as such, must be described in any work on test

pattern generation.

1.5.1 The D-Algorithm

The D-algorithm [7], [11], published by John Roth in 1960, is by far the most famous test pattern

generation algorithm for combinational circuits and the single stuck-at fault model. Given its age, it still

remains as the center piece of the field and other algorithms, including PODEM and FAN are

essentially extensions of this seminal work. Roth used many important concepts in his work including

the use of cubical complex notation, backtracking, error propagation and line justification. He also

employed a five-valued composite logic system where,

X = x/x

1 = 1/1

0 = 0/0

D = 1/0

D = 0/1

24

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

In the above notation, a/b implies that a is the value of a line under fault-free conditions and b is the

value of the line under a fault condition. X represents ‘dont care’ or unspecified values. The most

interesting notation is the D notation, which represents a fault on a line, and is central to the algorithm.

To detect a stuck-at-0 error on a line one must first set the line to 1, represented by a D. Given the

definition of D above, this implies the value at the line under fault-free conditions will be 1 and under

the fault condition it will be 0. In a similar manner, a stuck-at-1 fault can be represented by a D .

In order to generate a test for a particular fault, the fault line is represented by either D or D

(depending on the fault the test is being generated for) with all other lines initially set to X. The next

step is to sensitise a path from this line to one or more primary outputs of the circuit by setting the

unspecified values from X to either 1 or 0. This process is known as the D-drive. Then there is a

backward implication process, starting from the fault line, back to the primary inputs of the circuit. In a

similar manner to the D-drive stage, the circuit lines leading to the primary inputs are set to 1 or 0 in

order to set the D value at the faulty line. If one is able to set the primary inputs of the circuits to either

1 or 0, without conflict, then a test for the fault has been generated.

Before a detailed explanation of the algorithm is given, it is important to examine further, through

example, the composite notation and the notion of singular covers. A singular cover is a compact

representation of a truth table and each row in the cover is known as a singular cube. The singular

cover for a two input NAND gate is given in Table 1. The truth table in (a) shows that when either (or

both) of the inputs is set to 0, the output o f a NAND gate is always 1, and when the inputs are both 1,

the output is 0. An extended version of this table, using composite logic, is shown in Table 1(b). It

illustrates some examples of backward implication. For example, in the before table, one row has c set

to 0, b set to 1 and a unspecified. Through backward implication, it is obvious that for a NAND gate, a

must also be set to 1. Another example in this table shows through backward implication, that b must

be set to 0 if both a and c are set to 1. The final truth table in (c) shows that D and D can imply both

backward and forward implication.

A b c

0 X 1

X 0 1

1 1 0

(a)

25

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

before after

A b c A b c

X 1 0 1 1 0

1 X 1 1 0 1

(b)

a B C

1 D D

D 1 D

D D D

D D 0

(c)
Table 1.11 (a) Truth table for a NAND gate (b) truth table illustrating backward

implication and (c) forward and backward implication.

The D-algorithm also employs two key concepts; the J-frontier and the D-frontier, each being a list of

gates that meet given criteria and are used to keep track of forward and backward implications. The J-

frontier contains gates for which the output is assigned a logic value that is not implied by its inputs and

for which no unique backward implication exists. For example, using the NAND gate as defined above,

if a=b= x and c = 1 there are three ways to satisfy this output. That is, either a = 1, 6 = 0, or a = 0, b =

1, or a=b=0. Thus, no unique backward implication exists and these gates are candidates for line

justification or backward implication. The D-frontier contains gates whose outputs are X and one or

more of their inputs are D or D . These gates are candidates for D-drive as introduced above. A

procedure o f imply-and-check is executed each time a line is set to a new value of 1 or 0 to ensure no

conflicts have occurred. This procedure carries out all forward and backward implications based on the

topology of the circuit. To explain the algorithm further, it will be used to generate a test for the stuck-

at fault in the circuit given in Figure 1.12

To aid the discussion in the examples, the following notation will be used;

- P0 will denote the circuit line P stuck-at-0

- V’(i) will be used to represent a line value V e {0,l} assigned at a particular

step i of the algorithm

26

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

s-at-0

Figure 1.12 Combinational circuit with a stuck-at-0 fault at line F

Example 1.2 Using the D-algorithm to generate a test fo r line F stuck-at-0 in Figure 1.12

The fault will be represented as F0 .

Step 1. Given the stuck-at-0 fault on F, we must set F - 1 and perform the imply-and-check based on

this setting. The backward implication of this is that we must set B = C =1. This stage produces the D-

frontier {K, L} and the J-frontier (j) , the empty set.

Step 2. Select a gate from the D-frontier through which to drive the value at F ' . Select gate K.

To get D through gate K we need to assign A = 1(1) and we get K = D . Performing the ‘imply-and-

check’ of these settings we see that,

G = 0 (1) ,7=1(1).

- this step produces the D-frontier { L, N} and the J-frontier (p.

Step 3. Now need to drive the error D from K to N by selecting a gate from the D-frontier. We select

gate N.

27

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

To drive the value through the primary output, we need to set L = 1(2) and M = 1(2). Carrying out the

imply-and-check we see we require H = 0(2) and I = 1(2) which implies L = D (2) which is a conflict

as L has already been set to 1 ! Given this conflict, the D-algorithm now has to perform its back­

tracking step. That is, to unset all the values set in the current step (i.e. step 2) and select a different

gate from the D-frontier {L, N}.

Step 4. Select gate L.

To drive the value through L we need to assign E = 1. Performing the imply-and-check, we see that,

E = 1(2), 77= 0(2), M = 1(2)

- this step produces the D-frontier {N} and J-frontier (j) .

Step 5. Drive D through N. This implies I = l(3).Performing the imply-and-check, we see that,

A = 1(3), G = 0(3),N = D

At this point we see that no conflicts exist, the D and J-frontiers are empty which in turn imply that all

primary inputs have been set and that the fault has been driven through to the primary output. So a test

vector for F stuck-at-0 is,

A - B - C - E - 1

As can be seen from the above example, the D-algorithm traverses the circuit, continuously driving

faults through gates and performing the imply-and-check procedure to ensure no conflicts have

occurred or been implied by the D-drive process. . If conflicts have occurred, an attempt is made to

resolve them through back-tracking, which is just a systematic way of undoing the previous D-drive

step and selecting another gate from the D-frontier and attempting the drive process through this new

gate. For a given stage in the algorithm, if all gates in the D-frontier result in conflicts then no test

exists for that fault. The above example is merely a description of how a test can be generated for one

particular fault in one particular circuit. It gives some hints to the algorithm but a formal description of

the algorithm is given is Figure 1.13.

1.5.2 PODEM - Path Oriented DEcision Making

The PODEM algorithm, conceived by Goel [27] and published in 1981, is based largely on the D-

Algorithm (uses the same notation) and is also a circuit based, fault-oriented test pattern generation

algorithm. Goel viewed test pattern generation as a finite space search problem and he staged the

problem, “as a search of an n-input combinational 0-1 state space of primary input patterns of an n-

input combinational logic circuit”. PODEM is an implicit enumeration algorithm in which all primary

input patterns are exhaustively selected and then determined to see whether they are tests for stuck-at

28

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

faults in a circuit. The goal o f PODEM was to reduce the heavy computational load of the D-Algorithm

and achieved it by re-staging the problem in terms of a finite search space.

The D-Algorithm considers every node in a circuit to be part of the search space when trying to locate a

test vector for a particular fault. Goel reduced the search space by confining it to include only the

primary inputs since all other nodes may be expressed as functions of these.

Suppose we have a set of primary inputs that have been assigned either logic 1 or 0 and we set another

primary input p, to logic value 1. As we propagate these primary inputs settings through to the primary

output(s), much like the D-drive, and we encounter a conflict, we would only have to set the primary

input p to 0 and see whether the conflict has been resolved. If this complimentary value also results in a

conflict, this input is removed as a candidate for a test pattern, thus reducing the search space.

D-alg
begin
if implyandcheck() = FAILURE then return FAILURE
if(error not at Primary Output (PO) then

begin
if D-frontier = <J) then return FAILURE
repeat

begin
select an untried gate (G) from the D-frontier
c = controlling value at G
assign c to every input of G with value x
if D-alg() = SUCCESS then return SUCCESS

end
until all gates from D-frontier have been tried
return FAILURE

end
/* Error has been propagated to a primary output */
if J-frontier = § then return SUCCESS
select a gate (G) from the J-frontier
c = controlling value at G
repeat

begin
select an input (j) of (G) with value x
assign c to j
if D-alg() = SUCCESS then return SUCCESS
assign c to j /‘ reverse decision*/

end
until all inputs of G are specified
return FAILURE

end

Figure 1.13 High-level flow diagram o f The D-Algorithm

The back-tracking process in the D-Algorithm is very costly and PODEM reduces the amount of back­

tracking that needs to be performed. Undoing previous decisions and performing the imply-and-check

process with another gate from the D-frontier can be very costly in itself and in the worst case, all

29

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

possible choices will have to be tried to resolve a conflict. PODEM attempts to resolve conflicts by

resetting primary inputs only and then performing the D-drive process. It is this reduction in search

space that gives PODEM the performance advantages over the D-Algorithm which will continually

search all nodes in a circuit. In PODEM, as soon as a conflict is encountered, only a subset of the

primary inputs need to be reset before the D-drive process is started once more.

When attempting to generate a test, PODEM begins by assigning all primary inputs the value X. It then

aims to achieve what is known as an initial objective, which is to set the at-fault node to the opposite

value to the fault-condition. The next stage of the algorithm is the backtrace, and this stage aims to

obtain primary input assignments given the initial objective. It must then determine whether these

primary input assignments have resulted in a conflict with the initial objective through the process of

implication (PODEM uses circuit simulation to do this). If no conflicts have been generated, PODEM

then selects another primary input and assigns a value to it and performs the simulation again to ensure

no conflicts have occurred. If a conflict has occurred through this new setting, this primary input is then

set to the complement of the initial setting to see whether this too causes a conflict (again through

simulation). If a conflict occurs once more, then this primary input is removed from the search space

and is no longer considered in the test generation process. If however, no conflict has occurred with

either settings, the process of assigning another primary input repeats until a test has been generated or

a conflict occurs or there is no path to propagate the fault to a primary output. The actual propagation to

a primary output is performed in a similar manner as the D-Algorithm by searching for a path from the

current D-frontier to one or more of the primary outputs. As an illustration of the algorithm, an example

from [8] will now be discussed that uses PODEM to generate a test for a stuck-at-0 fault in the circuit in

Figure 1.14.

Example 1.3. The use o f PODEM to generate a test fo r line 5 stuck-at-0 fo r the circuit in Figure 1.14

In the following discussion, the notion of a net will be used to describe the circuit topology. A net is

essentially a circuit line that either feeds the input of a gate or leads from the output o f a gate.

The initial objective is to set the output o f gate A to 1. Then it is necessary to backtrace to one or more

of the primary inputs. By backtracing, it can be seen that the input xx has to be set to 0 (x 2 could also

have been selected). This input feeds net 1 so we set net 1 to logic 0.

1 2 3 4 5 6 7 8 9 10 11 12

O X X X X X X X X X X X

Because OXXX is not a test for the fault (determined through simulation), a second iteration of the

algorithm is performed and the primary input x2 is also set to 0 in a similar manner and results in D as

the output of gate A and hence the value at net 5.

30

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

1 2 3 4 5 6 7 8 9 10 11 12

0 0 X X D X X X X X X X

Since net 5 is now specified, PODEM will now try to find a gate with D as its input and X as its output

towards the primary outputs, in a similar manner to the D-drive of the D-Algorithm. Gates G and H

satisfy this condition. Selecting gate G and the subsequent initial condition results in the primary input

x3 being set to 0:

1 2 3 4 5 6 7 8 9 10 11 12

0 O O X D I X O X J J X X

x1 x2 x3 ;c4 = 000X is still not a test, so the PODEM must proceed. Given gate J has D on its input

net 10, and Xs on input nets 9 and 11, the initial objective is now to set net 12 to logic 1 but we need to

select net 9 as the next objective. This results in the primary input x4 being set to 0 as follows:

1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 D 1 1 0 0 J) D D

Hence, now all primary inputs have been set and the fault can be propagated to a primary output, we

have a test vector, jq x2 x3 x4 = 0000, for this particular stuck-at-0 fault.

The same test could of course have been found by the D-Algorithm but substantially more trial-and -

error would have been required due to the number o f propagation paths and other consistency

operations [8], [27]. Also, for untestable faults, there is much wasted effort when compared to PODEM.

It is these features of PODEM and the search space reduction feature described above that gives it

significant performance improvements over the D-Algorithm. In some cases, these improvements are an

order of magnitude better in terms of both processor time and memory usage [27]. For a deeper

explanation of the algorithm, the readers are directed to Goel’s paper and a number of undergraduate

texts [7], [11].

1.5.3 FAN - Fanout-oriented Test Generation

In 1983, Fujiwara and Shimono [28] published their research which sought to accelerate the test

generation algorithms of the day. Their work resulted in a test generation algorithm they named FAN,

which was an efficient extension of PODEM. The efficiency is largely due to the fact that FAN uses

the concept of multiple backtrace. That is, when backtracking, it does so across multiple paths as

opposed to single-path backtracking performed by PODEM. Multiple backtracing reduces the number

of backtracks that have to be performed, hence the reduction in computational load.

31

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

The explanation o f the FAN algorithm requires the introduction of new terminology. A bound line is

the output of a gate that is part o f a reconvergent fan-out loop. A line that is not bound is considered to

be free. A headline is a free line that drives a gate that is part o f a reconvergent fan-out loop. Let us

consider the circuit in Figure 1.15 below. Lines H, I and J are bound lines; A, B, C, D, E, F are free

lines and G, H and F are headlines. Because by definition, headlines are free lines, they are considered

as primary inputs and can be set arbitrarily. So, during backtrace, if a headline is reached, it as though a

primary input has been reached and the backtrace ceases.

Figure 1.14 Combinational circuit with stuck-at-0 at line 5

Figure 1.15 Combinational circuit [8]

32

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Consider the circuit in Figure 1.16 [8]. Lets assume an initial objective to set line H to logic 1, thus

testing for H stuck-at-0. PODEM would backtrace to C, D or E. Lets assume the backtrace is done via

the path H-E-C which sets £ to 1. This would mean C = 0. But, this would result in F being set to 1, G

to 0 and H to 0, which fails the initial objective. Now if the backtrace is performed along H-G-F-C

instead, the initial objective is achieved. Thus, possibly two or more backtraces would be required by

PODEM to achieve the initial objective.

Figure 1.16 Combinational circuit with stuck-at-0 fault on line H

FAN however, backtraces along multiple paths to the fan-out point, along say H-E-C and H-G-F-C

ensuring the value 1 would be set at C, while all along, the initial objective is kept in mind.

Reconvergent fan-outs cause many conflicts when trying to backtrace to primary inputs. Only when

FAN has traced all paths to a particular fan-out point, will the actual fan-out stem be assigned a value.

PODEM on the other hand will backtrace from an initial objective all the way to a primary input,

perform simulation and then detect a conflict if one is present. It is this additional effort that is avoided

by FAN. By not proceeding with the backtrace until all paths have been traced to it, FAN is able to

avoid conflicts before possibly reaching a primary input and without the need for costly simulation, as

required by PODEM.

1.5.4 A brief comparison of the D-Algorithm, PODEM and FAN

The three algorithms above were described in chronological order, PODEM and FAN each being

refinements and improvements on their predecessor. The D-Algorithm considers all circuit nodes when

trying to generate a test and uses much backtracing and forward justification. The algorithm blindly and

stubbornly performs these simulations with little regard for what it has already encountered in terms of

conflicts and without foresight of what may lay in ahead in for example, the D-frontier. PODEM tries to

address these shortcomings by considering the test generation process as a search in a finite space. By

only considering only the primary inputs and by discarding those that do not contribute to a test pattern,

effectively reducing the search space, PODEM is able to remember and learn about the circuit topology

33

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

as it performs test pattern generation. The problem with both of these algorithms is the early detection

of conflicts and the wasted computational effort in determining this condition. Reconvergent fanouts are

often the culprits o f these conflicts and FAN tries to eliminate these early on the backtrace process by

tracing along multiple paths towards the fanout stem. Only when all paths have been traced to these

points and it has been determined that no conflict has arisen, will FAN continue simulating further

along the circuit paths. This heuristic itself is largely responsible for the computational efficiencies

FAN is able to achieve over PODEM and the D-Algorithm.

Performance comparisons have been made of the three algorithms [29] by collating the results from

publications written by the researchers of each algorithm. Unfortunately performance comparisons are

difficult as the algorithms have not been given the same problem set to solve. Not only this, but the

implementation of these algorithms were in different languages for different hardware platforms

(hardware in the 1960s cannot be compared to that of the 1980s!) so it is difficult to make direct and

truly meaningful comparisons. But some results are available for PODEM and FAN and and do give

some indication of the relative merits o f each approach. Goel discussed comparisons between PODEM

and a random pattern generator [27]. Testing 50,000 gates, in a time of approximately 1372 minutes on

an IBM 370/168 machine, PODEM was able to achieve 89% fault coverage o f approximately 90,000

faults, which was a marked improvement over the random approach. The largest example reported by

the authors of FAN was a 20,000 gate circuit which it, in a time of 291 minutes on an NEC System-

1000, was able to achieve 95% fault coverage of approximately 33,000 faults.

Although the above results compare ‘apples to oranges’ it seems apparent from the results presented in

the respective papers that FAN certainly seems a marked improvement over PODEM in terms of

computational performance. For further details o f the results the reader is directed towards the

references given above.

As was mentioned earlier, test pattern generation is a complex and continuous effort given the pace of

development of ICs. The above three algorithms form the basis o f many ATPG algorithms and continue

to do so. This is evident is some of the more recent work that has emerged; SOCRATES [30] is based

on the strategies within FAN, ATOM [31] improves on PODEM and STAR-ATPG [32] and SPIRIT

[33] both incorporate and improve upon, a number of the heuristics used in both PODEM and FAN. It

would seem that as ICs incrementally follow Moore’s Law, ATPG algorithms also improve

incrementally to maintain this pace.

1.6 Testability Analysis

The term testability refers to the ease and effectiveness with which a circuit can be tested [34], [35].

The process of test generation is a costly one, both financially and in terms of time. It was for this

reason that testability measures were developed. Testability depends on the components and the

34

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

topology of the circuit i.e. its design. The testability of a circuit is normally regarded as a function of

two measures, controllability and observability [36]. Some of the more popular definitions are defined

at each node of a circuit as follows:

Controllability: This is the ability to control the fault-free logic value at a node from

the primary inputs, so that any logic value can be placed on the node by manipulating

the values of the primary inputs.

Observability: This is the ability to propagate the value of a node to one of the

primary outputs, so that if there is a change of value at a node, there will be a

corresponding change at a primary output.

In Section 1.4 above, the sensitised path concept was used to generate test patterns. The basic

requirements for writing the tests were to first establish a fault free value at the node (i.e. control the

value at the node) and then to transmit this value to the primary output (i.e. to observe the value at the

output). If it is difficult to set a node to a particular logic value (i.e. it is not controllable) or the value

cannot be propagated to a primary output (i.e. it is not observable) then the circuit is seen to be difficult

to test. It is for this reason that controllability and observability are seen as intuitive measures of

testability.

Measuring testability is a precursor to the expensive procedure of test pattern generation. It is best used

at the design stage as a guide to the ease with which a circuit can be tested. Difficult nodes or areas of a

circuit can be identified, enabling the design to be modified before actual testing takes place.

Testability programs quantify the testability of a circuit in one of two ways; scoring and by algorithmic

methods. Scoring methods [34] assign points to certain features within a circuit. So for example,

features that decrease testability (e.g. reconvergent fan-out) are given low points and those that enhance

testability (e.g. large number of primary outputs) are given high points. The program identifies each

feature within a design and keeps a ‘score’, a high score in this case signifying a design that is easily

tested.

Algorithmic methods on the other hand such as CAMELOT [37] and TMEAS [38] produce testability

ratings on a node-by-node basis, each node being considered independent. Many of the algorithmic

methods are based on the concepts of controllability and observability.

Testability measures are useful as a comparative tool for circuit design. However, two major problems

associated with testability are their inability to address reconvergent fan-out and to find faults in a

circuit which are impossible to test. The overall testability rating is often calculated by a simple

function of controllability and observability such as their product which can often obscure the actual

35

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

testability of a design. This is also highlighted in Savir’s paper [39], “Good controllability and

observability do not guarantee good testability”, so care has to be taken as to their interpretation. In

Chapter Two, a new method for evaluating observability and controllability will be presented based on

Boolean difference method and cubical calculus.

1.7 References

[1] MacMillen D., et al, “An industrial view of electronic design automation”, IEEE transactions on

Computer Aided Design of Integrated Circuits and Systems, Vol 19, no. 12, pp 1428-1446, Dec. 2000

[2] Moore, G., “Cramming more components onto integrated circuits”, Electronics, Vol. 38, No. 8,

April 1965.

[3] Intel Corporation, Online Museum, “Microprocessor Hall o f Fame”, www.intel.com.

[4] Moore G., “No exponential is forever ... but we can delay forever”, Presented at International Solid
State Circuits Conferences (ISSCC), February, 2003.

[5] Thompson K., “Intel and the Myths of Test”, IEEE Design and Test of Computers, pp 79 - 81,

Spring 1996.

[6] Yalamanchili, S., “VHDL STARTERS GUIDE”, Prentice Hall, Sept. 1997.

[7] Abramovici M., et al., “DIGITAL SYSTEMS TESTING AND TESTABLE DESIGN”, IEEE Press,

1990.

[8] Lala, P., “DIGITAL CIRCUIT TESTING AND TESTABILITY”, Academic Press, 1997.

[9] Ravi S., et. al., “High-level test compaction techniques”, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Vol. 21., No. 7, pp 827 - 840, July 2002.

[10] Sellers F.F., M.Y Hiss, L.W. Beamson, "Analysing errors with the Boolean difference", IEEE

Transactions on Computers, Vol-C17, No. 7, July 1968.

[11] Roth J.P. “COMPUTER LOGIC, TESTING AND VERIFICATION”, Computer Science Press,

Maryland USA, 1980.

36

http://www.intel.com

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

[12] Holland, J, “ADAPTATION IN NATURAL AND ARTIFICIAL SYSTEMS”, The MIT Press,

Cambridge, Massachusetts, USA, 1992.

[13] Wadsack R.L., “Fault modelling and logic simulation in CMOS and MOS integrated circuits”, Bell

Systems Technical Journal, ppl 149-1475, May/June 1978.

[14] Visweswaran G.S., et al., “The effects o f transistor source-to-gate bridging faults in complex

CMOS gates”, IEEE Journal o f Solid State Circuits, vol. 26, no. 6, pp893-896, June 1991.

[15] Kishida K.F., et al, “A delay test system for high speed logic LSI’s”, Proceedings o f the 23rd

Design Automation Conference, pp786-790, July 1986.

[16] Smith G.L., “Model for delay faults based upon path”, Proceeding of the International Test

Conference, pp342-349,1985.

[17] Lin C.J., Reddy S.M., “On delay fault testing in logic circuits”, Proceedings o f the International

Conference on CAD, pp 148-151, 1986.

[18] Levendel Y.H. and Menon P.R., “Fault simulation methods - extension and comparison”, Bell

Systems Technical Journal, pp2235-2258, November 1981.

[19] Savir, J., “Random pattern testability of control and address circuitry of an embedded memory with

feed-forward data path connections”, Journal o f Electronic Testing Theory and Applications, pp 279 -

296, Vol. 15, No.3, Dec. 1999.

[20] Schubert A., Anheier W., “On random pattern testability of cryptographic VLSI cores”, Journal of

Electronic Testing Theory and Applications, pp 279 - 296, Vol. 16, No.3, Jun. 2000.

[21] Srinivasan, R., “Novel test pattern generators for pseudoexhaustive testing”, IEEE Transactions on

Computers, Vol. 49., No. 11, Nov. 2000.

[22] Ubar, R., “Test synthesis with alternative graphs”, IEEE Design and Test o f Computers, pp. 48-

57, Spring 1996.

[23] Gupta S., et. al., “Test pattern generation based on arithmetic operations”, International

Conference on Computer Aided Design, ppl 17-124, 1994.

37

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

[24] Pomeranz, I, Reddy, S., “On improving genetic optimization based test generation”, Proc.

European Design and Test Conference, pp506-511, 1997.

[25]. Drechsler R., et. al., “EVOLUTIONARY ALGORITHMS IN CIRCUIT DESIGN”,

Kluwer Academic Publishers, October 2002.

[26] Chiusano S., et. al., “Cellular automata for sequential test pattern generation”,

15th IEEE VLSI Test Symposium, Monterey, CA (USA), pp. 60-65, April 1997.

[27] Goel P., “An implicit enumeration algorithm to generate tests for combinational logic circuits”,

IEEE Transactions Computers, pp 215-222, Mar. 1981.

[28] Fujiwara H., Shimono T., “On the acceleration of test generation algorithms”, IEEE Transactions

Computers, pp 1137-1144, Dec. 1983.

[29] Kirkland T., Mercer M., “Algorithms for automatic test pattern generation”, IEEE Design and Test

of Computers, pp43 - 55, June 1988.

[30] Schulz M., “SOCRATES: A highly efficient automatic test pattern generation system”, IEEE

Transactions on Computer-Aided Design, Vol. 7, No. 1, ppl26-137, Jan 1988.

[31] Hamzaoglu, I., Patel, J., “New techniques for deterministic test pattern generation”, ”, Journal of

Electronic Testing Theory and Applications, Vol. 15, No.3, pp 63 - 73, Dec. 1999.

[32] Tsai K., et. al., “Star-TEST: The theory and its applications”, IEEE Transactions on Computer

Aided-Design of Integrated Circuits and Systems, Vol. 19, No. 9, ppl058-1063, Sep. 2000.

[33] Gizdarski E., Fujiwara H., “SPIRIT: A highly robust combinational test generation algorithm”,

IEEE Transactions on Computer Aided-Design of Integrated Circuits and Systems, Vol. 21, No. 12,

pp14461457, Dec. 2002.

[34] C.T. Wood, “The quantative measure of testability”, Proc. IEEE Autoscan, pp.286-291, 1979.

[35] Chang, S., “TAIR: Testability Analysis by implication reasoning”, IEEE Transactions on

Computer Aided-Design of Integrated Circuits and Systems, Vol. 19, No. 1, ppl52-160, Jan. 2000.

[36] L.H. Goldstein, “Controllability/Observability analysis of digital circuits”, IEEE Trans. Circuits

and Systems, Vol. CAS-26, No. 9, pp685-693, Sept 1979.

38

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

[37] R.G. Bennetts et al., “CAMELOT: A computer aided measure for logic testability”, Proc. IEE.,

Vol 128-E, ppl77-189, Sept. 1981

[38] J. Grason, “TMEAS a testability measurement program” in Proc. 16th IEEE Design Automation

Conference., San Diego, CA, ppl56-161, June 1979.

[39] J. Savir, “Good controllability and observability do not guarantee good testability”, IEEE Trans,

on Computers, Vol. C-32, ppl 198-1200, Dec 1983.

39

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Chapter 2. Test Pattern Generation for Multiple Output Circuits

using Cubical Calculus and the Boolean Difference

2.1 Introduction

The use of the Boolean difference [1-3] to generate test patterns is very widely cited in undergraduate

text books and the overall technique has been well understood since the mid 1960’s [4][5].

Unfortunately, for such an established technique, the use of the Boolean difference in practical ATPG

tools is far from widespread due to the cumbersome nature of its algebraic properties [2], To solve the

Boolean equations, (8), (9), (11), (12) below, laborious manipulations based on these properties are

often required, a process which itself can be difficult to automate.

The purpose of this chapter is to introduce original work by the author which couples the Boolean

difference and Roth’s Cubical Calculus [6] to generate test patterns for multiple output combinational

circuits. The chapter opens with rigorous discussions of the Boolean difference and cubical calculus

along with some general properties o f Boolean functions. Once these mathematical foundations have

been laid, an existing test pattern generation algorithm, developed by Xue and Zhang [7], for single

output combinational circuits will be described. The Boolean difference, cubical calculus and the

concepts introduced in Xue and Zhang’s algorithm will then be extended to introduce an original test

pattern generation algorithm. Some slight modifications to both Roth’s work and Xue and Zhang’s will

be required to arrive at this new algorithm and set theory together with Boolean algebra will be used

along the way to aid the discussion.

By the end of the chapter it is hoped the reader will be cognisant of the merits o f coupling Roth’s

cubical calculus and the Boolean difference for both single and multi-output circuits. It will be shown

that the advantages of the Boolean difference, namely that it is a systematic method of solution for test

generation equations for all possible test vectors, can be retained whilst avoiding its disadvantages of

lengthy and cumbersome manipulations, by using the cubical calculus.

2.2 Test Pattern Generation using Boolean Differences

2.2.1 Single Output Case

The Boolean difference is essentially an XOR of two closely related Boolean functions. If g and h are

functions then, in the notation of Boolean algebra,

40

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

g @ h = gh + gh

(1)

where © denotes the XOR operation. Consider a Boolean function F(X) o f a single output circuit,

where X = (x j , ,x „) and the variables xlv ..,x„ represent the primary inputs. The Boolean

difference of F(X) with respect to xt is defined by

£ (X)

dxj

or equivalently,

d F(X)
dx, = f (x 1, . . . ,1, . . . ,x ii) © f (x 1,. . . ,0, . . . ,x ii) (2) ’

It must be noted that the left hand side of the above equation is not a derivative in the usual sense, it is

simply a notation to represent the Boolean difference with respect to the primary input xf . The most

important property of the Boolean difference, which forms the basis o f its use in test pattern generation,

lies in the interpretation o f the equation

dF(x)
“ s r = 1 «

If the above equation is satisfied it means that the output of the function F(X) is different for normal and

erroneous settings of the primary input x(- . Therefore a fault at the primary input will be detectable, or

observable, at the primary output. Conversely if

dxt

then F(X) is logically invariant under normal and erroneous settings o f x, so a fault at x(- cannot be

detected at the primary output.

The solutions of equation (3) provide the input vectors that propagate a fault on line x,- to the primary

output. Thus, a test for a fault on xt exists if a change in logic value at x,- produces a change in logic

value at the primary output. To actually generate a test vector for xf stuck-at-0/1, this primary input

must first be set to 1/0 and then the fault has to be propagated to the primary output. Mathematically

this requirement is equivalent to simultaneously solving equation (3) and the logic value at the at-fault-

line (which is opposite to the fault condition). Thus the test vectors for x(- stuck-at-0 and stuck-at-1 are

given by the solutions of equations (4) and (5) respectively.

41

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

* , . ^ 1 = 1 (4)dx.

(5)dx,

Equations (4) and (5) generate test sets for faults at the primary inputs only. However, the ability to

generate tests for faults at the internal lines of a circuit is of greater interest. In the analysis below, an

internal line is treated as though it were a primary input and is referred to as a pseudo primary input [2].

For an internal circuit line, Sj say, the Boolean difference with respect to Sj becomes

— = F (x I v . . . , x„, ^.) © F[x1, . . . , xn,Sj'j

— L —^ = F(^1,....,^„,l)©F(jr1,...,xn,o)

or equivalently,

where Sj is regarded as a pseudo primary input. The solution of the Boolean equation

d F (x , S j) / d S j =1 (6)

provides all the input vectors for which a stuck-at fault on Sj alters the primary output.

As in the previous discussion, to generate a test vector for Sj stuck-at-0/1, the node must first be set to

1/0 and the fault propagated to a primary output. An internal node, S j , can be expressed as a function

of the primary inputs, viz. Sj (x) = Sj ,, xn) , and the solution o f the Boolean equation

st (x) = k 0)

yields the input vectors that set Sj to k for k=0,l. The input vectors required to propagate a fault at Sj

to a primary output are given by the solutions to (6) above. To generate test patterns for a fault on S j , it

is therefore necessary to solve both equations (6) and (7) simultaneously. Hence, the test sets T0 and Tx

for Sj stuck-at-0 and stuck-at-1 respectively are given by the solutions of

. . dF(x,Sj)
r0: s , (x) .--- J- =1 (8)

dSj

42

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

— —r dF 'lx.S j)
Ty S](X) . " =1 (9)ds,

2.2.2 Multiple Output Case

The formulation of the multiple output case is very similar to that for the single output case. It is still

necessary to set the at-fault line to either logic 1 or 0. The only difference from the single output case is

that the fault condition has to be propagated to at least one of the primary outputs. To ensure this, the

Boolean difference equation should be solved for all primary outputs. Therefore, for n inputs and m

outputs, solutions of the Boolean equation,

X \ " = 1 (10)
M d S j

provide all the input vectors for which a stuck-at fault on an internal line Sj alters one or more of the

primary outputs. Equation (10) only holds true if one or more of the terms in the sum equals 1, since in

order for the Boolean equation,

dF.pf,,,) dF^X.s,) dF,(x,st) ,
----------------- 1------------------- r T ----------------- — I

dSj dSj dSj

to hold, at least one of the terms on the left hand side must equal 1. Thus, for n inputs and m outputs

the test sets TQ and 7j for Sj stuck-at-0 and stuck-at-1 respectively are given by the solutions of

» > (*) • £ \ - » (ID
i=i dsj

r t : =1 (12)
i= l a S j

since equations (11) and (12) are only satisfied if s;. (x) = l or 0 respectively and a fault at Sj is

observable at one or more of the primary outputs. The test set equations for a fault at a primary input

are derived similarly, with obvious adjustments.

2.3 Properties of Boolean Functions with Applications to the Boolean Difference

Every Boolean function

f (x) = f { x lt ,xn)

satisfies the property

f (X) = 7 j a(X) + x J l(x) (a)

43

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

where

f 0(X) = f (x ,

/ , (x) = f (x ,

[8]. This may be shown by examining the sum-of-products form of Boolean functions. Every Boolean

function f (x) can be written as,

/(x) = Z«,nI
i= 0

where for each i = 0 , . . , T - 1 , at = 0 or 1 and II,. is a product of n terms, each of which is one of the

variables Xj,....,*„ or its negation. Comparing

/ o (X) = f { x „ 0)

/,(x) = /(*,,.... Arn_„l)

with

f (X) = 7 j , (X) + x J I{X)

f 0(X) may be obtained from f [X) by removing all terms in f (X) in which xn is not negated and

deleting xn from the remaining terms. Similarly, / , (x) may be obtained from f (x) by removing all

terms in f (x) in which xn is negated and deleting xn from the remaining terms. This may be seen

from the following simple example. If

f (x) = f (x l,x2)

= TjX2 + Xj3c2 + x fa

then

f 0(X) = x t + xi

f , (x) = x ,

and

/(x)=^/0(x)+xn/,(x)
= x{x2 + X jX 2 + X jX 2

The application of property (a) is important within test pattern generation when a fault is present at an

internal circuit line, as was discussed earlier in section 2.2. If for example there is a fault on line ‘g ’,

where g = ...,*„) and it is treated as a pseudo-input to the circuit, then

F(X ,g) = gF(X ,0) + gF(X ,l)

so that by setting F0 = F(X,0) and Fj = F (X ,l)

44

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

i = F (x , g) e F (x , g)
dg

= F{X, g } F{ X , g) + F { X , g) F(x , g)

= (gF0 + gFl)(gF0 +gF,)+ (gF0 + gFj)(gF0 + gFj)
= (gF0 + $F,)(F+F0)(g + F1)+(g + F0 \ g + F,)(gF0 + gF,)

= FF0F, + gF,F0 + gF0Fj + gF0Fj
= (g + j t F 0F \+ F lF0)

= F0F1©F1F0
= F0 ® Fx = F(x,0)© F(x,l)

This means js independent of g, so g may be omitted from any calculations involving
dg

dF(X,g)
— 1------ . So if solving an equation involving the Boolean difference by cubical calculus or any other

dg

means, one need only work with the primary inputs of the circuit.

Moving now to the multiple output case, revisiting equation (10) will yield a similar result as for the
m .

single output case. Denoting, ^ , F tix, Sj) by h [x ,Sj)

dH[x ^

dsj dsj

it follows that,

dH(x, Sj) =

dsj (b)

= {h {x ,o)+ h (x ,i))(h {x , 0).+ H(X, l))

d
It should be noted that s in ce is not linear over the OR operation [1], it is not true that

dSj

m

v «=i
dSj j^ d S j

However, it will be shown that equation (13) does hold if a so-called disjointness condition is imposed

on the output coordinates, and this enables property (b) to be used in the generation of test patterns

using cubical calculus for multi-output circuits. This will be discussed fully later in the chapter.

45

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

2.4 The Calculus of Cubes

Cubical calculus [6] provides an alternative view of Boolean functions and is attributed to the work of

J.P. Roth during the 1960s. It uses the usual binary notation along with the ‘don’t care’ symbol, x, and

allows for a very economical and compact representation of a function. Although he remarks that

perhaps the first use of it was by Boole [9] and Shannon [8], it was Roth who laid the formal

mathematical foundations. He was then able to apply it to areas such as logic minimisation and digital

circuit testing. One such application was for NASA’s Venus probe [10]. So great was the need to

minimise the weight of on-board circuitry that absolute logic minimisation was required and Roth’s

Extraction Algorithm achieved this. More famous however, is his D-Algorithm [6] which has achieved

widespread usage in the area o f digital circuit testing and is essentially a formal specification of the path

sensitisation method for generating test vectors.

Before the application of the cubical calculus can be discussed, it is necessary to introduce the

foundations of this field. This is done below, largely through formal definitions and examples.

2.4.1 Cubical Definitions and Operations

A cube

A cube defines a relationship between the input variables and the output variables of a function. It is

written using the notation,

a la2...a r\blb2...bs

or a\b

where a v . .ar e {0,1,x} are the input variables and bv ..bs e {0,1,x} are the output variables. The ‘x ’ is

known as the ‘don’t care’ symbol and is interpreted differently depending on whether it appears on the

input or output side of the cube. When a variable on the input side has the value x, it means that this

variable can take the value 1 or 0. When an output variable takes the value x, it means that this variable

is unspecified. Note, that this definition of x is different to that provided by Roth in [6]. The symbol |

(known as ‘slash’) separates the inputs and the outputs. Variables o f a cube are also known as

coordinates and they can be either bound or unbound. A bound coordinate has the value ‘1’ or ‘0 ’ and

an unbound coordinate takes the value ‘x ’. It is to be further noted that unbound coordinates are also

known as free coordinates.

For example, using the above notation,

1x 0 1 lx

is a cube interpreted as; when ax= 1 and a3 = 0, regardless o f the value of a 2 , the output bt = 1 and

the output b2 is unspecified i.e. a don’t care state. Given the different interpretation of x depending on

46

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

whether it appears on the input or output side of the cube, it may be inferred from this cube that

whenever ax = a 2= 1, a 3 = 0, or ax = 1, a2 = a3= 0, then bx = 1. But since bx = x, nothing can be

inferred about the value o f b2 for either of the possible input sets.

Cover

A cover is a set o f cubes that unambiguously defines a function. As an example, the truth-table of a two-

input (flPa2) » single output bx AND function is (note that each row constitutes a cube),

a2 bx
0 0 0
0 1 0

1 0 0
1 1 1

Table 2.1. Boolean AND function o f two input

variables (a, ,a2) and one output bx .

The cubes that represent this function most economically are,

0x |0

x0 |0

nil
Thus, these three cubes define a cover of the AND function. This alternative representation is more

compact and economical than the original truth-table. It is to be noted that this notion of economy will

appear throughout this discussion and refers not only to a reduced number of cubes but also to a

reduced number of bound coordinates.

For Boolean functions there two types of covers, a 1 -cover and a 0-cover. A 1-cover defines a function

whose output is equal to 1 and a 0-cover defines a function whose output is 0. For the AND function,

the cubes Ox 10 and xO 10 define the 0-cover and the cube 1 1 11 defines the 1-cover.

Vertex

A vertex is a special cube in which all input coordinates are bound (1 or 0) and all but one of the output

coordinates are x. This means all input coordinates are defined but only one of the outputs is defined.

A vertex therefore, refers to just one output. For example,

lO llx x l

is a vertex and refers to the third output.

47

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Contain

A cube a \ b is said to contain vertex c \ d i i a \ b can be transformed into c \ d by the appropriate change

of free input coordinates into bound and bound output coordinates, except one, into free. For example,

if

a |fc = x 0 l |0 1 and c |d = 1 0 l |x l

then by changing the first input coordinate from an x to a 1 and by changing the first bound output

coordinate from a 0 to an x, we obtain the cube c | d from a | b. The cube a | b therefore contains all the

information of the vertex c \ d. If a \ b contains all the vertices of a cube e | / , then a \ b is said to contain

e \ f .

Face

If a cube a | b contains the cube c | d and a | b can be transformed into c \ d by changing just one free

input coordinate into a bound one, then c I d is said to be a face o f a | b. For example, if

a |& = 1 0 x |l l0 and c |d = 1 0 0 |x l0

then c | d is a face of a \ b .

An output face of a cube is obtained by changing one or more bound output coordinates into free and an

input face is obtained by changing just one free input coordinate into a bound one. For example,

lOx | xxO is an output face and 1001110 is an input face of lOx 1110.

Interface

Before introducing the concept o f interface for cubes, the interface of single coordinates is defined as

follows, where the symbol ‘I’ denotes interface.

For input coordinates,

0 I 0 = 0 I x = x I 0 = 0 x l x = x

l l l = l l x = x l l = l 1 1 0 = 0 1 1 = # = conflict

As can be seen above, the interface operation finds common input coordinates. As x can be either 1 or

0, a bound coordinate interfaced with a free one results in the bound coordinate.

For output coordinates,

0 1 0 = 0, 111 = 1, l l x = x l l = 0 1 x = x l 0 = x

The interface of two cubes with the same dimensions is the cube formed from the interface of their

individual coordinates. For example,

(10x|xx) I (lx l |x0) = 1011 xx

48

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

The Consistency o f Cubes

A set o f cubes which defines a function (a cover) must be consistent. This ensures that if different cubes

in the set have common input parts, these do not produce different outputs, i.e. identical inputs have the

output as defined by the function. Cubes are consistent if a conflict in the output part of their interface

implies a disagreement, q, in the input part.

For example, the cubes

x l 1 1 lx and OOx | xO have the interface Ogl | xx and are consistent

xOx | xO and 100111 have the interface 10011 q and are inconsistent

0 1 11 and 1 1 10 have the interface q l | q and are consistent

The notion of consistency, in more general terms, is to exclude the possibility o f common inputs having

conflicting outputs, since inconsistent cubes cannot contribute to the cubical representation of the same

function. In the second example above the two cubes are inconsistent since it is implied that for the

single input 100, the second output takes the values 0 and 1.

An interface having the coordinate V is said to be a degenerate cube. For consistent cubes, two cubes

are said to be disjoint if their interface is degenerate.

Cover and Function

The definition of a cover given earlier can now be made more precise. A set o f pairwise consistent, non­

degenerate cubes all referring to the same input and output variables is known as a cover, denoted by C.

A cover defines a function, F, which is defined for each vertex v (recall a vertex refers to a single

output), contained in each cube of C, and only those. For example, referring back to the AND function

in Table 2.1, a cover is given by,

0x |0

x 0 |0

1 1 11

The function is defined by this cover for all possible inputs and the interface of any pair of cubes in this

cover will show that they are consistent, in accordance with the definition, i.e.

xO |o I 111l l = 1 q \q

xO |o I 0x||o = 0 0 10

Ox |lo I 111l l = q i \ q

49

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

CARE and DON’T CARE Vertices

CARE vertices are those vertices that have an output value of 1 and DON’T CARE vertices are those

that have an output value of 0. For example, 110 |x 1 , 1001 lx are CARE vertices and 001 |xx0 ,

1011 xOx are DON’T CARE vertices.

Interface o f Covers

The interface o f two covers C and D, written C I D = { c ! d : c e C , d e D) . Where possible, C l D is

reduced to an optimal set o f non-degenerate cubes using the CONTAIN operation and/or SHRINK

algorithm specified below. If c I d is disjoint for all c e C and d e D , then C and D are said to be

disjoint and we write this C I D = 0 , where 0 denotes the empty set.

As an example, consider the covers

C =
1x 0 1 xl
xxlI XXJ’

D =
xxl|O x

OOx | xx

lx lI 01

whose interface is given by,

C I D =

which after removing degenerate cubes reduces to

lx q | xx

qOO|xx

lxq | x l

x x l |x x

0 0 1 |x x

l x l |x x

C I D = { x x l |x x }

But since x x l | xx contains no vertices, we have finally

C I D = 0

Although Roth does not describe how to treat degenerate cubes in the CONTAIN and SHRINK

algorithms, it is logical to remove them as they provide no additional information about the cover in

addition to the non-degenerate cubes in the cover.

50

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Adjoin

The adjoin o f two cubes a\b and c\d written (a\b) V (c\d) is any set S of cubes which is equivalent to

{a\b,c\d} in the sense that S and {a\b,c\d} contain precisely the same input/output information. It is

usual to optimise the set S so that it contains the minimum number of cubes and a maximum number of

free variables.

For example,

(lxO x|l)V (0x0x |l)= {lx0x|l,0x0x|l} = {xxOx|l}

The adjoin of two covers C and D is defined similarly to be any set o f cubes which is equivalent to the

combined set { c e C } u { r f e D } . Again, where possible an optimal set is chosen.

Coface

A coface o f a cube is a generalised representation of that cube. A cube e is a coface of cube c , if c is a

face of e. The coface of a cube will contain more vertices than the original cube (the face), not all of

which will necessarily be consistent with the cover.

Let c be a cube in the cover C. Cube e is said to be a coface o f c, with respect to C, if c is a face of e (e

contains c) and e itself is consistent with the cubes of C. To obtain a coface o f a cube, one changes a

bound input coordinate to an x or changes a free output coordinate to a bound one.

Consider the cube, 0 1 0 10 and its coface xlO 10, obtained by altering the input side. The coface can be

seen to be a generalised representation as it contains two vertices, 11010, 0 1 0 10 i.e. more information

than was contained in the original cube. Now consider the cube 010 |0xx and its coface 0 1 0 |01x ,

generated from the output side. This again is a more general representation as this coface contains the

vertices, 0 1 0 1 x lx and 0 1 0 1 Oxx.

Additionally, it is necessary to interface this new cube (the coface) with each other cube in the cover to

ensure consistency. For example, the cubes,

0 0 1 11 1 0 1 11 0 0 0 11 1 0 0 11 0 1 1 10

define a cover C. Taking c = 0 0 1 11 and changing one of the bound input coordinates to a free, we

form the (potential) coface e = xOl 11. For this truly to be a coface, it must be consistent with each of

the other cubes of the cover. So, checking the consistency,

xOl ll I 1011ll = 101| 1

x0l|ll I 0001ll = 00# |1

xOl |ll I 1001ll = 10#| 1

x0l|ll I Oil Ilo = 0 # l |q

51

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Hence e is a coface of c with respect to C.

The CONTAIN Operation

Let C be a cover. The CONTAIN operation (not to be confused with contain which refers to a

relationship between cubes) deletes from C, all cubes that are faces of other cubes of C. A coface of a

cube is a generalised form of the original cube (which is a face of the coface). So, by deleting faces of a

cube in C, we are in fact removing specific instances of the more general coface. Since the CONTAIN

operation is removing this redundancy, there is no loss o f information in the resulting cover. For

example, consider a cover C, consisting of the following cubes,

x010|0xx 1010|Oxx x x l0 |x x 0 x l l0 |x x 0

The result o f applying the CONTAIN operation to C would result in the removal of the cubes

10101 Oxx and x l 1 0 1 xxO from this cover as they are faces of the cubes xOlO | Oxx and xxlO | xxO

respectively.

The #-Product (‘sharp’product)

The #-product is a cubical differencing operation. If cube a is ‘sharped’ with cube b , a # b , the result is

a cover containing all vertices of a that are not contained in b.

The #-product of two cubes a\b and c\d written (a\b) # (c\d) satisfies

(i) if a\b and c\d are disjoint then (a\b) # {c\d) = a\b

(ii) if b = d, then (a\b) # (c\d) is a set of cubes of the form e\b

whose input parts constitute a cover of the inputs contained

in a but not in c.

(iii) if all coordinates in b are bound and all coordinates in d are

free then (a\b) # (c\d) = a\b since c\d contains no

information.

Note that in (ii) and (iii) the differencing operation # affects the input coordinates only and is a

departure from Roth’s definition. The following examples illustrate these rules:

10|x0 # 00|x0 = 10|x0 , since these cubes are disjoint.

x0x|lx # 001|lx ={ 10x|lx , x 0 0 |lx } , on the basis o f rule (ii)

x l0 |lx # 01x|lx =110|lx , on the basis of rule (ii)

x00|10 # 000|xx =100|10, on the basis of rule (iii)

52

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

The sharp product a # C of a cube a and a cover C={c,,c2,....,ct } is defined by a#C =

(((a#c1)#c2...)#ck) and the #-product of the covers C#D is given by, C#D = V*=1(c,.#D). As before the

#-product operation is expressed as an optimal set of cubes where possible. As an example consider the

covers,

Redundancy

A cube r in a cover E is said to be redundant if all o f its vertices are contained in other members of E .

Proposition A cube r of the cover E is redundant iff,

is a cover containing the vertices of r that are not contained in the other cubes of E. If it is empty, then

all the vertices are contained in other cubes of E, and it follows that r is redundant.

Cubical Complex

Let C be a cover. The Cubical Complex, K(C) is the set o f cubes in cover C along with the faces and

cofaces (with respect to C) of each said cube.

Prime Cubes and Covers

A cube r, is said to be prime with respect to a cover or complex E, if none of the vertices o f r are

contained in other cubes of E.

2.4.2 Geometrical Visualisation

xIjc 11 #1 lx 11
xxl | l# l lx I 1

[r# (E - r)] = 0 (empty)

where [E - r) is the cover which is obtained from E by removing r and 0 is the empty set.

To clarify, the term,

[/•#(£ - r)] = £ '

53

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

To reinforce the definitions given thus far, a geometrical visualisation of the ideas is given. Figure 2.1

depicts a 3-dimensional cube which can be used to illustrate a cubical complex and function of three

input variables and one output variable. The output part o f the function is omitted for clarity. Please

note to avoid confusion, the term ‘3-dimensional cube’ will be used to refer to the cube that is drawn in

the figure. The word ‘cube’ alone refers to cubes such as xOl | lx.

Figure 2.1. Geometrical visualisation of a cubical complex

The vertices of the cubes represent the input part of vertices o f the function. The vertices are placed

such that each vertex differs from its immediate neighbours by only 1 bit (as in Gray coding). This

gives rise to certain simplifications and aids the minimisation of cubes and bound coordinates in a

cover.

The cube joining a pair of vertices is a coface of each vertex. For example, the cube xOO joining the

vertices 000 and 100. In turn, 000 and 100 are both faces of xOO. The front panel of the 3-dimensional

cube contains a small square containing the cube c = xOx (the others have been omitted for clarity).

This is a coface o f the cubes xOO, lOx, xOl and OOx. They in turn are faces of xOx.

54

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

2.4.3 Example to Deduce a Minimum Cover of a Function

The motivation behind finding a minimum cover is to form a more compact representation of a

function, with fewer cubes and bound coordinates than were in the original cover. With the use of don’t

care coordinates we can simplify the cover by using the fact that a single cube with fewer bound

coordinates can represent several cubes. This is really the idea behind cofacing, as described earlier.

Let the following cubes define the on-states (i.e. the inputs for which the output is 1) of a three input,

one output function.

O il 11 0 1 0 11 11111 11011 10111

The remaining cubes are either ‘Don’t Care’ (have undefined outputs) or off-states (i.e. inputs for which

the output is 0). The above cubes are the CARE vertices (inputs that result in a 1 on the output) defining

the function and its cubical complex. Figure 2.2 is a geometrical representation of the cover including

the 0-cubes (those with 0 free coordinates) and the 1-cubes (those with 1 free coordinate) and a single

2-cube.

010 xlO 110

Olx

011

x l l

Figure 2.2. Geometric representation for example cover

The pair of 0-cubes 011 and 111 define the 1-cube (and coface) x l l which ‘covers’ the same vertices as

this pair but more economically. The other cofaces follow similarly. This representation is more

economical since four vertices have been replaced by four co-faces and only two of these cofaces are

required to cover all four vertices. Furthermore, the cubes x l l , l lx , Olx and xlO define the 2-cube x lx

(which is a coface of these cubes). So the four vertices 011, 111, 110 and 010 are ‘covered’ by the cube

x lx , reducing the number of cubes from four to one and the number of bound coordinates from twelve

to one.

The remaining vertex, 101 is ‘covered’ by the 1-cube lx l and although the number of cubes remains

the same, when 101 is replaced by lx l , the number of bound coordinates is reduced by one.

55

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Thus, the cover has been minimised from the original five cubes with 15 bound variables to just two

cubes,

x lx , lx l

with three bound variables.

2.4.4 Approximate Optimisation Algorithm: SHRINK

SHRINK is an approximate optimisation/minimisation algorithm by Roth [1]. It is approximate because

it does not guarantee to find a minimal cover for a function. The result o f SHRINK is a cover M

containing all the vertices o f a cover C and is composed solely of non-redundant (see earlier definition)

prime cubes. The algorithm in the single output case comprises the following steps.

Step 1. Perform CONTAIN on C resulting in C ' . This operation removes all faces in C of other cubes

contained in C.

Step 2. Select a cube c in C ' and find/obtain a coface z o f c w.r.t. C ' . (If c has no coface w.r.t. C f ,
select another cube in C ').
Step 3. Replace c in C ' by z to form C "

Step 4. Remove from C " all cubes contained in z to form C ,,r .

Step 5. Set C ' := C " ' and repeat steps 2 -4 until the resulting cover P consists solely of prime cubes

(i.e. until no further cofacing is possible.

Step 6. Remove redundant cubes from P to produce a non-redundant prime cover M.

Example 2.1 Note: We are only minimising the cubes that give an output o f 1 for this function.

Consider the cover C, with

lx l 111 x0 10 |0

C = > xxOO11 0011|0
llx x 11

Step 1.1 Remove faces

None to be removed.

C =

'lxll|l
xx00|l
1 lxx|l

x010|0

0011|0

Step 1. 2. Choose c =1x11|1 from C . Its cofaces are x x l l | l , lx x l |l and lx lx |l . Now let us check each

for consistency with respect to C . The cofaces x x l l | l and lx lx |l are inconsistent with 0 01110 and

xOlO 10 respectively since,

(x x l l l l) I (001110) = 00111q

and

56

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

(lx lx 11) I (xOlO 10) = 10101 q

The final coface, lx x l |l is consistent since,

(0 0 1 1 10) I (lx x l 11) = qOl 1 1 q

(X 010I0) I (lx x l 11) = lO lq lq

(xxOO|1) I (l x x l | 1)= IxO q|1

(1 lxx 11) I (lx x l I 1) = l l x l I 1

Therefore, lx x l 11 is a valid coface. We shall call this coface z.

Step 1.3 Replace c with z in C to form C

C " =
lxxljl x010|0

xx00|l 0011|0
1 lxx| 1

Step 1.4 Remove from C all cubes contained in z to form C .

None to be removed.

Step 1.5 Set C := C and repeat steps 2 -4 until the resulting cover P consists solely o f prime cubes.

Step 2.2 Select cube c = xx00|l. It has cofaces xxx0|l and xx0x|l. Checking each for consistency w.r.t.

c' ,

xxxO 11 I xOlO 10 = xOlO | q inconsistent

xxOx 11 I xOlO 10 = xOqO | q consistent

xxOx 11 I 0 01110 = OOql | q .*. consistent

xxOx 11 I lx x l 11 = 1x0111 consistent

xxOx 11 I l lx x 11 = llO x 11 consistent

So z = xxOx 11 is a valid coface.

Step 2.3 Replace c with z in C to form C .

C " =

ixxi|i x :: : ; :

xxOx|l 0011|0

1 lxx| 1

Step 2.4 None to be removed.

C'" -
lx x l11 x0 1 0 |0

xxOx 11 001110

1lxx 11

Step 3.2 The cube 1 lxx 11 has cofaces lxxx 11 and x lxx 11

57

4

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

.*. inconsistent

.'. consistent

.*. consistent

consistent

.'. consistent

So, x lxx 11 is a valid coface.

lxxx 11 I xOlO 10 = 10101 q

x lxx 11 I xOlO 10 = xqlO | q

x lx x 1 1 I 001110 = O q ll|q

x lx x 1 1 I lx x l1 1 = l l x l 11

x lx x 1 1 I xxOO11 = xlOO11

Step 3.3

C " =

Step 3.4 None to be removed.

lxxl 11 x010|0
xx0x|l 001110
xlxx 11

lxxl11 x010| 0
C" = * xx0x|l 001110

xlxx 11

There are no redundant cubes to be removed so the minimised cover is

M =

lx x l|1 x010|0
xxOx 11 001110
xlxx 11

The cubes in this cover are prime since none of the cubes in M is contained in any other member of M.

Although we have not decreased the number of cubes in the above cover, we have significantly

decreased the number of bound coordinates.

2.4.5 The P* Algorithm

The P* Algorithm (pronounced PI-STAR) which is also due to Roth [6], generates a cover (either a 1-

cover or a 0-cover) for any line in a circuit in terms of the primary inputs. The circuit line may be

internal or a primary output. The algorithm is best explained with the aid of a simple example which is

taken from [6]. Consider the circuit in Figure 2.3(a) and the corresponding truth table in Figure 2.3(b).

This circuit has two primary inputs a, b, internal lines c, d, e and / and a single primary output g. The

P* Algorithm is now used to generate the 1-cover for the primary output g. Each stage of the algorithm

is labelled on the left hand side of the table.

The P* Algorithm starts from the primary output g o f the circuit and proceeds backwards to the primary

inputs. As the algorithm traverses the table, each stage assigns logic values to the circuit variables and a

cover for the condition g = 1 (the covering condition) is gradually built. It is seen in stage 1 of this

58

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

example that the value of 1 is inserted in the column corresponding to variable g. In stage 2, we

substitute the cover that achieves this condition. The operator

P*:g = OR(eJ)

expresses the cover required for the variable g. From the circuit diagram it is apparent that g is given by

the Boolean sum (OR) of the variables e and / . The (optimised) cover that sets g = 1 contains two

cubes, e= l J=x and e=x,f= 1. The algorithm now has two new covering conditions since two cubes were

generated in stage 2. The new covering conditions are always given by the right-most variable in the

cover so far. The right-most variable in stage 2 is / and for the first cube in this cover, / = x. The

operator P *:f= AND(b,d) expresses the required cover which is b=x, d=x sin ce /itse lf is unspecified.

For the second cube in stage 2 the covering condition is / = 1 and the cover b= 1, d= 1 satisfies this. The

two cubes are written in stage 3 and P* continues recursively generating covers for the left most

variable until the right most variable is a primary input. When this stage is reached, a cover for the

original covering condition at stage 1 has been generated, that is , a 1-cover for the line g is { 10|1,

01|1).

As the P* algorithm works its way backwards through a circuit, some circuit variable w o f a cube v say,

may have been set to a particular logic value by a previous operation. As the algorithm progresses, if in

the cube v the value of the variable w coincides with the new value required of vv, then no conflict exists

and that value of vv remains. If however a conflict occurs between the previously assigned value of vv

and that required by the new P* operator, then that cube must be dropped from the cover as it

represents an inconsistency.

As a further example, covers for outputs h, i and j for the circuit given in Figure 2.4 will be derived

using the P* algorithm. In this particular case, we shall treat line g as a pseudo-primary input. That is, it

shall be treated just as the primary inputs a, b, c and d. This will be explained further later in this

chapter but this technique is required when deriving test sets for stuck-at faults at internal lines of a

circuit.

a

b

(a)

59

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Stage a b c d e / g Operation

1 1

2 1 X P*:g = OR(ef)

X 1

3 X X 1 P*f=A N D (d,b)

1 1 X

4 1 X 1 X P*:e = AND(a,c)

X 1 X 1

5 1 X 1 P*:d = NOT(a)

0 1 X

6 1 0 P*:c = NOT (b)

0 1

(b)

Figure 2.3 (a) Combinational circuit representing the XOR function,

g = a.b + a .b . (b) Corresponding table showing the stages required to generate

a cover for g —1 using the P* Algorithm.

a

(a)

60

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Stage a b c d e / s , h i j Operation

1 1 h = l

2 1 X P*:h = OR (ej)

X 1

3 X X 1

1 1 X

4 1 1 X X X P*:f= AND (c.d)

X X 1 1 X P*:e = AND (a.b)

5 1 1=1

6 1 X P*:i = OR(f, S g)

X 1

7 X X 1 1 X P*:f= AND(c ,d)

X X X X 1 s =1g

8 1 J = 1

9 X X X X 0 P*:j= NOT(S g)

NB: Cubes in stages 4, 7 and 9 represent final covers In the final stages, any unspecified co-ordinates fo r primary

inputs and the pseudo-primary input are set to x.

(b)

Figure 2.4 (a) Combinational circuit, (b) Corresponding truth table showing the

stages required to generate the 1-covers fo r lines h, i, j using the P* Algorithm.

2.4.6 Covers of Composite Functions

This following operations have been adapted from Roth’s work [6] so that they may be used in a

situation that involves the concept of pseudo inputs and the combining of functions, as is required to

generate test vectors for single and multiple output circuits..

The three main cubical operations are interface, adjoin and sharp product (# product). These are

analogues of the set theoretic operations n , u , \ (intersection, union and difference) respectively.

Thus if Q and C, respectively are covers of two functions Tj(X) and F2(X) having the same inputs

and outputs, the interface of C\ and Q is a cover for the product function, FfiX). F2(X) . Similarly

application of the adjoin and sharp product operators to Q and C, results in covers for the functions

F1(X)+F2(X) and F ,(X).F2(X) (or F1(X) . F2(X)) respectively.

61

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

2.5 Test Pattern Generation Using Boolean Differences and Cubical Calculus

2.5.1 Derivation of Covers for Test Pattern Generation

Algebraically deriving the Boolean difference [8] is often seen as a tedious and manual process,

requiring the use of many formulae and Boolean properties. This traditional method is unsuitable for

computer implementation so a different approach is required. In their paper, Xue and Zhang [7] propose

a test pattern generation algorithm using the Boolean difference based on cubical calculus and set

theory. Their work is applicable to multiple input, single output combinational circuits only. The

underlying theory o f their method is now described and an algorithm based on this theory will be

described in the following section.

Recall the definition of the Boolean difference given by equation (1),

g @ h = gh + gh

For the single output case, the set theoretic analogue of equation (1) is,

gAh = (g \h) \J (h \g) = (g\Jh)\(gC \h) (14)

which is sometimes referred to as the symmetric difference. Equation (14) is illustrated graphically in

Figure 2.5 below.

Figure 2.5 Venn diagram illustrating equation (14). The shaded area represents

the symmetric difference of the sets g and h.

Let f (x , j ;) be the Boolean function of a single output circuit with internal line S j , as in section

2.2.1. Recalling that a cover is a set of cubes that unambiguously defines a function, let C0 , Cj and D

be the covers for the functions F^X,Sj = o), f [x , S j =lj and d F ^ X , s ^ l d s j respectively. The

62

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

covers C0 , Cx can be obtained using Roth’s P* algorithm along with the algebraic descriptions of the

circuit lines.

It follows from equation (14) above that the Boolean difference in terms of covers and cubical

operations is given by,

D = (C0# C ,) V (C 1#C„)

= (C0 V C ,) # (Q I C ,)

So, if Sj is a cover for the function Sj(x) = 1 , then the test sets for Sj stuck-at-0 and stuck-at-1 are

given by the covers,

T0 = D I S j (16)

Tx = m S j (17)

respectively. The above equations are the cubical analogues of equations (4) and (5).

2.5.2 Test Set Generation Algorithm using Cubical Calculus - Single Output Case

In what follows, the test pattern generation algorithm developed by Xue and Zhang [7] will be

described together with two examples. In each example, the at-fault line is identified using the notation

S - and test sets for Sj stuck-at-1 and stuck-at-0 will be generated. It is to be noted that the algorithm is

suitable for multiple input, single output circuits only.

Test set generation algorithm (Xue and Zhang)

Step 1. Derive the covers C0 , Cx fo r the Boolean Junctions F^X,Sj = oj and f [x , S j = l j .

Recalling the equation,

dF^s ’ S j ^ = F (x i ■’ x n • ■S J) ® F (xi> - > x „ > S j)

= f (x ,Sj = o) ® f (x ,Sj = l)

it is necessary to derive the covers Q and Cx for = oj and F^X,Sj = lj respectively. We

derive the covers Q and Cx by generating a 1-cover for the primary output of the circuit. The 1-cover

for the primary output is derived using the P* algorithm and if line Sj is an internal line, it is treated as

a pseudo primary input. For this 1-cover, the cubes in which the Sj coordinate is 0 are placed in C0

and those cubes in which Sj is 1 are placed in Cx . For those cubes in which s . = x, two cubes are

created for which Sj = 0 and Sj = 1 and these new cubes are placed in C0 and Cx respectively

63

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

d F (x , S j)
Given that — -------- is independent of s n the coordinates corresponding to S.- are then removed

dsj J J

from each cube in both C0 and Cj .

Step 2. Derive the cover Sj fo r the function Sj =1.

This cover is also derived using the P* algorithm.

Step 3. Derive the cover D.

This cover is derived using D = (co V Cj) # (co I Cj).

Step 4. Derive the covers T0 and 7j.

The covers T0 and 7J contain the test vectors that respectively detect stuck-at-0/1 faults on the line s ..

Each cover is derived from D and Sj using the cubical equations (16) and (17).

Step 5. Remove redundant cubes in T0 and Tx.

The covers T0 and Tx are minimised using the SHRINK algorithm.

End.

To illustrate the above algorithm, two examples shall be given.

Example 2.2

For the circuit given in Figure 2.6(a), the test sets T0 and Tx will be generated for a fault on the internal

line d. So, let Sj = sd .

a

sd (fault site)

b

c

(a)

64

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Stage a b c St e F Operation

1 1

2 1 1 P*:f= AND(sd ,e)

3 x l x 1 P*:e = OR (b,c)

x X 1 1

(b)

Figure 2.6 (a) Combinational circuit, (b) Corresponding truth table showing the

stages required to generate a 1-cover for line f using the P* Algorithm.

Step 1. Derive the covers C0 , C1 fo r the Boolean functions F(x,sd =0)and F(x,sd = l) .

The P* algorithm for this example is given in Figure 2.6(b). In the final stage 3 of the P* algorithm

there are two cubes which constitute the 1-cover for the output line/ . Since for both cubes, the

cover C0 is empty and

- a

Note that the value of the pseudo-input sd is not explicitly included in the cubes of Cx , but it is

implicitly recorded in the suffix 1 of Cx.

Step 2. Derive the cover Sd fo r the function sd =1

In this simple case it can be deduced by inspection that

Sd = 1 lx |l

Step 3. Derive the cover D.

Since the cover C0 is empty,

D = (C 0 V C ,)# (C 0 I C ,)= C ,

Step 4. Evaluate the covers T0 and Tx using equations (12) and (13).

Tn = D l S
' [xx l|lj ' [xxl|l I l lx | l j [l l l | l

x lx | l# l lx | l = 01x|l
7V = D # S ,= ,

x x l l# l l x l = Oxl|l, xOl|l

Olx 11

0x 111

*0111

65

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Step 5. Eliminate redundancy in covers T0 and 7].

In this simple case it may be verified by inspection that 111|1 is contained in l l x | l and that 0x111 is

contained in {01x|l, x0 l|l} . Hence the minimal covers are T0 = l lx | l and Tx = {0 1 x |l, x01|l } .

So from the above cover T0 , the input vectors l l x will detect a stuck-at-0 fault on line sd . This test

vector may be verified using the sensitive path technique for test pattern generation. So to test for a

stuck-at-0 fault at line sd , it must first be set to logic value 1. This is only achieved by setting the

primary inputs a and b to logic 1. To propagate the value at line sd to the primary output, one must set

fine e to logic value 1. Since the gate preceding line e is an OR gate, the fact that input b is already set

to 1 will ensure this condition. The logic value on input c is therefore irrelevant and this fact is

confirmed since this coordinate in the cube llx |l is unspecified. A similar process may be followed to

verify the test vectors given in the cover 7j.

Example 2.3 [taken from 7]

Figure 2.7 (a) gives a combinational circuit for which the stuck-at-1/0 faults at line s f are to be tested.

For brevity only the covers at each step will be given

a

b

c

d

(a)

66

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Stage a b c d e s f 8 h / j k I Operation

1 1

2 X X X 0 P*:l = NAND(/m'j ,&)

X X 0 X

X 0 X X

0 X X X

3 X x X 1 X X 1 X X X P*:k = NAND(4,g)

4 X X 1 X X 1 X X X P*:j = NAND(Sf ,c)

5 X 1 X X X 1 X X P*:/ = NAND(Sf ,b)

6 1 X X X 1 X X P*:h = NAND(a,e)

7 X X 0 1 X X P*:g = NOT(c)

8 1 0 X X X P*:e= NOT(b)

(b)

Figure 2.7 (a) Combinational logic circuit taken from [7J. (b) Results ofP* algorithm fo r circuit in (a).

Step 1. Derive the covers C0 , Cj fo r the Boolean functions F[x, s f = o)and f [x , s f = l) .

The P* algorithm for this example is given in Figure 2.7(b).

Stages 4, 5 ,7 , 8 provide the final 1-cover for the output line /. This may be summarised as,

a b c d Sj
x x 1 x 1

• x l x x 1 •

x x 0 1 x
1 0 x x x

Note that only two cubes for which sf =1 are included in C1 only, whereas the two cubes for which

Sj =x are included in both Cx and C0 to give,

xxOl|l

|xxOl|llxxlx |l

xlxx |l

10xx|l

Cn = ■
10xx|lj

Step 2. Derive the cover Sf fo r the function sf = 1

In all cases this can be generated using the P* algorithm by using s f as the starting point. In this simple

case however it can be deduced by inspection that the cover is given by

67

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

S f = lxx l|l

Step 3. Derive the cover D.

Since C0 V Cj = Ct and C0 1 C, = C0 this cover is derived using D = Cl # C 0 .

D =

xxOl| 1
xx lx 11

x lxx |1

lOxx 11

xxO l|1

lOxx 11

(xxO 1 # xxO 1)# 1 Oxx

(xx lx# xx01)#10xx

(x 1 xx# xxO 1)# 1 Oxx

(1 Oxx# xxO 1)# 1 Oxx

Oxlx 11'
x l lx 11
xlxO | 1

Step 4. Evaluate the covers T0 and 7].

T0 = D I S f =

Tt = D # S f =

Oxlx|l '

x l lx |l

xlxO ll

l{ lx x l |l} = { ll l l | l}

O xlx#lxxl
x llx # lx x l
xlxO #lxxl

Oxlx |1
O llx 11
x l 10 | 1
xlxO jl

Step 5. Eliminate redundancy in covers T0 and 7J.

The cover T0 contains no redundancy. By inspection 01 lx |l is contained in Oxlx|l and x l 10|1 is

contained in xlxO|l so the minimal cover 7] = {Oxlxjl, xlxOjl} .

2.5.3 Test Set Generation using Cubical Calculus - Multiple Output Case

For the multiple output case, calculation o f the Boolean difference requires a slightly different

approach. No previous work has been developed for the multiple output case using the Boolean

difference and cubical calculus and what follows is wholly original and was developed by the author.

Recall from section 2.2.2 that for a circuit with n inputs and m outputs, the Boolean difference with

respect to a line J . is given by,

68

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

1=0 dSj

where X = (jc1v..,xb) and F^X) denotes the ith output for i =1 ,...,m . Given the above form o f the

Boolean difference for the multiple output case, it is necessary to develop the cubical analogue, which

will be denoted as D . Given an equation to evaluate D , we can proceed to develop the cubical

equivalents o f equations (11) and (12) which yield the test sets for Sj stuck-at-0/1 respectively.

In the algorithm developed by Xue and Zhang, the covers C0 and Cx were used to calculate the cover

D = (C 0 V C ,)# (C 0 IC ,)

for the single output case where C0 and Cj denote the 1-covers for

f [x ,Sj = o) and F^X,Sj = Irrespectively. In the case o f m outputs, there will exist m one covers for

Sj =1 and m one covers for Sj = 0, one for each primary output.. First consider a cubical cover D in

the multiple output case which is calculated in a similar manner to D by grouping each o f the ‘1’ and

‘0 ’ covers together and using the equation

D = (c 0 V C,) # (c 0 1 C()

where C„ = C'0 V Cl V VC^ . C, =C\ V C,2V.. ..VC" and C[is the 1-cover for F , (x , S j = k) ,

k= 1, 2. If this is done we would effectively be calculating the cubical analogue of the Boolean

expression,

d
M=1

dSj
(18)

However what is really required is the cubical analogue of

rfF.(x,5,) dF2(x , s \ dFm(x , Si)
^ ’ ; / ++ J> (19)
dsj dSj dsj

The value of (19) is 1 if a stuck-at fault alters the value of 1 or more of the primary outputs, whereas the

value o f (18) is 1 if a stuck-at fault alters the Boolean sum o f the values o f all of the primary outputs.

Thus in general, the result of setting these Boolean expressions equal to 1 and solving will not be the

same. However, by introducing the concept o f a disjointness condition for the covers C ‘k, it will be

shown that the above expression for D can be used to calculate a cubical cover for (19).

For simplicity, consider the two output case. First we will develop the cubical form of

69

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

dFx{x, Sj) dF2(x , Sj

dsj dsj

Let C0 , Cj C' , C[denote the covers for the functions ^(X .O), F ,(X ,1), F2(X ,0), F2(X , 1)

respectively. Then the cubical equivalent of (20) is,

D- = [(c0 V c,) # (c„1 c,)] V [(Cq V c ;) # (c ; i c;)] (2i)

For ease of manipulation we ‘translate’ this equation into its equivalent Boolean form using the

correspondence between the cubical operators V, I, # and the Boolean operators + , . respectively. Let

C0 = a, C, = b , C„ = a', C[= b' and D ' = d . Equation (21) then becomes

d = [a + b).(a.bj + (a' + b').a'b'

so that from De Morgans’s theorem

d = ab + ba + a'b' + b'a'

and ‘translating’ back into cubical form gives

D- = (Qffc.) V (c,#c0) V (C '# q) v (c ; v c0') (22)

D' is the cubical analogue o f equation (19) for m = 2. Now a similar form for equation (18) will be

developed. Again for the two output case, we develop the cubical form of

The cover for the above function is given by

D = (c, V c, VC' vc ;) It ((c0 vc,) i (c, v c;))

Translating as before into Boolean algebraic form gives

d = (a + b + a ' + b ' J . (a+a').(b + b /'J

= (a + b + a ' + b ') . +

= (a .b .b '+ ba a '+ a'b b '+ b'a a 'j

Translating back into cubical form gives

d = ((c„#c,) #c;) v ((c,#c0) #c,) v ((c0'#c,) #c;) v ((c ; # c 0) #c;) (23)

Comparing (22) and (23) it may be seen that D' contains D and therefore D in its current form may

not contain all the cubes in D ' . However, if the covers corresponding to different outputs are disjoint

so that the following disjointness condition,

(20)

70

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

c 01 c' = c01 c;=c, i c' = c, i c; = 0 (24)

is satisfied where 0 denotes the empty cube, then equation (23) is equivalent to (20). To explain

further let us examine the first bracketed term in (23),

((c0#c,)#c;)

Since C[is disjoint with respect to C0 andQ (the 1-covers o f F ,(X ,0) and Fj(X ,l) respectively for

the first output) then this term reduces to

(c0#c,)

Following this argument for the remaining three terms in equation (23),

d = (c0#Cj) v (c,#c0) v (Cq#Cj) v (c ; # c 1) (25)
= D'

provided equation (24) is satisfied. Hence, provided the disjointness condition is satisfied, we may

work with the cover D instead o f D ' . It is straightforward to extend this analysis to the general m -

output case so that,

D = \ V V C ' |#
*=o /=o (,Y,C») 0 ,CO

provided the disjointness condition

C [IC? = 0 , p ± q

is satisfied for allp, q e { ! ,. .. , m}, f c , /e { 0,l} .

Now we have found the cubical form for cover D we are able to find the cubical forms for the test sets

T0 and 7]. In a similar manner to the single output case the test sets for Sj stuck-at-0 and stuck-at-1

are given by the covers

T0 = D 1 S j (26)

Tx = m S j (27)

respectively where Sj is the cover for S j = 1. These two equations are the ‘cubical’ equivalents of

equations (11) and (12).

Test set generation algorithm: multiple outputs

The algorithm required for the multiple output case remains almost identical to that developed by Xue

and Zhang. Each step for the multiple output case will now be given, indicating any divergence from the

single output case. At each step the cover(s) obtained are optimised using SHRINK.

71

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Step 1. For i= \,...,m , derive the 1 -covers C'0, C[for the Boolean Junctions Ft ^X,Sj - o), and

F^X, Sj = lj respectively. Deduce the covers C0 and using the relations

C0 =C 01V C 02V ...V C 0m

C, = Cl V c l V... V c,m

The P * algorithm is used to derive the covers C[; if line Sj is an internal line, it is treated as a pseudo

primary input in each case. It is at this point that the disjointness condition is brought into the algorithm.

When using the P* algorithm to derive a 1-cover for output i , a 1 in the /'th output coordinate o f a cube

in C ‘0 or Cj signifies in the usual way that the value of output i is 1 for the given input. Zeros are

inserted in the remaining m - 1 output coordinates o f these cubes to ensure that cubes corresponding to

distinct outputs are disjoint, so that D satisfies (25).

When in the derivation o f 1-covers for ,Fm(x , s ;. j the coordinate corresponding

to Sj is undefined i.e. is equal to x, then this single cube is transformed into two new cubes with one

cube containing Sj = 0 and the other containing S j = 1. These new cubes are then inserted into C0 and

Cj respectively (cf. Section 2.5.2, Example 2.2).

Step 2. Derive the cover Sj fo r the function S j = 1.

Same as the single output case, using the P* algorithm.

Step 3. Derive the cover D .

The cover D is given by the operation

5 = (c0 vc,)# (c0 1 c,)

Step 4. Derive the covers T0 and 7j.

The covers are given by,

T0 = D I S j

r , = m S j

Step 5. Remove redundant cubes in T0 and 7j.

The covers T0 and 7] are minimised using the SHRINK algorithm.

End.

72

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Two examples will now be presented to illustrate this algorithm.

Example 2.4

Consider a stuck at fault on line s g in the circuit given in Figure 2.4a.

Step 1. Derive the 1-cover C , fo r the Boolean functions F1[x , s J ,̂F2[x,Sj^,

corresponding to each o f the primary outputs in a circuit and find the covers C0 , C1 .

Referring back to Figure 2.4b, we can see the derivation of the 1-covers for each output o f the circuit.

From these covers and by removing redundant cubes using SHRINK we have the covers,

x x l l | lx x x x l l |x l x j f x x l l | lx x x x x x |x lx
l lx x | lx x xxxx | xxlj ’ 1 [l lx x |lx x xx l 11 x lx

Step 2. Derive the cover Sj fo r the function Sj = 1

Again, using the P* algorithm or by inspection,

sg ={xxxl|xxx, xlxx|xxx}

whose input parts provide a 1-cover for line s g .

Step 3. Derive the cover D .

Ix x llllx x xxxxl xlx] [xxl II lxx xx l I x lx
Given the covers C0 and Cx C0 VCj = -j k c 0 ICi=«!

[llx x | lxx xxxx| xxlj (llxxj lxx

the Boolean difference D can be evaluated.

5 = (c0vc,)#(c0ic,)=
xxOx | x lx

xxxO | x lx

xxxx | xxl

This is a cover for the sum (OR) o f the Boolean differences o f the three output functions with respect to

line s g . The cube xxOx|xlx in D signifies that if input c is set to 0, then regardless o f the value o f the

other inputs, a change of value in line sg (treated as a primary input) results in a change o f value in

output i. The interpretation o f the other cubes in D is similar; as with C0 and Cx, the zeros in the

output part of the cubes in D carry no significance.

Step 4. Derive the covers T0 and Tx.

Using the interface and sharp product o f D and s g gives

73

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

xx01|010 x x x l|001

T0 = D I S g =■ x lx 0 |0 1 0 xlxx |001>

xlO x|010

Tl = D # S g = {xOxO1010 , xOxO1001}

which provide the test sets for line s g stuck-at-0 and stuck-at-1 respectively. Note that T0 V T, = D,

and that the presence of a 1 in the output side o f a cube in T0 or Tx signifies that the fault is observable

at the corresponding output. Thus the cube xlx0|010 in T0 signifies that if inputs b and d are set to 1

and 0 respectively, then regardless o f the values o f the other inputs, line sg stuck-at 0 is observable at

output i under these input tests.

Example 2.5

Consider a stuck-at fault at line s d in the circuit given in Figure 2.8.

c

Figure 2.8. Multiple output circuit with ‘stuck-at’fault on line s d

Step 1. Derive the 1 -cover C , fo r the Boolean functions, F^X ,s^j, F2{̂ X ,s^j,......

corresponding to each o f the primary outputs in a circuit and find the covers C0 , Cl

If lin e ^ is treated as a primary input then the 1-covers o f outputs e and/respectively are {x lx l|10 ,

xx ll|10} and {xlxx|01, xxlx|01}. The covers C0 and Cx are deduced from the following table.

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

This gives

a b c s d e f O peration

1 f = l

X 1 X X P*:f= OR (b,c)

X X 1 X

1 e = l

1 1 P*:t = AND(s d .f)

X 1 X 1 P*:f= OR (b,c)

X X 1 1

fxlx|Oll fx lx |01 x lx |10
0 " |x x l |01J ’ 1 ” |x x l |01 xxl110

Step 2. Derive the cover Sj fo r the function Sj = 1

Using the P* algorithm,

Srf= { llx |x x }

whose input parts provide a 1-cover for line sd and the output coordinates have been unspecified for

consistency.

Step 3. Derive the cover D .

Given the covers C0 and Cx

_ J x lx |01 x lx |10
C° V C l ” |x x l |0 1 x x l|10

cic=jxlx|01l
^ q [xxl|0l j

the Boolean difference D can be evaluated.

5 = (c0v c 1) # (Coic1) = g g

Step 4. Derive the covers T0 and 7|.

Using the interface and sharp product of D and sd gives

75

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

To=^lSd ={Hx 110}
fOlxllO

T, = D # S d = .
1 d [xOl|10

which provide the test sets for line sd stuck-at-0 and stuck-at-1 respectively. Thus the cube llx |1 0 in

T0 signifies that if inputs a and b are both set to 1, then regardless of the values o f input c, line sd

stuck-at 0 is observable at output e.

2.6 Testability Analysis using Cubical Calculus

Testability analysis [11, 12] of digital circuits quantifies the ease o f testing a circuit design without

performing the computationally expensive process of test pattern generation. The difficulty o f test

generation can vary considerably for different implementations of the same digital function. The ability

to assess the testability o f a particular design can help identify areas o f the circuit that are particularly

difficult to test and help in the selection of competing designs. Testability analysis therefore is o f real

value during the design stages o f a circuit when the designer requires a quick yet accurate estimation of

testability without having to submit a design to full test pattern generation. It is imperative then that any

testability tool be computationally quicker than the test generation process. Two main classes o f

testability analysis tools exist.

Early testability tools were based on scoring methods [13, 14]. These methods allocate a score to a

circuit based on certain features that are seen to either improve or degrade circuit testability. Each

feature is allocated a predetermined score in direct proportion to whether it improves or reduces overall

circuit testability. For example, features detrimental to testability may be the inability to set the circuit

to a predetermined state and reconvergent fan-outs. Conversely, a feature that may be seen to improve

testability is the presence of a large number of primary inputs. To calculate the final testability score o f

a design, all the features o f a design are identified and their corresponding testability scores are

combined using simple arithmetic. Although these scoring methods are relatively easy to implement,

they only provide a crude measure of testability. The measures may crudely distinguish one design as

being, on average, more testable than another but the final scores are unable to identify regions o f poor

testability. In this respect they are very limited in their usefulness and as a result have been superceded

by other methods.

Algorithmic methods such as CAMELOT [15] and TMEAS [16] are far superior to scoring methods

and produce testability analysis based on circuit topology. In these methods, the testability o f each

circuit line is quantified. An overall testability measure is again calculated by some combination o f the

testability of individual lines. There has been much controversy over the exact calculation o f overall

76

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

testability highlighted in [17]. The exact approach used to calculate the testability o f a line differs from

one algorithm to another. However the majority are based on the mathematical models of two important

operations in test pattern generation. The first operation when generating a test vector for a stuck-at-1/0

fault on line s is to set that line to logic 0/1. A measure o f the ease with which s can be set to 0/1 is

known as its controllability. The next operation required to generate a test is to propagate the fault at s

to a primary output. A measure of the ease with which this is achieved is known as its observability.

Overall circuit controllability and observability are then calculated by, for example, averaging the

controllabilities and observabilities o f the individual lines. An overall testability measure is then

calculated by, for example, multiplying the overall controllability and observability. A number o f

techniques exist and are not without their critics [17].

Different testability algorithms employ different measures for controllability and observability and a

number o f comparative studies exist [18]. The SCOAP [19] algorithm for example, characterises

testability using different measures at each line. Controllability is defined by the proportion of lines that

have to be be set to logic 1 or 0 for the line to be set to 1/0. Observability is measured by the proportion

of lines that need to be set to 1/0 in order to propagate a given line’s logic value to a primary output.

The concept o f observability has already been encountered in this chapter when the framework for test

pattern generation using cubical calculus was explained. In what follows a new method for calculating

testability measures is proposed using cubical calculus, developed wholly by the author.

Probabilistic techniques for measuring both controllability and observability have been described in

[17] based on the assumption that all input vectors are equally likely. This method ties in very well with

some of the covers required for the test pattern generation techniques described earlier. We therefore

assume that all input vectors are equally likely and also, for simplicity, confine our attention to the

single output case.

Definitions

The i-controllability C, (Sj) o f a line Sj is a measure of the ease with which Sj can be set to 0 or 1 and

is given by

C, (Sj) = proportion of input vectors that set Sj to i

Observability is a measure of the ease with which a change o f value at a line can be observed at the

primary output. The observability o f a line Sj at the primary output k is given by

Ok (Sj) = proportion of input vectors for which a change

of value at .^results in a change of output value

77

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Using the above definitions, the cover corresponding to the solution o f the Boolean equation Sj (X) = 1

can be used to quantify controllability. The solution o f the Boolean difference equation (3) provides all

the input vectors that sensitise a path between the fault site at line Sj and the primary output, i.e. for

which the value o f Sj is observable at the primary output. Hence we can use the 1-cover o f the Boolean

difference d F(x , S j) / d s j to quantify observability. So, returning to the discussion of Section 2.5.2,

the covers S; and D can be used to calculate the controllability and observability respectively o f the

node Sj. The calculations are a simple matter o f counting the total number o f input vectors in each o f

the aforementioned covers. As an example, a circuit from [17] will be analysed.

Example 2.6

We calculate the observability and 1-controllability of line 3 for the single output circuit in Fig. 2.9

1

2

Fig. 2.9. Combinational Circuit with 'stuck-at’ Fault on Line 3

Since C0 = {00|l} , Q = {xx|l} , giving D = | the total number o f cubes in the above cover , D is 3

and the total number o f input vectors is 22 so 0 5 (s3) = 3 / 4 . Also the cover S3(x) = { l l|x} contains a

single input vector so q (s3) = XA. This example shows that testability measures are very easily calculated

from the relevant covers. Final controllability, observability and testability measures for the circuit

would be obtained by combining, in a predetermined manner, the measures corresponding to all the

lines in the circuit.

2.7 Summary

This chapter has introduced a new test pattern generation algorithm for multiple output circuits using

Boolean Differences and cubical calculus. This chapter provided the reader with an overview o f the

fundamentals of cubical calculus and an explanation of the Boolean difference technique for test pattern

78

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

generation. It was explained that, although the Boolean difference is an elegant technique for test

pattern generation, its use unfortunately was limited because o f the algebraically cumbersome methods

required for its evaluation. If an alternative method could be found to solve the Boolean difference, then

surely this technique could be suitable for wider adoption in ATPG systems. The central aim o f this

chapter was to outline such a solution. The solution was provided by Roth’s cubical calculus, albeit

with some minor modifications to his original work.

The algorithm provided by Xue and Zhang for single output combinational circuits certainly laid some

o f the foundations for this work. But a number o f cubical calculus operations were redefined by the

author in order to cope with the multiple output case. The ‘disjointness condition’, as introduced in

section 2.5 and described by equation (24), is central to the application o f cubical calculus to the

solution o f the Boolean difference. Once this was proven algebraically, a test pattern generation

algorithm was developed that was shown to efficiently generate test vectors for a limited number o f

examples. By overcoming the problems associated with the solution o f the Boolean difference, the

author has developed an original test pattern generation algorithm that retains the advantages of the

Boolean difference while at the same time, avoiding some o f its disadvantages.

In the wider context o f test pattern generation techniques, it is felt that this new test pattern generation

algorithm could lay the foundations for a new class o f test pattern generation tools. The vast majority of

today’s ATPG algorithms are based on topological traversal techniques. For example Roth’s D-

algorithm, PODEM and FAN are such algorithms. Given the computational expense o f such topological

algorithms, the author feels there may be some significant value in an algorithm, such as the one

described above, that is able to perform some of the work o f test pattern generation in a more algebraic

manner.

The chapter ended with some very interesting, original work on testability measures. This work was

developed after the test pattern generation algorithm and fits in well with existing, probabilistic

definitions o f testability measures. Given today’s complex circuits, testability measures are more

important than ever as they provide a means o f predicting the ability to test a circuit at the initial design

stages. Again, taking an algebraic rather than topological approach may have many advantages and

cubical calculus could prove a very useful approach in this area.

This work presented in this chapter has certainly opened up the topic o f algebraic test pattern

generation, based on the Boolean difference and cubical calculus, for further study. It is felt by the

author that there are some key areas of investigation. Firstly, the relative merits o f this technique versus

traditional topological algorithms must be investigated. This will first involve the efficient software

implementation o f the algorithm described in section 2.5.3 above. This will enable benchmarking

(speed of execution, memory usage) against existing algorithms. Secondly, it will be important to

evaluate the quality o f the test sets generated by the algorithm. How large are the test sets relative to

79

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

PODEM, FAN etc? Also, it may be possible to achieve some reduction in test effort during test pattern

generation when using the Boolean difference. In the earlier discussion, it was mentioned that the

solving the Boolean difference provides all possible tests for a given fault. But what if only 95% fault

coverage was required or only one test vector was required for each fault? Defining these parameters

during the test pattern generation phase may result in realizing some significant economies. A final area

for further study would be to investigate the application of cubical calculus and the Boolean difference

to sequential circuits. Given the current nature of the microelectronics industry, sequential test pattern

generation is an important and prominent field of study within digital testing.

In conclusion, the author is encouraged by the findings and the results presented in this work. It has

been shown that cubical calculus is a valuable tool for the solution o f the Boolean difference as applied

to test pattern generation. The algorithms developed in this chapter, prima facie, seem to lend

themselves well to computer implementation, mitigating the need for cumbersome algebra when solving

test pattern generation equations. An added bonus o f using cubical calculus as described here is that it

can also be used to design minimised logic functions. Therefore, it may be possible to produce a digital

design suite, which could incorporate circuit design, testability measurement and test pattern generation

in a single digital design tool. Given the power of modem software engineering techniques and the

relentless pace o f Moore’s Law, such a suite could possibly be run on today’s desk-top computers.

80

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

2.8 References

[1] Sellers F.F., M.Y Hsiao, L.W. Beamson, "Analysing errors with the Boolean difference", IEEE

Transactions on Computers, Vol-C17, No. 7, July 1968.

[2] Russell G. et al, “CAD FOR VLSI”, Van Nostrand (UK) 1985.

[3] Abramovici M., Breuer M.A., Friedman A.D., “DIGITAL SYSTEMS TESTING AND TESTABLE

DESIGN”, IEEE Press, 1990.

[4] Beamson L.W., “ARITHMETIC ERROR DETECTION IN DIGITAL COMPUTERS”, M.S.

Thesis, Dept, of Electrical Engineering, Syracuse University, Syracuse, N.Y., U.S.A., May 1965.

[5] Amar V. and Condulmari N., “Diagnosis of large combinational networks”, IEEE Transactions on

Electronic Computers (Correspondence), Vol. EC-16, pp. 675-680, Oct. 1967.

[6] Roth J.P. “COMPUTER LOGIC, TESTING AND VERIFICATION”, Computer Science Press,

Maryland USA, 1980.

[7] Xue H.X, Zhang Y.N., “A test generation algorithm based on Boolean differences and cubical

operations”, New Advances in Computer Aided Design and Computer Graphics, Vol 1 and 2, Ch 166,

p634-637, 1993.

[8] Shannon, C.E., “A symbolic analysis of relay and switching circuits”, Transactions, AIEE, vol. 57,

pp. 713-723, 1940.

[9] Boole G., “AN INVESTIGATION OF THE LAWS OF THOUGHT”, The Open Court Publishing

Company (1916). Reprinted by Dover Publications, 1951.

[10] Roth J.P., “Programmed logic optimisation”, IEEE Trans. Computers, vol. C-27, No.2, February

1978.

[11] Miller K.W., “Testability - an introduction for COMPASS94”, COMPASS 1994, Proceedings of

the Ninth Annual Conference on Computer Assurance, 1994, Chapter 26, pl73-174.

[12] Agrawal V.D., Mercer M.R., “Testability Measures - What do they tell us?” Proceedings of the.

IEEE Test Conference, pp401-406, 1982.

81

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

[13] Dejka W.J., “Measure o f testability in device and system design”, Proceedings o f the 20th Midwest

Symposium on Circuits and Systems, pp38 - 52, August 1977.

[14] Wood C.T., “The quantitative measure o f testability”, Proceedings o f IEEE Automatic Test

Conference, pp286-291,1979.

[15] Bennetts R.G. et al., “CAMELOT: A computer aided measure for logic testability”, Proc. IEE.,

Vol 128-E, pl77-189, Sept. 1981

[16] Grason J., “TMEAS a testability measurement program” in Proc. 16th IEEE Design Automation

Conference., San Diego, CA, pl56-161, June 1979.

[17] Savir J., “Good controllability and observability do not guarantee good testability”, IEEE Trans,

on Computers, Vol. C-32, p i 198-1200, Dec 1983.

[18] Roberts, M.W. and Lala P.K., “Testability measures in digital circuits - A critique”, Proceedings o f

the 29th Midwest Symposium on Circuits and Systems, pp347 - 351, August 1986.

[19] Goldstein L.H., and Thigpen E.L., “SCOAP: Sandia controllability/observability analysis

program”, Proceedings of the 17th IEEE Design Automation Conference, ppl90-196, June 1980.

82

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Chapter 3. Genetic Algorithms

3.1 Introduction

Over the last fifteen years Genetic Algorithms (GAs) have proven themselves to be a robust

optimisation and search tool and have successfully been used across a wide variety o f applications such

as machine learning, music generation and engineering design. They draw inspiration from the

Darwinian ideas o f evolution and natural selection and closely mimic a number o f biological

reproduction operations. GAs use directed, probabilistic search techniques to locate global optima in

large, complex search spaces and are well suited to solving NP-hard problems.

GAs are largely attributable to the work o f John Holland in the mid-sixties. Although the marriage o f

Computer Science and evolution was first proposed in the late 1950s, it was he who placed the field on

a firm mathematical footing. When his book, “Adaptation in Natural and Artificial Systems” [1] was

first published in 1975, research interest in the area was confined to a handful o f people, “my students

and their colleagues” . In the early 1980s interest in GAs began to rise rapidly for a number o f reasons;

a change o f focus in Artificial Intelligence, the realisation that they could be used as an analytic tool for

complex adaptive systems and the appearance o f favourable, comparative studies between GAs and

other optimisation techniques. However, it has only been over the last ten years or so that GAs have

been embraced by the wider academic and industrial community. GAs have matured into a popular and

robust optimisation technique and are now regarded as part of the mainstream in computer science,

engineering and mathematics.

Darwin’s theories of evolution were first outlined in his book, “Origin o f Species” [2] and his ideas of

natural selection and survival o f the fittest are key themes within all GAs. In nature the ability of

individuals to attract mates and produce offspring is directly related to their ability to survive and adapt

to their environment. The competition for food, shelter and other resources will be won by the stronger

or fitter individuals while the weaker ones may well die away. These relatively fit individuals will

produce proportionally more offspring than the weaker ones. Since the characteristics o f individuals

(eye colour, strength, ability to detect danger etc.) are encoded in their genes, survival o f the fittest

actually implies survival o f the fittest genes. Sets o f genes are known as chromosomes and these

determine the entire make-up o f an individual. The combination of good characteristics (or good

genes) from two mates will sometimes produce super-fit individuals and this is the process by which

species evolve and adapt to their environment.

By loosely emulating nature GAs evolve populations o f potential solutions to a problem. By devising an

appropriate coding scheme, a solution may be represented as a chromosome and it is to populations of

chromosomes that the ideas of natural selection and survival o f the fittest are applied. Associated with

each chromosome is a fitness value which rates its competence as a solution. The greater the fitness of a

83

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

chromosome, the better it is as a solution and the greater the probability o f it being selected as a mate -

the natural selection analogy. Therefore the relatively fit solutions will produce proportionally more

offspring than the weaker ones and just as in nature this implies that the fit genes survive and the

weaker die - the survival o f the fittest analogy. So as generations arise, the good solutions will mate,

combine their genes with other solutions and hopefully produce better and better solutions.

The complexity o f nP-hard problems, in terms o f computer time and resources render classical methods

o f optimisation futile. The Traveling Salesperson Problem (TSP), a classic NP-hard combinatorial

optimisation problem, is an excellent illustration o f the magnitude o f such an optimisation task. The

goal is to find the shortest possible route between a number o f cities, n, that an imaginary salesperson

has to visit. The brute force method would be to evaluate the distance travelled for every possible route.

However, as n increases the number of possible routes increases as nl. For the 4 city problem there are

24 possible routes. For 25 cities the solution o f the problem is equivalent to finding a single raindrop in

all the world’s oceans. Problems such as this would take desktop computers millions of years to solve,

yet such problems do exist (for example an oil tanker visiting a number of petrol stations) and we

require reasonable solutions to be calculated in minutes. Using GAs a team at British Telecom PLC.

was able to find a solution to a 3000 city problem in just 25 minutes which was within a few per cent of

the optimal solution [3].

There are many other examples of complex real world problems to which we require ‘good’ solutions.

In many cases the emphasis is not on finding the optimal solution but rather on finding a good solution

in an acceptable period o f time. Although no golden panacea exists for the application o f GAs to

optimisation problems, they do however provide a proven technique that has been successful across a

wide class o f problems. By evolving from initial mediocre solutions, GAs are able to cleverly locate

reasonable solutions to large problems in relatively short periods of time.

3.2 GA Terminology

GAs are largely inspired by biological mechanisms and entities and as a result much o f the associated

terminology is borrowed from nature. All living organisms consist o f cells which in turn consist of

chromosomes. Sets o f chromosomes determine the entire make-up o f an organism and thus can be

regarded as the biological ‘blue-print’ for that organism. Chromosomes consist o f genes and each gene

represents a particular characteristic of that organism, hair colour for example. The different possible

values of each gene are known as alleles and in the case o f human hair colour may take the value, black,

brown, blonde and so on. The position o f each gene within a chromosome is known as its locus.

84

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

In GAs, candidate solutions are encoded as bit strings known as chromosomes. Each bit within a

chromosome is a gene and its allele depends on the type of coding scheme that has been devised for the

chromosomes. In the case o f binary encoded chromosomes, each gene has an allele o f either 1 or 0.

3.3 Search Spaces and Fitness Landscapes

The goal o f many optimisation techniques is to locate an optimal solution amongst a number of

candidate solutions. The set o f candidate solutions is often referred to as the search space in which we

are searching for a particular solution. The search space may be visualised as a landscape containing

features such as hills and valleys upon which solutions to the problem are located. Just as a

conventional landscape may be mapped in terms of coordinates, each solution may be regarded as

having a unique coordinate within the search space. In the context o f maximising an objective function

it is usual to search the landscape for the highest peak as it is here that the optimal solution will be

located.

GAs may be thought o f as continually roaming such landscapes in an effort to locate the highest peaks

or the deepest valleys. By evaluating the fitness o f each candidate solution the GA is able to rate the

position (height or depth) o f a solution on the landscape. In terms o f maximisation, those that are

located on relatively high ground (those of high fitness) mate with other solutions sometimes creating

solutions that are located on even higher peaks. As generations evolve the population of solutions will

begin to converge on a small number of peaks. The GA cannot guarantee that it has found the global

optimum but it will have improved on the initial, randomly generated solutions.

To prevent premature convergence on local (rather than global) optima, the mutation operator ensures

the GA keeps an open mind about areas of the landscape that have yet to be explored. By randomly

altering genes, mutation allows exploration of uncharted territory that would not have been visited

through the recombination o f existing chromosomes alone. Throughout this chapter, the concept o f

searching landscapes will be revisited as it provides a convenient means of visualising the operation o f

GAs.

3.4 Genetic Algorithm Fundamentals

3.4.1 GA Overview

To apply a GA one must have a clearly defined problem and be able to represent candidate solutions as

strings known as chromosomes. From the problem definition one must also be able to formulate a

means of assessing a solution by, for example, evaluating a fitness function.

85

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

GAs evolve sets of N candidate solutions, each set known as a population. Each evolutionary time step

is known as a generation and the entire number o f evolved generations is known as a run o f the GA.

New generations are produced by a process known as crossover, whereby selected parent chromosomes

exchange genetic material to produce child chromosomes. To ensure continuing genetic diversity, a

proportion of each new generation o f chromosomes is subjected to mutation, in which a randomly

chosen gene is altered. There are a number o f ways o f terminating a run, the popular methods being;

evolving a given number o f generations, G and stopping a run when a given population has converged

on a particular solution. When a GA terminates it will present the fittest individual(s) found during the

ran. Since there are many random and probabilistic mechanisms within a GA, given different seeds,

two runs o f a GA will often produce different generational results. The final result may be the same but

the manner in which each ran gets to the best chromosome will differ from ran to ran.

Given then, that the criteria for applying a GA have been matched, the overall structure o f a typical GA

is illustrated by the high-level code given in Figure 3.1.

Set GA parameters

population size, N

number o f generations to be evolved, G

crossover probability, c

mutation probability, m

Generate initial random population of chromosomes

For each generation

{

Evaluate fitness o f each chromosome

Select N/2 parent pairs

For each parent pair

{

randomly generate a crossover point

For each gene

{

apply crossover and mutation operators

}

}

}

Return fittest chromosome found after G generations

Fig. 3.1. High level description o f GA. Note that population size W’ is even.

86

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

The following steps outline the various operations within a GA.

Step 1

Initial parameters are set for the GA such as population size, maximum number o f generations that will

evolve, crossover rate and mutation rate.

Step 2

The GA randomly generates a population o f N chromosomes.

Step 3

The fitness of each chromosome is calculated using the fitness function.

Step 4

The next generation o f N chromosomes is created from the current generation. This is achieved by

performing the following processes N /2 times.

i. Probabilistically select (with replacement) 2 chromosomes from the current generation to act as

parents to produce 2 child chromosomes. The probability o f chromosome being selected is

proportional to its fitness. The greater the fitness the greater the likelihood o f selection.

ii. With a given probability, the crossover probability pc , the two parent chromosomes are crossed

over at a randomly selected loci (position) to form two child chromosomes.

iii. Mutate each gene of the child chromosomes with a given probability, p m , the mutation rate.

iv. Place the child chromosomes in the new population.

Step 5

Has the termination criterion been met? For example, have G generations evolved? If ‘no’ return to step

3.

Step 6

Terminate the GA and present the fittest chromosome(s).

3.4.2 The Simple GA - An Example

As an example, Holland’s original ‘Simple GA’ (SGA) [4] will be applied to a function optimisation

problem which has the objective or fitness function ,

f (x) = 2x , w herexe N a n d 0 < x < 3 1

87

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

The Coding Scheme

Fundamental to the success o f a GA in solving a particular problem is the suitable encoding of

candidate solutions. The coding scheme must map the parameters o f the problem to a unique binary or

real-valued string. The fixed-length binary string is the most common encoding scheme, used in the

majority of GA applications. Much of Holland’s pioneering work concentrated on such schemes and as

a result the GA community followed suit. The strings themselves are the chromosomes and the bits of

the strings are the genes. The alleles (values) of each gene depend on the type of coding scheme chosen.

For a binary scheme the genes can take values o f either 1 or 0.

The above function is defined for integers in a finite range so a convenient encoding scheme would be

to use binary chromosomes of length 5. The chromosomes are decoded into integers using the usual

binary/decimal conversion process, with the left most bit being the most significant. For example the

chromosome,

[0 0 1 0 1]

represents the integer 5. Table 3.1 below illustrates a selection o f chromosomes for the present problem

and their associated fitness values.

Chromosome Integer

X

/ W

00000 0 0

00001 1 2

00110 6 12

01010 10 20

11000 24 48

Table 3.1. A selection o f binary encoded chromosomes o f length 5 together with their

associated fitness values.

Now that an encoding scheme has been established the genetic operators; selection, crossover and

mutation must be chosen.

Selection

In order for the generations to evolve, individuals from the current population o f chromosomes mate to

produce off-spring for the next generation. The process o f choosing which individuals will mate is

known as selection. Selection mimics Darwin’s phenomenon o f natural selection which states that the

greater the fitness o f an individual, the greater the probability o f it being selected as a mate. The SGA

uses a scheme known as roulette wheel selection.

88

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Roulette wheel selection is an example of a fitness proportionate selection scheme, in which the

expected number o f times a chromosome will be selected from a set of n chromosomes in n trials, is

that chromosomes fitness divided by the average fitness o f the population.

To implement this scheme each chromosome is allocated a slot o f a notional roulette wheel, the size of

each slot being proportional to the chromosome’s fitness. The spin o f the wheel is simulated and the

chromosome beneath the wheel’s marker is selected as a parent. As an example consider the population

o f chromosomes given in Table 3.2.

No. Chromosome Integer Fitness = 2 x Integer

1 00001 1 2

2 00011 3 6

3 01000 8 16

4 01001 9 18

1 = 42

Table 3.2. Population o f four binary chromosomes representing unsigned integers and their

associated fitness values.

The roulette wheel corresponding to this population is given in Figure 3.2. The sum o f the fitnesses o f

the population can be calculated and is 42 in the present case. The spin of the wheel can therefore be

simulated by randomly generating a number between 0 and 42 and the chromosome which occupies the

slot containing that number will be selected. If, for example, the number 20 is generated chromosome 3

will be selected.

Figure 3.2. Roulette wheel corresponding to population o f chromosomes in Table 3.2

89

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Crossover

Once two parents have been selected, it is necessary for them to exchange genetic material. Crossover

describes this process o f combining two parent chromosomes to produce child chromosomes. It is

widely acknowledged that crossover is the main search mechanism within a GA. By combining parent

chromosomes the GA often produces new chromosomes and as a result new areas o f the search space

are explored.

In the natural world, two parent chromosomes do not always exchange genetic material (for example

one o f the parents may be infertile or two parents do not mate). This phenomenon is carried over into

GAs and parent chromosomes exchange genes with a given probability known as the crossover

probability, pc or crossover rate. Since crossover enables quick exploration o f the search space,

crossover should take place with probability greater than 0.5. The SGA uses single-point crossover and

is a good starting point when applying a GA to a new problem. Consider two chromosomes o f length I.

A crossover point between the first and last gene is randomly generated, creating a head and tail

segment in each chromosome. By exchanging the tail segments of the chromosomes two child

chromosomes are created. Figure 3.3 illustrates two parent chromosomes exchanging genetic material

about a crossover point located after the third gene (from the left).

Parents Offspring

1 1 1

0 0 0

1 1 1 11 1 0 0 0

0 0 0 - > 0 0 0 1 1 1

crossover

point

Figure 3.3 Single point crossover o f two binary chromosomes about a crossover point after

the third gene.

Mutation

Mutation is the sporadic, random alteration o f genes. For binary encoded chromosomes mutation results

in the genes flipping their value from 1 to 0 or vice versa. Mutation occurs with a given probability, pm

known as the mutation probability or mutation rate. In nature mutation is a relatively rare occurrence

and this fact is reflected in GAs, where pm is typically less than 5%.

Mutation is applied to the child chromosomes once they have been created through crossover. Figure

3.4(a) shows a binary chromosome before mutation and 3.4(b) gives the same chromosome once

mutation has been applied to the third gene (from the left).

90

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

1 0 0 1 0 1 1 0 1 1 0 1

(a) (b)

Figure 3.4(a) Chromosome before mutation, (b) Chromosome after mutation o f the third gene.

Now we have discussed the main component o f the SGA a dry run will be performed, evolving 2

generations of chromosomes from an initial, randomly generated population. Each population will

contain 4 chromosomes and the crossover rate and mutation rate are set at 100% and 5% respectively.

Each parent pair will produce 2 child chromosomes.

Generation

0

M ating Process G eneration 1

No Chromosome X Fitness

f i x)

Parents crossover

point

No Chromosome X Fitness

f i x)

1 01001 9 18 [3,2] 00110,10001 1 1 10110 22 44

2 10001 17 34 [3,2] 00110,10001 1 2 00001 1 2

3 00110 6 12 [4,2] 01101,10001 4 3 01101 13 26

4 01101 13 26 [4,2] 01101,10001 4 4 10001 17 34

I. f i x) = 90

Max. fitness = 34

Average fitness = 22.5

I. f i x) =106

Max. fitness = 44

Average fitness = 26.5

Table 3.3. Evolution o f Generation 1 from the Randomly Created Generation 0.

As can be seen from Table 3.3, Generation 0 contains some fairly mediocre solutions to the

optimisation problem. This is to be expected given that the chromosomes were randomly generated.

The maximum fitness in the population is 34, corresponding to x = 17 and the average fitness is 22.5.

By generation 1, the maximum fitness has been raised to 44 and the average to 26.5. By Generation 2,

given in Table 3.4, the GA seems to be making good progress. The average fitness has been raised to

35.5 and the fittest chromosome has a fitness of 58. The mating o f chromosome 3 and 4 has resulted in

the fittest chromosome and the weakest. This is a common feature within genetic algorithms. In the

evolution o f Generation 3 from Generation 2 the chances are that the weakest individual will not be

selected due to the overwhelming strength of the other chromosomes in the generation. Just as in nature,

the genetic material contained in this individual will die out. Another feature to be noted in generation 2

is the mutation o f the fourth gene (from the left) o f chromosome 4.

91

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

G eneration

1

M ating Process G eneration 2

No Chromosome X Fitness

f i x)

Parents crossover

point

No Chromosome X Fitness

f i x)

1 10110 22 44 [3,4] 01101,10001 1 1 11101 29 58

2 00001 1 2 [3,4] 01101,10001 1 2 00001 1 2

3 01101 13 26 [4,1] 10001,10110 4 3 10111 23 46

4 10001 17 34 [4,1] 10001,10110 4 4 10010 18 36

E/0 C) =106

Max. fitness = 44

Average fitness = 26.5

I. f i x) = 142

Max. fitness = 5 8

Average fitness = 35.5

Table 3.4. Evolution o f Generation 2 from Generation 1.

From these tables, it can be seen that the GA is definitely evolving stronger chromosomes from an

initial population o f weaker ones. Since the population size in each generation is small, the expected

values of selection, crossover and mutation are far from the actual ones. This dry run however, certainly

illustrates the mechanics and search strategy adopted by a typical GA.

Even from the small example presented above, it can be seen that through a number o f random and

probabilistic operations, a GA seems to be a good optimisation tool. Starting from a randomly

generated population, the GA is able to explore a search space and home in on promising regions. All

this is achieved by sampling just a few points in the space. Furthermore, the operations taking place,

such as crossover and mutation are very simple compared to other optimisation techniques that require

for example, derivatives o f the objective function to be calculated. The above example has certainly

illustrated what a GA a does but it has provided little insight into how and why a GA works so well.

These issues will now be addresses in the following section.

3.5 The Mathematical Foundations of Genetic Algorithms

It was John Holland who, during the 1970s, laid down the mathematical foundations o f GAs [1]. He

introduced the idea that GAs process schemata rather than individual chromosomes and therefore are

able to sample large regions o f the search space. At first glance a population o f n chromosomes would

seem to sample, at most, n points in the search space. However, the schemata contained in each

individual enable the GA to actually process many more regions through what is known as implicit

parallelism.

Holland’s Schema Theorem [1][5] describes the way in which schemata are processed under the

processes of selection, crossover and mutation. Throughout he assumes binary encoding and single­

point crossover, although the theory has been extended to accommodate other encodings and crossover

92

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

operators [6]. The theorem describes how instances of schemata either increase or decrease from one

generation to another, given their form and average fitness.

All of these ideas will now be discussed in more detail in the context o f finite-length, binary

chromosomes.

3.5.1 Schemata (Similarity Templates)
A schema is a pattern matching device which gives rise to a compact notation for describing similarities

between finite-length strings (chromosomes). Schemata are described using the symbols {1, 0, *},

where 1 and 0 are so-called fixed bits and the asterisk denotes the “don’t care’ symbol (it can represent

either 1 or 0). Thus, for example the schema H = 11** contains two fixed bits (both l ’s) and represents

four bit strings, 1100, 1101, 1110 and 1111. The number o f fixed bits in a schema H is known as its

order and is denoted by o(H). Another feature o f schemata is their defining length d(H). Given a

schema H = sls2. .. .s l suppose that the first fixed bit (from the left) is st and the final fixed bit is si+r,

where i > 1, r > Oand i + r < I . Then the defining length d(H) o f H is r, the distance between the two

outermost fixed bits in a schema. To illustrate these ideas, for the schema H = *1*00*0, o(H) = 4 and

d(H) = 5.

Given a string length / , or equivalently a chromosome with I genes, the total number o f different

possible bit strings is 2l . The total number o f different possible schemata in this bit string is 31, since

each element of a schema can take the value 1, 0 or x. These results are important since they give an

indication of the amount o f information a GA actually processes.

So why are schemata important? At first glance a GA processes a given number o f individuals in a

generation and based on their relative fitness, selects and mates the fittest to (hopefully) produce even

fitter individuals. However, by considering only the chromosomes and their fitness, the search process

is based on only a limited amount o f information. By investigating features o f strings that yield high

fitness, one can incorporate much more information into the search process. Consider Table 3.5 below

which gives four binary strings o f length 5 representing unsigned integers and their associated fitnesses

under the fitness function f {x) = x2 .

Chromosome Integer Fitness

00010 2 4

10000 16 256

01001 9 81

10010 18 324

Table 3.5. A selection o f binary encoded chromosomes representing unsigned integers

and their associated fitness.

93

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Examination o f the above table helps one examine features amongst the chromosomes which lead to

high fitness values. So, what distinguishes the chromosomes o f high fitness? It seems clear that having a

1 in the first bit position gives rise to strong chromosomes and the schemata 1**** and 100*0 represent

this feature (hence the alternative name for a schema, ‘similarity template’).

The amount o f additional information a GA incorporates into the search process is equal to the number

o f different schemata present in a population. For a population o f n chromosomes o f length I the

number o f actual schemata present is between 2 l and n. 2 l , since each fixed bit may be replaced by a *

to form schemata. For a given population, Holland showed (taking into account crossover and

mutation) that the number o f schemata actually processed by the GA is approximately equal to n3. This

is an important result and is known as implicit parallelism. Although a GA explicitly calculates the

fitnesses o f chromosomes in a population, it also implicitly calculates the average fitness o f a large

number o f schemata present in a given population. No additional processing time or computer memory

is required for this implicit processing, it is simply part o f the normal operations within a GA.

3.5.2 The Schema Theorem

The Schema Theorem describes the dynamics o f a GA in terms o f the increase and decrease o f schema

instances as populations evolve. Given the number of instances o f schema H in a population at time t

the schema theorem approximates the expected number of instances o f the schema at time t+ 1, given

the effects o f selection (fitness proportionate), crossover (single point) and mutation on schema

survival.

Suppose at time t there are m instances o f schema H where,

The effects o f selection are such that the probability, pi o f a string being selected as a mate is given by,

where f t is the fitness o f the string and is the sum o f fitnesses o f all members o f a population.

m

Similarly, the probability of a schema being selected as mate is given by, m (H ,t). where J[H) is

the average fitness o f the strings containing schema H. At time tt-1 therefore the expected number o f

instances o f schema H in a population of n strings is given by,

(1)

94

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

therefore X / , = n- fThe average fitness of the entire population may be written /

Substituting this into (1) gives

(2)

From the above equation it may be seen that instances of a particular schema grow from one generation

number o f schemata o f above average fitness is likely to increase in the next generation. By further

investigation o f equation (2) it is possible to gain an insight to the mathematical form o f this schema

growth/decay.

Assume that a schema H is o f above average fitness by an amount c f , where c is a constant. The

average fitness of this schema is then / + c f . Substituting this into (2) we obtain,

which is the discrete analogue o f exponential form. It may be concluded therefore that selection

allocates an exponentially increasing (decreasing) number o f instances o f an above (below) average

schema into successive generations.

However, the effects o f crossover have yet to be considered. In single point crossover, a random

crossover point is selected between 1 and / - 1 . A schema o f large defining length is more likely to be

disrupted or destroyed than a schema o f shorter defining length. For example, in the schema *1***0, of

defining length 4 and total length 6, there are 4 crossover points which potentially result in schema

destruction. In contrast the schema *10*** has only a single crossover point which potentially destroys

it. In calculating the probability o f schema destruction not only is it necessary to consider the defining

length but also the number of destructive mates. The schema *1***0 has four possible mates i.e.

*1***1, *0***0, *0***1 and itself. Half o f all these possible matings preserve the original schema.

to another as a ratio o f average schema fitness to average fitness o f a population. In other words the

Starting at time t = 0 and assuming c to be fixed we obtain

.(probability o f destructive matings)Therefore, the probability o f schema destruction <

For the schema *1***0, probability of schema destruction < ■

5

95

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

and for the schema *10***, the probability o f schema destruction < This probability is an upper

bound since probabilistic selection introduces bias towards strong schemata and therefore not all

matings are equally probable.

d(H)
However, for simplicity the schema theorem treats the ratio - - as the upper bound for schema

destruction, the inequality masking the effects o f different mates and the bias introduced through

selection. Furthermore, given that crossover takes place with a probability, p c , the probability of

schema destruction is, < pc

survival, ps is given by,

d(H)
l - l

From this result, a lower bound on the probability o f schema

4 h)
l - l

Hence adjusting equation (2) to take account o f the effects o f crossover gives,

d (H y
1 ~ P c l - l

(3)

(4)

The final operator that needs to be considered is mutation. Mutation takes place with a given

probability, pm. For a schema of order o(H), the probability of schema survival under mutation is given

by.

(l - p „) ° C"’ = l - o (f l) .p „ (5)

if pm « 1. Adjustment o f equation (4) to incorporate the effects of mutation gives,

d{H)
m { H , t + l) > m (H , t) . ^ S l

f
1- Pc l - l

which, by neglecting small cross products approximates to,

f
(6)

Equation (6) is the mathematical formulation of Holland’s Schema Theorem which states,

“short, low order schema o f above average fitness receive

exponentially more instances in subsequent generations than those

with below average fitness”.

From his schema analysis Holland has shown that selection seems to focus the GA on areas o f the

search space that have above average fitness. These regions are defined by the above average schemata

that increase exponentially in subsequent generations. Crossover combines these highly fit schemata in

the hope of homing-in on even fitter individuals. In other words, this process is exploiting existing

information. Mutation on the other hand ensures that the GA keeps an open mind about regions o f the

96

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

search space that have yet to be explored. It acts as an insurance policy since not all schemata can be

produced through crossover alone. Mutation therefore aids in the exploration o f the search space and

helps preserve genetic diversity.

Adaptation by any organism to an unpredictable environment is seen to create a tension between

exploration and exploitation. This fine balance occurs since one takes away from the other. Exploration

o f untried schemata for instance, takes away from the exploitation o f tried and tested, highly fit

schemata. The search strategy must prevent premature convergence on sub-optimal solutions by

continually exploring uncharted regions o f the search space. However, it must also incorporate and

utilise, or exploit, existing information. Holland proposed his original GA as a strategy for achieving an

optimal balance between exploitation and exploration by allocating exponentially more instances o f fit

schemata to subsequent generations relative to instances o f the weaker ones. But why is this allocation

strategy a good one? This question leads to an important problem in statistical decision theory, the

Two-Armed Bandit problem. Its solution indicates why the above allocation strategy, viz. allocating

exponentially more instances o f above average fitness schemata to successive generations, is successful

and was used by Holland to justify his arguments.

3.5.3 The Two-Armed and K-Armed Bandit Problem.

The Two Armed Bandit problem is a convenient means o f modelling the trade-off between exploration

and exploitation. Analysis of the problem helps in deciding the allocation o f resources in the face o f

uncertainty. The problem is as follows.

Figure 3.5 below illustrates a two-armed slot machine that is a popular gambling device (the

conventional machines often have one arm and are called ‘one arm bandits’). The gambler can play

either arm 1 or arm 2 which are independent o f one another. The arms are labeled Al and A2 and have

a mean payout per trial o f ^ and with variances of o f and o f respectively. The gambler has no prior

knowledge o f these means or variances, he can estimate them through experimentation alone. The goal

of the gambler is of course to maximise his winnings during N trials, by first gaining knowledge of

which arm seems to payout the most (exploration) and then to exploit this knowledge to maximise the

payout. What allocation strategy should the gambler adopt?

97

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Left Arm, A1

mean observed

payout = fly

variance = o f

0Insert coin

Left Arm

pays below

O °o o o

Insert coin □

Right Arm

pays below

o°o%

Right Arm, A2

mean observed

payout= fa

variance = o%

Figure 3.5. A two armed bandit

By collecting information about each arm, the gambler must decide which arm seems to pay most. The

dilemma is how to search (exploration) for the highest paying arm while simultaneously using that

information (exploitation). Although the precise mathematical details of the solution [1] lies outside the

present discussion, the following gives an adequate overview.

Suppose the gambler has N coins and therefore a total o f N trials to allocate between the two arms. The

first step is to allocate an equal number o f trials n (2n <N) to each arm. After examining the respective

payouts the remaining (N - 2n) trials are allocated to the observed better arm Let Ax be the actual

better arm and Aj be the actual worse arm. Also, let A ^ N , N - n) denote the arm with the observed

higher payout and Ah(N ,n) denote the arm with the observed lower payout.

What is the value o f n = n that maximises expected payouts or minimises the loss? There are two

potential sources of loss for the gambler.

1. The observed worse arm A,[N,n) is actually the better arm, Ay. Therefore the gambler has lost

expected profits on (N - n) trials that were wrongly allocated to Az(A , N - n) . In this case the loss

is given by

Loss 1 = (N - n).[fiy - ju ^

2. The observed worse arm A,(N,n) is actually the worse arm. Therefore the gambler has lost

expected profits on the allocation of n trials, during the exploration phase and the loss is given by

Loss 2 = n.(fiy -M 2)

If q is the probability that the observed worse arm, A,(N,n) is actually the better arm, Ay i.e.

q = Pi-(az(n ,n) = Ay)

98

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

then the losses, L^N - n,«) over n trials are,

L (N - n,n) = q . (N - n) . [p l - f t) + { 1 - q){^ - fi^.n (7)

where q depends on n2 . By taking the derivative o f L^N - n,nj with respect to n we can find an

expression for n = n* that minimises equation (7) i.e. the loss. The exact details o f this calculation will

be omitted as they are not relevant to the discussion. The result of the calculation is ,

N 2
n n

where b is a constant. Equation (8) implies that,
*

n

&7tb* InN2

exp| — | = N
%7tb* In N 2

Since In IV2 = 2 In AT and exp — = exp { n y r n y= exp 2,2b2)_
exp ,2b2)_

by setting

2b1 = I I equation (9) can be re-written as,

From equation (10) since,

c2N = 2 ^ n \ n N exp(c/i*j

N
> oo a s N —» oo th e n ,

c2N

^^inN

e x p f c / J *) = - - - r--
v ' 2V^lnA^

—> oo as N

i.e. n o as —> ° ° . Also from (10) as N increases, c2N » exp|c2n*j so,

^ explc2/!*)
— » ----- —- —> <» as N (and hence also n) —» «>
n c n

(8)

(9)

(10)

(11)

N - n N . N . , 1T
S in ce = — - 1 ~ — for large N equation (11) implies,

n* n n

N - n exp(cV)
 » - (12)

The gambler’s optimal strategy for minimising his/her gambling loss can be seen from equation (12).

This equation implies that for large N, as the total number N of trials increases, the number o f trials

allocated to the better arm, grows more than exponentially relative to the number o f trials

2
A s the num ber o f tria ls n increase, the p robability q , that the observed w orse arm is actually the b etter arm ,

decreases.

99

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

allocated to the worse arm n . This interpretation reveals more than a coincidental similarity between

the gamblers optimal strategy and a GAs search strategy outlined by the Schema Theorem.

3.5.4 The Schema Theorem and the Two-Armed Bandit Problem

The Two-Armed Bandit problem is a convenient model o f the exploration versus exploitation dilemma

faced by adaptive systems such as GAs. Its solution provides a strategy for allocating resources in the

face of uncertainty. Holland’s Schema Theorem suggest that a GA allocates schemata from generation

to generation in a manner very similar to the optimal strategy given by the solution o f the Two-Armed

Bandit problem. Recalling equation (3) we can see the exponentially increasing number of trials given

to above average fitness schemata relative to the weaker ones. Holland argued that a GA implements

this optimal search strategy through implicit parallelism, where the GA is actually processing n3

schemata in a population o f n chromosomes. So returning to the question raised towards the end o f

section 3.4 as to whether the allocation strategy of a GA is a good one, the solution o f the Two-Armed

Bandit problem certainly suggests that it is.

Originally, Holland suggested that a GA adopts the optimal allocation strategy and seems to play a 31-

armed bandit with all 3* possible schemata in a population competing as arms. This original theory has

been widely debated and modified. The problem is that unlike the Two-Armed Bandit, the different

schemata (or arms) in a GA interact. It is now thought [8] that the GA is actually playing a 2* - armed

bandit in each order-/: schema partition. A schema partition is defined as a division o f the search space

into 2* competing schemata. For example the partition *d** consists o f the two schemata *1** and

*0** and the partition *dd* contains *00*, *01*, *10* and *11*. It is the schemata within each

partition that are competing with each other as in a 2* -armed bandit problem. Popular understanding

suggests that the best observed schema within each partition receive exponentially more trials than the

second and so on. However, the /:-armed bandit strategy will only be adopted by partitions in which the

competing schemata have relatively uniform fitnesses (i.e. low fitness variance).

As mentioned earlier, the topic of GAs is an active and continually evolving field o f research. There is

much debate as to how and why GAs work [7,8] and the Schema Theorem coupled with the fc-armed

bandit analogy provide some insight. In light o f the extent o f the literature and the controversy

surrounding GA theory the reader at this stage is directed to the references for further information.

3.6 GA Implementation Issues

The GA outlined in Section 3.4 is Holland’s original Simple GA. It uses a fixed-length binary encoding

scheme, fitness proportionate, roulette wheel selection, single point crossover and the standard mutation

100

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

operator. Much o f the original work on GAs and GA theory was based on this implementation.

However, as the GA community grew, so did the number of different implementations o f the algorithm.

Take for example, the issue o f encoding schemes. As GAs were applied across a growing number of

problems, it became apparent that alternative representations to the binary coding schemes were

required. For example, many real world problems required the optimisation of real valued parameters.

A binary scheme can become awkward when trying to represent multiple real values to a reasonable

number of decimal places. It was found that chromosomes containing real number worked far better.

The encoding issue has just been taken as a brief example. This and other issues will now be discussed

in more detail.

3.6.1 Encoding Schemes

As mentioned earlier, the success o f a GA in solving a particular problem is largely dependent on

devising a suitable scheme for encoding candidate solutions. The coding scheme must map the

parameters o f the problem to a unique binary or real-valued string. Binary encoding schemes are by far

the most popular, largely due to the early GA pioneers.

A significant problem with binary encodings is that they do not provide the flexibility to solve a large

class o f problems that have multiple, real-valued parameters. A common method for encoding some of

these problems is to map the parameter values to integers, which can then be encoded as in Table 3.1

above. The binary strings for each variable are then concatenated to produce the chromosome. As an

example consider a three variable optimisation problem in which each variable can take values in the

range 0 to 2.55. By multiplying the value of each variable by 100, we can represent each variable, to an

accuracy of 2 decimal places, by an 8 bit binary string. Concatenation of three, 8 bit strings will lead to

each candidate solution being represented by a 24 bit binary string, as shown in Figure 3.6a.

However, this technique becomes unwieldy for larger problems, such as evolving weights for neural

networks, and for problems requiring greater accuracy. In such cases, real valued encoding schemes

have been adopted [9],[10] and the chromosomes are collections of real numbers as given in Figure

3.6b.

[00010001 00011110 11100111]

(a)

[12256.00,23.45, 0.0023, 100.50]

(b)

Figure 3.6. (a) Three-variable binary chromosome representing the values 0.17, 0.30,

2.31 respectively, (b) Four variable, real valued chromosome representing the numbers

12256.00, 23.45, 0.0023 and 100.50.

101

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Initial reluctance by the GA community to adopt real valued schemes was largely due to Holland’s

Schema Theorem, which suggested that binary encodings displayed far better performance than any

alternative scheme. However, over recent years there has not only been controversy over the schema

theorem [11] but also favourable comparative evidence supporting real-valued schemes over binary

ones in certain applications [12], [13]. The key phrase in the previous sentence is ‘certain applications’.

In some cases binary encodings will perform better than other schemes and in others real valued

schemes will work best. Currently there are no hard and fast rules which govern the choice o f encoding

scheme and the performance o f the different schemes depends solely on the problem.

3.6.2 The Fitness Function

At the heart of all GAs is the fitness function and its appropriate formulation is a key factor in the

successful application o f the algorithm. The fitness function rates the competence o f each chromosome

as a solution to the problem.

The fitness function is often a mathematical formulation o f the problem to be solved and must reflect

the criteria by which a candidate solution is judged. In the case of function optimisation problems, the

fitness function is often (but not necessarily) identical to the objective function. As an example,

consider the optimisation o f the function,

f (x) = x2

in the interval [0, 15]. If chromosomes are encoded as binary strings which map to unsigned integers,

the fitness of each solution is the value of j\x) where x is the integer represented by the given

chromosome. Table 3.6 displays a selection of four gene chromosomes and their corresponding fitness

values.

For combinational optimisation problems such as the Travelling Salesperson Problem, an obvious

fitness function (but not the only one) evaluates the total distance travelled given the order in which

each city is visited. The two classes of problems just mentioned reduce fitness evaluations to a single

figure of merit (value o f objective function, distance travelled by salesperson). However this is not

always possible in situations such as engineering design where there are multiple, sometimes

conflicting, criteria. It would be unwise in these cases to try and reduce the ideas o f optimality to a

single figure o f merit and we need to evaluate solutions with respect to each o f the different criteria.

102

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Chromosome Integer Fitness Value

0001 1 1

0011 3 9

1010 10 100

Table 3.6. The fitness o f a selection o f 4 bit chromosomes evaluated using the fitness

function, f (x) = x2

The concept o f Pareto Optimality [4] aids in the evaluation o f solutions to multi-objective problems

[14]. To illustrate the idea an example taken from [4] will be discussed. Consider a widget

manufacturer who wishes to minimise both widget cost and on-the-job accidents. There are five

possible scenarios, A, B, C, D and E in which the plant may be run which result in the following cost

accident count.

A = (2, 10) (cost, accident count)

B = (4, 6)

C = (8,4)

D = (9,5)

E = (7, 8)

Which scenario should the manufacturer choose? By plotting scenarios A to E on an Accident versus

Cost graph, given in Figure 3.7, one is able to assess the relative merits of each scenario.

To minimise both cost and accident count, we require scenarios that lie as near to the origin o f the

graph as possible. Therefore scenarios A, B and C are good choices. In all three cases none of the three

points is best along both axes so it is a matter of assessing trade-offs as to which scenario is better. The

profit hungry manufacturer will select scenario A whereas others may prioritise safety and select

scenario C.

103

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

10
9
8
7
6
5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9

C ost

Figure 3.7 Widget Cost vs. Accident Count scatter graph

The concept o f pareto optimality does not provide a single ‘best’ answer, instead it provides a set of

possibilities, known as the Pareto Optimal (P-Optimal) Set. The final choice of solution is reserved for

the human decision maker who is able to weigh the pros and cons o f each solution in the P-Optimal set.

To whatever class o f problem a GA is applied, correct formulation of the fitness function is of

paramount importance. The accurate assessment o f a potential solution is only as good as the quality of

the fitness function. The assessment o f potential aircraft engine designs, for example, will only be as

good as the mathematical model in which they are simulated. An inaccurate fitness function may lead a

GA away from the real optimal solution. Therefore much time and effort should be devoted to

developing these fitness functions as they play a large part in the ultimate success o f this optimisation

technique.

3.6.3 Selection

The purpose o f selection within a GA is to increase the average fitness of populations o f chromosomes

as successive generation arise. By favouring fit individuals in the current generation to act as parents, it

is hoped that subsequent generations will contain chromosomes o f even higher fitness. Selection can

therefore be seen to concentrate the search procedure on promising regions of the search space.

Over recent years, selection has become the subject o f much research and a number o f comparative

studies have emerged [15][16] [17]. An important property o f selection schemes common in much o f the

literature is selection pressure [17] [18] [19]. Although there are several definitions it broadly describes

the degree to which fitter individuals are favoured over the weaker ones for selection. Too high

104

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

selection pressure will result in strong individuals in early generations dominating the mating process

and they will soon take over subsequent populations. This is not to be encouraged as although these

individuals will be relatively fit in early generations they will very often be o f sub optimal global

fitness. In the presence o f too high selection pressure the GA will therefore be primarily involved in the

exploitation of sub-optimal solutions, resulting in premature convergence. Too weak selection pressure

on the other hand will significantly slow down evolution as it will favour as many weak solutions as it

does strong solutions. In this situation, the GA will primarily be involved in exploration o f the search

space and in extreme cases may even resemble a random walk strategy among the initial population.

It is apparent from the above that selection is a driving force within a GA and contributes significantly

to the exploration/exploitation balance. The search process must be directed towards promising regions

o f the search space, this is obvious. But it is also important not to completely neglect relatively weak

individuals as they may contain valuable genetic material, which when combined with fitter individuals

will produce the super-fit solutions that are being sought. Good selection procedures must therefore

address the problem o f achieving a balanced search strategy.

The research community has devised a number of other properties that aid the comparative study o f

selection schemes, selection pressure being just one. In what follows a number o f the most popular

schemes will be described together with a high-level discussion o f their relative merits. For detailed

analyses of these and other less popular schemes the reader is directed toward the references.

3.6.3.1 Fitness Proportionate Schemes

Fitness proportionate selection (FPS) was used in Holland’s original GA and in the formulation o f the

Schema Theorem. In this scheme, the expected number o f times a chromosome will be selected as a

parent is given by the individual’s fitness / (i) divided by the average fitness of the population, f j , i.e.

f(i)
Expected no. of reproduction trials for individual i = n. —±*-

f }

where n is the number of trials.

This scheme is easily implemented using the roulette wheel selection technique as described earlier.

Each individual is allocated a slot on a roulette wheel proportional to its fitness. A spin o f the wheel is

then simulated and the individual beneath the pointer is selected as a mate. A problem with this method

is that for relatively small populations and a small number of trials the actual number o f times an

individual is selected is far from the statistical expected value. Because each parent is selected during

an independent trial, it is statistically possible that the best individuals are never selected. To overcome

this problem, a slight variation of the above method, known as stochastic universal sampling (SUS), has

been devised [20]. In this method, if it is necessary to select N parents, the roulette wheel has N equally

spaced markers and is spun only once. The individuals lying beneath the markers are selected. The

105

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

technique is not only simple but eliminates the sampling errors associated with the original roulette

wheel scheme.

All fitness proportionate schemes suffer from a common problem however, viz. that the rate of

evolution depends on the variance of the fitnesses in the population (the selection pressure therefore is

not constant throughout a run). During early generations o f the GA, the fitness variance in the

populations will be high, that is there will be a small number o f relatively super-fit chromosomes.

Under fitness proportionate selection these individuals and their off-spring will dominate the

evolutionary process, possibly resulting in the premature convergence o f the GA on sub-optimal

solutions. In later generations when the fitness variance is low evolution will cease since very few

chromosomes stand-out for selection.

In an attempt to overcome these problems GA researchers have devised several scaling methods for

mapping absolute fitness values to expected fitness values. Fitness Windowing [17][21], Linear Scaling

and Sigma Scaling [4] are examples o f scaling methods. Although these schemes go some way to

removing the dependency o f selection pressure on fitness variance, a significant problem still remains.

The presence o f exceptionally fit/unfit individuals will result in performance degradation since

premature convergence or a halt in evolution is likely.

Because o f the problems associated with FPS schemes their use is not recommended by many GA

practitioners. Other selection schemes have been produced to move away from the dependency o f

selection pressure on absolute fitnesses.

3.6.3.2 Rank Selection

A selection scheme based on rank was first proposed by Baker [22]. In this scheme, the chromosomes

in a population are ranked according to their fitness and the expected number of reproductive trials for

each chromosome is proportional to its rank. Absolute fitnesses are masked by rank and therefore

premature convergence due to sub-optimal individuals can be avoided. Two main ranking schemes [17]

are currently in common use.

Linear Ranking

The fittest individual (which has rank 1) in a population is given a fitness, s where 1 < s < 2 and the

weakest (which has rank N) is given the fitness 2 - 5 and intermediate strings are allocated fitnesses

according to,

/ (i l . - t t i
N - 1

where i is the rank o f each individual. The above formula will give an average fitness o f 1 and the

fitness values correspond to the expected number o f offspring for a given individual o f rank i.

106

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

The parameter s can be seen to control the selection pressure, the higher the value o f s, the greater the

selection pressure. If s is set to 2 for example, the worst string has zero probability o f being selected.

Unfortunately, it is difficult with linear ranking to achieve higher selection pressures while still giving

the weaker individuals some chance of selection.

Exponential Ranking

In this scheme, the best string is given a fitness o f 1, the second best a fitness o f s (typically around

0.99), the third best is allocated a fitness o f s2 and so on. The expected number o f trials for each

individual is obtained by dividing each fitness value by the population average. The selection pressure

for this scheme is proportional to 1 - s .

The difference between exponential and linear ranking is that the former provides a greater chance of

selection for the worse individuals in a population (at the expense of the above average ones). For

equivalent selection pressures, exponential ranking should therefore result in greater diversity amongst

the populations.

The main disadvantage of ranking schemes is the additional computation time required to sort the

population and ascribe a rank fitness to each individual. This o f course is in addition to computing the

‘raw’ fitness from the problem specific, fitness function. It is to be noted that for all ranking schemes,

once the expected value of each chromosome has been calculated, the parents have to be sampled and

this can be done using the SUS method described earlier.

3.6.3.3 Tournament Selection

This selection scheme is relatively simple and computationally efficient. In binary tournaments, two

chromosomes are picked randomly from the population and the one with highest fitness is selected. A

slight variation on the method is to probabilistically select the fittest chromosome in a tournament. That

is, to only select the fitter o f the two chromosomes 70% o f the time and select the weaker one the

remaining 30% of the time. The tournaments can also be extended to randomly picking p chromosomes

and selecting the fittest q as mates, where p > q. The selection pressure for this scheme can be adjusted

by changing the tournament size or win probability.

In practice Tournament Selection suffers from the same sampling errors as roulette wheel selection.

Each tournament takes place individually and therefore it is possible that the best individual is never

selected. However, its simplicity and the fact it is well suited to parallel implementation ensures that the

scheme remains popular.

107

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

3.6.3.4 Elitism

Elitism ensures that the fittest individuals in the present generation are retained and copies into the next

generation. Chromosomes in one generation can be lost through mating and lack o f selection in

subsequent generations. As the fittest chromosomes contain good genetic information on which later

generations are to be based it is important to keep these individuals. An implementation o f elitism may

ensure that the fittest 5% o f chromosomes are always carried over into the next generation.

3.6.3.5 Brief Comparison o f Schemes

Throughout the published literature, it is apparent that ‘raw’ fitness proportionate schemes are

inadequate due to their sensitivity to fitness variance within a given population. Although scaling

methods go some way to reducing this dependency, it seems that extraordinary individuals disrupt

evolution and introduce premature convergence. Ranking schemes disassociate absolute fitness and the

expected number o f trials for a given fitness score. Exponential ranking seems to offer the better

scheme since the rate of loss o f the worst individual is less than for linear ranking. Although this may

slow down the rate o f convergence, it is hoped that the greater diversity will improve the quality of the

final solution. Tournament selection offers a computationally simple scheme without the problems

associated with fitness proportionate schemes. However one must bear in mind the sampling errors that

are inherent with this technique.

In Goldberg and Deb’s [15] comparative studies they conclude that by appropriate adjustment of

parameters, many o f the selection schemes exhibit the same behaviour. For example a binary

tournament is similar to linear ranking with s = 2. If tournaments are made stochastic, the results are

similar to those for exponential ranking. From these and other results it can be inferred that no single

scheme is the absolute best, different fitness functions will favour different schemes.

A criticism of much o f the comparative studies is that they do not address the interactions between

selection schemes and the crossover and mutation operators. How do low selection pressures interact

with high mutation rates for example? They both help to increase the diversity o f genetic material.

There must be many other questions such as this which have yet to be analysed. It is felt that they must

be answered by the GA community with rigorous theoretical analysis so others are able to make a more

informed choice o f selection scheme.

Given the current theoretical bounds, which scheme should one use when designing a GA? This

question can only be answered after experimenting with a number of schemes and by considering as

much problem specific knowledge as possible. It is the view o f the author that selection pressure is a

108

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

very important property as is the ability to easily control it. Exponential ranking therefore is the

favoured option particularly for non time-sensitive applications.

3.6.4 Crossover

Once two parents have been selected, it is necessary for them to exchange genetic material. Crossover

describes this process o f combining two parent chromosomes to produce child chromosomes. It is

widely acknowledged that crossover is the main search mechanism within a GA. By combining parent

chromosomes the GA often produces new chromosomes and as a result new areas o f the search space

are explored.

In the natural world, two parent chromosomes do not always exchange genetic material (for example

one o f the parents may be infertile or two parents do not mate). This phenomenon is carried over into

GAs and parent chromosomes exchange genes with a given probability known as the crossover

probability, pc or crossover rate. Since crossover enables quick exploration of the search space,

crossover should take place with probability greater than 0.5. Just as with selection, there are many

different crossover techniques and some o f the more popular ones will now be discussed. It must be

noted that each crossover scheme has its relative merits and a brief evaluation will follow.

3.6.4.1 Single-Point Crossover

Single point crossover has already been discussed in Section 3.4.2. Genetic information is exchanged

about a single crossover point. Although simple, this method has a number o f shortcomings. Firstly, it

cannot combine all possible schemata that are present in the parents. For example, the OOxxxxl and

xxx llxx cannot be combined to form 00x11x1. Also, schemata of large defining length have a greater

probability of destruction than those o f short defining length. This could be a significant hurdle to the

evolutionary process if for example, the schema lxxxxxO was required to form the optimal solution(s).

Furthermore, single point crossover suffers from end-point bias meaning that the end-points of

chromosomes will always be exchanged between parents.

3.6.4.2 Two Point and Multi-Point Crossover

Two point crossover is very similar to the single point case except two points are randomly chosen

between which the chromosomes exchange genetic information. Figure 3.8 illustrates two point

crossover for chromosomes o f length 8.

109

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Parents Offspring

0 i i o q 0 1
1 1 1 1 ll 1 0

crossover

point 1

crossover

point 2

1 1 1 1 1 0 1 0

0 1 1 0 0 1 0 1

Figure 3.8. Illustration o f two-point crossover.

Since two crossover points are selected, this scheme reduces the likelihood o f disrupting schemata of

large defining length and can also combine more schemata than single point crossover. End-point bias

is also reduced.

Multi-point crossover (which also encompasses two-point crossover) exchanges genetic information

about p crossover points. The study by Spears and De Jong [23] suggests that two crossover points is

the optimum number and that more than this results in GA performance degradation.

3.6.4.3 Uniform and Parameterised Uniform Crossover

Uniform crossover [24] does not involve exchanging segments of chromosomes but rather it involves

exchange on a gene by gene basis. The exchange o f genes is performed according to a randomly

generated crossover mask which consists o f l ’s and 0’s and is equal in length to the chromosomes.

Wherever a 1 appears in this mask, the corresponding gene in the first parent is used to form the

offspring and wherever a 0 appears, the gene from the second parent is used. This scheme is illustrated

in Figure 3.9 below.

Crossover mask 0 1 1 0 1 1

Parent 1 1 1 0 0 0 0

'I' vL 4' ■J'

Offspring 0 1 0 1 0 0

t T

Parent 2 0 0 1 1 1 0

Figure 3.9 Illustration o f uniform crossover

110

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

The second offspring is created by swapping the parents and repeating the process. Since the crossover

mask is generated randomly with the l ’s and 0 ’ having equal probability o f occurrence (0.5), the

number o f crossover points using uniform crossover will average 1/2, where I is the chromosome length.

Parameterised uniform crossover [25] is similar to the above method except that the exchange of genes

occurs with a probability px which usually takes a value in the range 0.5 < px < 0.8.

Uniform crossover in general has no positional bias so any schema contained in the two parents can be

recombined in the offspring. However, since this technique can be very disruptive o f schemata, it can

prevent coadapted alleles being preserved from generation to generation.

3.6.4.4 Brief Comparison o f Schemes

As with so many other GA issues there is no simple answer to the question, “which crossover scheme is

the best ?”. Much of the research is based on empirical evidence and on only a handful o f test functions.

Different studies have also produced different results [8]. Although a number o f properties such as

positional bias and probability of schema disruption have been devised to aid the study o f crossover

schemes, it seems that even they do not provide definitive guidelines.

Spears and De Jong [24] strongly favour parametrised uniform crossover and are very critical o f multi­

point crossover for more than two crossover points. Very few researchers however, have addressed the

interactions between the different crossover schemes and for example, encodings, fitness functions and

so on. It seems that these types o f studies will provide further insight into which variant o f crossover to

use and why.

So which scheme does one use? It is the view o f the author that two-point crossover provides the most

balanced technique in terms of simplicity o f implementation, schema disruption and positional bias.

3.6.5 Mutation

As already mentioned mutation is the sporadic, random alteration of genes. For binary encoded

chromosomes mutation flips gene values from 1 to 0 or vice versa. In real valued encodings mutation

may result in a randomly generated number replacing the existing allele of a gene.

The crossover operator enables rapid exploration o f the search space. After a number o f generations

however, with crossover alone, the GA will converge on a number of optima and exploration o f

uncharted territory will cease. The GA is said to be exploiting existing chromosomes. The mutation

111

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

operator provides a mechanism for further exploration o f the search space by creating chromosomes

that may not have been created through crossover alone.

3.6.6 Selection of GA Operator Probabilities

As already mentioned, the search strategy o f a GA is a balance between exploration and exploitation.

Population size, selection, crossover probability and mutation probability are key parameters in helping

to achieve this balance. High crossover probabilities increase the incidence o f recombination of good

schemata but also can disrupt good strings. Increasing mutation rates tend to transform the GA into a

random search but also helps to introduce lost genetic material and ensures some exploration takes

place during the latter stages o f the search. Large populations can ensure greater genetic diversity and

help to prevent premature convergence, but the run-time o f the algorithm is obviously increased.

Choice o f these interacting control parameters is obviously an optimisation problem in itself and is an

active area of study [26],[27] . Several researchers have proposed sets o f control parameters that have

performed well on test functions. Two distinct sets which are particularly effective in the case of large

and small populations respectively have emerged.

1. crossover probability = 0.6

mutation probability = 0.001

population size = 100

This scheme places emphasis on crossover in large populations rather than on mutation [26].

2. crossover probability = 0 .9

mutation probability = 0.01

population size = 3 0

This scheme favours very high crossover rates as high disruption is seen to be needed in small

populations [27].

Another approach proposed by the GA community involves so-called adaptive schemes, in which the

operator probabilities change with time. Fixed parameter settings have the disadvantage of perhaps

working better early on in a run but then not so well later on. One strategy is to exponentially decrease

mutation as generations evolve to decrease exploration and increase exploitation [28], [29]. The

rationale behind this plan is that in later generations the GA should not be thrown off the scent o f good

solutions. A completely opposite approach is to exponentially increase mutation as generations evolve

since crossover will no longer produce further variety amongst solutions [30], [31]. Another adaptive

approach is based on the success o f an operator at improving the fitness o f offspring [32]. Credit is

given to an operator when it produces the fittest chromosome in the population. A weighting score is

112

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

then given to each operator based on its success over the past 50 (or any other given number) of

matings. For each subsequent mating each operator is selected probabilistically based on its score over

the previous 50 matings. During the course o f the GA the operator probabilities vary and adapt specific

to the problem in hand.

As is the case with many topics in GA theory, there is lively debate about which strategy should be

adopted and why. Many o f the arguments are based on empirical evidence and have been proven only

for a handful o f test functions [33], [34]. When applying a GA to a problem, the user must be willing to

experiment and find appropriate operator probabilities and strategies for the particular case. The ideal

GA would not only adapt chromosomes to a particular fitness function but would also adapt parameter

settings such as population size, selection pressure, and crossover and mutation rate. As population

evolve, these parameters would be dynamically altered based upon the performance o f the algorithm. At

present it seems that very little seems to have been done on this front which is likely to be a very

important area for future research.

3.7 GA Applications

Since their inception, GAs have been embraced across a wide range o f application areas. The GA’s

abilities as an optimisation tool have been recognised as providing a viable and in some cases, an only

option in many problems areas.

Numerical Function Optimisation. Function optimisation was one o f the earliest applications o f GAs.

Conventional optimisation techniques do not always work well on multi-modal and noisy functions but

GAs have excelled in this area [35].

Scheduling Problems. This class o f problems require the efficient allocation of resources within some

given constraints. Examples include the school time-tabling problem [36], efficient allocation of

processor time in a multiprocessor computer system [37] [3 8] and the optimisation o f the manufacturing

processes within an industrial plant to optimise profit, production time and so on [39].

Aerospace and Automotive Design. Engine designs have been optimised to reduce noise [40],

aerodynamic optimisation for aircraft has been tackled [41] as has controller design for complex fighter

aircraft [42] and a GA has been applied to the design o f an anti-lock braking system [43].

Machine Learning and Artificial Intelligence. GAs have been successfully used in a number o f

robotic/intelligent machine applications such as motion planning [44] [45]. Efficient neural networks

have been designed with the help o f GAs [46].

113

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Genetic Programming. Genetic programming [47] [48] is a branch o f evolutionary computing that

evolves computer programs to solve a specific task. Given a set programming functions (sorting,

addition, multiplication, etc.) an initial population o f programs is generated containing a random sample

of the functions. The fitness is assessed by the ability o f a given program to solve a certain problem,

such as sorting a set of numbers and finding the mean and standard deviation. Subsequent generations

evolve in the usual manner.

3.8 Summary

It is apparent from this brief introduction that GAs form a very broad and rich subject area. From the

subject’s infancy to the present day, researchers have been developing new implementations o f the

algorithm as more and more application areas are tackled. Although the list of applications in the

previous section is just a sub-set of the areas in which they have been applied, it is apparent that GAs

are able to solve problems across a wide range o f disciplines. The main criticisms of past GA research

is that much o f it has been empirical, in particular with regards to parameter settings. There are many

papers that conclude, “Our findings are based on a limited number of test functions....and the users

must be willing experiment with their fitness functions”. This however may be changing, as the need for

a firm theoretical framework is being recognised.

Nonetheless, the success of GAs over the last 20 years or so has been promising and has resulted in

several international conferences and journals. Many Artificial Intelligence/Machine Learning

paradigms have made a spectacular entrance into academia and industry. Unfortunately, early promises

often fail to materialise and the techniques die as quick as they became the vogue. GAs on the other

hand seem to have passed the rigours of time, their success has if anything, exceeded initial claims.

Although they may never provide a panacea for all, they have certainly established themselves in the

mainstream as robust optimisation tools.

114

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

3.9 References

[1] Holland, J, “ADAPTATION IN NATURAL AND ARTIFICIAL SYSTEMS”, The MIT Press,

Cambridge, Massachusetts, USA, 1992.

[2] Darwin, C., “The Origin of Species”, Orion Books, 1872.

[3] Matthews, R., “Hard Maths ? No problem”, New Scientist, No. 2001, Vol. 148, pp. 40 - 43, 28

October 1995.

[4] Goldberg D.E., “GENETIC ALGORITHMS IN SEARCH, OPTIMISATION AND MACHINE

LEARNING”, Addison-Wesley, Reading, MA, 1989.

[5] R. Poli., “Why the Schema Theorem is Correct also in the Presence o f Stochastic Effects”,

Proceedings o f the Congress on Evolutionary Computation (CEC 2000), San Diego, USA, July 2000

[6] Vose, M. D., “Generalising the notion o f schema in genetic algorithms”, Artificial Intelligence, No.

50, p350-396., 1991

[7] Grefenstette J. J., Baker J. E. , “How genetic algorithms work: A critical look at implicit

parallelism”, In J. D. Schaffer, ed. , Proceedings of the International Conference on Genetic

Algorithms, Morgan Kaufmann, 1989.

[8] Mitchell M., “AN INTRODUCTION TO GENETIC ALGORITHMS”, The MIT Press, Cambridge,

USA, 1996.

[9] Montana D.J., Davis L.D., “Training feedforward networks using genetic algorithms”, Proceedings

of the International Joint Conference on Artificial Intelligence”, Morgan Kaufmann, 1989.

[10] Schulze-Kremer S., “Genetic algorithms for protein tertiary structure prediction”, In R. Manner

and B.Manderick, eds., Parallel Problem Solving from Nature 2, North-Holland, 1992.

[11] Antonisse J., “A new interpretation of schema notation that overturns the binary encoding

constraint”, In Schaffer J.D. ed., Proceedings o f the Third International Conference Algorithms,

Morgan Kaufmann, 1989.

[12] Janikow C.Z, Michalewicz Z., “An experimental comparison o f binary and floating point

representations in genetic algorithms”, In R.K. Belew and L.B. Booker ed s ., Proceedings o f the Fourth

International Conference on Genetic Algorithms, pp. 151 -157 , Morgan Kaufmann, 1991.

115

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

[13] Wright A.H., “Genetic algorithms for real parameter optimisation”, I G. Rawlins, ed., Foundations

of Genetic Algorithms, Morgan Kaufmann, 1991.

[14] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G., “Performance assessment

o f multiobjective optimizers: an analysis and review”, IEEE Transactions on Evolutionary

Computation, pp. 117-132, Vol. 7, Issue 2, Apr. 2003.

[15] Goldberg D. E. , Deb K., “A comparative analysis o f selection schemes used in genetic

algorithms”, In Rawlings J.G.E. ed., Foundations of Genetic Algorithms, pp. 69 - 93, Morgan

Kaufmann, 1991.

[16] Blickle T., Thiele L., “A comparison o f selection schemes used in genetic algorithms”, Technical

Report Nr. 11, Swiss Federal Institute o f Technology, Zurich, Switzerland, December 1995.

[17] Hancock P.J.B., “An empirical comparison o f selection methods in evolutionary algorithms”, In

Fogarty T.C. ed. Evolutionary Computing: AISB Workshop, 1994.

[18] de la Maza M., Tidor B., “An analysis of selection procedures with particular attention paid to

proportional and boltzmann selection”, In Forrest S. ed., Proceedings o f the Fifth International

Conference on Genetic Algorithms, Morgan Kaufmann, 1993.

[19] Blickle T., “Theory o f Evolutionary Algorithms and Applications and Application to System

Synthesis”, Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich, 1996.

[20] Baker J.E., “Reducing bias and inefficiency in the selection algorithm”, In Grefenstette J.J. ed.,

Proceedings o f the Second International Conference on Genetic Algorithms, Lawrence Earlbaum,

1987.

[21] Beasley D., Bull D.R., Martin R.R., “An overview o f genetic algorithms: Parts 1 and 2”, Inter-

University Committee on Computing, Dept, of Computing Mathematics, University o f Cardiff, Cardiff,

UK, Dept, o f Electrical and Electronic Engineering, University of Bristol, Bristol, UK, 1993.

[22] Baker J.E., “Adaptive selection methods for genetic algorithms”, In J.J. Grefenstette, ed.,

Proceedings of the First International Conference on Genetic Algorithms and their Applications,

Erlbaum, 1985.

[23] Spears W.M., De Jong K.A., “An analysis o f multi-point crossover”, In G. Rawlins ed.,

Foundations of Genetic Algorithms, pp301 - 315, Morgan Kaufmann, 1991.

116

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

[24] Syswerda G., “Uniform crossover in genetic alogorithms”, In R.K. Belew and L.B. Booker eds. ,

Proceedings o f the Fourth International Conference on Genetic Algorithms, pp2 - 9, Morgan Kaufmann,

1991.

[25] Spears W.M., De Jong K.A., “On the virtues o f parameterised uniform crossover”, In J.D.

Schaffer, ed., Proceedings o f the Third International Conference on Genetic Algorithms, pp230 - 236,

Morgan Kaufmann, 1989.

[26] De Jong K.A. and Spears W.M., “An analysis o f the interacting roles o f population size and

crossover in genetic algorithms”, Proc. First Workshop Parallel Problem Solving from Nature, pp. 38-

47, Springer-Verlag, Berlon, 1990.

[27] Grefenstette J.J., “Optimisation o f control parameters for genetic algorithms”, IEEE Trans.

Systems, Man and Cybernetics, Vol SMC-16, N o . l , Jan/Feb 1986.

[28] Srinivas M, Patnaik L.M., “Adaptive Probabilities o f Crossover and Mutation in Genetic

Algorithms”, IEEE Transactions on Systems, Man and Cyberspace, April 1994.

[29] Michalewicz Z., Janikow C.Z., “Handling constraints in genetic algorithms”, In R.K. Belew and

L.B. Booker e d s ., Proc. o f the Fourth International Conference on Genetic Algorithms, pp. 151 - 157,

Morgan Kaufmann, 1991.

[30] Davis L., “Adapting operator probabilities in genetic algorithms”, In J.D. Schaffer, ed.,

Proceedings o f the Third International Conference on Genetic Algorithms, pp61 - 69, Morgan

Kaufmann, 1989.

[31] Syswerda G., “Schedule optimisation using genetic algortihms”, In L. Davis ed., HANDBOOK OF

GENETIC ALGORITHMS, pp. 332 - 349, Van Nostrand Reinhold, 1991.

[32] L. Davis, “HANDBOOK of GENETIC ALGORITHMS”, Van Nostrand Reinhold, 1991.

[33] Bramlette M.F., “Initialization, mutation and selection methods in genetic algorithms for function

optimisation”, In R.K. Belew and L.B. Booker eds. , Proc. o f the Fourth International Conference on

Genetic Algorithms, Morgan Kaufmann, 1991.

[34] Schaffer J.D., Caruana R.A., Eshelman L.J., Das R., “A study o f control parameters affecting

online performance o f genetic algorithms for function optimisation”, In J.D. Schaffer, ed., Proceedings

o f the Third International Conference on Genetic Algorithms, Morgan Kaufmann, 1989.

117

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

[35] De Jong K. A., “An analysis o f the behaviour of a class o f genetic adaptive systems”, Ph.D. Thesis,

University of Michigan, Ann Arbor, USA, 1975.

[36] Burke E.K., Elliman D.G. and Weare R.F., “A Genetic Algorithm Based University Timetabling

System” East-West Conference on Computer Technologies in Education, Crimea, Ukraine pp35-40,

1994.

[37] Ahmad I., Dhodhi M.K., “Multiprocessor scheduling using a problem-space genetic algorithm”,

Proceedings o f the First International Conference on Genetic Algorithms in Engineering Systems:

Innovations and Applications GALESIA, pp 152 - 157, University o f Sheffield, Sheffield, UK, Sept.

1995.

[38] Baxter M.J., Tokhi M.O., Fleming P.J., “Task-processor mapping for real-time parallel systems

using genetic algorithms”, Proceedings o f the First International Conference on Genetic Algorithms in

Engineering Systems: Innovations and Applications GALESIA, pp 158 - 163, University o f Sheffield,

Sheffield, UK, Sept. 1995.

[39] Hindi, K.S., Hongbo Yang, Fleszar, K., “An evolutionary algorithm for resource-constrained

project scheduling, IEEE Transactions on Evolutionary Computation, pp. 512- 518, Vol. 6, Issue 5,

Oct. 2002.

[40] Fisher K. A., “The application o f genetic algorithms to optimising the design o f an engine block for

low noise”, Proceedings o f the First International Conference on Genetic Algorithms in Engineering

Systems: Innovations and Applications GALESIA, pp 18 -22, University o f Sheffield, Sheffield, UK,

Sept. 1995.

[41] Obayashi S., Takanashi S., “Genetic algorithm for aerodynamic inverse optimisation problems”,

Proceedings of the First International Conference on Genetic Algorithms in Engineering Systems:

Innovations and Applications GALESIA, pp 7 -12, University of Sheffield, Sheffield, UK, Sept. 1995.

[42] Chipperfield A., Fleming P.J., “Gas turbine engine controller design using multiobjective genetic

algorithms”, Proceedings o f the First International Conference on Genetic Algorithms in Engineering

Systems: Innovations and Applications GALESIA, pp 214 - 219, University o f Sheffield, Sheffield,

UK, Sept. 1995.

[43] Yonggon Lee, Zak S.H , “Designing a genetic neural fuzzy antilock-brake-system controller”,

IEEE Transactions on Evolutionary Computation, pp. 198- 211, Vol. 6, Issue 2, Apr. 2002.

118

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

[44] Chen M., Zalzala A.M.S., “Safety considerations in the optimisation o f paths for mobile robots

using genetic algorithms”, Proceedings o f the First International Conference on Genetic Algorithms in

Engineering Systems: Innovations and Applications GALESIA, pp 299 - 306, University o f Sheffield,

Sheffield, UK, Sept. 1995.

[45] Rana A.S., Zalzala A.M.S., “An evolutionary algorithm for collision free motion planning o f multi­

arm robots”, Proceedings o f the First International Conference on Genetic Algorithms in Engineering

Systems: Innovations and Applications GALESIA, pp 123 - 130, University o f Sheffield, Sheffield,

UK, Sept. 1995.

[46] Tang K.S., Chan C.Y., Man K.F., Kwong S., “Genetic structure for NN topology and weights

optimisation”, Proceedings o f the First International Conference on Genetic Algorithms in Engineering

Systems: Innovations and Applications GALESIA, pp 250 -255, University o f Sheffield, Sheffield, UK,

Sept. 1995.

[47] Koza J.R., “GENETIC PROGRAMMING: ON THE PROGRAMMING OF COMPUTERS BY

MEANS OF NATURAL SELECTION, MIT Press, 1992.

[48] Kishore, J.K.; Patnaik, L.M.; Mani, V.; Agrawal, V.K., “Application o f genetic programming for

multicategory pattern classification”, IEEE Transactions on Evolutionary Computation, pp. 242-258,

Vol. 4, Issue 3, Sep. 2000.

119

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Chapter 4. The Derivation of Minimal Test Sets Using Genetic

Algorithms

4.1 Introduction

The design of today’s integrated circuits (ICs) and microprocessors is a very large and complex task.

For example, Intel’s Pentium II processor, containing 7.5 million transistors, took approximately 1600

man years to design [1]. To remain competitive, microprocessor manufacturers must continually satisfy

Moores Law1, striving to develop faster, more complex designs. This increase in complexity requires

substantial increases in design effort which in turn requires the continual development o f sophisticated

computer aided design (CAD) and test algorithms.

Digital design by nature requires many large and NP-hard problems to be solved. Many tasks involve

finding solutions to multi-modal, multi-objective optimisation problems. Over recent years researchers

have applied a variety of mathematical techniques to these problems, including Genetic Algorithms.

Although GAs do not provide solutions for every optimisation task within digital design, they have

certainly excelled in a number o f key areas.

Before the concept of a minimal test set and its derivation using a genetic algorithm is discussed, this

chapter will begin by introducing the motivation behind this work and then with a brief overview o f

GAs as applied to the CAD o f integrated circuits. This is then followed by a survey of existing test set

minimisation techniques.

4.2 Motivation

The motivation behind the derivation of minimal test sets is two-fold. A number o f integrated circuit

manufacturers are faced with the task o f testing millions of units per annum. As mentioned in Chapter

One, Intel, the microprocessor manufacturer produces in the region o f 50 million units each year and

the testing of these can account for up to one third of their total manufacturing budget [2]. Post

production testing of ICs requires each unit to be placed in an automatic test equipment (ATE) which

applies a set of test vectors to the circuit under test. Smaller test sets will result in smaller test

application times in the ATE, in turn reducing the per unit cost of testing.

Another very important reason for reducing test set sizes is due to the increased use o f built-in self test

(BIST) [3] structures that are becoming prevalent in the current generation o f ICs. In this scheme, the

1 M oore’s Law states that m icroprocessor com plexity (pow er, speed, transistor density) roughly doubles every 2
years o r so.

120

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

test vectors required to test a circuit or sub-circuit within an IC are stored on the circuit itself. A small

area of circuit will contain memory elements (in most cases read only memory) which are exclusively

used for storing the test vectors. Obviously, as test sets become smaller so does the amount of on-board

memory required to store the test vectors. This in turn reduces the amount o f silicon required to produce

the IC, which in turn reduces the cost o f each circuit and increases the yield during manufacture.

4.3 Application of GAs in Computer Aided Design and Test of Integrated

Circuits.

Many of the problems in CAD o f ICs including the derivation of minimal test sets, share the following

characteristics [4].

• Global multi-modal, multi-objective optimisation tasks

• Large, NP-hard problems

• Mutually dependent problems, artificially divided into (nP-hard, large) sub-problems

• Highly constrained

• ‘Noisy’ cost/objective functions (estimations)

If GAs are to be accepted in the CAD community they must compete with the current state-of-the-art

algorithms for solving problems o f this nature. They should not be used because they are novel or the

current vogue. They must offer performance improvements over the current, established techniques in a

given problem domain.

One o f the earliest applications o f GAs to IC design was the NP-hard problem o f circuit layout or

floorplan design [5]. The shape o f various modules in a microprocessor for example (memory blocks,

ALU, etc.), can be approximated as rectangles. The goal of the GA is to place and orient n given

rectangles such that no rectangles overlap and the area o f the rectangle enclosing all n rectangles is

minimised. The earliest work using GAs dates back to the mid to late eighties [6] [7], but was not

competitive with what was then the state-of-the-art. Over recent years however, GA based approaches

have produced some very competitive results, finding near optimal solutions [8] [9] [10]. Once the

constituent blocks of an IC have been placed, the various connections between them have to be

established. This process of routing has also benefited from competitive GA approaches [11][12].

More recently, GAs have been applied to some o f the earlier stages in the digital design process. For

example they have been used to minimise combinational and sequential logic expressions [13][14]. In

the domain of logic synthesis GAs have been able to produce good solutions. The goal o f the

optimisation process in this domain is to produce Boolean representations with, for example, low power

121

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

consumption and small circuit areas. Two state-of-the-art data structures for representing digital circuits

are Binary Decision Diagrams (BDDs) and Ordered Kronecker Functional Decision Diagrams

(OKFDDs). GAs have been applied successfully to both BDD minimisation [15] and OKFDD

minimisation [16].

An exciting development in circuit design has been the recent advent of the field o f evolvable hardware

[17]. This term describes the process of employing an evolutionary algorithm to design electronic

circuits or components. Genetic programming has been used to design both passive and active analogue

circuits [18]. Genetic algorithms have been used to design efficient operational amplifiers [19], and also

to optimise transistor size in VLSI circuits [20]. A field that has attracted much attention since the mid

1990s has been evolutionary electronics [21]. Given a circuit function, GAs evolve candidate circuits

which are mapped onto Field Programmable Gate Arrays (FPGAs). The gate arrays contain standard

logic gates such as AND, OR, NOT and so on. The final results produced by the GA not only employ

these gates but also the intrinsic properties of silicon, from which the gate arrays are composed [22].

The circuits are very often far more compact than those designed by humans using traditional

techniques. Also, traditional techniques are most unlikely to adopt the capacitative/inductive properties

of silicon in the design, something that the GA seems able to exploit. The researchers in this field are as

yet unable to fully understand why the final evolved design functions correctly. When seemingly

redundant circuit features are disconnected from the circuit, they often cease to operate correctly.

From the above discussion, GAs have been used across a broad range o f digital/analogue design tasks.

Many of the applications have required the design o f new variants of the genetic algorithm. For

example new encodings and new ways of implementing the GA operators (e.g. crossover, mutation)

will have been devised. It is fair to state that many GA based CAD algorithms do not compete with

existing state-of-the-art techniques on the basis o f time. They do however compete on solution quality.

Table 4.1 below, taken from [23], illustrates this point for placement/floorplan design. But it is felt that

as computing power continues to increase and pure GA research matures, their use will become

prevalent in many other design areas where they are currently uncompetitive on time.

Algorithm Result Quality Speed

Simulated Annealing Near Optimal Very Slow

Genetic Algorithm Near Optimal Very Slow

Force Directed Medium....Good Slow....Medium

Numerical Optimisation Medium....Good Slow....Medium

Minimum Cut Good Fast

Clustering/constructive placement Poor Fast

T a b le 4 .1 Comparison o f VLSI C ell P lacem ent A lgorithm s taken fro m [2 3]

122

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

One o f the more successful applications of GAs is in the area of digital testing and in particular

automatic test pattern generation. Test Pattern generation (TPG) is an NP-hard problem [24], well

suited to a GA approach. One o f the earliest GA based test generation schemes was presented by

Srinivas and Patnaik [25]. The scheme uses a random test pattern generator to create the initial

population o f test vectors. Fault simulation is then invoked and using the search capabilities o f a GA,

test sets are created with a given fault coverage. The scheme combines two traditional TPG methods

viz. the directed search approach and random test pattern generation. This combined approach results in

a smaller number o f test vectors having to be fault simulated than in a purely random scheme. The

algorithm has been used to generate test sets for the ISCAS-85 benchmark circuits, where it produced

considerably better results than the random approach in terms o f both test set size and the number of

test vectors which have to be fault simulated. O’Dare and Arslan [26] have presented a similar TPG

scheme using fault simulation and an initial, randomly generated population of test vectors. They claim

to have generated compact test sets, although no real evidence is presented in the paper and no results

for any benchmarks circuits are included.

Both o f the above test pattern generation schemes are for combinational circuits. Over recent years

much work has appeared for sequential circuits [27] [28] [29] and the reader is directed towards the

references for further details.

4.4 A Survey of Test Set Minimisation Techniques and Algorithms

Many o f the popular test pattern generation algorithms are capable of achieving very high fault

coverages for both sequential and combinational circuits [3][30-33]. Achieving high fault coverage is a

well researched and understood domain. Over recent years however, the research community has

focused on the issue o f maintaining high fault coverage while reducing the number o f test vectors in the

test set. Many ATPG algorithms do not address this issue of test set minimisation [34] [35] [36] [37] but,

increasingly, papers outlining test set minimisation techniques are appearing in the literature. In what

follows these techniques and algorithms will be discussed in more detail.

Random test set generation [38] is a test set minimisation technique that may be viewed as

incorporating a ‘random walk’ optimisation strategy. From an initial test set, generated by an ATPG,

further test sets are formed by randomly selecting test vectors from the initial set. If there are t test

vectors in the initial test set then the randomly generated test sets will comprise v test vectors where

v < / . The fault coverage o f each test set is obtained by performing fault simulations. The procedure is

halted after a given number of test sets are generated and the smallest test set with the required fault

coverage is returned. Random test set generation does achieve some reduction in test set size but the

123

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

quality of the final test sets does not compete with those generated by more ‘directed’ means. Results

obtained by such means will be presented later in this chapter.

Reverse order fault simulation [39] [40] [41] [42] is a relatively simple and popular technique. An ATPG

derives an initial test set. The order in which the test vectors were generated is retained and is reversed

and fault simulation is then invoked. A reduction in test set size normally occurs, since it is often the

case that test vectors generated late in the test generation process detect hard-to-detect faults in addition

to some of the easier to detect faults which may already have been covered by earlier test vectors.

Although simple, this technique does require additional fault simulations, which is a costly process

(both in terms o f processor speed and memory requirements). Reductions are certainly achieved in test

set size, but it is felt that they are not competitive in comparison with more sophisticated methods.

PODEM-X [43] is a well established test pattern generation algorithm, comprising three test generation

schemes, a fault simulator and a test set compactor. The test set compactor merges as many different

test vectors as possible into a single test pattern. The merging o f patterns is achieved by making use o f

the unassigned primary inputs in a given test pattern. Obviously, the assigned primary inputs o f the test

patterns to be merged must match to avoid any conflicts. For example consider the test patterns given in

Table 4.2. The first and the final patterns can be merged since the unassigned values in pattern 1 can be

replaced by the corresponding assigned values in pattern 3 and the assigned primary values in both

patterns are equal, therefore avoiding conflict. Test patterns 2 and 3 cannot be merged however since

the assigned values o f primary inputs a and e conflict.

Test

Vector a b c

Primary

d

Inputs

e / 8 h

1 X X 0 X 0 0 X 0

2 0 X 0 X 1 0 0 X

3 1 1 X 1 0 0 X 0

T a b le 4 .2 Three test vectors and their prim ary input assignments. Test vectors 1

an d 3 can be m erged as their assigned prim ary inputs are non-conflicting.

The above scheme is an example of static compaction. That is, the compaction algorithm is invoked

after the test patterns have been generated. PODEM-X also contains a dynamic compactor which

attempts to reduce test set sizes as the test vectors are generated. When a test vector is generated for a

given fault, it is often the case that not all primary inputs will be assigned. When this occurs, PODEM-

X selects a different fault and attempts are made to cover this new fault with the assigned values o f the

original vector and by experimenting with assignments to the unassigned primary inputs. Further faults

124

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

are selected and simulated until as many primary inputs as possible o f the o f the original test vector are

assigned.

As with all test generation and compaction schemes, the above process is a collection o f nP-hard

problems. As the number of inputs increase, experimenting with the unassigned values o f each test

vector becomes a costly process.

GATE [44] is a scheme based on genetic algorithms that not only generates test vectors for

combinational circuits but also applies a number o f heuristics to achieve compact test sets. The test

generation algorithm within GATE is known as SOFE [40] and it comprises a random test pattern

generator and a fault simulator. SOFE itself performs test set minimisation and begins with a randomly

generated, initial test set with a given fault coverage. The fault simulator then simulates a given fault

until a test vector (from the initial test set) is found to cover that fault. This is known as ‘Stop On First

Error’ (SOFE). Further faults are simulated, reducing the size o f the initial test set since only test

vectors that cover a new fault are retained. A second trial (SOFE/2) is then performed by reversing the

order o f the test vectors in the test set, in the hope o f achieving a further reduction in test size as

discussed in section 4.5.2. Further SOFE trials are then performed with other test set orderings in the

hope o f reducing the test size even further. Carter et al. [40] used SOFE/6 in conjunction with a

covering heuristic (simulating groups o f vectors and eliminating vectors if there is an overlap in fault

coverage) to generate relatively compact test sets.

GATE starts by randomly generating a population o f n test sets and pre-processes them in a manner

very similar to SOFE (reverse order fault simulation and other permutations o f test vectors in a test set).

GATE then evolves subsequent populations o f test sets in the usual manner using selection, crossover

and mutation. To achieve a further level o f compaction and algorithmic efficiency, the evaluation o f the

fitness function for each test set is achieved using a ‘covering heuristic’. Repeated fault simulation of a

test vector is expensive. In an effort to reduce this cost, GATE compiles a so-called fault matrix (see

Section 4.5) so each test vector is only simulated once. To achieve the additional compaction, a test

vector is only included in the test set if it covers the greatest number of remaining faults, which may be

ascertained from the fault matrix.

GATE therefore can be seen to perform three distinct levels o f test set compaction.

i. SOFE-like pre-processing of the initial population

of test sets.

ii. GATE’S own covering heuristic to eliminate test

vectors that cover previously detected faults.

iii. Search space exploration capabilities o f a GA to

locate minimal test sets.

125

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

The effectiveness o f the GATE algorithm can be seen from results in Table 4.3 below, which compares

the results of a ‘pure’ SOFE approach with those o f GATE.

Circuit

SOFE/6

Test set size

GATE

Test set size

Reduction using GATE

(%)

Average Best Average Best Average Best

C432 45.0 45.0 39.4 37.0 12.4 17.8

C3540 149.0 149.0 128.0 128.0 14.1 14.1

T a b le 4 3 Com parison o f test se t sizes ach ieved by SO FE/6 an d GATE f o r two

ISCAS-85 benchm ark circuits, taken from [53]. The results are an average o ver

2 0 tria ls o f each algorithm.

As can be seen from the above table, the additional processes of GATE achieve test set reductions of

between 14.1% and 17.8% over the SOFE/6 approach.

COMPACTEST [45] is a test set generation and compaction algorithm which also employs a variety of

minimisation heuristics. Before the test vectors are actually generated (using PODEM [31]), there is a

pre-processing phase which reorders the fault list. In such a fault oriented test pattern generator, the

order in which the faults are presented to the algorithm can play a significant role in determining the

size of the final test set. When a test vector is generated for a fault appearing at the top o f a fault list it is

fault simulated and is often found to cover faults found nearer the bottom of the list. This process is

continued until all faults are covered. COMPACTEST includes a heuristic for ordering the faults in

such a way that tests covering faults at the top o f the list cover a maximal number o f faults found later

in the list. The heuristic relies on the concept o f independent faults. As this is beyond the scope o f the

current discussion, the reader is directed to the reference for the details o f the reordering algorithm.

A second heuristic employed by COMPACTEST is known as maximal compaction which aims to

increase the fault coverage of a test vector by determining which assigned, primary inputs are not

essential to cover the fault for which the test was generated. By identifying these primary inputs and

experimenting with assignments, further faults are (hopefully) covered. The process is similar to that

used in PODEM-X.

A final heuristic used within COMPACTEST is known as rotating backtrace, the aim being to sensitise

different paths each time a value on a line has to be justified. In doing so, it is hoped that different

faults, propagating along different paths may be detected by a given test vector. An example, taken

from [45] will be discussed to clarify the concept. Figure 4.1 below illustrates a combinational circuit.

If a fault from the set {5/1, 6/1, 7/1, 8/1} is to be covered it is necessary to set line 12 and therefore line

126

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

10 to logic 0. This in turn will require at least one of the primary inputs {1, 2, 3, 4} to be set to logic 0.

In Pomeranz et al. [45] they outline the fact that in existing ATPGs the selection o f which one of these

primary inputs that is set to 0 is fixed. So for example when generating tests for the faults {5/1, 6/1, 7/1,

8/1}, primary input 1 will always be set to 0. Thus a primary fault will be covered, taken from the set

{5/1, 6/1, 7/1, 8/1} in addition to a secondary fault, viz. 1/1. In COMPACTEST however, for each fault

in the aforementioned set, a different primary input (from primary 1 to primary input 4) will be selected.

So for example, to cover 5/1 primary input 1 will be set to 0, for 6/1 primary input 2 will be set to 0 and

so on, thus increasing the number o f secondary faults covered by the test vectors.

AND

OR

AND

AND

OR

F ig u re 4.1 Com binational log ic circuit taken from [54].

By employing the three compaction heuristics just described, COMPACTEST is able to generate very

compact test sets, competing with many existing schemes in terms on final solution quality i.e. test set

size.

The test set minimisation procedures described above have been largely developed for combinational

circuits. Over the last three or so years some work has appeared addressing the compaction issue for

sequential logic circuits [46-49]. Since the present discussion is relevant to combinational circuits, the

reader is directed to the references for further details.

4.5 The Minimal Test Set Problem

For a combinational logic circuit and the single stuck-at fault model, a minimal test set can be defined

as follows:

For a given set S o f detectable faults a set o f test vectors is said to be a

minimal test set if it contains the least number o f test vectors required to

coverall the faults in S.

127

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

It must be noted that in general, for a given circuit, a minimal test set is not always unique as other test

sets o f the same size and fault coverage may exist. Using test generation algorithms such as those

mentioned earlier, test vectors can be derived for most if not all faults in a combinational circuit. These

test vectors therefore comprise a test set for the circuit under test. Consider the circuit given in Figure

4.2 below. The circuit contains three primary inputs and a single primary output. It contains five circuit

lines and since each line can be either stuck-at 1 or stuck-at 0, the circuit has ten possible faults. Since

there are three primary inputs, there are 23 possible input vectors, each o f which is displayed in the

fault matrix given in Table 4.3. A fault matrix is a convenient means of displaying the fault coverage o f

each test vector. The notations k/0 and k/1 denote the fault line k stuck-at-0 and stuck-at-1 respectively

and a V indicates each fault that is covered by a given test vector. For example, the test vector 000

covers the faults c /1, d /l and c /1.

F ig u re 4 .2 A three input, single output, com binational log ic circu it

FaultTest

a/0 aA b/0 b/labc c/0 c/1 d/0 d / l e /0 e/1

000

001

010

011

100

101

110

111

T a b le 4 .3 F ault m atrix f o r the circuit given in Fig. 4 .2

Due to the nature of combinational test pattern generation (path sensitisation, back-tracking [3]) it is

often the case that a single test vector covers several faults and this can be seen in Table 4.3. Also

apparent is the fact that most of the faults are covered by more than one test vector e.g. the fault c/1 is

covered by each of the test vectors 000, 010, 100. It is this overlap in fault coverage that can be

exploited to reduce the number o f test vectors in the test set. For example, the test vector 111 covers the

128

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

single fault e/0. By inspection of the fault matrix, this vector can be removed from the original test set

since the vectors 001, O il, 101 and 110 cover this fault in addition to other faults.

From the above discussion, the derivation o f minimal test sets is an example o f a multi-objective

optimisation problem. There are two interacting parameters which have to be optimised simultaneously,

viz.

i. the number o f test vectors in a test set have to be minimised and,

ii. fault coverage o f the test set, which has to attain a predetermined level set

by the ATPG tool.

So what is a minimal test set for the above circuit? For this simple example we expect all the faults to

be covered and there are three minimal test sets, viz. (010, 100, 110, 001), (010, 100, 110, 011) and

(010, 100, 110, 101). These sets are minimal, in the sense that they both cover all the faults and no

smaller subset o f the test vectors covers all the faults. Each set contains four test vectors, half the size of

the original test set. A 50% reduction in test set size could well translate to a 50% reduction in the post

production test overhead. Although simple, this example has illustrated the concept o f a minimal test set

and the reductions in test set size which can be achieved. In practice this reduction is often greater but

even small reductions in test set size could help reduce the large test costs incurred by manufacturers

such as Intel [2].

The size and complexity of the above circuit and its corresponding fault matrix are far removed from

those encountered in practical designs. For a fault matrix containing eight test vectors the minimal test

set can be found either through exhaustive test set evaluation or by inspection. But what about fault

matrices containing hundreds o f test vectors and possibly thousands of stuck-at faults? How would one

find a global or near global minimal test set? As the number o f test vectors, n in the original test set

increases, the task of finding a minimal test set grows as 2" i.e. the problem is NP-hard. Exhaustive

evaluation o f every possible test vector becomes unreasonable for values of say, n > 2 0 , so a more

sophisticated approach is required. From the discussion o f Chapter 2, genetic algorithms are well suited

to such an optimisation task and in what follows, such an algorithm will be shown to perform very well

in finding minimal or near minimal test sets.

4.6 GA-MITS : Genetic Algorithm based Minimisation of Test Sets

GA-MITS is a wholly original test set minimisation algorithm developed by the author and forms a

large part o f this PhD. It has been written using the ‘C’ programming language under the UNIX

operating system and uses a non-standard GA technique designed specifically for this application.

GA-MITS is a static, test set minimisation algorithm designed as a post-processor for existing test

pattern generation algorithms. As a post processor, GA-MITS will be presented with the results of an

129

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

ATPG tool that is, a test set consisting of a given number o f test vectors which covers a given number

of faults. Let the original test set T generated by the test pattern generator consist o f W(T’) test

vectors and cover a total o f A (c)max faults. It has been decided by the author that in GA-MITS a

constrained optimisation method will be adopted, i.e. the algorithm is minimising the test set subject to

a predetermined level o f fault coverage. This predetermined level o f fault coverage is normally equal to

the original fault coverage attained by the ATPG. The algorithm has been designed to easily

accommodate other fault coverage strategies and it is simply a matter of changing a single parameter in

the source code (it can search for test sets covering say, 90% o f the faults covered by the original test

set). The goal therefore of GA-MITS is to optimise two separate interacting and often conflicting

parameters; minimising the number o f test vectors in a test set while ensuring that the fault coverage o f

a test set is the same as the original fault coverage, or set to a prescribed level. In what follows, it is

assumed for simplicity that the original fault coverage is to be preserved.

The data required by GA-MITS is the fault matrix data generated by the ATPG tool, similar to that

given in Table 4.3. Given this, the algorithm ‘searches’ the fault matrix for minimal or near minimal test

sets covering all N {c) faults. This approach may be regarded as an instance o f the more general, set

covering problem [50]. The algorithm in its current form is applicable to combinational logic circuits

and the single stuck-at fault model, although it is felt by the author that it may be extended to

accommodate sequential logic.

The pseudo-code given in Figure 4.3 outlines the overall structure of GA-MITS. The algorithm begins

by generating a fault matrix from the test vector/fault coverage data produced by the ATPG tool. The

test pattern generation algorithm, be it random, deterministic or whatever, is o f no relevance to the

minimisation algorithm. It is the resultant vectors and accompanying parameters, that are required for

the minimisation process. These parameters are;

1 the number of test vectors N (t) present in the test set T, generated by

the ATPG tool.

2 the total number of possible faults/, in the circuit under test

3 the total number of faults N (c) covered by the original test set where,

W(CL

4 the fault coverage o f each test vector.

130

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Read fault matrix data from ATPG system
Set GA parameters

population size, N
no. generations, G
crossover probability, c
mutation rate, m

Generate initial random population o f test sets
For each generation

{ Evaluate fitness o f each test set
Select N/2 parent pairs

For each parent pair
{

randomly generate 2 crossover points
For each gene

{ apply crossover and mutation operators
)

}
}

Return fittest, minimal test set found after G generations

Figure 4.3 High level pseudo code for GA-MITS

Given the above parameters, a fault matrix can be generated and the required fault coverage, W(c)

o f the minimal test set can be established as a goal for the algorithm. The next few lines of the pseudo

code set the necessary GA parameters o f population size, number of generations to be created, and

crossover and mutation rates.

The algorithm then commences in the usual GA manner by first generating a random, initial population

of N test sets. Each ‘random’ test set will either be a sub-set of the original test set T or T itself. Since

there are N (T)mzx test vectors present in T, there are - 1 possible test sets 2 that can be

randomly generated or created at a later stage by the GA. The algorithm then enters the main loop,

iterating through (G - 1) generations. Once the fitness o f each candidate test set has been evaluated,

selection, crossover and mutation are used to create the subsequent generation o f test sets. When all

generations have been created, GA-MITS returns the fittest, minimal test set found.

From the discussion of Chapter Two, it is apparent that the application o f a GA to a given problem

requires careful consideration o f many design issues. For example, which crossover operator should one

use and what should be the crossover rate? The answers to these and many similar questions can only

be given once the GA designer has considerable knowledge o f the application and after thorough

experimentation. The remainder o f this section will outline which operators, selection schemes etc. have

131

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

been used within GA-MITS but will not give why each has been chosen. The reasoning behind the

design decisions will be presented later in this chapter when theoretical and experimental justification

will be provided.

4.6.1 ATPG Data and the Generation of a Fault Matrix

The fault matrix data used to evaluate GA-MITS and its results, were generated using four different test

generation methods: an implementation of PODEM, a GA based TPG, a random TPG and Turbo-Tester

[51] , an ATPG tool developed by Prof. Raimund Ubars’s group at Tallinn Technical University,

Estonia. The format o f the test data provided by Turbo-Tester is given in Table 4.4. In this example,

three test vectors have been generated for a circuit with 4 nodes and therefore 8 possible stuck-at faults.

As can be seen, the form o f the test/fault coverage data is not the same as that given in Table 4.3.

Test vector

a

Node

b c d

1 1 0 X 1

2 0 0 X X

3 1 1 0 X

T a b le 4 .4 Output data supplied by Turbo-Tester. Each row corresponds to a test

vector and the columns a, b, c and d represen t circuit nodes. A ‘1 ’ , ‘0 ’ an d ‘X ’ in

a given column signify that the corresponding node is stuck-at-1 testable, stuck-at-

0 testable an d not testable a t all, respectively.

Instead, referring back to the Table 4.4, each test vector is given along with the type o f fault it covers at

each circuit node. For a given test vector, a ‘1’ or ‘O’ in a column signifies that the vector covers a

stuck-at 1 or a stuck-at 0 fault respectively at the corresponding node. An ‘X ’ in a column signifies that

the vector covers no fault at that node. Test vector 1 therefore covers a stuck-at 1 fault at node a, a

stuck-at 0 fault at node b and a stuck-at 1 fault at node d. GA-MITS takes the data in the above form

and generates a fault matrix, similar to that given in Table 4.3. The corresponding fault matrix for the

above data is given in Table 4.5.

2 T here are 2 ^ ^ ““ - 1 possib le test sets since the em pty set does not constitute a test set as it contains no test
vectors and covers no faults.

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Test

Vector a/0 a/1 b/0

Faults

b/1 c/0 c/1 d/0 d/l

1 V V V
2 V V
3 V V V

T a b le 4 .5 . Corresponding fa u lt m atrix f o r da ta given in Table 4 .4

4.6.2 Encoding Scheme and Chromosome Structure

As mentioned in Chapter 2, developing an encoding scheme to represent candidate solutions as

chromosomes is one o f the primary steps when applying a GA to a given problem. The goal o f GA-

MITS is to minimise test sets so the ‘currency’ o f the GA, the chromosome, must represent a test set.

The coding scheme devised for this algorithm was a binary encoded chromosome o f length v, where v is

the number o f test vectors in the original test set, generated by the test pattern generator. A chromosome

therefore contains v binary genes, each gene taking the value ‘1’ or ‘O’. Figure 4.4 illustrates this

chromosome structure for the circuit given in Figure 4.3.

[1 0 1 0 0 0 1 1]
F ig u re 4.4. A typical GA-MITS chrom osom e f o r the circuit in Figure 4 .2

representing the test se t consisting o f the vectors (000, 010, 110, 111).

This circuit contains 3 primary inputs and therefore has 8 possible input vectors. The chromosome

given above has 8 genes, each gene corresponding to a test vector. The left-most locus (gene position)

in the chromosome corresponds to the first test vector 000, the next locus, the vector 001 and so on. A

gene value (allele) of 1 signifies the presence o f the test vector corresponding to that locus and an allele

o f 0 signifies its absence. The above chromosome represents the test set consisting o f the vectors (000,

010, 110, 111).

This above ordering o f test vectors in a chromosome in terms of binary word value (000, 001, 010 etc.)

works very well for small circuits where test patterns may be generated in such an orderly and

exhaustive manner. Unfortunately today’s test pattern generation tools do not generate test vectors in

such a manner and they do not necessarily present test vectors in binary word order. The SOFE and

GATE algorithms for example, permute the order o f test vectors to achieve test pattern compaction. In

such cases the order o f test vectors in a chromosome is exactly the same as the order in which they are

presented to GA-MITS by a particular ATPG tool. The first vector in the fault matrix will be

represented by the first gene (from the left) in the chromosome, the second vector by the second gene

and so on.

133

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

It is obvious from the chromosome structure that the total number o f ‘derivative’ test sets that may be

formed from the original test set, and therefore the size of the search space, is given by - 1 .

This gives an indication o f the size of the optimisation task, which rises exponentially with the size of

the original test set presented to the algorithm.

4.6.3 The Fitness Function

The appropriate formulation o f the fitness function is a key factor in the successful application o f all

genetic algorithms. The fitness function of GA-MITS must accurately measure the competence o f a test

set as a minimal test set, that is one which covers a maximal number of faults with a minimal number of

test vectors. Let N (T) be the number of test vectors contained in an arbitrary test set and letiV (c) be

its fault coverage. As GA-MITS is attempting to optimise these two parameters, its fitness function

must be formulated to maximise the number o f faults covered A (c) by a test set while minimising the

number o f test vectors A (r) . As the algorithm has been designed as a post processor to ATPG tools,

the fault coverage must be maximised to a predetermined level, W(c) . However, the number o f test

vectors in minimal or near minimal test sets is not known in advance.

It was found through experimentation that the fitness function F given below accurately reflects the

competence of a test set as a minimal test set.

F =

N(C) for N (C)< N (c)b

f0TN(c) = N (c \

where k is a constant and satisfies the condition k > N (t)\ /m ax

This function has two forms. The form allocated to a particular test set is dependent on the fault

coverage of the test set. For a test set that achieves sub optimal fault coverage i.e. A (c) < N (c) , the

fitness F o f a test set is given by,

F, = N (C).

For a test set that achieves the desired fault coverage, the fitness F o f a test set is given by

N (C)
F — V v > max

2 n (t) •

For a given fault coverage N (c) and fixed value of k where k > 0, it is clear that the value o f F2

increases as A (t) decreases. The goal o f GA-MITS is therefore to maximise the fitness function, F.

134

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

A test set that achieves a fault coverage o f W(c) must always be allocated a higher fitness than one

which covers less faults. GA-MITS is only searching for test sets which cover the desired number of

faults. With this in mind, the magnitude o f F2 must always be greater than Fx. However because of the

A (r) term in the denominator o f F2 , this may not always be the case. This is the reason why the

multiplier k is included in F2 . To ensure F2 is always greater than Fx, k must be greater than N (7’)max.

In practice k is equal to 2 x ^ (T)max.

Table 4. 6 shows a selection o f test sets with their corresponding fitness values, for the circuit in Figure

4.2. In this example, ^ (c) max= 10, ^ (^’)max= 8 and k = 20. From this table, test set 2 achieves

maximal fault coverage with 6 test vectors and its fitness is 33.33. However, in Test Set 4, the same

fault coverage is achieved but with 4 test vectors and its fitness is evaluated as 50. So, the fitness

function is behaving as required and is allocating higher fitnesses to smaller test sets, for a given fault

coverage.

Test Set N (c) N(T) Fitness

1. (000, 111) 4 2 II ii

2 . (000, 001, 010, 011, 100, 110) 10 6 F = 20.!% = 33.33

3. (000, 001, 010, 101, 110) 10 5 F = 20.1<^ = 40

4. (010, 100, 101, 110) 10 4 F = 20 .!% = 50

T a b le 4 .6 A selection o f test se ts and their associa ted fitn ess values f o r the circuit

in Fig. 4.2.

4.6.4 Parent Selection Scheme used in GA-MITS

In both natural and artificial domains, selection is one o f the driving forces o f evolution. Evolution

relies on achieving a balance between exploitation and exploration and when designing a GA, a

selection scheme that is able to provide this balance should be chosen. The relative merits of various

selection schemes have already been discussed in the previous chapter, highlighting an important

property o f all selection schemes viz. selection pressure. With selection pressure in mind and through

experimentation it was decided to use an exponential ranking selection scheme within GA-MITS.

Once the ‘raw’ fitness of each chromosome has been calculated using the fitness function described

above, the population of N chromosomes is sorted into ascending order o f rank, where Rank(A) is the

135

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

fittest individual, Rank(AT -1) is the second fittest down to Rank(l) which is the weakest chromosome in

the population. Once these ranks have been established the values o f the following exponential ranking

function / (/) [52], are ascribed to each chromosome according to rank.

where,

N = number of chromosomes in population

s = selection constant, 0 < s < 1

i = rank

The constant s is a very important parameter as it determines the selection pressure in the above

scheme. The selection pressure is proportional to (1 - s) therefore the greater the value o f ‘s’ the greater

the likelihood o f the weaker individuals in the population being selected. Table 4.7 gives the rank

fitness values for the function / (/) for different values o f s and a population size o f 10. It is to be noted

that the sum (over every member of the population) of the rank fitness values for each value o f s is 1.

Rank

(') s = 0.3 s = 0.4 s = 0.5

/(*)

s = 0.6 s = 0.7 s = 0.8 V
) II O VO

1 0.000014 0.000157 0.000978 0.004056 0.012458 0.030073 0.059482

2 0.000046 0.000393 0.001955 0.006759 0.017797 0.037591 0.066091

3 0.000153 0.000983 0.003910 0.011266 0.025424 0.046988 0.073435

4 0.000510 0.002458 0.007820 0.018776 0.036321 0 .058735 0.081594

5 0.001701 0.006145 0.01564 0.031293 0.051887 0.073419 0 .090660

6 0.005670 0.015362 0.031281 0.052155 0.074124 0 .091774 0 .100734

7 0.018900 0.038404 0.062561 0.086926 0.105891 0.114718 0 .111926

8 0.063000 0 .096010 0.125122 0 .144876 0.151273 0 .143397 0 .124363

9 0.210001 0.240025 0.250244 0.241460 0.216104 0 .179246 0.138181

10 0.700004 0.600063 0.500489 0.402433 0.308721 0.224058 0 .153534

T ab le 4 .7 Exponential rank fitn ess values f o r function, f (i) over a range o f values o f s .

As can be seen from the above table, the value of s controls the selection pressure in this exponential

ranking scheme. For s = 0.3 , there is little chance o f the weakest individual being selected relative to

the strongest chromosome. The probability of the chromosome of Rank(l) being selected as a parent is

four orders of magnitude less than that o f chromosome o f Rank(10). Conversely, for s = 0.9 the weakest

individual has a significantly greater chance o f selection as there is only single order o f magnitude

between the its probability o f selection and that o f the fittest individual. But as mentioned earlier one

must select a scheme or value o f s that achieves an acceptable balance between exploration and

136

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

exploitation. With this in mind, it is the view o f the author that the values s = 0.4, s = 0.5 and s = 0.6

provide this balance, the exact choice o f this parameter being made only after experimentation with the

particular application. After much experimentation, the value o f s chosen for GA-MITS was 0.65. This

choice will be discussed later in the chapter. Once exponential rank fitnesses are assigned to

chromosomes, parents are selected using roulette wheel selection, with replacement.

4.6.5 Selection of GA Parameters

GA-MITS uses two-point crossover and the crossover rate is set at 95%. The mutation operator used is

simple bit-wise mutation with a mutation rate o f 0.7%. These selections were largely made through

experimentation although theoretical issues were used as a guide. The results o f the experiments will be

presented later in this chapter. The population size was set at 100 chromosomes (regardless of circuit

size) in each generation and the number o f generations in each run o f GA-MITS was 100. Again, these

parameters were set largely through experimentation and with some theoretical guidance. The reasoning

behind the selection of these settings will be discussed later in this chapter.

4.6.6 The Use of Inoculation and Elitism.

The vast majority of GA literature advocates the use of a purely randomly generated initial population

of chromosomes. Over recent years however the process of inoculation [53], whereby the initial

population includes some non-random chromosomes as well as purely random ones, has emerged from

the literature. The exact nature of these non-random chromosomes is problem specific and requires a

thorough understanding o f the problem to be optimised and the fitness function. In the case o f test set

minimisation it was decided that to speed-up the algorithm, a single chromosome containing gene

values o f 1 throughout would be inserted into an otherwise purely random initial population.

Reductions in run time of up to 50% have been achieved by adopting this method. This inoculation

procedure was designed specifically for GA-MITS.

Elitism is a popular technique o f ensuring that the fittest individual in the current population is carried

forward into the next generation. This copying process ensures that this valuable genetic information is

not lost through the crossover and mutation operators. In GA-MITS, two copies o f the fittest

chromosome are carried over into the next generation.

4.7 Circuits used to Generate Fault Matrices for GA-MITS

All test set minimisation results were obtained using fault matrices generated by the team at Tallinn

Technical University. There are two distinct groups o f fault matrices, for two different classes of

137

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

combinational circuits. The first group o f fault matrices correspond to a family o f simplified RISC

(Reduced Instruction Set Computer) processors. These circuits were developed at Tallinn as a test bed

for their test pattern generation algorithms. Table 4.7a gives each circuit’s profile along with the

number o f possible faults. For each RISC processor, two fault matrices were generated using two

different test pattern generation algorithms. The first ATPG is based on alternative graphs [51] and the

second based on the concept o f random pattern generation [33].

The second group o f fault matrices used in this work correspond to the ISCAS-85 benchmark circuits

[54]. They were developed as a test bed for combinational test pattern generation algorithms and were

presented at the International Symposium on Circuits and Systems, 1985. They have become the

international standard for evaluating ATPG algorithms, cited by the vast majority o f ATPG papers over

the last 18 years or so. Table 4.7b displays the circuits along with their fault statistics.

RISC

Processor

Number

o f Gates

Number

o f Inputs

Number

of Outputs

Total Number o f

stuck-at faults

4 bit 603 42 5 612

8 bit 1195 74 9 1168

16 bit 2379 138 17 2240

32 bit 4747 266 33 4402

(a)

ISCAS-85 Benchmark

Circuit

Number

o f Gates

Number

o f Inputs

Number

o f Outputs

Total Number of

Stuck-at Faults

c432 160 36 7 616

c499 202 41 32 1202

c880 383 60 26 994

cl908 880 33 32 1732

c2670 1193 233 140 2626

c3540 1669 50 22 3296

c5315 2307 178 123 5424

c6288 2406 32 32 7744

c7552 3512 207 108 7104

(b)

T a b le 4 .7 (a) Sim plified fa m ily o f RISC processors - circuit size and fa u lt data, (b)

ISCAS-85 benchmark circuits - fa u lt data.

For each ISCAS-85 circuit three different sets of fault matrices, derived by three different ATPGs, were

used to obtain minimal test sets by GA-MITS. The three ATPG algorithms were: an implementation of

PODEM, a random test pattern generator and one based on genetic algorithms.

138

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

GA-MITS therefore was tested on a relatively wide range of fault matrices and on an internationally

recognised set of benchmark circuits. For a given circuit, different test pattern generation techniques

produced significantly different fault matrices. For the RISC circuits for example, the test sets produced

by the random generator were notably larger than those generated by the functional method.

4.8 Typical Performance of GA-MITS

An example test set minimisation problem for the ISCAS-85 circuit c2670 will now be examined. This

circuit contains 2626 possible stuck-at faults and the PODEM based ATPG tool was used to generate

the fault matrix, producing the following parameters,

N (t) = 160 test vectors\ /m ax

N(C) =2508 faults.
\ /m ax

Figure 4.5 is a graph representing the results of the minimisation process as GA-MITS creates 100

generations of chromosomes, each generation containing 100 test sets. Tabulated results, for the first 47

generations, corresponding to this graph are given in Table 4.8

Recall that the objective of GA-MITS is to minimise the number o f test vectors in each test set subject

to a predetermined level of fault coverage. Inoculation o f the initial population ensures at least one

chromosome achieves the required fault coverage and it is highly likely that this relatively fit individual

will propagate its genes through subsequent generations. The evolution of subsequent minimal test sets

(in this context ‘minimal’ refers to the smallest test set achieving the required fault coverage in a given

generation) seems to suggest that they are the offspring o f this biased chromosome. From generation to

generation the reduction in test set size of the minimal test set is, on the whole, steady and incremental.

That is, only a small reduction in test set size, typically from 1 to 5 test vectors is achieved from one

generation to another. In later generations, GA-MITS seems to get stuck on local maxima3, only

achieving small improvements after a large number o f generations.

From the graph and table below, it may be seen that in early generations, GA-MITS is steadily reducing

the size o f the minimal test sets found from generation to generation. The improvements in test set sizes

are most dynamic in the first 30 generations or so, as can be seen from the gradient o f the curve in

Figure 4.4. Although GA-MITS does not reduce the test set size from every generation to another large

reductions occur from time to time. For example, from generation 0 to 1 a reduction in test set size of 5

test vectors was achieved and between generation 8 to 9 a reduction o f 3 vectors was achieved.

Between generations 19 and 36, the curve begins to flatten and improvements in test set size only occur

by 1 or 2 test vectors at a time. From generation 40 to 43 GA-MITS seems to have prematurely

converged on a test set containing 120 test vectors and it is not until generation 44 that a smaller a test

3 A lthough G A -M ITS is searching fo r test sets o f minim al size, it is actually maximising the fitness function , F.

139

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

set, containing 119 test vectors, has been located. In the remaining generations no improvement in test

set size is achieved, strongly indicating that the GA has converged.

GA-MITS Results for ISCAS-85 Circuit C2670

160

155

150

145

140

135

§ 130
£

125

120

115
in o in o

t - t- CMo

Generation

F ig u re 4 .5 Graph o f num ber o f test vectors in the m inimal test se t vs. generation

f o r the ISCAS-85 circuit c2670. The fa u lt m atrix da ta w as generated b y PODEM .

The m inimal test se t w as loca ted a t generation 44 and com prised 119 test vectors

covering a ll 2508 testable faults.

Generation Test Vectors in

Minimal Test Set

Generation Test Vectors in

Minimal Test Set

Generation Test Vectors in

Minimal Test Set

0 160 16 130 32 123

1 155 17 129 33 122

2 153 18 128 34 122

3 151 19 126 35 121

4 149 20 126 36 121

5 148 21 126 37 121

6 146 22 125 38 121

7 144 23 125 39 121

8 142 24 125 40 120

9 139 25 125 41 120

10 138 26 124 42 120

11 137 27 124 43 120

12 135 28 124 44 119

13 133 29 124 45 119

14 132 30 124 46 119

15 131 31 123 47 119

T a b le 4 .8 . Corresponding m inimal test se t da ta f o r Figure 4.4. O nly the f ir s t 4 7

generations are given above.

140

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

The above is typical behaviour o f GA-MITS with inoculation. The majority o f reductions achieved in

test set size take place in the first 20 to 30 generations. The remaining generations seem to refine the

final solution by approximately 1 to 5%. If this run o f GA-MITS was left for another 100 generations

perhaps it would achieve further reductions in test set size, but this is not guaranteed as it may have

prematurely converged on a sub-optimal maximum or it may have located a global maximum. In

general GAs do not guarantee that they have located one of the globally optimal solutions. In the case

o f GA-MITS, the initial test sets have been significantly reduced in size, whether these are the optimal

solutions in open to debate.

As a further example, the curve given in Figure 4.6 illustrates the results achieved by GA-MITS for

another ISCAS-85 circuit, c432. Again, the behaviour of the algorithm is similar to that for the circuit

c2670, with an initial steep negative gradient indicating steady reductions in test set size. The curve

begins to flatten by around generation 20 until finally the GA converges on a test set o f size 55 at

generation 29.

GA-MITS Results for ISCAS-85 Circuit c432

qj 85 co
8 0 - -

■to
£ 7 5 -
£| 70 -
to0)
£ 6 5 -
0
1 60 -

I s s -

50
in or- CM

Generation

F ig u re 4 .6 Graph o f num ber o f test vectors in the m inimal test se t vs. Generation

f o r the ISCAS-85 circuit c432.

The final output o f GA-MITS to the user is an on-screen message indicating the size o f the final

minimal test set, the fault coverage of this test set and the chromosome corresponding to the minimal

test set. As an illustration, the final output for the above test set minimisation problem for the circuit

c2670 whose fault data was generated by PODEM is given below.

141

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

F i t t e s t chrom osom e p r o p e r t i e s : t e s t s = 1 1 9 f a u l t

c o v e r a g e =2 508

The test is as follows:

10100000101001010110011111011100101110010101111001010
11010101101101111111111111011101011111001111111111111
11111111111111111101110010110101111111111111111111111
1

It must be remembered that a value of ‘1’ at the nlh gene (or locus) means that that the nlh test vector

in the original test set is present in the final test set. A ‘O’ signifies the absence o f the corresponding test

vector.

4.9 Minimisation Results for a Family of Simplified RISC Processors

Table 4.9 and 4.10 below give the minimisation results for the RISC processors using a functional

ATPG tool based on Alternative Graphs [51] and a random test pattern generator respectively. In Table

4.9 it may be seen that for each o f the RISC processors, the ATPG produced test sets containing 63 test

vectors (the fault coverage for each o f these test sets is given in the third column). From the final

column in this table, GA-MITS is seen to achieve a reduction test set size o f 62% for the 4 bit processor

and a reduction o f 55% for each of the other three processors.

RISC

Processor

Total

No. Faults

No. Faults

Covered by

ATPG

ATPG Test

Set Size

Test Set Size

achieved by

GA-MITS

Reduction in test

set size

%

4 b it 612 611 63 24 61.905

8 b it 1168 1167 63 28 55.556

16 b it 2240 2239 63 28 55.556

32 b it 4402 4401 63 28 55.556

T a b le 4 .9 RISC processor minimisation data. The corresponding fa u lt da ta w as

genera ted using A lternative G raphs [51].

The fault da ta associated w ith T able 4 .10 , derived by a random test pattern generator, can b e seen to be

significantly sm aller than those generated by the functional A T PG (62% sm aller for the 4 b it processor). F o r these

test sets, G A -M ITS achieves reductions in test sets betw een 15 and 7% , w hich are significantly sm aller than fo r the

functionally generated test sets.

142

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

RISC

Processor

Total

No. Faults

No. Faults

Covered by

ATPG

ATPG Test

Set Size

Test Set Size

achieved by

GA-MITS

Reduction in test

set size

%

4 b it 612 611 24 22 8.333

8 b it 1168 1167 34 29 14.706

16 b it 2240 2239 39 36 7.692

32 b it 4402 4401 44 41 6.818

T a b le 4 .10 RISC p ro cesso r minimisation data. The corresponding fa u lt data w as

genera ted using a random test pattern generator.

A point to note from the above two tables is that, for a given circuit, the test sets generated by the

functional ATPG are significantly larger than the those generated by the random ATPG. However after

minimisation, all but one of the ‘functional’ test sets are actually smaller than the minimised, randomly

generated ones. The average reduction in test set size for the functionally generated test sets is

approximately 57% and approximately 10% for the randomly generated test sets. Why are the original

‘functional’ test sets larger than the ‘random’ ones and why do the ‘functional’ test sets minimise

significantly more than the random ones?

The reason why the randomly generated test sets are smaller than the functional ones is because there is

inherent minimisation taking place in the test pattern generation process. As test vectors are generated a

new vector is only accepted into the test set if it covers a fault that is not covered by the tests in the test

set so far. The functional ATPG in its barest form (as used in here) generates tests on a node by node

basis without necessarily taking note o f whether a previous test has already covered that fault. Although

a smaller, randomly generated test set may be far from a global minimum for a given circuit, it will

contain far less overlap in fault coverage, or redundancy, than its functionally generated counterpart.

Since GA-MITS is using this redundancy to reduce the size of the test sets and there is not much to

exploit in the ‘random’ case, it is highly unlikely that the final minimised test set will be a global

minimum.

Since the functionally generated test sets are relatively large, it is safe to suggest that there is much

more overlap in fault coverage. Since there are more test vectors in this test set, it is more probable than

for the ‘random’ case that the test vectors comprising a minimal test set will be present. There is more

redundancy for GA-MITS to exploit and it therefore locates smaller test sets than for the ‘random’ case.

The observations made in the previous section are only for a limited number o f simple cases. These

simplified RISC processors were developed for the initial testing o f ATPG algorithms and are not

representative of practical designs. The nature of minimisation results for more realistic circuits will

now be explored.

143

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

4.10 Minimisation Results for the ISCAS-85 Benchmark Circuits

The ISCAS-85 benchmark circuits approach the size and complexity found in practical circuit designs.

If GA-MITS is able to minimise test sets corresponding to these circuits, it may be confidently assumed

that the algorithm has a genuine role alongside today’s ATPG tools.

In what follows, the term original test set refers to a test set generated by some ATPG that has not

undergone minimisation by GA-MITS or any other static minimisation algorithm. The term minimised

test set refers to a test set that has undergone minimisation by GA-MITS or other algorithm.

Three different ATPGs have been used to generate test sets for GA-MITS. The minimisation results for

each ATPG are tabulated below. It must be noted that in these results tables an Asterisk denotes that

the minimised test set is known to be a global minimum given the original test set generated by some

ATPG method. In some cases the team at Tallinn were able to prove that a particular test set, whether

minimised or not, was a global minimum by examining the test vectors present in that set. They used the

concept of unique patterns which are defined as test vectors that cover faults uncovered by any other

vectors present in the test set (the terms test patterns and test vectors will be assumed to be

interchangeable). These patterns are obviously essential to a test set which has to cover all W(C)

faults. Therefore if a test set, be it an original or minimised test set, comprises vectors that are all

unique patterns then that test set is a global minimum. Furthermore, they are able to prove that, a test set

minimisation algorithm has reached a global minimum if the number o f patterns in the minimised test

set is less than three patterns larger than the number o f unique patterns in the original test set [56].

ISC A S-85

C ircuit

T otal

N o. Faults

N o. Faults

C overed by

A T PG

A T PG Test

Set Size

T est Set S ize

achieved by

G A -M ITS

R eduction in

test set size

%

c432 616 573 89 55 38.202

c499 1202 1194 140 100 28.571

c880 994 994 70 52* 25.714

c l9 0 8 1732 1722 144 122* 15.278

C2670 2626 2508 160 119 25.625

c3540 3296 3146 201 145 27.861

c5315 5424 5364 178 108 39.326

c6288 7744 7693 41 33 19.512

c7552 7104 6973 276 198 28.261

A ve=144 .33 Ave. = 103.55 Ave. — 27.594

T a b le 4.11 M inim isation results f o r ISCAS-85 benchm ark circuits. The

corresponding fa u lt da ta w as generated using an im plem entation ofP O D E M .

144

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

ISC A S-85

C ircuit

T otal

N o. Faults

N o. Faults

C overed by

A TPG

A T PG Test

Set S ize

T est S et S ize

achieved by G A-

M ITS

Reduction in

test set size

%

c432 616 573 51 46* 9.804

c499 1202 1194 86 85* 1.163

c880 994 994 46 38 17.391

C1908 1732 1723 121 110* 9.090

c2670 2626 2508 112 87 22.321

C3540 3296 3149 155 138 10.968

c5315 5424 5364 115 99 13.913

c6288 7744 7693 21 21* 0

c7552 6937 6867 192 156 18.750

Ave. = 99 .89 Ave. - 8 6 .67 Ave. = 11.49

T a b le 4 .12 M inim isation results f o r ISCAS-85 benchm ark circuits. The

corresponding fa u lt data w as generated using an A T PG b a se d on genetic

algorithm s.

ISC A S-85

Circuit

Total

N o. Faults

No. Faults

C overed by

A TPG

A TPG Test

Set Size

T est Set S ize

achieved by

G A -M ITS

R eduction in

test set size

%

C 432 616 573 51 46* 9.804

C 499 1202 1194 86 86* 0

C 880 994 994 63 45* 28.571

c l9 0 8 1732 1723 132 112 15.152

c2670 2626 2389 107 75 29.907

C3540 3296 3149 167 143 14.371

c5315 5424 5364 132 106 19.700

c6288 7744 7693 24 22* 8.333

c7552 6937 6851 249 164 34.137

Ave. = 112.33 Ave. = 8 8 .78 A ve. = 17 .78

T a b le 4 .13 M inim isation results f o r ISCAS-85 benchm ark circuits. The

corresponding fa u lt data w as generated using a random ATPG.

From the above three tables it may be seen that for a given circuit and fault coverage, the fault data

produced by different ATPGs varies considerably. In descending order o f original test set size, on

average, PODEM produces the largest test sets, then the random generator followed by the GA based

generator. All three ATPGs contain some test set minimisation heuristics, each with its own degree o f

145

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

success. Closer examination o f the implementation of each ATPG will help explain the variance in the

test set size.

The test sets produced by PODEM contained, on average, 144.33 vectors. Within this particular

implementation o f PODEM, once each test vector has been generated for a given fault (known as the

primary fault) fault simulation is invoked to determine whether other faults (secondary faults) are also

detected by the vector. If any secondary faults are covered, PODEM will not attempt to explicitly

generate vectors for these faults, thus helping to reduce the number o f test vectors in the final test set.

Without the additional fault simulation step which aids test set minimisation, much larger test sets

would be produced as test pattern generation would be attempted for every fault in a circuit.

The random ATPG produced test sets containing, on average, 112.33 test vectors. The minimisation

heuristic within random ATPGs has already been discussed in Section 4.4. Briefly, test vectors are

randomly generated and fault simulation is used to determine the fault coverage o f the vector. As each

new vector is generated, it is only accepted as part of the test set if it covers faults that have not been

covered by the test vectors in the test set so far. Therefore dynamic test set minimisation (minimisation

as each test vector is generated) occurs in an attempt to reduce as much overlap in fault coverage as

possible. This method of test pattern generation and minimisation does however result in a fair amount

o f redundancy. The reason for this is that a vector will be accepted into the test set if it covers a least

one new fault. It is highly likely that this vector will also cover faults already covered by other vectors

in the test set so far. Thus, there will exist a certain amount o f redundancy so the test set will not be as

compact as it could be.

The smallest test sets were generated by the GA based ATPG which yielded test sets containing on

average 99.89 vectors. The GA puts greater effort into finding vectors that detect most new faults than

any o f the other schemes mentioned above. The fitness function [55] is formulated such that it rewards

those test vectors in proportion to the number o f new faults that it covers and penalises those that only

cover previously covered faults. This coupled with the strong searching capabilities o f a GA result in

significantly smaller test sets than both PODEM and the random generator.

For a given circuit and fault coverage, it can be seen from the above tables that different test pattern

generators will produce different test sets. GA-MITS will never improve on the fault coverage of these

original test sets as it does not generate any new vectors or change, in any way, the constituent vectors.

What GA-MITS will do is search amongst the original test sets for any redundancy that may exist in the

hope o f locating the smallest test set covering all W(c) faults. A reduction in test set size by GA-

MITS is not always guaranteed as there may be no redundancy contained in a test set. The level of

redundancy present in a test set not only depends on circuit design but also on the particular ATPG tool

used. Some tools ‘doctor’ the test vectors more than others in an attempt to reduce test set size.

146

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

For the fault data produced by the PODEM generator GA-MITS was able to reducee the test sets on

average by 27.59%. The greatest reduction in test set size was for the circuit c5315, for which a

reduction o f 39% was achieved. The smallest reduction achieved was 15% corresponding to the circuit

cl908. For the random generator, an average reduction in test set size o f 17.78% was achieved, with the

greatest reduction of 30% for the circuit c2670 and the minimum reduction in test set size of 0% for the

circuit c499. This original test set was proven to be the global minimum, containing no redundancy. For

the GA based generator the average reduction in test set size was 11.49%. For this group o f fault data,

the test set corresponding to circuit c2670 was minimised the most with a reduction o f 22%. The

smallest reduction was 0% for the test set corresponding to the circuit c6288 which again was proven to

be the global minimum.

It is apparent therefore that there is a strong correlation between the original test set size and the amount

o f minimisation achieved by GA-MITS. On the whole, the larger the original test sets, the larger the

percentage reduction in test set size. The test sets generated by PODEM were larger than those

generated by the other two methods and on average these test sets were reduced by 27.59%. The

smallest test sets generated were by the GA based ATPG. The average reduction in test set size

achieved by GA-MITS was 11.49%, significantly smaller than the reductions achieved for fault data

corresponding to both PODEM and the random generator. These results follow on from those obtained

in Section 4.9. Just as was stated for the RISC processors, the above results can be explained by the

greater degree o f redundancy present in the larger, original test sets. This greater scope for minimisation

is exploited by GA-MITS resulting in larger percentage reductions in test set size.

Within each test set there may exist a number of globally minimal test sets4. As already stated, the

degree to which GA-MITS is able to minimise an original test set depends on the amount o f redundancy

within it. Since it has been shown that for a given circuit different ATPGs produces different test sets, a

minimised test set is only minimal relative to the original test set. It may not be the smallest possible

test set for that circuit per se. The only way to guarantee one has generated the globally minimal test set

for a circuit, regardless of ATPG tool, is to exhaustively generate test vectors for every possible fault in

the circuit and then to exhaustively evaluate every possible test set to determine the minimal test set.

This is obviously an impractical approach.

Given then the three ATPG tools coupled with GA-MITS, what are the smallest minimised test sets and

which tool generated the original test set? Let us examine the results obtained for the circuits c5315 and

cl908 given below in Table 4.14. The size o f the smallest minimised test set for the circuit c5315 is 99

vectors for the test set originally generated by the GA based TPG. The fault matrices corresponding to

the PODEM and the random ATPG were minimised to 108 and 106 tests respectively. For the

circuit c l 908 the smallest test set found by

4 It is often the case that there are several globally, m inim al test sets o f equal size and fault coverage b u t obviously
contain ing different test vectors.

147

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

PODEM Random TPG GA TPG

Circuit ATPG Minimal % ATPG Minimal Test % ATPG Minimal % reduction

Test Set Test Set reductio Test Set Set found by reduction Test Test Set due to GA-

Size found by n due to Size GA-MITS due to Set found by MITS

GA-MITS GA- GA- Size GA-MITS

MITS MITS

c l 908 144 122* 15.278 132 112 15.152 121 110* 9.091

c5315 178 108 39.326 132 106 19.697 115 99 13.913

Table 4.14. Minimisation results fo r circuits c!908 and c5315.

GA-MITS was within the fault matrix data generated by the GA based ATPG. This test set, comprising

110 vectors, was 12 and 2 vectors smaller than the those corresponding to the PODEM and random

generators respectively. The smallest minimised test sets all corresponded to those originally generated

by the GA based ATPG. This holds true for the test sets of all but one circuit, c432. For the circuit c432

the random and GA-based generators produced exactly the same test vectors which reduced down to

exactly the same test set, containing 46 vectors.

Examining the percentage reductions in test set sizes, overall the smallest reductions correspond to the

test sets originally generated by the GA based TPG. This is counter to the results obtained for the RISC

circuits. In those minimisation results, larger original test sets resulted in the greatest percentage

reduction and also, on the whole, in the smallest minimised test sets for a given circuit. The conclusion

drawn from this result is that there would seem to be greater redundancy in the larger, less doctored,

original test sets. This turns out not to be the case for the ISCAS-85 circuits and the three ATPGs used,

which again reflects favourably the relative quality of the GA based ATPG method. This ATPG simply

puts more effort into finding high quality vectors (that each cover as many faults as possible) and more

compact original test sets. The GA based ATPG was far superior than both PODEM and the random

method.

If there is any redundancy to be exploited within a test set it can be confidently expected that GA-MITS

will do so to find the smallest possible test sets for the required fault coverage. This confidence is due

to the fact that GA-MITS did locate the smallest test sets in each of the cases where they were known.

This strongly suggests, although does not prove, that GA-MITS will find the smallest test sets in all

cases. Returning to circuit cl908, it has been proven that the minimised test set corresponding to the

PODEM generator, containing 122 vectors, is the globally minimal test set(s) for that original set

containing 144 vectors. For the fault data corresponding to the same circuit but generated by the GA

based method, the minimal test set found by GA-MITS contains 110 vectors and has also been proven

to be a global minimum amongst the original test set of size 121 vectors. Similar results can be seen for

the circuits c499 and c880. For c880 amongst the original GA generated fault data, GA-MITS located a

test set containing 38 vectors. For the random fault data a minimum test set containing 45 test vectors

148

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

was located by GA-MITS which was again proven to be a global minimum for that fault data. It must be

reiterated that GA-MITS is only as good as the TPG tool that generated the original test set and global

minima will exist amongst all fault matrices.

Out of the 27 fault matrices presented to GA-MITS (three ATPG tools each generating test sets for 9

ISCAS circuits), 10 o f the minimised test sets were proven to be global minima. Of the remaining 17

minimised test sets, the Tallinn team were unable to prove whether these were global minima because

each minimised test set contained three test patterns or more than the number o f unique patterns. These

minimised test sets may well be global minima but at this stage it cannot be proven.

So how does GA-MITS perform relative to other test set minimisation algorithms? The only way to

make valid comparisons is to present identical test sets to different algorithms. The Tallinn team have

also developed a test set minimisation algorithm which is based on the concept o f Bipartite graphs [56].

Throughout the development of their algorithm the results obtained by GA-MITS have been used a

benchmark for their algorithm. During the early stages o f development the Bipartite based algorithm

performed poorly compared to GA-MITS. As the results obtained by GA-MITS were improved and fed

back to Tallinn their algorithm was continually refined until eventually their results were identical to

those obtained by GA-MITS. This developmental process has been fully acknowledged in the above

stated reference.

A popular minimisation technique mentioned in Section 4.4 was ‘Reverse Order Fault Simulation’

(ROFS), used in a number of popular ATPG tools [39 - 42]. Table 4.15 compares the minimisation

results obtained by GA-MITS and reverse order faults simulation. The original test sets corresponding

to this fault data were generated using the PODEM TPG, again by the Tallinn team.

C ircuit O riginal test

set size

M inim ised test set

size obtained by

RO FS.

M inim ised test set size

obtained by G A-M ITS

% reduction using G A-

M ITS in com parison to

R O FS

c432 89 89 55 38.202

c499 140 137 100 27.007

c880 70 70 52 25 .714

c l9 0 8 144 142 122 14.085

c2670 160 160 119 25.625

c3540 201 198 145 26.677

c5315 178 173 108 37.572

c6288 41 40 33 17.500

C7552 276 275 198 2 8 .000

Ave. = 142.67 Ave. = 103.55 Ave. = 26.71

T a b le 4 .15 . Com parison o f test se t m inimisation results obtained by reverse order

fa u lt simulation and GA-MITS.

149

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

As can be seen from this table, GA-MITS is a far superior minimisation algorithm than the traditional

reverse order fault simulation method. Although simple in its implementation, the results obtained by

ROFS are very poor. GA-MITS was able to minimise test sets by up to 38.20% more than ROFS and

the smallest relative reduction was a significant, 14.08%. In a similar manner to ROFS, GA-MITS is

designed as a ‘bolt-on’ post processor to existing test pattern generation tools and although more

sophisticated, it is felt that GA-MITS is as easy to incorporate into existing ATPG tools.

The most important factor o f all test set minimisation algorithms is the size of the absolute minimal test

set. The absolute minimal test set in this context is defined as the size of the smallest test set found for a

given circuit, regardless of ATPG tool and minimisation heuristic(s). It is the size o f the absolute

minimal test set that will after all, determine the choice o f CAD tool adopted by a manufacturer. It has

already been mentioned that exhaustive ATPG and minimisation is impractical but is the only known

way to guarantee one has generated the minimal test set for a circuit. However, comparisons can be

made between the results of different TPGs and/or minimisation algorithms.

The ISCAS-85 benchmark circuits have been in the public domain for the last 18 years or so. The vast

majority of test pattern generation papers and technical reports use these circuits, enabling comparisons

to be made. So how does GA-MITS perform relative to the results given in the literature? Unfortunately

direct, meaningful comparisons between GA-MITS and other algorithms cannot be made. The only

possible way is to present identical test sets to GA-MITS and other minimisation algorithms or to

present test sets generated by ATPGs containing minimisation heuristics to GA-MITS to see whether

any redundancy exists that can be exploited. Several research groups were approached including the

authors o f [25] and [44], requesting fault data from their particular ATPG tools. Unfortunately, due to

personnel leaving the groups or the lack of man power to reproduce the results, the author was unable to

receive any data from these researchers. Another difficulty in making comparisons without identical

fault data is due to different fault coverages obtained and different ways o f pre-processing the faults.

The Tallinn group use fault collapsing giving rise to a different number of faults in the fault list for the

ISCAS circuits whereas other groups do not perform this initial step.

Nonetheless, it is felt that comparing the sizes o f test sets obtained by other methods with those

obtained by GA-MITS is still a useful exercise. Table 4.16 below illustrates these comparisons.

Although the different fault coverages of each method are not given in the table, they are more or less

identical. The reader is directed towards the literature for further details.

150

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

C ircuit [57] SO CR A TES

[41]

G A TE

[44]

SM A R T +

F A ST [33]

C O M PA C T EST

[45]

G A -M ITS

(best)

c432 48 60 37 n/a n/a 46

c499 ' 53 55 n/a n /a n/a 86

c880 31 63 n /a 39 30 45

c l 908 157 122 n/a 151 112

c2670 110 122 n/a 78 67 75

c3540 154 173 122 178 143

c5315 126 150 n /a 97 l | l | | f 5 6 l | i ^ | ' 106

c6288 37 32 n /a 40 16 22

c7552 n/a 235 n /a 143 87 164

T a b le 4 .16 Com parison o f test se t s izes f o r ISCAS-85 benchmark circuits

generated b y different ATPG s/m inim isation algorithm s. The shaded fig u res denote

the sm allest test se t sizes fo u n d in the literature, n/a denotes that this resu lt w as

unavailable in the literature.

A thorough literature search revealed the ATPG methods/minimisation algorithms in the above table as

being some o f the most competitive in terms of the size o f the absolute minimal test set. Many o f these

ATPGs contain some very sophisticated test pattern generation techniques in addition to some very

competent minimisation heuristics. GATE for example employs three levels o f compaction. On the

whole, COMPACTEST produces the smallest test sets but GA-MITS coupled with Tallinn’s GA based

ATPG actually produced the smallest test set for the circuit c l 908.

It must be reiterated that the performance o f GA-MITS is limited to the quality o f the ATPG that

generated the original test set. Based on the results so far the author is confident that given any

redundancy in the test sets generated by the methods given in Table 4.16, GA-MITS would be able to

search out more compact test sets. It is unfortunate at this stage that this data was unavailable and that

these experiments could not be performed. It is hoped however, that such results will be obtained in the

near future.

An important property of any new algorithm is its computational complexity, i.e. processor time and

computer memory required for its implementation. Increasingly, the cost o f computer memory and

processor time has been decreasing while the processing power o f modem day computers has increased

the rapid pace predicted by Moore’s Law. Therefore the limits of computational complexity are

continually being challenged as algorithms which were previously considered too costly are now easily

implemented. However, the adoption of a new algorithm must compete with what is currently the state-

of-art either in terms of solution quality or complexity. The context in which an algorithm is to be

employed is also a deciding factor when it is being considered for use. Is the application domain time

sensitive as, for example algorithms employed in daily weather prediction software?

151

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

And so onto the competitiveness o f GA-MITS and the context in which it may be applied. GA-MITS is

a static minimisation algorithm (applied once a test set has been generated) designed as an easy-to-

incorporate post processor for existing ATPG tools. The sole purpose o f test set minimisation is to save

circuit test and fabrication costs. Smaller test sets require less post production test time and help reduce

the amount o f memory required to store test vectors in a BIST scheme. The application o f GA-MITS is

a one-off cost after the circuit design has been finalised (cheaper methods can be employed during the

design phase to measure testability etc.). Since manufacturers may produce thousands and possibly

millions o f units o f a particular design, even the smallest reduction in test set size may help cut test and

fabrication expenditure.

In the context of run-time, the fact that GA-MITS is a relatively slow algorithm should not hinder its

possible role in today’s CAD world. For the largest ISCAS-85 circuit, c7552, and an original test set

generated by PODEM GA-MITS took a maximum o f approximately 2.5 hours to run and achieved a

reduction o f 28%. The minimisation effort is a one-off cost and this execution time would be very

quickly recouped by manufacturers faced with producing and testing thousands o f circuits. The

execution time o f the algorithm is likely to drop as processing power o f computers increases. All

experiments carried out with GA-MITS have been run on a slow, 100 MHz Pentium (processor clock

speed) based personal computer. This hardware platform is far removed from what is today’s state-of-

the-art technology such as powerful engineering workstations which are optimised for mathematically

intensive tasks. The upper execution time of around 2.5 hours will no doubt be reduced if GA-MITS

were run on such hardware and will continue to drop as processing speeds of computers increase.

Additional reductions in run time could be achieved as a result o f optimising the various algorithms

within GA-MITS and the source code. No real effort has been placed in making the algorithm more

efficient and run-time savings are certainly attainable. Furthermore in terms o f pure GA research, the

development o f parallel implementations o f genetic algorithms [58] could also be used to help reduce

run-time.

Within GA-MITS itself for a given population size and number of generations in a run, the feature

dominating the execution time of the algorithm is the evaluation of the fitness function which requires

checking the fault matrix for the fault coverage o f each test vector. This time is proportional to the size

of the fault matrix which is of size,

N (c) x N (t)\ /m ax \ /m ax

where W(c) and is the fault coverage and number o f constituent test vectors o f the

original test set respectively. The standard GA operations o f the algorithm such as crossover and

mutation are proportional to . The memory requirements for GA-MITS are also largely

152

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

proportional to N (c) x W(T’) when a new generation over-writes the previous generation in

memory.

It is increasingly the view of the CAD community [4, 59] that the computational complexity of

algorithms is becoming less o f an issue with the pace o f change in the computer world. The emphasis is

on solution quality when comparing different algorithms. It is on this important front that GA-MITS is

certainly excelling and will compete with current methods.

4.11 GA-MITS Design Issues

4.11.1 Inoculation of the Initial Population

In Section 4.8, the typical behaviour of GA-MITS was discussed. Broadly speaking, the minimisation

process begins with a steady reduction in test set size, slowing down during the later generations as GA-

MITS approaches minimal solutions. During the remainder o f the run the algorithm is essentially

refining the solutions until it converges on what is the smallest test set it is able to locate. In Figure 4.7,

the red curve illustrates this behaviour. The behaviour of GA-MITS without inoculation is considerably

different, as can be seen from the blue curve in Figure 4.7(a). In earlier generations the size o f the

fittest test sets actually increase until such a point, or generation, is reached that the required fault

coverage, W(C) , is achieved by at least one chromosome in a population. This may be seen in

Figure 4.7(b). As can be seen, there is no instant reduction in test set size as in the case with

inoculation. The fact that GA-MITS with inoculation instantly reduces test set sizes from generation

zero onwards is largely due to the initial population being inoculated with a chromosome containing

gene values o f ‘1’ throughout. So why does this serve to improve the behaviour of the GA?

Without inoculation the initial generation would consist o f randomly generated chromosomes

containing no biased individuals. Because of this random nature it is highly unlikely that chromosomes

would be present which achieved the required fault coverage (this fact has been borne out in

experiments). In such a case GA-MITS would perform two distinct phases of optimisation. The first

phase would be to achieve maximal fault coverage by maximising the function Fx. As this form o f the

fitness function disregards test set size, the sizes o f the optimal test sets in these early generations

increase with fault coverage. Once maximal fault coverage has been achieved by one or more

chromosomes, the second phase commences and GA-MITS maximises the second form o f the fitness

function F2 for the fittest test sets in addition to Fx for those achieving less than maximal fault

coverage. During this second phase the size(s) o f the optimal test set(s) in each generation start

decreasing while maintaining maximal fault coverage. Figure 4.8 below shows a schematic test set

153

minimisation curve of Test Set Size versus Generation without inoculation. The broken line separates

the two phases of optimisation.

Test S et Minimisation Curves for c2670 with and without Inoculation

165 -

$ 155
to
£ 145
to
g 135 £

125CO
to
£ 115
0
01 105-Q
E
-3 95

No inoculation

Inoculation

Generation

(a)

Test Set Minimisation Curves for c2670 with and without Inoculation

2550 T

V) 2500 -

® 2450 -

o) 2400

2350 -

2300
70 80 90 10040 50 6020 300 10

- Inoculation

- No inoculation

Generation

(b)

Figure 4.7(a) Curves showing number o f test vectors in optimal test set versus

generation fo r the circuit c2670. The blue curve is fo r GA-MITS without

inoculation. It is not until generation 34 that the fittest test set achieves maximal

fault coverage. The red curve is fo r GA-MITS with inoculation. The final minimal

test set found using both approaches contains 119 test vectors. This maximum was

located at generation 37 with inoculation and at generation 72 withoutf b)

Corresponding Fault Coverage versus Generation cuiwes.

154

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

In this curve a test set achieving maximal fault coverage has been located at generation g . To the right

o f the broken line GA-MITS begins reducing the size o f the optimal test set found so far, from

generation to generation. GA-MITS requires a large number o f generations to find a test set achieving

maximal fault coverage. The rationale behind inoculating the initial population is to eliminate the first,

fault coverage maximisation phase and reducing the total time required by GA-MITS to find the

minimal test set. The advantages of inoculation will now be presented by analysing the minimisation o f

test sets for the ISCAS-85 circuit c2670 with and without inoculation.

No. o f Test

Vectors in

Fittest Test Set. First phase. GA-MITS

is optimising the Junction

Second phase. GA-MITS

is optimising the Junction

minimal test set located

Generation

generation = g

Figure 4.8 Test Vectors in Minimal Test Set versus Generation curve fo r

hypothetical test set optimisation case. The broken line separates the two phases o f

optimisation where GA-MITS first optimises Ft and then F2 . A t generation g a

test set achieving maximal fault coverage has been located.

Returning to Figure 4.7, the blue curve shows the number o f test vectors in the optimal test set versus

generation for the no-inoculation case and the red curve corresponds to the inoculation case. As

expected, it may be seen from this curve that the fittest test set in the initial population does not achieve

maximal fault coverage but covers 2371 faults with 90 test vectors. GA-MITS proceeds to optimise the

fault coverage without regard for the test set size. The size of the optimal test set in each o f these early

generations increases with fault coverage. Maximal fault coverage is finally achieved by generation 34

with a test set containing 134 test vectors. The curve then proceeds with a sharp, negative gradient as

the test set sizes are rapidly reduced (much like the initial behaviour o f GA-MITS with inoculation). By

around generation 49, the algorithm only improves the quality o f the minimal test set by a small

percentage, over a relatively large number o f generations. By generation 72 GA-MITS without

inoculation has found the optimal test set containing 119 test vectors. This test set was located by GA-

155

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

MITS with inoculation by generation 37 which is almost 50% quicker than the no-inoculation case,

clearly illustrating the superiority o f the inoculation scheme.

Thus the attempt to speed-up the algorithm and increase the quality o f the final solution by eliminating

the initial, fault coverage optimisation phase was successful. To give GA-MITS this ‘head-start’, the

process o f doping or inoculating was devised. Unsure o f the correct term for this process it was decided

by the author to ask the GA research community (by posting a query to the internet based, GA-LIST5)

whether this was existing and ‘acceptable’ practice. The overwhelming verdict was that, although

initially frowned upon by GA purists (after all, nature did not have a head-start !), inoculation or the

incorporation o f problem specific knowledge was essential for GAs to be competitive with other more

established optimisation techniques.

The inoculation process had to guarantee that a test set achieving maximal fault coverage, for every

possible circuit, was inserted into the initial population. The easiest method for meeting this criterion

was to insert the test set containing all test vectors. Although in most cases it was far from the minimal

test set, GA-MITS instantly began reducing test set sizes, dispensing with the initial fault coverage

optimisation phase. It could be argued that without inoculation, the first test set to achieve maximal

fault coverage would be significantly smaller than the test set containing all possible test vectors.

However, the searching capabilities o f GA-MITS soon negates this perceived advantage as the final,

minimal test set is located much sooner than the case without inoculation. This can be seen from the red

curve Figure 4.7.

On the whole, the minimal tests found for a given circuit using GA-MITS with inoculation were smaller

than those found without inoculation. This seems to be due to the fact that when GA-MITS with

inoculation starts reducing test set sizes i.e. from generation 1 onwards, there were more schemata

present than in the case without inoculation. Without inoculation, the test set sizes are only reduced at

generation g , where g > 0, when a test set achieving the required fault coverage has been located. At

this point the population at generation g will be less diverse, i.e. contain less schemata, than the initial

population with inoculation. This reduced diversity at the point of maximal fault coverage means there

is less exploration that can be performed and the emphasis seems to be placed on exploiting the genetic

information contained in generation g and onwards.

5 GA-LIST is an Internet based mailing list for GA practitioners, run by researchers at the US Navel Research Centre,
Washington. It is widely subscribed by leading GA researchers and is the first ‘port-of-call’ for questions, journal/book
announcements and conference paper calls. It is also a valuable resource for GA related research, and software. It can be found at
http://www.aic.nrl.navy.mil/galist.

156

http://www.aic.nrl.navy.mil/galist

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

4.11.2 The Use of an Exponential Ranking Scheme within GA-MITS

An exponential ranking scheme [60, 61] was chosen as the parent selection method within GA-MITS.

Selection is widely viewed as providing the driving force for evolution within both the natural and

artificial worlds and must therefore be chosen with much care and consideration. A careful balance

must be achieved between exploration and exploitation and a critical parameter for controlling such a

balance is selection pressure (this was discussed in much detail in Chapter 3). Too little selection

pressure will result in too much exploration and too much selection pressure will result in too much

exploitation. The ability to control the selection pressure is an important property o f any selection

scheme and exponential rank selection provides this level o f control. The exponential rank fitnesses are

given by the function,

where,

N = number o f chromosomes in population

s = selection constant, 0 < s < 1

/ = rank

This again was discussed in more detail in Section 4.6.4 of this chapter. The parameter s controls the

selection pressure and selection pressure is proportional to (1 - s).

So what is the correct setting for the parameter s ? The research undertaken by Blickle [60] suggests a

setting o f s in the range 0.4 < s < 0.6 as it is within this range that a reasonable balance between

exploration and exploitation is achieved. However, the designers o f a GA must experiment with their

application and fitness function before a fixed setting of s can be made. The curves in Table 4.9 and

4.10 illustrate the test set minimisation results for the circuits c499 and c3540 (both o f the original test

sets were generated by PODEM) for a range o f values of s in the exponential fitness function / (/) .

157

Minimal Test Set Size vs. Generation fora Range of Selection
Pressures

140

135 -

130 -
0)
55 125 -
0>

” 120 - o50
■i 1 1 5 ""
1
~ 110 —

105 -

100 -

4520 25 30 35 4010 150 5

-s = 0.2
-S = 0.3
s = 0.4
s = 0.5

-s = 0.6

-s = 0.7
-s = 0.8
"S — 0.9

Generation

Figure 4.9. Minimisation curves fo r the circuit c499 fo r a range o f values o f s.

The colour o f each curve corresponds to a value o f s given in the box to the right

o f the curve.

Minimal Test Set Size vs. Generation for a range of Selection Pressures

205 T

195 -

185 -

165 -

155 -

145
20 30 40100

-s = 0.2
-s = 0.3
s = 0.4
s = 0.5

-s = 0.6
-s = 0.7
-s = 0.8
-s = 0.9

Generation

Figure 4.10. Minimisation curves fo r the circuit c3540for a range o f values o f s.

For the curves in Figure 4.9 corresponding to the circuit c499, the smallest minimal test sets found for

all the values of 5 contained 100 vectors. GA-MITS was able to locate this minimum value for three

different settings of 5 : 0.3, 0.4, and 0.5. For a selection pressure of 5 = 0.2, the minimal test set found

158

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

contained 101 test vectors suggesting that it prematurely converged on this sub-optimal minimal test

set. For the values o f s, 0.6, 0.7, 0.8 and 0.9 the sizes o f the minimal test sets were 101, 102, 101 and

102 respectively. These values of s provided too little selection pressure and not enough exploitation of

good solutions was undertaken by GA-MITS. For the curves corresponding to the circuit c3540, GA-

MITS was able to locate the minimum test set, containing 145 test vectors for the values o f s: 0.5, 0.6

and 0.7. For values o f s less than 0.5 and greater than 0.7 too much and too little selection pressure was

present in the selection scheme respectively. The minimal test sets found for these values o f s contained

only one or two more test vectors than those obtained with the s equal to 0 .5 ,0 .6 , 0.7.

The final setting for the parameter s was chosen as 0.5. For all minimisation results, this setting enabled

GA-MITS to locate the smallest test set for a given circuit. In many cases, just as the two given in the

above two figures, other values o f s also enabled GA-MITS to locate the smallest test sets for a given

circuit but s = 0.5 was a consistently good performer in all experiments. Theoretically speaking this

setting provided the ideal balance between exploration and exploitation. The inclusion o f relatively

weak chromosomes in the mating processes ensured an adequate diversity in genetic material, or

schemata, for the GA to continue to explore the search space. Exploitation o f strong schemata also

continued, ensuring that promising areas o f the search space were exploited to the full. The fact that all

o f the known global minima were located by GA-MITS vindicates the choice o f setting o f s.

Initially a fitness proportionate selection scheme was used in GA-MITS due to its simplicity of

implementation. In comparison to the rank scheme described above, the fitness proportionate scheme

produced very poor results. Figure 4.11 compares the minimisation results obtained for the two

schemes. As can be seen, with the fitness proportionate scheme, GA-MITS is unable to locate the

minimal test set, containing 55 test vectors, within the designated 50 generations. Instead it was found

much later at generation 61. This result was the same for the vast majority o f original test sets.

Furthermore, in many cases, the fitness proportionate scheme did not enable GA-MITS to find the

smallest test set that was found using rank selection. Table 4.17 gives the minimisation results where

the fitness proportionate scheme did not locate the test sets with the smallest number o f test vectors that

were located using the rank scheme. Out o f the 27 cases, there were 7 sets of fault data for which the

fitness proportionate scheme did not locate the smallest test set. At most, the difference in test set size

was 4 vectors for the test set corresponding to the circuit c7552 (the original test set was generated

using the GA based TPG). Although on the whole these differences in test set size only represent small

percentage differences, they are still significant when choosing a selection scheme.

Much o f the published literature [60, 61, 62] suggests that the fitness proportionate schemes suffer from

premature convergence if there are ultra-fit individuals in the initial populations. Subsequent

generations will largely contain off-spring o f these individuals due to the selection pressure being too

strong. Since GA-MITS employs inoculation there will almost definitely be at least one super-fit

individual in the first generation so fitness proportionate selection within this application will result in

159

premature convergence. The use of rank selection masks this phenomenon of the super-fit individual by

selecting parents on the basis of rank. In more general terms, rank selection maintains even selection

pressure throughout the run of a GA, helping to avoid premature convergence. In fitness proportionate

schemes the selection pressure is proportional to the variance of the fitnesses in the population. So in

earlier generations, due to the biased chromosome, the selection pressure will be very high resulting in

too much exploitation and not enough exploration. The even selection pressure within a rank scheme

certainly favours, in the case of GA-MITS, a balanced evolutionary strategy.

Comparison between Fitness Proportionate Selection and Exponential
Rank Selection

90

85

80

75

70

65

60

55

50
60 800 20 40

■Fitness Proportionate Selection

-Exponenetial Rank Selection

Generation

Figure 4.11 Comparison o f minimisation curves fo r fitness proportionate selection

and rank selection. The fault data was generated by PODEM fo r the circuit c432.

PODEM ATPG GA based ATPG Random ATPG

Circuit Fitness

Proportionate

Selection

Exponential

Rank

Selection

Circuit Fitness

Prop.

Selection

Exponential

Rank

Selection

Circuit Fitness

Prop.

Selection

Exponential

Rank

Selection

C499 102 100 C1908 112 110 C7552 166 164

C2670 120 119 c2670 88 87 - - -

C7552 201 198 C7552 160 156 - - -

Table 4.17 Minimisation results fo r which the fitness proportionate scheme did

not locate the smallest test sets as found by GA-MITS using the exponential rank

selection scheme. The figures given in the table represent the number o f test

vectors in the smallest test sets located by GA-MITS.

160

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

4.11.3 Selection of Crossover Operator and Crossover Rate

Along with selection, crossover is a very important feature within evolutionary algorithms. For

successive generations o f chromosomes to be fitter than their parents, the crossover operator must

combine strong schemata with each other while at the same time causing as little disruption amongst the

good schemata themselves. As in nature, crossover within evolutionary algorithms occurs with a high

probability, known as the crossover probability, pc , which is typically greater than 70%. Crossover was

dealt with in some detail in Chapter Three o f this thesis and the reader is directed there for a more

detailed discussion.

Many crossover schemes have been developed over recent years. In Holland’s original GA, single point

crossover was the scheme o f choice, and as a result is still popular amongst GA designers. Two point

crossover and uniform crossover have developed a large following over recent years and have probably

surpassed single-point crossover in popularity. Other crossover schemes [44] have been developed and

are largely concerned with eliminating repetition in the chromosomes, for example, when routes are

combined in the Travelling Salesperson Problem, the same city must not be visited more than once.

During the design of GA-MITS single point, two point and uniform crossover [63] schemes were

examined to determine which best suited the test set minimisation problem.

Figures 4.12 and 4.13 illustrate the test set minimisation curves for the circuits c432 and c499 using

single point crossover. Each curve within the figures corresponds to a different setting o f crossover

probability. For the circuit c432 all settings of pc greater than and including 30% enabled GA-MITS to

locate the global minimum containing 55 test vectors. For the settings of pc > 60%, the convergence

was relatively rapid, the minimum test set being found in 26 generations for the setting o f pc equal to

90% and 95%. Test set minimisation for the circuit c499 was far more sensitive to crossover probability

than many of the ISCAS 85 circuits. In Figure 4.13 it may be seen that only settings o f pc equal to 90%

and 95% enabled GA-MITS to locate the global minimum test set after 40 and 38 generations

respectively. A crossover probability o f 100% was also used during the experiments and in all cases it

gave almost identical results to those obtained using 95%. For clarity, the curves corresponding to this

setting were omitted from the figures. All other settings caused GA-MITS to prematurely converge on

sub-optimal solutions because not enough combination o f strong schemata was occurring.

161

Test Set Minimisation Curves for Circuit c432 using Single Point Crossover
Over a Range of Crossover Probabilities

140 -

130

120o
N
55 n o

75 90
E
1 80
2

70

60

50

 10%
 20%

30%

40%

 50%

 60%

 70%

 80%

 90%

95%

Figure 4.12 Test set minimisation curves fo r circuit c432 using single point crossover.

Test Set Minimisation Curves for Circuit c499 using Single Point Crossover
over a Range of Crossover Probabilities

140 -

130 -

120 -

0)
N
to 1 1 0 -
75
CO

u5oH

100 -

90 -
CO

■i 80 -c
2

70 -

60 -

20 40300 10

— 40%

Generation

Figure 4.13 Test set minimisation curves fo r circuit c499 using single point crossover.

For two point crossover the results for circuits c432 and c499 are very similar to those obtained using

single-point crossover and can be seen in Figures 4.14 and 4.15 respectively. For c432 the crossover

probabilities of 10% and 20% resulted in premature convergence onto some very poor solutions while

settings of pc 70% and greater caused very rapid convergence on the global minimum. For c499 only

the settings of pc equal to 90% and 95% resulted in the global minimum being located.

20 30

Generation

162

Test Set Minimisation Curves using Two-Point Crossover over a Range of
Crossover Probabilities

140 -

130 -

120 -

110 -

100 -

£ 90 -
E
1 80 - 2

70 -

60 -

0 10 20 30 40

Generation

Figure 4.14 Test set minimisation curves fo r circuit c432 using two point crossover.

 10%

 20%

30%

 40%

 50%

 60%

 70%

 80%

 90%

95%

Test Set Minimisation Curves for Circuit c499 using Two-Point Crossover
over a Range of Crossover Probabilities

140 -

130 -

120 -

0>
N
55 110 - -

a>
CO

V)oH

100 -

90 -
as
•i 80 -c

70 -

60 --

200 10 4030

Generation

Figure 4.15 Test set minimisation curves fo r circuit c499 using two point crossover.

The curves given in Figure 4.16 and 4.17 correspond to the minimisation results obtained using uniform

crossover. The results for the circuit c432 are similar to those obtained for both single point and two

point crossover in terms of final solution quality. For the circuit c499 uniform crossover only found the

global minimum test set for settings of pc equal to 40% and 50%. As crossover occurs on a gene-by-

163

M
in

im
al

 T
es

t
Se

t
Si

ze

M
in

im
al

 T
es

t
Se

t
S

iz
e

gene basis this implies that GA-MITS locates the global minimum test set when approximately half the

genes in the parent chromosomes are crossed (at random).

Test Set Minimisation Curves for Circuit c432 using Uniform Crossover over
a Range of Crossover Probabilities

140 -

130 -

110 -

100 -

90 4

80 -

60 -

50
403020100

Generation

Figure 4.16 Test set minimisation curves fo r circuit c432 using uniform crossover.

Test Set Minimisation Curves for Circuit c499 using Uniform Crossover over
a Range of Crossover Probabilities

140

130 -

120 -

110 -

100 -

80 -

70 -

60 -

50
30 4020100

Generation

Figure 4.17 Test set minimisation curves fo r circuit c499 using uniform crossover.

164

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

So given the above results, which are typical for all the other circuits in the ISCAS-85 family, which

crossover scheme produces the best results and which setting of pc should be used ?

It may be seen from the above results, given the correct setting o f pc, all three crossover schemes

enabled GA-MITS to locate the globally minimal test sets. Much theoretical analysis of crossover

schemes has been undertaken [64, 65] and the relative merits o f different schemes have been

established. It is known that single point crossover cannot recombine all schemata and schemata of

large defining length have a greater probability of disruption. In addition, this scheme suffers from ‘end

point bias’ which means that the genes at the ends o f the chromosomes will always be exchanged

between parent chromosomes. Two point crossover addresses some o f the problems associated with

single point crossover by reducing end point bias and reducing the probability o f disrupting schemata of

large defining length. The uniform crossover scheme has the potential to be very disruptive o f schemata

o f any length although on a positive note it is able to recombine all schemata present in the parents.

After consideration of the above known facts about each crossover scheme, two point crossover was

implemented within GA-MITS with pc equal to 95%. Two point crossover seems superior to single

point crossover in this application because of its reduced end point bias and the lower likelihood o f long

schemata disruption. Having examined the results of GA-MITS there are many cases where the fittest

chromosome contained schemata o f large defining length. Although uniform crossover offers the

advantage of being able to recombine all present schemata, it can be very disruptive especially for

genes that coexist and which are essential for test sets o f minimal size. This phenomenon of genes that

coexist is known as coadaption in evolutionary terms [61]. For example, if alleles values o f 1 are

essential for a minimal test set at loci n and n+1 (where l< n + l< iV (r)max) then there is a higher

probability of this schema being disrupted using uniform crossover than for both single and two point

crossover. Also in the case of a minimal test set containing unique patterns (vectors), the allele o f 1 at

the corresponding loci will also be a coadapted gene along with all the other necessary test vectors.

Since 10 of the minimal test sets located by GA-MITS were proven as being global minima, it suggests

that the phenomenon o f the unique patterns, and hence o f the coadapted gene(s), is frequently

encountered within test set minimisation problems. It was for this reason and the slow convergence rate

that a uniform crossover scheme was dismissed for use in GA-MITS.

Another observation of the above results is that the higher the probability pc in the two point crossover

scheme, the better the final results in terms o f convergence and final solution quality. So why was the

value o f pc= 95% selected as opposed to 100% ? The reasoning behind this decision was to ensure that

a small proportion of the current population were copied over into the next generation. Although elitism

may be seen as performing a similar role, it only ensures that the fittest chromosome in the generation is

copied over. Setting the crossover probability to 95% increases the probability that relatively weaker

165

chromosomes in the current generation are also copied over into the next generation to help increase

genetic diversity in each generation.

4.11.4 Selection o f M utation O perator and M utation R ate

The mutation operator used within GA-MITS is the simple bit-wise scheme as used in Holland’s

original GA. In this scheme each bit is mutated with a given probability. The problem faced by the

designer of a GA is to select the exact setting of this mutation probability, pm . Mutation provides a

mechanism for exploring uncharted areas of the search space by creating new schemata that are not

otherwise present within a population of chromosomes. With selection and crossover providing the

exploitation of good schemata, mutation ensures some exploration of new schemata occurs thus helping

to achieve a balanced optimisation strategy. Too much mutation however results in the GA doing too

much exploration and not enough exploitation of good solutions, resulting in convergence on sub

optimal solutions (in extreme cases, the GA could be seen as performing a random walk optimisation

strategy). So how much mutation should occur ?

In nature, mutation is a relatively rare event, taking place less than 1 or 2% of the time, a fact that is

echoed within GAs. But the only effective method for deciding on the probability pm is through

experimentation. The curves in Figure 4.18 are the test set minimisation curves for the circuit c2670

whose fault data was originally generated by PODEM. Each curve represents a different mutation rate

from pm = 5% down to pm = 0.1%.

Minimisation Curves for Circuit c2670 for a Range of Mutation Rates

165 -

155

Q)
N
<75
z 145
V)

to <u y—
| 135

 0 . 10%

 0 .20%

0.30%

 0.40%

 0.50%

 0.60%

 0.70%

 0.80%

 0.90%

1%

2%

3%

4%

5%

125

Generation

Figure 4.18. Test set minimisation curves fo r the circuit c2670for a range o f

mutation rates.

166

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

As can be seen the settings o f pm equal to 5%, 4% and 3% are very disruptive on the minimisation

process. Instead of a steady reduction o f test set size as generations arise, as some generations are

created the minimal test sets are actually getting larger. For example, given a mutation rate of 4%, from

generation 13 to 14 the size o f the minimal test set increases from 149 vectors to 150 vectors. The

process o f elitism should ensure that the fittest test set in a generation is at least the size of the fittest

test set in the previous generation but since the mutation rate is so high and so disruptive, it results in

the loss o f this valuable genetic information. A similar result is seen for the mutation rate o f 5% in

which an increase in test set size o f 3 vectors occurs from generation 18 to 19.

It is only with mutation rates o f 2% and below that GA-MITS achieves the best results. For mutation

rates o f 2%, 1%, 0.9%, 0.3%, 0.2% and 0.1% GA-MITS locates minimal test sets containing either 121

or 120 test vectors. The smallest minimal test set containing 119 test vectors was only found for values

o f pm equal to 0.7%, 0.6%, 0.5% and 0.4%. This result was similar for the remaining circuits in the

ISCAS family. The exact value o f pm used in GA-MITS was 0.7% as it was the highest rate that

consistently enabled the algorithm to locate the global minima. The highest rate was chosen as it is the

view o f the author that mutation is a very important property o f evolutionary algorithms and as much of

it should occur as frequently as is possible. Although exponential selection balances out the effects of

having super-fit chromosomes in the initial population (due to inoculation) these individuals none the

less drive the evolutionary process. Much exploitation is occurring as a result o f the presence o f these

individuals. Having as much mutation as possible provides an opportunity for GA-MITS to also keep in

mind other areas o f the search space, instead o f blindly following the lead of the inoculated individual

and its offspring.

4.11.5 Selection of Population Size and Number of Generations in a Run

The final two parameters that have to be selected for GA-MITS are population size and the number of

generations in each run of GA-MITS. The product o f population size and generation count gives the

total number o f points that will be sampled in the search space and problems involving larger numbers

o f chromosomes should intuitively require a greater amount o f the search space to be sampled. But what

is required is an adequately sized population and generations in a run for the range o f problems that

may be encountered by GA-MITS. So what are these settings?

Returning again to Holland’s original GA and that described in [66] (the ‘simple GA’) a general

framework o f 100 chromosomes and 100 generations seemed to be favoured. In many o f the papers

and books cited in this work population sizes and generation counts rarely exceeded these figures.

Because of the robust nature o f GAs and their strong searching capabilities the aforementioned settings

o f population size and generation count seem to provide very good optimisation results, regardless o f

the size o f the search space. There is very little guidance on how to set these two parameters, let alone

167

any theoretical correlation between the population size/generation count product and the size of the

search space in a particular problem. Just as was the case with many of the other parameter choices for

GA-MITS, it was only through experimentation that the final settings were decided upon.

Test Set Minimisation Curves for Circuit c499 for a Range of Population
Sizes

140 7

130

« 120 -

110 -

30
100

0 10 20 40

Generation

Figure 4.19 Test set minimisation curves fo r the circuit c499 using a range o f

population sizes.

Below in Figures 4.19 and 4.20 are the test set minimisation curves for the circuits c499 (fault data

generated by PODEM) and c l908 (fault data generated by the GA based ATPG) over a range of

population sizes. Four different population sizes were used. They were 50, 100, 150 and 200

chromosomes in each generation. The number of generations in each run was 50. For c499 all

population sizes except 150, resulted in the GA finding the smallest minimal test set containing 100 test

vectors. The quickest convergence was achieved with a population size of 100 chromosomes. For the

circuit cl 908 all four population sizes resulted in the minimal test set containing 110 test vectors being

found, the population size of 150 chromosomes achieving the most rapid convergence. The results

therefore for these examples, and indeed the remaining ISCAS circuits, are very similar for all

population sizes. The actual setting for population size selected was 100 chromosomes to ensure an

adequate balance between genetic diversity and the execution time of GA-MITS. It was stated earlier

that the evaluation of the fitness of each chromosome dominates the overall execution time of the

algorithm so it was felt by the author that population sizes of 150 and 200, although providing greater

genetic diversity, do not improve either the convergence rate or the quality of the final solution by a

significant amount.

The number of generations in each run of GA-MITS was selected as 50. All minimisation results quoted

in this chapter were achieved using this figure. In addition, for all cases, GA-MITS was also run for 100

and more generations to see whether the algorithm had in fact converged. Given the GA operators,

168

selection technique and parameter settings, all minimal test sets were found within the specified 50

generations. Again the execution time increases with generation count as more chromosome fitnesses

will have to be evaluated, so the lower the generation count the better in terms of final execution time.

An alternative method for determining the number of generations in a run would be to build in some

convergence criteria into the GA itself [62], A popular convergence criterion would be for the GA to

halt once the average fitness of the current population was very similar to the maximum fitness in that

generation, i.e. when the average was within 5% say, of the maximum fitness. Another criterion is to

halt the GA when the maximum fitness has not improved over the last n generations. When GA-MITS

was first designed it was run for a fixed number of generations. GA-MITS was able to find test sets

containing the smallest number of test vectors in less than 50 generations for all cases and therefore this

setting was retained in the final design of the algorithm.

Test Set Minimisation Curves for Circuit c1908 for a Range of Population
S izes

120 -

a>
V)

toot-
E
'E

100
10 20 30 400

G eneration

Figure 4.20 Test set minimisation curves fo r the circuit c l 908 using a range o f

population sizes.

 50

 100

150

200

4.12 Summary

This chapter has introduced a novel and wholly original algorithm, GA-MITS, that solves the NP-hard

problem of deriving minimal test sets for combinational, digital circuits. The algorithm has been

designed as a post processor to existing ATPG tools and as a result may be easily incorporated in to

such tools. The problem of generating minimal test sets for digital circuits is of real concern to today’s

169

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

integrated circuit manufacturers [2]. The complexity o f modem electronics has dictated that many

designs must now be able to test themselves using BIST techniques. Minimal test sets require less

silicon on which to store the test vectors in such schemes which in turn reduces per unit manufacturing

costs. For circuits that require testing by external stimuli, e.g. by the application o f test vectors, minimal

test sets reduce the per unit testing time and therefore testing costs. Since minimal test sets tackle, head-

on, the most important factor within any profit making organisation viz. reducing costs, their derivation

is of significant interest to all manufacturers particularly now as microprocessor designs become

increasingly complex and approach prohibitively expensive testing costs [67].

Genetic Algorithms, which form the basis o f GA-MITS, have proven themselves to be robust

optimisation tools, successful across a wide range o f application areas. A thorough literature search in

this chapter shows their wide reaching applicability in the domain of integrated circuit design and test.

Although they do not always provide the quickest optimisation method in this and many other fields,

they do provide a method that competes with existing state-of-the-art algorithms in terms o f final

solution quality. In areas such as circuit layout and test pattern generation for example, they are

providing solutions to problems that are far superior to a number of traditional methods.

The results given in this chapter show that GA-MITS does indeed have a major role to play amongst

today’s digital test tools in reducing manufacturer’s costs. It has been applied to derive minimal test sets

for a family o f simplified RISC processors in addition to an internationally recognised set o f benchmark

circuits which are far more representative of industrial designs. The results obtained by GA-MITS, for

all cases, illustrate that the algorithm is successful in locating minimal test sets from test sets that have

been previously generated by a particular ATPG tool. If there is any redundancy in the original test set,

GA-MITS is shown to have exploited it and located smaller test sets with the same fault coverage. For

the simplified RISC processors, reductions in test set size o f up to 62% were achieved. For the ISCAS-

85 benchmark circuits reductions o f up to 39% were achieved, with an average reduction of

approximately 18%. For the benchmark circuits, out o f the 27 sets of fault data presented to GA-MITS,

10 o f the minimal tests generated were shown to be the global minima amongst the original test sets.

Although this is by no means solid proof, it does indicate that GA-MITS has the ability to locate the

absolutely minimal test sets within the original data.

This chapter has also described all the steps that are required to successfully design a GA for a

particular application. The design process of any GA is largely based upon empirical evidence and this

has been rigorously presented. All design decisions were guided by theoretical evidence, but many of

the final parameter settings could only be chosen after much experimentation and careful consideration

of the results. The majority o f papers on the theoretical issues o f GAs cited in this work state that their

particular findings are valid only for the fitness function(s) described in those papers. The final words

of wisdom in many o f these papers are often along the lines,

170

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

“....despite limited empirical success in using this method or that, a general

answer remains elusive.” [68]

“...one must weigh up the cost of embellishments on a single application with

their general applicability but I leave it to others to decide whether or not the

techniques described here have any wider value” [69]

So it was only after much experimentation that the author could confidently arrive at all the design

decisions and parameter settings that were required for GA-MITS.

This work has resulted in the publication of a paper [70] presented at the 4Cfh Midwest Symposium on

Circuits and Systems, held in Sacramento, USA, August 1997. In addition, the author received an award

for the work in the annual Best Student Paper Contest, shown in Appendix C. This work therefore has

received international academic recognition as being valid and applicable in modem world electronic

design and test. This suggests that GA-MITS has achieved its goal o f test set minimisation and has a

role in the future development o f ATPG tools.

171

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

4.13 References

[1] Gibbs W.W., “The law o f more”, Solid State Century, Special Issue Scientific American, Vol. 8,

No. 1, pp 62 - 63, November 1997.

[2] Thompson K.M., “Intel and the myths o f test”, IEEE Design and Test o f Computers, pp 79-81,

Spring 1996.

[3] Abramovici M., Breuer M.A., Friedman A.D., “DIGITAL SYSTEMS TESTING AND TESTABLE

DESIGN”, IEEE Press, 1990.

[4] R. Drechsler and N. Drechsler, “EVOLUTIONARY ALGORITHMS IN CIRCUIT DESIGN”,

Kluwer Academic Publishers, 2002.

[5] Cohoon J., and Paris W., "Genetic Placement," Proc. IEEE ICCAD, pp.422-425, 1986.

[6] Stockmeyer L., “Optimal orientation of cells in slicing floorplan designs”, Information and Control,

57(2), pp.91-101,1983.

[7] Wong D. F., Liu C. L., “A new algorithm for floorplan design”, Proc Design Automation

Conference, pp 101-107, 1986.

[8] Esbensen, H., and Kuh E., "Design Space Exploration Using the Genetic Algorithm," Proceedings

o f the 1996 IEEE International Symposium on Circuits and Systems, pp. 500-503, May, 1996.

[9] Nakaya S., et. al., “An adaptive genetic algorithm for VLSI floorplanning based on sequence-pair”,

Proc. IEEE International Symposium on Circuits and Systems, Vol.3, pp.65-68, 2000.

[10] Valenzuela, Christine L., Wang, Pearl Y., “A Genetic Algorithm for VLSI Floorplanning”, Proc.

Parallel Problem Solving from Nature VI (PPSN VI), pp 671-680, 2000.

[11] H. Esbensen. ”A Macro-Cell Global Router Based on Two Genetic Algorithms”, Proc. of

European Design Automation Conf. Euro-DAC, pp 428-433, Sept. 1994.

[12] Krashinsky, R., “GRAPE: Genetic Routing And Placement Engine” , Embodied Intelligence

Project, Massachusetts Institute of Technology, 2000.

[13] Drechsler R., Gockel N., Becker B., “A genetic algorithms for minimisation o f fixed polarity

Reed-Muller expansions”, Proceedings o f the International Conference on Artificial Neural Networks

and Genetic Algorithms, pp 392 - 395, 1995.

172

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

[14] Miller J.F., Thomson P., “Combinational and sequential logic optimisation using genetic

algorithms”, Proceedings o f the First International Conference on Genetic Algorithms in Engineering

Systems: Innovations and Applications GALESIA, pp 18 -22, University o f Sheffield, Sheffield, UK,

Sept. 1995.

[15] Drechsler R., Becker B., Gockel N., “Heuristics for OBDD minimisation by evolutionary

algorithms”, In Parallel Problem Solving from Nature, Springer-Verlag, pp 730 - 739, 1996.

[16] Drechsler R., Gockel N., Becker B., “Minimisation of OKFDDs by genetic algorthms”,

International Symposium on Soft Computing, p B:271 - 277, 1996.

[17] Zebulum R.S. et. al., “EVOLUTIONARY ELECTRONICS: AUTOMATIC DESIGN OF

ELECTRONIC CIRCUITS AND SYSTEMS BY GENETIC ALGORITHMS”, CRC Press, 2001.

[18] Koza J.R., “GENETIC PROGRAMMING IV: ROUTINE HUMAN-COMPETITIVE MACHINE

INTELLIGENCE”, Kluwer Academic Publishers, 2003.

[19] Kruiskamp W., Leenaerts D., “DARWIN: CMOS op-amp synthesis by means o f genetic

algorithm”, Proceedings o f the 32nd Design Automation Conference, Association for Computer

Machinery, pp 698 - 703, 1995.

[20] Rogenmoser R., Kaeslin H., Blickle T., “Stochastic methods for transistor size optimisation o f

CMOS VLSI circuits”, in Parallel Problem Solving from Nature IV, pp 849 - 858, Springer-Verlag,

1996.

[21] Thomson A., “Hardware evolution: Automatic design o f electronic circuits in reconfigurable

hardware by artificial evolution”, Ph.D. Thesis, University of Sussex, 1996.

[22] Thomsom A., “An evolved circuit, intrinsic in silicon, entwined with physics”, Proceedings of the

1st International Conference on Evolvable Systems (ICE90), Tsukuba, Japan, pp 390 - 405, 1996.

[23] Shahookar P., Mazumder P., “VLSI cell placement techniques”, ACM Computing Surveys,

Vol.23, No.2, pp. 143 - 220, 1991.

[24] Fujiwara H. and Toida S., ‘The complexity of fault detection: An approach to design for

testability”, Proceedings o f the 12th International Symposium on Fault Tolerant Computing, pp 101-

108, June 1982.

173

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

[25] Srinivas M. and Patnaik L.M., “A simulation based test generation scheme using genetic

algorithms”, Proceedings o f the 6th International Conference on VLSI Design, pp 132 - 135, Jan. 1993.

[26] O’Dare M J. and Arslan T., “Generating test patterns for VLSI circuits using a genetic algorithm”,

Electronics Letters, Vol. 30, No. 10, May 1994.

[27] Prinetto P., Rebaudengo M., Sonza Reorda M., “An automatic test pattern generator foe large

sequential circuits based on genetic algorithms”, Proceedings of the International Test Conference, pp

240 - 249,1994.

[28] Rudnick E.M., Patel J.H., “A genetic approach to test application time reduction for full scan and

partial scan circuits”, Proceedings of the 8th International Conference in VLSI Design, pp 288 - 293,

Jan. 1995.

[29] Como F., Prinetto P., Rebaudengo M., Sonza Reorda M., “GATTO: A genetic algorithm for

automatic test pattern generation for large synchronous sequential circuits”, IEEE Transaction on

Computer Aided Design of Integrated Circuits and Systems, Vol. 15, No. 8, Aug. 1996.

[30] Roth J.P., “Diagnosis o f automata failures: A calculus and a method”, IBM Journal of

Development, Vol. 10, pp 278-291, July 1966.

[31] Goel P., “An implicit enumeration algorithm to generate tests for combinational logic circuits”,

IEEE Transactions on Computers, Vol. C-30, pp 215-222, March 1981.

[32] Abramovici M., Breuer M.A., Friedman A.D., “DIGITAL SYSTEMS TESTING AND

TESTABLE DESIGN”, IEEE Press, 1990.

[33] Abramovici M. et. al., “SMART and FAST: Test generation for VLSI scan-design circuits”, IEEE

Design and Test o f Computers, Vol. 3, pp 43 -54, Aug. 1986.

[34] Fujiwara H. and Shimono T., “On the acceleration of test generation algorithms”, IEEE

Transactions on Computers, Vol C-32, pp 1137-1144, Dec. 1983.

[35] Cheng K.T., and Agrawal V.D., “A simulation based direction-search method for test generation”,

Proceedings of the International Conference of on Computer Aided Design, pp 48-51, Oct. 1987.

[36] Takamatsu Y. and Kinoshita K., “CONT: A concurrent test generation algorithm”, FTCS-17, pp

22-27, July 1987.

174

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

[37] Kirkland T., Mercer M.R., “A topological search algorithm for ATPG”, Proceedings o f the 24th

ACM/IEEE Design Automation Conference, pp 502-508, June 1987.

[38] Raik, J., Markus A., Personal Communication, Tallin Technical University, 1997.

[39] Reddy L.N., Pomeranz I., Reddy S.M., “ROTCO: A reverse order test compaction technique”,

Proceedings o f EURO-ASIC 92, June 1992.

[40] Carter J.L., Dennis S.F., Iyengar V.S., Rosen B.K., “ATPG via Random Pattern Simulation”, Proc.

of the 1985 International Symposium on Circuits and Systems, pp 683 - 686, 1985.

[41] Schulz M., et. al. “SOCRATES: A highly efficient automatic test pattern generation system”, IEEE

Transactions on Computer Aided Design, pp 126 -137, Jan. 1988.

[42] Waicukauski J.A., Shupe P.A., Giramma D.J., Matin A., “ATPG for ultra large structured

designs”, Proceedings o f the International Test Conference, pp 44-51, 1990.

[43] Goel P., Rosales B.C., “PODEM-X: An automatic test generation system for VLSI logic

structures”, Proceedings of the 18th Design Automation Conference, pp 260 - 268, 1981.

[44] Aylor J.H., Cohoon J.P., Feldhousen E.L., Johnson B.W., “GATE - A genetic algorithm for

compacting randomly generated test sets”, International Journal of Computer Aided Design VLSI

Design 3, pp 259 - 272, 1991.

[45] Pomeranz I., Reddy L.N., Reddy L.N., “COMPACTEST: A method to generate compact test sets

for combinational circuits”, IEEE Transactions on Computer Aided design o f Integrated Circuits and

Systems, Vol. 12. No. 7, pp. 1040 -1049, July 1993.

[46] Guo R., Pomeranz I., Reddy S.M., “Procedures for static compaction of test sequences for

synchronous sequential circuits based on vector restoration”, ”, Proceedings Design Automation and

Test in Europe, pp583-589, 1998.

[47] Hsiao M.S., Chakradhar S.T., “State relaxation based subsequence removal for fast static

compaction in sequential circuits”, Proceedings Design Automation and Test in Europe, pp577-582,

1998.

[48] Hsiao M.S., Rudnick E.M., Patel J.H., “Fast algorithms for static compaction o f sequential circuit

test vectors”, Proceedings o f the VLSI Test Symposium, pp 188-195, April 1997.

175

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

[49] Como F., Prinetto P., Rebaudengo M., Sonza Reorda M., “New static compaction techniques o f

test sequences for sequential circuits”, Proceedings o f the European Design and Test Conference, pp

37-43, March 1997.

[50] Christofedes, N., and Korman K., "A computational survey o f methods for the set covering

problem," Management Science, Vol. 21, No. 5, pp. 591-599, Jan. 1975.

[51] Ubar R., “Test Synthesis with alternative graphs”, IEEE Design and Test o f Computers, pp 48 -

57, Spring 1996.

[52] Blickle T., “Theory o f Evolutionary Algorithms and Applications to System Synthesis”, Ph.D.

Thesis, Swiss Federal Institute of Technology, Zurich, 1996.

[53] Surrey, P.D., Radcliffe, N.J., “Inoculation to initialise evolutionary search”, Evolutionary

Computing: AISB Workshop, Ed. T. Fogarty, Springer-Verlag, 1996.

[54] Brglez F. and Fujiwara H., “A neutral netlist o f 10 combinational benchmark designs and a special

translator in FORTRAN”, International Symposium on Circuits and Systems, June 1985.

[55] Aero H., Personal Communiction, Tallinn Technical University, Estonia, 1997.

[56] Markus A., Raik J., Ubar R., “Fast and efficient compaction of test sequences using bipartite graph

representation”, To appear in the Proceedings o f the Asian Test Conference, 1998.

[57] Akers S. B., Jansz W., “Test Set Embedding in a built-in self-test environment”, Proceedings of

the IEEE International Test Conference, pp. 257 -263, Aug. 1989.

[58] Alba E., Tomassini M., “Parallelism and evolutionary algorithms”, IEEE Transactions on

Evolutionary Computation, Vol. 6, Issue 5, pp.443-462, October 2002.

[59] Esbensen H., Design Optimisation Group Manager, personal communication, Avant! Corporation,

Fremont, California, USA, 1998,

[60] Blickle T., Thiele L., “A comparison o f selection schemes used in genetic algorithms”, Technical

Report Nr. 11, Swiss Federal Institute o f Technology, Zurich, Switzerland, December 1995.

[61] Hancock P.J.B., “An empirical comparison o f selection methods in evolutionary algorithms”, In

Fogarty T.C. ed. Evolutionary Computing: AISB, pp80-94, 1994.

176

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

[62] MitchelL M., “AN INTRODUCTION TO GENETIC ALGORITHMS”, The MIT Press,

Cambridge, Massachusetts, USA, 1996.

[63] Spears W.M., De Jong K.A., “An analysis o f multi-point crossover”, In G. Rawlins ed.,

Foundations of Genetic Algorithms, pp301 - 315, Morgan Kaufmann, 1991.

[64] Syswerda G., “Uniform crossover in genetic algorithms”, In R.K. Belew and L.B. Booker eds. ,

Proceedings o f the Fourth International Conference on Genetic Algorithms, pp2 - 9, Morgan Kaufmann,

1991.

[65] Spears W.M., De Jong K.A., “On the virtues o f parameterised uniform crossover”, In J.D.

Schaffer, ed., Proceedings o f the Third International Conference on Genetic Algorithms, pp230 - 236,

Morgan Kaufmann, 1989.

[66] Goldberg D.E., “GENETIC ALGORITHMS IN SEARCH, OPTIMISATION AND MACHINE

LEARNING”, Addison-Wesley, Reading, MA, 1989.

[67] Chin C., Manager, Design for Testability Group, - Personal Communication, Sun Microsystems,

Mountain View, California, USA, 1997.

[68] Goldberg D.E., Deb K., “A comparative analysis of selection schemes”, In G. Rawlins ed. ,

Foundations of Genetic Algorithms, Morgan Kaufmann., 1991.

[69] Fogarty T., “Varying the probability o f mutation in a genetic algorithm”, Proceedings of the Third

International Conference on Genetic Algorithms”, ppl04-109, Morgan-Kaufmann, 1989.

[70] Takhar, J.S., Gilbert D.J., “The derivation o f minimal test sets for combinational logic circuits

using genetic algorithms”, Proceedings of the 40th Midwest Symposium on Circuits and Systems, pp 40-

44, Sacramento, USA, August 1997.

177

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Chapter 5. Conclusion and Further Work

The work presented in this thesis provides original and novel approaches to three important areas in

combinational digital testing viz. test pattern generation, test set minimisation and testability analysis.

Chapter One gave a brief overview of each o f these areas and a discussion on the rapid pace of change

in VLSI technology by introducing Moore’s Law. After placing the field of test within this real-world,

industrial context, basic digital testing terminology and fundamental test pattern generation techniques

were presented.

Chapter Two presented an original test pattern generation technique which combines cubical calculus

and the Boolean difference. The chapter began with a detailed discussion on both the Boolean

difference method and John Roth’s seminal work on the calculus o f cubes. It was noted that the elegant

Boolean difference technique was not used in ATPG systems due to its cumbersome, algebraic nature.

It was shown that the cubical calculus provides a means to solve the Boolean difference and an outline

test pattern generation algorithm was presented. The chapter concluded by introducing an original

technique for evaluating testability measures again, using the Boolean difference and cubical calculus.

It is felt by the author that the work presented in this chapter opens up the field o f algebraic test pattern

generation which, for many years, has been overlooked by topological techniques (such as those

presented in Chapter One). Given that todays ICs are designed using high-level description languages,

test pattern generation for some classes of digital circuits based on algebraic techniques may become

more prominent. It was shown that some o f the core computations required for test pattern generation

can also be used to evaluate testability measures. It is felt by the author that by using this work, these

two important digital design and test functions could be incorporated into a single design suite.

Chapter Three introduced the general area o f evolutionary computation and more specifically, genetic

algorithms. By emulating Darwinian evolution and natural selection, it was shown that genetic

algorithms provide a very powerful technique for providing solutions to NP-complete problems. The

algorithm is not deterministic and does not guarantee finding the optimal solution, but it does provide

very good solutions to very large problems. Digital circuit design and test is littered with such problems

and genetic algorithms have been applied in many cases. Chapter Four describes one such problem, the

minimisation o f test sets, and presents original work by the author in optimizing test sets using a genetic

algorithm. A new algorithm was developed, GA-MITS, that was shown to be very successful in locating

minimal test sets for the ISCAS ’85 benchmark circuits. The test sets were provided by the Design and

Test Centre at Tallinn Technical University based on one of their test pattern generation algorithms.

The size o f the optimised test sets produced by GA-MITS, is bound by the search space represented by

the original test set. Therefore, raw comparisons with other minimisation techniques, using different test

sets generated by different ATPG systems are not valid. But, the Tallinn team did have their own test

set minimisation algorithm which GA-MITS consistently out-performed. In fact, during the

development phases of both algorithms, results were shared and once the Tallinn team realised they had

178

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

been out-performed, they would then use the results of GA-MITS to refine their algorithm. In

conclusion, the genetic algorithm proved very successful in generating minimal test sets and is capable

of optimising large test sets. Given the discussion of Chapter One about the need to control test costs by

reducing test application time, GA-MITS provides an excellent solution to a real-world problem.

Given the finite time allocated for all academic research, the work presented in this thesis opens some

interesting avenues for future work. The work presented in Chapter Two outlines the theoretical basis of

a test pattern generation algorithm. This work needs to be implemented in a high-level computer

language and needs to be bench-marked against other, existing test pattern generation algorithms. The

goal of every algorithm designer is to take the domain knowledge, together with efficient data structures

to represent the data, and produce a generalised, repeatable solution for a problem. The work to

implement this test pattern generation technique would be to efficiently represent and solve the cubical

calculus. The implementation must be mindful of both memory and processor usage, as today’s circuits

are represented by enormous amounts of data. It is felt by the author that the key to a successful

implementation will be the efficient management and processing of this data. Another avenue for future

work would be to investigate whether the calculus of cubes and the Boolean difference is applicable to

sequential circuit testing, as this a very wide and active area within digital testing.

The test set minimisation work also has some potential for future work. Much work has been done in

the general area of evolutionary algorithms which may be applicable to GA-MITS. For example, the

parallel implementation of GAs is a very interesting area to improve the time-performance of genetic

algorithms in general. Another example would be to explore dynamic parameter settings. Many of the

run-time parameters of GA-MITS, such as crossover and mutation rates, are static and set at compile­

time. It would be interesting to explore the area of dynamically altering these, and other parameters, as

generations evolve. Perhaps a high mutation rate in later generations when the algorithm has converged

on a solution may enable it to locate fitter, more isolated solutions. GA-MITS as it is implemented,

provides the single best solution to the test set minimisation problem that it is able to locate. One

possible area for future development could be to incorporate the notion of Pareto Optimality. The test

set minimisation problem is essentially a multi-objective optimisation problem; to minimise the test set

size while maximising the fault coverage of the test set. The use of Pareto Optimality could enable GA-

MITS to offer multiple solutions to the user who ultimately would decide which test set to use. For

example, consider if the current implementation of GA-MITS produces a single solution; a test set

comprising 25 test vectors giving 100% fault coverage. What if in a previous generation, GA-MITS

encountered a test set containing 10 test vectors but offering 90% fault coverage? This is not an

impossible scenario when one considers test vectors that only cover one or two hard-to-test faults.

Given a 60% reduction in test size and therefore test application time, would a test engineer forgo 10%

in fault coverage? For non-critical applications, he may well opt for lower fault coverage. Pareto

Optimality would allow GA-MITS to offer such choices and could be a very interesting area of

research.

179

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

The last point o f discussion above, opens up the topic o f compromising fault coverage for performance

and may well be applicable to much of the test pattern generation and optimisation work presented in

this thesis. The work presented here assumes the need for 100% fault coverage. But what if the goal of

the test pattern generation algorithm for example, was to achieve 95 or 99% fault coverage? If this

could be achieved it would certainly result in significant reductions in the time and memory

requirements o f the algorithm. There are many non-critical applications for IC’s such as cheap, mass

produced consumer devices that may well benefit by lower fault coverage testing. It is felt by the author

that this particular work could produce some very interesting and important results.

In closing, the test pattern generation, testability measures and test set minimisation work was presented

at 4Cfh Midwest Symposium on Circuits and Systems, held in Sacramento, USA and published in the

symposiums proceedings (see Appendix B). In addition, the author received an award for the test set

minimisation work in the symposium’s annual Best Student Paper Contest (see Appendix C). The work

presented in this thesis therefore, has received some international academic recognition as being valid

and applicable in modem world electronic design and test.

180

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Appendix A. Software Listing: GA-MITS.

The listing below is specific to a given test set m inim ization problem . In the case below , it relates to the ISC A S

c499 circuit. F o r each test set m inim ization problem , there are specific param eters that need to be set in the code.

F o r exam ple, test set size, fau lt coverage, m axim um num ber o f possib le faults in a circuit. C om m ents in the code

specify these settings. O ther than these settings, the code rem ains the sam e fo r every test se t m inim ization

problem .

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

GA-MITS

Genetic Algorithm - Minimisation of Test Sets

Author: Jasbir S. Takhar,

Sheffield Hallam University, 1996 - 2003

Test Set Miminimisation of:

ISCAS C499 CIRCUIT: GENETIC ATPG

■7

#defineMBIG 1000000000 /* PARAMETERS FOR RAN3

#define MSEED 161803398

#define MZ 0

#define FAC (1.0/MBIG)

7

float ran3(long *idum);

void pop_gen(); T generates initial population 7

void fitness();

void stats(int gen_count);

void new_gen(); T generates new population from old one 7

int select(void);

int mutate (int allele, int count, int child);

int crossover(int matel, int mate2,int count);

void stats_f(int no_gens);

int line_count,data_count,count; T For data extraction 7

r CHANGE FOR EACH MODEL

The parameters below define the parameters of the test set to be minimized. Fault count,

Total number of tests etc.

7

int (*data)[1202J; T Subscript = total no. of faults 7

181

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

int (*pop)[86];

int (*new_pop)[86];

int ‘tests,‘faults;

int *global_fit;

int *g!obal_tests;

int *global_faults;

int *high_fit;

int ‘chrom J;

int ‘faultj;

int *pop_size;

int *no_gens;

double ‘fit;

double *glob_fit;

double *sum_fit;

double *gen_ave;

double *gen_max;

long idum;

int muts=0;

void main()

{
int i,j,k;

int gen_count=0;

int gens=300;

int h_fit=0;

int g_t=0; /* initialiser for global_tests */

int g_f=0; T ' " global_faults */

t * ---------------------- CHANGE FOR-EACH TEST SET------------------------

int ch_l=86; T Chromosome length=no. of tests */

intf_len=1202; /* Total no of faults */

int p_size=150;

double s_fit=0.0;

double gfit=0;

char dat[610]; /* must change to accomodate each line of test data */

/* i.e. min. = total no. faults/2 */

time_tt1;

FILE *f1;

chrom_l=&ch_l;

fault_l=&f_len;

pop_size=&p_size;

glob_fit=&gfit;

no_gens=&gens;

high_fit=&h_fit;

sum_fit=&s_fit;

global_tests=&g_t;

global_faults=&g_f;

T All subscripts = total no. of */

T possible tests */

T Arrays containing no. of t's and f's */

I* Array containing fittest chromosome */

/* pointer to fittest no. tests */

I* pointer to fittset no. faults */

T Subscript of the fittest chrom in gen. */

I* Length of chromosome = no.tests */

T Total number of faults in data */

T Fittness value of global fit chromosome */

T Array of ave fittnes for each generation */

T " " max " " " " */

182

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

t1=time(nULL);

idum=-(t1%100);

/* -------------------------CHANGE FOR EACH TEST SET -------------------

pop=malloc(sizeof(int[150][86])); T Subscripts= *1

new_pop=malloc(sizeof(int[150][86])); T [popsize][chrom_l] 7

data=malloc(sizeof(int[86][1202])); T Size of fault matrix 7

fit=malloc(sizeof(double)* *pop_size);

global_fit=malloc(sizeof(int)* *chrom_l);

gen_max=malloc(sizeof(double)* *no_gens);

gen_ave=m alloc(sizeof(doubl e)* *no_gens);

tests=malloc(sizeof(int)* *pop_size);

faults=malloc(sizeof(int)* *pop_size);

printf("\n Processing \n");

/*&&&&&&&&&&& GENERATING DATA &&&&&&&&&&& 7

if((f1=fopen("c499gen.txt",V))==NULL)

{
perrorfcannot open file c499gen.txt");

exit(EXIT_FAILURE);

}

line_count=0;

while(fgets(dat,sizeof(dat),f1)!=NULL)

{ /* printf("\n line_count=%d",line_count);7

count=0;

while (dat[count]='X' || dat[count]=='1’ || dat[count]=='0')

{
data_count=count*2;

if(dat[count]=,X')

{ data[line_count][data_count]=0;

data[line_count][data_count+1]=0;

}
else

if(dat[count]='1')

{ data[line_count][data_count]=1;

data[line_count][data_count+1]=0;

}
else

if(dat[count]=='0’)

{ data[line_count][data_count]=0;

data[line_count][data_count+1]=1;

}
count++;

}
line_count++;

183

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

}printf("\n line_count=%d count=%d \n",line_count,count);

fclose(f1);

f 888888888888888 GENERATE 2-D DATA ARRAY 8888888888888888 7

pop_gen(); T generate initial population 7

fitness(); t* calculate fitness 7

stats(gen_count); T calculate statistics 7

forG=1 ;j<*no_gens;j++)

{
printf("\n %d",gen_count);

gen_count++;

new_gen(); /* generate new population 7

fitnessO;
stats(gen_count);

}
stats_f(*no_gens);

forO=0;j<*no_gens;j++)

{ printf("\n gen %d max_fit=%f ave_fit=%f ".j.gen.maxQ],

gen_ave[j]);

}
getchar();

printf("\n the fittest chromosome: tests=%d faults=%d\nYglobal_tests,*global_faults);

forG=0;j<*chromJ;j++)

{
printf("%d",global_fit[j]);

}

printf("\n muts=%d Done!\muts);

getchar();

}

void pop_gen()

{
float r_num;

int i,seed,j;

f or(i=0; i<*ch rom j; i++)

{

pop[0][i]=l;

}

for(i=1;i<50;i++)

{
for(j=0;j<*chrom_l;j-H-)

{
r_num=ran3(&idum);

184

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

if(r_num<0.2)

{ Pop[i]D>0;

}
else{

Pop[i][j]=1;

}
}

}
for(i=50;i<*pop_size;i++)

{
for(j=0;j<*chrom_l;j++){

r_num=ran3(&idum);

if(r_num<0.5)

{ pop[i][j]=0;

}
else

{ pop[i][j]=1;

}
}

}
return;

}

void fitness()

{
int chrom,allele,fault_c,i,k,j;

int fault_counter=0;

int test_counter=0;

int *fault_cov=malloc(sizeof(int)* *fault_l);

int num.denom;

double frac;

for(chrom=0;chrom<*pop_size;chrom++) /* loop through population 7

{
test_counter=0;

fault_counter=0;

for(fault_c=0;fault_c<*fault_l;fault_c++) /* set fault_cov[] to zero*/

{ fault_cov[fault_c]=0;}

for(allele=0;allele<*chrom_l;allele+-f) /* loop through each allele 7

{
if(pop[chrom][allele]==1){

test_counter++; /* test exists, allele=17

for(fault_c=0;fault_c<*fault_l;fault_c++) /* loop through database7

{
if((data[allele][fault_c]==1) && (fault_cov[fault_c]!=1))

{

fault_cov[fault_c]=1;

fault_counter++;

}
} r end of fault counter loop*/

185

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

}
} T end of allele loop*/

I* printf("\n faults = %d tests=%d",fault_counter,test_counter);*/

T denom=(*fault_l+1)-fault_counter;7

fit[chrom]=fault_counter;

tests[chrom]=test_counter;

faults[chrom]=fault_counter;

if(fault_counter==1194)

fit[chrom]= (100.0*fit[chrom])/test_counter;

}
return;

}

void stats(int gen_count)

{
int j,x;

double max_fit=fit[0];

double min_fit=fit[0];

double ave_fit=0.0;

*high_fit=0;

*sum_fit=fit[0];

*global_tests=tests[0];

*global_faults=faults[0];

for(j=1 ;j<*pop_size;j++){
* s u m_f it+=f it [j];

if(fit[j]>max_fit){

max_fit=fit[j]; /* max_fit is the fitness VALUE of fittest */

high_fit=j; / high_fit is the subscript of the fittest */

*global_tests=tests[j];

*global_faults=faults[j];

}

if (f itD]<m in_f it)

min_fit=fitlj];

}

ave_fit=*sum_fit/ *pop_size;

gen_max[gen_count]=max_fit;

gen_ave[gen_count]=ave_fit;

if (m ax_f it>*gl ob_f it) {

*glob_fit=max_fit;

forQ'=0;j<*chromJ;j++){

global_fit[j]=pop[*high_fit][j];

}

}

printf("\n global fit=%f tests=%d faults=%d V glob_fit,*global_tests,*globaLfaults);

return;

}

void new_gen()

186

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

{

int kj.matel.mate^q.r;

T peforming elitism: copying high_fit as the top two

individuals in the new population, new_pop */

for(q=0;q<10;q++)

{
for(r=0;r<*chrom_l;r++)

{ new_pop[q][r]=pop[*high_fit][r];

}

}

for(j=10;j<*pop_size;j=j+2)

{

mate1=select(); T select two mates */

mate2=select();

crossover(mate1, mate2,j); T CROSSOVER MUTATION */

}

for(k=0;k<*pop_size;k++){

for(j=0;j<*chromJ;j++){

pop[k]0>new_pop[k]Q];

}

}

}
int select()

{
double partsum;

int j;

int s_fitt;

int mum_s;

int r_num;

s_fitt=*sum_fit/1;

r_num=(int)100000000* (ran3(&idum));

mum_s=r_num%s_fitt; T this causes an error if all fitneses are zero */

if(mum_s==0)

return 0;

else{

j=0;
partsum=0;

while(partsum<mum_s){

j=j+1:
partsum=partsum+fit[j-1]:

}
return 0-1);

}

int crossover(int matel, int mate2, int count)

{
int xpointl ,xpoint2,r1 ,r2,j,i;

int *parent1=malloc(sizeof(int)* *chrom_l);

int *parent2=malloc(sizeof(int)* *chrom_l);

187

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

float cross_ran;

/* FUNCTION TO IMPLEMENT 2-POINT CROSSOVER */

T BY GENERATING 2 RANDOM CROSSOVER POINTS. 7

T IF THESE ARE EQUAL, EFFECTIVELY PERFORMING 7

T ONE POINT CROSSOVER 7

forO=0;j<*chromJ;j++){

parentl [j]=pop[mate1][j];

parent2[j]=pop[mate2][j];

new_pop[count][j]=parent1 [j];

new_pop[count+1][j]=parent2[j];

}

cross_ran=ran3(&idum);

if(cross_ran>0.1) { /* CROSSOVER PROBABILITY 7

r1= (int)100000000* (ran3(&idum));

r1= (r1 % (*chrom_l-1))+1;

r2= (int)100000000* (ran3(&idum));

r2= (r2 % (*chrom_l-1))+1;

if(r1<r2){

xpoint1=r1;

xpoint2=r2;

}
else{

xpoint1=r2;

xpoint2=r1;

}
forO'=0;j<*chromJ;j-H-){

if(j>=xpoint1 && j<xpoint2){

new_pop[count][j]=mutate(parent2[j],jf 1);

new_pop[count+1][j]=mutate(parent1[j],j,2);

}
else if(xpoint1=xpoint2 && j<xpoint1){

new_pop[count][j]=mutate(parent2[j],j,1);

new_pop[count+1][j]=mutate(parent1[j],j,2);

}
else

{
new_pop[count][j]=mutate(parent1 [j],j,1);

new_pop[count+1][j]=mutate(parent2[j]IjI2);

}
}

return 0;

}

int mutate(int allele,int count,int child)

{
int mut;

float m_prob;

188

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

mut=allele;

m_prob=ran3(&idum);

if(m_prob<0.02){

muts++;

if(allele==1){

mut=0;

}
if(allele==0){

{mut=1;

}

}
return mut;

}

void stats_f(int no_gens)

{

int j;

FILE *fp;

if((fp=fopen("c499res.txty wt"))=NULL)

printf("error can't open file");

else

{
for(j=0;j<no_gens;j++)

{
fprintf(fp,"%d\t%f\t%f\n",j,gen_ave[j],gen_max[j]);

}
fprintf(fp,"\n the fittest chromosome: tests=%d

faults=%d\n",*global_tests,*global_faults);

forO'=0;j<*chrom_l;j++){

fprintf(fp,"%d",globaLfit[j]);

}

}
fclose(fp);

return;

}

float ran3(long *idum)

{
static int inext, inextp;

static long ma[56];

static int iff=0;

long mj,mk;

int i,ii,k;

if(*idum <o 11 iff = 0)

{

iff=1;

mj=MSEED-(*idum < 0 ? -*idum : *idum);

mj %= MBIG;

ma[55] = mj;

mk=1;

189

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

for(i=1;i<=54;i++)

{

ii=(21*i) % 55;

ma[ii]=mk;

mk=mj-mk;

if (mk < MZ) mk += MBIG;

mj=ma[ii];

}

for(k=1 ;k<=4;k++)

for(i=1 ;i<=55;i++)

{
ma[i] -= ma[1+(i+30) % 55];

if(ma[i]<MZ) ma[i]+=MBIG;

}
inext=0;

inextp=31;

*idum=1;

}

if (-H-inext == 56) inext=1;

if (++inextp == 56) inextp=1;

mj=ma[inext]-ma[inextp];

if (mj < MZ) mj += MBIG;

ma[inext]=mj;

return (mj*FAC);

190

Test Set Generation and Optimisation using Evolutionary Algorithms and Cubical Calculus

Appendix B. Publications

191

The Derivation of Minimal Test Sets
for Combinational Logic Circuits using Genetic Algorithms

Jasbir S. Takhar and Daphne J. Gilbert
School of Science and Mathematics

Sheffield Hallam University
Sheffield, SI 1WB, UK

Abstract - To reduce the post-production cost o f testing
digital circuits, the derivation o f minimal test sets is an
important issue. The technique presented here applies
a Genetic Algorithm to find minimal or near minimal
test sets. The algorithm aims to minimise test sets that
have been previously generated by an ATPG system and
as such has been designed as a post-processor. The
algorithm has been applied to a fam ily o f RISC
(Reduced Instruction Set Computer) processors and a
selection o f ISCAS-85 benchmark circuits.

I. In tr o d u c tio n

For today’s complex digital circuits, the derivation
of high coverage, minimal test sets is an important
issue. Although capable of achieving high fault
coverages, VLSI test generation systems such as
TOPS [1] and Turbo-Tester [2] do not address this
issue. However, after a test set with adequate fault
coverage has been generated by ATPGs
(Automatic Test Pattern Generators) or other
methods, test set minimisation algorithms may be
applied as a separate process. As such, this is a
one-off cost and may result in significant time/cost
savings in post production unit testing.

This paper describes the application of a Genetic
Algorithm (GA) [3-6] to derive minimal test sets
for digital, combinational circuits. Based loosely
upon the Darwinian ideas of evolution and natural
selection [7], they have proven themselves to be
practical, robust optimisation tools, well suited to
the NP-hard problem of deriving optimal test sets.
They have been applied successfully in a variety of
VLSI design/test contexts [8-9]. O’Dare and
Arslan [10] have applied them to generate test
vectors and high coverage test sets and Aylor et al
[11] have addressed the compaction issue but
using fault simulations in addition to a ‘covering
heuristic’. The technique described here optimises
test sets that have previously been generated by
ATPG systems. As such it may be seen as a ‘bolt-
on’ function for such an ATPG system.

II. Outline Of T he M inimal T est Set Problem

The techniques described in this paper apply to
combinational logic circuits and the single stuck-at
fault model [12]. A minimal test set can be defined
as follows:

For a given set S of detectable faults a set of test
vectors is said to be a minimal test set if it
contains the least number of test vectors
required to cover all the faults in S.

Using techniques such as path-sensitisation, test
vectors can be derived for most, if not all the given
faults in a circuit. These test vectors therefore
comprise a test set for the circuit. However, it
often occurs in practice that a single test vector can
cover several faults and that many of the faults are
covered by more than one test vector; it is this
overlap that can be exploited to reduce the size of
the test set. A fault matrix [12] such as that given
in Table 1, displays the fault coverage of each test
vector (k/0, k/l denote the faults k stuck-at-0 and k
stuck-at-1 respectively and V indicates each fault
that is covered by a given test vector).

To illustrate these ideas and the algorithm,
consider the simple combinational logic circuit
shown in Figure 1. It has 2 3 possible test vectors
and since each line can be stuck at either one or
zero, the circuit has 10 possible faults. The fault
matrix for this circuit is given in Table I.

From the matrix it is readily seen that there are two
minimal test sets, viz. (010, 100, 101, 110) and
(001, 010, 101, 110) since each of these covers all
ten faults. Both test sets are 50% of the original
size and this translates into a similar reduction in
the test overhead. In practice the reduction is
often greater, but even small reductions in test set
size can result in significant savings for the
manufacturer who is faced with testing millions of
units per annum [13].

a

b

c

Fig. 1. A 3 input combinational logic circuit

192

TABLE I: FAULT MATRIX FOR CIRCUIT IN FIG. 1. IV. T h e P o s t- P r o c e s s in g M in im a l T e s t S e t
P r o b le m in a GA C o n t e x t

T est

abc

Fault

a/0 a/1 b/0 b/1 c/0 c/1 d/0 d/1 e/0
000 V V
001 V V
010 V V V
O il V V
100 V V V
101 V V
110 V V V V
111 V

This simple example was designed as an
illustration of the problem and its solution. In this
case all of the minimal test sets could be identified
by inspection. However, for a circuit of any
reasonable size, it may not be realistic or even
possible to obtain a complete solution to the
minimisation problem. Instead a significant
reduction in the size of the test set, together with
reasonable fault coverage is sought. GAs are
extremely well suited for such combinatorial
optimisation problems.

III. G e n e t ic A lg o r ith m s

Genetic Algorithms (GAs) draw inspiration from
the biological and evolutionary processes of
selection, crossover and mutation. They use
directed, probabilistic search techniques to find
globally optimal solutions in large, complex search
spaces. GAs contain populations of N candidate
solutions called chromosomes. In a binary encoded
GA, chromosomes consist of bit strings, each bit
being referred to as a gene. Associated with each
chromosome is a fitness value (dependent on the
application) which rates its competence as a
solution. After an initial population has been
randomly generated, subsequent generations (each
containing N chromosomes) evolve by mating fit
individuals from the current population.

In nature individuals compete for food, mates etc.
resulting in the fittest surviving to produce
offspring, a phenomenon called “survival of the
fittest”. Similarly, in GAs the probability of
selecting a chromosome as a mate is proportional
to its fitness. Once selected, the two parents
exchange genetic material by crossover to produce
two children. Application of the mutation operator
results in the random alteration of genes which
enables other candidate solutions, which might not
have arisen through crossover alone, to be
explored.

The objective of the GA is to evolve test sets that
e/kre successively more minimal from an initial,
^randomly generated population (population size N,
ranging from 100 to 200 chromosomes depending

\>n the circuit). The fitness of each test set is based
^on its competence as a minimal test set, i.e. as one
which covers a given number of faults with the
least possible number of test vectors. The fitness
of each chromosome is determined by the fitness

“ function (discussed in more detail below) and is
essentially a mathematical formulation of the
aforementioned criteria. The fittest chromosomes
are chosen as mates to produce the next generation
since they contain good genetic building blocks
from which the subsequent generations evolve.

As the generations arise the GA will produce even
fitter chromosomes than were present in the
previous generation, until eventually the fitness of
the fittest chromosome in the population ceases to
increase. It is at this point that we have our
minimal or near minimal test set. To emphasise the
scale of this problem, the simple circuit in Figure 1
would require exhaustive assessment of 2 8 - 1
possible test sets for their fitness in order to
determine the minimal test set(s). The size of the
problem obviously increases exponentially as the
number of test vectors increases. The execution
time of the GA however, does not increase
exponentially with circuit size.

A. The Chromosome Structure

The first stage in applying a GA to any problem is
translating it into the GA framework. This is
achieved by defining a coding scheme from which
we can produce the chromosomes. In the present
context it is appropriate to choose each
chromosome to represent a test set; each
chromosome is then of length I, where / is equal to
the number of test vectors produced by the ATPG
system, preceding minimisation. A gene value
(allele) of 1 in the chromosome represents the
presence of a test and a 0 the absence of it, with
the first gene representing test vector 1, the second
test vector 2, and so on. A typical chromosome
for our example circuit is

(1 0 1 0 0 0 1 1)

which represents the test set (000, 010, 110, 111).

B. The Fitness Function

At the heart of all GAs is the Fitness Function and
its appropriate formulation is a key factor in the

193

successful application o f the algorithm. In our
problem the fitness function must reflect the
definition o f a minimal test set. The definition
given earlier is for the general case in which no
prior knowledge o f the maximal fault coverage
attainable or o f the size o f a minimal test set is
assumed. However, since our GA has been
designed as a post-processor for ATPG systems
the number o f testable faults to be covered, and
hence the maximal fault coverage that can be
attained using our algorithm, is known for a given
circuit. All that remains to be found is the size o f
the minimal test set.

It is apparent that the GA must optimise two
parameters; the fault coverage N (Q (to a known
value) and the number o f test vectors N(T) (to an
unknown value). The search for the minimal test
set(s) is therefore a two stage problem: the first
being to achieve the known, maximal fault
coverage and the second being to find the minimal
number o f test vectors that achieves this level o f
fault coverage. It was found through
experimentation that the fitness function, F, given
below satisfies the aforementioned criteria.

F =
N{C)

N(C)
N{T)

k x

N(C) < max fault coverage

N(C) = max fault coverage

where k is a constant whose value is greater than
the total number of test vectors generated by the
ATPG system for the given circuit.

To increase the speed o f the algorithm it was
decided to ‘inoculate’ [14] the initial population
with a single chromosome containing alleles o f 1
throughout. This ensures that we have a (relatively
unfit) chromosome with maximum coverage. The
value of k is set so that the fitness o f this
chromosome is only slightly greater than those that
do not achieve maximal fault coverage. This
ensures this inoculated individual does not
dominate the reproduction process. The genetic
material contained in the remaining randomly
generated population is necessary for the minimal
test sets to evolve.

C. Selection, Crossover and Mutation

The standard biased roulette-wheel selection
method [3] was used for selecting the parents. In
this method each chromosome is allocated a slot
on a notional roulette wheel, the size o f each slot
being proportional to the chromosome’s fitness. A
randomly generated number (to simulate a spin of
the wheel) decides which slot has been chosen.
The greater the fitness o f an individual, the greater

the probability o f it being selected - the survival o f
the fittest metaphor.

The GA community has devised several forms of
crossover, each with its merits [6]. The method
employed in the present case is two point
crossover. Two crossover points, each lying
between the first and last gene are chosen at
random. The segments o f the parent chromosomes
lying between these points are then exchanged to
create two child chromosomes. Once selected,
parent pairs do not always exchange genetic
information, but do so with a given probability
known as the crossover probability, c. This was
set at 90%.

Mutation describes the random alteration o f genes
within chromosomes. In nature this is a relatively
rare event and this is reflected in our algorithm.
The mutation rate, m was set at 2%, that is, each
gene has a 2% chance o f flipping its value from a
1 to a 0 or vice versa.

V . Im plem entation

The Genetic Algorithm was written using the ‘C’
programming language, developed under UNIX.
The hardware platform used was a 100MHz
Pentium Personal Computer.

The implementation o f the algorithm itself is
outlined by the high-level description given in Fig.
2. As can be seen, once the fault matrix data has
been read from the ATPG system, a population o f
test sets is randomly generated. The algorithm then
enters the main loop, iterating through G
generations. The first function in this loop
evaluates the fitness o f the current population o f
test sets. Then using selection, crossover and
mutation, the next generation is created and the
loop continues. Once all G generations have
evolved, the algorithm returns the fittest, minimal
test set found. The values of the parameters N, G, c
and m were found through experimentation.

VI. Results

Experiments have been carried out on two classes
o f digital circuits; the first being a family o f
simplified RISC processors (4, 8 , 16 and 32 bit,
containing only the arithmetical and logical parts)
and the second being a selection o f ISCAS-85
benchmark circuits. For each RISC processor, two
sets o f test patterns were generated, one using a
functional generator and the other using a random
test generator. A random test generator alone was
used for the ISCAS-85 circuits. The results are
given in Tables II and III.

194

As can be seen, the GA is able to minimise the test
sets with good results. For the RISC processors,
the test sets generated by the functional generator
have been compressed, on average by
approximately 55%. For the same circuits but test
sets generated by the random generator, the
compression rates range from 7% to 15%. From
Table III it can be seen that the GA is also able to
minimise the test set sizes for the ISCAS-85
benchmark circuits. The compression rate varies
from 13% for circuit c432 to over 33% for circuit
c7552.

Further discussion o f the results for the RISC
processors is worthwhile as they indicate the types
of scenarios in which the GA is able to perform
best. Although the sizes of the original functionally
generated test sets are greater than those generated
by the random test generator, the final, minimised
test sets for the functional generator are
significantly smaller than those corresponding to
the randomly generated test sets. This suggests
that the greater the overlap in fault coverage by the
original test vectors, the greater the scope for

minimisation by the GA. The random generator
inherently performs a type o f test set minimisation
and this seems to limit the amount o f compression
that the GA achieves.

Read fault matrix data from ATPG system
Set GA parameters

population size, N
no. generations, G
crossover probability, c
mutation rate, m

Generate initial random population o f test sets
For each generation

{ Evaluate fitness o f each test set
Select N/2 parent pairs

For each parent pair
{

randomly generate 2 crossover points
For each gene

{ apply crossover and mutation
operators

}
1

1
Return fittest, minimal test set found after G generations

F ig . 2. H igh level descrip tion o f G A

TABLE II
TEST SET MINIMISATION RESULTS FOR FAMILY OF SIMPLIFIED

R ISC PROCESSORS

Functionally Generated Test Sets Randomly Generated Test Sets
Proc. Total

No.
Faults

Original
Test

Set Size

No. Faults
Covered

Test Set Size
After

Minimisation

%
Reduct

ion

Original
Test

Set Size

No. Faults
Covered

Test Set Size
After

Minimisation

%
Reduction

4 bit 612 63 611 24 62 24 611 22 8
8 bit 1168 63 1167 28 55 34 1167 29 15
16 bit 2240 63 2239 28 55 39 2239 36 8
32 bit 4402 63 4401 28 55 44 4401 41 7

TABLE III
TEST SET MINIMISATION RESULTS FOR ISC A S-85 BENCHMARK CIRCUITS

USING RANDOM TEST SET GENERATOR

Circuit Total
No. Faults

Original Test
Set Size

No. Faults
Covered

Test Set Size
After

Minimisation

%
Reduction

c432 974 54 928 47 13
cl908 2788 138 2775 114 17
C3540 5568 180 5308 137 24
C7552 11590 187 10956 125 33

195

VII. C o n c l u s io n

In each case considered, the GA was able to
minimise the test sets with good results.
Compression rates o f up to 33% were achieved for
the ISCAS-85 circuits and up to 62% for the RISC
processors.

The results indicate that there is a strong
correlation between compression rate and the
method used to generate the original test sets.
From Table II, for a given circuit and fault
coverage, the original functionally generated test
sets are larger than the randomly generated ones.
However, the functionally generated, minimised
test sets are usually smaller than the minimised,
randomly generated ones. There is a natural
explanation for this. Because there is greater
overlap in fault coverage in the functionally
generated test sets there is a larger choice o f test
sets with maximal coverage and hence greater
scope for minimisation.

The test process can account for up to one third o f
manufacturing budgets [13]. The incorporation o f
an algorithm such as the one presented here into
existing ATPGs could contribute significantly to
the reduction of such large test overheads.

A c k n o w ledgm ents

The authors wish to thank Prof. Raimund Ubar and
his team, in particular Jaan Raik and Antti Markus,
at Tallinn Technical University, Estonia, for

generating all the fault matrices which were used
to obtain the results described in this paper.

R efer en ces

[1] Kirkland T., Mercer M.R., “A topological search
algorithm for ATPG” Proceedings of the 24th
ACM/IEEE Design Automation Conference, pp. 502-
508, June 1987.

[2] Ubar, R., ‘Test synthesis with alternative graphs”, IEEE
Design and Test of Computers, Spring 1996, pp 48-57.

[3] Goldberg D., Genetic Algorithms in Search,
Optimisation & Machine Learning, Addison-Wesley,
USA, 1989.

[4] Srinivas M., Patnaik, L.M., “Genetic algorithms: a
survey”, IEEE Computer, 1994

[5] Davis L., ed., Handbook o f Genetic Algorithms, Van
Nostrand Reinhold, New York, 1991.

[6] Mitchell M., Introduction to Genetic Algorithms, The
MIT Press, Cambridge, USA, 1996.

[7] Holland J.H. , Adaption in Natural and Artificial
Systems, The MIT Press, Cambridge, USA, 1993.

[8] Rudnick E.M., Holm J.G. , Saab D.G, Patel J.H.,
“Application of simple genetic algorithms to sequential
circuit test generation”, Proc. European Design and Test
C onf., 1994, pp 40-45.

[9] Srinivas M., Patnaik, L.M., “A simulation based test
generation scheme using genetic algorithms”, 6th
International Conference on VLSI design, 1993, pp 132-
135.

[10] O’Dare M.J., Arslan T., “Generating test patterns for
VLSI circuits using a genetic algorithm”, Electronic
Letters, May 1994, Vol. 30, No. 10, pp 778-779.

[11] Aylor J.H., Cohoon J.P., Feldhousen E.L., Johnson
B.W., “GATE- a genetic algorithm for compacting
randomly generated test sets”, The International Journal
of Computer Aided VLSI Design 3,1991, pp 259-272.

[12] Wilkins B. R. , Testing Digital Circuits, Chapman and
Hall, UK, 1986.

[13] Thomson K. M., “Intel and the myths of test”, IEEE
Design and Test of Computers, Spring 1996, pp 79-81.

[14] Surry P.D., Radcliffe N.J., “Inoculation to initialise
evolutionary search”, Evolutionary Computing: AISB
Workshop, Ed. T. Fogarty, Springer-Verlag,1996.

196

Test Pattern Generation for Multiple Output Digital Circuits
using Cubical Calculus and Boolean Differences

Jasbir S. Takhar and Daphne J. Gilbert
School o f Science and Mathematics

Sheffield Hallam University
Sheffield, SI 1WB, UK

Abstract - A new method is presented fo r generating test
patterns fo r multiple output combinational circuits.
Formal mathematical techniques, involving the cubical
calculus and Boolean differences, are used to generate
test patterns thus dispensing with the costly process o f
fault simulations. The methods provide the basis fo r test
generation algorithms which are suitable fo r computer
implementation, and also enable testability measures
such as observability and controllability, to be
computed with relative ease.

I. In tro du c tio n

As the complexity of present day circuits rises,
many of the problems associated with their test,
particularly test pattern generation, increase
exponentially. Although various design strategies
exist, such as ‘design for testability’ [1], the issue
of test pattern generation itself is still very much
alive.

This paper describes a method for generating tests
for multiple output combinational circuits, based
on formal mathematical techniques, thus avoiding
costly circuit simulations. The use of Boolean
differences [2] to generate tests is often referred
to in undergraduate texts [3,4] but is far from
widespread in real test systems. This is due to the
difficulties associated with computing the Boolean
difference. The cubical calculus [5] offers a
method for computing it with relative ease. This
paper furthers the work of Xue and Zhang [6],
which describes a single output test generation
algorithm and is based on the single stuck-at fault
model.

In addition to test pattern generation, the methods
described in this paper enable certain testability
measures [7,8] to be easily calculated. The
relationship between various covers and
controllability/observability measures is very close
and can be computed quickly and simply.

II. T e s t G e n e r a t io n U s in g B o o le a n
D i f fe r e n c e s

A. The Boolean Difference

The Boolean difference is essentially an XOR of
two closely related Boolean functions. If g and h

are functions then, in the notation of Boolean
algebra,

g® h = gh + gh (1)

where © denotes the XOR operation. Consider a
Boolean function F(X) of a single output circuit,
where X = (jtj,, xn) and the variables

jc1v . . ,x„ represent the primary inputs. The
Boolean difference of F(X) with respect to x; is
defined by

dF[X ̂ = F(xx,.. . ,x i,. . . ,x n)® F [x x,... ,x i, .. . ,x n)
dXj

For an internal circuit node, S j say, the Boolean

difference with respect to s- becomes

d F (x , S :) . \ , x
— = F \ [x l , , x n , s j J © F \ x l , . . . , x n , S j j

where S j is regarded as a pseudo primary input.

The solution of the Boolean equation

d F [x , S j) / d S j = 1

(2)

provides us with all the input vectors for which a
stuck-at fault on s- alters the primary output [2].

B. Test Pattern Generation

To generate a test vector for s- stuck-at-0/1, the

node must first be set to 1/0 and the fault
propagated to a primary output. An internal node,
S j , can be expressed as a function of the primary

inputs, viz. S j (X) = S j (x j,, xn) , and the

solution of the Boolean equation

(3)
yields the input vectors that set s- to k for £=0,1.

The input vectors required to propagate a fault at
S j to a primary output are given by the solutions

to (2) above. To generate test patterns for a fault
on S j , it is therefore necessary to solve both

equations (2) and (3) simultaneously. Hence, for a

197

circuit with n inputs and m outputs, the test sets
T0 and 7j for s. stuck-at-0 and stuck-at-1

respectively are given by the solutions of

d F f f
To- S X

7J: S

W dSJ

dF ,(x ,s,)

M dsj

= 1

= 1

(4)

(5)
where denotes the ith output, for

III. C u b ic a l C a lc u lu s

A. Introduction and Definitions

Cubical calculus provides an alternative approach
to Boolean functions and is largely attributed to
the work of J.P. Roth [5], [9]. In addition to the
usual binary values, 0, 1, the ‘don’t care’ symbol,
x, is used and allows for very compact and
economical representations of Boolean functions.
In the context of combinational logic circuits, a
‘cube’ defines a relationship between the primary
inputs and primary outputs. It is written using the
notation,

a la2. . . .a n\blb2...b m

where av a2,....,an are the values of the primary

inputs and bv b2,...,bm are the values of the

corresponding primary outputs. A cover for the
function realised by a circuit is a set of cubes that
unambiguously defines that function. A single
output function can have a 1 -cover, for which the
output is equal to 1 and similarly a 0-cover. For
example, a two input, one output AND gate is
represented by the

f0xl°] r n0 - cover: < > and 1 -cover: | l l | l j
x0|0

Cubes consist of coordinates, which can be bound
(1/0’s) or free (x’s). Each ‘x’ in the input part a
cube can be replaced by a ‘1’ or a ‘O’; an ‘x ’ in
the output part of a cube means that the
corresponding variable is unspecified. Thus under
the usual interpretation the cube x01x|lx0 signifies
that if inputs 2 and 3 are set to 0 and 1
respectively, then regardless of the values of the
remaining inputs, the values of outputs 1 and 3
respectively are 1 and 0, with no value specified at
output 2.

This paper uses and adapts the method of Roth in a
situation which involves the concept of pseudo
inputs and the combining of functions with
different primary outputs. To accommodate this

situation, some departure from the usual rules is
necessary from time to time, and this is indicated
when appropriate.

B. Cubical Operations Required for Test Pattern
Generation

The three main cubical operations are interface,
adjoin and sharp product (# product). These are
analogues of the set theoretic operations n , u , \
(intersection, union and difference) respectively.
Thus if Q and Q respectively are covers of two
functions Ft(X) and F2(X) having the same
inputs and outputs, the interface of CJ and Q is a
cover for the product function, FfX) . F2(X) .
Similarly application of the adjoin and sharp
product operators to C\ and C, results in covers
for the functions FfX) + F2{X) and

F f X) . F2[x) (or Ff X) . F2(X)) respectively.
We now briefly describe those aspects of these
three operations which are needed in the present
context.

Adjoin
The adjoin of two cubes a\b and c\d, written (a\b)
V (c|d) is any set S of cubes which is equivalent to
{a\b, c\d} in the sense that S and {a\b, c\d} contain
precisely the same input/output information. It is
usual to choose S optimally to have a minimum
number of cubes each containing a maximum
number of free variables. For example, (lx0x|l) V
(0x0x|l) = {lx0x|l, 0x0x|l} = {xx0x|l}. The
adjoin of two covers C and D is defined similarly
to be any set of cubes which is equivalent to the
combined set {ceC} u {deD}\ where possible an
optimal set is chosen.

Interface
The interface of single coordinates is defined as

0 I 0 = 0 I x = x I 0 = 0 : 111 = l l x = x l l =
1

x I x = x : 1 10 = 0 1 1 =<7

where q denotes a conflict. The interface of two
cubes is formed using the interface of their
individual coordinates. For example, (10|x) I
(0x|l) = q0|l. Two cubes are said to be disjoint if
their interface contains a conflict. The interface of
two covers C and D, written C I D, is given by,

C l D = { c l d : ceC. dcD}
Where possible C l D reduced to an optimal set of
cubes as is explained in connection with the adjoin
operator. If c I d is disjoint for all ceC and de D ,
then C and D are said to be disjoint, and we write
this C I D = 0 , where 0 denotes the empty cube.

198

Sharp Product
The #-product of two cubes a\b and c\d written
(a\b) # (c\d) satisfies
(i) if a\b and c\d are disjoint then (a\b) # (c\d) =

a\b
(ii) if b = d, then (a\b) # (c\d) is a set of cubes of

the form e\b whose input parts constitute a
cover of the inputs contained in a but not in c.

(iii) if all coordinates in b are bound and all
coordinates in d are free then (a\b) # (c\d) is as
in (ii).

Note that in (ii) and (iii) the differencing operation
affects the input coordinates only. The following
examples illustrate these rules:
10|x0 # 00|x0 = 10|x0 , since these cubes are

disjoint.
xOx|lx # 001|lx ={ 10x|lx , x00|lx}, on the basis

of rule (ii)
xlO|lx # 01x|lx =110|010 on the basis of rule
(iii)
The sharp product a # C of a cube a and a cover
C= is defined by a#C =
((a#c,)#c2...)#ct) and the #-product of the covers

C#D is given by, C#D = V*1(cI.# D). As before
the #-product operation is expressed as an optimal
set of cubes where possible.

IV. Test Set Generation Using Cubical
Calculus

A. Single Output Case

The set theoretic analogue of equation (1) is
gAh = (g\h)\J(h\g) = (g{Jh)\(gC\h) (6)

which is sometimes referred to as the symmetric
difference. Recalling that a cover is a set of cubes
that unambiguously defines a function, let C0 , Cj
and D be the covers for the functions
f (x ,Sj =0) , f (x ,Sj = l) and d F(x , S j) / d Sj

respectively. The covers C0 and Cl can be
obtained by using Roth’s ‘PI Star’ algorithm [5]
along with the algebraic descriptions of the circuit
functions.

It follows from equation (6) above that
D = (C0# C ,)V (C ,# C 0)

= (C „ V C ,)# (C 0 IC ,)

So, if Sj is a cover for the function sy.(x) = l ,

then the test sets for Sj stuck-at-0 and stuck-at-1

are given by the covers
T0 = D l S j (8)

7j = D#Sj (9)

respectively.

B. Multiple Output Case
For the multiple output case, calculation of the
Boolean difference requires a slightly different
approach. For simplicity, let us consider the three
output case. From equations (4) and (5), we need
to obtain a cover D for

k dst

For i = 1, 2, 3, let C'0 , Cj denote the covers for
the functions F^X^j = 0), /^(X,5; = 1)
respectively. Evidently,

o = i ' i l (c ; v c ;) # (c ; i c ;)) (io)

Using elementary set theory, it is straightforward
to deduce from (10) that if the covers
corresponding to distinct outputs are disjoint, so
that

C‘ ICl = C' lCl = C'lC/ = 0 , i * j
(11)

is satisfied, then

D = (C0 V C 1) # (C 0 IC 1) (12)
where
C0 =C'0 V Cl V Cl , C, = C{ V Cl V Cl . The

form (12) of D is more convenient in the present
context, and a mechanism for ensuring that the
disjointness condition (11) is satisfied, is described
in Example 1.

The test sets for Sj stuck-at-0 and stuck-at-1 are

given by the covers T0 = D I Sy

and 7j = D#Sj respectively. These two equations
are the ‘cubical’ equivalents of equations (4) and
(5).

Example 1
Consider a stuck at fault on line 7 in the circuit
given in Fig. 1. If line 7 is treated as a primary
input which is set to 0, then the 1-covers of outputs
8, 9 and 10 respectively are {xxll|100,llxx|100},
{xx 111010} and {xxxx|001}, and their adjoin
constitutes C0 . Similarly, C{ is obtained by
assuming line 7 is set to 1, and finding the
corresponding 1-cover of the primary outputs, to
give

jxxll|100 xxll|010l jxxll[100 xxxx|010l

0 jllxx|100 xxxxjOOl] ’ 1 jllxx|100

199

Note that a 1 in the output part of a cube in C0 or
Cj signifies in the usual way that the value of the
corresponding output is 1 for the given input
(including line 7). On the other hand, the zeros in
the output part of these cubes are simply a device
to ensure that cubes corresponding to distinct
outputs are disjoint, so that D satisfies (11).
Taking the adjoin and interface of C0 and
Cj gives

jxxll|100 xxxx|010
jllxx|100 xxxx|001

C0VCj = ,C0 ICj =

which provide the test sets for line 7 stuck-at-0 and
stuck-at-1 respectively. Note that T0 \ 7j = D ,
and that the presence of a 1 in the output side of a
cube in T0 or 7j signifies that the fault is
observable at the corresponding output. Thus the
cube xlx0|010 in T0 signifies that if inputs 2 and 4
are set to 1 and 0 respectively, then regardless of
the values of the other inputs, line 7 stuck-at 0 is
observable at output 9 under these input tests.

[xxlljlOO xxll|010l

from which

6 = (c 0 v c 1) # (c 0 i c ,) =
Jxx0x|010
[xxx0|010

[llxx|100

xxxx|001

which is a cover for the sum (AND) of the
Boolean differences of the three output functions
with respect to line 7. The cube xx0x|010 in D
signifies that if input 3 is set to 0, then regardless
of the value of the other inputs, a change of values
in line 7 (treated as a primary input) results in a
change of value in output 9. The interpretation of
the other cubes in D is similar; as with C0 and

C j, the zeros in the output part of the cubes in D
carry no significance.

To deduce the test sets T0 and 7] it is now only
necessary to restrict the input parts of the cubes in
D so that line 7 is set to 1 and 0 respectively. This
is achieved using S7 ={xxxl|xxx, xlxx|xxx}
whose input parts provide a 1-cover for line 7. The
values of the output entries here are immaterial,
and for consistency have been set to x. Using the
interface and sharp product of D and 57 gives

xx01|010 xxxl|001
T0 = D I 5 7 = < xlx0|010 xlxx|001 ►

xl0x|010

7] = D # S7 = {x0x0|010 , x0x0|001}

Fig. 1 Multiple Output Circuit with ‘stuck-at’ Fault on
Line 7

V. T estability M e a su r e s

The ability to assess a circuit’s testability has long
been considered important. Testability measures
such as controllability and observability [10,11]
enable the ease (or difficulty) of testing a circuit to
be taken into account at the design stage. Many
systems have been developed to compute
testability measures and are not without their
critics [14]. There are many ways of quantifying
these measures and what follows is probabilistic,
based on the assumption that all input vectors are
equally likely.

The /-controllability Cf(j-) of a node Sj is a

measure of the ease with which can be set to 0
or 1 and is given by
Cj (Sj) = proportion of input vectors that set Sj to i

Observability is a measure of the ease with which
a change of value at a line can be observed at a
primary output. For a circuit with m primary
outputs, the observability of a line at output k is
given by
Ok (Sj) = proportion of input vectors for which a change

of value at s results in a change of value at k

For a single output circuit, the solution of the
Boolean difference equation (1) provides all the
input vectors that sensitise a path between the fault
site at line Sj and the primary output [2], i.e. for

which the value of Sj is observable at a primary
output. Hence we can use the 1-cover of the
Boolean difference to quantify observability. Also,
the solution of the Boolean equation Sj; (X) = 1
can be used to quantify controllability. So,
returning to the discussion of Section IV, the
covers Sj and D can be used to calculate the
controllability and observability respectively of the
node Sj. The calculations are a simple matter of
counting the total number of input vectors in each
of the aforementioned covers. As an example, a
circuit from [14] will be analysed.

200

Example 2

Fig. 2. Combinational Circuit with ‘stuck-at’ Fault on
line 3

We calculate the observability and 1-
controllability of line 3 for the single output circuit
in Fig. 2.

Since C0 = {00|l}, Cj = {xx| l} , giving D= ^

the total number of cubes in the above cover , D is
3 and the total number of input vectors = 22
so 0 5(s3) =3 / 4 . Also the cover

S3(x) = {ll|x} contains a single input vector

soCi(s3) = Va. This example shows that testability
measures are very easily calculated from the
relevant covers.

VI. C o n c l u s i o n s

In this paper an efficient method has been
described for generating test patterns for multiple
output circuits. Cubical calculus and set theory
provide us with the solution to the Boolean
difference equations and the methods lend
themselves well to computer algorithms. In
addition, testability measures are easily calculated
using the covers of various functions.

R e f e r e n c e s

[1] T.W. W illiams and K.P.Parker, “Design for testability - a
survey” in “VLSI TESTING and VALIDATION
TECHNIQUES” ed. H.K. Reghbati, North-Holland, p383-395,
1985.
[2] F.F. Sellers, M.Y Hiss, L.W. Beamson, "Analysing errors
with the Boolean difference", IEEE Transactions on
Computers, Vol-C17, No. 7, July 1968.
[3] V.P. Nelson et al, “DIGITAL LOGIC CIRCUIT
ANALYSIS AND DESIGN”, Prentice-Hall, New Jersey, 1995
[4] G. Russell et al, “CAD FOR VLSI”, Van Nostrand (UK)
1985.
[5] J.P. Roth, “COMPUTER LOGIC, TESTING AND
VERIFICATION” , Computer Science Press, 1980.
[6] H.X. Xue, Y.N. Zhang, “A test generation algorithm based
on Boolean differences and cubical operations”, New
Advances in Computer Aided Design and Computer Graphics,
Vol 1 and 2, Ch 166, p 6 3 4 -6 3 7 ,1993.
[7] K.W. Miller, “Testability - an introduction for
COMPASS94”, COMPASS 1994, Proceedings o f the Ninth
Annual Conference on Computer Assurance, 1994, Chapter
26, pl73-174.
[8] C.T. Wood, “The quantitative measure o f testability”,
Proc. IEEE Autoscan, p286-291, 1979.
[9] J.P. Roth , “Programmed logic array optimisation”, IEEE
Transactions on Computers, Vol-C-27 , Feb. 1978.
[10] L.H. Goldstein, “Controllability/Observability analysis o f
digital circuits”, IEEE Trans. Circuits and Systems, Vol. CAS-
26, No. 9, p685-693, Sept 1979.
[11] V.D. Agrawal, M. R. Mercer, “Testability Measures -
What do they tell us?” Proc. 1982 IEEE Test
[12] R.G. Bennetts et al., “CAMELOT: A computer aided
measure for logic testability”, Proc. IEE., Vol 128-E, pi 77-
189, Sept. 1981
[13] J. Grason, “TMEAS a testability measurement program”
in Proc. 16th IEEE Design Automation Conference., San
Diego, CA, p l56-161, June 1979.
[14] J. Savir, “Good controllability and observability do not
guarantee good testability”, IEEE Trans, on Computers, Vol.
C-32, p i 198-1200, Dec 1983.

A significant advantage with the techniques
described in this summary is that they can also be
used to design minimised logic functions.
Therefore, it is possible to produce a complete
digital design suite, which could incorporate
initial design stages, testability analysis and finally
generate test patterns for the completed design.
With modem day computing power, such a suite
could easily be run on a desk-top machine.

201

Appendix C. Awards

The author was awarded Third Place in the ‘Annual Student Paper Contest’ at the 40th Midwest

Symposium on Circuits and Systems, Sacramento, USA, 1997, for his paper entitled, “The Derivation

of Minimal Test Sets for Combinational Logic Circuits using Genetic Algorithms”.

WHmKKmm

* "

THIRD PLACE
P resen ted To

J a s b ir S. Ta k h a r
a n d D ap h n e J . G ilb e r t

S h e f f i e ld H a lla m U n iv e r s i t y ,S h e f f s x d . UK
The Derivation of Minfcel Test Sets

for Cosbinatioaa! logic Circuits
using Genetic Algorithms

40th Midwest Symposium
on Circuits and System s

Hyatt-Regency Hotel
Sacramento. CA

A u g u s t 4 . 1 9 9 7

202

