
A methodology for developing resilient distributed control
systems.

TAHOLAKIAN, Aram M.

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20418/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

TAHOLAKIAN, Aram M. (1997). A methodology for developing resilient distributed
control systems. Doctoral, Sheffield Hallam University (United Kingdom)..

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Sheffield Hallam University

REFERENCE ONLY

ProQuest Number: 10701064

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com ple te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10701064

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

A Methodology for Developing

Resilient Distributed Control Systems

Aram Meguerditch Taholakian BEng (Hons)

A thesis submitted in partial fulfilment of the

requirements of Sheffield Hallam University for the degree of

Doctor of Philosophy

April 1997

Abstract

Manufacturing industries rely on automated manufacturing systems to improve the
efficiency, quality and flexibility of production. Such systems typically consist of a variety of
manufacturing machinery and control hardware, e.g. CNC machine tools, robots, PCs,
Programmable Logic Controllers (PLCs) etc., which operate concurrently. The cost of
developing and implementing an automated manufacturing system is high, and is
particularly so if the control system is found to be unreliable or unsafe during operation.
Distributed Control Systems are generally used to control complex concurrent systems,
At present the methods used to develop DCSs tend to follow a sequence of steps, viz. a
statement of the requirements of the DCS, a functional specification of the DCS, the design
of the DCS, generation of the software code for the DCS, implementation of the software.
This step approach is inadequate because of the dissimilarity of techniques used to represent
each step, which leads to difficulties in ensuring equivalence between the final
implementation of the DCS and the initial requirements, which in turn leads to errors in the
final software. To overcome this, work has been conducted to unify the specification, design,
and software coding phases of the DCS development procedure by ensuring formal
equivalencies between them. One particular outcome of such previous work is a tool named
Petri Net - Occam Methodology, developed by Dr. P. Gray, which produces dependable
Occam code for DCSs. Gray’s methodology produces readable designs, directly from the
specification of systems, in a graphical but formal way, and results in a Petri Net graph
which is equivalent to the final Occam code. However, his methodology is not for a
complete DCS but only for one containing Transputers.
The PLC is widely used in industry and an integral part of DCSs for Automated
Manufacture. This research has developed a methodology, named PN<=>PLC, which
produces dependable PLC control programs, in a graphical but formal way, directly from a
system’s specification. It uses the same tool, Petri Nets, for both designing and simulating
the control system, and specifies rules which ensure the correct design, simulation and
encoding of PLC programs. The PN designs are a one-to-one equivalent to PLC code and
can be directly translated into Ladder Diagrams. Therefore if the simulation shows the
design to be correct, the final software will be correct.
PN<=>PLC works as a stand alone tool for developing dependable PLC control programs, and
also unifies with Gray’s methodology to produce a complete tool for developing a resilient
DCS containing Transputers and PLCs. The unification of the two methodologies is also
reported in this thesis.
The research work presented in this thesis contributes to knowledge in the field of DCS
development. Recommendations for further work regarding the applicability of the unified
methodology on a wide scale industrial basis are also given.

Table of Contents

1. Introduction.. .. 2

1.1 Automated Manufacture...................................... 2

1.1.1 Flexible Manufacturing.............................. 2

1.2 Distributed Control Systems...3

1.3 Development of Distributed Control Software..5

1.3.1 Informal Methods for Designing DCSs... 6

1.3.2 Formal Methods for Designing DCSs... 6

1.4 The Need for a Methodology for Developing DCSs.. 8

2. Background..12

2.1 The FMC at the School of Engineering... 12

2.1.1 Levels of Control...14

2.1.2 Reasons for Distributing Control..16

2.2 Gray’s Petri Net - Occam Methodology... 17

2.2.1 Transputers and Occam... 18

2.2.1.1 Occam: Language Definition...18

2.2.2 Introduction to Petri Nets 19

2.2.2.1 High Level Petri N ets..21

2.2.3 The Motivation and Objectives of Gray’s Methodology..............................22

2.2.4 Gray’s Methodology Applied to the FMC...24

2.2.5 Advantages, Disadvantages and Claims of Gray’s Methodology 26

2.3 Programmable Logic Controllers...26

2.3.1 Available PLC Programming Tools and Techniques................................. 27

2.3.1.1 Instruction List... 27

2.3.1.2 Structured Text..28

2.3.1.3 Function Block Diagram... 28

2.3.1.4 Sequential Function Chart.. 28

2.3.1.5 Ladder Diagram...29

2.3.1.5.1 Step Ladder Diagram..30

2.3.2 Review of Existing PLC Languages..30

2.4 PNs and PLCs: Previous Work.. 32

2.4.1 PNs for Designing and Modelling DCSs Containing PLCs........................ 32

2.4.2 PNs for Designing PLC Programs... 32

2.5 The Aim and Objectives of the Ph.D. Research .. 34

3. The Application of Gray’s Methodology to an Overall DCS...............................37

3.1 Gray’s Methodology Applied to a Simple PLC Control Task...................... 37

3.1.1 Design and Simulation.. 38

3.1.2 Translation of PN into LDs...42

3.2 Discussion... 43

4. PN<=>PLC: The Methodology.. 46

4.1 Design Process.. 47

4.1.1 Design Rules..48

4.1.2 Terminology and Symbols.. 52

4.2 Translation Process... 54

4.2.1 Translation Rules...54

4.3 Simulation Process..56

4.3.1 Simulation Steps..57

4.3.2 Simulation Steps Applied to Scenario 2 .. 61

4.3.3 Simulation Results...64

4.4 The Investigative Approach Taken to Develop P N oP L C 64

4.5 Designing the Control Algorithm of the Oil Tank Using SFCs.................... 70

5. PN<=>PLC Applied to the FMC...73

5.1 PN<=>PLC Applied to the Puma Work Station..74

5.1.1 Enable Vice to Table PN Group................................ 76

5.1.2 PN<r>PLC and Timers... 82

5.1.3 Conveyor Controller... 84

5.2 PN<=>PLC Applied to Miller Work Station.. 84

5.3 PN oPLC Applied to Lathe Work Station...87

5.3.1 Terminology and Symbols (Revised)................. 92

5.4 Error Handling.. 94

5.4.1 Reliability and Safety Achieved by PN<=>PLC... 97

5.4.1.1 Reporting Errors... 101

6. Unification of the Methodologies... 105

6.1 The Graphical and Logical Unification of the Methodologies................... 105

6.2 The Unification of the Methodologies for Simulation.................................. 109

6.3 The Unification of the Methodologies for Translation........................... I l l

6.4 Fault Avoidance and Elimination Achieved by the Unified Methodology 112

6.5 Discussion...113

7. Conclusions and Recommendations for Future Work....................................... 117

7.1 Conclusions.. 117

7.2 Recommendations for Future Work..120

References... 123

Appendices.. 131

List of Figures

Figure 2-1 Layout of the FMC at the School of Engineering..................................13

Figure 2-2 Levels of Control of the FM C..14

Figure 2-3 The Labyrinth PN Graph of the FM C.........................inside back cover

Figure 2-4(a) A Simple Petri Net.. 19

Figure 2-4(b) A Marked Petri Net..20

Figure 2-4(c) Marking After the Firing of the Transition....................................... 20

Figure 2-4(d) Inhibitor Arc PN Graph Showing the Marking Before and After

the Firing of the Transition... 21

Figure 2-5 Gray’sPN Graph for the Control of the FM C inside back cover

Figure 3-1 Oil Tank Level..38

Figure 3-2 PN Graph of Oil Tank Level Control Produced By Gray’s

Methodology....................................... ...38

Figure 3-2(a) Marking Achieved as a Result of Simulating Oil Sensor Switching

on... 39

Figure 3-2(b) Marking Achieved as a Result of Simulating Push Button Being

Pressed.. 40

Figure 3-2(c) Marking Achieved as a Result of Simulating Push Button Being

Released ..40

Figure 3-2(d) Marking Achieved as a Result of Simulating Oil Sensor Switching

off..41

Figure 4-1 Layout of PN<=>PLC Graph...47

Figure 4-2(a) First Design Rule Applied to Siren.. 48

Figure 4-2(b) Second Design Rule Applied to Siren.. 49

Figure 4-2(bl) LD Rung for Siren Obtained by Applying PN<=>PLC Translation

Rules to Figure 4-2(b)...50

Figure 4-2(bl) A Realistic Marking Applied to Figure 4-2(b).................................50

Figure 4-2(b2) Evolution of the Marking After Applying Simulation Step 3 to

Figure 4-2(bl)... 50

Figure 4-2(c) Design Rules Applied to Siren and Lamp.. 51

Figure 4-2(d) Final PN<=>PLC Graph of Oil Tank Level Control...........................52

Figure 4-3(a) LD Showing the Conditions for Switching the Siren on. First

Translation Rule... 54

Figure 4-3(b) LD Showing How the Siren is Latched on. Second Translation

Rule... 55

Figure 4-3(c) LD Showing the Conditions for Switching the Siren off. Third

Translation Rule... 55

Figure 4-3(d) Final LD. An Exact Behavioural Equivalent to the PN<=>PLC

Graph Shown in Figure 4-2(d)... 56

Figure 4-4(a) Initial Marking Representing the Oil Sensor Switching on, i.e.

Scenario 1, Event (a). Simulation Step 2.. 58

Figure 4-4(b) Evolution of Marking After Applying Simulation Step 3 to Figure

4- 4(a)...58

Figure 4-4(c) Marking which Represents Scenario 1, Event (b).............................60

Figure 4-4(d) Evolution of Marking After Applying Simulation Steps to Figure 4-

4(c)...60

Figure 4-4(e) Marking which Represents Scenario 1, Event (c)..............................60

Figure 4-4(1) Evolution of Marking After Applying Simulation Steps to Figure 4-

4(e).. 60

Figure 4-4(g) Marking which Represents Scenario 1, Event (d).............................61

Figure 4-4(h) Evolution of Marking After Applying Simulation Steps to Figure 4-

4(g)..61

Figure 4-5(a) Marking which Represents Scenario 2, Event (a).............................62

Figure 4-5(b) Evolution of Marking After Applying Simulation Steps to Figure 4-

5(a)... 62

Figure 4-5(c) Marking which Represents Scenario 2, Event (b).............................62

Figure 4-5(d) Evolution of Marking After Applying Simulation Steps to Figure 4-

5(c).. 62

Figure 4-5(e) Marking which Represents Scenario 2, Event (c)..............................63

Figure 4-5(f) Evolution of Marking After Applying Simulation Steps to Figure 4-

5(e).. 63

Figure 4-5(g) Marking which Represents Scenario 2, Event (d).............................63

Figure 4-5(h) Evolution of Marking After Applying Simulation Steps to Figure 4-

5(g).. ... 63

Figure 4-6 Petri Net Graph of Oil Tank Level Control... 65

Figure 4-6(a) Evolution of the Marking After Simulating Scenario 1, Event (a) 66

Figure 4-6(b) Evolution of the Marking After Simulating Scenario 1, Event (b) 66

Figure 4-6(c) Evolution of the Marking After Simulating Scenario 1, Event (c). 67

Figure 4-6(d) Evolution of the Marking After Simulating Scenario 1, Event (d) 67

Figure 4-7(a) &Figure 4-7(b) Two Possible LD Interpretations of the PN Graph

Shown in Figure 4-6..70

Figure 4-8 Design of Oil Tank Level Control Using SFCs....................................... 71

Figure 4-9 LD Translation of the SFC in Figure 4-8..71

Figure 5-1 Initial Error Checks Performed Using a ‘pulse’ 77

Figure 5-2 PN Graph Showing the Use of a ‘group signal’...................................... 78

Figure 5-3 PN Group Containing Initial Error Checks..80

Figure 5-4 PN Group Showing an Alternative Error Check................................... 81

Figure 5-8 A PN Group Showing the Use of a Timer..82

Figure 5-11 Enable Start Miller PN Group...86

Figure 5-13 Ladder Diagram Translation of ‘Milling PN Graph’......................... 87

Figure 5-14 A Ladder Diagram Equivalent to Figure 5-13..................................... 87

Figure 5-15 Enable Vice to Table PN Step... 89

Figure 5-15L Step Diagram Translation of Figure 5-15.. 91

Figure 5-24 Puma Station Error Status PN Graph ... 99

Figure 5-23 Puma Station Complete Status PN Graph.. 101

Figure 6-1 A PN Graph Showing the Unification of PN<=>rLC with Gray’s

Methodology... inside back cover

Dedication

I wish to dedicate this thesis to all my family, especially my father and my mother for

their moral and financial support throughout my studies.

I also wish to dedicate this thesis to my partner for her support and patience,

particularly throughout the writing-up period.

Acknowledgments

I would like to express my sincere gratitude to my director of studies, Dr W M M

Hales, for his excellent supervision and support. I would also like to thank my

supervisor, Prof F Poole, Mrs J Grove, Mr G Cockerham and Prof E Lo for their

support and advice.

Thanks also to all technicians involved, colleagues and friends.

Declaration

I declare while registered as a candidate for the University’s research degree, I have

not been a registered candidate or enrolled student for another award of the University

or other academic or professional organisation. I further declare that no material

contained in this thesis has been used in any other submission for an academic award.

Aram Taholakian

Chapter 1

Introduction

Contents

1. Introduction... 2

1.1 Automated Manufacture... 2

1.1.1 Flexible Manufacturing.......................... 2

1.2 Distributed Control Systems .. 3

1.3 Development of Distributed Control Software..5

1.3.1 Informal Methods for Designing DCSs... 6

1.3.2 Formal Methods for Designing DCSs... 6

1.4 The Need for a Methodology for Developing DCSs.. 8

Chapter 1

1. Introduction

This chapter gives a brief introduction to Distributed Control Systems (DCSs), mainly

Flexible Manufacturing Cells, and discusses the current approaches used to develop

the various parts of a DCS. The introduction then concludes by identifying a need for

a methodology for developing a dependable DCS, such that the methodology is

applicable to all aspects of the DCS, and not just the higher levels or the lower levels,

in a formal but readable way.

1.1 Automated Manufacture

Manufacturing industries employ a wide range of technologies in their processes to

improve their competitive strength in the market place. Recent advancements in

information technology have produced fully automated, efficient but complex

manufacturing systems. Programmable automation tools, such as Programmable

Logic Controllers (PLCs), Robots and computer numerical control (CNC) machines,

are used to increase the efficiency and quality of manufacturing plants. Automated

Manufacturing Systems offer numerous advantages such as short lead-times, low

work-in-progress, reduced labour and hence reduced unit costs, and quick change-over

times. They also provide flexibility which enables rapid responsiveness to market

changes.

1.1.1 Flexible Manufacturing

The ability to meet customer demands and remain in touch with an ever increasing

competitive market place [Ford 1991] has resulted in manufacturing industries

focusing their attention on flexible manufacturing. Flexible Manufacturing Cells

Chapter 1

(FMCs) have been well established for a number of years [Narahari and

Viswanadham 1986, Huang and Chang 1992, Lu and Huang 1992, Chao et al 1992]

and are used in batch manufacturing industries to improve the efficiency of

production. They consist of a number of CNC machine tools, automated work/tool

handling equipment and a control system to synchronise the operation of the machine

tools and handling equipment. The integration and coordination of a group of FMCs

produces a larger flexible manufacturing environment often referred to as a Flexible

Manufacturing System (FMS) [Simpson et al 1982, Ayers 1988]. FMSs can be used

to produce complex products, where individual components are made in various

FMCs and then assembled in a Flexible Assembly System (FAS) [Williams and Lill

1987].

The safe and reliable operation of Flexible Manufacturing Cells is clearly desirable, if

not essential for their effective use. However FMCs are complex systems the

elements of which operate concurrently, and interact at irregular times depending

upon the components to be produced. Therefore the development of a control system

is not a trivial affair [Slack 1988, Duan and Kumara 1993]. Control systems not only

consist of computer algorithms, but also computer hardware, communications

protocols and cell monitoring equipment, such as sensors and transducers.

1.2 Distributed Control Systems

Some automation tasks are simple to achieve, whereas others, for example FMCs, are

far from simple, because they consist of a number of autonomous devices which

operate concurrently, but also in synchronisation with each other.

The cost of designing and implementing automated manufacturing systems is high,

Chapter 1

and is particularly so if the design is found to be unreliable during or after

implementation.

Controlling complex concurrent systems is only feasible if the task of control is

distributed amongst a number of devices (section 2.1.2). Flexible manufacturing

operational strategies such as Distributed Control are now established practices in

industry. Real time control is achieved by distributing the various functions of a

control system which operate concurrently. It is essential however that these functions

or elements communicate with each other to achieve complete synchronisation of the

whole system. Such communication could be achieved by networking individual PCs,

which each run sequential programs. However as the number of processors increases,

the management overhead increases [Das and Fay Freund 1983].

The programming strategies and languages available for conventional

microprocessors do not model a parallel architecture [Naghdy and Strickland 1989].

Apart from developing the program for each processor separately from others, the

programmer has to introduce techniques for synchronisation and communication of

one processor with others. However the software is directly dependent on the

hardware. By increasing the number of processors, the complexity of the software

design, development and testing will multiply. Expansion or modification of the

operation of the hardware requires major modification of the software.

In recent years, systems specific processors and software have been developed to

overcome the above mentioned problems. For example, the combination of the

Transputer (a microprocessor, see section 2.2.1) and its programming language

Occam (section 2.2.1.1) were developed together [Inmos 1989b], and are now used in

4

Chapter 1

various industries for embedded systems, numerical analysis, image processing and

Real-Time Distributed Control Systems.

1.3 Development of Distributed Control Software

At present the methods used to develop Distributed Control Systems tend to follow a

sequence of steps:

• Statement of requirements of the DCS

• Statement of the functional specification of the DCS

• Design of the DCS to meet the specification

• Generation of the software code for the DCS

• Implementation of the software

It is widely acknowledged that this method has its drawbacks [Shatz and Wang 1987,

Boehm 1988, Jelly and Gorton 1994]. The requirements and specification are usually

written in English, the design may be depicted graphically or textually, and the

software usually written in a high level language. This leads to difficulties in ensuring

equivalence between the final implementation of the DCS and the initial requirements,

because of the dissimilarity of techniques used to represent the steps, and the

differences in the expertise of those who develop each step. The development of one

step is a translation of the previous step, thus there is no reliable isomorphism between

the steps. Practitioners attempt to ensure equivalence between the various steps by

checking the equivalence of each step with its preceding step. Some methods used to

do this are formalised, and some are ad hoc; none are totally satisfactory [Bloomfield

and Froome 1991, Jelly and Gorton 1994].

Chapter 1

To improve on this method of developing DCSs, equivalence of representation is

required at each step. The ideal way to achieve this would be to develop a

methodology which uses the same language, one that all parties could understand, at

each stage of the development, and could be verified against the system requirements

prior to implementation.

1.3.1 Informal Methods for Designing DCSs

Distributed Control Systems are often categorised into more than one level of control.

For example the control of an FMC may be divided into several levels ranging from

the Programmable Logic Controller (PLC) operated sensor and actuator control level,

to a high decision making level, often referred to as the Cell Controller (CC) level.

A considerable amount of research into the different levels of DCSs has been recently

carried out by various parties. For example, many have attempted to develop

alternative PLC program representations (discussed further in Chapter 2, section 2.4).

For the most part, these attempts have focused, not only on the lowest level of a DCS,

but also on a particular aspect of the software development process, mainly modelling.

There have also been attempts to use Petri Nets (PNs) to design PLC programs, but

virtually all the resulting PN models pay scant regard to the readability [Taholakian

and Hales 1995], which severely restricts their practical applications: a design which

is unclear to read is difficult to check for correctness, difficult to maintain and

difficult to update, i.e. it is unreliable.

1.3.2 Formal Methods for Designing DCSs

Extensive research has also been carried out into the higher levels of DCSs. For over a

decade, the System Integration Group at Loughborough University led by R. H.

unapter i

Weston has researched into areas such as Computer Integrated Manufacture (CIM)

and has produced computerised systems for developing CIM systems [Weston 1991,

Weston 1993], namely CIM-BIOSYS, which is an infrastructure designed to integrate

the various software applications needed to achieve highly autonomous and flexible

CIM systems. The group has also investigated the behavioural modelling of CIM

systems using techniques such as CIM-OSA and Stochastic Timed Petri Nets

[ESPRIT/AMICE 1991, Aguiar and Weston 1993], and of late has investigated the

use of PNs to design code for DCSs [Ariffin et al 1995].

A large amount of research has been carried out by various parties into the use of Petri

Nets for modelling and performance evaluation of DCSs: [Kamath and Viswanadham

1986, Huang and Chang 1992, Viswanadham and Narahari 1992, Barkaoui and Ben

Abdallah 1993* Hilal and Ladet 1993, Reddy et al 1993]. Numerous publications

referring to the use of PNs for the detection of faults, specifically “deadlock”, are also

widely accessible [Murata and Shenker 1989, Viswanadham et al 1990, Ezpeleta et al

1995].

A group of academics and researchers at Sheffield University has worked on

automatically producing software from a system specification, for implementation on

a parallel platform consisting of Transputers and C40s [Bass et al 1994]. Others have

also investigated the implications of Transputers and Parallel Processing for DCSs

[Draper and Holding 1989, Tudruj 1992, Lau and Seet 1993, Sundaram and Narahari

1993, Moore and O’Donoghue 1994].

At the School of Engineering (SOE), Sheffield Hallam University, there is ongoing

research into the development of dependable DCSs for Flexible Manufacturing [Hales

et al 1993]. One outcome of this research was a Ph.D. Thesis [Gray 1995], which

7

Chapter 1

reports on a PN-Occam based methodology for developing DCSs (Chapter 2, section

2.2.3). Gray’s methodology pays strict attention to the readability and

comprehensibility of the design. Gray claims that the design translates, with exact

equivalence, into the Occam programming language to run on Transputers. He also

claims that it is expandable and avoids control errors such as “deadlock” from being

introduced into the code. However Gray’s methodology has only been applied to

Transputers and Occam, which is only part of an overall DCS. More than often DCSs

in manufacturing industries consist of more than one type of controller. The PLC is

widely used in industry (section 2.3), in conjunction with other controllers such as

PCs and Transputers, to achieve Distributed Control. There is no evidence whether

his methodology is applicable to such an overall DCS.

1.4 The Need for a Methodology for Developing DCSs

From the preceding discussion it is apparent that the current methods for developing

distributed control software do not ensure dependability of the system. Although

work has been done on designing parts of DCSs, there is no methodology for ensuring

that an overall DCS is dependable and meets the requirements.

A need has been identified for a methodology for designing DCSs such that:

• the methodology is easy to understand and of practical use in industry.

• the methodology is applicable to all aspects of a DCS and not just the higher

levels or the lower levels.

• the design of the DCS fully meets the requirements of the system.

8

Chapter 1

• the design is represented in a readable format which enables parties other than just

the original designer to understand the design and thus reliably check for

correctness, reliably maintain and expand the system.

• the designer is guided towards designing an error free control system prior to

implementation.

• the design is modular to allow flexibility of the DCS.

• the design is graphical but formal and supports simulation thus eliminating the

need to translate the design into an independent simulation software to analyse.

• the design is equivalent to the control algorithm, i.e. there are formal rules for

translating the design into the final control code to ensure that the two operate in

exactly the same way. Thus if the design is correct, then the control code will be

correct.

9

Chapter 2

Background

Contents

2. Background... 12

2.1 The FMC at the SOE.................................... 12

2.1.1 Levels of Control...14

2.1.2 Reasons for Distributing Control..16

2.2 Gray’s Petri Net - Occam Methodology... 17

2.2.1 Transputers and Occam.. 18

2.2.1.1 Occam: Language Definition...18

2.2.2 Introduction to Petri Nets.. 19

2.2.2.1 High Level Petri N ets..21

2.2.3 The Motivation and Objectives of Gray’s Methodology..............................22

2.2.4 Gray’s Methodology Applied to the FMC...24

2.2.5 Advantages, Disadvantages and Claims of Gray’s Methodology...............26

2.3 Programmable Logic Controllers...26

2.3.1 Available PLC Programming Tools and Techniques...................................27

2.3.1.1 Instruction List... 27

2.3.1.2 Structured Text.. 28

2.3.1.3 Function Block Diagram..28

2.3.1.4 Sequential Function Chart...28

2.3.1.5 Ladder Diagram... 29

2.3.1.5.1 Step Ladder Diagram.. 30

2.3.2 Review of Existing PLC Languages.. 30

2.4 PNs and PLCs: Previous Work..32

2.4.1 PNs for Designing and Modelling DCSs Containing PLCs........................ 32

2.4.2 PNs for Designing PLC Programs... 32

2.5 The Aim and Objectives of the Ph.D. Research.. 34

Chapter 2

2. Background

This chapter describes the Flexible Manufacturing Cell at the School of Engineering

which was used as the test bed for the reported research project. It discusses the

control and the communication between the various levels of the control. The chapter

also introduces Petri Nets and a Petri Net - Occam methodology, which was the

outcome of previous research carried out at Sheffield Hallam University’s School of

Engineering. The incompleteness of previous approaches, including the Petri Net -

Occam methodology, are discussed, and in particular their inapplicability to low level

PLC control. The PLC is an integral part of an FMC, and in this chapter the

inadequacies of existing PLC programming strategies are also discussed. A need for a

methodology for developing PLC based DCSs is identified. Finally the aims and the

objectives of the PhD research are stated.

2.1 The FMC at the School of Engineering

Gray’s Petri Net - Occam methodology was the initial motivation for this research

project. The Flexible Manufacturing Cell (FMC) at the School of Engineering (SOE),

Sheffield Hallam University, was chosen for the development and testing of both

Gray’s methodology and the reported Ph.D. research. It is therefore appropriate to

describe the FMC prior to explaining Gray’s methodology.

The FMC consists of a CNC lathe, CNC milling machine, a conveyor track, and three

work stations (WS) as follows:

□ Puma WS for loading and unloading raw material and finished parts.

□ Lathe WS for loading and unloading the lathe.

12

Chapter 2

□ Miller WS for loading and unloading the miller.

The loading and unloading of raw materials and finished parts is carried out by a six

axis, programmable Puma robot. The loading and unloading of the lathe is carried out

by a pneumatically operated gantry robot, while a pneumatic cylinder loads and

unloads the miller by ramming a workpiece to and from a fixture on the milling table.

A conveyor track transports components to and from the work stations. This

equipment is referred to as the work handling (WH) equipment (Figure 2-1, below).

Chess pieces designed for blind players are the chosen components for the cell. This

introduces flexibility into the cell for the following reasons:

1. Different machining processes are employed to produce the pieces, which are in

turn machined differently to distinguish the two colours by touch.

2. Chess sets of different dimensions or styles can be produced.

MILLER CONTROLLER

MILLER

LATHE
Miller WS

GANTRY Lathe W S

P u m a WS

•FIN
ROBOT! MATRL

PUMA
CONTROLLER

Figure 2-1 Layout of the FMC at the School of Engineering

13

Chapter 2

2.1.1 Levels of Control

The equipment used to perform the logical control of all the elements within the FMC

is distributed between Transputers and PLCs (Programmable Logic Controllers), and

divided into three levels of control, as shown in Figure 2-2.

Level 3
♦ T w o -w a y Link»

Level 2

D igita l J /O j

Level 1 PLCPLCCNC
L athePLCPum a

R obot
CNC

MILLER

Cell
C o n tro lle r

L athe
C o n tro lle r

Miller
C on tro ller

PC

P um a
C on tro lle r

W ork H andling E q u ip m en t Includ ing C o n v ey o r & G an try R obo t

Figure 2-2 Levels of Control of the FMC

Level 1

The simple sequential control of primitive devices, such as actuators and sensors, is

carried out in Level 1 using PLCs.

One PLC is devoted to the Puma WS. The opening of the dogs on the conveyor,

closing them when the pallets have moved on, and the monitoring of the appropriate

sensors at the Puma WS, to determine the arrival/departure of pallets at/from the

station, is carried out through this PLC.

A second PLC is devoted to the Miller WS. It monitors the appropriate sensors at the

Miller WS to determine the arrival of the pallets, activates the loading/unloading

14

V s M c i |J i e i £

cylinder, the milling fixture clamp and instructs the miller to start or stop machining.

The PLC also monitors the machining status of the Miller.

A third PLC is used to control and monitor the Lathe WS and the gantry robot,

synchronising the opening and shutting of the lathe door with the entry and exit of the

robot arm whilst loading and unloading workpieces. The execution of the “Start

Machining” command to the Lathe, and the monitoring of the machining status is also

carried out through this PLC.

Level 2

The control of the machine tools, robots and the PLCs conducting Level 1 control is

achieved in this level.

The Puma Transputer, for example, instructs the Puma robot to execute the program

“Load Cell”, which is used to place a blank from the raw material stock in a vice on a

pallet. It also instructs the PLC at the Puma WS to convey pallets between work

stations.

The Miller Transputer, for example, instructs the PLC at the Miller WS to transfer the

vice into the fixture on the milling table and clamp it in place.

The Lathe Transputer instructs the PLC at the Lathe WS to operate the gantry robot,

to load or unload the lathe, and to monitor the arrival of pallets and the opening and

closing of their vice accordingly.

Level 3

Level 3 is conducted by the Cell Controller. The Cell Controller's task is to ensure

that a given schedule of parts are produced by the cell. In order to do this, it passes

15

Chapter 2

instructions to the Level 2 controllers to load and unload the machine tools, to start

machining cycles and convey parts round the cell.

2.1.2 Reasons for Distributing Control

Having established that the control of the School of Engineering’s cell is achieved by

distributed control, it is important to explain the reasons behind such a design. Why,

for instance, is the whole cell not controlled by only one computer.

Two essential reasons:

1. To reduce the complexity of the control algorithms/computer programs.

Even with the small FMC at the SOE., the number of sensors that need monitoring,

and the number of actuators which need operating is very large. Since the various

parts of the cell operate concurrently, the control of such an environment by one

sequential algorithm becomes virtually impossible, and certainly inefficient. Changes

within the cell would mean redesigning the complete control algorithm, hence making

future growth a very difficult task. An example of concurrency within the cell could

be, when a part is to be unloaded from the conveyor by the Puma robot, also a part is

to be loaded onto the miller and whilst this is being carried out, the lathe finishes

machining and requires its workpiece to be removed.

2. To achieve the required communications necessary to operate the machine tools

and work handling equipment.

There are several types of data that have to be communicated within the cell. For

example, whether a sensor is on or off, which program the Puma is to run, what

component is to arrive at the Miller. This data is communicated in different ways

depending on the complexity of the data. For instance, a sensor's data may be on or
16

U l l d (J l C I £.

off (24 or 0 volts) and requires only two wires to transmit its data. However, more

complex messages have to be passed between station controllers and the machine

tools, e.g. to instruct the Puma to run a certain program requires the Puma station

controller to transmit the command “EXEC LOADPART”, and the Puma to reply

“PART LOADED”. RS 232C is used to handle this duplex communication.

Messages which pass between the Cell Controller and the station controllers may be

transmitted simultaneously, therefore a Local Area Network (LAN) having a multiple

access communication protocol is used. A single control algorithm to handle all these

communications in Real-Time would be difficult or perhaps impossible to write.

2.2 Gray’s Petri Net - Occam Methodology

Over the years, Petri Nets (section 2.2.2) have been used in modelling safety critical

systems to reduce faults in the system by removing them before use [Sahraoui et al

1987, Leveson and Stolzy 1987, Viswanadham and Johnson 1988, Reddy et al 1993].

FMCs are a particular case of safety critical systems in that, although automated they

work in conjunction with humans.

Gray conducted research to show that Occam and Transputers could considerably

simplify the design of DCSs for FMCs. He chose to use Petri Nets as the formal

method for developing DCSs, but soon found that Petri Net graphs can become very

complex (Figure 2-3, inside back cover). The graph is not readable and difficult to

follow.

For these reasons and inspired by the capabilities of Occam and Petri Nets, Gray

developed a methodology for producing dependable distributed control software for

flexible manufacturing.

17

Chapter 2

It is important however to discuss Transputers, Occam and Petri Nets, in more detail,

for a better understanding of the methodology.

2.2.1 Transputers and Occam

The combination of the Inmos developed hardware and software called Transputer

and Occam respectively has now been recognised as a solution to the problem of

programming concurrent systems.

A Transputer is a microcomputer with its own local memory, and with

communication links for connecting one Transputer to another Transputer [Inmos Ltd.

1990]. The protocols for communications between Transputers is built into the

hardware of the Transputer chip. It can be used in a single processor system, or in

networks to build high performance parallel architectures. By linking processors

together, a linear increase in data processing capacity can be achieved, as opposed to

the limited processing capacity of typical multi-processor control systems (MPCS). A

MPCS can only be increased to a certain limit before experiencing a drop off in

effective computing power [De Gaspari 1992].

2.2.1.1 Occam: Language Definition

Occam simplifies the writing of concurrent programs by taking most of the burden of

synchronisation away from the programmer [Inmos Ltd. 1989]. Occam uses channels

for communicating values and does not distinguish between two processes (programs)

running concurrently on different computers, or concurrently on the same computer.

However channels are one-way only, and therefore two are needed for a two-way

communication.

18

Although Occam provides synchronised communication, the programmer is still left

with the responsibility of avoiding “deadlock”, i.e. a process waiting for

communication that will never arrive, for it is prepared to do so forever . For the non

professional programmer, or rather the professional engineer and system designer,

avoiding deadlock, in even a relatively simple FMC such as the one in the School of

Engineering, is difficult.

2.2.2 Introduction to Petri Nets

Petri Nets are a tool for the study of systems, and a graphical representation of

systems [Peterson 1981]. In 1962 Carl Adam Petri, a German mathematician defined

Petri Nets as a mathematical modelling tool for describing relations between

conditions and events, whether sequential or concurrent. The basics of Petri Net

graphs are as follows:

Places. Transitions and Arcs

A place is represented by a circle and a transition is represented by a bar or a box.

Places and transitions are connected by arcs (Figure 2-4(a), below). An arc is

directed and connects either a place to a transition or a transition to a place. Arcs

directed from a place to a transition define the place to be an input of the transition.

Arcs directed from a transition to a place define the place to be an output of the

transition. Thus in Figure 2-4(a) A, B and C are input places to transition t l, and D

and E are output places of tl.

Figure 2-4(a) A Simple Petri Net

Chapter 2

Markins

Marking is the assignment of tokens or marks to the places of a PN (Figure 2-4(b),

below). A token is represented by a dot in a place. The marking at a certain moment

defines the state of the system described by the PN. In Figure 2-4(b) the input places

A, B and C are said to be active. Places can also be ‘bounded’, which means there is a

limit on the maximum number of tokens a place can hold. e.g. a place bounded to one

token can only contain one token at any one time.

Figure 2-4(b) A Marked Petri Net

Fir ins o f Transitions

A transition can only be fired if each of its input places has at least one token. The

transition is then said to be fireable or enabled (Figure 2-4(b), above). Firing of a

transition consists of withdrawing a token from each of its input places and adding a

token to each of its output places (Figure 2-4(c), below). The firing of a transition is

indivisible (has zero duration), except when considering Timed or Synchronised PNs

Figure 2-4(c) Marking After the Firing of the Transition

20

U l l d p i m £.

Inhibitor Arcs

An inhibitor arc is a directed arc which joins a place to a transition. However its end

is marked with a small circle (Figure 2-4(d), below). The inhibitor arc between the

input place C and the transition means that the transition is only enabled if the place C

does not contain a token, as shown in Figure 2-4(d).

Before Firing After Firing

Figure 2-4(d) Inhibitor Arc PN Graph Showing the Marking Before and After the Firing

of the Transition

The above is not a definitive description of PNs, but is sufficient for understanding the

methodology.

2.2.2.1 High Level Petri Nets

High level Petri Nets are folded versions of the general Petri Nets described above.

Unfolding a high level Petri Net produces a set of places, where one place was, and a

set of transitions, where one transition was. Folding a general Petri Net into a high

level one is the reverse of this. The way in which general and high level Petri Nets are

read is different. In reading general Petri Nets more emphasis is given to places and

transition rather than tokens and arcs; “WIZIWIG, what you see is what you get”. In

high level Petri Nets more emphasis is given to reading tokens and arcs rather than

places and transitions, due to some, if not most, of the information being folded away.

The major types of high level Petri Nets are Predicate-Transition Nets [Genrich 1987],

Coloured Petri Nets [Jensen 1991] and Hierarchical Petri Nets [Gracanin 1994].

21

Chapter 2

2.2.3 The Motivation and Objectives of Gray’s Methodology

Gray highlighted the need of a novel methodology in three stages as follows:

a) The needs of a Transputer based FMC

b) The needs of an Occam based methodology

c) The use of Petri Nets with Occam

A verification of these needs and a full criticism of current use of Petri Nets and

Occam is given in his thesis [Gray 1995]. Gray’s conclusion of these needs are drawn

from the suitability of Transputers and Occam as the hardware and software for the

control of a DCS, the lack of sufficient guidance in the development of flexible and

dependable Occam code, and the applicability of Petri Nets to DCSs and their

popularity in the manufacturing field.

In addition to the references to the lack of adequate guidance provided by other

existing Petri Net-Occam techniques, Gray highlights other significant disadvantages

associated with current practices, mainly the following:

1. The most common approach of developing Petri Net models is informal, i.e.

produce a Petri Net graph and analyse it. When the model is found to be incorrect,

it is then modified and re-analysed. This may be repeated several times before an

accurate model is achieved.

2. High level Petri Net graphs are often used because they are graphically more

concise than their equivalent general Petri Net graphs, but the information held

within them is often more difficult to absorb because it is folded away.

22

i r n a p i e r £.

3. Even general Petri Net graphs are almost always found to be very difficult to read,

and thus understand, because they are drawn in an unstructured fashion (Figure 2-

3, inside back cover).

4. Occam code refinement is tedious. The conventional approach of developing

Occam code is to draft its basic structure using DFDs or PNs, produce the Occam

code and try and compile it. If and when it does not compile, it is then modified

and re-compiled. This process is repeated until successful.

5. Using formal design techniques will help produce reliable and safe control

systems. However, a tedious development process is often involved in using

formal methods and mathematicians are required to design and verify the control

programs. This is costly both in time and in wages, and therefore industry is

reluctant to use such methods.

Having discussed the problems associated with existing DCS development methods

and techniques, Gray concludes that there is a need for a methodology which makes

better use of Petri Nets and Occam. The aims and objectives of his novel

methodology can be summarised as follows:

• to produce the specification of the DCS directly from the manufacturing

requirements.

• to produce the specification in a graphical but formal way, which will be

comprehensible during all stages of the development life cycle of the FMC, i.e.

specification, design, simulation, coding, implementation and maintenance.

• to obtain equivalence between the model and the code by exploiting the

similarities of PNs and Occam.

23

Chapter 2

• to incorporate “deadlock” prevention into the methodology by having a

unidirectional communication protocol.

• to produce dependable Occam code to run on a network of Transputers for the

control of an FMC.

2.2.4 Gray’s Methodology Applied to the FMC

To achieve the aims and objectives listed above in section 2.2.3, Gray’s methodology

consists of four design steps and employs certain techniques which play a key role in

the development of dependable DCSs. For example, “deadlock” is avoided by

employing a technique that Gray calls “output-work-backwards” and a uni-directional

flow of information between the various controllers of the FMC. Where two way

communication is required between controllers, for example between the Cell

Controller and the Status Handler (Figure 2-5, inside back cover), then a client-server

relationship between the two is employed (discussed below).

The four steps of the methodology are:

Step 1 Identify concurrent and sequential operations.

Step 2 Produce a Petri Net graph for each controller.

Step 3 Combine the controller Petri Net graphs.

Step 4 Translate the Petri Net graphs into Occam code.

Each step consists of one or more tasks, as described below.

The task in step 1 is to analyse the overall concurrency of the FMC. Some operations,

such as the lathe and the miller machining at the same time, are stated in the

requirements of an FMC. Other concurrent operations are quite obvious because they

24

u n a p ie r c

are independent, for example lathe machining and the conveyor indexing. Most

sequential operations are also obvious, e.g. loading the lathe before machining, or

loading a part into a pallet before indexing (transporting) the part to the lathe. The

need for a Cell Controller (CC) and a Status Handler (SH) is also identified during

this step. The hierarchical nature of the manufacturing control system and the master-

slave method of communication often used in Transputer networks [Gray 1995]

prompts the need for a cell supervisor or master to the slave work station controllers.

The Status Handler is slave to the work station controllers but operates as a server to

the client Cell Controller. The task of the Status Handler is to prevent “deadlock” by

gathering feedback from the work station controllers, and acts as a buffer between the

Cell Controller and the rest of the cell. The communication between the Status

Handler and the Cell Controller is controlled, to avoid “deadlock”. The Status

Handler will not communicate with the Cell Controller unless the Cell Controller

requests an update for the status of the cell.

The tasks involved in step 2 are to examine the requirements of the controllers and

design the logic of the individual controllers. Petri Net graphs for each controller are

produced, which clearly list the inputs to the controllers, the logical operation of the

controllers and the outputs from the controllers. Where the inputs come from and

where the outputs go to, are also clearly stated during this step. Gray prescribes a

specific format for drafting PN graphs, to ensure that they are readable.

Step 3 is concerned with integrating the individual controller PN graphs to produce an

overall PN graph, which is the specification of the DCS. Managing the

communication between controllers in a closed loop of control, to prevent “deadlock”,

is also carried out during this step.

25

Chapter 2

The task in step 4 is that of translating the Petri Net graph into Occam. The rules of

the methodology ensure that the overall PN graph is equivalent to the Occam

constructs, making the translation process reliable, efficient and relatively simple.

By following these steps, the overall PN graph for the control of the FMC described

in section 2.1 was produced (Figure 2-5, inside back cover).

2.2.5 Advantages, Disadvantages and Claims of Gray’s Methodology

Gray’s objectives for his methodology are worthwhile; he achieves a readable,

modular and dependable design which can be checked for correctness, and translated

reliably into control software. However, his methodology could not be used to design

a complete DCS which consists of controllers other than Transputers. In particular,

Gray does not consider PLCs which are very commonly used in industry worldwide.

Indeed PLCs are an integral part of the FMC chosen by Gray for the development of

his Petri Net - Occam methodology. Nevertheless, Gray claims that his methodology

produces a design which can be both reliably updated and expanded. These claims

were investigated as part of the research programme and are discussed in Chapter 6.

2.3 Programmable Logic Controllers

The PLC is a microcomputer which evolved from the conventional computers of the

late 1960s and early 1970s [Webb 1992]. Over the last twenty years the PLC has

become an integral part of industrial control systems due to its rugged structure and

high processing capabilities. The basic structure of the PLC consists of a Central

Processing Unit (CPU) and input/output modules or terminals. Increased technology

has made it possible to cram more functions such as numerous relays, timers and

counters into smaller and relatively inexpensive PLCs. Input signals to the PLC and

26

V srictp iei £.

output signal from the PLC (I/Os) can be either 24 volts or 0 volts (section 2.3.1.5),

and are used to control a wide range of devices such as solenoids, actuators and

robots.

2.3.1 Available PLC Programming Tools and Techniques

One of the major restrictions to new PLC concepts being applied in industry is the

difficulty to change the desire of some users to use Ladders Diagrams [Webb 1992].

In fact, the Ladder Diagram approach of PLC programming, based on conventional

'relay logic', still remains the most commonly used technique employed by the vast

majority of industries in the UK and the USA [Jafari and Boucher 1994]. A decade

ago S. M. Cotter [Cotter and Woodward 1986] wrote: "Like it or not, then, the ladder

diagram is likely to be with us for some years yet." This still holds true today despite

the definition of other PLC languages in the IEC 1131-3 standard [IEC 1992] by the

International Electrotechnical Commission. The standard suggests five languages for

programming PLCs; Instruction List (IL), Structured Text (ST), Function Block

Diagram (FBD), Sequential Function Chart (SFC) and finally Ladder Diagram (LD).

However none of the five suggested languages are design methodologies, nor are they

widely accepted or tested, with the exception of Ladder Diagrams.

2.3.1.1 Instruction List

Instruction List is a textual low level language, similar to an assembler language,

without support for structuring. An Instruction List consists of a sequence of

instructions or operations, with each instruction beginning on a new line. It is useful

for smaller applications or for optimising parts of an application.

27

Chapter 2

2.3.1.2 Structured Text

Structured Text, as its name implies, is a structured textual high level language, which

has a similar syntax to the programming language PASCAL. Structured Text can be

used to create application specific function blocks. Complex statements involving

variables which represent a wide range of data types (including analogue and digital)

can be expressed using ST. It also supports types of data specific to batch processing

applications, such as time, date and duration. In addition, ST supports iteration loops

such as REPEAT UNTIL, conditional execution using IF-THEN-ELSE constructs,

and Math and Trig functions such as SQRT and SIN.

2.3.1.3 Function Block Diagram

This is a graphical language with some limited support for hierarchical structures.

FBDs allow program elements which appear as function blocks to be connected to one

another in a manner similar to a circuit diagram. A function block is a program

organisation unit, which, when executed, yields one or more values. The FBD is

suitable for applications which involve the flow of information or data between

control components.

2.3.1.4 Sequential Function Chart

SFCs are a graphical high level language which can be used to structure PLC code for

the purpose of performing sequential control functions. The basic elements of the SFC

are a set of steps and transitions, interconnected by directed links. Associated with

each step is a set of actions, and with each transition a transition condition. Since

SFC elements require storage of state information, the only program organisation

units which can be structured using these elements are function blocks and programs.

28

A program is defined in the standard as a “logical assembly of all the programming

language elements and constructs necessary for the intended signal processing

required for the control of a machine or process by a PLC”.

2.3.1.5 Ladder Diagram

The LD is based on conventional 'relay logic'. The required actions of the program are

represented sequentially by lines, or rungs, on the ladder diagram [Webb 1992]. The

input signals to the PLC are marked on the left hand side of the diagram. These

signals may be 'ON' or 'OFF' (24V or OV) and form the conditions for the output

signals (instructions from the PLC) which are marked on the right hand side of the

ladder. The physical input and output contacts, I/Os, of the PLC are clearly marked

on the ladder (XO, XI, X400, X401, etc, and Y30, Y31, Y430, Y431, etc.). The

internal relays of the PLC are also marked as M numbers (Ml 00, Ml 03, etc.). A

‘pulse’ is an internal relay which, if switched on, remains on for only the first scan of

the LD. The use of a ‘pulse’ is ideal for carrying out safety checks on the initial

starting conditions of the system, e.g. checking if a robot is in the safe position before

instructing it to perform an operation. In addition to internal relays and I/O contacts,

the PLC is also equipped with timers. The most common timing function is the ‘delay

on’ timer (section 5.1.2), which is the basic function. There are also several other

derived timing functions, such as ‘delay o ff, ‘interval pulse’ and ‘multiple pulse’

The order in which the program switches outputs on or off is dependent on the logic,

and not on the order of the rungs on the ladder diagram (discussed in more detail in

section 4.3). Therefore the input conditions must be carefully determined for each

output instruction, to avoid complications later in the program. However, the risk of

Chapter 2

programming errors is high and verifying whether the program meets the specification

is difficult [Nagao 1993]. This is because Ladder Diagrams do not provide adequate

simulation support or analytical capabilities. Furthermore, the maintaining or

updating of the software, by anyone other than the original programmer, is both

difficult and time consuming.

2.3.1.5.1 Step Ladder Diagram

As the name suggests, the use of Step Ladders [Wardman 1994] allows a complex

PLC program to be divided into a number of steps, depending on the complexity of

the operations carried out by the PLC.

Each operation is given a step number at the beginning of the Step ladder and an input

address which forms the condition for that particular Step Ladder to be ‘Set’ (to start).

The internal ‘Step relay’ assigned for that Step (e.g. S601) is ‘Set’ once at the

beginning of the Step Ladder. The Step Ladder is ‘Reset’, by resetting the ‘Step

relay’, only if the required operation is carried out successfully. The layout of the

required actions in between the ‘Set’ and the ‘Reset’ lines is similar to that of a

standard Ladder diagram. However repeated instructions carried out by the PLC do

not cause programming complications as they can be grouped in separate Step

Ladders. Therefore the programming of the PLC is simplified and the risk of errors

reduced.

2.3.2 Review of Existing PLC Languages

The DTI/SERC sponsored collaborative project [SEMSPLC 1992-95] entitled

Software Engineering Methods for Safe PLCs (SEMSPLC) has produced a Code of

Practice for developing safe PLC application software [Clarke et al 1995]. In this

30

U l l c t p i c i £.

Code of Practice the IEC 1131-3 standard was criticised for suggesting a wide range

of techniques with no support to the engineer as to how to choose from the wide range

of techniques and to fit them into applications to achieve safety levels. SFCs, FBDs

and LDs have also been criticised for their restrictions and lack of analytical

capabilities [Jafari and Boucher 1994, Nagao 1993]. A detailed constructive criticism

of the IEC 1131-3 standard was also published by W. A Halang [Halang 1989]. Some

of the mentioned drawbacks of the languages were the poor timing control features

available and the fact that the duration of the single process states is implementation

dependent, and not under program control.

Sequential Function Charts are based on Grafcet [Courvoisier et al 1983] which

evolved from the work of several French research teams, working in areas such as

flow charts, simulation of logic systems and state diagrams. Firstly a French standard,

in 1987 it became an international standard, with slight adaptations [David and Alla

1992]. Although the structure of the SFC is tidy, with the majority of the control

detail hidden within the action blocks, it tends towards redundancy in manipulating

low level devices, such as sensors and actuators [Satoh et al 1992].

It is claimed in the IEC 1131-3 standard that all five languages are equivalent.

However, no verification of this is given in the standard. Some proprietary software

can translate Grafcet diagrams, which are nominally equivalent to SFCs, into Ladder

Diagrams. However, they produce very inefficient and lengthy Ladder Diagrams as

shown in section 4.4. Furthermore, the translation rules from the SFC to LD are far

from simple.

31

Chapter 2

2.4 PNs and PLCs: Previous Work

This section is included for the sake of completeness . It briefly reviews previous

work where Petri Nets have been used in conjunction with PLCs. It shows the general

incompleteness of previous approaches in meeting the objectives of designing

dependable DCSs. This previous work can be categorised into two subject areas, as

follows:

1. PNs for designing and modelling PLC based DCSs.

2. PNs for designing PLC programs.

2.4.1 PNs for Designing and Modelling DCSs Containing PLCs

Various people have used PNs for designing and modelling DCSs that contain PLCs.

For the most part, Petri Nets have been used to model the overall system, and not the

control software. The various parts of systems, for example an assembly plant, have

been represented by PN graphs to investigate the flow of control between controllers

at a high level [Farrington and Billington 1996], but the lower level control software

has not been included. The control of low level devices, often by PLCs, forms a

critical part of manufacturing systems, and must be part of any design of a system.

Thus previous work in this area [Viswanadham and Johnson 1988, Borusan 1993,

Huang and Chang 1992, Gray 1995] is incomplete because they do not include the

PLC control logic in the overall design model of the DCS.

2.4.2 PNs for Designing PLC Programs

Research into the development of alternative PLC programming methods is still being

carried out, despite the standardisation of five existing languages by the IEC.

32

Chapter 2

The literature presented in this section refers to past research into the use of Petri Nets

specifically for designing PLC programs. The motivation for this past work appears

to be to overcome the problems encountered when using Ladder Diagrams to design

and code systems (section 2.3.2), in an attempt to make the design process more

reliable by using the modelling capabilities of PNs. However it is not apparent that

any of the attempts are an improvement on Ladder Diagrams. The readability of the

design is in no way an improvement from LDs, and in several cases a regression, due

to the lack of structure of the PNs [Taholakian and Hales 1995].

Some have demonstrated their approach using only a simple sequential program and

claim that it can be simply applied to any system [Henry and Webb 1988, Green 1990,

Badri and Henry 1992].

Others have not considered translation of their PN into any of the languages of the

IEC, and therefore have no proof if it works [Hasagawa et al 1990, Farrington and

Billington 1996].

Readability of the design has been addressed by some who use high level PNs.

However, the detail of the design is hidden away and when unfolded, this detail leads

to non-readability [Hasagawa et al 1990, Pardey et al 1994].

Most have applied the general principles of PNs to the PLC program by showing that

when a transition fires, its input place loses its token and the output place gains a

token simultaneously [Hasagawa et al 1990, Satoh et al 1992, Badri and Henry 1992,

Jafari and Boucher 1994]. However, it is not shown how a PLC program can reliably

perform the same task. This very important point is discussed in more detail in

Chapter 4.

33

Chapter 2

No-one has produced a methodology which enables a low level graphical PLC

program to be produced in a structured manner, i.e. which clearly shows all the inputs

to the PLC, the internal logic of the PLC, and the outputs from the PLC, stating

exactly what operations are intended by those outputs by using readable names and

not code, which is a significant advantage of Ladder Diagrams.

2.5 The Aim and Objectives of the Ph.D. Research

The aim of the research was to devise a methodology for developing dependable

overall DCSs. In order to meet the needs identified and to alleviate many of the

problems mentioned in Chapter 1, and also section 2.4, specific objectives were

identified:- ,

a) to devise a graphical and textual methodology for representing both the

specification and design of the control in an integrated format such that:

• the specification and design are identical.

• the design can be transformed, with exact equivalence, into software.

• the design can be modelled and proved to be correct: thus if the design is correct,

the software will be correct.

• the design can be readily understood by all, thus integrating the role and skills of

the specifier, designer, software writer and user of the system, and also enabling

reliable modifications, updates and maintenance to be made to the system.

b) to devise rules which will ensure that:

• the system is designed to be dependable. For example, rules will be formulated to

prevent the designer from developing an uncodable design, and rule out the

34

Chapter i

possibility of “deadlock” occurring.

• errors within the system are either avoided or eliminated at the design stage.

• proving the correctness of the design, through modelling, yields reliable results.

Gray’s approach was considered to be the most favourable compared to the other

approaches listed in the literature, due to its readability, reliability, modularity and his

claims of expandability. However, Gray’s methodology was found to be incomplete

because it only considers Transputers and Occam and not the overall DCS, which may

include other controllers such as PLCs. The application of Gray’s methodology to

PLC programming was conducted to test his claims of expandability and is discussed

in Chapter 3.

35

Chapter 3

The Application of Gray’s Methodology to an Overall DCS

Contents

3. The Application of Gray’s Methodology to an Overall DCS............................ 37

3.1 Gray’s Methodology Applied to a Simple PLC Control Task....................... 37

3.1.1 Design and Simulation.. 38

3.1.2 Translation of PN into LDs... 42

3.2 Discussion.. 43

u n a p ie r o

3. The Application of Gray’s Methodology to an Overall DCS

This chapter discusses Gray’s claims that his Petri Net - Occam methodology can be

expanded to accommodate all parts of a DCS. Gray’s claims of the expandability of

his methodology were investigated at the early stages of the research program, by

attempting to apply the methodology to develop the control software for the low level

PLCs. His methodology was found to be inapplicable to designing PLC programs.

The reasons for this are briefly explained and discussed in this chapter. The claims of

modularity and expandability were also tested and are discussed in Chapter 6.

3.1 Gray’s Methodology Applied to a Simple PLC Control Task

Gray applied his methodology to the School of Engineering’s FMC, and developed an

overall PN graph of the Distributed Control System (Figure 2-5, inside back cover).

Although this is readable, the concurrency within the system is clearly shown as are

the control logic and communications, it is not a complete design of the overall DCS.

This is because the control carried out by the PLCs is not included in the overall

design.

Gray’s methodology was tested on concurrent, as well as sequential, PLC control

systems. The example chosen in this section is not part of the School’s DCS.

However, it clearly demonstrates that by applying Gray’s methodology to PLC

programming, the resulting PN graph does not model the correct logic.

Example: Oil Tank Level

The operational requirements for the system shown below in Figure 3-1 are; when the

oil level drops, the oil sensor switches on and a siren is sounded. By pressing and

37

Chapter 3

releasing a spring return push button the siren is switched off and a lamp is switched

on. The lamp is switched off only if oil is added to the tank.

Oil Tank Siren Lamp

 ------ Control
Panel

Oil

Oil Push
S e n so r Button

Figure 3-1 Oil Tank Level

3.1.1 Design and Simulation

Gray’s methodology was applied to the control problem, Figure 3-1, and the PN graph

shown in Figure 3-2 was developed, directly from the requirements.

Oil T ank Level

Oil >
S en so rJ

W S iren
3,4

0 ^

P u sh
B utton ' S iren >

A cknow
i R e lay J

4,3

-M Lam p

Figure 3-2 PN Graph of Oil Tank Level Control Produced By Gray’s Methodology

As claimed, a readable design has been produced, in that the outputs are on the right-

hand side of the graph boundaries, the inputs are on the left-hand side of the

boundaries, and the internal logic is in between the boundary lines sequentially down

the page. However, it is not a dependable design, and Gray’s methodology does not

give full guidance to design dependable PLC control systems. For example, inhibitor

arcs had to be used but they are not part of his methodology. Instead, when

representing inverse conditions, Gray uses separate Occam variables for each

38

Vsiictpiei o

condition, for example for the Miller Controller (Figure 2-5) he uses a ‘Milling in

Progress’ state and ‘Milling Finished’ state, which are inverse conditions, i.e.

‘Milling Finished’ is logically the same as ‘Milling in Progress’ ‘Not On’. This

representation has no equivalence in relay logic or Ladder Diagrams when considering

the state of sensors which can be either ‘On’ or ‘O ff, or output signals which can also

be ‘On’ or ‘O ff. Therefore an inhibitor arc is used to represent a signal which is ‘Not

On’. Note also that a PLC signal only has two states, ‘On’ or ‘O ff, and therefore

places were declared to be bounded to one token.

To simulate the control system an initial marking is required. For example, to

simulate the oil sensor switching on, a token is placed inside the place Oil Sensor,

and the states of all transitions are considered sequentially down the page. Transition

t l is enabled and thus fires. Transitions t2 and t3 do not fire. The resulting marking

is shown in Figure 3-2(a), which shows that if the sensor is switched on, the siren is

sounded, as stated by the requirements. Note that Oil Sensor regains its token via the

return arc, which is needed to show that the sensor does not switch off as a result of

the siren switching on. The siren retains its token, i.e. continues to sound, until the

push button is pressed and then released.

• Oil >
S e n s o r ;

S iren3j4
(Lamp

P u s h '
B utton, ' S iren >

A cknow
l R e lay J

4,3

W Lam p

Figure 3-2(a) Marking Achieved as a Result of Simulating Oil Sensor Switching on

39

U l l C i p i C I y j

To simulate the pressing of the push button, a token is placed inside Push Button.

Figure 3-2(a) is simulated again and a final marking as shown in Figure 3-2(b) is

obtained.

Oil T an k Level

• O il >
S e n s o r J

■W S iren

P u sh
Button ' S iren >

A cknow
. R e l a y #

■M Lam p

Figure 3-2(b) Marking Achieved as a Result of Simulating Push Button Being

Pressed

This also meets the requirements of the system. Figure 3-2(b) shows that if the siren

is sounding and the push button is pressed, an internal relay is switched o n , which

represents the acknowledgment of the siren. This marking remains unchanged until

the token is removed from Push Button, which simulates the push button being

released, and a final marking as shown in Figure 3-2(c) is obtained.

Oil T an k Level

• O il '
S e n s o r ;

-W S iren

I L am p I\ j i y t
P u sh

Button ' S iren \
A cknow

. R e l a y j

Lam p

Figure 3-2(c) Marking Achieved as a Result of Simulating Push Button Being

Released

40

Chapter 3

The place Lamp receives a token via transition t3. Also via t3 the places Siren

Acknow Relay and Siren lose their tokens. This again appears to correctly represent

the requirements; when the button is pressed and subsequently released, the siren is

switched off and the lamp is switched on.

The design rules of the methodology do not offer guidance for switching output

signals off. Gray assumes that all outputs are communications over Occam channels

and does not consider such outputs as the lamp. Although Siren is switched off via t3

and Siren Acknow Relay is switched off via t2, the methodology does not have a

design rule for switching Lamp off. This is shown in Figure 3-2(d). The token is

removed from Oil Sensor to simulate that oil is added to the tank, but Lamp

continues to retain its token.

Oil >
S e n s o r l

■W S iren

P u sh
Button ’ S iren >

A cknow
. R e l a y j

4,3

Lam p

Figure 3-2(d) Marking Achieved as a Result of Simulating Oil Sensor Switching off

The simulation of the PN graph shows that by using the design rules of Gray’s

methodology, unreliable PLC programs can be produced. This is because the

methodology was developed for Occam to run on Transputers, resulting in rules

which ensure the reliable design and simulation solely for such systems. To achieve

the same level of reliability for PLCs and LDs, it is essential to develop rules (section

4.1) which ensure that the PN design is simulated in the same way as a LD translated

41

o n a p ie r o

from the PN design would run on a PLC.

3.1.2 Translation of PN into LDs

Gray has only devised rules for translation into Occam, but not into any of the PLC

languages. By applying his translation rules to the PN graph, the following Occam

code could be produced, although Gray has not considered inputs from sensors but has

only considered inputs such as communications from other Occam processes.

Occam Code

WHILE TRUE

SEQ

IF

oil-sensor AND (NOT lamp)

siren := TRUE

SKIP

IF

push-button AND siren

siren-acknow-relay := TRUE

SKIP

IF

siren-acknow-relay AND NOT push-button AND siren

SEQ

lamp := TRUE

siren := FALSE

siren-acknow-relayFALSE

SKIP

42

o n a p ie r o

This Occam code does not have an equivalent Ladder Diagram. This is because IF

constructs do not resemble the rungs of a Ladder Diagram. Programmable Logic

Controllers read and execute their control logic in a way that has not been considered

by Gray’s methodology. This is discussed in more detail in section 4.3.

Gray has not considered translation of the PN graph directly into PLC code. Also, the

Occam translation of the control does not model PLC logic, and has no equivalent

Ladder Diagram. It was decided, therefore, that rules for translating from a Petri Net

design into a Ladder Diagram needed to be developed (section 4.2).

3.2 Discussion

When applying Gray’s methodology to develop the low level control logic of the

FMC, it was found that:

• insufficient guidance is given to designing control systems that have inputs or

outputs other than Occam channels.

• the resulting PN graph does not model the PLC programming languages, because

there is no equivalent to a transition in any of the PLC languages. For example,

transition t3 firing, Figure 3-2(b), simultaneously switches the lamp on, and the

siren and the internal relay off. There is no equivalent to this simultaneous state

change in Ladder Diagrams.

• no guidance is given to simulating the PN graph in the same way as a PLC

executes its control logic.

• rules are not given for translating the PN graph into PLC code.

43

Chapter 3

Having studied the higher level parts of the DCS, Gray developed a readable and

dependable methodology for generating reliable Occam code to run on Transputers.

His methodology was found to be incomplete for designing the control of the overall

DCS due to its inapplicability to the lower level PLC control. However, the

readability of Gray’s PN graphs, achieved as a result of his design approach, was

considered to be very promising, and therefore research into the development of

design, simulation and translation rules to apply to PLC control was conducted, to

achieve the objectives listed in section 2.5. The outcome of this work was the

development of a methodology, PN<=>PLC, which will work as a stand alone tool for

developing dependable PLC control programs, and will also unify with Gray’s

methodology to produce a complete methodology for developing an overall

dependable Distributed Control System. This work is reported in Chapters 4, 5 and

6 .

44

Chapter 4

PN<=>PLC: The Methodology

Contents

4. PNoPLC: The Methodology..46

4.1 Design Process... 47

4.1.1 Design Rules..48

4.1.2 Terminology and Symbols..52

4.2 Translation Process....................................... 54

4.2.1 Translation Rules...54

4.3 Simulation Process.. 56

4.3.1 Simulation Steps..57

4.3.2 Simulation Steps Applied to Scenario 2 ..61

4.3.3 Simulation Results.. 64

4.4 The Investigative Approach Taken to Develop P N oP L C 64

4.5 Designing the Control Algorithm of the Oil Tank Using SFCs.................... 70

Chapter 4

4. PN<=>PLC: The Methodology

This chapter describes the novel methodology, developed during this research

programme, for designing PLC programs. The methodology, PN<=>PLC, uses a

similar format to LDs, but is readable by any party, be they the DCS designer, the

software writer, the commissioner or user of the DCS, supports simulation and can be

easily and exactly translated into an efficient Ladder Diagram [Taholakian and Hales

1996]. The methodology consists of three stages, Design, Simulation and Translation

which are introduced in this chapter using a simple control example. The rules and

terminology required to use the methodology are also explained. They are essential

for producing reliable control systems, and a complete set of the rules is contained in

Appendix A.

The investigative approach taken to develop PN<=>PLC is discussed at the end of the

chapter, which also helps to explain the inadequacies of previous applications of Petri

Nets to PLC programming and the comparative advantages of PN<=>PLC.

Control Example: Oil Tank Level

In order to explain the PN<=>PLC methodology the previous example, Oil Tank Level

(section 3.1.1), is used.

Consider Figure 3-1, duplicated below for convenience. When the oil level drops, the

oil sensor switches on and a siren is sounded. By pressing and releasing a spring

return push button the siren is switched off and a lamp is switched on. The lamp is

switched off only if oil is added to the tank, i.e. the oil level sensor has switched off.

The siren must sound regardless of the push button being jammed in the pressed

position, in an attempt by the operator to stop the siren from ever sounding.

46

Chapter 4

Oil Tank Siren Lamp

Control
Panel

Oil

Oil Level Push
S e n so r Button

Figure 3-1 Oil Tank Level

4.1 Design Process

The general structure of the methodology is based on Gray’s methodology, which in

turn is very similar to Ladder Diagrams. Two vertical lines represent the boundaries

of the PN. The logical sequence of events carried out by the PLC which includes the

setting of internal relays is represented within these boundaries. The inputs to the

PLC are represented by input places outside the graph boundaries on the left-hand

side. The outputs from the PLC are represented by output places on the right hand

side of the boundaries as shown in Figure 4-1.

Internal
Logic

Input
P laces

O utput
P laces

nntml̂

Figure 4-1 Layout of PNoPLC Graph

The design rules listed below are an integral part of the methodology. They ensure

that the resulting PN graph of the control system is correct, readable, easily checked,

simulated and can be exactly translated into a Ladder. Also the symbols and

terminology used in Figures 4-2(a) through 4-2(d) are specified by the methodology

and are explained in section 4.1.2.

VslldpLCI

4.1.1 Design Rules

Rule 1. The drafting o f the PN<=>PLC graph is carried out using a right-to-left and

down-the-page approach i.e. starting with an output, work backwards and

determine the conditions for switching the output on. This must be

represented with one or more <lswitching-on transitions ” within the

boundaries o f the PN graph, and their “switching-on p laces”, as shown in

Figure 4-2(a).

Siren]

Figure 4-2(a) First Design Rule Applied to Siren

The control specification states that the siren is the first output from the PLC and

therefore the first rule is applied to the siren, as shown in Figure 4-2(a). Transition tl

is the "switching-on transition" of the output place Siren. Oil Sensor ‘On’ AND

Lamp ‘Not On’ are the conditions for switching the siren on, and are therefore

connected to t l as shown. Although an output from the PLC, the place Lamp is

duplicated closer to t l for readability (section 4.1.2). The place Oil Sensor is

connected to t l with a "return arc" because the conditions for switching it on or off

are not controlled by the PLC (section 4.1.2).

Rule 2. Consider the conditions for switching the output off. This must be

represented with one or more “switching-off transitions ”, to the right o f the

output place, and their “switching-off places ”, as shown in Figure 4-2(b).

48

unapter 4

Oil
■W Siren

'P u s h
■Buttor

■5 ire in'
ickno\
K elau

Figure 4-2(b) Second Design Rule Applied to Siren

Transition t2 is the "switching-off transition" of the output place Siren. The place

Siren Acknow Relay is an internal relay which represents that the sounding of the

siren has been acknowledged. Siren Acknow Relay ‘On’ AND Push Button ‘Not

On’ are the conditions for switching the siren off, and are therefore connected to t2

with broken or "switching-off arcs". This rule, combined with the symbols used

(section 4.1.2), is particularly important to ensure that the PN graph is readable. Both

the switching-off state and switching-off instance are shown. A third party looking at

the PN graph in Figure 4-2(b) knows how and when the designer intends to switch the

siren off. Moreover, the rule is essential for the correct translation of the PN graph

into PLC code.

Firing of Transitions in a PN<=>PLC Graph

In order to understand how the PN<=>PLC graph in Figure 4-2(b) correctly

represents the operation of a PLC program, it is necessary to understand the

V
movement of tokens and the firing of transitions. A translation of Figure 4-

2(b) is shown in Figure 4-2(bl), without any explanation of how the

translation was made. The complete translation rules of PN<=>PLC are given

in sections 4.2.1.

49

Chapter 4

xo X1 Y 30

H I— \/ \ { y
O il L a m p P u s h

B u t to n

Y 3 0 M100

H \ H/H
S i r s n
A o k n o w

Figure 4-2(bl) LD Rung for Siren Obtained by Applying

PNoPLC Translation Rules to Figure 4-2(b)

A realistic marking is shown in Figure 4-2(bl), which represents Oil Sensor

shown in Figure 4-2(b2). In Figure 4-2(bl), both the “switching-on

transition”, t l , and the “switching-off transition”, t2, are enabled and fired.

Therefore the place Siren does not gain a token, as shown in Figure 4-2(b2).

Figure 4-2(b2) Evolution of the Marking After Applying

Simulation Step 3 to Figure 4-2(b1)

Simulating the oil sensor and the internal relay being ‘On’ in the Ladder

Diagram, Figure 4-2(bl), it can be seen that the siren does not switch on.

Therefore it is important to note that when simulating a PN oPLC graph, an

output is considered not to have switched on if both its “switching-on

‘On’ and Siren Acknow Relay ‘On’ to be true. The result of this marking is

iensorJ

f P u s h '
iButton,

Figure 4-2(b1) A Realistic Marking Applied to Figure 4-2(b)

f P u s h '
(Button.

50

Chapter 4

transition” is enabled mid the switching-off conditions are true. This very

important simulation rule is listed in section 4.3.1 as rule 3, and is essential

to ensure that a PN oPLC graph correctly simulates the Ladder Diagram

into which it is translated.

Rule 3. Rules 1 and 2 are repeated for all output places, and also for any internal

relays used.

By applying the design rules to the lamp the PN<=>PLC graph shown in Figure 4-2(c)

is achieved. The specification states that the conditions for switching the siren off are

also the conditions for switching the lamp on, therefore Siren Acknow Relay ‘On’

AND Push Button ‘Not On’ are the “switching-on places” and are connected to the

"switching-on transition", t3, of the output place Lamp. The condition for switching

the lamp off is Oil Sensor ‘Not On’ as indicated by the "switching-off transition" t4.

S iren1/2

Figure 4-2(c) Design Rules Applied to Siren and Lamp

Finally the design rules for switching the place Siren Acknow Relay on and off are

applied. It is by pressing the push button that the sounding of the siren is

acknowledged. Therefore t5, as shown in Figure 4-2(d) below, is the "switching-on

transition" for Siren Acknow Relay. The correct conditions for switching Siren

Acknow Relay off are Oil Sensor ‘Not On’ AND Siren ‘Not On’. There is

51

Chapter 4

potentially the risk of excluding the former of the two switching-off conditions at the

design stage, however the simulation process, discussed in section 4.3, highlights the

need for both conditions to switch Siren Acknow Relay off.

Figure 4-2(d) Final PNoPLC Graph of Oil Tank Level Control

4.1.2 Terminology and Symbols

In order to make the PN graph readable, certain symbols have been adopted as

follows:

«—«-► is a ’’return arc” which shows that an input place will receive its token back

after the transition has fired. For example this applies to input signals over which the

PLC has no control. In Figure 4-2(d), the oil sensor or the push button can switch on

or off at any time, and not as a result of the transitions (tl or t5) firing. Also, the

place Siren Acknow Relay is connected to t3 with a "return arc" because it does not

switch off as a result of the lamp switching-on.

are "switching-off arcs” which clearly show what is being switched off

and what is doing the switching off. Consider transition t4 in Figure 4-2(c); Oil

Sensor 2/2 ‘Not On’ is the condition to switch Lamp 2/2 off, and not vice versa.

These arcs are essential for the design of correct PLC programs. For instance in

Figure 2-4(a), duplicated below for convenience, there is an ambiguity. It is not clear

fPush>
.Button,

[Sensor]\212 J

t1

irn a p ie r **

which of the inputs (A, B or C) is the condition for switching-off the others, or indeed

whether it is a combination of two of the inputs that switches the third off and

therefore this can not be translated reliably into Ladder logic. Combined with design

rule 2, the "switching-off arcs" show exactly what the designer has in mind.

Figure 2-4(a)

/L a m p \ /L a m m

are duplicated places. Where a place is the input to several transitions, it

can be duplicated in order to reduce the number of arcs that cross. This simplifies the

overall PN graph and improves readability. In Figure 4-2(d), places Siren, Lamp and

Gil Sensor are duplicated for this reason. It is, however, essential that a tally is kept

of the number of duplicate places (1/2, 2/2) so that they are not overlooked by the

designer and simulator.

is a “dummy” or “drain place”, which is used to demonstrate that a token is

drained from a particular place as a result of its transition firing. This symbol clearly

shows the "switching-off transitions", and proves that the designer has considered

how each output and internal relay will be switched off For instance in Figure 4-2(d),

it is clear that transition t6 is the "switching-off transition" of Siren Acknow Relay.

53

V siic tp iei

4.2 Translation Process

Simulation, not translation, is actually the next stage in the methodology after design.

However the translation rules need to be explained before the simulation can be fully

comprehended.

The PN<=>PLC has only a few simple rules for directly translating the PN<=>PLC

graph into an exactly equivalent Ladder Diagram: if the design is correct, the code is

correct.

Similar to design rule number 1, the translation process is carried out using the right-

to-left and down-the-page approach.

4.2.1 Translation Rules

Rule i . Consider an output place and situate it as an output on the right-hand side

o f the Ladder Diagram. Consider the “switching-on transition ” to the left

o f that output place. The input places to that transition are the conditions

for switching the output place on, and are therefore represented as inputs on

the left-hand side o f the Ladder Diagram.

Figure 4-3(a) represents the rung for switching on the output Siren.

XO Y31 Y30

i i—i/i (y
Oil Lamp Siren
S ensor

Figure 4-3(a) LD Showing the Conditions for Switching the Siren on.

First Translation Rule

Rule 2. Always latch the output with itself.

54

u n a p ie r **

This is done to ensure that the output remains ‘On’ until the conditions to switch it off

become true, as shown below in Figure 4-3(b).

XO Y31

Oil Lamp
S an so r

H M / h
Oil
S anso

Y30

H h

< y

Figure 4-3(b) LD Showing How the Siren is Latched on. Second Translation Rule

Rule 3. Consider the “switching-off transition ” to the right o f the output place. The

“switching-off arcs ” joining places to this transition identify these places as

the switching-off conditions o f that output place, and are therefore

represented on the LD as shown in Figure 4-3 (c).

(0 Y 31

H I— l/h
il L a m p

H h

< y

H / r
S i r a n
A o k n o w
R a la y

Figure 4-3(c) LD Showing the Conditions for Switching the Siren off. Third

Translation Rule

In Figure 4-2(d) Siren Acknow Relay ‘On’ AND Push Button ‘Not On’ are the

conditions for switching-off the siren. However, it is the inverse of these states which

keep the siren ‘On’, thus using De Morgan's law, they are represented as Push Button

‘On’ OR Siren Acknow Relay ‘Not On’ on the Ladder Diagram, as shown in Figure 4-

3(c).

Rule 4. Repeat rules 1 -3 for all the places.

55

Chapter 4

Rules 1 to 3 are also applied to the places Lamp and Siren Acknow Relay, and a

final LD of the PN oPLC graph in Figure 4-2(d) is achieved as shown in Figure 4-

3(d).

O il L a m p
S e n s o r

H I—I/I-
O il
S e n s o

Y 3 0

H h

XO Y 3 1

P u s h
B u t t o r

H /h
S i r e n
A c k n o w
R e l a y

< >

M 100 X I

H I— \/\~
S i r e n P u s h
A c k n o w B u t t o n
R e l a y

H I-
L a m p

i M
L a m p

P u s h
B u t t o n

4 HH H
S i r e n S i r e n
A c k n o w
R e l a y

< y
S i r e n
A c k n o w
R e la y

Figure 4-3(d) Final LD. An Exact behavioural Equivalent to the PNoPLC Graph

Shown in Figure 4-2(d)

4.3 Simulation Process

The simulation of the PN<=>PLC graph is essential to check the correctness of its

logic. To achieve true simulation of the control algorithm, it is therefore necessary

that the mode of operation of the PLC is simulated by the PN oPLC graph (This very

important point is discussed in greater depth in Chapter 6, sections 6.3 and 6.5). Most

PLCs scan through a program in a cyclic fashion, and only update their outputs at the

end of each scan, not during a scan. Therefore if the "switching-on transition" and the

"switching-off transition" of an output place are fired consecutively within the same

scan, that output will not be switched on at the end of that scan. Also, a PLC signal

56

u i i a p i c i t

only has two states, ‘On’ or ‘O ff, and therefore any place is bounded to one token,

i.e. if it has a token it can not receive another.

Simulation is performed by marking places with tokens and determining their flow

through the transitions. For most applications there will be a large number of marking

permutations, i.e. simulation scenarios, most of which will be unrealistic, and

therefore the designer will only model a few of them. ‘Scenario 1 ’ in section 4.3.1

represents a realistic simulation scenario, in which it is assumed that events occur in

sequence as stated by the specification.

4.3.1 Simulation Steps

The following scenario of events is used to explain the simulation steps.

Scenario 1

a) the oil sensor switches on.

b) if the siren is on, the push button is pressed.

c) the push button is then released.

d) finally the oil sensor is switched off.

Step 1. The first step o f the simulation process is, thus, to determine one or more

realistic scenarios o f events.

Step 2. Consider the first event o f the chosen scenario and mark the PN<=>PLC

graph accordingly.

As stated in ‘Scenario 1’, the first event is that the oil sensor switches on and therefore

a token is put inside the place Oil Sensor 1/2 and 2/2, as shown below in Figure 4-

4(a).

57

Chapter 4

1/2

J te ta y v

Figure 4-4(a) Initial Marking Representing the Oil Sensor Switching on, i.e. Scenario

1, Event (a). Simulation Step 2

Step 3. Given the initial marking, determine the state o f each output place and

internal relay. This is done by considering the "switching-on transition ”

and then the “switching-off transition ” o f each place consecutively. Note, if

both transitions are fired then the output place does not receive a token. The

final marking o f the PN<=>PLC graph represents the state o f the system after

one scan o f the program.

Applying simulation step 3 to Figure 4-4(a), the state of the place Siren is affected

by this marking. Transition t l is enabled and fired. Transition t2 is not enabled and

therefore Siren 1/2 and 2/2 retain their tokens. Likewise transitions t3 to t6 are not

enabled and therefore Siren Acknow Relay and Lamp are not affected by the oil

sensor and siren being ‘On’ and thus do not gain tokens. Figure 4-4(b) below shows

the final marking of the PN<=>PLC graph after applying this rule and represents the

state of the system at the end of the first scan.

1/2 %/ 1/2 %]

Push'

.Relaj

2/2%/

Figure 4-4(b) Evolution of Marking After Applying Simulation Step 3 to Figure 4- 4(a)

Chapter 4

Step 4. The resulting marking from one scan is the initial marking for the next scan

which is simulated as in step 3. A number o f scans are made until the PN<=>

PLC graph reaches a steady state, i.e. the marking does not change from one

scan to the next.

For example when simulated for a further scan, the marking shown in Figure 4-4(b)

does not change and therefore indicates that the PN<=>PLC graph is in a steady state,

i.e. when the oil sensor switches on, the siren is sounded, as stated by the

requirements.

It is important to note that the same final marking is obtained regardless of the order

in which the places are considered, provided they are considered as stated in Steps 3

and 41. This is essential in order to ensure that the design is deterministic, i.e. the

same outcome is always obtained for a given set of input conditions, irrespective of

the order in which the outputs occur in the graph; given the initial marking in Figure

4-4(a), the final marking in Figure 4-4(b) is achieved whether the state of Siren is

considered first, second or last. This exactly simulates a PLC program.

Step 5. Once a steady state has been achieved then the markings representing the

next event in the scenario are included in the PN<=>PLC graph.

Continuing with scenario 1, event (b) is considered and following from Figure 4-4(b),

a token is placed inside the place Push Button as shown below in Figure 4-4(c).

1 In some cases, the control requirements may prescribe that a specific sequence of outputs occurs.

This can be achieved by using “priority” transitions as described in Chapter 5.

59

Steps 1 - 4 are applied to Figure 4-4(c). The result of this event is shown in Figure 4-

4(d).

jirerh
1/2*)1/2 **

1/2

f Push)
.Button! -O d

-O il
vim

-O d
vim

Figure 4-4(c) Marking which Represents

Scenario 1, Event (b)

mm
1/2

f Push \
.Button!

SirenV
vim

2/2

Figure 4-4(d) Evolution of Marking After

Applying Simulation

Steps to Figure 4-4(c)

Figures 4-4(c) & 4-4(d) show that if the siren is sounding and the push button is

pressed, the internal relay Siren Acknow Relay is switched on but the siren continues

to sound, as stated by the specification.

Event (c) is considered next, and following from Figure 4-4(d), the token is removed

from the place Push Button as shown below in Figure 4-4(e). Steps 1 - 4 are applied

to Figure 4-4(e). The result of this event is shown in Figure 4-4(f).

1/2 ** 1/2*1

1/2

f PusnN
.Button!

/Siren's.
Acknow]

S Relay}

vim

1/2 ** 1/2

fPush>
.Button.

vim.

Figure 4-4(e) Marking which Represents

Scenario 1, Event (c)

Figure 4-4(f) Evolution of Marking After

Applying Simulation

Steps to Figure 4-4(e)

Figures 4-4(e) & 4-4(f) show that if the push button is released, the siren is switched

off and the lamp is switched on, as stated by the specification.

u n a p i c i *r

Finally, event (d) is considered, and following from Figure 4-4(f), the token is

removed from the place Oil Sensor, as shown below in Figure 4-4(g). Steps 1 - 4 are

applied to Figure 4-4(g). The result of this event is shown in Figure 4-4(h).

1/2 1/2

1/2 •)
P u s h

SirertS
2/2 .

212*}

[S e n so r]
V 212 J

1/2 1/2

1/2

P u s h -*Od
A cknow]

k R elayJ

Jire n '
2/2 .

2/2

[S e n so r]t 212 J

Figure 4-4(g) Marking which Represents Figure 4-4(h) Evolution of Marking After

Scenario 1, Event (d) Applying Simulation

Steps to Figure 4-4(g)

Figures 4-4(g) and 4-4(h) show that when oil is added to the tank, i.e. the oil sensor

switches off, the lamp switches off, as stated by the specification. The internal relay

also switches off and therefore the system resumes its normal state.

4.3.2 Simulation Steps Applied to Scenario 2

Another possible realistic simulation scenario is described in Scenario 2 as follows:

Scenario 2

a) the push button is jammed in the pressed position, in an attempt by the operator to

prevent the siren from ever sounding.

b) the oil sensor switches on.

c) the oil sensor switches off due to the oil being low but unsettled.

d) the push button is released.

In Scenario 2, the events do not follow the sequence described by the specification.

The listed sequence of events is however a realistic possibility and a good safety

61

lrllc l|JL e i H-

check, to ensure that the control system is correct.

Figure 4-5(a) represents event (a). Applying the simulation steps to Figure 4-5(a), a

final marking as shown in Figure 4-5(b) is achieved. Although transition t5 fires and

Siren Acknow Relay receives a token, transition t6 also fires within the same scan,

and therefore the internal relay will not switch on given the condition in event (a).

1/2 1/2

f\P u s h \
.B u tto n]

2/2

2/2

[S e n so i

1/2 1/2

r P u s h \
.B u tton] -Oo

2/2

2/2

Figure 4-5(a) Marking which Represents Figure 4-5(b) Evolution of Marking After

Scenario 2, Event (a) Applying Simulation

Steps to Figure 4-5(a)

Event (b) is represented in Figure 4-5(c). The resulting marking is shown in Figure 4-

5(d). The design is shown to be correct in that the siren is sounded regardless of

jamming the push button.

1/2*1

1/2
r p u s t iN
.B u tton] -O d

ickno \

2/2
Oo

1/2% 1/2

P u s h

2/2

Figure 4-5(c) Marking which Represents Figure 4-5(d) Evolution of Marking After

Scenario 2, Event (b) Applying Simulation

Steps to Figure 4-5(c)

In event (c) the possibility of a flickering sensor is simulated, as shown in Figure 4-

5(e). Figure 4-5(f) shows that there is no change in the state of the system: the siren

Chapter 4

continues to sound regardless of the oil sensor being off, as prescribed by the

specification.

1 /2 *)

1/2

rPusiA
.B u tton] -Ofl

.R ela)

212*j
212

212

1/2 1/2«J

f P u s h \
.B u tton]

ick n o \

212*1

212
-O d

[S e n so i
v 2/2 .

Figure 4-5(e) Marking which Represents

Scenario 2, Event (c)

Figure 4-5(f) Evolution of Marking After

Applying Simulation

Steps to Figure 4-5(e)

Event (d) is represented in Figure 4-5(g). The push button is released and therefore

the token is taken out of the place Push Button. The resulting marking is shown in

Figure 4-5(h). The places Siren and Siren Acknow Relay lose their tokens

indicating that the system returns to the normal state. This verifies the correctness of

the design: the siren switches off and the lamp does not switch on because the oil

sensor is no longer on.

[S e n so r]\1/2 J mm
1/2

P u s h

2/2

Figure 4-5(g) Marking which Represents

Scenario 2, Event (d)

[S e n so r]
V 1/2 J 1/2

' P u s h i
.B u tto n , -*Od

jirerci
212 ,

[S e n so r]
V 2/2 J

Figure 4-5(h) Evolution of Marking After

Applying Simulation

Steps to Figure 4-5(g)

Other scenarios can be simulated in this way, for example inputs which change during

a scan can be included as events, but are not included here.

63

When considering ‘Scenario 2’ the design, simulation and translation rules of PN<=>

PLC can be fully appreciated. The design rules enforce a PN<=>PLC graph which

exactly represents and simulates a PLC program. This eliminates the need for

verification of the PLC code against the design.

4.3.3 Simulation Results

The results of the simulation can also be obtained using the following State or

Boolean Equations, instead of marking the PN<=>PLC graph:

Siren = ((Lamp • Oil Sensor) + Siren) • (Push Button + Siren Acknow)

Lamp = ((Siren Acknow • Push Button) + Lamp) • Oil Sensor

Siren Acknow = (Push Button + Siren Acknow) • (Oil Sensor + Siren)

These equations are derived from the PN<=>PLC graph, Figure 4-2(d), and are of use

when computerising the graphical simulation process. They are exact equivalents of

the rungs of the Ladder Diagram.

This representation of the control logic underpins the formalism of the methodology.

However the understanding of this mathematical representation is not required in

order to use PNoPLC.

4.4 The investigative approach taken to develop PN<=>PLC

The reported research programme underwent a trial and error process, which led to the

development of the reliable design, simulation and translation rules of PN<=>PLC. The

approach followed in other work was initially trialled, but was found to be

inapplicable. The discussion given below gives an indication of the errors which

arose using these approaches and reinforces the comparative advantages of PN oPLC.

V /l ld |J L C I -r

The previous oil tank level example is used and, by following the requirements of the

system (section 4), the design of the system can be represented as a basic PN graph, as

shown in Figure 4-6.

Lamp
2/2

r Oil >
iSenson

Siren

r P u s h >
.Button,

Figure 4-6 Petri Net Graph of Oil Tank Level Control

This PN representation was the most frequently encountered during the literature

survey phase (sections 1.3.1 and 2.4.2) of the reported research programme.

Simulation ‘Scenario 1’, duplicated below for convenience, is used in order to verify

the PN design in Figure 4-6 against the requirements of the system.

Scenario 1

a) the oil sensor switches on.

b) if the siren is on, the push button is pressed.

c) the push button is then released.

d) finally the oil sensor is switched off.

As stated above, the first event is that the oil sensor switches on and therefore a token

is placed inside Oil Sensor. Transition t l is enabled and fired. Transition t3 is not

enabled therefore Siren retains its token. Likewise transitions t2 and t4 are not

enabled and therefore Siren Acknow Relay and Lamp are not affected by the oil

sensor and siren being ‘On’, and thus do not gain tokens. Figure 4-6(a) below shows

the final marking of the PN graph after simulating event (a).

65

Chapter 4

Siren
,ckno'
Relay

f Oil ^
iSensorl

Lamp
2/2Siren

Push
B u tto n

Figure 4-6(a) Evolution of the Marking After Simulating Scenario 1, Event (a)

Continuing with scenario 1, event (b) is considered and following from Figure 4-6(a),

a token is placed inside Push Button and the PN graph is simulated. The result of

this event is shown below in Figure 4-6(b).

Siren
cknoi
Relay

r Oil >
iSensorl

Lamp
2/2Siren

r P u s t r
B u tto n

Figure 4-6(b) Evolution of the Marking After Simulating Scenario 1, Event (b)

Figure 4-6(b) shows that if the siren is sounding and the push button is pressed, the

internal relay Siren Acknow Relay is switched on, but the siren continues to sound,

as stated by the requirements.

Event (c) is considered next, and following from Figure 4-6(b), the token is removed

from the place Push Button and the graph is simulated, the result of which is shown

in Figure 4-6(c) below. Figure 4-6(c) shows that if the push button is released, the

siren is switched off and the lamp is switched on, as stated by the requirements.

66

Chapter 4

(Oil >
iSenson

Lamp
2/2Siren icknoi

Relay

P u s lv
Button,

Figure 4-6(c) Evolution of the Marking After Simulating Scenario 1, Event (c)

Finally, event (d) is considered, and following from Figure 4-6(c), the token is

removed from the place Oil Sensor, and as a result the lamp switches off, as stated by

the requirements, and the system resumes its normal state. The result of event (d) is

shown in Figure 4-6(d).

S iren
.cknoi
Relay

(Oil)
iSensonl

Lamp
2/2Siren

P u s t r
Button,

Figure 4-6(d) Evolution of the Marking After Simulating Scenario 1, Event (d)

The simulation of the PN graph shows that the design correctly models the

requirements of the system. Most such Petri Net representations which were

encountered in the literature (section 2.4.2) do not consider translation of the PN

graphs into PLC code. Some have included Ladder Diagram translations of the PN

graphs but not included any rules for carrying out the translation process.

Furthermore, there is no consistency in the representation of the LD rungs [Green

1989]. Jafari and Boucher [Jafari and Boucher 1994] have considered translation into

Ladder Diagrams. However, their approach undergoes a series of transformation

Chapter 4

processes, whereby Integrated Computer Aided Manufacturing Definition 0 (IDEFO)

is used for the top-down hierarchical decomposition of the system, until sufficient

detail is obtained from which a model can be built. The IDEFO representation is then

transformed into a Petri Net model which in turn is analysed for reachability, modified

to include the inputs and outputs of the controller, from which a state table is

generated. A set of boolean equations is generated from the state table which are then

transformed into a Ladder Diagram. Although the rules for the various transformation

processes have been included it is not apparent that the reliability of this approach has

been tested on PLCs. Moreover, the approach is complex due to the tedious

development process which draws into question its usability in industry.

One feasable Ladder Diagram interpretation of the PN design of Figure 4-6 is shown

in Figure 4-7(a). In Figure 4-6, when transition t3 is enabled and fired, the lamp

switches on and also the internal relay and the siren switch off, therefore Lamp ‘On’

is the condition for switching off both Siren and Siren Acknow Relay. It is the

inverse of Lamp ‘On’, Lamp ‘Not On’, which keeps both the siren and the internal

relay ‘On’ (De Morgan’s Law, section 4.2.1) as shown in Figure 4-7(a), rungs 1 and 2.

The result of simulating events (a) and (b) in the LD of Figure 4-7(a) shows that the

program meets the requiremnets of the system. The siren is switched on when the oil

sensor switches on. The internal relay switches on when the siren is on and the push

button is pressed. However, when simulating event (c) the LD does not model the

system correctly. When the push button is released Siren Acknow Relay switches

off and as a result the lamp does not switch on and the siren continues to sound.

Another feasible Ladder Diagram translation of the PN design is shown in Figure 4-

7(b). In this figure a Ladder Diagram is generated from the PN design with the

68

unapter 4

understanding that the siren is switched off via transition t3 with the following

conditions: Siren Acknow Relay ‘On’, Push Button ‘Not On’ and Oil Sensor ‘On’.

Siren Acknow Relay is also switched off via t3 with the following conditions: Siren

‘On’, Push Button ‘Not On’ and Oil Sensor ‘On’. These are represented on the LD

as the conditions to keep the siren and the internal relay ‘On’ using De Morgan’s law,

as shown in Figure 4-7(b) on rungs 1 and 2 respectively. Event (a) is simulated using

Figure 4-7(b). The siren switches on due to Oil Sensor ‘On’ and Lamp ‘On’ being

true and Siren Acknow Relay ‘Not On’ being true. Event (b) is simulated next and

Push Button ‘On’ becomes true. The result of this event switches on Siren Acknow

Relay. When considering event (c) the Ladder Diagram is again proved to be

incorrect. Similar to Figure 4-7(a), when Push Button ‘On’ becomes false the

internal relay switches off instantly, the siren continues to sound and the lamp does

not switch on.

It can be seen that neither Ladder Diagram translation correctly represents the control

algorithm for the oil tank level, yet the Petri Net design appears to be correct. To

overcome this, research was conducted to develop rules such that the PN design

correctly models the operation of the PLC code. This resulted in the rules of PN<=>

PLC which ensure that PLC programs are designed and simulated in the same way as

the Ladder Diagrams would run on a PLC.

69

Chapter 4

XO Y31 M100

H H /hrl/t
O il L am p
S e n s o r

H I— V I

X1 Y 30 Y31

H H I—|/h
P u s h S i re n L am p
B u tto n

Y30 M 100 X1 XO

H H I—I/I—I I—
S ire n S i re n P u s h Oil

A ck n o w B u t to n S e n s o r
R e lsy

S ire n
A ck n o w
R e la y

< y

w -

HI —I F
P u s h S ire n
B u tto n

S ire n
A ck n o w
R e la y

< >

H h
P u s h
B u tto n

XO

H /r
Oil
S e n s o r

Y30

i / f

H h
P u s h
B u tto n

XO

H/H

< >1
S ire n
A ck n o w
R e la y

S e n s o r

Y30 M 100 X1 XO

H H H /H h
S ire n S i re n P u s h Oil

A ck n o w B u tto n S e n s o r
R e la y

i M
L am p

Figure 4-7(a) Figure 4-7(b)

Two Possible LD Interpretations of the PN Graph Shown in Figure 4-6

4.5 Designing the Control Algorithm of the Oil Tank Using SFCs

For the sake of comparison a Sequential Function Chart for the Oil Tank level control

programme is shown below in Figure 4-8. Like the PN<=>PLC graph it is easy to read.

The states of the system are denoted by the rectangular boxes (1 to 4). The bars

labelled 1 to 5 are transitions. The program moves from one state into another via a

transition. For instance, if in state 1 (normal) and the oil level sensor is switched on,

the program moves into state 2 (siren), and is no longer in state 1. The OR branch

following state 2 indicates that the program will next move into state 1 or state 3,

depending on which transition is fired first. For example, if the conditions Oil Level

Sensor 'Not On' and Push Button 'On' are true, transition 2 fires and the program

moves into state 1. The logical sequence of events is clearly shown in the SFC,

however the control logic, into which it is compiled, is lengthy and complex. To

70

unapter 4

illustrate this the SFC, Figure 4-8, has been translated into a Ladder Diagram using a

proprietary SFC software package, Figure 4-9, which is considerably longer than that

produced for the same task by PN<=>PLC, Figure 4-3 (d).

N orm al"

1 -f* OH Level Sensr

S iren

2 - - I Oil Level S e n s o r . 3 P u sh B utton
/ P u sh B utton

—I S iren

4 I P u sh B utton

Lam p

5 - - / Oil Level S e n s o r

Figure 4-8 Design of Oil Tank Level Control Using SFCs

XO M l 01 M 10S

T r a n s 1

S l a t * 2

M 1 0 3

T r a n s 4

M 1 0 4

M 1 0 0

G l o b l t
V a r ia b la

S t a t s 1

M 1 0 5 M 101

H/|—I b
T r a n s 1 S t a t a 1

M 1 0 M 105

-r h
G lo b a l
V a r ia b la

T r a n s 1
M 1 0 6 M 1 0 7 M 1 0 2

H/H/H H
T r a n i

M 1 0 7

h r M I
T r a n s 2 T r a n s 3 S t a t s 2

M 1 0 M 1 0 7

G lo b a l T r a n s 3
V a r ia b la M 1 0 S M 1 0 3

H /H H
T r a n s 4 S t a t s 3

M 1 0 M 1 0 8

T M
G lo b a l
V a r ia b la

T r a n s 4
M 1 0 9 M 1 0 4

H /H H
T r a n s 6 S t a t s 4

S t a t s 2

M 108

I H
S t a t s 3

M l 0 4

S t a t a 4

M i 00

H F
G lo b a l
V a r ia b la

M 100

H/H
G lo b a l
V a r ia b le

■{ >

< y

< M
L a m p

< >
G lo b a l
V a r i a b l a

{ EN 0] _

Figure4-9 LD Translation of the SFC in Figure 4-8

71

Chapter 5

PNoPLC Applied to the FMC

Contents

5. PN<=>PLC Applied to the FMC...73

5.1 PN oPLC Applied to the Puma Work Station..74

5.1.1 Enable Vice to Table PN Group.. 76

5.1.2 PN<=>PLC and Timers... 82

5.1.3 Conveyor Controller... 84

5.2 PN oPLC Applied to Miller Work Station..84

5.3 PN<=>PLC Applied to Lathe Work Station...87

5.3.1 Terminology and Symbols (Revised).. 92

5.4 Error Handling... 94

5.4.1 Reliability and Safety Achieved by PN<=>PLC..97

5.4.1.1 Reporting Errors...101

unapier o

5. P N o P L C Applied to the FMC

Having explained the methodology using a simple control problem, in this chapter the

application of PN<=>PLC to a more complex control system is discussed. PN<=>PLC

was used to develop the control programs for the three work stations of the FMC. The

design rules of the methodology were applied to each work station, and PN designs

were developed as shown in Appendices B, C, D and E. The PN designs were

verified against the requirements of the FMC using the PN<=>PLC simulation rules.

Using the translation rules, the PN designs were translated into Ladder Diagrams

which were in turn inputted into the PLCs using a proprietary software. Also in this

chapter, suggestions are proposed which help the designer to avoid introducing errors

in complex sequential Ladder Diagrams.

The overall control algorithm for the level 1 PLCs has been successfully implemented

and the three work stations are currently in full operation. As mentioned in Chapter 2,

the Flexible Manufacturing Cell has three PLC controlled work stations which are in

turn controlled by three work station controllers or Transputers (Figure 2-1, duplicated

below for convenience). Each PLC executes its logic programs upon receiving the

relevant signals from its controller.

M ILLER C O N T R O L L E R

MILLER

LATHE

• GANTRY L a th e W S

P u m a W S

x R A W PUMA •F IN
MATRL- ROBOT .M A T R L

C O N T R O L L E R

Figure 2-1 Layout of the FMC at the School of Engineering

73

Chapter 5

The PN graph shown in Figure 2-5, inside back cover, produced by Gray’s

methodology represents the overall control program for the upper level Transputers.

The PN graph shows how the various controllers concurrently communicate with one

another. However, the graph does not show how these controllers reliably

communicate with the lower level PLCs, nor does it give any regard to handling any

possible errors during the control of the work stations. PN<=>PLC has produced

correct and reliable PLC programs for the work stations of the FMC (sections 5.1-

5.3), accounted for possible errors during the communication between the upper level

controllers and the PLCs (discussed in section 5.4), and, due to the readability of its

PN graphs, has produced a unified PN graph of the overall control program of the

FMC (Chapter 6).

5.1 PN<=>PLC Applied to the Puma Work Station

The Puma PLC relies on a signal from the Puma Controller instructing it to perform a

certain operation. Referring back to Gray’s PN graph (Figure 2-5) it can be seen that

only two output signals (instructions) are intended for the Puma PLC, ‘Load Robot’

and ‘Unload Robot’1. However, there are several operations involved in loading and

unloading parts to and from the Puma WS. For example, there are three operations

involved in loading a part:

1. Ram the vice onto the table

2. Close the vice (after a part has been placed by the Puma robot)

1 Gray’s ‘Load Robot’ and ‘Unload Robot’ terminology is misleading. A clearer terminology would

be ‘Load Part’ and ‘Unload Part’

74

unapter t>

3. Pull the vice onto the pallet (ready to be indexed by the conveyor)

Note that the vice is air operated and will not function unless it is on the table.

Similarly there are two operations involved in unloading a part:

1. Ram the vice onto the table

2. Open the vice (after the part has been gripped by the Puma robot)

It can be seen that there are four unique operations in total and that ‘ram vice to table’

is needed during both loading and unloading. Therefore for readability, reliability and

safety reasons (discussed further in section 5.4.1) the output signal ‘Load Robot’, i.e.

‘Load Part’, from the Puma Controller (Figure 2-5) was replaced by three output

signals and ‘Unload Robot’, i.e. ‘Unload Part’ was replaced by two output signals as

follows:

‘Load Robot’

1. ‘Enable Vice to Table’

2. ‘Enable Close Vice’

3. ‘Enable Vice to Pallet’

‘Unload Robot’

1. ‘Enable Vice to Table’

2. ‘Enable Open Vice’

These output signals become ‘group signals’ because they allow the distribution of the

overall control program into four individual program groups or PN Groups which are

then executed by the PLC in the sequences described above for loading and

unloading. The four PN Groups are Enable Vice to Table PN Group, Enable Vice
75

u n a p ie r o

to Pallet PN Group, Enable Close Vice PN Group and Enable Open Vice PN

Group.

5.1.1 Enable Vice to Table PN Group

PN<=>PLC was used to design the PLC program for ramming the vice onto the table.

The approach used to design a Vice to Table PN graph is identical to that of Oil Tank

Level PN graph in Chapter 4 with only a few additional symbols and terminology

used throughout this Chapter. The simpler Oil Tank Level PN graph does not use

these additions, hence, to simplify the introduction of PN<=>PLC, they were not

included in section 4.1.2. These additions are not beyond the principals of Petri Nets

or PLCs and are an integral part of PN<=>PLC. Therefore the complete set of

terminology and symbols has been included in section 5.3.1, and also in Appendix A.

For safety reasons (section 5.4.1) the designer chooses to perform a few error checks

at the beginning of the PLC program. These error checks are as follows:

1. Make sure that the vice is not jammed part way between the pallet and the table .

There are two sensors for this purpose, one on the pallet and one on the table. If the

vice is jammed in-between, neither sensor will be ‘On’.

2. Make sure sensors are not faulty. If both sensors are ‘On’ an error must be

reported.

These error checks are only needed at the very beginning of the control sequence and

for the first scan of the PLC program. With Ladder Diagrams this is done by

switching on a ‘pulse’ (section 2.3.1.5). Similarly with PN oPLC, the first place

drawn on the PN graph (inside the boundaries) is the ‘pulse’. Following the design

76

Chapter 5

rules listed in the Appendix A, the error checking part of the PN graph is achieved as

shown below in Figure 5-1.

Vice to Table (Error Check)

Figure 5-1 Initial Error Checks Performed Using a ‘pulse’

Vice to Table Pulse is switched on when the signal from the Puma Controller ‘Enable

Vice to Table’ is ‘On’. Vice to Table Error is switched on if either of its transitions,

t2 or t3 which represent the two error conditions described above, are enabled. The

additional symbols in the above Figure are the priority labels Pa and Pb and the

shading of the place Vice to Table Error, which are explained below and are also

included in the revised terminology and symbols table in section 5.3.1.

If a transition is labelled with Pa it means it has priority over any other transition, i.e.

its firing is considered before that of any other transition. A transition labelled with

Pb has priority over all transitions except for a transition labelled with Pa. The

illustration in Figure 5-1 correctly represents the setting of a ‘pulse’ and the use of the

‘pulse’ for performing initial error checks, as done by Ladder Diagrams, and is

essential to ensure the correct simulation and translation of the PN graph.

The shading of Vice to Table Error indicates that this place occurs in, and is

switched off in another PN graph. This is done to simplify the PN graph and make it

more readable. It can be seen from Figure 5-1 that no ‘switching-off transition’ has

been included for Vice to Table Error. As suggested by the shading, Vice to Table

77

onapier o

Error has been linked to another PN graph (Figure 5-24, Appendix E) where the

switching off transition is situated (discussed in detail in section 5.4.1).

Note that no switching off transition is required for Vice to Table Pulse as it is

automatically switched off at the end of the first scan, as done by LDs (section

2.3.1.5).

Having achieved the initial error checking part of Vice to Table PN, PN<=>PLC is

used to complete the control program for ramming the vice onto the table, as shown in

Figure 5-2 below. Extend Vice Ram is the only output signal needed from the PLC

to complete the program.

Vice to Table PN Graph
(Puma)

P C

Figure 5-2 PN Graph Showing the Use of a ‘group signal’

Using PN<=>PLC an Error Status PN graph was designed to report errors to the Puma

Controller (section 5.4.1). However if no errors are detected, the PLC must also

output a ‘complete’ signal informing the controller when it has successfully carried

out its task. As with Vice to Table Error, the shaded Vice to Table Compl indicates

that it is linked to another PN graph (Figure 5-23, Appendix E) in which the

“switching-off transition” has been considered (also discussed in section 5.4.1). At

this stage of the design process it is adequate to note that a Vice to Table Compl

78

Chapter 5

internal relay is switched on if Vice to Table Error is ‘Not On’, Enable Vice to

Table is ‘On’, Vice on Table is ‘On’ and the output signal Extend Vice Ram is

switched off.

It is also important to note that having Extend Vice Ram ‘Not On’ as one of the

switching on conditions to Vice to Table Compl rules out non-determinism at the

design stage. Consider Figure 5-2; without Extend Vice Ram 2/2 it would not be

clear whether the designer intends to switch off Extend Vice Ram before switching

on Vice to Table Compl or vice versa. Moreover, it would present the risk of exiting

the program prior to switching off the signal to Extend Vice Ram solenoid and would

result in unreliable programming. This is a guideline to reliable sequential

programming and is further appreciated when designing more complex programs

(section 5.3).

As mentioned above, the operations of loading and unloading the Puma WS were

divided into program groups to simplify the design process and, in conjunction with

PN<=>PLC, to improve safety and reliability. Therefore the ‘group signal’ ‘Enable

Vice to Table’ from the Puma controller is an input condition to every “switching-on

transition” in the program Vice to Table PN Graph shown above in Figure 5-2. It

can also be seen that Enable Vice to Table ‘On’ is one of the conditions for

switching Extend Vice Ram off. This is essential to ensure that the place is switched

off only with the conditions shown in this particular PN graph. For instance, if

Extend Vice Ram is used by another part of the overall PLC program, then Extend

Vice Ram would switch off with those other conditions if they happened to be valid.

Therefore, in order to avoid such non-determinism, it is important to include the

79

Chapter 5

‘group signal’ ‘Enable Vice to Table’ ‘On’ as the condition to all “switching-off

transitions”.

Connecting Enable Vice to Table to all transitions transforms the program Vice to

Table PN Graph in Figure 5-2 to an independent program group. It does however

increase the number of arcs crossing, and hence reduces the readability of the PN

graph. Therefore the PN graph is simply labelled as a PN Group and all arcs from

Enable Vice to Table are omitted as shown below in Figure 5-3. This also simplifies

the simulation process, knowing that no condition in any other group will affect the

PN Group considered. When translating, care must be taken to include Enable Vice

to Table on every rung of the Ladder diagram.

E nable Vice to Table PN G roup
(Error Check. Pum a)

P C ■W to Tabl.

Figure 5-3 PN Group Containing Initial Error Checks

Note that Enable Vice to Table to transition t l has not been omitted. This is done to

show that Enable Vice to Table is the ‘group signal’ that initiates the PN Group.

PN Grouping is much the same as using Step Ladders, which are supported by some

PLCs, without the need to use an internal step relay. However, PN<=>PLC can also be

used to produce PN Steps, which are directly equivalent to Step Ladders (section 5.3).

80

Vsiiapiei g

The final consideration given to the simplification of the PN Group in Figure 5-3 is

that of the initial error checking part. Consider Figure 5.4 below:

Enable Vice to Table PN G roup
(OK C heck. Pum a)

P C

Figure 5-4 PN Group Showing an Alternative Error Check

The two error conditions denoted by t2 and t3 in Figure 5-3 are replaced by one OK

condition denoted by transition t2 and the internal relay OK to Proceed, as shown in

Figure 5-4. It is safe to say that if initially the vice is on the pallet and not on the

table, it is OK to proceed with the program. If these OK conditions are not satisfied,

OK to Proceed will not be switched on and hence Vice to Table Error will switch

on. Since OK to Proceed is only needed for the first scan of the program, it is simply

switched off with the condition Vice to Table Pulse ‘Not On’, as shown by t4 in

Figure 5-4 above. The advantages and disadvantages of both representations are

discussed in section 5.4.1.1.

Using PN<=>PLC, Enable Close Vice PN Group, Enable Vice to Pallet PN Group

and Enable Open Vice PN Group were also designed as shown in the Appendix B

by Figures 5-6, 5-7 and 5-8 respectively. The Ladder Diagram translations of the

Puma Work Station PN Groups are shown in Appendix F.

81

Chapter 5

5.1.2 PN<=>PLC and Timers

PN<=>PLC can also incorporate PLC timers as shown in Figure 5-8, duplicated below

for convenience. The vice uses an over-centre or toggle clamp and a pressure switch

which senses that the vice is in the closed position. However, this pressure switch

does not give a positive vice open signal. The interpretation of the input place Vice

Closed ‘Not On’ as Vice Open is considered unsafe, as it can also mean that the vice

is opening, or is closing. Therefore, the use of Vice Closed ‘Not On’ as the switching

off condition for Open Vice (transition t9) would present the risk of switching this

output off before the vice has fully opened and result in the unsafe operation of the

vice. Due to the lack of Vice Open sensor, the designer has introduced Vice Open

Timer, which is of type ‘delay on’. A ‘delay on’ timer is represented in the same

way as an internal relay.

Enable Open Vice PN Group
(Puma)

PC

Figure 5-8 A PN Group Showing the Use of a Timer

Using the design rules of PN<=>PLC (Appendix A), Vice Open Timer 2s is switched

oh via the “switching-on transition” t5, where Vice on Table ‘On’ AND Open Vice

Error ‘Not On’ are its “switching-on places”, and is switched off via the “switching-

off transition” t7, where Enable Vice ‘Not On’ is its “switching-off place”. However,

in order to correctly use the tinier to perform the intended logic, the manner in which

the timer operates must be understood:

A ‘delay on’ timer will switch on only after the specified delay time has elapsed,

provided the conditions for switching it on remain unchanged for that duration. For

example in Figure 5-8, Vice Open Timer 2s has a two second delay and therefore

will switch on after two seconds, provided its switching-on conditions remain true for

two seconds. In simulation terms, if Vice on Table has a token and Open Vice Error

does not have a token, and if these conditions remain unchanged for two seconds,

Vice Open Timer 2s will receive a token after the two seconds have elapsed1.

However, once the timer is switched on it will remain ‘On’, regardless of its

switching-on conditions, until it is switched off via the “switching-off transition”.

This further highlights the claims of the methodology to be readable, reliable and safe.

This differentiation of the “switching-on” and “switching-off transitions”, together

with the remaining rules and symbols of PN<=>PLC provides the designer with a

methodical approach to developing correct PLC programs. Furthermore, it promotes

the overall readability of the PN graph and allows the simulation of the program

correctly, i.e. as executed by the PLC.

A ‘Delay o ff timer has the inverse timing function of a ‘delay on’ timer, in that if the

conditions for switching it on are true, the timer will switch on instantly, i.e. it will

receive a token instantly. Using PN<=>PLC a ‘delay off timer is represented in much

83

Chapter 5

the same way as a ‘pulse’. Similar to a ‘pulse’, there is no need to include a

“switching-off transition” for such timers. Whereas a ‘pulse’ is automatically

switched-off at the end of the first scan, a ‘delay off timer switches off automatically

after the specified delay time has elapsed. For example, if it is labelled ‘2s’, the timer

will automatically switch off, or lose its token, after two seconds.

5.1.3 Conveyor Controller

Referring back to Gray’s PN graph (Figure 2-5, inside back cover), it can be seen that

an independent controller has been allocated to the conveyor (CONVC) in parallel

with the Cell Controller, Lathe, Miller and Puma Controllers and Status Handler.

However, the Puma robot cannot load and unload parts from the Puma WS while the

conveyor is being indexed and vice versa. Since the Conveyor Controller cannot

function concurrently with the Puma Controller, there is no need to allocate an

independent controller for the conveyor and therefore the task of indexing the

conveyor has been given to the Puma Controller. The output signal ‘Start Conveyor

Index’ from the CONVC was replaced by ‘Enable Conveyor Index’ and Enable

Conveyor Index PN Group was achieved as shown in Figure 5-9, Appendix B.

5.2 PN<=>PLC Applied to Miller Work Station

The approach used to design the control program of the Miller WS is identical to that

of the Puma WS. As can be seen from Gray’s PN graph (Figure 2-5), three

instructions are intended for the Miller WS PLC, ‘Load Miller’, ‘Start Miller’ and

‘Unload Miller’. The operations involved in performing these instructions are as

1 The output place Enable Vice receives a token instantly.

84

unapier o

follows:

‘Load Miller’

• ‘Enable Vice to Table’

This involves pushing the vice, in which a part is held, onto the Miller table with a

pneumatic cylinder. A fixture has been connected to the miller table to allow the vice

to be guided to a fixed position, using a long pneumatic cylinder situated at the Miller

WS. A pneumatically operated toggle clamp is then used to secure the vice once it is

in this position.

‘Start Miller’

• ‘Enable Start Miller’

This is an instruction to the Miller to start its milling program.

‘Unload Miller’

• ‘Enable Vice to Pallet’

This involves pulling the vice back onto the pallet using the long pneumatic cylinder.

Note that when the vice is on the Miller table there will be a redundant pallet on the

conveyor, and it is this same pallet which must be indexed back to the Miller WS to

accept the vice.

It can be seen that the correct number of output signals have been allocated by Gray’s

PN graph to control the Miller WS. However, it was the designer’s choice to change

the description of these output signals for the purpose of readability. Therefore the

three output signals from the Miller Controller in Figure 2-5 were changed to the

‘group signals’ ‘Enable Vice to Table’, ‘Enable Start Miller’ and ‘Enable Vice to

OI IciJJ I til O

Pallet’ and hence the three PN Groups ‘Enable Vice to Table PN Group’, ‘Enable

Start Miller PN Group’ and ‘Enable Vice to Pallet PN Group’ were designed as

shown in Appendix C by Figures 5-10, 5-11 and 5-12.

Figure 5-11 is duplicated below for convenience. It can be seen that a small PN

Graph entitled ‘Milling PN Graph’ is also included. This is not part o f ‘Enable

Start Miller PN Group’, nor does it rely on an instruction signal from the Miller

Controller. It is however part of the overall program for the Miller WS, and a

necessary signal to the Miller Controller. For instance if Enable Start Miller PN

Group has been successfully executed and the signal Milling in Progress is switched

on, the Miller Controller understands not to send the signal ‘Unload Miller’ or

‘Enable Vice to Pallet’ until Milling in Progress is switched off. Although

independent from Enable Start Miller PN Group, it is appropriate to show Milling

PN Graph in Figure 5-11.

E nab le S ta r t Miller PN G roup
(Miller)

Mc(:r

M illing PN G raph
(Miller) MC

Figure 5-11 Enable Start Miller PN Group

Milling PN Graph is also used to emphasise the readability and reliability of PN<=>

PLC. The graph simply reads as follows:

86

unapier o

The signal Milling in Progress, to the Miller Controller, will be switched on if the

input signal Milling, from the Miller, is ‘On’. Milling in Progress will remain ‘On’

until Milling has switched off.

The Ladder Diagram translation of Milling PN Graph is shown below in Figure 5-

13.

< y
Milling Milling in

P ro g re s s

H h
Milling

H H
Milling in
P ro g re s s

Figure 5-13 Ladder Diagram Translation of ‘Milling PN Graph’

This representation may be considered to be unnecessary as a similar logic can be

achieved by the basic LD shown below in Figure 5-14.

h i--------------------------------- (y
M illing M illing In

P ro g re s s

Figure 5-14 A Ladder Diagram Equivalent to Figure 5-13

However, the formalism of the methodology dictates that the PN Graph in Figure 5-11

translates into the LD in Figure 5-13. Keeping to the same format for rungs makes the

LD more readable and gives confidence that the translation has been conducted

correctly.

5.3 PN<=>PLC Applied to Lathe Work Station

Similar to the Miller WS, Gray has allocated three instructions for the Lathe PLC,

‘Load Lathe’, ‘Start Lathe’ and ‘Unload Lathe’, as shown by Figure 2-5. ‘Load Lathe’

and ‘Unload Lathe’ are intended for the Gantry Robot, while ‘Start Lathe’ is for the

CNC Lathe instructing it to execute its CNC code. Figures 5-15 through 5-22,

87

unapter o

Appendix D, show that the control program for the Lathe WS is lengthy and complex,

therefore for safety and reliability reasons, the output signals from the Lathe

Controller were divided into the following:

‘Load Lathe’

1. ‘Enable Vice to Table’

2. ‘Enable Grip Workpiece’

3. ‘Enable Workpiece to Chuck’

4. ‘Enable Robot to Safe’

5. ‘Enable Vice to Pallet’

‘Start Lathe’

1. ‘Enable Start Lathe’

‘Unload Lathe’

1. ‘Enable Vice to Table’

2. ‘Enable Workpiece to Conveyor’

3. ‘Enable Workpiece to Vice’

4. ‘Enable Robot to Safe’

5. ‘Enable Vice to Pallet’

It can be seen that there are eleven operations in total. However, ‘Enable Vice to

Table’, ‘Enable Robot to Safe’ and ‘Enable Vice to Pallet’ occur during both ‘Load

Lathe’ and ‘Unload Lathe’, and therefore the overall control of the Lathe WS has

eight independent PN graphs. This also simplifies the overall design process and

promotes safety because the independent PN graphs can be reliably checked.

88

on a pier o

As mentioned above in section 5.1, PN oPLC can also be used to design PN Steps,

which are directly equivalent to Step Ladder Diagrams (section 2.3.1.5.1).

The approach used to design PN Steps is similar to that of PN Groups, with only two

simple adaptations, as follows:

1. Setting and resetting a Step Relay.

2. Simplification of the PN Step.

Figure 5-15 is duplicated below and is used to explain this.

E nable Vice to Table PN S tep
(Lathe)

LC

Figure 5-15 Enable Vice to Table PN Step

Comparing Enable Vice to Table PN Step, Figure 5-15, with Enable Vice to Table

PN Group shown in Figure 5-5 (Appendix B), it can be seen that the place Set Vice

to Table Step and its “switching-off transition”, t9, are the only additions to Figure

5-5.

As suggested by Pa, it is clear that the designer intends to switch on an internal ‘Step

relay’ on the very first rung of the LD. It can also be seen that the designer intends to

reset the Step when the signal Enable Vice to Table, from the Lathe Controller, has

been switched off.

89

onapier o

By having Set Vice to Table Step ‘On’ as one of the conditions for switching all

outputs on ensures that the outputs will only switch on by the conditions stated in this

PN graph, as done by Step LDs. However, similar to PN Groups, the labelling of the

PN graph as a PN Step eliminates multiple crossing arcs, and enhances the readability

of the program.

Note that it is not necessary to include the Step Relay as one of the switching off

conditions of all the outputs. This is because once the program is in a step, it will

remain in that particular step until it is reset, and therefore only the switching off

conditions stated in that same step will affect the outputs, as done by Step Ladders.

When translating PN Steps, care must be taken to include the Step Relay on every

switching on rung of the Step LD. The PN Step in Figure 5-15 was translated using

the PN<=>PLC rules and is shown below in Figure 5-15L.

90

Chapter 5

Vice to Table S tep Ladder
(Lathe)

E nable
V ice to
T able

J S e t Vice T _
I to T able J

S tep

H
S e t Vice
to T able

S tep

_ f Vice to T—
T able J
P u lse

H I— I/l— I H—I
Vice to V ice on Vice on
T ab le T ab le Palle t
P u lse

H F

Vice to
T able
P u lse

< h

OK to
P roceed

H/HH I
S e t Vice
to Table

S tep

H h"
Vice to
T able
E rror

H'l— l/HH'l
Vice to Vice
T able on
Error T able

i y-
Vice to
T able
Error

I h

H /l— I I— l / h —I I
Vice to Vice Extnd
T able on Vice
Error T able R am

H

S e t Vice
to T able

S tep

Vice to
T able
C om pl

H/H
E nable
Vice to
T able

i v yVice to
Table
Com pl

R e se t Vice -
to T able J-

S tep

-------------------------------[RET J-

Figure 5-15L Step Diagram Translation of Figure 5-15

Enable Vice to Table ‘On’ switches Set Vice to Table Step on, as shown on the first

rung. Enable Vice to Table ‘O ff resets Set Vice to Table Step, as shown on the last

rung. This setting and resetting of the Step Relay is the most commonly practised

representation in Step Ladder Programming.

Note that the switching off conditions for both Vice to Table Complete and Vice to

Table E rro r have also been included. These conditions are shown in Figures 5-27

and 5-28 in Appendix E.

The control program for the Lathe WS can also be developed using PN<=>PLC PN

Groups. PN Steps were used to demonstrate the versatility of PN<=>PLC, and are

included in Appendix D.

91

5.3.1 Terminology and Symbols (Revised)

The Terminology and Symbols table shown in Chapter 4 (section 4.1.2) has been

revised, due to the additional symbols and terminology used in this Chapter.

In order to make the PN graph readable, certain symbols have been adopted as

follows:

«—«-► is a "return arc” which shows that an input place will receive its token back

after the transition has fired. For example this applies to input signals over which the

PLC has no control, such as signals from sensors. However, this symbol can be

ignored once the following two points are appreciated:

1. Tokens are removed from an output place or an internal place only via the

“switching-off transition” of that place.

2. Input signals, such as those from sensors, will not lose their tokens as a result of

their output transitions firing.

Consider Figure 5-5 in Appendix B. Extend Vice Ram will lose its token as a result

of t6 firing. However, Vice on Table will not lose its token via t6, nor will it do so

via t7. During simulation the token will be manually removed from Vice on Table

only if the vice is no longer on the table.

►/ • are " switching-off arcs” which clearly show what is being switched off

and what is doing the switching off. Combined with design rule 2, the "switching-off

arcs" show exactly what the designer has in mind.

are duplicated places. Where a place is the input to several transitions, it

can be duplicated in order to reduce the number of arcs that cross. This simplifies the

vsiictpiei ^

overall PN graph and improves readability. It is, however, essential that a tally is kept

of the number of duplicate places (1/2, 2/2) so that they are not overlooked by the

designer and simulator.

VAI is a “dummy” or “drain place”, which is used to demonstrate that a token is

drained from a particular place as a result of its transition firing. This symbol clearly

shows the "switching-off transitions", and proves that the designer has considered

how each output and internal relay will be switched off.

p. pb
is a transition which has priority over any other transition, has priority over

Pa
any transition except for " U, and so on.

(T a b l* \
V Error J

is a shaded place and indicates that it occurs in and is switched off in another

PN graph.

PN Grouping is used to simplify the PN graph and make it more readable. When an

input signal is connected to every “switching-on” and “switching-off transition” it

transforms the PN graph to a PN Group. Therefore PN graph is entitled PN Group and

arcs from the input signal are not drawn to each transition.

PN Steps are used when designing Step Ladders. In a Step LD the Step Relay is

connected to all “switching-on transitions” to ensure that outputs are only switched on

and off by the conditions shown in that particular Step. Therefore to simplify the PN

93

unapier o

graph and make it more readable, it is entitled PN Step and arcs from the Step Relay

are not drawn to each “switching-on transition”.

5.4 Error Handling

The research carried out by Gray has produced a methodology which aims to produce

dependable software for a Distributed Control System. The FMC at the SOE forms

the basis of Gray's research but no consideration has been given by Gray to any errors

which are likely to occur within the cell. However Gray claims that the methodology

simplifies the modular growth of the control software, in an effort to build resilience

into the complete system.

As well as producing PN oPLC and unifying it with Gray’s methodology (Chapter 6)

the reported work also gives some consideration to the resilience of the overall

control system. The identification of possible errors within the system and the

handling of such errors forms a major part in the production of a resilient system.

The following possible errors, which may occur during the operation of the cell, have

been identified and categorised as below:

Work Handling Errors

• Failure of sensors, solenoids, valves, etc.

• Manipulating errors (positioning, speed, etc.)

• Material errors (size, shape, alignment, position, etc.)

• Robot failure

• Power failure (air, electricity)

94

Chapter 5

Machine Tool Errors

• Catastrophic failure

• Gradual failure (wear)

• Work handling (fixturing) failure

• Tool failure

• CNC program errors

Control Errors (Hardware and Software)

• Correctness, reliability

• Communication errors (timing of messages, message corruption, “deadlock”)

• Initial data errors

• Logic of control

• Speed of software

• Failure of hardware (PLCs, Transputers, trams, digital I/O)

• Power failure

Human Errors

• Misuse, inappropriate use

• Mistakes (incorrect choice of material, tools etc.)

Having identified the possible errors which are likely to occur during the control of

the Cell, it is important to discuss the various methods by which these errors are

handled.

95

onapier o

Ideally the elimination of the chance of errors occurring is most favourable. In reality

this is not always possible due to the unpredictability of some errors. For instance, in

the case of gradual failure of machine tools, efforts such as constant preventative

maintenance and statistical process control will help eliminate errors. However a

work handling device, such as an Infra-Red sensor, could fail suddenly and therefore

needs to be accounted for by the PLC program to avoid catastrophic consequences.

It is also essential to establish a good understanding of the terms successful and error

during the control of a resilient FMC. This is best explained with an example. The

Cell Controller instructs the Lathe Controller to load the lathe which in turn instructs

the Lathe PLC. A fault with the material results in the diameter of the bar, for

instance, in the vice being smaller than specified. Although failing to grip the work

piece in reality, the Gantry robot will carry out the operations “Grip Workpiece” and

“Workpiece to Chuck” successfully, hence transporting “fresh air” which in turn is

machined by the Lathe. Such control may be dependable, and even safe for that

matter, it is not however in any way resilient.

Other considerations such as deciding a safe position for the Gantry robot is also

important. It was decided not to leave the arm of the robot directly above the Lathe

after transporting a work piece to the chuck. Tests showed that in the event of air

supply failure, the robot arm will only remain in the “Up” position for a limited

amount of time before rapidly falling. This would result in the arm breaking the glass

door at the top of the Lathe and colliding with the rotating chuck. Therefore an

additional PN Step was designed in the programming of the Gantry robot, taking the

arm of the robot to a much safer position, above the conveyor.

96

Chapter 5

However not all errors can be dealt with in Level 1. Communication errors such as

message corruption and “deadlock” , and even failure of hardware such as PLCs and

Transputers are classed as control errors and should be accounted for by the software

in the top levels of the control. Human rectification, or rectification by the operator is

also an important part of the error handling process and needs to be carefully dealt

with by the Cell Controller at the decision making stage.

5.4.1 Reliability and Safety Achieved by PN<=>PLC

As mentioned above, the correctness and reliability of control software plays a big roll

in the overall resilience of DCSs such as in an FMC. To achieve this, the correct

understanding of the control problem is vital and the use of the appropriate tools and

techniques essential. This very important point is appreciated when considering

Gray’s PN-Occam methodology. Although successful at producing dependable

Occam based control programs for the higher level Transputers, Gray’s methodology

is not applicable to the lower level PLCs (Chapter 3). Furthermore, the reported

research has shown that no consideration has been given to the reliable

communications between the work station controllers and their relevant work

handling (WH) equipment.

Achieving readability and simplicity of design is a major step towards producing

resilient control programs. Referring back to Figure 2-5, and as mentioned in sections

5.1-5.3, signals such as ‘Load Robot’, ‘Load Miller’ and ‘Load Lathe’ from the Level

2 Transputers were divided into various ‘group signals’ relating to the unique

operations involved in loading the machine tools and the WH devices. Subsequently,

these ‘group signals’ were used to develop the PN Groups and PN Steps which, when

Vsnapier o

executed in the correct order, will perform the overall loading operations, as intended

by Figure 2-5. This approach, together with PN oPLC, simplifies the design process,

and produces readable programs. It allows a lengthy and complex program to be

divided into smaller programs which are simple to design and subsequently read.

Moreover, it promotes reliability and safety . The smaller PN graphs can be reliably

checked, through simulation, prior to execution and can be reliably upgraded to

achieve flexibility. This is also safer as errors can be reported and traced with greater

ease and speed. Consider the instruction, from the Lathe Controller, ‘Load Lathe’.

This is a lengthy and complex process during which five individual operations are

involved, as shown in Appendix D by Figures 5-15 through 5-19. The design of these

individual PN Steps is far simpler, and their readability greater, than that of an overall

‘Load Lathe’ PN graph. They can be more reliably checked and updated than an

overall ‘Load Lathe’ PN graph. Furthermore, errors which occur during the control of

the WH devices can be accounted for during each independent operation, and hence

traced back quickly and with great ease.

As mentioned in section 5.1.1, PN<=>PLC is also capable of performing WH error

checks, such as sensor failure and manipulating errors. In designing the control

programs for the three work stations, certain critical checks were carried out to ensure

safety, as shown in Figures 5-5 through 5-22. For example in Figure 5-5, if the vice is

jammed part way between the table and the pallet, it is considered unsafe to proceed

with the operation Enable Vice to Table. In such an instance, an internal relay Vice

to Table Error is switched on thus preventing the program from proceeding further.

However, as suggested by the shading (section 5.3.1), such relays are dealt with in a

separate PN for the purpose of readability. Therefore Error Status PN Graphs were

98

Chapter 5

generated for each work station (Appendix E), in which it is shown how the errors are

reported and switched off, as shown below in Figure 5-24.

P u m a S ta tio n E rro r S ta tu s
PN G raph

Vic* to
Tabl*

Figure 5-24 Puma Station Error Status PN Graph

Figure 5-24 represents the Error Status PN Graph for the Puma WS. Initial safety

checks are performed within each PN Group, Appendix B, and are included in Figure

5-24, as indicated by the shaded places. An error signal ‘Puma Statn Error’ is

outputted to the Puma Controller in the case of any of the internal error relays

switching on, hence the five “switching-on transitions” indicated by t l, t2, t3, t4, and

t5 shown in Figure 5-24. Note that non-determinism is not present in this

representation as only one of the five “switching-on transitions” can be enabled at any

one time. If an error occurs during any of the five PN Groups and ‘Puma Statn Error’

is outputted, the Puma Controller (Figure 6-1, inside back cover) then switches off the

99

o n a p ie r o

‘group signal’ to that particular PN Group as part of its error handling process, which

in turn switches off the internal error relay of that PN Group (discussed in more detail

in Chapter 6). For example, if Vice to Table Error is ‘On’, ‘Puma Statn Error’ is

switched on via transition t l (Figure 5-24). On receiving this signal, the Puma

Controller then switches off ‘Enable Vice to Table’ which in turn switches off Vice

to Table Error (t7, Figure 5-24). To switch off ‘Puma Statn Error’ the Puma

Controller then outputs the signal ‘Puma Error Acknow’, acknowledging that the error

signal has been received, as shown in Figure 5-24. The Error Status PN graph ensures

that critical errors during the control of the Puma WS are reliably reported to the

Puma Controller and subsequently dealt with. These errors can be efficiently traced

back to the relevant PN Groups and hence corrected quickly. It also promotes safety

as PN Groups cease to continue with their control logic until the errors are rectified.

The Error Status PN Graphs designed for the Miller and Lathe WSs are shown in the

Appendix E.

As well as Error Status PN Graphs, Complete Status PN Graphs have also been

designed. Similar to internal error relays, internal complete relays are also

incorporated into PN<=>PLC. Continuing with the Puma WS, an internal complete

relay is switched on at the end of each PN Group, provided they successfully carry

out their control function. For example, if Vice to Table Compl is ‘On’, ‘Puma Statn

Compl’ is switched on and is outputted to the Puma Controller, as shown below in

Figure 5-23. This signal is then used by the Puma Controller to switch off the ‘group

signal’ (discussed in more detail in Chapter 6), which in turn switches off Vice to

Table Compl (t7, Figure 5-23). ‘Puma Statn Compl’ is switched off as a result of

receiving the output signal ‘Puma Compl Acknow’, from the Puma Controller.

100

P um a S ta tio n C om plete S ta tu s
PN G raph

P C

-M StatnP C

kAchnow,

Figure 5-23 Puma Station Complete Status PN Graph

The Complete Status PN Graphs designed for the Miller and Lathe Work Stations are

shown in the Appendix E.

5.4.1.1 Reporting Errors

Throughout the design of the PLC control programs, an initial safety check was

carried out at the beginning of every PN Group or Step, as shown in Figures 5-5

through 5-22 (Appendices B, C and D). For example in Figure 5-5, if initially the

vice is on the pallet and not on the table, it is OK to proceed with the program. If

these OK conditions are not satisfied, OK to Proceed will not be switched on and

hence Vice to Table Error will switch on. This approach is certainly safe. However,

it is not capable of reporting the exact nature of the error. As mentioned in section

u n a p t e r o

5.1.1, PN<=>PLC can also be used to carry out multiple error checks and report their

exact nature. Consider Figure 5-3, duplicated below for convenience. This

representation is capable of reporting an error caused by neither sensor being ‘On’, or

both being ‘On’.

Enable Vice to Table PN G roup
(Error Check. Pum a)

P C (

Figure 5-3 PN Group containing initial error checks

It is essential to assess the extent in which errors are dealt with when aiming for

resilient DCSs. This varies from one system to another, depending on the

consequences of the errors occurring. As it stands, the PLC programs for the FMC

report errors reliably, but the operator must then look at the OK conditions and try and

work out which one caused the error. This is relatively simpler to produce at the

design stage, at the expense of taking longer to fix the problem when it happens.

Using the other method may need more effort at the design stage (for example Figure

5-16), but can pin point the exact error, perhaps a faulty sensor, or incorrectly

positioned pallet, and thus allow problems to be addressed more efficiently.

However, the physical constraints on the number of output contacts on the PLC

prescribed that only one error signal could be outputted to the controllers. Gray

claims that the modularity of his methodology allows an Error Handler to be added,

102

unapxer o

concurrently with the current controllers, with relative ease, but does not give an

example. This is certainly an area which would be worth investigating further.

103

Chapter 6

Unification of the Methodologies

Contents

6. Unification of the Methodologies..105

6.1 The Graphical and Logical Unification of the Methodologies................... 105

6.2 The Unification of the Methodologies for Simulation.................................. 109

6.3 The Unification of the Methodologies for Translation................................. I l l

6.4 Fault Avoidance and Elimination Achieved by the Unified Methodology 112

6.5 Discussion...113

u u a p i c i w

6. Unification of the Methodologies

This chapter describes how Gray’s Petri Net - Occam methodology and the reported

PN<=>PLC methodology can be unified to produce an overall methodology for

developing resilient DCSs.

Gray’s Petri Net - Occam based methodology for developing dependable DCSs was

studied and his claims of expandability were investigated. Gray’s methodology was

found to be incomplete, because it does not consider the lower levels of DCSs

(Chapter 3). The readability of his methodology motivated the research into the

applicability of his Petri Net approach to PLC programming, which resulted in a PN

<=>PLC methodology (Chapters 4 & 5) which is also readable and allows reliable PLC

programs to be produced, directly from the specifications. The readability and

modularity of both methodologies results in an overall unified methodology for

developing a complete DCS and is discussed in the following sections.

6.1 The Graphical and Logical Unification of the Methodologies

Using PN<=>PLC the overall PLC programs for the three low level Work Stations

were produced (Chapter 5). In order to link the PN<=>PLC graphs to Gray’s high level

PN graph (Figure 2-5, inside back cover), some modifications had to be made to the

communication signals from the Level 2 Controllers. This was because Gray had not

considered in detail all the communications that would be required with the PLCs for

reliable control. The Puma Controller is used (Figure 6-1, inside back cover) as an

example to demonstrate that Gray’s PN graph can be updated, to accommodate the

communications required by PN<=>PLC, i.e. group signalling and reporting error and

complete messages. The Robot Controller, part of Figure 2-5, was revised using

105

Gray’s methodology, as shown in Figure 6-1. Note that the terminology used by Gray

was also changed for the purpose of readability and clarity. For example the title of

the controller was changed to Puma Controller, because it controls both the Puma

Robot and the Puma Work Station (WS) and includes the conveyor (section 5.1.3).

Also for readability, the word Robot inside places ‘Load Robot’, ‘Unload Robot’, .

‘Robot Loaded’ and ‘Robot Unloaded’ was changed to the word Part (section 5.1).

The PLC programs for the Puma WS, designed using PN<=>PLC, are also included in

Figure 6-1 to show the readability and modularity of the unified methodology. The

individual parts of the PLC program are represented concurrently with the Puma

Controller, thus producing a readable software design for the overall system.

The graphical and logical unification of the two methodologies is reliable and

efficient. Outputs from the level 2 controller (Puma Controller) are the inputs to the

level 1 controller (PLC), and the outputs from the level 1 controller are the inputs to

the level 2 controller. Also as a result of the readability of the methodologies, the

overall design is expanded efficiently, without the need to re-design the whole control

system. For example, in Figure 6-1 the first input to the Puma Controller ‘Load Part’

is from the Cell Controller and therefore remains unchanged. The output signal ‘Part

Loaded’ is to the Status Handler and is also unchanged. However, the control logic in

between these two signals was upgraded by PN<=>PLC, and therefore only this part of

the control was updated.

Figure 6-1 shows that the first output from the Puma Controller, ‘Load Robot’(Figure

2-5, meaning ‘Load Part’), has been replaced with the signals ‘Enable Vice to Table’,

‘Load Vice’, ‘Enable Close Vice’, ‘Robot to Safe’ and ‘Enable Vice to Pallet’

respectively. These are outputs from the Puma Controller to the Work Handling PLC

106

V s f i c t | J i e r o

and the Puma robot, and their successive execution corresponds to ‘Load Part’. The

‘group signals’ (section 5.1) to the PLC are clearly labelled with meaningful names

inside the places, i.e. ‘Enable Vice to Table’, and the communication is also clearly

identified by the letters PLC outside the places. Signals to and from the Puma robot

are represented by double circles, for example ‘Load Vice’. The double circle is part

of Gray’s methodology which means that ‘Load Vice’ is an executable program,

written in a language specific to the Puma robot. Communications with the robot are

also shown, by the letter R (for robot).

For reasons mentioned in section 5.1.3, the indexing of the conveyor is also included

in Figure 6-1. ‘Start Conveyor Index’ becomes the second input signal from the Cell

Controller to the Puma Controller, and its control logic is updated to accommodate the

communications required by PN<=>PLC, as indicated by transitions tIO to tl2. The

PN Group ‘Enable Conveyor Index’ is also shown in Figure 6-1.

The third input from the Cell Controller to the Puma Controller is ‘Unload Part’. Its

control logic is updated for the same reasons and in exactly the same fashion as ‘Load

Part’, and is shown in Figure 6-1 by transitions tl4 to t20.

Transitions tl3 and t21 are unaffected by PN<=>PLC and thus their representation is

unchanged.

The two PN graphs entitled Puma WS Complete Status PN Graph and Puma WS

Error Status PN Graph were designed using PN<=>PLC for safety and reliability

purposes (section 5.4.1) and are shown in Figure 6-1. The task of Puma WS

Complete Status PN Graph is to inform the Puma Controller that it is safe to

proceed with its control logic, whereas the task of Puma WS Error Status PN

V / l l d p i C I u

Graph is to terminate any ongoing instructions to the work handling and to report the

errors to the Status Handler. These two PN graphs are also incorporated into the

Puma Controller PN Graph as follows:

For example, when the Puma Controller receives the signal ‘Load Part’ from the Cell

Controller, Enable Vice to Table switches on via transition tl (Figure 6-1, Puma

Controller PN Graph), and is outputted to Enable Vice to Table PN Group. If

Enable Vice to Table PN Group is successfully executed, the internal relay Vice to

Table Compl 1/2 switches on via transition t l (Figure 6-1, Enable Vice to Table PN

Group). As a result, Puma Statn Compl switches on via transition t l (Figure 6-1,

Puma WS Complete Status PN Graph) and is outputted to the Puma Controller. This

is shown as the second input place to the Puma Controller. Enable Vice to Table

switches off and Puma Compl Acknow switches on via transition t2 (Puma

Controller PN Graph). Note that Puma Statn Compl is connected to t2 with a return

arc. This is because it is a signal from the PLC and is therefore switched off in Puma

Station Complete PN Graph. ‘Puma Compl Acknow’ is outputted to Puma WS

Complete Status PN Graph, and is shown as its only input place. Vice to Table

Compl 2/2 switches off via transition t l and Puma Statn Compl switches off via

transition t6 (Figure 6-1, Puma WS Complete Status PN Graph). Puma Compl

Acknow switches off via transition t3 (in Puma Controller PN Graph), and the next

instruction signal, ‘Load Vice’ to the robot, is outputted. When the Puma Controller

receives the input signal ‘Vice Loaded’, from the robot, the second ‘group signal’ to

the PLC, ‘Enable Close Vice’ is outputted. This procedure can be followed through

until transition t9 fires and the signal ‘Part Loaded’ is outputted to the Status Handler

(from the Puma Controller PN Graph, Figure 6-1).

108

As well as Puma WS Complete Status PN Graph, Puma WS Error Status PN

Graph is also incorporated into Puma Controller PN Graph, as shown by

transitions t22 to t31. As mentioned in section 5.4.1, if an error occurs during the

execution of any of the PN Groups, the signal ‘Puma Statn Error’ is outputted to the

Puma Controller. For example, if an error occurs during Enable Vice to Table PN

Group, Vice to Table Error 1/3 switches on via transition t3 and the Group proceeds

no further. As a result Puma Statn Error switches on via transition t l and is

outputted to the Puma Controller (from the Puma WS Error Status PN Graph, Figure

6-1). This is shown as the input place Puma Station Error to the Puma Controller.

Consequently Puma Error Acknow switches on and Enable Vice to Table switches

off via transition t22. ‘Puma Error Acknow’ is outputted to Puma WS Error Status

PN Graph which then switches off Puma Statn Error via transition t6. In Puma

Controller PN Graph, Puma Error Acknow is switched off and Error Vice to

Table, which is an output to the Status Handler, is switched on via transition t23.

This ensures that the error is reported, the group signal is switched off, and subsequent

‘group signals’ are not outputted until the error is rectified and the PN Group is

successfully executed. Errors generated from the other PN Groups are represented in

the same way as shown by transitions t24 to t31.

6.2 The Unification of the Methodologies for Simulation

The graphical and logical unification of the two methodologies allows the unified

simulation of the overall control system. Gray’s simulation rules for the higher level

PN graphs are different from the simulation rules of PN<=>PLC. This is because the

control algorithm is executed differently. When simulating the Petri Net Occam

graphs of the controllers transitions are considered individually and sequentially down
109

unapier o

the page, in the order they are represented in the graph. On the other hand, the

simulation rules of PN<=>PLC ensure that the simulation process correctly models the

scan cycles of a PLC. Therefore all transitions are considered in a cyclic fashion until

a steady state is achieved (section 4.3, also Appendix A). However, the clarity of the

design and the readability of the unified graph enables the simulation of the overall

system. This is because the methodology employs low level Petri Nets in which

information is not hidden or folded away, unlike high level PNs (section 2.2.2.1). All

places have meaningful names and not coded labels. In Figure 6-1, the first output

from the Puma Controller, Enable Vice to Table is an actual message outputted via

an Occam channel and not some coded label, i.e. it appears as Enable Vice to Table in

the Occam code. Enable Vice to Table 1/3 shown as an input place to Enable Vice

to Table PN Group is a physical input, a 24V signal, to the PLC and not a coded

label, i.e. it will appear as Enable Vice to Table on the Ladder Diagram. Therefore

when transition t l fires (Figure 6-1, Puma Controller PN Graph) and the place Enable

Vice to Table receives a token, the graph indicates that a 24V signal is outputted to

the PLC and thus a token is also placed inside the place Enable Vice to Table 1/3

(Figure 6-1, Enable Vice to Table PN Group). Note that all duplicate places labelled

Enable Vice to Table receive a token each (Appendix A, Terminology and Symbols).

The numbering inside the duplicate places, the distinct input and output boundaries of

the PNs, the marking of the communications and labels outside places (PLC, R, SH,

etc.), play a major role in the reliable simulation of the overall control system.

Enable Vice to Table PN Graph is simulated next, using the PN<=>PLC simulation

rules. If this is completed, the signal ‘Puma Statn Compl’ is outputted to the Puma

Controller and transition t2 is simulated using Gray’s simulation rules. If on the other

110

i r n a p i e r o

hand an error occurs during Enable Vice to Table PN Graph, then the signal ‘Puma

Statn Error’ is outputted to the Puma Controller, and therefore transition t22 is

simulated using Gray’s rules.

6.3 The Unification of the Methodologies for Translation

The simulation of the unified methodology ensures that the overall Distributed

Control System is correct. Having simulated the overall design, dependable algorithm

is produced directly from the PN graph. An equivalent Ladder Diagram has been

produced from the Puma WS PLC Petri Net graphs (Figure 6-1) by following the PN

<=>PLC translation rules, and are shown in Appendix F. An equivalent Occam code

can not be produced from the Puma Controller Petri Net Graph, because Gray only

gives translation rules for input/output places that represent communications between

Occam processes. He does not give translation rules for communications with PLCs.

Transputers communicate via links by passing synchronous data via channels. The

PLCs used in this case receive and output electrical signals, 24V or OV, and therefore

direct communication can not be achieved between them. The use of digital I/O

interface cards between the Transputers and the PLCs overcomes this problem.

Moreover, it allows “deadlock” avoidance to be maintained throughout the unified

methodology by enabling a client-server relationship between the PLCs and the

Transputers, similar to the relationship between the Cell Controller and the Status

Handler (section 2.2.4).

Each Transputer and PLC is interfaced using a digital I/O card which is connected to

the Transputer by a link. To communicate with a PLC, an Occam process specifies a

channel and writes a byte to the digital I/O card which interprets it as an instruction to

111

onapier o

switch on 24V to one or more of its outputs. An Occam process reads a byte from the

digital I/O card on another specified channel. This byte informs the Occam process

which, if any, of the PLC outputs is on.

Gray’s rules need only a slight addition for his PN outputs to the PN<=>PLC graphs to

be reliably translated into Occam. The channel name can be constructed similarly to

that of a channel between two Occam processes. For example, the output channel

from the Puma Controller to the PLC could be specified by CHAN OF BYTE pc2plc.

The constant name for any output would still be the name inside the place. Taking the

first output place in Figure 6-1 (Puma Controller PN Graph), the constant name would

be specified by:

VAL BYTE enable.vice.to.table IS value :

where value is determined by the configuration of the digital I/O card terminals.

6.4 Fault Avoidance and Elimination Achieved by the Unified

Methodology

In addition to the clarity and readability, the design rules of the unified methodology

ensure that faults are avoided at the design stage, for the following reasons:

The “output-work-backwards” technique employed by the methodology plays an

important role in avoiding faults at the design stage. All the outputs from the

controllers are taken directly from the specification, thus ensuring that the design

meets the specification. Working backwards, both the logic and the inputs required to

achieve each of the specified outputs is developed. This produces a more concise

design and control algorithm for a DCS than other approaches, for example where a

112

unapier o

designer may consider all possible states of the system and then determine the outputs

given those states (section 4.4).

The “output-work-backwards” technique also leads to the unidirectional flow of

information between the various controllers. Although this flow is broken between

the Cell Controller and the Status Handler, “deadlock” is avoided by having a client-

server relationship between the Cell Controller and the Status Handler (section 2.2.4).

There is also no chance of “deadlock” occurring between the Level 2 controllers and

the Level 1 PLCs because the communications are made via a digital I/O card which

again enables a client-server relationship between the Transputers and the PLCs

(section 6.3).

The methodology uses Petri Nets as the design tool. This allows a DCS to be

simulated at the design stage and thus eliminates design errors. By selecting realistic

event scenarios the overall design can be simulated against the specification of the

DCS. If the simulation results show that the design correctly achieves the

specification of the system, the control software into which it is translated will be

correct. This is because the methodology was developed on design and translation

rules which ensure that the PN design exactly translates into the control algorithm, i.e.

the PN graph and the final code are equivalent. The result of this equivalence leads to

the elimination of errors at the design stage and ensures that no errors are introduced

into the DCS between the design stage and the implementation of the final code.

6.5 Discussion

Gray’s claims of modularity and expandability of the Petri Net-Occam methodology

have been substantiated, given the above changes to the design of the Level 2

113

v iia p ic i w

controller (Figure 6-1) and the slight addition to his translation rules (section 6.3).

The introduction of ‘group signals’ and PN Groups by PN<=>PLC promotes ease of

Level 1 programming, readability and hence reliability. Gray’s PN design has been

reliably updated to accommodate PN<=>PLC, and therefore an overall unified

methodology which is complete and dependable has been produced. The graphical

readability of the unified methodology, its powerful simulation capabilities and its

direct and exact equivalence to the control algorithm enables resilient DCSs to be

developed.

However, the unified methodology is only directly applicable to DCSs which consist

of Transputers and Occam, and PLCs and Ladder Diagrams. This is because the rules

of the methodology were developed based on the specific hardware and software

being used.

To develop the Petri Net-Occam methodology specific characteristics had to be

recognised, e.g.:

• how Transputers communicate with one another

• the Occam language

• how Occam processes communicate

To develop PN<=>PLC specific characteristics had to be recognised, e.g.:

• how PLCs communicate

• Ladder Logic programming

• how PLCs execute their control programs

114

V s d c t p i e i o

Similarly, to unify the two methodologies, it was essential to investigate the

communication protocol between the PLCs and the Transputers.

Therefore it can be concluded that a generic methodology for developing DCSs

consisting of any type of controller and language can not be achieved. To design and

implement a dependable Distributed Control System consisting of other hardware and

software, it is essential to follow the above mentioned approach in order to develop a

methodology specifically for that DCS.

115

Chapter 7

Conclusions and Recommendations for Future Work

Contents

7. Conclusions and Recommendations for Future Work..................................... 117

7.1 Conclusions.. 117

7.2 Recommendations for Future Work... 120

v / n a) J i c i f

7. Conclusions and Recommendations for Future Work

Chapters 1, 2 and 3 introduce Distributed Control Systems and discuss the advantages

and disadvantages of current techniques used to develop DCSs. Chapter 4 reports a

methodology, called PN<=>PLC, which was developed as a major part of this research

project. The methodology provides a step by step guide for developing DCSs.

Chapter 5 presents the complete control programs for a Flexible Manufacturing Cell,

which were designed and tested using PN<=>PLC. Chapter 6 demonstrates how PN<=>

PLC can be unified with a methodology for developing Transputer based DCSs,

resulting in an overall methodology for a complete FMC. This chapter is divided into

two sections, Conclusions and Recommendations for Future Work and begins by

summarising the drawbacks of previous DCS development processes and discusses

how the unified methodology overcomes these drawbacks. It also highlights the

limitations of the methodology and recommends future work to further enhance the

resilience of the unified methodology.

7.1 Conclusions

A methodology for developing complete and dependable Distributed Control Systems

does not exist. Of the many previous attempts made to develop design and modelling

tools for DCSs, none offer a tool for designing a complete system for one or more of

the following reasons:

• The tools use complex formal techniques which militate against their use by

industry, because they are difficult to learn and use. Furthermore, the complexity

of the representation obscures the specification of the system and renders it

incomprehensible to the customer.

117

unapter /

• The tools address only one or two steps of the control system development cycle,

i.e. the specification, or the design, or the simulation.

• The tools are only applicable to certain aspects of the DCS, i.e. the higher level

control or the lower level control.

• The tools are unusable, especially by industry, because they pay little attention to

readability.

• The tools do not model the precise operation of the control algorithm, as

implemented in the hardware.

• The tools do not guide the designer towards designing an error free control system

prior to implementation or indeed modelling.

• The tools do not include formal rules for translating the design into an equivalent

control software.

Gray’s Petri Net - Occam methodology addresses all but one of the above mentioned

deficiencies. His methodology is formal, but yet readable. It also allows the accurate

simulation of the code, and the precise translation of the design into software.

However, it is not for a complete DCS but only for one containing Transputers.

A major element of DCSs is the PLC. A methodology, named PN oPLC, has been

developed by the author, which allows PLC control programs to be developed in a

formal, but readable way, directly from the specification of the system. PN<=>PLC

was designed to be easy to understand, and used by those in industry who are not

necessarily mathematicians or computer scientists. It uses the same tool, Petri Nets,

for both designing and simulating the control system, and thus eliminates the need for

a translation process between the design stage and the simulation stage. Dependable

118

unapter (

PLC Ladder Diagrams can be designed, simulated and encoded using PNoPLC. The

design rules lead the designer towards a “right-first-time” solution. The simulation

rules ensure that the design models the code exactly, and provides fault elimination

and fault avoidance prior to implementation. The translation rules ensure a one-to-

one equivalence between the PN<=>PLC graph and the Ladder Diagram . Therefore if

the simulation proves the design to be correct, the final control software will be

correct.

Furthermore, PN<=>PLC can be unified with Gray’s Petri Net - Occam methodology to

produce a complete development tool for Distributed Control Systems. However, this

unified methodology is only directly applicable to DCSs which consist of Transputers

and Occam, and PLCs and Ladder Diagrams. This is because the rules of the

methodology were developed based on the specific hardware and software being used.

For example, simulation of the design can only be conducted reliably if the design is

simulated as the control software is executed on the specific devices. Designs can

only be developed reliably if the system constituents are known in detail. Generic

designs model the specification of DCSs and not the control algorithm.

Although the specific objectives of the research programme (section 2.5) have been

met, the methodology has certain limitations. Currently the DCS designs are

simulated on paper hence making the simulation process laborious and slow and

increasing the risk of user error. As a result of this, only a small number of possible

simulation scenarios can be considered for a DCS, leaving the user with the critical

task of determining the most important scenarios. The methodology does not give

guidance in choosing simulation scenarios. However, investigation into this area was

119

UlldpiCI I

not within the scope of this work and would require further research to establish a

method of simulation which ensures that the designs can be robustly verified.

One other limitation of the methodology is the lack of documentation. In an industrial

application of the methodology, more documentation would be required than is

currently generated by the methodology. For example, one important part of the

documentation would be to specify the types of equipment used and their specific

operational characteristics. Such detail as whether a proximity switch is of type

‘PNP’ or ‘NPN’ must be documented for maintenance or modifications to the system.

There is still valuable work which could be conducted to assist developers of DCSs,

and is discussed in section 7.2.

7.2 Recommendations for Future Work

To date, the steps in the methodology have been performed using a variety of drafting

packages and pen and paper. For example the Petri Net graphs are drawn in Visio, the

translation is done manually, and the code written using Occam and Medoc. The

simulation process is also performed manually, on paper, and is slow.

Computerisation would speed up the simulation process significantly, enabling more

scenarios to be considered, thus improving the reliability of the overall design.

Continual broadening of the simulation and translation rules of the unified

methodology will have to occur whenever additional hardware, other than Transputers

and PLCs, and languages, other than Occam and Ladder Diagrams, are encountered in

a DCS.

The unified methodology addresses the issues of fault avoidance and fault elimination

effectively by removing them at the design stage, using design and simulation

120

i r i i a p i e r i

guidelines. However in an environment such as a Flexible Manufacturing Cell the

reliability of the constituent elements cannot be guaranteed. This does not imply that

the achievement of resilience is an impossible task. A reliable system failing

catastrophically is less resilient than a relatively unreliable one failing safely.

Therefore the handling of such possible errors efficiently is very important.

The readability, modularity and expandability of the unified methodology enables the

inclusion of one or more error handling elements in parallel with the existing

controllers, without the complete alteration of the original design and code. The task

of an Error Handler could be, for example, the constant monitoring of the errors

occurring within the Cell. However, similar to the Status Handler, there would still be

the potential for “deadlock” between the Cell Controller and the Error Handler.

Several non-trivial factors would need to be invesitgated to incorporate an Error

Handler, such as the frequency at which the Cell Controller demands updates from the

Status and Error Handlers, the configuration of the Error and Status processes, the

communication between them and the error handling strategy are all areas in need of

further research.

PN<=>PLC can be used to pin point errors during the control of the low level work

handling equipment (Chapter 5). The unification of PN<=>PLC with Petri Net -

Occam methodology enables the PLCs to notify the related Controllers, which in turn

send the data to the Error Handler, which in turn notifies the Cell Controller. Errors

could then be differentiated by the Cell Controller, labelled (source and type errors)

and reported to the operator (PC screen), who could in turn track and rectify them.

The various possible configurations of processors and processes need also be

considered to determine the best layout for the resilient control of the FMC. For

121

u u a p i c i f

example, similar to the Status Handler, the Error Handler could be included as a

process within the Cell Controller, or as a process within the Status Handler whereby

the Status Handler requests error updates from it and in turn reports back to the Cell

Controller, or even as a separate processor reporting back to its own station (PC) and

with its own decision making process.

Further work is also needed in the area of the decision making process. For example,

in the event of an error on behalf of the Gantry robot during the loading of the Lathe,

and if the Miller is being loaded at the same time, is it safe for the Cell Controller to

instruct the operator to attend to the Gantry or does it need to instruct the Miller

Controller to stop loading the Miller first, or even temporarily ignore the error until

the Miller is Loaded.

The work presented in this thesis contributes to knowledge in the field of DCS

development, identifying a methodology for designing, simulating and coding

Transputer and PLC based DCSs. However, it remains to be proved whether the

unified methodology is of practical use to those involved in developing DCSs in

industry. The claims of readability, fault avoidance and expandability can only be

fully tested in real-life industrial environments.

122

References

Aguiar, M. W. C. and Weston R. H., 1993, CIM-OSA and Stochastic Time Petri Nets

for Behavioural Modelling and Model Handling in CIM Systems Design and

Building, Procs. of Inst. Mech. Engineers, vol. 207, pp. 147-158.

Ariffin, S., Weston R. H. and Harrison, R., 1995, Modular Petri Net Approach to the

Design of Distributed Machine Control Systems, Procs. of the 31st International

Matador Conf., p 621.

Ayers, R. V., 1988, Future Trends in Factory Automation, Manufacturing Review,

vol. 1, no. 2, pp. 93-103.

Badry, A. B. and Henry, R. M., 1992, An Approach in Developing Sequential Control

System Using Petri Net, Procs. of International Conf. on Manufacturing

Automation, pp. 46-51.

Barkaoui, K. and Ben-Abdallah, I., 1993, Modelling and Performance Evaluation of

Tool Sharing Management in FMS Using Stochastic Petri Nets, Procs. of the

IEEE International Conf. on Systems, Man and Cybernetics, vol. 1, pp. 282-88.

Bass, J. M., Browne, A. R., Hajji, M. S., Marriott, D. G., Croll, P. R. and Fleming, P.

J., 1994, Automating the Development of Distributed Control Software, IEEE

Parallel & Distributed Technology: Systems & Applications, vol. 2 ISS: 4 pp. 9-

19.

Bloomfield, R. E. and Froome, P. K. D., 1991, Formal Methods in the Production and

Assessment of Safety Critical Software, Reliability Engineering and System

Safety, vol. 32, pp. 51-66.

123

rteierences

Boehm, W. B., May 1988, A Spiral Model of Software Development and

Enhancement, Computer, vol. 21, no. 5, pp. 61-72.

Borusan, A., 1993, Coloured Petri Net Based Modelling of FMS, Procs. of the IEEE

International Conf. on Systems, Man and Cybernetics, vol. 1, pp. 54-59.

Chao, D. Y.,Chen, T. H. and Wang, D. T., Oct. 1992, X Window Implementation of

Petri Net Based Animation for FMS, Procs. of IEEE International Conf. on

System, Man and Cybernetics, vol. 2, pp. 1651-6.

Clarke, S., Faulkner, P., Hedley, D., Maisey, D. and Pegler, S., 1995, A Code of

Practice for the Development of Safe PLC Software, Procs. of the Safety-critical

Systems Symposium, Brighton 1995, Springer-Verlag, pp. 207-22.

Cotter, S. M. and Woodward, A. T., 1986, Designing Better Programs for Controllers,

Control and Instrumentation, vol. 18, pp. 75-83.

Courvoisier, M., Valette, R., Bigou, J. M. and Esteban, P., 1983, A Programmable

Logic Controller Based on a High Level Specification Tool, Procs. of IECON

Conf. on Industrial Electronics, pp. 174-179.

Das, P. K. and Fay Freund, E., 1983, Fast Non-linear Control With Arbitrary Pole

Placement for Individual Robots and Manipulators, International Journal of

Robotics Research, vol. 1, no. 1, pp. 65-78.

David, R. and Alla, H., 1992, Petri Nets & Grafcet, Prentice Hall International (UK)

Ltd..

De Gaspari, J., March 1992, High-Speed, Multi-Tasking Ability Claimed for New

‘Transputer’ Controls, Plastics Technology, pp. 13-15.

124

rveiereiiues*

Draper, C. M. and Holding, D. J., 1989, The Specification and Fast Prototyping of a

Distributed Real-Time Computer Control System for a Modular Independently

Driven High-Speed Machine, Procs. of International Conf. on Software

Engineering for Real Time Systems, no. 309, pp. 199-203.

Duan, N. and Kumara, R. T., Feb. 1993, A Distributed Hierarchical Control Model for

Highly Autonomous Flexible Manufacturing Systems, Procs. of the International

Conf. on Intelligent Autonomous Systems, pp. 532-41.

Ezpeleta, J., Colom, J. M. and Martinez, J., 1995, Petri Net Based Deadlock

Prevention Policy for Flexible Manufacturing Systems, IEEE Transactions on

Robotics and Automation, vol. 11, no. 2, pp. 173-184.

Farrington, M. and Billington, J., March 1996, A CP-net Approach to Control Logic

Engineering, IFIP Working Conference on Software Engineering, Stugart.

Ford, R. G., 1991, Integration of Equipment for a Flexible Manufacturing Laboratory,

Procs. of Annual American Society for Engineering Education, Challenges for

Change, vol. 2, pp. 1117-21.

Gray, P., 1995, A Petri Net-Occam Based Methodology for the Development of

Dependable Distributed Control Software, Ph.D. Thesis, Sheffield Hallam

University.

Green, J., 1989, Petri Net Design Methodology for Sequential Control, Measurement

& Control, vol. 22, pp. 288-291.

Halang, W. A., 1989, Languages and Tools for the Graphical and Textual System

Independent Programming of Programmable Logic Controllers, Microprocessing

and Microprogramming, vol. 27, ISS. 1-5, pp. 583-590.

Hales, W. M. M., Gray, P. and Poole, F., 1993, The Development of a Dependable

Distributed Control System for Flexible Manufacture, Procs. WTC'93, World

Transputer Congress, pp. 152-68.

Hasegawa, M., Takata, M., Temmyo, T. and Matsuka, H., 1990, Procs. of IEEE

International Conf. on Robotics and Automation, vol. 1, pp. 514-19.

Hilal, R. and Ladet, P., 1993, Modelling, Control, and Simulation of Flexible

Manufacturing Systems Through the Use of Synchronous Petri Nets, ISBN:

0780308913, pp. 559-63.

Huang, H. P. and Chang, P. C., 1992, Specification, Modelling and Control of a

Flexible Manufacturing Cell, International Journal of Production Research, vol.

30, no. 11, pp. 2515-43.

IEC, International Electrotechnical Commission, 1992, Programmable Controllers -

Programming Languages, 1131 Part 3 Standard,, 65B Secretariat, Central Office,

Geneva.

Inmos Ltd., 1989, Occam 2 Toolset User Manual, "A Tutorial Introduction To Occam

Programming".

Inmos ltd., 1989b, Transputer Databook, Second Edition.

Inmos Ltd., 1990, The Transputer Instruction Set; A Compiler Writer's Guide.

"Transputer Architecture and Overview; Transputer Technical Specifications".

Jafari, M. A. and Boucher, T. O., 1994, A Rule-Based System for Generating a

Ladder Logic Control Program from a High Level Systems Model, Journal of

Intelligent Manufacturing, vol. 5, ISS. 2, pp. 103-120.

126

rce ie re n c trs

Jelly, I., and Gorton, I., 1994, Software Engineering for Parallel Systems, Information

and Software Technology, vol. 36, no. 7, pp. 381-396.

Kamath, M., and Viswanadham, N., 1986, Applications of Petri Net Based Models in

the Modelling and Analysis of Flexible Manufacturing Systems, Procs. of the

International Conf. on Robotics and Automation, pp. 312-17.

Lau, M. W. S. and Seet, G., 1993, The Use of Petri Nets for Occam Programming for

Transputers, Advances in Engineering Software, vol. 17, pp. 155-63.

Leveson, N. G. and Stolzy, J. L., Mar. 1987, Safety Analysis Using Petri Nets, IEEE

Trans. Software Engineering, vol. SE-13, no. 3, pp. 386-97.

Lu, S. S. and Huang, H. P., Aug. 1992, Modularisation and Properties of Flexible

Manufacturing Systems, Procs. of the 8th International Conf. on CAD/CAM,

Robotics and Factories of the Future, vol. 2, pp. 1768-82.

Moore, P. and O’Donoghue, P., 1994, Developing Transputer-Based Systems Using

HOOD and Parallel C, Information and Software Technology, vol. 36, no. 6, pp.

353-60.

Murata, T., Shenker, B. and Shatz, S. M., 1989, Detection of Ada Static Deadlocks

Using Petri Net Invariants, IEEE Transactions on Software Engineering, vol. 15,

no. 3, pp. 314-25.

Nagao, Y., 1993, Application of Petri Nets to Sequence Control, IEICE Transactions

on Fundamentals of Electronics, Communications and Computer Sciences, vol.

E76-A, ISS: 10, pp. 1598-606.

127

rceierences

Pardy, J., Amroun, A., Bolton, M. and Adamski, M., 1994, Parallel Controller

Synthesis for Programmable Logic Devices, Microprocessors and Microsystems,

vol. 18, no. 8, pp. 451-457.

Peterson, J. L., 1981, Petri Net Theory and The Modelling of Systems, Prentice Hall

ISBN 0-13-661983-5.

Reddy, G. B., Murty, S. S. N. and Ghosh, K., Nov. 1993, Timed Petri Net: An

Expeditious Tool for Modelling and Analysis of Manufacturing Systems,

Mathematical and Computer Modelling, vol. 18, ISS 9, pp. 17-30.

Sahraoui, A., Atabakhche, H., Courvoisier, M. and Valette, R., 1987, Joining Petri

Nets and Knowledge Based Systems for Monitoring Purposes, Procs. of IEEE

International Conf. On Robotics and Automation, vol. 2, pp. 1160-65.

Satoh, T., Nose, K. and Kumagai, S., 1992, Automatic Generation System of Ladder

List Program by Petri Net, Procs. of IEEE International Workshop on Emerging

Technologies and Factory Automation - Technology for the Intelligent Factory,

pp. 128-33.

SEMSPLC, Software Engineering Methods for Safe Programmable Logic Controllers,

1992-95, DTI/SERC Sponsored Collaborative Project. Collaborators also include

University of York, York Software Engineering Ltd, Cegelec Ltd, ICI Ltd, IDEC

Ltd, Nuclear Electric Pic, the HSE, and Cincinnati Milacron Ltd.

Shatz, S. M. and Wang, J. P., October 1987, Introduction to Distributed Software

Engineering, IEEE Computer, vol. 20, no. 10, pp. 23-31.

128

Simpson, J., Kocken, R. and Albus, J., 1982, The Automated Manufacturing Research

Facility of the National Bureau of Standards, Journal of Manufacturing Systems,

vol. 1, no. 1, pp. 17-32.

Slack, N., 1988, Manufacturing Systems Flexibility - An Assessment Procedure,

Computer Integrated Manufacturing Systems, vol. 1, no. 1, pp. 25-31.

Sundaram, C. R. M. and Narahari, Y., 1993, Modelling And Analysis of the Variance

in Parallelism in Parallel Computations, Computers and Electrical Engineering,

vol. 19, no. 6, pp. 495-506.

Taholakian, A and Hales, W. M. M., 1995, The Design and Modelling of PLC

Programs Using Petri Nets, Procs. of the International Conference on

Maintenance, Reliability and Quality, pp. 194-199.

Taholakian, A and Hales, W. M. M., 1996, PN<=>PLC: A Methodology for Designing,

Simulating and Coding PLC Based Control Systems Using Petri Nets, Accepted

by the International Journal of Production Research, to be published in June

1997.

Tudruj, M., 1992, Multi-Layer Reconfigurable Transputer Systems with Distributed

Control of Link Connections, Microprocessing and Microprogramming, vol. 34,

ISS 1-5, pp. 201-4.

Viswanadham, N. and Johnson, T. L., 1988, Fault Detection and Diagnosis of

Automated Manufacturing Systems, Procs. of the 27th IEEE Conf. on Decision and

Control, vol. 3, pp. 2301-2306.

129

neieruiiued

Viswanadham, N. andNarahari, Y., 1992, Stochastic Modelling of Flexible

Manufacturing Systems, Mathematical and Computer Modelling, vol. 16, no. 3,

pp. 15-34.

Viswanadham, N., Narahari, Y. and Johnson, T. L., 1990, Deadlock Prevention and

Deadlock Avoidance in Flexible Manufacturing Systems Using Petri Net Models,

IEEE Transactions on Robotics and Automation, vol. 6, no. 6, pp. 713-23.

Wardman, D., 1994, Systematic Logic Controller Programming; A Self Study

Course, Lecture Notes, School of Engineering, Sheffield Hallam University.

Webb, J., 1992, Programmable Logic Controllers; Principles and Applications,

Second Edition, Macmillan Publishing Company, ISBN 0-02-424970-X.

Weston, R. H., 1991, CIM Enterprises for the 21st Century, Procs. of the International

Conf. on Computer Integrated Manufacturing, ch. 135, pp. 3-6.

Weston, R. H., 1993, Steps Towards Enterprise-Wide Integration: A Definition of

Need and First-Generation Open Solutions, International Journal of Production

Research, vol. 31, no. 9, pp. 2235-2254.

Williams, A. M. and Lill, B. H., May 1987, Commercially Available Flexible

Assembly Cell, Procs. of the 10th Annual Conf. of the British Robot Association,

ch. 27, pp. 167-76.

130

Appendices

Appendix A PN<=>PLC: The Methodology Rules, Steps and Terminology

Appendix B Puma Work Station PN Groups, Developed Using PN<=>PLC

Appendix C Miller Work Station PN Groups, Developed Using PN<=>PLC

Appendix D Lathe Work Station PN Steps, Developed Using PN<=>PLC

Appendix E Error Handling PN Graphs, Developed Using PN oPLC

Appendix F Ladder Diagrams Translated from Puma Work Station PN

Groups, Using PN<=>PLC.

Appendix G Ladder Diagrams Translated from Miller Work Station PN

Groups, Using PNoPLC.

Appendix H Step Ladder Diagrams Translated from Lathe Work Station PN

Steps, Using PN<=>PLC.

131

Appendix A PN<=>PLC: The Methodology Rules, Steps and

Terminology

Appendix A

Design Rules

Rule 1. The drafting o f the PN<=>PLC graph is carried out using a right-to-left and

down-the-page approach i.e. starting with an output, work backwards and

determine the conditions for switching the output on. This must be

represented with one or more “switching-on transitions” within the

boundaries o f the PN graph, and their “switching-on places”.

Rule 2. Consider the conditions fo r switching the output off This must be

represented with one or more “switching-off transitions”, to the right o f

the output place, and their “switching-off places ”. There must be no non­

determinism in the design.

Rule 3. Rules 1 and 2 are repeatedfor all output places, and also fo r any internal

relays used.

Simulation Steps

Step 1. The first step o f the simulation process is to determine one or more

realistic scenarios o f events.

Step 2. Consider the first event o f the chosen scenario and mark the P N oP L C

graph accordingly.

Step 3. Given the initial marking, determine the state o f each output place and

internal relay. This is done by considering the “switching-on transition ”

and the “switching-off transition” o f each place consecutively. Note, if

both transitions are fired then the output place does not receive a token.

1

Appendix A

The final marking o f the PN<=>PLC graph represents the state o f the

system after one scan o f the program.

Step 4. The resulting marking from one scan is the initial marking for the next

scan which is simulated as in step 3. A number o f scans are made until

the PN<=>PLC graph reaches a steady state, i.e. the marking does not

change from one scan to the next.

Step 5. Once a steady state has been achieved then the markings representing the

next event in the scenario are included in the PN<=>PLC graph.

Translation Rules

Rule 1. Consider an output place and situate it as an output on the right-hand

side o f the Ladder Diagram. Consider the "switching-on transition " to

the left o f that output place. The input places to that transition are the

conditions fo r switching the output place on, and are therefore represented

as inputs on the left-hand side o f the Ladder Diagram.

Rule 2. Always latch the output with itself.

Rule 3. Consider the “switching-off transition ” to the right o f the output place.

The “switching-off arcs” joining places to this transition identify these

places as the switching-off conditions o f that output place. It is the inverse

of these conditions which keep the output ‘On1 and are therefore

represented on the LD using De Morgan rs law.

Rule 4. Repeat rules 1 - 3 for all the places

2

A ppendix A

Terminology and Symbols.

In order to make the PN graph readable, certain symbols have been adopted as

follows:

« < ► is a "return arc" which shows that an input place will receive its token back

after the transition has fired. For example this applies to input signals over which the

PLC has no control, such as signals from sensors. However, this symbol can be

ignored once the following two points are appreciated:

1. Tokens are removed from an output place or an internal place only via the

“switching-off transition” of that place.

2. Input signals, such as those from sensors, will not lose their tokens as a result of

their output transitions firing.

►/ • ^ "sw|tching-off arcs" which clearly show what is being switched off

and what is doing the switching off. Combined with design rule 2, the "switching-off

arcs" show exactly what the designer has in mind.

are duplicated places. Where a place is the input to several transitions, it

can be duplicated in order to reduce the number of arcs that cross. This simplifies the

overall PN graph and improves readability. It is, however, essential that a tally is kept

of the number of duplicate places (1/2,2/2) so that they are not overlooked by the

designer and simulator.

3

Appendix a

is a “dummy” or “drain place”, which is used to demonstrate that a token is

drained from a particular place as a result of its transition firing. This symbol clearly

shows the "switching-off transitions", and proves that the designer has considered

how each output and internal relay will be switched off.

p. pb
is a transition which has priority over any other transition, has priority over

Pa
any transition except for ’ , and so on.

is a shaded place and indicates that it occurs in and is switched off in another

PN graph.

PN Grouping is used to simplify the PN graph and make it more readable. When an

input signal is connected to every “switching-on” and “switching-off transition” it

transforms the PN graph to a PN Group. Therefore PN graph is entitled PN Group and

arcs from the input signal are not drawn to each transition.

PN Steps are used when designing Step Ladders. In a Step LD the Step Relay is

connected to all “switching-on transitions” to ensure that outputs are only switched on

and off by the conditions shown in that particular Step. Therefore to simplify the PN

graph and make it more readable, it is entitled PN Step and arcs from the Step Relay

are not drawn to each “switching-on transition”.

4

Appendix B Puma Work Station PN Groups, Developed Using

PNoPLC

ap p en d ix d

E nable Vice to Table PN G roup
(Pum a)

P C

Figure 5-5

E nable C lose Vice PN G roup
(Pum a)

P C

Figure 5-6

1

Mppenaix o

E nable Vice to P allet PN G roup
(Pum a)

P C

Figure 5-7

E nable O pen Vice PN G roup
(Pum a)

P C

Figure 5-8

2

Appendix C Miller Work Station PN Groups, Developed Using

PNoPLC

M p p e i l U I A u

Enable Vice to Table PN Group
(Miller)

MC

Figure 5-10

Enable Start Miller PN Group
(Miller)

MC

Ofl

Milling PN Graph
(Miller)

MC

Figure 5-11

1

A ppendix U

E nable Vice to P alle t PN G roup
(Miller)

MC

Figure 5-12

2

Appendix D Lathe Work Station PN Steps, Developed Using

PNoPLC

A p p en d ix

Enable Workpiece to Chuck PN Step
(Lathe)

Appendix D

Enable Robot to Safe PN S tep
(Lathe)

9

21 s

If

Appendix D

MppenuiA

Enable Workpiece to Conveyor PN Step
(Lathe)

m

Appendix D

M p p C I I U I A U

f t !

t 3 3

t3 4

Figure 5-21

6

M p p e i l U I A u

Enable W orkpiece to Vice PN S tep
(Lathe)

LC

•M Down

-M Endstop

Figure 5-22

7

Appendix E Error Handling PN Graphs, Developed Using

PN<=>PLC

. eQ
2 u>
zQ-
in
3

*->n
4-1W

o
CL

W
X
Bca>Q.a<

Im
a>s*
3b£

x:Q
2o
z
CL(0
3

4->n
4-1W

m
iin
vu3W)

Appendix E

Miller WS Complete
Status PN Graph

MC

-M StatnMC

Figure 5-25

M iller W S E rro r
S ta tu s PN G rap h

MC

-W StatnMC

Figure 5-26

2

Appendix E

Lathe WS Complete
Status PN Graph

tn

LC

t1 3urn*

-Oq

t1 4

M/CIng

t1 5

t1 7

Figure 5-27

3

Appendix E

Lathe WS Error
Status PN Graph

t10

t11

t12

LC

■W StatnLC
t13' I j t t n '

JkcknoWy

t14

t15

t16

t17

Figure 5-28

4

Appendix F Ladder Diagrams Translated from Puma Work

Station PN Groups, Using PNoPLC

CONTROL OF WORK
HANDLING AND
CONVEYOR INDEXING
FOR PUMA STATION IN
SCHOOL OF ENGINEERG
FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix F Proj:PUMA

Date: 12\12\95 Syst:F1/F2

Rev.no: 3 Type:Name

Draw.no: Sign: A.T. Page: 1

I/O Name Comment Remark

X400 ENABLVICE TABLE Input from Puma Controller
X401 ENABLOPEN VICE Input from Puma Controller
X402 ENABLCLOSEVICE Input from Puma Controller
X403 ENABLVICE PALLT Input from Puma Controller
X404 ENABLCONVRINDEX Input from Puma Controller
X407 VICE ON TABLE Input from Sensor 1 Ind. Prox.
X410 VICE RAM RETRD Input from Sensor 2 Magn . Reed
X411 VICE CLOSD Input from Sensor 3 Press. Sw.
X412 VICE ON PALLT Input from Sensor 4 IR Ref1.
X413 PALLT AT PUMA Input from Sensor 5 Cap. Prox.
X500 PALLT AT LATHE Input from Sensor 6 Cap. Prox.
X501 PALLT AT MILLR Input from Sensor 7 Cap. Prox.
X502 PUMA ERRORACKNO Input from Puma Controller
X503 PUMA COMPLACKNO Input from Puma Controller
Y430 PUMA STATNCOMPL Output to Puma Controller
Y431 PUMA STATNERROR Output to Puma Controller
Y434 ENABLVICE Output to Toggle Clamp ISol .Sprng
Y530 OPEN VICE Output to Vice Cyl. (Retract) Double Sol
Y531 CLOSE VICE Output to Vice Cyl. (Extend) Double Sol
Y532 OPEN PUMA DOG Output to Puma Stop Cyl. Single Sol
Y533 OPEN LATHE DOG Output to Lathe Stop Cyl. Single Sol
Y534 OPEN MILLR DOG Output to Miller Stop Cyl. Single Sol
Y535 EXTNDVICE RAM Output to Ram Cyl. (Extend) Double Sol
Y536 RETRTVICE RAM Output to Ram Cyl. (Retract) Double Sol
M100 OK TOPROC-EED Int. Relay
M101 VICE TABLEPULSE Int. Relay
M102 OPEN VICE PULSE Int. Relay
M103 VICE PALLTPULSE Int. Relay
M104 CONVRINDEXPULSE Int. Relay
M105 CLOSEVICE PULSE Int. Relay
M107 VICE TABLEERROR Int. Relay
M H O VICE TABLECOMPL Int. Relay
Mill VICE PALLTERROR Int. Relay
M112 VICE PALLTCOMPL Int. Relay
M113 OPEN VICE ERROR Int. Relay
M114 OPEN VICE COMPL Int. Relay
M115 CLOSEVICE ERROR Int. Relay
M116 CLOSEVICE COMPL Int. Relay
M117 CONVRINDEX COMP Int. Relay
M120 CONVRINDEXERROR Int. Relay
T50 DOG OPEN TIMER
T51 VICE OPEN TIMER

CONTROL OF WORK
HANDLING AND
CONVEYOR INDEXING
FOR PUMA STATION IN
SCHOOL OF ENGINEERG
FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix F Proj:PUMA

Date: 12\12\95 Syst:Fl/F2

Rev.no: 3 Type:Ladder

Draw.no: Sign: A.T. Page: 2

VICE TO TABLE

X400
I I---------------------------------------ENABL

VICE
TABLE

X400 M101 X412 X407 M101
H I — II— I I— 1t\ENABL VICE -VICE VICE
VICE TABLE ON ON
TABLE PULSE PALLT TABLE

M100
I b

OK TO
PROC­
EED

X400
I HENABL OK TO

VICE PROC-
TABLE EED

VICE
TABLE
PULSE

X400
I / IENABL

VICE
TABLE

M100 X400
H/F ENABL

VICE
TABLE

M107
_j |------
VICE
TABLE
ERROR

X400 M107 X407 X407
H / /FENABL VICE VICE
VICE TABLE ON
TABLE ERROR TABLE

Y535
I b

/F

EXTND
VICE
RAM

VICE
ON

TABLE

X400
I / IENABL

VICE
TABLE

•[PLS M101]■
VICE
TABLE
PULSE

M100
-() -
OK TO
PROC­
EED

M107
- () -----
VICE
TABLE
ERROR

Y535
- () -----
EXTND
VICE
RAM

CONTROL OF WORK
HANDLING AND
CONVEYOR INDEXING
FOR PUMA STATION IN
SCHOOL OF ENGINEERG
FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix F Proj:PUMA

Date: 12\12\95 Syst:Fl/F2

Rev.no: 3 Type:Ladder

Draw.no: Sign: A.T. Page: 3

X400 M107 X407 Y535 X400 M H O
24

ENABL
VICE
TABLE

ENABL VICE VICE EXTND
VICE TABLE ON VICE
TABLE ERROR TABLE RAM

VICE
TABLE
COMPL

M110

VICE
TABLE
COMPL

CLOSE VICE

X402
[PLS M105]-

CLOSE
VICE
PULSE

31
ENABL
CLOSE
VICE

M100X402 M105 X412 X407 M105
33

OK TO
PROC­
EED

ENABL CLOSE VICE VICE
CLOSE VICE ON ON
VICE PULSE PALLT TABLE

CLOSE
VICE
PULSE

X402
1 / 1 ENABL

CLOSE
VICE

M100

OK TO
PROC­
EED

M115
- () ------
CLOSE
VICE
ERROR

X402 M100 X402
42

ENABL
CLOSE
VICE

ENABL OK TO
CLOSE PROC-
VICE EED

M115

CLOSE
VICE
ERROR

CONTROL OF WORK
HANDLING AND
CONVEYOR INDEXING
FOR PUMA STATION IN
SCHOOL OF ENGINEERG
FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix F Proj:PUMA

Date: 12\12\95 Syst:F1/F2

x Rev.no: 3 Type:Ladder

Draw.no: Sign: A.T. Page: 4

X402
H h

X402
I h

M115 X407
H/b— I b

Y531

ENABL CLOSE VICE
CLOSE VICE ON
VICE ERROR TABLE

Y434
I bENABL

VICE

CLOSE
VICE

X411
I / IVICE

CLOSD

Y434
- () ~
ENABL
VICE

M115
H/ h

X411
H/ h

X402
—I / 1—’ENABL
CLOSE
VICE

Y434

ENABL CLOSE VICE ENABL
CLOSE VICE CLOSD VICE
VICE ERROR

Y531
I hCLOSE
VICE

X411
I / IVICE

CLOSD

X401
H / HENABL
OPEN
VICE

Y531
- () -----
CLOSE
VICE

M115
H/h

Y434
H/h

X411 Y531 X402
—I / h

X402
H hENABL CLOSE ENABL VICE CLOSE
CLOSE VICE VICE CLOSD VICE
VICE ERROR

ENABL
CLOSE
VICE

M116
- () -----
CLOSE
VICE
COMPL

M116
H \~CLOSE
VICE
COMPL

VICE TO PALLET

X403
73 (— | |--- [PLS M103]■

ENABL VICE
VICE PALLT
PALLT PULSE

CONTROL OF WORK
HANDLING AND
CONVEYOR INDEXING
FOR PUMA STATION IN
SCHOOL OF ENGINEERG
FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix F Proj:PUMA

Date: 12\12\95 Syst:F1/F2

Rev.no: 3 Type:Ladder

Draw.no: Sign: A.T. Page: 5

M103 X412
H/h

X413 X407 X410 M103X403
H bENABL VICE VICE PALLT VICE VICE
VICE PALLT ON AT ON RAM
PALLT PULSE PALLT PUMA TABLE RETRD

M100
H HOK TO
PROC­
EED

X403
H HENABL OK TO
VICE PROC-
PALLT EED

VICE
PALLT
PULSE

X403
H / HENABL
VICE
PALLT

M100 X403
H/h ENABL

VICE
PALLT

Mill
H I---------VICE
PALLT
ERROR

X403 Mill X412 X412
I / 1VICE
ON
PALLT

H I— I/I— l/hENABL VICE VICE
VICE PALLT ON
PALLT ERROR PALLT

Y536
1 bRETRT

VICE
RAM

X403
H / HENABL
VICE
PALLT

X403 Mill X412
1 I I/I 1 b

Y536
1 / b

X403

ENABL VICE VICE RETRT
VICE PALLT ON VICE
PALLT ERROR PALLT RAM

ENABL
VICE
PALLT

M100
-() -
OK TO
PROC­
EED

Mill
"() ------
VICE
PALLT
ERROR

Y536
- () ~
RETRT
VICE
RAM

M112
-() -
VICE
PALLT
COMPL

M112
H HVICE
PALLT
COMPL

CONTROL OF WORK
HANDLING AND
CONVEYOR INDEXING
FOR PUMA STATION IN
SCHOOL OF ENGINEERG
FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix F Proj:PUMA

Date: 12\12\95 Syst:F1/F2

Rev.no: 3 Type:Ladder

Draw.no: Sign: A.T. Page: 6

OPEN VICE

X401
[PLS M102]-

OPEN
VICE
PULSE

106
ENABL
OPEN
VICE

X401 M102 X412 X407 M102 M100
108

OK TO
PROC­
EED

OPEN
VICE
PULSE

ENABL OPEN VICE VICE
OPEN VICE ON
VICE PULSE PALLT TABLE

ON

X401
1 / IENABL

OPEN
VICE

M100

OK TO
PROC­
EED

M113X401 M100 X401
117

OPEN
VICE
ERROR

ENABL
OPEN
VICE

ENABL OK TO
OPEN PROC-
VICE EED

M113

OPEN
VICE
ERROR

Y434
■() ------
ENABL
VICE

X401 M113 X407 T51
122

VICE
OPEN
TIMER

ENABL OPEN VICE
OPEN VICE ON
VICE ERROR TABLE

Y530Y434

OPEN
VICE

ENABL
VICE

X401
I / 1ENABL

OPEN
VICE

CONTROL OF WORK
HANDLING AND
CONVEYOR INDEXING
FOR PUMA STATION IN
SCHOOL OF ENGINEERG
FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix F Proj:PUMA

Date: 12\12\95 Syst:F1/F2

Rev.no: 3 Type:Ladder

Draw.no: Sign: A.T. Page: 7

X401 M113 X407 Y434
H I——I / 1— I \ENABL OPEN VICE
OPEN VICE ON
VICE ERROR TABLE

T51
1

I

VICE
OPEN
TIMER

ENABL
VICE

X401
I / IENABL

OPEN
VICE

X401 M113 X411 Y434 T51
nENABL OPEN VICE ENABL

OPEN VICE CLOSD VICE
VICE ERROR

Y530
I b

\ / [

OPEN
VICE

X401 M113 Y434
I I 1/| l/b

VICE
OPEN
TIMER

X401
I / IENABL

OPEN
VICE

T51
H / F

X411 Y530
—I/I l/b

X401

ENABL OPEN ENABL VICE VICE OPEN
OPEN VICE VICE OPEN CLOSD VICE
VICE ERROR TIMER

ENABL
OPEN
VICE

K2.0
- (T51)■
VICE
OPEN
TIMER

Y530
"() ------
OPEN
VICE

M114
-() -
OPEN
VICE
COMPL

M114
H b“OPEN
VICE
COMPL

CONVEYOR INDEX

X404
— | |---------------------- [PLS M104]-
ENABL CONVR
CONVR INDEX
INDEX PULSE

CONTROL OF WORK
HANDLING AND
CONVEYOR INDEXING
FOR PUMA STATION IN
SCHOOL OF ENGINEERG
FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix F Proj:PUMA

Date: 12\12\95 Syst:F1/F2

Rev.no: 3 Type:Ladder

Draw.no: Sign: A.T. Page: 8

M104 X413 X500 X501 M104X404
H I — II— II— II— 1 I-ENABL CONVR PALLT PALLT PALLT
CONVR INDEX AT AT AT
INDEX PULSE PUMA LATHE MILLR

M100
H \—OK TO
PROC­
EED

X404
H \—ENABL OK TO
CONVR PROC-
INDEX EED

CONVR
INDEX
PULSE

X404
— I/HENABL
CONVR
INDEX

M100 X404
/I- 'ENABL

CONVR
INDEX

M120 M104
—I/I— I h

M120
H I—CONVR
INDEX
ERROR

X404
I I—ENABL CONVR CONVR

CONVR INDEX INDEX
INDEX ERROR PULSE

T50
I I------------------------DOG

OPEN
TIMER

Y532

OPEN
PUMA
DOG

T50
I / IDOG

OPEN
TIMER

X404
I / H

ENABL
CONVR
INDEX

M100
-() -
OK TO
PROC­
EED

M120
- () -----
CONVR
INDEX
ERROR

K2.0
-(T50)•
DOG

OPEN
TIMER

CONTROL OF WORK
HANDLING AND
CONVEYOR INDEXING
FOR PUMA STATION IN
SCHOOL OF ENGINEERG
FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix F Proj:PUMA

Date: 12\12\95 Syst:F1/F2

Rev.no: 3 Type:Ladder

Draw.no: Sign: A.T. Page: 9

X404 M120 M104 T50 Y532

ENABL CONVR CONVR
CONVR INDEX INDEX
INDEX ERROR PULSE

DOG
OPEN
TIMER

OPEN
PUMA
DOG

Y533X404Y532

OPEN
LATHE
DOG

ENABL
CONVR
INDEX

OPEN
PUMA
DOG

Y534Y533

OPEN
MILLR
DOG

OPEN
LATHE
DOG

Y534

OPEN
MILLR
DOG

M117X404 M120 Y532 X413 X500 X501 X404

CONVR
INDEX
COMP

ENABL CONVR OPEN PALLT PALLT PALLT
CONVR INDEX PUMA AT AT
INDEX ERROR DOG PUMA LATHE MILLR

ENABL
CONVR
INDEX

AT

M117

CONVR
INDEX
COMP

CONTROL OF WORK
HANDLING AND
CONVEYOR INDEXING

' FOR PUMA STATION IN
SCHOOL OF ENGINEERG
FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix F Proj:PUMA

Date: 12\12\95 Syst:F1/F2

Rev.no: 3 Type:Ladder

Draw.no: Sign: A.T. Page: 10

GENERATE ERROR STATUS

206
M107
H h

X502
H / hVICE PUMA

TABLE ERROR
ERROR ACKNO

X502
—I / 1—PUMA
ERROR
ACKNO

Y431
- () -----
PUMA
STATN
ERROR

M115 X502
H I— - \ / \ —CLOSE PUMA
VICE ERROR
ERROR ACKNO

Mill X502
1 | I / I—

VICE PUMA
PALLT ERROR
ERROR ACKNO

M113 X502
H I— I / 1—OPEN PUMA
VICE ERROR
ERROR ACKNO

M120 X502
-I] |------1 / [_
CONVR PUMA
INDEX ERROR
ERROR ACKNO

Y431
I h-PUMA

STATN
ERROR

CONTROL OF WORK
HANDLING AND
CONVEYOR INDEXING
FOR PUMA STATION IN
SCHOOL OF ENGINEERG
FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix F Proj:PUMA

Date: 12\12\95 Syst:F1/F2

Rev.no: 3 Type:Ladder

Draw.no: Sign: A.T. Page: 11

GENERATE COMPLETION STATUS

223
M H O
H b

X503
H / h

VICE PUMA
TABLE COMPL
COMPL ACKNO

X503
I / IPUMA

COMPL
ACKNO

Y430
- () ------
PUMA
STATN
COMPL

M116 X503
—| | 1 / 1—
CLOSE PUMA
VICE COMPL
COMPL ACKNO

M112 X503
H I— I / 1—VICE PUMA
PALLT COMPL
COMPL ACKNO

M114 X503
H I— I / 1—OPEN PUMA
VICE COMPL
COMPL ACKNO

M117 X503
| | 1 / (—

CONVR PUMA
INDEX COMPL
COMP ACKNO

Y430
I h-PUMA

STATN
COMPL

240 [END]-

Appendix G Ladder Diagrams Translated from Miller Work

Station PN Groups, Using PNoPLC

CONTROL OF WORK
HANDLING AND M/CING
FOR MILLER STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix G Proj:MILLER

Date: 08/01/96 Syst:Fl/F2

Rev.no: 2 Type:Name

Draw.no: Sign: A.T. Page: 1

I/O Name Comment Remark

X400 ENABLVICE TABLE Input from Miller Controller
X401 VICE ON PALLT Input from Sensor 8 I.R. Ref 1.
X402 VICE ON TABLE Input from Sensor 9 Ind. Prox.
X403 TABLECLAMPCLOSD Input from Sensor 10 Ind. Prox.
X404 ENABLSTARTMILLR Input from Miller Controller
X405 MILL-ING Input from Miller Relay Via M52
X406 VICE RAM RETRD Input from Sensor 11 Ind. Prox.
X407 ENABLVICE PALLT Input from Miller Controller
X410 MILLRERRORACKNO Input from Miller Controller
X411 MILLRCOMPLACKNO Input from Miller Controller -
Y430 EXTNDVICE RAM Output to Cylinder 1: Extend Double Sol
Y431 CLOSETABLECLAMP Output to Cylinder 2: Extend Double Sol
Y433 MILLG IN PROGR Output to Miller Controller
Y435 RETR VICE RAM Output to Cylinder 1: Retract Double Sol
Y436 OPEN TABLECLAMP Output to Cylinder 2: Retract Double Sol
Y530 MILLRSTATNERROR Output to Miller Controller
Y531 MILLRSTATNCOMPL Output to Miller Controller
Y534 STARTMILLR Output to Miller M52 Reset
M100 VICE TABLEPULSE Int. Relay
M101 MILLRENABLPULSE Int. Relay
M102 VICE PALLTPULSE Int. Relay
M103 VICE TABLEERROR Int. Relay
M104 STARTMILLRERROR Int. Relay
M105 VICE PALLTERROR Int. Relay
M106 VICE TABLECOMPL Int. Realy
M107 S TARTMILLRCOMPL Int. Relay
M H O VICE PALLTCOMPL Int. Relay
Mill OK TOPROC-EED Int. Relay
T51 RAM EXTNDTIMER

CONTROL OF WORK
HANDLING AND M/CING
FOR MILLER STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix G Proj:MILLER

Date: 08/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 2

VICE TO TABLE

13

18

X400
I I----------------------:-----------------------------------ENABL

VICE
TABLE

X400 M100 X402 X401 X403 X406 M100
H I— I I— I/I— I I— I/I— I IENABL VICE VICE VICE TABLE VICE
VICE TABLE ON ON CLAMP RAM
TABLE PULSE TABLE PALLT CLOSD RETRD

Mill
H hOK TO
PROC­
EED

X400
I b

VICE
TABLE
PULSE

X400
—1/ |—
ENABL
VICE
TABLE

Mill X400
H / h

ENABL OK TO
VICE PROC-
TABLE EED

M103
I b

ENABL
VICE
TABLE

VICE
TABLE
ERROR

X400 M103 X402 X403
H I I/I 1/ hrH /'ENABL VICE VICE
VICE TABLE ON
TABLE ERROR TABLE

Y430
I bEXTND

VICE

TABLE
CLAMP
CLOSD

X400
I / IENABL

VICE

•[PLS M100]■
VICE
TABLE
PULSE

Mill
- () -----
OK TO
PROC­
EED

M103
- () -----
VICE
TABLE
ERROR

Y430
"() -
EXTND
VICE
RAM

RAM TABLE

CONTROL OF WORK
HANDLING AND M/CING
FOR MILLER STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix G Proj .-MILLER

Date: 08/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 3

CLOSE
TABLE
CLAMP

X400
I \—ENABL VICE TABLE CLOSE

VICE TABLE CLAMP TABLE
TABLE ERROR CLOSD CLAMP

X400 M103 X402 X403
H /b
ENABL VICE VICE
VICE TABLE ON
TABLE ERROR TABLE

Y431
I h

/b
TABLE
CLAMP
CLOSD

X400
I /1

Y431
•() -----
CLOSE
TABLE
CLAMP

M103
H / h

ENABL
VICE
TABLE

X403 Y431 X406
/b \ /VICE

RAM
RETRD

X400
I / IENABL

VICE
TABLE

Y435
H I---------------------RETR
VICE
RAM

X400 M103 X402 Y435
H I— I/I— I I— I/I— I bENABL VICE VICE RETR VICE
VICE TABLE ON VICE RAM
TABLE ERROR TABLE RAM RETRD

Y435
" () '
RETR
VICE
RAM

X406 X400

ENABL
VICE
TABLE

M106
-() -
VICE
TABLE
COMPL

M106
H bVICE
TABLE
COMPL

START MILLER

X404
— | |— --- ---- [PLS M101]■
ENABL MILLR
START ENABL
MILLR PULSE

CONTROL OF WORK
HANDLING AND M/CING
FOR MILLER STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix G Proj:MILLER

Date: 08/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 4

53

63

68

75

ENABL OK TO
START PROC-
MILLR EED

M104
H h

M101 X405
-MY

X403 X402 M101X404
I bENABL MILLR MILL- TABLE VICE

START ENABL ING CLAMP ON
MILLR PULSE CLOSD TABLE

Mill__| |-------------------------
OK TO
PROC­
EED

MILLR
ENABL
PULSE

X404
H / HENABL
START
MILLR

X404
H b

Mill X404
H / F ENABL

START
MILLR

M104 X405
n

START
MILLR
ERROR

X404
I I—ENABL START

START MILLR
MILLR ERROR

Y534
I b

n

START
MILLR

MILL­
ING

X404
! / IENABL

START
MILLR

M104 X405
I / I l b

X404
I bENABL START MILL-

START MILLR ING
MILLR ERROR

M107_| |------------------------
START
MILLR
COMPL

X404

ENABL
START
MILLR

Mill
- () ------
OK TO
PROC­
EED

M104
-() -
START
MILLR
ERROR

Y534
- () -
START
MILLR

M107
- () -----
START
MILLR
COMPL

CONTROL OF WORK
HANDLING AND M/CING
FOR MILLER STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix G Proj .-MILLER

Date: 08/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 5

HILLING IN PROGRESS UPDATE TO MC

X405 X405 Y433
81

MILL­
ING

MILL­
ING

MILLG
IN

PROGR

Y433
I b-MILLG
IN

PROGR

VICE TO PALLET

M102X407
85

VICE
PALLT
PULSE

ENABL
VICE
PALLT

X407 M102 X406 X401 X403 X402 M102 Mill
87

OK TO
PROC­
EED

ENABL VICE VICE VICE TABLE VICE
VICE PALLT RAM ON CLAMP ON
PALLT PULSE RETRD PALLT CLOSD TABLE

VICE
PALLT
PULSE

X407
H / \~ENABL
VICE
PALLT

Mill

OK TO
PROC­
EED

M105X407 Mill X407
98

VICE
PALLT
ERROR

ENABL
VICE
PALLT

ENABL OK TO
VICE PROC-
PALLT EED

M105

VICE
PALLT
ERROR

CONTROL OF WORK
HANDLING AND M/CING
FOR MILLER STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix G Proj:MILLER

Date: 08/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 6

X402 Y435 T51
■1/

X407 M105 Y436 X403
H I— I/I— I/I— I/I-ENABL VICE OPEN TABLE VICE RETR
VICE PALLT TABLE CLAMP ON VICE
PALLT ERROR CLAMP CLOSD TABLE RAM

Y430
I I--EXTND

VICE
RAM

X407
I h

M105 X403
I / I 1 h

X403

ENABL VICE TABLE
VICE PALLT CLAMP
PALLT ERROR CLOSD

Y436
I hOPEN

TABLE
CLAMP

TABLE
CLAMP
CLOSD

X407
H / HENABL
VICE
PALLT

Y436
- () ~
OPEN
TABLE
CLAMP

/ [RAM
EXTND
TIMER

X407
1 / I—ENABL

VICE
PALLT

Y430
' () ------
EXTND
VICE
RAM

X407
1 h

M105 T51 Y430 X401
nENABL VICE RAM EXTND

VICE PALLT EXTND VICE
PALLT ERROR TIMER RAM

Y435
I h

RETR
VICE
RAM

X407
I h

M105
H/h

Y436
H/h

X403
H/h

ENABL VICE OPEN TABLE
VICE PALLT TABLE CLAMP
PALLT ERROR CLAMP CLOSD

T51
I HRAM

EXTND
TIMER

VICE
ON
PALLT

X407
H / HENABL
VICE
PALLT

Y435
I / h

Y435
- () -----
RETR
VICE
RAM

RETR
VICE
RAM

X407
I / IENABL

VICE
PALLT

K3.0
"(T51)■
RAM
EXTND
TIMER

CONTROL OF WORK
HANDLING AND M/CING
FOR MILLER STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix G Proj:MILLER

Date: 08/01/96 Syst:F1/F2

. Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 7

X407 M105 X401 X406 Y435 Y531 M H O
141

ENABL VICE VICE VICE RETR
RAM VICE

MILLR
STATN
COMPL

VICE
PALLT
COMPL

VICE PALLT ON
PALLT ERROR PALLT RETRD RAM

M110

VICE
PALLT
COMPL

GENERATE ERROR STATUS

Y530M103 X410 X410
149

MILLR
STATN
ERROR

MILLR
ERROR
ACKNO

VICE MILLR
TABLE ERROR
ERROR ACKNO

M104 X410
H I— l /bSTART MILLR
MILLR ERROR
ERROR ACKNO

M105 X410
H I— I / 1—VICE MILLR
PALLT ERROR
ERROR ACKNO

Y530

MILLR
STATN
ERROR

CONTROL OF WORK
HANDLING AND M/CING
FOR MILLER STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix G Proj:MILLER

Date: 08/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 8

GENERATE COMPLETION STATUS

160

X411
H / H

M107
H hSTART MILLR
MILLR COMPL
COMPL ACKNO

M106
1 h

X411 X411
/ hVICE MILLR

TABLE COMPL
COMPL ACKNO

X411
I / I

M H O
H hVICE MILLR
PALLT COMPL
COMPL ACKNO

Y531
I I------------MILLR

STATN
COMPL

/YMILLR
COMPL
ACKNO

Y531
- () —
MILLR
STATN
COMPL

171 [END]-

Appendix H Step Ladder Diagrams Translated from Lathe

Work Station PN Steps, Using PNoPLC

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING’S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Name

Draw.no: Sign: A.T. Page: 1

I/O Name Comment Remark

xo ENABLVICE TABLE Input from Lathe Controller
XI ENABLGRIP WKPCE Input from Lathe Controller
X2 ENABLWKPCE CHUK Input from Lathe Controller
X3 ENABLROBOT SAFE Input from Lathe Controller
X4 ENABLVICE PALLT Input from Lathe Controller
X5 ENABLSTARTM/C'G Input from Lathe Controller
X6 ENABLWKPCE CONV Input from Lathe Controller
X7 ENABLWKPCE VICE Input from Lathe Controller

X10 VICE ON TABLE Input from sensor 12 Ind. Prox.
Xll VICE RAM RETRD Input from sensor 13 Magn., Reed
X12 VICE CLOSE Input from sensor 14 Press. Sw.
X13 VICE ON PALLT Input from sensor 15 I. R. Ref 1.

X14 HORIZ AT CONVR Input from sensor B01 Ind. Prox.
X15 HORIZ AT LATHE Input from sensor B02 Ind. Prox.
X16 VERT AT CHUCK Input from sensor B03 Ind. Prox.
X17 VERT UP SAFE Input from sensor B04 Ind. Prox.
X400 MIDSTVERT EXT Input from sensor B05 Press. Sw.
X401 MIDSTVERT RET Input from sensor B06 Magn. Reed
X402 ROTATO DEG Input from sensor B08 Ind. Prox.
X403 ROTAT 90 DEG Input from sensor B09 Ind. Prox.
X404 ENDSTRETRT Input from sensor Bll Magn. Reed
X405 ENDSTEXTND Input from sensor B12 Magn. Reed
X406 GRIPRCLOSE Input from sensor B13 Magn. Reed
X407 GRIPR OPEN Input from sensor B14 Press;. Sw.
X410 GRIPR AT VICE Input from sensor B17 Ind. Prox.

X411 CHUCKOPEN Input from CNC Lathe Code M61
X412 CHUCKCLOSE Input from CNC Lathe Code M62
X413 M/C'GFINSH Input from CNC Lathe Code M63
X500 IN CYCLE Input from CNC Lathe Int. Relay
X501 M/C'GERROR Input from CNC Lathe Int. Relay
X503 TOP DOOR OPEN Input from sensor 16 Magn. Reed
X504 TOP DOOR CLOSE Input from sensor 17 Magn. Reed
X505 PALET AT LATHE Input from sensor 6 Cap. Prox.
X506 LATHEERRORACKNO Input from Lathe Controller
X507 LATHESTATNCOMPL Input from Lathe Controller

Y30 LATHESTATNCOMP Output to Lathe Controller
Y31 LATHESTATNEROR Output to Lathe Controller

Y32 EXTNDVICE RAM Output to Ram cyl.(Extend) Double Sol
Y33 RETRTVICE RAM Output to Ram cyl.(Retract) Double Sol
Y34 OPEN VICE Outout to Vice cyl.(Retract) Double Sol
Y35 CLOSE VICE Output to Vice cyl.(Extend) Double Sol
Y36 ENABLVICE Output to Toggle Clamp ISol Sprng

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING’S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Name

Draw.no: Sign: A.T. Page: 2

I/O Name Comment

Y37 HORIZ TO CONVR Output to
Y40 HORIZ TO LATHE Output to
Y41 VERT DOWN Output to
Y42 VERT UP Output to
Y43 EXTNDVERT MIDST Output to
Y44 RETRTVERT MIDST Output to
Y45 ROTATTO 0 DEG Output to
Y430 ROTATTO 90DEG Output to
Y431 EXTND END STOP Output to
Y432 RETRT END STOP Output to
Y433 CLOSEGRIPR Output to
Y434 OPEN GRIPR Output to

Y435 STARTCYCLE Output to
Y436 STOPCYCLE Output to
Y437 M/C STROB Output to
Y530 OPEN TOP DOOR Output to
Y531 CLOSETOP DOOR Output to

M100 VICE/TABLE COMPL
M101 VICE/TABLE ERR
M102 GRIP WKPCE COMPL
M103 GRIP WKPCE ERR
M104 WKPCE/CHUKCOMPL
M105 WKPCE/CHUK ERR
M106 ROBOT/SAFECOMPL
M107 ROBOT/SAFE ERR
M H O VICE/PALLTCOMPL
Mill VICE/PALLT ERR
M112 M/C'GCOMPL
M113 STARTM/C'G ERR
M114 WKPCE/CONVCOMPL
M115 WKPCE/CONV ERR
M116 WKPCE/VICECOMPL
M117 WKPCE/VICE ERR
M122 VICE/TABLE PLS
M123 GRIP WKPCE PLS
M124 WKPCECHUCK PLS
M125 ROBOT SAFE PLS
M126 VICE PALLT PLS
M127 STARTM/C’G PLS
M130 WKP CE CONVR PLS
M131 WKPCEVICE PLS
M132 OK TOPROC-EED
T50 VICE OPEN TIMER

Remark

sol. Y1 3 Pos 2Sol
Sol. Y2 3 Pos 2Sol
Sol. Y3 3 Pos 2Sol
Sol. Y4 3 Pos 2Sol
Sol. Y5 Double Sol
Sol. Y6 Double Sol
Sol. Y8 lSol Sprng
Sol. Y9 lSol Sprng
Sol. Y10 Double Sol
Sol. Yll Double Sol
Sol. Y12 Double Sol
Sol. Y13 Double Sol

Lathe Int. Relay
Lathe Int. Relay
Lathe Int. Relay
Sol Double Sol
Sol Double Sol

Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay
Int. Relay

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:FI/F2

Rev.no: 2 Type:Name

Draw.no: Sign: A.T. Page: 3

I/O Name Comment Remark

T51 VICE CLOSETIMER
S600 VICE TO TABLE Step
S601 GRIP WORK PIECE Step
S602 WKPCE TO CHUCK Step
S603 ROBOT SAFE POSN Step
S604 VICE TO PALLT Step
S605 STARTM/C'G Step
S 606 WKPCE TO CONVR Step
S607 WKPCE TO VICE Step

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING’S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:Fl/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 4

VICE TO TABLE

XO
h~ENABL

VICE
TABLE

S600
-|s t l |-
VICE
TO

TABLE

10

14

■[S S600]
VICE
TO

TABLE

X13 M122M122 X10
H I— I/I— I bVICE/ VICE VICE
TABLE ON ON
PLS TABLE PALLT

M132
H b “OK TO
PROC­
EED

M132
H / h -OK TO
PROC­
EED

VICE/
TABLE
PLS

S600

VICE
TO

TABLE

M101
H HVICE/
TABLE
ERR

M101 X10 X10

[PLS M122]
VICE/
TAELE
PLS

M132
- (> -
OK TO
PROC­
EED

M101
~() ------
VICE/
TABLE
ERR

—I/I------1 / I—VICE/ VICE
TABLE ON
ERR TABLE

VICE
ON

TABLE

Y32

EXTND

Y32
()---EXTND
VICE
RAM

V IC E
RAM

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING’S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 5

M101 XIO Y32 S600
H/l— I I— I/I-VICE/ VICE EXTND VICE
TABLE ON VICE TO
ERR TABLE RAM TABLE

M100
_1 |----------------------
VICE/
TABLE
COMPL

XO
H / H -----------------ENABL
VICE
TABLE

M100
- () ~
VICE/
TABLE
COMPL

■C R S600]■
VICE
TO

TABLE

[RET]■

GRIP WORKPIECE

XI
28

ENABL
GRIP
WKPCE

S 601
-|s t l |-
GRIP
WORK
PIECE

30

[S S601]-
GRIP
WORK
PIECE

[PLS M123]■
GRIP
WKPCE
PLS

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING’S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 6

GRIP TOP
WKPCE DOOR
PLS CLOSE

M132
H h

M123
H h

X504 X402 X407 X404 X400 X14 X17 M123

ROTAT GRIPR ENDST MIDST HORIZ VERT
0 DEG OPEN RETRT VERT AT UP

EXT CONVR SAFE

GRIP
WKPCE
PLS

OK TO
PROC­
EED

M132 S601
I / hOK TO GRIP

PROC- WORK
EED PIECE

M103
“ I HGRIP
WKPCE
ERR

M103 X17
I / I---- 1 I--l/bGRIP VERT ROTAT

WKPCE UP 90
ERR SAFE DEG

X403 X403
I / IROTAT
90
DEG

Y430
I I-------------------ROTAT

TO 90
DEG

M103 X403 X410 Y430 X410
H / h I— I/I— l/hGRIP ROTAT GRIPR ROTAT
WKPCE 90 AT TO 90
ERR DEG VICE DEG

Y41
I

/ [GRIPR
AT

VICE

VERT
DOWN

M132
- () —
OK TO
PROC­
EED

M103
- () ~
GRIP
WKPCE
ERR

Y430
- () ~
ROTAT
TO 90
DEG

Y41
-() -----
VERT
DOWN

CONTROL OF WORK
HANDLING/ GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERINGrS FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 7

Y433M103 X410 X406 Y41 X406
—! / 1— I I— I/ I I / I H / l -GRIP GRIPR GRIPR VERT GRIPR
WKPCE AT CLOSE DOWN CLOSE
ERR VICE

60
CLOSE
GRIPR

Y433

CLOSE
GRIPR

M102M103 X406 Y433 S601
67

GRIP
WKPCE
COMPL

GRIP
WORK
PIECE

GRIP GRIPR CLOSE
WKPCE CLOSE GRIPR
ERR

M102

GRIP
WKPCE
COMPL

XI
H / hENABL
GRIP
WKPCE

S601]-
GRIP
WORK
PIECE

73

[RET]-75

WORKPIECE TO CHUCK

X2 S602]-
WKPCE

TO
CHUCK

76
ENABL
WKPCE
CHUK

S602
-|s t l |-
WKPCE

TO
CHUCK

[PLS M124]-
WKPCE
CHUCK
PLS

78

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING 1S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 8

M124
H I II----- II-II---- II-----II---- I hWKPCE MIDST GRIPR GRIPR HORIZ ROTAT ENDST
CHUCK VERT CLOSE AT AT 90 RETRT
PLS EXT VICE CONVR DEG

M132
H h~OK TO
PROC­
EED

M132
H / h ~OK TO
PROC­
EED

M105
H HWKPCE
/CHUK
ERR

X400 X406 X410 X14 X403 X404 M124

WKPCE
CHUCK
PLS

M132
' () -
OK TO
PROC­
EED

S602

WKPCE
TO

CHUCK

M105
-() -
WKPCE
/CHUK
ERR

M105 X500
“ I/I---WKPCE IN
/CHUK CYCLE
ERR

Y435
1 I-----------START

CYCLE

X500
H / hIN
CYCLE

Y435
-() -
START
CYCLE

M105 X500 Y435 X10
—I/I—H I— I/I—HWKPCE IN START VICE
/CHUK CYCLE CYCLE ON
ERR TABLE

Y36
1

T50
H / FVICE
OPEN
TIMER

Y34
H

Y36
- () ------
ENABL
VICE

ENABL
VICE

OPEN
VICE

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING’S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 9

X12 Y36

VICE
OPEN
TIMER

M105
H/l— I I— I hWKPCE VICE ENABL
/CHUK CLOSE VICE
ERR

Y34
I hOPEN

VICE

M105
H/h

X500 Y435
H/h

X10

WKPCE IN START VICE
/CHUK CYCLE CYCLE ON
ERR TABLE

T50
1

T50
I / IVICE

OPEN
TIMER

Y36
h JENABL

VICE

T50
I / IVICE

OPEN
TIMER

X403 XI7M105 T50 X12
I / I 1/| I/I 1 hWKPCE VICE VICE ROTAT

/CHUK OPEN CLOSE 90
ERR TIMER DEG

Y42
1 hVERT
UP

VERT
UP
SAFE

M105 X17
I / I 1

X402
H/h

Y42 X402
/ hWKPCE VERT ROTAT VERT

/CHUK UP 0 DEG UP
ERR SAFE

Y45
I I-----------------------------ROTAT

TO 0
DEG

/hROTAT
0 DEG

K2.0S
-(T50)■
VICE
OPEN
TIMER

Y34
- () -----
OPEN
VICE

Y42
- () -
VERT
UP

Y45
■() “
ROTAT
TO 0
DEG

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj .-LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 10

WKPCE HORIZ MIDST ENDST HORIZ
/CHUK AT VERT EXTND TO
ERR LATHE RET LATHE

Y431
H h

M105
H /

Y45
H/h

X17 X404 X15
H/hWKPCE ROTAT VERT

/CHUK TO 0 UP
ERR DEG SAFE

Y40
1

ENDST HORIZ
RETRT AT

LATHE

X15
H / hHORIZ
AT

LATHE

HORIZ
TO

LATHE

M105
H/h

X15 X401 . X405 Y40 X405
—I/I— 1/ 1— 1/ h H / '

ENDST
EXTND

EXTND
END
STOP

M105 X405 Y431 X503 X503
H / / nWKPCE ENDST EXTND TOP
/CHUK EXTND END DOOR
ERR STOP OPEN

Y530
I h

/hTOP
DOOR
OPEN

X503

OPEN
TOP
DOOR

M105
H/l— I hWKPCE TOP
/CHUK DOOR

Y44
I I—RETRT

VERT
MIDST

X171 1
X17
1 11 l VERT 1 1 VERT

UP UP
SAFE SAFE

X401 Y530
H/l— l/b
VERT TOP
RET DOOR

X405

ENDST
EXTND

X401
H/h

Y40
~() ------
HORIZ
TO

LATHE

Y431
- () “
EXTND
END

STOP

Y530
"() ------
OPEN
TOP
DOOR

MIDST
VERT
RET

Y44
" () ------RETRT
VERT
MIDST

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 11

M105
H / I 1 bWKPCE TOP
/CHUK DOOR
ERR OPEN

Y41
1 bVERT

DOWN

X503 X401 X405 X16
H /

Y44
I / IMIDST ENDST VERT RETRT

VERT EXTND AT VERT
RET CHUCK MIDST

X16
| / |—

VERT
AT
CHUCK

Y41
- () -
VERT
DOWN

X16 X411 X404
— I / b

Y41
— | / b

M105
H / I"WKPCE VERT CHUCK ENDST VERT
/CHUK AT OPEN RETRT DOWN
ERR CHUCK

X404
H / bENDST
RETRT

Y432
-() -
RETRT
END
STOP

X16 Y432
H / H

Y432
I I---------------------------RETRT
END
STOP

M105 X404 X401 X15
—1/ 1— I I— 1 I— I/I— I H
WKPCE ENDST MIDST HORIZ VERT RETRT
/CHUK RETRT VERT AT AT END
ERR RET LATHE CHUCK STOP

Y40
I b -HORIZ
TO

LATHE

M105
1 / I- - - - 1 I- - - 1 bWKPCE HORIZ VERT

/CHUK AT AT

X15
H /HORIZ
AT

LATHE

Y40
-() -
HORIZ
TO

LATHE

X15 X16 Y40
H / b

X411 X411

HORIZ CHUCK
TO OPEN

ERR LATHE CHUCK LATHE

Y437
I I-------------------------------M/C

STROB

CHUCK
OPEN

Y437
-() -
M/C
STROB

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 12

M105
H/l-

X15 X412 Y437
H I— l / hWKPCE HORIZ CHUCK M/C

/CHUK AT CLOSE STROB
ERR LATHE

M104
H I ----------------------WKPCE
/CHUK
COMPL

X2
1 / I-------------------------------ENABL

WKPCE
CHUK

S602

WKPCE
TO

CHUCK

[R

M104
- () “
WKPCE
/CHUK
COMPL

S 602]■
WKPCE

TO
CHUCK

[RET]-

ROBOT TO SAFE POSITION

X3

ENABL
ROBOT
SAFE

S603
-|s t l [-
ROBOT
SAFE
POSN

[s

[PLS

S603]■
ROBOT
SAFE
POSN

M125]■
ROBOT
SAFE
PLS

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 13

219
X16 X15 X503 X406 X401 X402 M125M125

H I — I I — I I — I bROBOT VERT HORIZ TOP
SAFE AT AT DOOR
PLS CHUCK LATHE OPEN

GRIPR MIDST ROTAT
CLOSE VERT 0 DEG

RET

ROBOT
SAFE
PLS

M132
"() ------
OK TO
PROC­
EED

M132
H HOK TO
PROC­
EED

M132 S603
H / FOK TO ROBOT
PROC- SAFE
EED POSN

M107
H HROBOT
/SAFE
ERR

M107 X407 X407

M107
- () ~
ROBOT
/SAFE
ERR

— I / I — l / FROBOT GRIPR
/SAFE OPEN
ERR

GRIPR
OPEN

Y434
"() ------
OPEN
GRIPR

Y434
I b ~OPEN

GRIPR

238
M107

H / b
X407 Y434

H / b
X405

I / bROBOT GRIPR OPEN ENDST
/SAFE OPEN GRIPR EXTND
ERR

X405
1 / IENDST

EXTND

Y431
-() -
EXTND
END

STOP

Y431
I b ~EXTND
END
STOP

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 14

Y42
H / h

X504 X504
/ [

M107 X17
—I/I 1ROBOT VERT VERT TOP
/SAFE UP UP DOOR
ERR SAFE CLOSE

Y531
I b

M107
H/b

X405 Y431
H / b

X17
H / h

ROBOT ENDST EXTND VERT
/SAFE EXTND END UP
ERR STOP SAFE

Y42
1 bVERT
UP

X17

VERT
UP
SAFE

7 1 -

top
DOOR
CLOSE

CLOSE
TOP
DOOR

M107
1 / I

X504 X17 Y531
H / b

X14
H / h

X402 X14
\ f

ROBOT TOP VERT CLOSE HORIZ ROTAT
/SAFE DOOR UP TOP AT 0 DEG
ERR CLOSE SAFE DOOR CONVR

Y37
I

HORIZ
AT
CONVR

Y42
"() -
VERT
UP

Y531
"() -
CLOSE
TOP
DOOR

Y37
- () -----
HORIZ
TO

CONVR

HORIZ
TO

CONVR

M107
I / 1

Y37
H H

X14

ROBOT HORIZ HORIZ
/SAFE TO AT
ERR CONVR CONVR

Y432
I I---------------------RETRT
END
STOP

X404
I / IENDST

RETRT

Y432
- () ~
RETRT
END

STOP

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING *S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 15

M107
H/l-

Y37
H/b

X14

ROBOT HORIZ HORIZ
/SAFE TO AT
ERR CONVR CONVR

Y43
H

X400
I / IMIDST

VERT
EXT

Y43
- () -----
EXTND
VERT
MIDST

X404 X400 Y432
H / b

Y43
H/b

EXTND
VERT
MIDST

M107
H / 1 —ROBOT ENDST MIDST RETRT EXTND
/SAFE RETRT VERT END VERT
ERR EXT STOP MIDST

M106
_ | |--
ROBOT
/SAFE
COMPL

X3
I / I--ENABL

ROBOT
SAFE

S603

ROBOT
SAFE
POSN

M106
- () -----
ROBOT
/SAFE
COMPL

S603]■
ROBOT
SAFE
POSN

•[RET]-

VICE TO PALLET

X4
_ J |—
ENABL
VICE
PALLT

S604
-]s t l [-
VICE
TO
PALLT

■[s S604]■
VICE
TO

PALLT

[PLS M126 ;
VICE
PALLT
PLS

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION ,
IN THE SCHOOL OF
ENGINEERING’S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 16

OK TO
PROC­
EED

M132 S604
H/h

M126 X505 X10 X13 Xll H126
h i — i i — i i— i / i— i nVICE PALET VICE VICE VICE
PALLT AT ON ON RAH
PLS LATHE TABLE PALLT RETRD

M132
H h

VICE
PALLT
PLS

VICE
TO

PALLT

OK TO
PROC­
EED

Mill'
H HVICE/
PALLT
ERR

Mill X13
I / I l / bVICE/ VICE

PALLT ON
ERR PALLT

Y33
I

X13
H / bVICE
ON

PALLT

RETRT
VICE
RAM

Mill X13 Y33 S604
H / i — i i— \ n ' 'VICE/ VICE RETRT
PALLT ON VICE
ERR PALLT RAM

M H O
H I---------------------VICE/
PALLT
COMPL

VICE
TO

PALLT

M132
- () -----
OK TO
PROC­
EED

Mill
"() -----
VICE/
PALLT
ERR

Y33
-() -----
RETRT
VICE
RAM

M110
-() -
VICE/
PALLT
COMPL

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 17

X4
1 / IENABL

VICE
PALLT

S604]-
VICE
TO

PALLT

318

[RET]-320

START MACHINING

X5
S605]-
START
M/C 'G

321
ENABL
START
M/C’G

S605
-|s t l |-
START
M/C’G

[PLS M127]-
START
M/C’G
PLS

323

M132
■() ------
OK TO
PROC­
EED

X407 X402 X404 X400 M127X14M127 X17
325

START VERT HORIZ GRIPR ROTAT ENDST MIDST
M/C’G UP
PLS SAFE CONVR

START
M/C’G
PLS

OPEN 0 DEG RETRT VERT
EXT

AT

M132

OK TO
PROC­
EED

M113
- () ------
START
M/C’G
ERR

M132 S605
H / h“H \~OK TO START
PROC- M/C’G
EED

335

M113
H \~START
M/C’G
ERR

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/95 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 18

M113 X500 X412 X413
—I/I— I I— I h H / hSTART IN CHUCK M/C'G
M/C'G CYCLE CLOSE FINSH
ERR

Y437
339

M/C
STROB

Y437

M/C
STROB

M H OM113 X413 X501 Y437 S605
— I / I — H I— — I / 1— 1 /START M/C'G M/C'G M/C
M/C'G FINSH ERROR STROB M/C'G
ERR

345
VICE/
PALLT
COMPL

START

M112

M/C’G
COMPL

X5
1 / IENABL

START
M/C'G

S605]-
START
M/C’G

352

[RET]-354

WORKPIECE TO CONVEYOR

X6
S606]-
WKPCE

TO
CONVR

355
ENABL
WKPCE
CONV

S606
-| STL)-
WKPCE

[PLS M130]-
WKPCE
CONVR
PLS

357

TO
CONVR

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 19

WKPCE ROTAT ENDST VERT
/CONV 0 DEG RETRT UP
ERR SAFE

Y40
I

X400 X407 X17 X14 X402 X404 M130H130
H I — I I — I I — I hWKPCE MIDST GRIPR VERT
CONVR VERT OPEN UP
PLS EXT SAFE

M132
H F

HORIZ ROTAT ENDST
AT 0 DEG RETRT
CONVR

WKPCE
CONVR
PLS

OK TO
PROC­
EED

M115
H/b

X402 X404 X17 X15
H/FHORIZ
AT

LATHE

X15
H/FHORIZ
AT

LATHE

HORIZ
TO

LATHE

M115
— I / I - - - - 1 bWKPCE VERT
/CONV UP
ERR SAFE

X17 X15 X407 X405
H / b

Y40
H/bHORIZ GRIPR ENDST HORIZ

AT OPEN EXTND TO
LATHE LATHE

Y431
I I----------------EXTND
END
STOP

M115 X407 X405 Y431 X503 X503
H/l— I I— I I— I/I— I/I—rH/'WKPCE GRIPR ENDST EXTND TOP TOP
/CONV OPEN EXTND END DOOR DOOR
ERR STOP OPEN OPEN

Y530
I I---OPEN

TOP
DOOR

X405
H/bENDST
EXTND

M132
' () ------
OK TO
PROC­
EED

Y40
"() ------HORIZ
TO

LATHE

Y431
-() -
EXTND
END
STOP

Y530
-(>-
OPEN
TOP
DOOR

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Pro j .-LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 20

M115 X503 X17 X401 Y530 X405 X401
M/I— I I— I I— I/I— I/I— I I—M/i-WKPCE TOP VERT MIDST OPEN ENDST MIDST
/CONV DOOR UP VERT TOP EXTND VERT
ERR OPEN SAFE RET DOOR RET

Y44
I b-RETRT

VERT
MIDST

M115
H/l— I I-WKPCE TOP
/CONV DOOR
ERR OPEN

Y41
I hVERT

DOWN

X503 X401 X405 X16
H/b

X407 Y44
I I l / hMIDST ENDST VERT GRIPR RETRT

VERT EXTND AT OPEN VERT
RET CHUCK MIDST

X16
H/b
VERT
AT
CHUCK

X16 X407M115 X15
I / I | / hWKPCE HORIZ VERT

/CONV AT AT
ERR LATHE CHUCK

X404
/b

Y41
\ /GRIPR ENDST VERT

OPEN RETRT DOWN

Y432
1 I-----------------------------RETRT
END
STOP

M115 X404 X407 X15
H/l— I I— I I— l/hWKPCE ENDST GRIPR HORIZ VERT RETRT
/CONV RETRT OPEN AT AT END
ERR LATHE CHUCK STOP

X404
/HENDST

RETRT

X16 Y432
H/b

X15
I / IHORIZ
AT

LATHE

Y44
-()---RETRT
VERT
MIDST

Y41
"()-
VERT
DOWN

Y432
-() -
RETRT
END
STOP

Y40
-() -
HORIZ
TO

LATHE

Y40
1 b“HORIZ
TO

LATHE

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 21

WKPCE M/C'G GRIPR CLOSE CHUCK
/CONV FINSH CLOSE GRIPR OPEN
ERR

Y437
I bM/C

M115
H / b

X15 X16 Y40
■H/b

X406 X406
/bWKPCE HORIZ VERT HORIZ GRIPR

/CONV AT AT TO CLOSE
ERR LATHE CHUCK LATHE

Y433
H

/bGRIPR
CLOSE

CLOSE
GRIPR

M115
/b

X413 X406
H

Y433
H/b

X411 X411
M MCHUCK

OPEN

STROB

X406 X411 X16 Y437
H/b

X405 X405
/b

M115
H/bWKPCE GRIPR CHUCK VERT M/C ENDST
/CONV CLOSE OPEN AT STROB EXTND
ERR CHUCK

Y431
I I---EXTND
END

STOP

/ [ENDST
EXTND

M115 Y431 X405
I / 1----1 / b

X406 X503 X17 X17
H I— I I— 1/hH/WKPCE EXTND ENDST GRIPR TOP VERT

/CONV END EXTND CLOSE DOOR UP
ERR STOP OPEN SAFE

VERT
UP

SAFE

Y433
"() -
CLOSE
GRIPR

Y437
- () “
M/C
STROB

Y431
-()“
EXTND
END

STOP

Y42
-()----VERT
UP

Y42
1 bVERT
UP

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING’S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:Fl/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 22

M115 X17 X406
H/l— I HH hWKPCE VERT GRIPR VERT MIDST
/CONV UP CLOSE UP VERT
ERR SAFE EXT

Y43
H I--EXTND
VERT
MIDST

M115 X406 X400* X17
H/l— I I— I I— I bWKPCE GRIPR MIDST VERT
/CONV CLOSE VERT UP
ERR EXT SAFE

Y42
I /

X400 X400
I / I I /MIDST

VERT
EXT

Y43
H/b

X504
H/bEXTND TOP

VERT DOOR
MIDST CLOSE

Y531
/b

X406 X17

Y531
I HCLOSE

TOP
DOOR

M115
H/ HWKPCE CLOSE GRIPR VERT
/CONV TOP CLOSE UP
ERR DOOR SAFE

Y37
I I—HORIZ
TO

CONVR

M115
I / I

X504
H/HTOP
DOOR
CLOSE

X14
I / IHORIZ
AT
CONVR

X14
I / |

HORIZ
AT

CONVR

X14 X504 X400 X406 Y37
I /

WKPCE HORIZ TOP
/CONV AT DOOR
ERR CONVR CLOSE EXT

M114
H b

X500

MIDST GRIPR IN HORIZ
VERT CLOSE CYCLE TO

CONVR

S606

WKPCE
TO

CONVR

WKPCE
/CONV
COMPL

Y43
-() -
EXTND
VERT
MIDST

Y531
'()---
CLOSE
TOP
DOOR

Y37
-() —
HORIZ
TO

CONVR

M114
-() -
WKPCE
/CONV
COMPL

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 23

500

502

X6
I / IENABL

WKPCE
CONV

•[R S606]■
WKPCE

TO
CONVR

•[RET]-

WORKPIECE TO VICE

503

505

507

515

X7
1 h~ENABL

WKPCE
VICE

S607
-|s t l [-
WKPCE
TO

VICE

■[s

■[PLS

M131
I h

X400 X17 X14 X406 M131

WKPCE MIDST VERT
VICE VERT UP
PLS EXT SAFE

M132
HOK TO
PROC­
EED

M132
H / \~OK TO
PROC­
EED

HORIZ GRIPR
AT CLOSE
CONVR

WKPCE
VICE
PLS

S607

M117
H HWKPCE

S607]■
WKPCE
TO

VICE

M131]■
WKPCE
VICE
PLS

M132
■() —
OK TO
PROC­
EED

WKPCE
TO

VICE

M117
- () ~
WKPCE
/VICE
ERR

/VICE
ERR

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 24

M117
H /bWKPCE GRIPR ROTAT
/VICE CLOSE 90
ERR DEG

Y430
H b
ROTAT
TO 90
DEG

M117 X403 Y430 X410 X410
H/l— I I— I/I— 1/hH/'WKPCE ROTAT ROTAT GRIPR GRIPR
/VICE 90 TO 90 AT AT
ERR DEG DEG VICE VICE

Y41
I hVERT

DOWN

X406 X403
H/h

X403
H/hROTAT
90
DEG

M117 X410 X12 Y41 X10
H/l— I I— I/I— I/I— I hWKPCE GRIPR VICE VERT VICE
/VICE AT CLOSE DOWN ON
ERR VICE TABLE

Y36
I I--ENABL

VICE

T51
I / IVICE

CLOSE
TIMER

Y35
hJ

M117
H/h

X410 X12
I /

Y41
I /

X10

WKPCE GRIPR VICE VERT
/VICE AT CLOSE DOWN
ERR VICE

T51
I

VICE
ON

TABLE

CLOSE
VICE

T51
I /

VICE
CLOSE
TIMER

Y36
H

VICE
CLOSE
TIMER

ENABL
VICE

Y430
"() -----
ROTAT
TO 90
DEG

Y41
- () “
VERT
DOWN

Y36
"() ------ENABL
VICE

K2.0S
"(T51)
VICE
CLOSE
TIMER

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 25

/ [

CLOSE
VICE

M117 T51 X12 X407 X407
H/l— I/I— I I— l /hWKPCE VICE VICE GRIPR
/VICE CLOSE CLOSE OPEN
ERR TIMER

Y434
I I—OPEN

GRIPR

M117
H/b

X410 X12
H/F

Y36

WKPCE GRIPR VICE ENABL
/VICE AT CLOSE VICE
ERR VICE

Y35
I

T51
I / IVICE

CLOSE
TIMER

GRIPR
OPEN

M117 X407 Y434
I / I 1 I l/h

X17
I / F

WKPCE GRIPR OPEN VERT
/VICE OPEN GRIPR UP
ERR SAFE

Y42
H

X17
I / FVERT
UP
SAFE

VERT
UP

M117
H/b

Y42
I /

X17 X407 X402 X402
I / I T I /

WKPCE VERT
/VICE UP
ERR

Y45
I I----------ROTAT

TO 0
DEG

VERT
UP

SAFE

GRIPR ROTAT
OPEN 0 DEG

ROTAT
0 DEG

Y35
-() -----
CLOSE
VICE

Y434
"() -
OPEN
GRIPR

Y42
"() -
VERT
UP

Y45
-() -
ROTAT
TO 0
DEG

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 26

WKPCE ROTAT VERT
/VICE 0 DEG UP
ERR SAFE

Y432
H 1-RETRT
END

STOP

M117
H/h

M117
H / l -

X402 X17 Y45
H / h

X404
H / hROTAT ENDST

TO 0 RETRT
DEG

X404
H/hENDST
RETRT

Y432
" () ------
RETRT
END
STOP

X404 X402 X17 X407 Y432 S607
H/h

WKPCE ENDST ROTAT VERT
/VICE RETRT 0 DEG UP
ERR SAFE

M116_1| |------------------
WKPCE
/VICE
COMPL

X7
| / | ;---------------------

ENABL
WKPCE
VICE

GRIPR RETRT
OPEN END

STOP

WKPCE
TO

VICE

M116
-() -
WKPCE
/VICE
COMPL

[R S607]
WKPCE
TO

VICE

[RET]

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 27

GENERATE ERROR STATUS

602

M107
H hROBOT LATHE
/SAFE ERROR
ERR ACKNO

X506
H/h

M101
H hVICE/ LATHE
TABLE ERROR
ERR ACKNO

X506
I / 1

M103
H hGRIP LATHE
WKPCE ERROR
ERR ACKNO

X506
I / 1

M105
H hWKPCE LATHE
/CHUK ERROR
ERR ACKNO

X506
I / I

Mill
H

X506
H HVICE/ LATHE

PALLT ERROR
ERR ACKNO

X506
1 / I

M113
H hSTART LATHE
M/C'G ERROR
ERR ACKNO

M115 X506
H I—H/HWKPCE LATHE
/CONV ERROR
ERR ACKNO

M117
H hWKPCE LATHE

X506
I / I

X506
H/hLATHE
ERROR
ACKNO

Y31
" () “
LATHE
STATN
EROR

/VICE ERROR
ERR ACKNO

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF
ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:F1/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 28

GENERATE COMPLETION STATUS

627
M100
H h

X507
H/hVICE/ LATHE

TABLE STATN
COMPL COMPL

X507
H / h -LATHE
STATN
COMPL

Y30
- (> -
LATHE
STATN
COMP

M102 X507
H ' I | / h “GRIP LATHE
WKPCE STATN
COMPL COMPL

M104 X507
H I— I / 1—WKPCE LATHE
/CHUK STATN
COMPL COMPL

M106 X507
H I— I / \—ROBOT LATHE
/SAFE STATN
COMPL COMPL

M H O X507
H I— 1/ \~VICE/ LATHE
PALLT STATN
COMPL COMPL

M112 X507
H I— H / h"M/C'G LATHE
COMPL STATN

COMPL

M114 X507
H I— I / 1—WKPCE LATHE
/CONV STATN
COMPL COMPL

M116 X507
H I— i / 1— 1WKPCE LATHE
/VICE STATN
COMPL COMPL

CONTROL OF WORK
HANDLING, GANTRY
ROBOT AND MACHINING
FOR LATHE STATION
IN THE SCHOOL OF

‘ ENGINEERING'S FMC

SHEFFIELD HALLAM
UNIVERSITY

Appendix H Proj:LATHE

Date: 18/01/96 Syst:Fl/F2

Rev.no: 2 Type:Ladder

Draw.no: Sign: A.T. Page: 29

652 [END]-

o
EQUIVALENT ARC NOTATIOt

c a

LATHE

ISSUE
EQUIVALENT PLACES

FOR TURNING, FOR MILLING

OR BOTH (IOR)

PETRI NET
CELL HOLD NOT SHOWN

BOUNDED K=1

AND AT INDEX

i s i

Updated Puma Controller
PN Graph

CCi PLC
Enable Vice to Table PN Group

{Puma WS1
PLCPLC(

PC

j

I
PLC »■

PLC

PLCPLC

2 SH

Enable Close Vice PN Group
{Puma WS1CC 3 (c« PLC

PLCPLC

PC2 SH
CC 6

CC 7 PLC

PLCPLC

1

1I
jPLCPLC (•'**’

4 SH I
'J

CC10(®S, i Enable Vice to Pallet PN Group
{Puma WSI

P L C (?“« IPLC

— y m sh

— yE^ plc

—►(!-) s h

 t / E z) PLC

IPLC(PC

PLCI «■ IfI
I

SH

PLC PLC

ISH

PLC PLC

The UnificationSH

