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ABSTRACT

This thesis suggests a general approach for estimating the trend of a
univariate time series. It begins by suggesting and defining a set of
"desirable" trend properties, namely "Fidelity", "Smoothness",
"Invariance"” and "Additivity", which are then incorporated into the

design of an appropriate non-stationary time series model.

The unknown parameters of the model are then estimated using a wide
selection of "optimal" procedures, each parameter having at least two
such procedures applied to it. Attention is paid to the development of

algorithms to implement the procedures in practice.

The model is gradually extended from a basic, non-seasonal model
consisting of a simple lagged trend to a general, seasonal model

incorporating a variable parameter, general autoregressive trend.
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INTRODUCTION

INTRODUCTION

The main aim of this introductory chapter is to put the reader in the

correct frame of mind for what follows in the later chapters.

The ideas which motivated the thesis did not begin, and will doubtless
not end, with the thesis itself, but have evolved over, what is now, a
period of about fifteen years. In this respect the thesis is simply a
suitable véhicle, which came along at the right time, and which
provided the means by which I might illustrate the application of what

are a set of more general and fundamental concepts.

Hence, in order to fully understand what this thesis attempts to
achieve and equally why I felt such an attempt was important, it is
necessary to appreciate the events which led up to it. In doing so I
need to address, (albeit from a slightly different angle), some fairly
basic "time series" concepts and although I can sympathise with the
more specialist reader for having to go over what will be familiar
territory, I make no apologies, since I feel it is essential that the
all readers are aware of "where I’m coming from" to use contemporary

vernacular.

0.1 THE ORIGINS

The origins of this thesis lie in the late seventies, a period during
which I worked for both Industry and the Government as a practising
statistician. From my experience at least, the aspect of time series
analysis which most concerned both sectors was the evaluation and
forecast of trends, although each sector adopted a quite different

approach to the problem.

Their different approaches, which coloured their different concepts of
trend, were essentially practical and were decided by which particular

computer package had been chosen for their main-frame computer. (It
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should be remembered that at this time the Personal Computer, or at

least a P.C. of sufficient power, was not commercially available).

The Government stood firmly by the traditional form of time series
decomposition in using the X-11 seasonal adjustment program developed
by its American counterparts, (Shishkin et al, 1967), at the Bureau of
the Census, (1969), (see also Den Butter and Fase, 1991), whilst
Industry was increasingly ©being converted from the earlier
exponentially-based methods of Brown, (1959, 1962) and Winters,
(1960), to the more sophisticated ARIMA adopted by the Box-Jenkins
package, (1976), (see Bowerman and O’Connell, (1979), for an excellent

dual account of these).

Also for completeness I should perhaps mention two other approaches,
namely Spectral Analysis, (see Priestley, 1981, for a comprehensive
exposition), which had some success in specialised areas, and State
Space techniques, whose basis lay in the Kalman filter, (Kalman, 1960,
1963), and which was under development in applications such as
Bayesian Forecasting, (Harrison and Stevens, 1976), (see Abraham and

Ledolter, 1983, and Hamilton, 1994, for excellent treatments).

As previously mentioned, my main concern was the inconsistent, and
what I felt was inadequate, way in which both the X-11 and Box-Jenkins

models evaluated the trend, which it is instructive to review.
0.11 THE X-11 APPROACH
This disaggregates the each time series observation, Yo into its
constituents of trend, xt, seasonality, S, and residual, e, as
follows,

y, =X ts te (0.01)
The trend values and seasonalities Xt’ are essentially calculated by

repeatedly smoothing yt, using moving averages, to give X, seasonally

smoothing AN to give S, and then adjusting the S, to produce no
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overall aggregated yearly seasonality. (Minor variations on this theme

are adopted for the multiplicative model, y, = xt.st.et).

The point is that there is no particular model, as such, for the
trend, which is purely defined as a moving average which immediately
raises the problems of end-effects and forecasting, (points which are

addressed to a certain extent by Dagum, 1975, 1980).

These inadequacies are confirmed by the Government’s reluctance to
publish the trend figures. Instead it provides, what are known as,
seasonally adjusted values, which are the values of Y, 7S, - Note from
equation (0.01) that these are also the values of xt+et, i.e. the
values of the trend plus its residual. Given the large residuals in
many Government series, these values can be very misleading to the

uninitiated.
0.12 THE BOX-JENKINS APPROACH

Here, the observed series, z , is expressed in terms of "k" of its
t
previous values, Ztl’ ztl, cee ztk, and an independent residual,

e, i.e.
t

z =9 .z + 9 .z + ... +9 .2 + e (0.02)

In terms of the backward operator B, such that IBk.zt =z o this can

be written,

_ _ _ 2 _ _ k -
G)k(rB).zt = (1 ol.[B 02.[8 @k.[B ).zt e, (0.03)

The model also contains the constraint that the series z, is
stationary which in terms of equation (0.03) means that z, can be

written as,

_ -1
z = @k(B) 'et (0.04)
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In other words that the function @k(B) can be inverted. If it cannot
Box-Jenkins suggest differencing the original series yt, (i.e.
successively applying the difference operator (1-B) to yt), until this

is the case. Hence after differencing "d" times, the model becomes,

d _ _ -1
(1-B) Y, =2 = ®k(BJ e, (0.05)

Note that there is no specific mention of either the trend, Xt’ or, in
the more general model, the seasonality, S, - In the case of equation
(0.05) it is recovered as the difference between the non-stationary

series, yt, and the stationary series, zt, i.e.

— — = —_ — d
X, =V, "2 (1-(1-B) ).yt (0.06)

This differencing operation innately assumes that the trend is
polynomial in nature, which is constricting, but also has some rather
odd side-effects, when we try and relate it to the model of equation
(0.01).

Suppose, for example that the true model of the observations can be
written as a simple polynomial in time plus an independent residual,

i.e.

_ 2
Y, = by * b1.t * b .t7 4 e (0.07)

Differencing this model three times to achieve stationarity-gives,
(1-B)%.y, =z = (1-B)°.e (0.08)

A N -e, .
However the function (1—[B)3 is not invertible, and hence the simple

polynomial model of equation (0.07) cannot be modelled using the

Box-Jenkins approach.
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0.13 WHAT IS TREND?

From the last two sections we see that an X-11 user defines trend in
terms of moving averages, whereas a Box-Jenkins user would define it
as the difference between a non-stationary and stationary series.
Alternatively, a spectral analyst regards it as the combination of all
those cycles whose time periods are longer than the series itself. In
other words, whilst exact definitions exist, they are different and

all peculiar to whichever form of analysis they are produced by.

As soon as we try and obtain a non-specific definition, this exactness
is replaced by vagueness. For example, O’Muircheartaigh and Francis,
in their statistical dictionary, (0’Muircheartaigh and Francis, 1981),
begin to describe trend as "The broad underlying movement of a time

series".

This raised the question of whether one could draw up, if not an exact
general definition, then at least a set of desirable properties which
a trend should possess. If this could be done, then the general
estimation of trend could be approached from its definition and/or

properties and not arrived at as a bi-product of other techniques.
0.14 DESIRABLE TREND PROPERTIES

With the above in mind I drew up an initial set of the following four

properties.
0.141 Fidelity

This property attempts to put the words "broad underlying movement"
into some more exact form. It basically says that the trend values,
xt, and the original observations, yt, should not deviate too much

from each other for any significant period of time.

On a very simple 1level this could, for example, suggest that a

function of the form,



INTRODUCTION

Fidelity = (yt-xt)z (0.09)
is kept as small as possible.
0.142 Smoothness

This property states that the trend series itself should follow a
reasonably smooth curve, which has no sudden jumps. To me this seems
intuitively obvious, since if I am presented with an apparent trend
which is not "smooth"”, I find myself still having to mentally smooth

the series to obtain its underlying movement.

Nevertheless it must be said that there are many statisticians who
would dispute this criterion of smoothness; largely because the time
series analysis technique they happen to use, produces a trend as one
of its bi-products, which could not, under any liberal interpretation,

be considered to be smooth.

However, I do have, or rather did have, one great proponent, the late
Sir Maurice Kendall, who said "The essential idea of trend is that it
shall be smooth, which in practice means that we should like to
represent it by a continuous and differentiable function of the time",

(Kendall, 1973).

Again, on a very simple level this could, for example, suggest that a

function of the form,
2
Smoothness = z (x-x ) (0.10)
t T t-1
is kept as small as possible in the case of a discrete time series.

In fact we can go further and generalise the definition from first

differences to differences of order "d" by writing it as,
Smoothness = Z (Vd.xt)2 (0.11)

where V.x = (1-B).x = x -X
t t t Tt-1
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0.143 Invariance

If the original observed time series, Yo consisted of values which
exactly fell on a straight line, i.e. y, = b0 + b1’t’ it would seem
fairly obvious that the resulting trend values, X, should also fall

on the same straight line, i.e. that X, = bo + b1't as well.

Stated formally, this would mean that the model should be invariant to
straight line data. Extending this property would imply that the trend
model should be invariant to as many simple functions as possible,
notably the polynomial family, (since other "well-behaved" functions

can be approximated by them, using Taylor’s theorem).

In fact, if the Fidelity and Smoothness example suggestions of
sections 0.141 and 0.142 are adopted, we can see that this property is
automatically taken account of to a certain extent.

0.144 Additivity

This states that if the general trend value of a particular observed

series of "T" wvalues, Yo Yy eee s Yoo is defined as the function
Xt(y1’ Yo cor y&) and for another observed series of "T" values,
zZ, Z, ««. , 2, as wiiz, z, ... , z), then the trend function

1 2 T t 1 2 T

i +

xwt(y1+zt, Y ¥Z s eee y&+zT) based on the observed series, Y. *2,
y+z_, ... , y +z_, should be such that xw = x + w .

2 "2 T T t t t

Note that if the form of the trend function is linear, then,

X S0ty tely +o by (0.12)
wt = Bo + Bl.z1 + Bz'zz + ... + BT'ZT (0.13)
xw =yt y . (yrz) fy,(yrz) v+ (y,+z.) (0.14)

and the additivity property is satisfied if the % coefficients
satisfy,
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¥, = « B, and 7 = (ak.yk+Bk.zk)/(yk+zk) for 1 =k =T (0.15)

In other words this condition enables us to test whether particular
trend models are consistent for aggregated series,(such as total
costs), and their disaggregations, (such as labour and material

costs).
0.15 A BASIC TREND MODEL

Weighting together equations (0.09) and (0.10) we obtain the following

function, ¢, defined as:

T T
p = (1—p).z (xt- yt)2 + p.z (xt— Xt—1)2 (0.16)
t=1 t=2

where 0 = p =1

Hence by minimising ¢, it would appear that we would satisfy
properties 0.141, 0.142 and, to a lesser extent 0.143. This was not a
particularly new function as I had experimented with it previously
whilst ‘developing other smoothing methods. By varying the smoothing
parameter, p, a time series could be smoothed to any degree one
fancied. However, at the time, minimising ¢ appeared to be Jjust

another smoothing algorithm.

In fact, I was not the only one who had experimented with ¢, since, as
it later turned out, Whittaker, (1923, 1924), had been doing the same

thing almost sixty years earlier.

However what Whittaker missed, or at least did not follow up, was
what, with dramatic simplicity, changes equation (0.16) from vyet
another smoothing algorithm to a complete time series model, thus
opening it up fully to areas such as estimation, (with which this

thesis is mainly concerned), inference and forecasting.
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All this requires is that the differences Y X and X, X be defined

as random variables et and at, thus,
y =X + e (0.17)

X =X + a (0.18)

Equations (0.17) and (0.18), which might be termed the "Fidelity" and
“Smoothness" equations, constitute, what is termed in this thesis as,
the "Basic" model, which, we shall be extending as the thesis
develops. For example, we will be generalising the "Smoothness"

equation of (0.18) to have an autoregressive structure given by,

X =79 .X + 9 .x + ...+ 0 X + a (0.19)
1 2 d

in which the autoregressive parameters, ﬂi, are either pre-specified,
(fixed parameter model), usually to satisfy invariance properties, or

need to be estimated, (variable parameter model).
0.16 ESTIMATION

As we shall see, estimation of the trend values, xt, will, for the
“Basic" model of equations (0.17) and (0.18), also require the
estimation of the variances of e, (oez), and a, (oaz), which we shall
refer to as "residual" variances. In addition, for the "General",
(variable parameter), model, which utilises (0.19) in place of (0.18),
we shall also require estimates of the autoregressive parameters, i.e.

(0i), the set of 01, for i=1 to d.

The philosophy behind the process of estimation in this thesis is to
investigate as many different procedures as possible. However, in
doing so, we have deliberately limited our search to estimators that
are produced as a result of some form of "optimal" process, (on the
assumption that this will, in consequence, result in estimators which

possess "optimal" properties).
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{CHAPTER 1}

(B) THE RESIDUAL VARIANCES (Gea, 0a2)

(I) USING MAXIMUM LIKELIHOOD

{CHAPTERS 4,5}
(II) USING MINIMUM VARIANCE OF QUADRATIC FORMS

(C) THE AUTOREGRESSIVE PARAMETERS (61)

(I) USING LEAST SQUARES

{CHAPTER 7}
(II) USING MAXIMUM LIKELIHOOD
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INTRODUCTION

The table on the previous page summarises the estimation procedures
which we shall be using within the context of the overall trend
estimation approach. In the next section we go into a 1little more

detail regarding the structure of the thesis.

0.2 THESIS OUTLINE
- 0.21 CHAPTER ONE

The chapter begins with a matrix formulation and minimisation of
Whittaker’s function of equation (0.16) to produce trend, (xt),
estimates, going on to look at some results for different values of

the smoothness parameter "p".

We then move on to the "Basic" model described by equations (0.17) and
(0.18), and, after consideration of distributional assumptions,
estimate the trend values using Classical, Generalised Least Squares,

(GLS), regression.

We continue by showing how the above two processes will produce
identical trend estimates if the smoothness parameter is suitably

interpreted in terms of the model’s residual variances.

Finally we conclude by discussing the limitations of the basic model
with respect to the "Invariance" property and hence introduce the,

more general, autoregressive trend of (0.19), which overcomes these.
0.22 CHAPTER TWO

Chapter two is exclusively concerned with the State Space approach to
solving the general autoregressive model introduced in the previous

chapter.
After formulating the model in State Space format, and introducing the

main ideas of the method, it goes on to apply the usual three-stage

procedure of prediction, filtering and smoothing, albeit without the

1
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need for Normality assumptions, to produce another set of trend

estimates.

Being essentially a Bayesian technique, no investigation of State
Space methodology would be complete without consideration of prior
distributions, and the chapter ends by looking at what a "vague prior"
would imply for the State Space starting values; producing a result

required in the next chapter.
0.23 CHAPTER THREE

The chapter again concerns itself with State Space methodology, and
begins by showing that, given the assumption of a vague prior, the
State Space estimates and those of the Classical approach of chapter

one produce identical results.

The rest of the chapter examines the stages of the State Space
procedure in more detail, ending with a little more insight into its

interpretation of smoothness.
0.24 CHAPTER FOUR

Chapter four concerns itself wholly with the theory behind the
estimation of the variances of the residuals, e, and a, which

necessitates the re-introduction of a Normality assumption.

It begins by showing how Classical and State Space approaches both
lead to the same Likelihood function, which is then maximised to
produce a set of equations, whose solution gives the residual variance

estimates.

It then goes on to consider an alternative, Minimum Variance approach
which utilises some known results relating to the variance of the
quadratic form, showing that this gives rise to same equation set as

those produced by Maximum Likelihood.

The chapter finishes with a short section highlighting the difference

12
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between the optimal variance estimates produced earlier in the chapter

and those "intuitively" based on mean squared residuals.

0.25 CHAPTER FIVE

Chapter five continues the work on residual variance estimation by
showing how the optimal variance equations of chapter four could be
efficiently solved in practice, by taking advantage of the different
ways by which they were produced. It concludes with a general

algorithm for their estimation.

0.26 CHAPTER SIX

In chapter six the non-seasonal model, so far discussed, is extended
to include the effects of seasonality, adapting the techniques of the
previous chapters to reproduce their main results for the seasonal

case.

0.27 CHAPTER SEVEN

Chapter seven 1is concerned with the estimation of autoregressive
parameters, (i.e. the variable parameter model), for "both the
non-seasonal and seasonal cases. Two estimation procedures are dealt
with, (Least Squares and Maximum Likelihood), and the conditions under

which their estimates are identical is addressed.

0.28 CHAPTER EIGHT

Chapter eight is a short chapter containing some suggestions for
further work, discussing limiting forms, model extensions, inference,
forecasting, data trials and multivariate models.

0.29 CONCLUSION

The thesis concludes with a short summary of its achievements and

limitations.

13
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t

0.3 THE TREND MODEL IN HISTORICAL CONTEXT

Whilst there are to my knowledge no examples of applying the direct
approach, suggested by this thesis, to the problem of trend
estimation, we are able, by tracing the development of Whittaker’s
function in (0.16), to see how models similar to the ones adopted by

this thesis, have been applied in other areas.

As has already been mentioned earlier in the chapter, I was not the
first person to have considered the merits of Whittaker’s function and
so I did not expect that I would have been the first to investigate
the model of equations (0.17) and (0.18). I was not disappointed in
this, and in this section I take the reader through those events which
were either related to or utilised the formats of either equation

(0.16) or equations (0.17) and (0.18).
0.31 WHITTAKER’S SMOOTHING FUNCTION

The story begins on the 14th November 1919, at the Edinburgh
Mathematical Society, where Professor E. T. Whittaker read a paper
entitled ‘On a New Method of Graduation’. It took four years for the
paper to be published, (Whittaker, 1923), which suggests it underwent
substantial revision. A year later Whittaker included the idea in a
small part of a chapter entitled ‘Graduation, or the Smoothing of
Data’ in a treatise (Whittaker and Robinson, 1924) on numerical

mathematics.

One of the interesting points regarding both the paper and the book
are the pains to which the authors went to show how a solution, once
derived, could be implemented. Page upon page is devoted to performing
a series of example calculations, which transform data from one column
into another and then into another and so on in a series of simple

stages in order to arrive at the required result.
As we shall see this updating process is fundamental to the philosophy

of State Space modelling. Whittaker wused it to solve, albeit

approximately, (he actually needed to choose a relatively high value

14
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for "p" of about 0.95 in equation (0.16) to achieve his result), what
was in essence a minimisation problem and whilst we certainly cannot
attribute the ideas of updating (or recursive filtering or feedback
control, to give it two of its modern synonyms) to Whittaker, the fact
that he was able to effect any solution at all to his problem of
graduation is because the methods of updating and minimisation are, in

reality, just two sides of the same coin.

The equivalence of updating and minimisation, or State Space and
Classical approaches to the problem of graduation or smoothing one of
the topics of this thesis. Familiar bells begin to ring, when it is
appreciated that State Space modelling is essentially a Bayesian
technique since, as Lindley demonstrates in his books on Probability
and Inference, (Lindley, 1965a, 1965b), most Classical techniques can
be shown to be special cases of their Bayesian counterparts, (see also

Lindley, 1972).

When Whittaker explained his method of graduation, he never actually
used the word trend as such, although he did say "....there is a
strong antecedent probability that if the observations had been more
accurate the curve would have been smooth .” In other words he
addressed his ideas to the scenario of an underlying smooth process
whose observations exhibited erratic behaviour because of measurement
errors. I shall be taking up this point later. It is essentially what
is meant by the a State Space approach, and, although it is highly
unlikely that he fully appreciated the potential of what he had hinted

at, his words were nevertheless interestingly prophetic.

However, Whittaker did something much more concrete than unwittingly
hint at what was to become a standard time series technique. He
suggested a compromise. The two most important words he used in his
paper were smoothness and fidelity. His trend was to be a compromise
between its smoothness and its fidelity to the original data. On the
one hand he could represent the trend by a horizontal line drawn
through the middle of the series of observations. This would certainly
be smooth but would in no way reflect any inherent movement in its

level. At the other extreme he could faithfully reproduce every little

15
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twist and turn of the original data and regard the trend as synonymous
with the original series. There would be no concession to smoothness
in this case. The weighting would be one hundred percent on fidelity,
but obviously, in choosing this trivial extreme, the trend would

retain one hundred percent of the series’ observed erratic behaviour.

His compromise was to have something in between, by weighting together
the smoothness and the fidelity, which in turn meant that he had to be
able to measure both of them. His measurement of fidelity was
straightforward. He required some function of the differences between
the observed values and the resulting trend. He referred to these
differences as measurement errors. Not surprisingly he chose squared
differences for probably much the same reasons that the variance
function is chosen as a measure of variability i.e. it is the simplest

even function which utilises all the data and is also differentiable.

A smoothness function was not quite so straightforward. In Whittaker’s
words "We may make the somewhat vague word ’smooth’ more precise by
interpreting it to mean, e.g. that the third differences of the
derived series are to be very small.” Why third differences? The
obvious choice would have been the simplest case of first differences.
As we shall see later the choice of first differences produces some
very odd results with certain types of series since it 1is only
invariant for a set of observations with a constant mean, (see section

0.143).

Whittaker knew what he was doing. He’d probably tried out the first
differences case on some simple series and realised its limitations,
and in doing so further realised, that to be able to successfully
avoid this type of problem arising in a practical situation, he would

need to move up to a third level of differencing.

The reasons for Whittaker’s choice will become evident as this thesis
develops. For Whittaker to have been aware of this possible pitfall
meant that he either, had tremendous insight, or that he, or his
assistant, spent many long nights with slide rule or log tables. To be

realistic, the truth probably lay somewhere in between.
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In order to aid understanding in the initial stages of chapter one of
this thesis, the simpler definition of smoothness wusing first
differences is adopted and hence we will refer to equation (0.16) as
Whittaker’s equation and define ¢ in this equation to be Whittaker’s
smoothing function. The model of equations (0.17) and (0.18) is
referred to as the basic model. Later on in the chapter, the
definition is extended to a more general function and hence a more
general model, which will include both first differences and

Whittaker’s third differences as special cases.
0.32 WAHBA’S SPLINE SOLUTION

Through the seventies, the theory of spline functions was successively
developed by Wahba and others, (in order of development Reinsch, 1967,
Kimmeldorf and Wahba, 1970, 1971, Wahba and Wold, 1975, Wahba, 1977,
Golub, Heath and Wahba, 1979, and Craven and Wahba, 1979), and
applied, wusing a @generalised method of cross-validation, to
Whittaker’s problem, giving values, not only for each X, but for the
value of "p" in equation (0.16) and the value of "d" in equation
(0.11) also. The drawback was that the method was computationally
0(T3), i.e. the number of calculations required increased, (at least),

in proportion to the cube of the number of data points.

0.33 SHILLER’S SMOOTHNESS PRIORS

In 1973 a paper by Shiller, (Shiller, 1973), investigated the
prediction of a known time series Y, from another known series z,

using distributed lags, i.e. a relationship of the form:

y, = Bo.zt + 31'Zt—1 + ... 4 BL.zt_L + €, (0.20)

The problem with the usual regression solution to the problem was that
it produced B coefficient values that had a seemingly random pattern,

which made no sense from an econometric point of view.

His solution was to place a constraint on the Bi, such that their

17
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differences, Vn.Bi, had a prior Normal distribution. This, coupled
with an assumption of Normality for the e, egave a posterior
distribution, and hence a 1likelihood function, for the Bi. Given
certain variance parameters, he could then maximise the likelihood to

find estimates for the Bi.

Thus, the technique of choosing a prior distribution for model
parameters in order to ensure their resulting smoothness was initiated
and the term "smoothness priors" was born. (One can can regard
smoothness priors as a special case of Bayesian priors, initially
introduced, (Good, 1965), and developed, (Good and Gaskins, 1980), by
Good).

0.34 THE WORK OF AKAIKE

Akaike built on the work of Shiller, developing his ideas, (Akaike,
1979a, 1979b, 1979c, 1980a, Akaike and Ishiguro, 1980), within the
framework of a model incorporating trend and seasonality, i.e. Y, T %,
+ st + €, By placing smoothness priors, (in difference form), on the
trend, X, and seasonal, S, parameters, he produced a likelihood
function which could be numerically searched to give, not only
parameter values but also their asymptotic variances, (often referred

to as hyper-parameters, see Akaike, 1980c).

He was able to go even further since he had, in his armoury, his,
(AIC), information criterion, (Akaike, 1973, 1974, Kitagawa and
Akaike, 1978), which he used to determine the "optimal" order of
non-seasonal and seasonal differencing, (Akaike, 1980b). Akaike’s

approach reduced the computational complexity from 0I[T°] to OI[T?].
0.35 THE STATE SPACE APPROACH OF GERSCH AND KITAGAWA

During the seventies an approach to modelling time series had been
developing, (Weinert, 1979), which was based on the filtering methods
of Kalman, (1960, 1963). It was termed State Space modelling since it
purported to encompass the whole of a time series’ previous history

within (the Space of) a small number of current, (State), parameters.
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Kitagawa, who worked for Akaike in Tokyo, realised that Kalman’s
equations were efficient, well-behaved and above all adaptable and
subsequently, (Kitagawa, 1981), formulated Akaike’s ideas into State

Space form, a form which was computationally OI[T].

Independently, Gersch, (Brotherton and Gersch, 1981), reached the same
conclusion, three thousand miles away in Hawaii, and also made the
connection with Whittaker’s work, something that Shiller, Akaike and

Kitagawa had missed.

What followed, either by chance or design, were the first, (Kitagawa
and Gersch, 1982), (Gersch and Kitagawa, 1983b), (Kitagawa and Gersch,
1984), of several joint papers, by Gersch and Kitagawa, (while both
were A.S.A. fellows at the U.S. Bureau of Census), which developed and
refined the smoothness priors approach, by incorporating additional

refinements such as trading-day adjustments etc.
0.36 FURTHER DEVELOPMENTS

The latter half of the 1980’s saw the utilisation of the smoothness
priors approach to several models, whose application had, previously,
been limited to stationary series, e.g. non-linear regression,
(Shiller, 1984, Eubank, 1986), transfer bfunctions, (Gersch and
Kitagawa, 1984, 1989), multivariate models, (Gersch and Kitagawa,
1983a, Gersch, 1989, Gersch and Stone, 1990), distributed lags,
(Thurman et al, 1986, Polasek, 1990), and non-stationary covariance
structures using spectral estimation, (Kitagawa and Gersch, 1985a,

1985b).
0.37 ADDITIONAL MATERIAL
In addition to the specific topics covered above, papers (Gersch,

1987, Gersch and Kitagawa, 1988, Kohn and Ansley, 1988, Terasvirta et

al, 1988) contain informative general expositions.
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CHAPTER ONE

CLASSICAL APPROACHES TO TREND ESTIMATION

1.1 A MATRIX SOLUTION TO WHITTAKER’S PROBLEM

In this chapter we begin by investigating the solution of, what will
be referred to as, Whittaker’s problem, discussed in the last chapter.

Let us restate the problem identified by equation (0.16) in the

introduction:
Given a sequence of T observations yl, yz, ey yt, cee yT we need
to find the corresponding estimates, Ql, Qz’ e Qt, ooy QT of a
sequence of trend values X1’ Xz’ e xt, e xT which minimise the
function ¢ where:
& 2 & 2
p = (1-p).z (Xt_ yt) + p.z (xt— Xt—l) (1.01)
t=1 t=2
and 0 =p=1 (1.02)
This is equivalent to minimising ¢ where:
& 2 & 2
b= ) (x-y)%F (1/0).) (x-x ) (1.03)
t=1 t=2
where w = (1-p)/p, and hence 0 <= w =< © (1.04)

We can regard w as a sort of odds ratio. As the proportional
smoothness, p, increases from zero to one, the value of w drops from
infinity to zero. Thus the higher the value of w, the nearer

Whittaker’s estimates, Qt, will be to the original series yt.
1.11 WHITTAKER’S PROBLEM IN MATRIX FORM

We shall find it useful to define the °‘fidelity’ or the measurement
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errors, et, given by the difference between the observed series, yt,

and the required trend, xt, as:
e = y -X (t=1,2,...,T) (1.05)

and the ‘smoothness’ or structural errors, a,s given by the

differences between successive trend values, Xt and th’ i.e.

a = X -X (t=2,3,...,T) (1.06)

et2 + (1/w).z at2 (1.07)

<
1}
ne~1-

e = = X
T yT T

e = - X
2 y2 2

e = - X
1 yl 1

or, more conveniently, in vector terms, as:

e =y-x (1.08)
T
where y =y, s Yo yl)
X = (x, ... X, X))
= T’ - |
el = (e e, e)
- T "7 T2’ T

Similarly writing out the set of T-1 equations (1.06) in full we have,

21



CHAPTER ONE

a = X - X

T T T-1
a_ = - X

3 3 2
a_ = - X

2 2 1

and again in vector terms, as:
a =D.x (1.09)

where: a =(a, ..., a, a2)

+1,-1, 0, 0, 0, O, ........
— 0,+1,-1, 0, 0, 0, ........
B 0, 0,+1,-1, 0, 0, ........
....................... etc
Hence (1.03) or (1.07) can be written,
v=(y-x"(y-x)+ (1/0).x.D".D.x (1.10)

1.12 OPTIMISATION

Because ¢ in (1.10) or more clearly (1.07) is a weighted sum of
squared errors, the value of g obtained by minimising ¥ can be thought
of as a least squares estimate or perhaps, more correctly, a weighted

least squares estimate.

Differentiating ¢ in (1.10) with respect to x, and setting the result

equal to zero gives:

ie. (1/0).D".D.%8 = (y - %) (1.11)
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where g is the Tx1 vector of Whittaker’s estimates, i.e.

AT _ A A A
X = {xT, cee s X, X1} (1.12)

Rearranging (1.11), we get:
y = (I +DD/w).2 (1.13)
where IT is the T x T identity matrix.

Hence Whittaker’s estimate, g, of X, 1s given by:

= (I + D'D/w) .y (1.14)

| %>

a new, efficient solution of which follows:
1.13 AN EFFICIENT SOLUTION TO WHITTAKER’S PROBLEM
Whittaker’s estimate, g, given by (1.14), can be rearranged to give:

= 0.y (1.15)

| %>

T
(w.IT + D.D).

Writing the equations out in full gives:

A A -
(1+w).Ax1 - i? . = 0.y, (1)
X+ (2+w).x2 - X, = 0.y, (2)

A A A _
- X 4 (2+w).x3 X, = 0.y, (3)

A A A _
Xt (2+w).xt - X, = 0.y, (t)

A A _
-X 0t (1+w) . X = w A (T)
....(1.16)
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The problem now is, to use these T equations, to find the T unknowns
Ql, Qa’ e QT. One obvious solution is to use Gaussian Elimination
to solve the set of linear equations. Teodorescu uses this to solve
the same problem, (Teodorescu, 1989). However, there is a better way of
proceeding which not only solves the problem more efficiently, but
also gives us an interesting insight into what happens when we come to

view the situation through State Space glasses.

The first thing to notice is that, apart from the first equation and

the last, all the equations are of the form:

A A A
-X + (2+w).X - X

o1 N ey = @Y 1<t<T (1.17)

t

The characteristic equation of the recursive relationship on the left

hand side of this equation i.e. between the Q’s is:

A - (2tw)Aa+1=0 (1.18)

This is an important equation which will be met in a different context

in chapter two. It has solutions:

A= 1+0/2 £V (1+w/2)%-1 (1.19)

Since w/2 < (1+w/2)%-1 < (1+w/2)%, for w > 0, then the smallest of the

roots, call it A", where:

* / 2
A= 1+w/2 - (1+w/2)"-1 (1.20)

must lie between 0 and 1. The largest root, equal to 1/A*, must, since
their product is unity, therefore be greater than one. Note that the

following relationships exist between w and h*.
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* * * o %
2t = A+ 1/Aa and w= (1-A)7/A (1.21)

We can therefore write equation (1.17) as:

) NI U T
t-1 t

A
X

» = ((1—7t*)2/7\*).yt (1.22)

= w.y,

for 1 < t < T, where A* is defined as in (1.20).

The next important step is to introduce a new variable ft’ which in
the 1light of what is to follow in chapter two, may be termed a

pseudo-filtered value. This is defined, for 1 < t < T, as:

"_/\_ * A ._*=A _*‘_*/\ _-lk
ft = (xt A .xt+1)/(1 A) xt/(l A) A .xt+1/(1 A) (1.23)
Hence (1.22) can be written:
Fo=a"f (1-2%) (1.24)
=2a. + (1-1). .
ft t-1 Ye

Increasing the time period by one and rewriting (1.24) we have, now

for 0 < t < T-1,

~ * ° *
£, = A+ (U-A)y, (1.25)

Again, we shall derive a very similar relationship to this in chapter
two. By using the first equation of the initial set of equations

(1.16), namely,

(1+w).§1 - X =00y (1.26)
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together with with (1.23) and (1.24) above, it is relatively easy to
show that:

(1.27)

which would imply a value for Qo of,

2 =f =% (1.28)
0 0 1

Similarly, by using the last equation of the initial set (1.16), we

can show that:

T T T+1

The values of Qo and QT“ are not strictly required in obtaining the

solution. Again, however, their relevance will become apparent later.

We now have the apparatus necessary for calculating the trend
estimates Ql, Qz’ cee QT. Firstly, we choose a value for %0;
anything will do, although in the light of (1.28), perhaps a proxy for
Ql i.e. y, is the best starting value.

We then use the recursive system of (1.24), namely:

*

~ ~ *
£,=ALE,  + (1A).y, (1.30)

~ A ~ ~

to suci?ssively generate values f1’ fz, f3, e fT. Notice that
since A lies between 0 and 1, our starting value loses its influence
very quickly i.e. it is a transient; so that if the initial error in
chogsing %o is e*:Pen from repeated application of (1.30), the error
in fT will be (A ) .e, i.e. proportional to A to the power T, a very

small value.
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We now arrange equation (1.23) to give:

A
X

x>

*
= A .

* ~
. o1 T (1-a ).ft (1.31)

. A A : . .
To obtain a value for X, e need a value for Xz which is given by

(1.29) as fT. We can then successively generate the values QT-l’ QT-Z’
A A .
X g -+ » X using (1.31).

Again note that since the coefficients A* and (1-A*) both lie between
0 and 1, the effects of the sF?rting value Eo’ are even further
reduced i.e. since the error in fT, and hence QT, is (A*)T.e, then,
from repeated application of (1.19), the error in Qi will be

* 2T7-1 .
) .e, a minute value.

From (1.28), we can now use this calculated value of Ql as a new

starting value for fo’ and repeat the process until it converges to
A

any repeated value of Xt'

. . - * . 2T-1 . <
Since the new error in fo must be (A ) times the value of its
initial error, and A* lies between O and 1, very few, if any, repeats
are needed no matter how large the initial error. Also note that the

process will always converge however short the length of the series.

Therefore the solution to the equations in (1.16) simply requires the
recursive application of equations (1.30) and (1.31) above, equations

not dissimilar to those encountered in exponential smoothing.

1.131 MATRIX INVERSION

Notice that the above technique also permits the general inversion of
the matrix (IT + D?D/w) which we will be coming across later in
equation (1.38).

If the vector of values v whose elements are all zero except for the

ith which is unity, is used in place of y in (1.16), the resulting

values produced for g will be the ith column of (IT + D?D/w)-l.
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1.14 COMPARISON OF RESULTS

Figure 1.1 shows two sets of estimates for a particular series; one
with w = 0.01, (equivalent to p=0.99), and another with w = 0.1,
(p=0.91).

Whittaker’s Estimates
Figure 1.1
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We can see that as w is increased the smoothed series moves closer to
the original series and, conversely, as w is decreased Whittaker’s
estimates tend to a horizontal line. This will always be true when

first differences are used in the minimisation function y, (1.03).
As we shall see later, this leads to highly misleading estimates for
certain types of series, (which Whittaker seems to have realised), and

needs to be replaced with a more general form of differencing

function. But more of that later.

1.2 THE INTRODUCTION OF DISTRIBUTIONAL ASSUMPTIONS

Whittaker’s estimate, g, in (1.14) is only an estimate in a colloquial

sense. To be classed as an estimate in a statistical sense, it would
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need to be the realisation of an estimator, which is a random
variable, or more precisely a vector of random variables since we are
working in multivariate terms. We therefore need to introduce a
stochastic element into the formulation via some distributional

assumptions.

The simplest way to do this is to assume that the error terms e, and
a, in (1.05) and (1.06) arise as realisations of random variables, Et
and At say, Wwhich have some simple distributional structure. The
obvious choice is to have independent random variables with zero mean

. . . . . 2
and constant variance, i.e. for some distribution Dt(O,o ),

E ~i.d. D(0; c2) and A ~i.d. D _(0; o 2)
t t e t t+T a

Note that the distributions of both the Et and At may change with
time, whilst keeping constant respective variances. In other words it
is only their means and variances which are of interest at this stage.
However we do need to assume that, as well as being independent of
other Et and At’ they are also independent of each other; in summary

that.

E[E.A] = 0 for allr,s
r s
and E[E.E] = E[A.A] = 0 if r#s
r s r s
... (1.32)
The random vector equivalent of (1.08) can be written:
Y=X+E (1.33)
where
T-—
XT—(Y) ’YZ’YI)
X = (X, , X, X))
— T 2’ "1
E = (E, , E, E)
= T 2’ 1
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Similarly, the random vector equivalent of (1.09) is:
D.X=A (1.34)
where A =(A, ... , A, A)
T 2
Note that because of (1.34), x can not simply be regarded as a vector
of unknown parameters but has to be defined as the realisations of an
unknown random vector X.

1.21 GENERALISED LEAST SQUARES

The realisations, of (1.33) and (1.34), can be combined to give:

]
X
+

(1.35)

where @ is a conformally dimensioned vector whose elements are all

Zero.

Note that this @ notation is in future used for any vector or matrix
whose elements are zero, and whose dimensions are usually being clear

from its context.

The incorporation of the prior information of (1.34) into (1.33) is a
special case of the mixed estimation procedure introduced by Theil and
Goldberger, (Theil and Goldberger,1961), and further discussed in
(Theil, 1970, p. 346-352).

Equation (1.35) is in the form of (Al) of appendix A, and hence we can
use the results of this appendix to find the minimum mean square
unbiased estimate, (MMSE), of b i.e. Q. It should be noted that the
residuals in vectors a and e are assumed to be uncorrelated and the

covariance matrix of their joint random variate vector is given by:
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Cov =0 °. = (1.36)
_ 2 2
where w = o / o
Hence, using (A14) of appendix A, § is given by:
T r o1
[ D, I ] 1/w.1 2 D [ D, I
T T-1

] 1/w. 1 @ o
T T-1

»>
1

%] I IT @ I Y
T T

(Not that (1/w).IT_1 is written more economically as 1/w.IT )

Therefore,

w>

-1
[IT * 1/w.DT.D] .y = n .y (1.37)

Hence the MMSE estimate, § in (1.37), also referred to as a
Generalised Least Squares, (GLS), estimate in appendix A, is exactly
the same as Whittaker’s estimate in (1.14) but with ®w redefined as

o;%/ oez, and hence, can utilise the procedure of section 1.13 for its
solution.

The mean squared error of & defined as E[[Q-ﬁ][ﬁ-gfﬂ is given by

(A17) of appendix A as:

and therefore,
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1
9
=

-1
MSE[?:] = 0‘2.[ I+ 1/w.DT.D] 2nt (1.38)

e

1.22 STANDARDISED RESIDUALS

We have seen that when w is set equal to the variance ratio, o;%/ oez,
Whittaker’s estimates become MMSE estimates, i.e. GLS estimates,
extended to accommodate the fact that the unknown parameters are
random rather than fixed. We can see how setting w equal to the

variance ratio affects the minimisation of ¥ in (1.07), which becomes:

2

T
2 2 2
v = z e + o /o .Z a
t e a t
t=1

t=2
& 2 & 2 2
i.e. Y = [ tZl(et/o"e) + tZz(at/tra) ].oe

Eliminating the multiplier vez, which does not affect the

/ e t t (

* »*
where at and et are standardised residuals

Therefore minimisation of w* is equivalent to the process of Ordinary
Least Squares, (OLS), accompanied by its wusual distributional
assumptions, i.e. that the error terms a: and e: are independently

distributed with common variance.

Note that (1.37) is just (Al14) of appendix A, with the residuals

covariance matrix given in (A17), i.e.
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(1.40)

n
10

1.3 LIMITATIONS OF THE MODEL: INVARIANCE

A major limitation of, what might be described as, the "Basic" model,
so far presented, is highlighted by its performance on linear data,
i.e. when y, = a + b.t. Common sense would suggest that trend values,
X, should also be linear in such a situation; however figure 1.2
shows this is not at all what happens. As the smoothness is increased
from w=0.1, (p=0.91), to w=0.01, (p=0.99), the trend line tends to

bend away from the straight line of the actual data.

The Basic Model with Straight Line Data

Figure 1.2
Value Value
20 B 420
16 416
10| 110
5l =8 Original Serics .y
—%~- Smoothed with w=0.01
—>~ 8moothed with w=0.1
0 ‘ 1 1 ] 1 [ 1 ] 1 1 1 1 1 1 1 1 1 i 1 ] 0
0123 4565 6 7 8 91011 1213 14 15 16 17 18 19 20 21

Time Period

We can see why this should be so by reminding ourselves of the

original problem of equations (1.05) to (1.07), which was to minimise

¥, where:
T
Yy = Zet + 1/wZat (1.41)
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witha = x -x ,ande = y -x
t -1 t

As we increase the smoothness, i.e. w is decreased, less emphasis is
placed on reducing the measurement residuals e and consequently more
placed on reducing the structural residuals a,, which means making X,
closer to Xt-1_ in other words, setting xt to a constant level.

In this respect the term "smoothness" could be more exact. What is
more precisely meant is fidelity to the underlying smooth structural
form, which, in this case, when a, is defined in terms of first

differences, xt—xtl, is a constant level.
Thus, to be able to reproduce straight line data, (i.e. be linearly
invariant), we would require a set of structural equations based on
second differences, i.e. of the form, x = 2.x - X + a .

t t-1 t-2 t
We can now see why Whittaker felt the need to utilise third
differences in his minimisation, since this meant his model would be
invariant to constant, linear and parabolic data forms, which he
obviously felt were enough to describe most of the data series he had

encountered.

1.31 THE GENERAL AUTOREGRESSIVE MODEL

There is, of course, no need to stop at third differences, or indeed
to even limit ourselves to differences at all. We can define a general

autoregressive model as:

X =38 .X + 9 .X + ...+ 9 .X + a (1.42)
1 2 d

y, =X te (1.43)

34



CHAPTER ONE

The beauty of this formulation is that all the results so far produced
for the "Basic" Model are equally valid for this "General" Model,
since, the matrix formulations are the same for both models. The only
difference 1is that the matrix D, defined as part of (1.09), is

redefined as a T-d x T matrix with structure:

1 =8 ,-0%_, ’_‘8d, 0,0 ’ ’ , O
D= o,1,w9%,9%, ... ,-4,0,0,0,..,0 (1.44)
1 2 d
0 etc

thus retaining the previous matrix model formulation equations of

(1.08) and (1.09), but now with a= (aT,~aP4, ... a )T

a1’ ? as:

e=y-X (1.45)

a =D.x (1.46)

1.32 INTERPRETATION OF THE STRUCTURAL EQUATION
Equation (1.42) may be written as two equations, namely,
X, =9 .x + 9. +ooen 40X (1.47)
X =X +a (1.48)
In this sense §t can be regarded as a one step ahead forecast of X
predicted from previous values, with a, as the prediction error.

Alternatively, (1.42) could be thought of as the combination of

several simpler equations, namely,

X =7 .X + ut
e M %y t
ulr, = 7m_.u1 + uz
t 2" t-1 t
uz = mM_.uz + u3
t 3" i1 t
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....................

....(1.49)

which is exactly equivalent to (1.42) if the final residual, up, = a,

and the coefficients, Ny My e np are the "p" roots of the

polynomial,

¥ + 01.np"1 +...4+9 .np+9 =0 (1.50)

Note that this does not imply that the roots, and consequently the
residuals, (except the last), of (1.47) have to be real. Nor does it

imply that these residuals have to be stationary.

The form of equation (1.50) is addressed later, both in section 3.5 of

chapter three and section 8.112 of chapter eight.

1.4 SUMMARY OF MAIN POINTS

In this chapter we have looked at, what might be termed Classical
approaches of estimating the trend values, (see table on page 10 of

the introduction).

In section 1.1 we addressed the minimisation of Whittaker’s function

and which gave us one set of "optimal" trend estimates.

In section 1.2 we introduced distributional assumptions which extended
his "algorithmic" approach to that of a "Basic" model and from it
produced Generalised Least Squares, (GLS), or MMSE estimates, which
were shown to be identical to Whittaker’s if his "w" weighting factor
was interpreted as a residual variance ratio. Section 1.3 extended the

"Basic" model to give a "General" autoregressive model.
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THE STATE SPACE APPROACH TO TREND ESTIMATION |

2.1 THE GENERAL AUTOREGRESSIVE MODEL

In the last chapter a Classical/Least Squares approach was applied to
the estimation of the trend parameters X, for both a "Basic" and a
"General" autoregressive trend model. In this chapter we again
investigate these models but using a Bayesian/State Space approach to
estimate the X, - We begin by casting the equations of the general

autoregressive model, i.e. (1.42) and (1.43), in a suitable form.

The structural or smoothness equation (1.42) is written:

X =06.x +a.v (2.01)
t t-1 t
or in long form as,
X 4, 9, S X 1
t 1 2 d t-1
_ 1,0, 0. 0 0
t-1 = 1. 0.0.0 t2| +a .| g (2.02)
X 0, 0, 1,0 X 0
t-d+1 t-d

and the measurement equation (1.43), (with the same vector v as

above), as

=vi.x +e (2.03)
y X N .
Again, the model consists of two sets of equations, a set of
structural equations, describing the process by which the trend values

are generated, and a set of measurement equations, by which the values

are, albeit inaccurately, observed.

37



CHAPTER TWO

The conditions placed on the structural and measurement residuals are
the same as in equation (1.32) of the last chapter, i.e. that they are
independently generated from distributions with zero means and

constant respective variances. Thus,

. 2 ; 2
Et i.d. Dt( 0; o ) and At i.d. Dt+T(O, o )

E[E.A] = O for all r,s
r S
and E[E.E] = E[A.A] = 0 if r#s
r s r s

....(2.04)

Again because of (2.01), the trend parameters xt must be realisations

of random variables Xt.

2.2 CONDITIONAL DISTRIBUTIONS AND THEIR VARIATES

The rest of this chapter 1is almost exclusively concerned with
conditional distributions. Because of this it is wuseful, before
beginning, to review exactly what will be implied by this and also
what notation will be used. If some of what follows seems to be
unnecessarily pedantic at first, the reader is nevertheless asked to
be tolerant since, unlike most situations, the results and their
derivations depend crucially on what conditions are placed on

particular distributions.

By conditional we mean conditional on the amount of knowledge
available in defining the distribution. In this sense all parametric
distributions are conditional. For example using the form B(r/n,p) for
the Binomial distribution explains that the distribution of the
variate "r" is conditional on the values given to the parameters "n"
and "p". Thus the distribution B(r/5,0.5) is very different from

B(r,/100,0.003).
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A more formal way of looking at this is to define the variate itself
as being conditional, i.e. to regard the conditional variate r/n,p as
having a Binomial distribution, or if the meaning was clear we could
use a mix of the two and define the variate r/n as having a Binomial,
B(p), distribution. It is this latter mixed approach that will be
adopted in this chapter. Note that is far from unusual since whilst X
~ N(u,oz) is taken to mean that the variate X has a Normal
distribution with given parameters p and 02, Xt(or X/t) ~ N(ut,of) is
taken to imply a Normal variate X given parameters o 0f and time

parameter t.

This last description of Xt is similar to the one used in this chapter
with one important addition. As well as being conditional on which
distributional parameters such as p and ¢° and which time parameter t
is assumed to be known, the distribution of the variate is also
conditional on the amount of relevant data that is assumed to be

known.

The relevant data are the observed values of the time series in
equation (2.03), i.e. the observations Y, Y, etc.

The mean and variance of the distribution of any of the variates in
equations (2.01) and (2.03) will vary depending on how many
observations of y can be assumed to be known. Thus the distributions

of Xt/yl, Xt/yl,y2 etc. will all be different distributions.

What is more, for the conditional variate Xt/yl,yz,...,yn, "t" can be
greater than, equal to or less than n, when it is referred to as a
predicted, (t>n), filtered, (t=n), or smoothed, (t<n), variate. Note
also that the variates Yt, Et and At, whose corresponding realisations
are used in equations (2.01) and (2.03) could be referred to likewise,

although we will not need to do so.

Finally a note on subscripts. T is usually reserved for the 1last
observed y value, i.e. the time series has been observed over T time
periods, n and k denote the latest value of y that can be assumed in

parts of the argument, (hence 1=n,k=T), and t is the time period of
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the variate in question. Also a rather unwieldy definition of a
conditional variate such as Xgﬁq,yzp..,yn is replaced by the more

economical Xt(n).

2.3 THE ESSENCE OF STATE SPACE ESTIMATION

The State Space approach regards the model, not as two sets of
equations per se, but as defining two sets of distributions, a set of
prior distributions, (albeit indirectly), and a set of conditional

distributions.

Equations (2.01) define how the prior distribution of each trend
parameter, Xt’ changes over time and equations (2.03) define the

conditional distributions of each measured variate, Yt, given xt.

The successive application of, what is fundamentally Bayes rule, leads
to the conditional or "posterior" distribution of each Xt given all
the values of Y, i.e. the smoothed variate Xt(T). The estimate of X,

is then chosen as the mean of its posterior distribution.
In the last chapter the calculation of what turns out to be the means
of Xt(T) for t=1,2,...T was performed directly. In the State Space

approach, however, we perform the operation in three stages, namely

prediction, filtering and smoothing.

2.4 PREDICTION
In the prediction phase we relate the parameters of the filtered
vector variate, qu(t-l)’ to those of the predicted vector variate,

xt(t—l) using (2.01).

Suppose the filtered vector variate xt_l(t—l), has an wunspecified

distribution with vector mean and covariance matrix given by:

xt_l(t—l) ~ UD(ut-1(t_1); Zt-1(t_1)) (2.05)
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And the predicted vector variate xt(t—l), has an unspecified

distribution with vector mean and covariance matrix given by:

xt(t—l) ~ UD(ut(t—l); Zt(t—l)) (2.06)

Using (2.01), the predicted values vector, xt(t—l), can be written,
xt(t—l) = @.xt_l(t-l) + at(t—l).v (2.07)
Taking expectations of (2.07), and noting that the predicted error

residual, at(t—l), must have zero mean, we have, for the means in

(2.05) and (2.06),

p (t-1) = @.p,_ (t-1) (2.08)

Also, taking covariances of both sides of (2.07), and noting that

qu(t—l) and at(t—l) are independent, we get, for the covariances in

(2.05) and (2.06), and the variance of at(t—l), in (2.04),

S (t-1) = 8.5 (t-1).8" + ¢ 2.v.v" (2.09)
t t-1 a

Equations (2.08) and (2.09) are known as the prediction equations.

In a similar way to the above (2.03) can be written,

y, (t-1) = VT.xt(t—l) + e (t-1) (2.10)

and again by taking expectations and variances of (2.10), noting the
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independence of xt(t—l) and et(t—l), and also that et(t—l) has mean

. 2
zero and variance oe , we have:
Ely, (t-1)] = vT.ut(t—l) (2.11)

Varly, (t-1)] = vT.Zt(t—l).v + 0‘62 (2.12)

Before proceeding any further with the model we shall first need to

demonstrate a result regarding conditional distributions.

2.4 THE "BEST" LINEARLY CONDITIONAL MULTIVARIATE DISTRIBUTION

Consider a vector comprising the partitioned random vectors X and Y,
which has an unspecified distribution, (denoted by UD), whose mean and

covariance matrix is conformally partitioned as:

~ UD . xx xy (2.13)

It perhaps goes withopt saying that the accuracy by which we can
measure the variates contained in X, (which currently has a prior
distribution UD( x; Zxx)), can be improved by utilising known values
of Y as long as X and Y are correlated, i.e. Exy # @. The question is

how to combine these values to "best" advantage.

If the distribution 1is specified as Normal the situation is
well-documented and, (Drhymes,1970,pl16) or (Harvey:1989,p.165), for
example, show that the conditional distribution of X, given the vector

of realisations of Y i.e. y, is given by X(y) where:

X(y) ~ N{p +5 st (y-p); £ -5 .5ts (2.14)
x Xy Yy y XX Xy Yy yx
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In the general case of an unspecified distribution, we find that we
can obtain the same result by looking at the problem in a

different way.

Suppose we linearly regress each of the variates in the vector X, i.e.

xi on the values in Y, i.e. y,
T
X =a +b.y+e (2.15)
i i i i
The results of performing each of the i=1 to m regressions
individually can be summarised as:
X=a+BY+e (2.16)

where ai is the ith element of a and bf is the ith row of B.

For the whole population of values in X and Y, the values of a and B

which minimise each of the e, in e are given by:

a=p -5 .5t (2.17)
X Xy yYY Y

B=5x .3° (2.18)
Xy yy

Hence combining (2.16), (2.17) and (2.18) we get:
X=p +3 S (Y-p)+e (2.19)
x Xy yy y
Note that (2.19) satisfies all the relationships in (2.13) since on
taking expectations of (2.19) we get, since Ele] = @,

—_ -1 - =
E[X] = po* ny.zyy.(uy py) + @ = (2.20)

X
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and also using (2.19),
T, _ -1 _ T _ 8T
E[(X ux).(Y py) 1 = ny.zyy.E(Y uy).(Y uy) ] + Ele. (Y uy) 1

which since all elements of e are independent of all elements of Y,
simplifies to:
-1

z =2 2.2 +@=Z (2.21)
Xy Xy yy yy Xy

Taking covariances of (2.19) gives,

s =35 .5l's gty +35 =35 .v's +% (2.22)
XX Xy Yy Yy Yy yx ee Xy Yy ¥X ee

Hence the covariance matrix of the errors e is given by:

s =3 -3 .5'= (2.23)

ee ple’s xy yy  yx

For any fixed values of Y, i.e. y, the vector variate X becomes the
conditional vector variate X(y), i.e. the value of X given the set of

values y, and consequently (2.19) then reads,
-1
X = +3 T, - + e (2.24)
(y) Ty v yy(y uy)
Thus, the conditional value of X given a fixed linear combination of
realisations of Y will have mean i(y) given by,

X(y) =p +5 st (y-p) (2.25)
x xy “yy y

and covariance matrix Zee given by (2.23), which gives exactly the
same value as in (2.14), when Normality, rather than linearity was

assumed.
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2.6 FILTERING

In the filtering phase we relate the parameters of the filtered vector
variate, xt_l(t—l), to those of the filtered vector variate, xt(t)

using the results of section 2.5.

Firstly we utilise (2.10) to find the covariance of yt(t—l) and
xt(t—l).

T, _ T _ _ T
Cov[yt(t—l), xt(t-l) ] = Covl(v .xt(t 1) + et(t 1)).xt(t 1)7]
= T - 1151 = 7 - 1171 = T -
= Covlv .xt(t 1).xt(t 1)’ ] =v .Eov[xt(t 1).xt(t 1)1 =v .Zt(t 1)

....(2.26)

Hence combining (2.06), (2.11), (2.12) and (2.26), the joint,

(unspecified), distribution of xt(t—l) and yt(t—ll can be written as:

x (t-1) p (t-1) £ (t-1) s (t-1).v
t ~ UD t ; t t

T T T 2
yt(t—l) v .ut(t—l) v .Zt(t-l) v .Zt(t—l).v + o

.o (2.27)

which is now in the partitioned form of (2.13).

Hence using the results of section 2.5, equations (2.22) and (2.24),
the linearly conditional distribution of xt(t—l) given the realisation
of yt(t-l), which is simply Y, is the distribution of the filtered

value Xt(t)’ whose mean, ut(t) is given by:

(y, - vT.ut(t—l))

ut(t) = ut(t—l) + .Zt(t—l).v (2.28)

(vT.Zt(t—l).v + oz)
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and whose covariance matrix, Zt(t), is given by:

_ 4y - _ T _ T B 2
Zt(t) = Zt(t 1) Zt(t 1).v.v .Zt(t 1)/(v .Zt(t 1).v + o*e) (2.29)

Combining equations (2.28) and (2.29), above, with the prediction
equations in (2.08) and (2.09), we obtain the filtering equations
which update the mean and covariance matrix of the filtered value
xt_l(t—l) to those of xt(t). Note that since the bracketed term and

the subscript are the same for filtered values, “t(t)’ p’t—1(t_1)’

Zt(t) and Zt-1(t_1) have been abbreviated to B B_» Zt and 2t-1'
Also vT.G which equals (191, 192, ey 't?m) is written simply as 'BT.
(yt - 0T'“t-1) 2
B, = @.ut_l + — 5 .(@.Zt_l.ﬂ + o°.v) (2.30)
(o .Zt_ O+ o+ o~e) @

(8.2 .9+ c°.v). (8.5 .o+ oo.v)'
t-1 a t-1 a

™M
I

lE-).Zt 1.®T + o‘:.v.vT - T
(o

2 2
%+ +o0)
t-1 a e

....(2.31)

The prediction and filtering equations (2.08), (2.09), (2.30) and
(2.31) are collectively known as the Kalman filter after the control

engineer who first derived them, (Kalman, 1960).

2.7 SMOOTHING

The derivation of smoothed or fixed interval estimates is not as

straightforward as that for filtered estimates. Different approaches
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can be found, although none of these prove to be particularly
satisfactory. In (Jazwinski, 1970), the proof relies on the invention
of an artificial auxiliary variable. In (Sage and Melsa, 1971), the
result is only applicable if it can be assumed thatbthe appropriate
estimate is that which maximises a posterior density distribution. In
(Anderson and Moore, 1979), the proof takes up nearly a chapter during
which a necessary visit is paid to derive fixed point estimates, which
are not particularly relevant, and in (Ansley and Kohn, 1982) the proof

is somewhat of an acquired taste.

To maintain the consistency of these sections we shall demonstrate a
proof which again utilises the results of section 2.5. The proof can

be broken down into three stages.

In stage one, we obtain the joint, unspecified, distribution of the
vectors yT(t) and xt(t), where yT(t) has elements yt+1(t), yt+2(t),

y&_l(t), yT(t) and then use the results of section 2.5 to obtain
the distribution of xt(T).

Repeated application of (2.01) leads to the following expression for

’

b 4 in terms of x and structural errors a to a
t+k t t+1 t+k

k k-1 k-2
b4 =@.x +a .68 .v+a .06 v+ ...+a .v (2.32)
t+k t t+1 t+2 t+k

Applying (2.03) to (2.32) for time point t+k then gives,

T _k T _k-1 T k-2
y =v.@.x +a .v.® ".v+a .v.0 v+ ... +a + e
t+k t t+1 t+2 t+k t+k

....(2.33)
Hence, taking expectations given values of y up to "t",
_ T .k _ T _k
E[yt+k(t)] =v .0 .E[xt(t)] =v.0 .ut(t) (2.34)
since, Ela (t)] =Ele (t)]I =0 fork >0 (2.35)
t+k t+k
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Here the conventional use of capital letters to denote random
variables has been dropped, since they are distinguished from their
realisations by having a bracketed term indicating the number of

observations of y on which their distribution is based.

Note also that (2.33), and more to the point, (2.01) and (2.03) would
hold given any set of values of y, however (2.34) and (2.35) would not
and so it would make little sense to attempt proofs containing terms
such as at(t+k) since their expectations are far from obvious, and

certainly not zero.

The situation is analogous to considering the probability of the
fourth throw of a coin being a head, (a) when the fourth throw has yet
to be made, and (b) when the fourth throw has been made and it is
known that only one of the four resulted in a head. In (a) the
probability is the obvious 1/2, whereas in (b) it is, the less than

obvious, 1/4.

Also from (2.33), the covariance of yk+k(t) and xt(t), for k > 0, is

given by,

Cov‘[yuk(t).xt(t)T] = v'.8" covix (t).x, (1)1 = vI.6".2 ()  (2.36)

since,

g for k>0 (2.37)

E[at+k(t), xt(t)]

Ele (t), xt(t)] g for k=0 (2.38)

t+k

Hence, from (2.36), the T-t x d covariance matrix of the vectors
y&_t(t) and xt(t), where y&_t(t) has elements ybﬂ(t), 3Q+2(t), e
y&~1(t), yT(t) is given by,

Covly , (£).x,(£)"] = = @ (8).%, (t) (2.39)
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(
where Q (8) is the T-t x d matrix whose T-t rows are given by v'.o,

vT.®2, vT.®3, e VT.ET-t, (Not confusing VT, i.e. v transposed with

© % i.e. ® to the power (T-t)).

And from (2.34) the mean of yT(t) is given by,

Ely,_ ()] = @ (0).p, (t) (2.40)

Combining the results of (2.36), (2.39) and (2.40), we obtain the

Jjoint, unspecified, distribution of the vectors y'r-t(t) and xt(t), as:

x (t) L (t) T ), = ).
t ~ UD t t t 1 (2.41)

y._, (t) 91(8).;1t(t) , Ql(GJ.Zt(t), Zyy

where Zyy is the covariance matrix of y'r-t(t)‘

From section 2.5, the linearly conditional distribution of xt(t) given

y

oy 1-€- xt(T) is given by:

xt(T) ~ UD [ ut(T) ; Zt(T) ] (2.42)

where pt (T) = p (t) + T (1).Q (0)".1 " (yT_t - Ql(e).ut(t)] (2.43)
_ _ T -1
and  Z(T) = £ (t) - £(£).0,(0)".7 . (0).% (1) (2.44)

In stage two, we use an almost identical argument to that of stage one
to obtain the joint, unspecified, distribution of the vectors yT_t(t)
and x 1(t), where yT_t(t) was defined in stage one, and then again

t+

use the results of section 2.3 to obtain the distribution of xt+1(T).
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of x

In a similar way to obtaining (2.33), an expression for Yiex in terms
and structural errors a to a
t+1 +2

ek is given by,

=v.o"'x +a .v.0"2%v+ + a + e (2.45)
t+k t+1 t+2 t+k t+k
Hence, reasoning as before, we obtain,
_ T _k _.T _k-1
IE[yt+k(t)] =v .0 .lE[xt“(t)] =v .0 '“t+1(t) (2.46)

T, _ _T.k-1 T, _ .T k-1
Cov[yt+k(t).xt+1(t) ] =v.0 .Cov[xtﬂ(t).xtﬂ(t) ]l =v.0

2, (1)
... (2.47)
and Covly , (t).x, (£)'] = @ ().5 () (2.48)

where Q (®) is the T-t x d matrix whose T-t rows are given by v,
T 1 T 2 T _T-t-1
v .8, v.0, v .6 .

’

And from (2.46) the mean of y'r—t(t) is given by,

Ely,_ ()] = @ (0).p (t) (2.49)

Combining the results of (2.47), (2.48) and (2.49), we obtain the

joint, unspecified, distribution of the vectors yT_t(t) and x“l(t),
as:

x (t) po () ;S (t) , s (). @
“hof~w o ‘ e (2.50)
yr—t(t) Qo(g)'”tu(t) ; QO(G)).Zt+1(t), zyy

where Zy is, as in stage one, the covariance matrix of Y, t(t)
v .
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From section 2.5, the linearly conditional distribution of xt+1(t)

given Yot i.e. xt+1(T) is given by:
xt+1(T) ~ UD [ pt+1(T) ; Zt+1(T) ] ) (2.51)

with

_ T 1 _
“t+1(T) = ut+1(t) + Et+1(t).QO(®) .Z;y.[y QO(B).ut+1(t)] (2.52)

T-t

_ _ T 1

and Zt+1(T) = Zt+1(t) Et+1(t).90(®) .Z;y.QO(Q).Zt+1(t) (2.53)
Stage three combines the results of stages one and two by eliminating
the covariance matrix of y&_t(t), z;y.
Rearranging (2.44) we have,

o @7y e (0) = =M t). (5 (£)-2 (T)).= 1 (t) (2.54)
1 ThyytTh t t t Tt

and rearranging (2.53) we similarly have,

T -1 _ ot _ -1
QO(@) .Z;y.QO(G) = 2t+1(t).(2t+1(t) Zt+1(T)].2t+1(t) (2.55)

Note also that from their definitions in (2.39) and (2.48),

91(8) = QO(G).® (2.56)

Combining (2.54), (2.55) and (2.56) we get one of the two initial

smoothing equations,

_ T 1 _ -1
£(T) = 3,(t) + 5, (£).0 .zm(t).(zm(T) Zt+1(t)].2t+1(t).®.2t(t)

....(2.57)
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Finally manipulating équations (2.43) and (2.52) utilising (2.08) and

(2.56), we obtain the other initial smoothing equation,

_ T -1 _
ut(T) = ut(t) + Zt(t).® .2t+1(t).[ ut+1(T) ut+1(t) ] (2.58)

which completes the proof, and the section on smoothing.

2.8 STARTING CONDITIONS

To initiate the processes of prediction, filtering and smoothing, we
apparently need to know the values of pt(t) and Zt(t), for some value
of t, usually t=0 since then we require the values uo(O) and 20(0)
i.e. the mean and variance of the distribution of X given in
accordance with (2.02) as X, = (xo, X s oee x_d”)T, when no values
of v, have been observed at all. Put in Bayesian terms, we need to be
able to specify 1its prior distribution, or for an unspecified

distribution, its prior parameters.

How this is done has been the object of much controversy between
statisticians. The Classical camp argue that to specify a prior
distribution rather begs the question as to what the data will reveal
and hence dismiss the Bayesian approach as being subjective and

therefore necessarily biased.

The Bayesians, on the other hand, maintain that, even though a
specified prior may not be completely accurate, it is almost always
the case that some form of prior knowledge is available, and any
attempt to utilise it in the form of the prior must therefore be

better than no attempt at all.

The Bayesians quote the case of a coin being tossed and coming up
heads four times in a row, which, by Classical, (Maximum Likelihood),
reasoning, would suggest that the best estimate of its probability of

falling heads is one, whereas, by choosing a common-sense prior
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distribution whose mean is one half and whose variance is small, this
dilemma is avoided, (see works by Lindley, 1965a, 1965b, 1971). The
Classicists reply is that "life" is not as well understood as "coins".
In practice, the confidence with which a prior can be specified will

depend on the nature of the particular time series involved.

Let us suppose, for the moment that we have no knowledge whatsoever
T .
i = .o . th
concerning XO(O) (xo(O), xﬂ(O), , th1(0)) What does is

imply as regards the choice of values for uo(O) and ZO(O)?

One obvious interpretation is that the variance of the prior
distribution is infinite. If we genuinely have no information on
xb(O), then we must accept the equal possibility of it having any
value, from minus infinity to plus infinity, implying a uniform
distribution with infinite variance. Impractical as this may sound it
does have some interesting consequences. It is known as a vague or
improper prior, and, as a means to an end, which is what we need it
for, it 1is perfectly acceptable. Lindley, (Lindley, 1965a, 1965b)
shows that many of the results of Classical Inference are reproduced

when Bayesian inference is applied with a vague prior.

Let us begin, therefore, with the assumption that the variances of
each of the "d" variates, xo(O), x_l(O), cee X«n1(0)’ in the vector
xO(O) is infinite, i.e. that the diagonal elements of ZO(O) are all o.
What we are going to show is that, by successive applications of the
filtering update equations, (2.29) and (2.30), the distribution of
xd(d) = (xd(d), X, (@, ..., xl(d))T, has mean vector ud(d) given by

d-1
T R . 2

(yd, Yy Vo yl) and covariance matrix Zd(d) equal to 0e.Id,
where Id is a dxd identity matrix, i.e. that the assumption of a vague
prior is equivalent to assuming that each of the elements xi(d), i=1
to d, of xa(d) is independently distributed with mean Y, and variance

2
o .

e

2.81 A NOTE ON COVARIANCE MATRICES WITH INFINITE VARIANCES

To do this we first need to establish a result for any strict, i.e.

positive definite, covariance matrix, Z.

53



CHAPTER TWO

Since Z is positive definite then zT.E.z >0 for z # @.

’

Suppose that we now partition the matrix £ into matrices 211, 212
221, and 222, where 211 contains the infinite diagonal variances and
222 does not, and z is partitioned into z, and z,, likewise.
Then, z .S.z =z .5 _.z +2.z .5 _.z_ +2z .5 .z >0 (2.59)
1 "T117 T 1 "T12°72 2 "T22" "2
where, since 211 is also strictly positive definite, le.Z .z >0

for z1 * 3.

Letting each of the variances in X tend to omz, (a very large
value), whereby from (2.59), z.5.2 - 0w2.leJE1.zl, where R11 is the

correlation matrix of 211, i.e.
T 2
z.%.z x o “ for z, * . (2.60)

2 T
Hence as L > w0, Z .Z.Z > o,

2.82 THE IMPLICATIONS OF ASSUMING VAGUE STARTING VALUES

By wusing the filtering update equation (2.31), the individual
elements, vij(t), of the filtering covariance matrix, Zt(t), and
o&j(t+1), of the filtering covariance matrix Zbﬂ(t+1), are related by

equations (2.61) to (2.64) below, namely,

o (t+1) = ¢ 2.(02 + o 2)/(0‘2 +tol+o 2) (2.61)
11 e a a e

2 2

c (t+1) = ¢ %.¢ (t).o /(e + o2 +¢?2) for i > 1 (2.62)
i1 e i-1 i-1 a e

82)

- _ = - 2 2
0ij(t+1) = ¢ (t) 0}_1(t).oa_l.oj_l(t).OB_l/(o + o + o

i-1, j-1

for i,j > 1 (2.63)

3 i _
where ¢ = J pij(t).oj(t).ﬁj and ¢° = §.5.9 = T o (t)o .0  (2.64)
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Note that pU(t) is a correlation, Gl(t) a standard deviation and 9 a
corresponding element of the vector ¢, given in (2.02) and (2.31).

Note also that any other undefined values are given by symmetry.

Hence, for example, for a 4x4 covariance matrix, £, whose original

standard deviations, correlations and covariances were o*i, pij, and
o*U, the updated matrix would have the following 16 elements,
[ 2,2 2 ~ - - ]
o . (c7+c7) .o c .
a e 1 1 e 2 2 e 3 3
2 2, 2, 2 2 2,7 2 2 2
(c"+0"+0") (™40 +0") (c"+0"+0") (c"+0"+0")
a e a e a e a e
o .0 .0 .0 o .0 .0_.0 c .0 .0_.C
e 11 o111 117272 _ 17717733
2 2 2, 1 2 2 2, T12 2 2 2,7 "13 2 2. 2
(c"+c"+0°) (0“+0"+0“) (c“+6 " +07) (c“+0“+07)
a e a e a e a e
c_.0_.C .0 c .0 _.0_.0 c_.0_.0_.0
e 2 2 - - 27271771 - - 2722 2 _ 2723 '3
2 2 2, 21 2 2, "22 2 2 2.7 "23 2, 2, 2
(c“+0"+0") (c“+c"+07) (c“+0"+07) (c“+0“+0°)
a e a e a e a e
c_.0c_.0 .0 o _.0C_.0C_.0 c .0 _.0_.C
e 33 _ 3 3 11 . _ 33 22 _ 373733
2 2 2, 31 2. 2 2, "3 2 2 2, "33 2 2 2
(0“+0"+c") (0”40 " +0") (0"+0"+0") (™40 " +0")
- a e a e a e a e -
S
where ¢ =) p. .0 .0
i ij j
j=1
5 T j=4 i=4 =4 _
and o =9 .Z.¢ =Y Yo .c.p .09 .0 =Yoo .0 .0
i 157173 17101
j=1 i=1 i=1

Suppose we now begin with the vague prior covariance matrix ZO(O) and
apply the first filtering iteration to 21(1) using (2.65) as a
guideline, letting the standard deviations of ZO(O) tend to infinity

via the very large value oL

J i,]
- 2 2
From (2.65), ¢~ o .} Py, and ¢” > o . Zpij.z‘}i.m‘}j (2.66)
Hence, c (1) = o~2.( 2+62) / (62 +o2+aC) > 02,
11 e a a e e
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and, 011(1) = 02.01_1.0i_1./(0z+oj+02) - oz.z P,
for i > 1. Thus, as c, tends to infinity, the first row, (and first
column), of the matrix 21(1) will have an initial element 0: and other
elements which are all finite. It can also be seen that any other
elements of 21(1) will still be infinite. In other words 01(1) will
tend to o but all other standard deviations will still tend to
infinity, but with 0n(1) finite which implies that for i > 1, all
pil(l) will tend to zero, since 011(1) = oi(l).wl(ll.pil(l). Hence the
first element of xl(l), i.e. Xl(l)’ will be independently distributed

. . 2
with variance o .
e

Turning our attention to equation (2.30), we see that, the individual
elements, mi(t), of the filtered mean vector, ut(t), and mi(t+1), of
the filtered mean vector “bﬂ(t+1)’ are related by equations (2.67) to

(2.69) below, namely,

m(t+1) =m + (y _ - m). (c>+0°)/ (c+c+o>) (2.67)
1 t+1 a a e

2

— _ R bt 2 2 .
mi(t+1) = mi(t) (yt+1 m).oi_l(t).a}_l/(o to "t ) for i > 1

....(2.68)

| -
where m = L m (t).9, with o, and o° as defined in (2.64).  (2.69)

Hence,'for example, for a 4x1 vector, pu, whose original means were m,
m2, m3, and m4, associated with a covariance matrix ¥, as defined in
(2.64), the updated, (using the observation y), mean vector would have
elements,
(c2+02)
- a -
m-————— (y-m)
2
(0”40 +0")
a e

¢, .0, B
m - —————. (y-m)

2
(™40 " +c"7)
a e
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c, .0, _
m - ———=— (y-m)
2 2
(c“+0"+0°)
a e
S
m - ——— . (y-m)
3 2
(c“+0"+0)
a e
_ =4 - 2
where m = } mj.ﬁj, with o, and ¢~ as defined in (2.64). (2.70)

If p is uo(O), associated with the vague prior covariance matrix ZO(O)
and applying the first filtering iteration to “1(1) using (2.70) as a
guideline, (letting the standard deviations of ZO(O) tend to infinity

via the very large value ow). Then, from (2.66) as o 2O

2

+02) tend to finite
a e

2 2 2. 2
Hence (6°+0°)/(c“+c
a

2 - 2
+¢°) » 1, and o .o /(c"+c
a e i i

values.

Therefore, from (2.70) and, the first element of xl(l), i.e. X1(1)’ is
not only independently distributed with variance 082 as previously

shown, but also has mean yl.

We next come to the second iteration, which moves us from filtered
covariance matrix 21(1) to 22(2), and mean vector ul(l) to u2(2), and
again we can use the updating procedures in (2.65) and (2.70) to guide

us, remembering that our starting point now has c,=0,Mm =Yy, p
(<]

1 1i

=0and o, =0 , for i=2 to 4.
1 [+o]

Again, Ei x o, for i=2 to 3, and 02 [ 0m2 from section 2.81, but now
El is finite, since each c, is finite. Inspection of (2.64), applying
the same arguments as before, 1leads us to conclude that the

filtering steps 20(0) > 21(1) - 22(2) have forms,
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2 2
© , 0, 0, © O‘e,F,F,F c, 0, R
e
2
© , 0, 0, © F, o, 0o, o 0O, o, F,F
-> > e
© , © , 0 , 0 F, o, o, o F,F, o, o
© , 0, 0, © F, o, o, F,F, o, o

where the elements F have finite values whose corresponding

correlations are zero.

Continuing the iterations using the same arguments leads us to the

final steps to 23(3) and to 24(4), i.e.

o, 0,0, F e, 0,0, 0
0,¢,0,F 0, ¢35, 0,0

> e i e
0,0, ¢, F 0,0, ¢, 0
e e 2
F,F,F, o 0,0,0, 0

.o (2.71)

Similarly, applying the same arguments to the mean vector ul(l) leads

us to the complete series of iterations, uo(O) > “1(1) > u2(2) > u3(3)

- u4(4), i.e.
?
Yy Y, Y3 Ya
? - ? - 1 - yg - y3
? 2 2
’ Yy Ya
2 ? ? 2 y

Generalisation gives us the result that the assumption of infinite
variances for the elements of the dxl1 variate vector xO(O) is exactly
equivalent to assuming that each element xl(d) of the variate vector

xd(d) is independently distributed with mean Y, and variance oz.
Hence, in summary, if xO(O) has a vague prior distribution, then

Elx (d)] = p (d) =y (2.72)

d
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Cov[xd(d)] = Zd(d) =¢ .1 (2.73)

Thus by choosing what seems at first to be the rather unwieldy values
of infinity for the variances of 20(0), the covariance matrix of
xb(O), we are led to what appear to be quite sensible starting values
for ud(d) and Zd(d). Note that such a choice also relieves us of the
need to specify a value for uo(O), and the correlation structure of
ZO(O).

2.9 MORE GENERAL MODELS

Whilst we have confined ourselves to the general autoregressive model
in this chapter, it should be stressed that the proofs are easily
extended to more general cases such as the one below described by
measurement equation (2.74) and structural equation (2.75), (see

section 8.2, (and in particularly 8.22), of chapter eight.

y = ht X+ dt + e, (2.74)

x =C .x +b +H.a (2.75)
t Tt-1 t vt

where a  now becomes a vector of 1i.i.d. residuals, again with
. 2

means zero and variances ¢ , and dt, ht, bt, Ct and Ht are all known
a

scalars, vectors and matrices which can vary with time.
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THE STATE SPACE APPROACH TO TREND ESTIMATION i

3.1 A DIRECT DERIVATION OF STATE SPACE VALUES

The main purpose of this section is to demonstrate the equivalence of
the State Space estimates of trend, (produced on the assumption of a

vague prior) and the Classical, (GLS), estimates of chapter one.

In the last chapter we saw how successive values of the mean and
variance matrix of the posterior dx1 vector xt(T) = (xt(T), de(T),

, xt__d(T))T could be generated. We begin this chapter by showing
how the same set of posterior parameters may be obtained directly, in
one operation, thus obtaining the mean, uT(T), and covariance matrix,

_ T
ZT(T), of the total Tx1 vector xT(T) = (xT(T), xT_1(T), cee X1(T)) .

We begin with the starting values associated with vague prior
knowledge as derived in section 2.8 of the last chapter, namely that
the vector xd(T) = (xd(T), x (T), ... , xl(T))T should have mean

d-1
T . . 2
vector yd = (yd, y , yl) and covariance matrix o .Id, where
€

d-1’
Id is the dxd identity matrix.

In chapter one, equation (1.46), we saw how the structural equations
for the general autoregressive model could be written in matrix form
as:

a = D.x (3.01)

(3.02)

1 ,-%,-% ...... , %, 0, 0, y eeee , O
1 2 d
D=0, 1,9 ,-% ...... , ¢, 0,0, 0,..,0 (3.03)
1 2 d
0 etc
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We can partition the matrix D into two matrices B and C, i.e. D =

[Bi-C], where B is a square T-d x T-d invertible matrix, as follows:

1,-9 , -3, 0, , 01 0, 0, 0, 0
1 d ,
D = [Bi-C] = : (3.04)
s e , 0,0, 1,8, -9,..-8__, 0
11 2 d-1
, 0, , 0,0,0, 1, -9,....... , =0
. 1 d -
and so we may write (3.01) as:
a _=D.x =B.x - C.x (3.05)
T-d T T-d d

Rearranging (3.05) and conditioning on values Y, to Y, we get,

B.xT_d(d) = C.xd(d) + a&_d(d) (3.06)
where,
_ T
aT_d(d) = (aT(d), e, ad+1(d))T
xT_d(d) = (xT(d), e xd+1(dl)
xh(d) = (xd(d), cee X1(d))
....(3.07)

Hence from (3.06) we have,

1 -1
x&_d(d) =B .C.xd(d) + B .aT_d(d) (3.08)

Taking expectations of (3.08) gives,

m,(d) = B“.c.pd(d) = 13'1.c.yd (3.09)

since a vague prior implies ud(d) = yd'from section 2.82, equation
(2.72), of the last chapter.
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Similarly for covariances,

2 -1

_ -1 T, Ty-1 Ty-1
%, @) =B".cz (0).c'BNT + ¢ %87 (B)

=L [ o°.C.CT+ ¢°. 1 ].(BT)‘1 =B l.a .BHT -1
e a T- T- e T-d
where Q. =o0°.1_ _ + c°.B.B + 0°.C.C' = ¢°.1_ + o°.D.D"
~d a - e e -
....[(3.10)
since again a vague prior implies Zd(d) = o‘i.IT__d from section 2.82,

equation (2.73), of the last chapter.

Also, the covariance of xT_d(d) and xd(d) is obtained from (3.08) as,

T, _ 2 -1
tDov[xT_d(d).xd(d) ] = o*e.B .C (3.11)

The measurement equation for the final T-d measurements of the general
autoregressive model, (see chapter one, (1.05), is, when similarly

conditioned on y1 to yd,

yT_d(d) = xT_d(d) + eT_d(d) (3.11)
where, .
- T
yT_d(d) = (yT(d), e, ydﬂ(d))T
eT_d(d) = (eT(d), e ed+1(d))
....(3.12)

From (3.11) the mean vector and variance matrix of yT_d(d), and the

covariance matrix of yT_d(d) and xT_d(d) are given as:
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Cov[y&_d(d).x&_d(d) ]l = ZT_d(d) =B
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Finally, combining (3.08) and (3.11), we can write,

from which the covariance of y&_d(d) and xd(d) is,

Ely,_,(d)] = Elx_ (d)] =B .C.y, (3.13)
Covly, ()] =% (d) +¢2I _=B".a .(@B)H" (3.14)
1 T,-1 2
2 BT -l (3.15)
_ o1 -1
yT_d(d) =B .C.xd(d) + B .aT_d(d) + eT_d(d) (3.16)
T, _ 2 -1
Covly,_ (d).x ()] = *.B™.C (3.17)

Equations (3.09) to (3.17), above provide us with the mean vectors and

covariance matrices to be able to write the joint distribution of

yT-d

the vector

matrix

having mean vector
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We can now apply the results of section 2.5 to (3.18) to obtain the
conditional mean vector, uT(T), and covariance matrix, ZT(T), of xT(T)

= (xT_d(T), xd(T))T as:

2 T.-1 2 4 T -1 4 _T -1
xT_d(T)N - yT_d—oe.B.QT_d(B.y&_d C.yd), o ae.B.QT_ B, 0e.B.QT_d c
2 T.-1 4 T -1 2 4 . T.-1
xd(T) Y, oe.C.QT_d(B.yT_d C.yd), oe.C.Q ~.B, o 0e.C.£%_d.C
....(3.19)

which simplifies, using (3.04), to

2 T -1 2 2 T -1
x_(T) ~ UD [ (I, - o2.D.Q .D).y; oo (I - o-.D .07 .D) ] (3.20)

Further, direct multiplication, using (3.10), confirms the relations,

I -c2.D.gt p=(1 +c2/62.D°.D)t = (I + 1/w.D".D)} (3.21)
T e T-d T e a T

and hence (3.20) becomes, (noting w = 6:/02),
T -1 2 T \-1
x_(T) UD[uT(T),ZT(T)] UD[(IT+1/w.D.D) .5 0o (I #1/0.D".D) ]
....(3.22)

which are identical to the Classical, (GLS), estimates of chapter one,

equations (1.37) and (1.38) and to Whittaker’s estimate of (1.14).

3.2 THE POSTERIOR MEAN AS AN ESTIMATOR

In the last section we derived the values of the mean vector, uT(T),
and covariance matrix, ZT(T), of the posterior distribution of the
trend vector X, given the data points Yo Yy oo yT, (more

concisely yT), i.e. xT(T).
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Hence, for an individual element of x&(T), say xt(T), its mean is

given by the corresponding element of uT(T), say ut(T), which, for

this section, overrides the last section’s definition of ut(T), which

was a vector, and its variance by the corresponding diagonal element
2

of ET(T), 0t(T).

Unless Normality is assumed, by placing it on the residual errors e
and a, and also on the form of the prior distribution, the values of
the mean and variance are all we know about xt(T). The question now
arises as to whether this is sufficient to produce an optimal estimate

of Xt(T) when its distribution is unknown.
Since we are free to choose any value, say &, of xt(T), on the basis
of minimising its mean squared error, then & will be the value which
minimises,

n-:[ (€ - x, (T)? ] (3.23)
over all values of Xt(T)'

Differentiating with respect to € and setting to zero gives,

E[€]

E[xt(T)] (3.24)

or in integral form,

I £.p(x_(T)).dx_(T) J x, (T).p(x, (T)).dx_(T) (3.25)

Since & is not a function of xt(T) and the right hand side of the
expression is just the mean of the distribution, we have:

€ = p (D (3.26)

i.e. the estimate with minimum mean square error is just the mean of

the posterior distribution.
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The value €=ut(T) is known as a fixed interval or smoothed estimate,

this term having been first used by control engineers.

In a similar way, the mean, ut(t), of the filtered variate, xt(t), can
be shown to be optimal for the estimation of xt(t) and hence is known

as a filtered estimate.

Finally, note that when the mean of the posterior distribution of the
trend value is chosen as its estimator, then, because of (3.23), the
variance of the distribution becomes the mean squared error of the
estimator, thus conveniently wutilising the only two pieces of

information known about the distribution.

3.3 THE BASIC MODEL OF WHITTAKER’S PROBLEM

In chapter one we looked at the "Basic" model associated with
Whittaker’s problem The State Space equivalent of this is produced by
setting d=1 and 01=1 in equations (2.01), (2.02) and (2.03) of chapter

two. The measurement equation then becomes:

y, =X + e (3.27)

X =X + a (3.28)

with the usual independence assumptions, (chapter two, (2.04)), placed

on the e and a .
t t

3.31 STARTING CONDITIONS
Assuming a vague prior distribution for Xy i.e. that the variance of

xO(O) = obz(O) = w, gives proper starting values for the mean and

variance of xl(l), in accordance with section 2.82 of chapter two, of
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ul(l) and 012(1), where:

2

— 2 —
ul(l) =y and o, (1) = o (3.29)

1

3.32 PREDICTION

For the basic model, the prediction equations, (2.08) and (2.09), of
chapter two become, (bearing in mind that ut(t—l) and ubq(t-l) are

now scalar),

p(t-1) = p (t-1) (3.30)

and

2

2 _ 2 _
ot(t-l) = 01-1(t 1) + o (3.31)

3.33 FILTERING

The filtering equations, (2.29) and (2.30), of chapter two become,

”t(t) = at.ut_l(t—l) + (1—oct).yt (3.32)
and
c?t) = (1 -a)eo? (3.33)
t t e
where @ =0/ (t-1) + ¢ 2 + ¢ 2) (3.34)
t e t-1 a e
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The term kt= 1—at, in (2.18) and (2.19) is often used in control
engineering. It is known as the gain. For this model, because of

(3.34), any at, and hence any kt, must lie between between 0 and 1.
For t=1 either (3.33) or (3.34) gives a1=0, since 002(0) = o and

012(1) = 02. Similarly substitution of (3.33), at t=t-1, into (3.34)

gives us the generating mechanism for each successive values of @ as:
2 2 2 2

« =¢ [fle“+2.c"-a .c (3.35)
e a e t-1 e

which, on defining the noise variance ratio, w, in the usual way, as,
w=oc %/ o2 (3.36)
a e
simplifies (3.35) to:

a = 1/[(0 + 2 - oct_l] (3.37)

In (3.37), as t > o, o, and at1 > e, since o« is strictly monotonic.

Hence,

(o]

o = 1/[w + 2 - am] (3.38)
ie. a?- (2+w)ae + 1 =0 (3.39)
(o] [24]

We have met this form of equation before, in chapter one, (1.18). The
root lying between O and 1, which o« must do because of (3.34), is

given by:

o= 1+0/2 - V (1+w/2)%-1 (3.40)
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This equation is identical to that of (1.20) with o replacing A, and
w replacing w. Also notice the similarity between (3.32) and an
equation we met in chapter one, (1.24). As t tends to infinity (3.32)
tends to (1.24), since a, tends to A.

Alpha values for different w ratios

Figure 3.1
Alpha(t)
1r 91
—_— O o
0.8 0.8
0.6 H06
—- w=0.01
= we0,1
0.4 40.4
0.2 102
0 1 1 1 1 [ 0
012345678 91 112131415 16 17 18 19 20 21

Time Period, t

Figure 3.1 shows the values of at for two different values of w; (We
have chosen a starting value of « = 0 inferring a vague prior). Note
that convergence is fairly rapid, being faster, the larger the value
of w. In terms of equation (3.32), this implies that for 1largish
values of t, the process of filtering becomes that of simple

exponential smoothing.
3.34 SMOOTHING

The initial smoothing equations, (2.56) and (2.57), of chapter two can

be combined with the prediction equations to become,

ut(T) =B 1.ut+1(T) + (1-Bt+1)’“t(t) (3.41)

t+
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and

9

2 _ 52 2 _ 2
t(T) = Bt+1.0t+1(T) + (1 Bt+1).ot(t) (3.42)

where B, = @f(t)/(of(t) + oi) (3.43)

Note that the processes in (3.41) and (3.42) operate backwards in

time, beginning with the filtered values, uT(T) and 0:(T).

Note also that because of (3.43) and (3.33), the coefficients o and
Bt are related by,

By = (l—at).oz/[(l—oct).of + w':] (3.44)

which when substituted in (3.37) gives the generating mechanism for

Bt, namely,

B = 1/[w + 2 - Bt] (3.45)

t+1

which is exactly the same mechanism as the one for o, in (3.37), which
in turn, in the light of (3.38), (3.39) and (3.40), together with the
fact that any Bt must lie between 0 and 1 because of (3.43), means
that:

B, = 1+w/2 - V (1+w/2)%-1 (3.46)

Again, (3.46) above, has exactly the same form as (1.20) in chapter

one, with Bw replacing A.
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The thing that distinguishes o and Bt is their starting values. For
t=0 (3.43) gives Bl=1, since 032(0) = w, whereas as we saw « was

Zero.

Beta values for different w ratios

Figure 3.2
Beta(t)
1r 21
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Figure 3.2 shows the variation in the values of Bt for two different
values of w, the variance ratio. Like at, which can be regarded as its
filtered equivalent, convergence is quite rapid, the more so for
higher w. As Bt converges, equation (3.41) reduces to simple

exponential smoothing applied backwards to the filtered series ut(t).
Finally by manipulating (3.44) and (3.45) we have:
@ = (1 - Bt) s (1 - Bt + w) (3.47)

or alternatively:

Bt = (1 - « - w.at) / (1 - at) (3.48)

Figure 3.3 shows the relationship between the coefficients at and Bt’

demonstrating their convergence to a common value, which increases as
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w, the variance ratio is reduced.

Covergence of Alpha and Beta values

Figure 3.3
Beta(t)
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Note also that the larger the value of at, the smaller the value of
Bt. In other words if the a are relatively large in the filtering
equation for trend, i.e. (3.32) it suggests that the latest filtered
value ut(t) is highly dependent on the previous value “t—l(t_l);
whereas the reverse procedure in the smoothing equation, (3.41) would
then necessarily incorporate relatively small values of Bt, implying
that the smoothed value, ut(T), was also highly dependent on its
filtered equivalent ut(t).

The outcome of this is that small values of w lead to relatively large
values of atand small values of Bt, which in turn produce both
filtered and smoothed series which are dominated by initial filtered

values i.e. are quite smooth.

By considering the alternative case, we can see a small variance
ratio, w, results in filtered and smoothed estimates which are both
highly dependent on the original series v, and therefore tend to

follow the original series quite closely.
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Figure 3.4 demonstrates the two processes of filtering and smoothing,
the filtered values being produced using equation (3.32) and the

smoothed values using equation (3.41).

Filtering and Smoothing
Figure 3.4

25 Filtered/Smoothed Values
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106+ 1105
=8~ QOriginal Series
—©- Filtered Series
—*- 8moothed Series
95 1 1 1 ] 1 1 1 [l 1 [ 1 i 1 1 1 [ 1 1 1 1 95
012345678 9101112131415 16 17 18 19 20 21

Time Period

The filtered values can be thought of as an intermediate stage in the
production of the smoothed values. Remember, they, the ut(t), are each
calculated using only data values yt up to time t, whereas the
smoothed values, ut(T), utilise all data values up to Yo Roughly,
filtering can be thought of as a process of forward filtering, whereas
smoothing 1is produced by further backward filtering the forward

estimates.

We may also note, as proved, that these smoothed values are identical

to Whittaker’s estimates of figure 1.1 in the last chapter.

3.35 FILTERED AND SMOOTHED VARIANCES

Figure 3.5 compares the variances, of(t) and oi(T), of the
distributions of the filtered, Xt(t)’ and smoothed, xt(T), values,

generated from equations (3.33) and (3.42) and standardised, (by
dividing by 0:).
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From section 3.2, we note that these two variances also become the
mean squared error of the respective trend estimates, when their mean

are used as estimators.

Standardised Variances (w=0.1)

Figure 3.5
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As one would expect, the filtered variance decreases as more data is
gathered, however the smoothed variance does not behave quite so
intuitively as maybe would be first expected, reaching a minimum value
halfway through the series. The fact that this occurs halfway through
the series, or that it regains its initial value exactly at the end of
the series are not the points at issue here since it can be
demonstrated that these effects do not arise in the general case.
However the reaching a minimum does, and as can be demonstrated from

. 2 2
the equations always does, whatever values of ¢” and ¢” are used.
e a

The answer lies in the nature of the smoothing process itself. It is
not the total amount of data we have available that determines how
confident we would feel about a smoothed value, but rather how much
data actually surrounds the trend value we are interested in. The more
data we have coming both before and after the time period we are
interested in, the more sure we will be of placing those events, (in

this case the trend), in their proper context.
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As any historian will tell you, hindsight is wonderful thing, but ask
him to go too far back in time and things become very blurred, since
his knowledge of what events preceded those in question are themselves
very vague, (he has a vague prior). Hence what first seems to be a
model inadequacy is on closer inspection just the opposite, and in a

most satisfactory way is seen to be one of its strengths.

There is also another odd irony to this when spotted, and that is that
the equations used to generate the filtered and smoothed variances do
not depend on the actual values of Y, that have been observed, but
only on their number. One could say that they do depend on the values
of Gz and 0§ used, which of necessity will require the actual values
of Y, to be estimated, but this misses the point, namely that in
theory we may choose T=w, or at least very large, to generate the
variances, which would lead to filtered variances of zero, whatever

2 2 .
values of ¢ and ¢ are used, as long as they are finite.
e a

Again the model has a rather satisfactory solution. Yes, it is true
that in theory smoothed variances of zero can be generated for any
trend value, however the equations which generate the trend values, or
more correctly the means of their distributions, do require the values
of Y, We can know the variance of the distribution of any X, to any
accuracy we like, but without the data, we would have no idea as to
its mean. It would appear that the model incorporates its own version

of Heisenberg’s Uncertainty Principle.

Also plotted on the same graph graph is the value of the
smoothing/filtering variance ratio of(T)/wf(t), which behaves as one
would expect, having a value of one at t=T, and consistently falling
the further back in time we go, demonstrating that it is the earlier
values of t which benefit most, since it is they that obtain the most

extra data from the smoothing process.

3.4 FURTHER INTERPRETATION OF THE STRUCTURAL EQUATION

Let us consider, what might be thought of as the second simplest
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structural trend model to the basic model so far described in this

chapter, namely,

X = 2.X - x + a (3.49)

This model would certainly satisfy the limitation of linear invariance
described in section 1.3 of chapter one, since a linear trend such as
(3.50) below,

X, =a+ b.t (3.50)

would pass through (3.49) undisturbed, since from (3.49) and (3.50),

a =x- 2.xt_ * R S at+bt - 2(a+b(t-1)) + a+b(t-2) = 0 (3.51)

In terms of state space modelling, the equivalent state space

structural equation would be, using the format of (2.01) of chapter

two, i.e.
X = 0.x +a.v (3.52)
t t-1 t
given by:
xt 2 -1 xt_1 1
= . +a. (3.53)
X 1 0 X 0
t-1 t-2

where, what is known as the state vector, X, comprises the elements

X and x
t t-1

However, a state space modeller would almost certainly not use this

structural formulation. Instead, he/she would write the model in
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(3.49) as a set of two structural equations, namely (3.54) and (3.55)

where,
X =X _+g (3.53)

g =8 +a (3.54)

and he/she would interpret the g, as the gradient. His/her formulation

would become,

tl = g o+ a (3.55)

where the state vector xt, now consisted of the elements xt and gt,
the trend value and the gradient at time t. His/her philosophy in
doing so, is that information on the "state" of the system at any time
t is contained in the state vector consisting of the trend and

gradient.

However, we can see that the trend/gradient model formulation of
(3.55) contains no more information than the general trend formulation
of (3.53), nor is there any saving in complexity, since both models
need to utilise state vectors and matrices of size two. Indeed, any
information that one formulation produces can equally be gained by

manipulation of the other.

Since this thesis concentrates on ‘"trend estimation", it Iis
advantageous for us to formulate everything into a general trend
model, but this does not mean that we are overlooking the effects of
gradient or curvature or higher order effects, just that we do not
need to focus on them specifically. Indeed, we shall show that state
space formulations of the type used in (3.55) can, at best, only equal
the information content of the general autoregressive model and at

worst are only a strict subset of it.
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3.5 SUMMARY OF TREND ESTIMATION RESULTS

So far we have looked at three "optimal” techniques for obtaining
trend estimates. In chapter one we considered the minimisation of
Whittaker’s function and also the Classical approach of Generalised
Least Squares, (GLS). These were shown to produce identical values if
we set a weighting factor, w, in Whittaker’s function equal to the
ratio of the residual variances, 0;2/0e2, of the model on which the

procedure of Generalised Least Squares was applied.

In chapter two we investigated trend estimation using a State Space
formulation of the model of chapter one, and concluded, at the
beginning of this chapter by proving that we would again produce
identical values for the trend estimates as previously if it was
assumed that 1initial trend variates had infinite variances, i.e. a
vague prior distribution, (we also showed that, given this assumption,
the mean squared "errors" associated with the State Space and GLS
estimates were also the same - Whittaker’s approach, being

algorithmic, had no equivalent concept).

However, this is far from the end of the story, since implicit in the
trend estimates formulae, were, the residual variances, (or w), and,
for the variable parameter case, the autoregressive parameters. Hence,
to complete the estimation procedure, we still require estimates for
both these.

In the next chapter, and chapter five, we address the first of the

above two areas, namely the estimation of residual variances.

78



CHAPTER FOUR

ESTIMATION OF RESIDUAL VARIANCES |

All the work done so far implicitly assumed that we had knowledge of
the measurement and structural variances, 02 and 02, and/or their
a (5

ratio, w.

In most situations we have no such knowledge, and hence need to
estimate them from the only available data, namely the Txl vector, yT,

of observations, yT, yf AR and y1.

In both this chapter and the next we consider the different ways in

which this could be done.

4.1 THE LOG-LIKELIHOOD FUNCTION

If the density of the observed data is known in terms of the unknown
parameters, then a well-established approach to the estimation of the
unknown parameters, because of its desirable properties, is to choose
those parameter values which maximise the probability density of the
observed data, p(data/parameters) also known as the 1likelihood
function of the parameters, i.e L(parameters), or equivalently its

logarithm, the log-likelihood function, LL(parameters).

4.11 THE ASSUMPTION OF NORMALITY

Because of stochastic Normality assumptions and model linearities,
many derived data vector distributions turn out to be multivariate
Normal, with mean vector p and covariance matrix Z, i.e. the relevant

Tx1 data vector y ~ N(8,Z). Under these conditions the log-likelihood

function, LL(u,Z), of the unknown parameters in p and £ is given by,
In(p(y/p,2)) = LL(K,=) = -1/2.(T.1n(2n) + 1n|=| + (y-p)T.Z'l.(y-u))

where |Z| is the determinant of & (4.01)
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4.2 THE STATE SPACE APPROACH

As we have seen in chapter two, section 2.8, the State Space approach
to trend estimation required us to specify some form of prior
knowledge about the situation. The assumption of complete ignorance in
terms of a vague prior led us to the equivalent event of a posterior

density for y&_d(d), the (T-d)x1 vector of observations Voo V.

?

T-1
, and Vyeq® 8&lven the first d observations Yr Yo v Yo being
given by equations (3.11) and hence (3.18) of chapter three.
Hence, yT/vague prior = y&_d/yd, Yyqr +o0 2 ¥, = y&_d(d)
and so when oi, 0:, and ¢ are also unknown,
. 2 2 _ 2 2
yT/(vague prior, o;,oe,ﬁ) = y&_d(d)/(o;,oe,ﬂ)
whose probability density is given by:
. . 2 2 2 2
i.e. ply./(vague prior, o ,0 ,9)) = p(ly. (d)/c",07,9) (4.02)
T a e T-d a e

where the distribution of y&_d(d, oi,o:,@) is given from chapter three,

(3.18), by,

-1

2 2 -1 T, -1
yT_d(d, 6;,0e,0) ~ UD[ B .C.yd, B .QT_d.(B ) ] (4.03)

from which the log-likelihood of oi, oz and ¢, is given by Ll(oi,wi,ﬂ)

where:

2 2 _ 2 2
Ll(aa,oe,ﬁ) = ln(p(y&_d(d, o;,oe,ﬁ)) (4.04)

where p(xpﬂ(d, oi,oi,ﬂ)) is the probability density function,

introduced in (4.02).
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4.21 THE ASSUMPTION OF NORMALITY

If the linearity assumptions of section 2.5 in chapter two, which lead
us to (4.03), are exchanged for Normality assumptions, the undefined
distribution of (4.03) becomes multivariate Normal, and hence (4.01)

may be applied to (4.04) to give:
1L(0?,0%,9) = -1/2. ((T-d).1n(2n) + 1n[B7.Q_ . (B)7|
+ (y_ - B .cy) .B.Q .B.y - B .Cy)) (4.05)
which can be considerably simplified, because of the nature of the
matrix B, (given by (3.04) in chapter three), td,
ILlL(O‘:,oi,'G) = -1/2. ((T-d).1n(2m) + lnlQ_ | + y;.DT.Q;d.D.y )

T

....(4.06)

where the matrix D, defined by both (3.03) and (3.04) in chapter

three, and the matrix de is given by (3.10) as,

Q =c¢°.1_ +co.D.D (4.07)
T-d e

4.3 THE CLASSICAL APPROACH
The alternative classical approach to trend estimation was described
in chapter one, its general autoregressive model being defined in
section 1.31, by the vector measurement and structural equations of
(1.45) and (1.46), namely,

y =X + e, where e_ ~ UD(z;az.I ) (4.08)
T T T T e T

D.x =a_ , where a_ ~ UD(g;02.1_ ) (4.09)
T T-d T-d e T-d
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T . .
and [E[eT.aT d] = @, where the @’s are conformally dimensioned, vectors

or matrices, of zeros.

Since the prior mean and variance of X is unspecified in this model
because of the form of (4.09), the mean and variance of yT is also
unspecified because of (4.09). The best we can do is specify the mean

and variance of D.yT by combining (4.08) and (4.09).

i.e. D.yT = D.xT + D.eT =a__+De (4.10)

From which E[D.yT] = @, and Bov[D.yT] = o:.I
(4.07), hence,

+ 0‘2.D.DT = Q from
e -d

T-d

D.y, ~ UD[ B Q_ ] (4.11)

4.31 THE ASSUMPTION OF NORMALITY
If we now assume Normality for the distributions of (4.08) and (4.09),
(4.11) becomes specified as Normal also and so the log-likelihood of
ci, 02 and o, &l(oi,oz,ﬁ), is given by (4.01), which becomes:
LL(c®,0°,9) = 1n(p(D.y_))
a e T
= -1/2. ((T-d).1n(2m) + In|Q_ | + y..D".Q" .D.y.) (4.12)
. . a y-D .o .Dy .

which is exactly the same equation as that produced using the State
Space approach, i.e. (4.06).

4.4 MAXIMISATION OF THE LIKELIHOOD FUNCTION

We shall find it useful, in maximising (4.06) or (4.12), to replace 02

2 . . 2,2 . . X
by w.o”, where the variance ratio, w = ¢ /¢, was first defined in
e a e
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equation (1.36) of chapter one. Since the only occurrence of ¢° is in
a

. _ 2 2 T . . .
the matrix S%_d = O‘B.IT_d + 0e.D.D , this only requires replacing S%_d

by oz.Qw where the matrix Qw is defined by (4.13) as:

Q =w.l + D.D (4.13)

The log-likelihood function becomes ll(w,wz,ﬂ), where:
Ll(w,oz,ﬁ) = —1/2.[ (T-d).1ln(2m) + (T—d).ln(cj)

T T -1 2
+ 1og|Qw| + y&.D 2, .D.yT/O‘e ] (4.14)

The final stage is, in theory, quite straightforward, namely to
differentiate (4.14) with respect to w and 0:, set the result to zero,
and then solve the resulting equations to give the required

log-likelihood estimates of w and 0e2.

Differentiation of (4.14) w.r.t oi is straightforward and leads to the

X . 27, .
relationship, (where of course ¢ 1is now an M.L. estimate),
e

2 _ T T -1 5
o= yT.D 'Qw .D.yT/(T d) (4.15)

Differentiation of (4.14) w.r.t w is not quite so obvious but still

straightforward by utilising the matrix differentiation relationships,
81n|Q |/8w = TRIQ .80 /dw],
w w w

T -1 _ T -1 -1
and a(yT.D 'Qw .D.yT)/aw = yT.D 'Qw .agw/aw.gw .D.yT

where TR[M] stands for the trace of M, and leads to the relationship.

-1, _ T . T -2 2
FR[Qw ]l = y&.D 'Qw .D.y’T/O‘e (4a.16)
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which on utilising (4.15), removes the parameter oz, to give,

(T—d).y:.DT.Q;Z.D.yT = TRIQ_'].y..D".Q '.D.y,_ (4.17)

Solving (4.17), (see next chapter), gives us a value for w, which when
substituted in (4.15) gives us o;z, and hence 0;2 = w.oez. If (4.17)
gives more than one solution, we choose that which maximises the

log-likelihood, i.e. (4.14).

4.5 A NON-LIKELIHOOD APPROACH USING THE QUADRATIC FORM

Following the best traditions of 1lateral thinking, we now explore

another avenue which might give us further insights into the problenm.
4.51 VARIANCE ESTIMATION USING THE QUADRATIC FORM

The simplest form of statistical estimator for a parameter having the
same dimension as the observations, is a linear function of the
observations. When we <come to estimate parameters which are
essentially squared measures in this respect, the simplest form of
estimator is a quadratic function of the observations. The estimation

of a variance is in this category.

The general quadratic function of a set of observations Yy Y,

Yp» can be written as Q(yl,yz,...,yT), which must also be the simplest

’ o .. Py

. . ~2 .
form of a general variance estimator, ¢, i.e.

T
Y c .y.y (4.18)

T
~2 _
o = Q(yl,yz,...,yT) ? IRIRE

i=1 j

where the coefficients cij can be arbitrarily chosen. In matrix terms,

this can be written,

=y cy (4.19)
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where Y. is the vector of observations i.e. v, = (yl,yz,...,yT)T, and

C is a square matrix whose ij th element is cij

The matrix C need not be symmetrical but can always be chosen to be
so, since from (4.18) the coefficient of the term Y,Y, is (clj +
cji), implying that Cij can always be chosen equal to cji without

affecting the result.

We have already seen, earlier in this chapter, that there is no
unconstrained relationship between the data vector, yT and the
stochastic parts of the model, e. and a. .- The only direct way we
have of relating the two being (4.10), i.e. via the random vector D.yT

defined in (4.11).

The implication this has for the estimation of model variance
parameters is that the estimator in (4.19) needs to have a general

form given by:

~2 T T
¢° =y.D.MD.y (4.20)
where C = D'.M.D and M is again an arbitrary square matrix of

dimension T-d whose ij th element is mij
Suppose we now impose the condition that the undefined distribution
(4.11) is multivariate Normal, (implying that all residuals were also

multivariate Normal).

Then, from appendix B, ¢ would have mean, E[&zl, and variance, W[&zl,

given by:
Elc°] = m[ M.Q ] (4.21)
T-d
and,
VIic®] = z.mR[ M.Q .M.Q ] (4.22)
T-d T-d
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4.52 MINIMUM VARIANCE CONDITIONALLY UNBIASED ESTIMATION

. . s . . . ~2 .
To obtain a minimum variance, unbiased estimator, ¢°, of a variance
¢, we need to minimise the variance in (4.22) with respect to each of

the elements, mij, of M, subject to the condition:

'ITIR[ M.Q ] =0 (4.23)
T-d

The constraint in (4.23) can be incorporated into the minimisation of
the variance in (4.22) using the Lagrangian multiplier, 4.A. Hence,

the function of all elements mU of M, which we need to minimise, with

respect to each m1j is given by f(mij; i,j = 1 to T-d), or more
concisely f (M), where:
£(M) = 2.'ITIR[ M.Q .M.Q ] - 4.A.[ mR[ M.Q ] - o° } (4.24)
T~-d T-d T-d

From appendix C, (C6) and (C7), we have the following two results,

8/aM { mR[ M.Q ] } = Q. (4.25)

6/3M { FR[ M.Q .M.Q ] } = 2.Q M.Q (4.26)
T-d T-d

Therefore differentiating (4.24), using (4.25) and (4.26), we have

— T —
a/aM { £ (M) } = 4.0 M.Q_  -42r0 (4.27)

Hence at the optimum, realising M is symmetric, (4.27) gives,

M=M =2A.Q (4.28)
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Using (4.23) and (4.28), gives a value for 2, i.e.

2

FR[ M.Q ] = A.FR[IT_d] = A (T-d) = ¢ (4.29)

which can be, using (4.13), (QT_d = oi.Qw), substituted into (4.28)

to complete the solution, i.e.

M = ¢2.Q ' /(T-d) = (62/62).Q "1/ (T-d) (4.30)
T-d e w

s s . - 2 2 . s s .
Utilisation of (4.20), with ¢ = ¢, gives us a minimum variance
e

. . 2 .
unbiased estimator for o =, i.e.
e

A2 T T -1 5
o = yT.D 'Qw .D.yT/(T d) (4.31)

e

which is the same as the one given by the 1likelihood function in

(4.15),

Similarly for 02 = 0a2, we get,

~2

¢ = w.yi.DT.Q;i.D.yf/(T—d) = w.0° (4.32)

Both estimates in (4.31) and (4.32) are functions of the variance
ratio, w, and hence require its pre-specification. We therefore refer

to them as minimum variance conditionally unbiased estimates.

4.53 MINIMUM VARIANCE UNCONDITIONALLY UNBIASED ESTIMATION

. . . <y s . . ~2
To obtain a minimum variance, unconditionally unbiased estimator, o,

. 2
of the variance ¢, where,

= a0+ B.o (4.33)
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we take advantage of the fact that (4.21) can be written,

Elc?] = TR| M.Q =¢2TR| M | + ¢ 2.TR| M.D.D" (4.34)
T-d a e

Again we need to minimise the variance in (4.22) with respect to each

of the elements, mij, of M, but now subject to the two conditions:

m[ M ] = « and m[ M.D.D' ] = B (4.35)

The proof now requires two 1lagrangian multipliers 4.A and 4.u to
incorporate the constraints of (4.35). Hence, the function of all
elements mij of M, which we need to minimise, with respect to each m

is given by f(M), where:

£(M) = Z.FR[M.QT_d.M.Q d] - 4.A.[1ﬂR[M] - ] - 4.p. ['[HR[M.D.DT] - B]

T-

....(4.36)

From appendix C, (C4), (C6) and (C8) we have the following three

results,

a/aM { m[ M ] } = L, (4.37)
3/oM { '[FIR[ M.D.D ] } = D.D' (4.38)
_ T
8/aM { mR[ M.Q _.M.Q ] } = 2.0 .M.Q (4.39)

Therefore differentiating (4.36), using (4.37) to (4.39), we have

88



CHAPTER FOUR

_ _ _ T
a/aM{f(M)} = 4.Q .M.Q 4.1 _ - 4.u.D.D (4.

40)

Hence at the optimum, (4.40) gives (4.41) and then finally (4.42),

where

Q M. = AI  + uD.D (4.
T-d T-d T-d
M=M =207 +po" 00" (4.
T-d T-d T-d
As in section 4.4, we shall find it more convenient to work with
matrix Q , defined in (4.13), where = ¢ 2.Q . Hence (4.
w T-d e W
becomes:
M = A2+ .0t (4.
w w W
* 4 * 4
where A = A/@e and p = u/oe (4.
From (4.13) we have,
D.D" = (Q - wI ) (4.
: () " T-d
Hence from (4.43) and (4.45), we have,
M = A2 u*-( Q! - w2 ] (4.
w w w
Hence,
mR[ M ] = A*.mR[ Q2 ] + u*.mR[ 9;1 -w 9;2 ] (4

89
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and, again using (4.45),

m[ M.D.D' ] = 'IT!R[ M.(Q - wI ) ] = THR[ M.Q ] - w.'IIlR[ M ] (4.48)
[5)] T-d [5]

Simplifying (4.48), using (4.46), we get:

1TIR[ M.D.D" ] = A*.mR[ ol - wa? ] + u*.mR[ I -2.00 "+ 007 ]
w (5] T-d 5] (5]

co..(4.49)

Writing FR[Q;k] as Fk, for k=0 to 2, in (4.47) and (4.49), equation
(4.35) can be written,

T T -0.T *
o 2 1 2 A
= s . . (4.50)
B Fl—w.Fz vo—z.w.v1+w .FZ u
Inverting (4.50) we get,
* T 2.0.T +°.T -(T -w.T_)
A 0 1 2 1 2 o s
= . /( FO.FZ—Fl ] (4.51)
K -(Fi—w.vz) Fz B

Finally, substituting (4.51) into (4.46), the expression for M

becomes:

-2

2
a2, Q_l—w.Q—z] FO—Z.w.Fl+w .Fz —(Fl—w.Fa)
M=o (7 (2

o

: / [vo. va—vlz]
-(Fl-w.vz) Fz B

....(4.52)
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Since M is a function of w in (4.52), it would appear that the
estimator is again conditionally unbiased. However if we choose w = v
# 0‘:/0‘:, such that Qw becomes Qv ete. in (4.52), it is a

straightforward matter of substitution to show that,

IE[ o ] = mR[ Mw=r).Q_ ] = [ M(w=p). (c2.1__ + ¢°.D.D") ]

2=6% (4.53)

Il

= - 2 _ .2 _ - 2
= 'II’IR[ M(w=v). (oa i o (QV v.IT_d) ] a.c "+ B.ce

T-d a

2 ., eps .
Hence ¢ is unconditionally unbiased.

4.531 ESTIMATION OF THE MEASUREMENT VARIANCE

Using (4.20), an unbiased estimator of ¢ =~ with minimum variance is
e

. ~ 2
given by o =, where:
e

c?2 = y:.DT.Me.D.yT (4.54)

and the matrix Me is given by setting @« = 0, and B = 1 in (4.52),

since ¢° = crez for these values in (4.33). Therefore,

M= {v.n’i—v.n’z }/(v.v —vz] (4.55)
2 W 1 W 0o 2 1

4.532 ESTIMATION OF THE STRUCTURAL VARIANCE

Again using (4.20) an unbiased estimator of ¢ =~ with minimum variance
a

. . ~ 2
is given by o , where:
a

o 2 vy .0".M .D.y (4.56)
T a T
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and, because of (4.33), the matrix Ma is given by setting a = 1, and B

= 0 in (4.52), i.e.

Moo= { 0 (T.Q-T.%) +T .Q°%T1.0" }/[ T.T -T° ] (4.57)
a 2 W 1 W 0 W 1 W 0o 2 1

4.533 ESTIMATION OF THE VARIANCE RATIO
Substituting (4.55) into (4.57) gives,

= -2 _ -1 o2
M =oM + (T.2°-T7.2°)/7T.T, -T°) (4.58)

which after applying (4.54) and (4.56) gives,

~2 ~2 2
ol =w.o + (T.Q - T.0)/(T.T, -T°) (4.59)
_ T T -k
where @k = yT.D Q) .D.yT (4.60)
Also applying (4.54) to (4.55), we get,
¢? = (T.a@ -T.0)/(T.T -T2 (4.61)
e 2" 1 1" 2 02 1
Hence combining (4.59) and (4.61) gives,
e T.0Q, - T,.Q
w=-—=0+ (4.62)
o T..Q - T, .Q
e 2" 1 12

For (4.62) to be true for ® = w, this requires T,.0, =T.0, i.e.
T T -2 _ -1, T T -1
(T d).yT.D .2 "Dy = 'I]'IR[Qw ].yT.D .Q.D.y_ (4.63)
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Hence by solving (4.63) we will obtain the required estimate for w, ®,
which can then be substituted into (4.61) to give ¢ 2 and therefore
e

-~ A~ 2

(o = Ww.0c .
a e

Note that condition (4.63) is exactly the same as that produced from

Maximum Likelihood in (4.17).
Also substituting (4.63) into (4.61), we obtain,

~ 2
oy
e

=Q/T =@/T (4.64)
1" o 2 "1

which again is exactly the same result as obtained using Maximum

Likelihood in (4.15).

Hence the above, Minimum Variance estimates are identical to those

produced using Maximum Likelihood.

Note that equation (4.62) can be thought of as a recurrence relation

for estimating w, i.e.

Oour = Oy ¥ a(wIN) (4.65)

The iteration of (4.65) is exploited in the next chapter.
4.54 THE ASSUMPTION OF NORMALITY

For this section, 4.5, it was apparently necessary to include the
condition that the distribution in (4.11) was multivariate Normal. In
fact the only result of the section which did require this result was
(4.22), which, upon inspection of its derivation in
(Searle, 1971,chapter 2) cited in appendix B, only requires the lesser
condition that the unspecified third and forth moments of the
distribution in (4.11) have the same relationship to the first two as

those of a multivariate Normal distribution.
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The third moment, being zero, essentially imposes the condition that
the distribution in (4.11) is symmetric, which still leaves some room
for non-Normal variations in (4.11); it 1is, unfortunately, the
imposition of the forth moment condition which essentially limits us
to distributions which are so close to Normality that it serves little

practical purpose to define them as otherwise.

4.6 WHITTAKER’S SUM OF SQUARES FUNCTION

From equation (1.10) of chapter one, Whittaker’s, (weighted sum of

squares), function Y, is defined as:
_ Y _ T T
Y = (yT xT) .(yT xT) + 1/w.xT.D D.x_ (4.66)
The optimal value of X s §T, which minimises y, (for a given w), is
given by (1.14) of chapter one as:

-~ T y-1
xT = (IT+1/w.D .D). yT (4.67)

Substitution of (4.67) into (4.66) is performed using steps (4.68) to
(4.74), below. Rewriting (4.67), we have,

T ~
(IT+1/w.D .D).xT =y, (4.68)
and hence,

vy -x = 1/w.D".D.x (4.69)
T T T

From (4.69) it follows that:

~ T -~ T T o5 AT T o~
(yf—xT) .(yT—xT) = 1/w.y .D".D.x_ l/w.xT.D D.x_ (4.70)
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which on substitution into (4.66) gives,

w(xT=§<T) =y = 1/w.y:.DT.D.§T (4.71)

Furthermore pre-multiplying (4.68) by D, (when D is in its general

form of (1.44), chapter one, having dimensions (T-d)xT, we get,
-— T s — >
D.y& = 1/w.(w.IT_d + D.D ).D.xT = l/w.Qw.D.xT (4.72)

where Qw was defined in (4.13).

From which it follows that,

1/w.D.§:T = '.ny (4.73)

which finally, on substitution into (4.71), remembering (4.60), gives,

RS Sy QR | -
w(xT—xT) =y =y.D.Q ".D.y Gl(w) (4.74)

Notice that the form of the function @ in (4.74), i.e. @1(0) def ined
in (4.64), has appeared quite a lot in this chapter. It occurs in the
likelihood function (4.14), in estimates for 0e2, and therefore 0;2,
(4.15), (4.31) and (4.32) and in the equation for estimating w, (4.17)
and (4.63). As we saw at the beginning of chapter one, Y is a weighted
sums of squares function, weighting together the sum of squared
errors/residuals associated with fidelity or measurement, (SSe), and
the sum of squared errors/residuals associated with smoothness, 1i.e.
the structural errors, (SSa). Hence we could write, Whittaker’s

function, ¥, using (4.66) as,
Y = SSe + 1/w.SSa (4.75)

where,
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SSe = (yT—xT)T. (y,~%.) (4.76)

SSa = x..D".D.x (4.77)
T T

And hence, from (4.74),

T T - -1
T

U = W(xT=xT)

1
~
=}
QD

D.y_ = SSe + 1/1w.SSa = = 0, (@)

where SSe SSe(xT=§T), and SSa = SSa(xT=§T) (4.78)

Using (4.73) and (4.77), we have,
T T » 2

A oy o2 _ 2 T T, - _ 2
SSa = SSa(xT—xT) xT.D .D.xT w .yT.D 'Qw .D.yT w .Qz(w) (4.79)

The form of the function y:.DT.Qw—z.D.yT in (4.79), i.e. @,(+) defined
in (4.60), also appears in this chapter, in (4.17) and (4.63).

Substituting (4.78) and (4.79) into (4.63) or (4.64), the equation for

estimating w, gives us,

(T-d).1/w.SSa = w.FR[Q;ll.(SSé + 1/w.SSa) (4.80)

which'gives us an alternative approach, (via the estimation of §&), to

estimating w.

4.61 INTUITIVE ESTIMATION

Writing (4.76) and (4.77), (when x&=§T), as summations of the

individual vector elements, we have,

. t=T ., =T,
SSe = Y (yt—xt) = Ye
t=1 t=

(4.81)
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45
a (4.82)

Intuitively, therefore, we might consider estimating o 2 by SSé/T, oaz
(<]

by SSa/(T-d) and hence w, (= ogz/oez) by the ratio of these two
estimates i.e. T.SSa/(T-d)/SSe.

Ssa is given by (4.79). Hence an intuitive estimate for oaz is given
by:

ssa/(T-d) = aF.@z(w)/(T—d) = wz.y;.DT.Qw_z.D.yT/(T—d) (4.83)

SSe is given by substituting (4.79) into (4.78); thus,

~ _ _ T T o -t _ T T . -2
SSe = Ql(w) w.@z(w) yT.D Q, "Dy - w.y.D.Q ".D.y_ (4.84)

An intuitive estimate for oez is therefore given by,

T

. _ _ T -1 _ T T . -2
SSe/T = (®1(w) w.@z(w))/T yT.D Q) .D.yT/T w.yT.D Q2 .D.yT/T

....(4.85)

Since SSe/T and SS&/(T—d)/w are two estimates for 0e2, we can equate
these to obtain an "intrinsic" equivalent equation to (4.17) or (4.63)

for estimating w, i.e. using (4.83) and (4.85),

w.@z(w)/(T—d) = (@1(w) - w.@z(w))/T (4.86)

w.(ZT—d).DZ(w) = (T—d).@l(w) (4.87)
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2 1

.D.y_ = (T—d).y:.DT.Qw- .D.y (4.88)

T T o -
w.(ZT—d).y&.D 'Qw T

As we can see equations (4.83), (4.85) and (4.88) differ quite
significantly from previous "optimal" results and lead to quite
different estimates. The extent of the differences were confirmed by
some initial trials with simulated, (known variance), data, where
their performance, as opposed to the "optimal estimates" was

positively misleading, and, as such, they were not pursued further.

However, it is cautionary to note that, unlike many other estimation
procedures in which theory simply confirms intuition, (or at least
only slightly amends it), this is a situation in which intuition would
not seem to be at all reliable, although why this should be the case

is not particularly obvious.

4.7 SUMMARY OF RESULTS

In this chapter we investigated the estimation of the residual
variances 6;2 and oez, firstly using Maximum Likelihood, where we
showed that both the Classical approach and the State Space approach,
based on the assumption of a vague prior), led to the same likelihood
function, and then by considering a Minimum Variance approach which
utilised a quadratic form for the estimators. In both instances these
were shown to give identical estimates. The chapter ended with a

cautionary note on using intuitive, but non-optimal, estimates.

In the next chapter we shall be combining the best features of both of
the two optimal estimation procedures looked at in this chapter to
produce an algorithm which will efficiently implement their estimation

in practice.
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ESTIMATION OF RESIDUAL VARIANCES I

In many situations we wish to investigate the appropriateness of trend
models which are jinvariant, (see chapter one section 1.3), to simple
trends e.g. constant (d=1), linear (d=2), quadratic (d=3) etc.

where the parameter d is the autoregressive lag.

For these cases the individual values of the autoregressive parameters
i.e. 01, ﬁz’ e 0d, (the latter being denoted by the set or vector

Qd, or simply 6d or ¢ if its meaning is clear), are given by the

coefficients of x' in the expansion of -(1-x)d, i.e.

o = -1 dt/ (et (d-m)Y) r=1, 2, ... , d (5.01)

Alternatively it may simply be the case that we wish to inestigate the
effects of a particular model of chosen autoregressive parameters. In

either event we can regard the parameters d and Qd as pre-specified.

This chapter build on the results of chapter four to implement a
procedure for estimating the remaining unknown parameters of such
models, namely the residual variances, 062 and 0;2. Two scenarios are
considered, (i) when the variance ratio, w = o;%ﬁzf, is known and

(ii) when the variance ratio is unknown.

5.1 SCENARIO 1: ESTIMATION OF RESIDUAL VARIANCES GIVEN w and Qd
In chapter one we saw that, whereas the calculation of the mean
squared error of the trend values, (e.g. equation (1.38)), requires
estimates for both residual variances, the calculation of the trend

values themselves, (e.g. equation (1.37)), needs only their ratio, w.

A modeller may therefore inspect the behaviour of different trends

prior to carrying out a full analysis, (as in figure 1.1 of chapter
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one for example), and from these choose the one which his qualitative

prior knowledge of the situation deems to be most appropriate.

In practice this would mean examining various models on the basis of
their smoothness and hence choosing one by the specification of its
smoothness parameter "p", which, since w=(1-p)/p, (equation 1.04,
chapter one), is equivalent to the Bayesian practice of invoking an "a

priori" belief on the value of w.

Given this scenario the only parameters, (apart from the trend values
themselves of course), which require estimation are the residual
variances, oez and 0;2, which are automatically given by the (Maximum
Likelihood) conditionally unbiased estimators of equations 4.31 and

4.32 of chapter four, namely,

-
¢ % =0 ()/T (5.02)
¢ 2= 0.0 (0)/T (5.03)
a 1 0
where @ (0) =y .D'.Q *.D.y_and T = T-d (5.04)
1 Yp o9 3 Py 0 ’

Note also that equation 4.24 of chapter four would also produce an

appropriate estimate of the variances of these parameters.

5.2 SCENARIO 2: ESTIMATION OF RESIDUAL VARIANCES GIVEN Qd

In this scenario the autoregressive parameters contained in Qd are the

only parameters to be specified, a priori, which in practice requires

the estimation of ®w in addition to the residual variances, o and
e

2

[
a

5.21 THE ESTIMATION OF w

Chapter four suggests two approaches to the estimation of w given gd,

both of which are shown to lead to the same problem i.e. to find the
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value(s) of w which satisfy the following condition,

Qz(w)/ﬂl(w) = Tl(w)/Fo (5.05)
_ T T -k

where Qk(w) =Y, .D 'Qw .D.yT (5.06)
_ -k

and Fk(w) = FR[Qw ] (5.07)

The first approach is to maximise the log-likelihood function,
(equation 4.14), with respect to w and concentrate the resulting
derivative by substituting the Maximum Likelihood estimate of oez,
(equation 4.15), for 0e2. The resulting concentrated derivative 8LL/dw

is given by,

dLL/dw = FO/Z.(QZ(w)/Ql(w) - Fl(w)/Fo) (5.08)

which when 8LL/8w=0 gives (5.05). This suggests a solution procedure
based on Newton’s formula but utilising first and second function

derivatives, namely

6&&/6w(w=w1n)
Your T “iv 2 2 (5.09)
8°LL/8w (w=wIN)

The second approach wutilises Minimum Variance, unconditionally
unbiased, estimates of the residual variances and leads to the

recurrence relation of (4.62) in the previous chapter, namely,

T (Q(w. )/0B (w._ ) - T (v )/T)
o = 0+ o_ 2 1N 1IN 11N o (5.10)
Ul(wIN) (FZ(wIN)/Fl(wIN) - @2(w1N)/®1(w1N))
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Unfortunately both of the above feedback procedures, (so called
because Wour is calculated from - and then fed back into the process
as wIN until presumed convergence), have their limitations. However,
before examining them in any further detail, it is instructive to
review some of the properties of, and related to, their main
functional component, @k, (of which Fk is a special case), and, in

particular, the ratio @ /Q .
k+1 k
5.211 Properties relating to the functions @k and ®k+1/®k

The function ®k, or more fully ®k(w,Qd,yT), for k =0, 1, ... etc. is

given by (4.60) of chapter four:

Q =y .D.Q ".D.y (5.11)

where Yr is the Tx1 time series vector consisting of observed values

Ypr Yoy

(4.13) in chapter four as:

Y5 Qw is the (T-d)x(T-d) matrix, given by equation

Q =w.l + D.D (5.12)

as:
1 ,-%,-% ...... ,—0d, 0, , s eeeen , 0
D=0, 1,9 ,-%_ ...... , -9, 0,0, 0,..,0 (5.13)
1 2 d
0 etc

PROPERTY 1: The eigenvalues of Qw are given by Ai =w + giT.gi for i =
1 to T-d with Ei = DT.vi, where v, = vi(gd) are the eigenvectérs and
Ai = A,(ﬁd) = EiT.Ei are the eigenvalues of D.D".

i 2

The symmetric invertible matrix D.DT can be written V.E.VT where V =
V(Qd) is the matrix whose columns are its eigenvectors, v and E is

the diagonal matrix of its eigenvalues, Al. Therefore A1 = v’f.D.DT.v1
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T _ T

= &i .&i where El =D v
But the matrix @ can be written w.V.V' + V.E.V' = V.(0.I__ + E).V.
Therefore V is also the matrix of the eigenvectors of Qw, and w.IT_ +

d
E is the diagonal matrix of its eigenvalues, Ai, i.e. hi =w + Ai.

The important points here are that the eigenvalues are all positive
linear functions of w whose gradients aki/aw are all unity, and the

eigenvectors, vl = vi(gd), are functions of Qd but not of w.

T-d T-d
PROPERTY 2: } A1
1=1 i=1

Il
™
JYY

d
(o 2
i.gi-(Td).[uzej]

j=1.

Since Ai are the eigenvalues of the matrix D.DT defined in property 1,
their sum is simply the trace of D.DT i.e. the sum of the elements on
its leading diagonal. From inspection of the square (T-d)x(T-d) matrix
D.DT every element on its leading diagonal is equal to 1 + ﬁf + 02 +

.+ Gi. Hence the result follows.

Note also that from property 1 this gives an equivalent result for the

sum of the eigenvalues, Ai, of Qw’ and hence the mean eigenvalue X,

d
Y A = Y {w + giT.gi] = (T—d).[ w+1+Y 8° ]
1=1 1=1 j=1 7
ie. 2= [ w+1+3)9 ]
j=1 )
_ (T 2,k T 2,k T 2,k
PROPERTY 3: @k = (& YT) /Al + (€z.yT) /AZ + ...+ (ET_d.yT) /AT_d

1

where each vector &i Ei(gd) = IF.vi, and each v, is the eigenvector

associated with the eigenvalue Ai given by property 1, above.

FR[y&T.DT.Q;k.D.yT] since the trace of a scalar is the scalar itself

FR[Q;R.D.yT.yTT.DT] using a property of the trace of a matrix
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TRIV. (. + E)™.V'.D.y_.y ".D'] from property 1

]

TRI(w. I + E)‘k.vT.D.yT.yTT.DT.v] because it is a trace again

_.T T T k T T T k
= vl.D.yT.yT .D .Vl/?\1 + ... + v,r_d.D.yT.yT .D .vT_d/AT_d
_ T 2,.k T 2 ,.k T 2.k

= (f;’l.yT) /7\1l + (gz.yT) /AZ + ...+ (ET_d.yT) /AT_d

where Ei = DT.vi and 7\1 = @ + ET.Ei are the diagonal elements of the

diagonal matrix w.IT_d+ E from property 1.

Note that when k=0 the above expansion implies that (DO = yTT.DT.D.yT

i.e. that Qg is defined as IT_d, an identity matrix of dimension T-d.

PROPERTY 4: le >0, for k =0, 1, etc.

This follows directly from property 3, since, except for trivial

cases, each Ai > 0 and each (gf.yT)z > 0.

PROPERTY 5: le > 0, as w @ w.

This follows from properties 1 and 3 since as w » o, each Ai » o from

property 1, and each (E-f.y_r)2 in property 3 is not a function of w.

PROPERTY 6: 6®k/6w = - k.(l!)k+1 =0, for k =1, 2 etc.

1
aa:k/aw = a/aw.[ z (E'f.yT)z/(w + i;"f.ii)k] from property 3

k+1

i
= - k.[ Z (gf.yT)Z/(w + g:'.gi)k“] = - k.Q

which is negative since ®k+1 > 0 from property 4.

PROPERTY 7: le is a strictly decreasing function of w, for k=1, 2 etc.

This follows from, amongst other things, property 6, since the
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gradient of @k is negative.
PROPERTY 8: 'ITk is a special case of le where Y, is chosen such that
(€l.y)?=1fori=1,2, ..., Td

This follows from property 3 and the definition of Tk = FIR[Q;R]

w125 e aank
2 T-d

Note: A value of y_ which satisfies the above is y,_ = p’. (0.0") .v.u
where V is the eigenvector matrix defined in property 1 and u is a

(T-d)x1 vector whose elements are all unity.

Also note the implication that 'I]'O =T-d = 'ﬂ'[R[IT_d].

PROPERTY 9: Q@ /Q > 0 for k =0, 1, etc.
k+1l Kk

This follows from property 4 since ®k+1 > 0 and d)k > 0.

PROPERTY 10: @ /Q - 0, as w - o,
k+1l k

This follows from properties 1 and 3 since for w >> Ai, Ai > w for

each A and therefore @ - @ /wk. Hence @ /Q - 1/w » 0 as w » o.
i k o) k+1 k
PROPERTY 11: @ /@ =@ /Q >0 for k =0, 1, etc.
k+2  k+1 k+1 k

This follows from property 3 since,

1]
_ T 2, k+2 ,,.T 2.k
®k+2.®k =YY (Ei.yT) /?\i . (&,‘j.yT) /}\j
2 1o 2, k+t1 ,,T 2, k+l
and ®k+1 =y ¥ (Ei.y_r) /7\i .(Ej.yT) /AJ

1]
2 T 2 T 2 J-ky-k[,-2_ ,-1,-1
Hence ®k+2.®k - ®k+1 =y Y (§.y) .(€J.yT) .7\1.7\j. [7\l 7\1.7\] ]

i<j J
_ T 12 (oT 12 a=kyk[y=2, ,=2_ , y=1,-1
= ¥ L@yt .Ai.Aj.[Ai Y 2.?\1.7\j]
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i<j j
T 2 T 2 ,=-k.-k -1 =112 -
L L€yt @€y .xi.aj.[ai . aj] =0

Note that the equality is only met when all of the eigenvalues are

equal which is only true for trivial cases.

Therefore @ _.Q = @
k+2 Kk k+1

Hence Q@ _/Q =z @Q /Q > 0 from properties 4 and 9, since Q >0
k+2 k+1 k+1 k k+1
and @k > 0 and also Qku/ﬂk > 0 and again note that this is a strict

inequality in all but trivial cases.

Note also that this is one property which is not also necessarily true

for the original function @k, i.e. ®k+1 = Ok is not in general true,

as the next property shows.

PROPERTY 12: 0 < Q@ /0 < 1/u°.
k+p k

From properties 2 and 3, we have

i

wp.@k+p = ): ((gf.yT)"‘/(w + gf.gi)“*"].wp

i
= z [(g'f.yT)z/(w + gf.gi)k].(w/(w + gf.gi)]*’
i
< Z [(gf.y&)z/(w + &f.&i)k] since w/(w + 5:.61) <1

Hence o*.Q <@
k+p k

In addition ®k > 0 from property 4 and the result follows.
PROPERTY 13: 1/w > Q _/Q ZQ /Q >0 for k =0, 1, etc.
k+2  k+1 k+1 Kk
This follows directly from properties 11 and 12. Note also the special
case (w + 1 + Z @?).Fl > Fo since 'l]'o/'I]'1 is the harmonic mean

eigenvalue, which is always less than the arithmetic mean eigenvalue,

A=w+1+% ﬁf, from property 1), for positive eigenvalues. Hence,
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1/w>T /T =T /T > 1/A for k = 0, 1, etc.
k+2 k+1 k

k+1

PROPERTY 14: 48(Q@ /0 )/6w = - /@ (@ /@ + k(@ /@ -@
k+1 k k+1 k k

/Q))
k+2 k+1 k+2 k+1 k
=0 for k=0, 1, 2 etc.

+1

This follows from straight differentiation using property 6 and
properties 9 and 11 which ensure that the differential is negative,

and only zero when Q and Q are zero.
k+1 k+2

PROPERTY 15: Qkﬂ/Qk is a decreasing function of w, for k = 0, 1, 2

etc.

This follows from property 14 since its gradient is negative for all

non-trivial cases.

PROPERTY 16: ®k+1/®k is finite for all values of w.

Because of property 4, an/Qk is the ratio of two positive values
which must also be positive and finite. Note also that because of

property 15 its maximum is at w = 0.

5.212 The Constant and Linear Models

In order to clarify the procedures in the remainder of this chapter, I
have chosen two simple models as examples. Both models utilise the

same time series, y&, namely that of figure 1.1 in chapter one.

The "constant" model, (also referred to as the basic model of section
3.3, equation 3.28), employs the structural, or trend, equation, X, =
xb4+ a, i.e. it has lag d=1 and autoregressive parameter 61=+1 and is
so-called because of its invariance to trends with a constant mean,

(see sections 1.3 and 3.5).

The "linear" model employs the trend equation X, = 2.xt_1— X, ot a3

i.e. it has lag d=2 and autoregressive parameters ﬂ1=+2, 62=—1 and is
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invariant to trends which are linear over time.

Figure 5.1 shows examples of the Q-ratio, (@ku/ﬂk), family of curves
for k = 1 and 2 for the constant model. Note that, as previously
demonstrated, they are positive, finite, non-intersecting curves such

that @ /0 > @ /Q, which tend to zero as w tends to infinity.
k+2 k+1 k+l k

Q-Ratio Curves (Constant Model)
Figure 5.1

Q-Ratio T-Ratig 5

—-©-Qz/Q1 ——Q8%/Q2 X TUTO -+ T2/T

4 14
3¢ Q2/Q1=T2/T1 lg
2 42

-0
0.16 0.45 0.76 105 1356 1656 195 225

Variance Ratio, w
Not on graph: Q3/Q2 =T2/T1 @ w=2.7, "T1/TO ¢ w=5.8

Figure 5.1 also shows T-ratios, (see property 8 above), for k=0 and 1,
for the same model which also form another family with the same

characteristics as the @-ratios.

Note that both Q-ratios intersect both T-ratios once only, (excluding
the case w=w of course where all ratios eventually meet), the most
important intersection being when @2/01 = vl/vo which solves equation

5.05 and hence gives an optimum value of w.

However it is seen that this pattern of intersections breaks down when
we employ a linear model as in figure 5.2. For this model we see that
the T-ratio FZ/Fl does not intersect either of the Q-ratios and

remains at a higher level than both for all values of w.
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Hence, even when using the same time series data it does not seem
possible to be able to predict how the @ and T ratios will relate to

each other.

Q-Ratio Curves (Linear Model)
Figure 6.2

Q-Ratio T-Ratio
7 a7

6k ——Qz2/Q1 —°-Q8s/Qz X TYT0 -+ T2/mM | Jg

Q2/Q1=T1/TO i.e. Optimum w |,

Q3/Q2 = T1/TO

01 03 05 07 09 11 13 15 17 12 21 23
Variance Ratio, w

Experience of investigating different data sets and different models
have resulted in most conjectures about the curves being rejected. The
only conjecture which does seem to hold for every example I have
looked at so far is that "there can only be, at most, one intersection
between any particular Q-ratio and any particular T-ratio", although

this, as yet, remains unproven.

However, even though our knowledge of how these curves behave is far
from complete, we can, nevertheless, use the information we have
obtained so far to some extent in solving equation 5.05 using the two
approaches of equations 5.09 and 5.10.

5.213 The Likelihood Approach

Applying property 13 to equation (5.08), we have,
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2 2 _ _ _ 2 2 _
dLlL/0w = FO/Z.(2.®3(w)/®1(w) Qz(w)/ﬂl(w) Fz(w)/vo) (5.14)

and hence using equations (5.08) and (5.14) equation (5.09) becomes:

. Y s (Qz(wIN)/Ql(wIN) - Fl(wIN)/vo) 5.15)
ouT IN 2 2 ’
(2.@3(wIN)/®1(wIN) - @2(wIN)/®1(wIN) - Fz(wIN)/FO)

Maximum Likelihood Estimation of w
Figure 5.3

06 I_.og-LikeIihood Gradient

CONSTANT MODEL
004}
Final Value of w(out)
oozt . / — Initial value of w{in}
0

-0.02 - Minimum
-004}
-0.06 1 1 1 1 1 1 1 \

1.8 22 26 3 34 38 42 486 5
Variance Ratio, w

Figure 5.3 shows a plot of the gradient of the log-likelihood
equation, 8LL/8w, for the constant model to demonstrate how equation
(5.15) operates. From an initial w value, W the value of W our is
found as the point at which the tangent to Bll/aw(w=wIN) meets the o
axis. This is then set as the new - value and the process repeated
until convergence at the final Yout value, which occurs where the

log-likelihood gradient crosses the w axis.

The log-likelihood gradient in figure 5.3 is well-behaved. From an
initial positive value it crosses the w axis, reaches a minimum and
then, (although not shown), tends back to zero as w approaches

infinity. Since the curve crosses the w axis from a positive to a
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negative value, this intersection is at a maximum of the
log—likelihoqd, (and hence likelihood), function and the value of w at
the intersection is its local maximum likelihood value. Also since
this is the curve’s only intersection with the w axis it must also be

its global maximum.

Figure 5.4 shows a similar situation for the linear model. Again the
log-likelihood gradient is well-behaved and from a suitably chosen -
will converge to a global maximum by successive applications of

equation 5.15.

Maximum Likelihood Estimation of w
Figure 5.4

5 I:og-Likelihood Gradient

[LINEAR MODEL |
2r Global Maximum Likelihood value of w
1 -
w(1} Minimum w(2)
0 : | !
_1 -
_2 1 1 1 1 1 1 1 1 1 1

o 01 02 03 04 05 06 07 08 09 1
Variance Ratio, w

Unfortunately, there is nothing to say that the 1log-likelihood
gradient will always be so well-behaved. For instance, there is no
proof that there will always be a local maximum, let alone a global
one. Moreover even if the 1log-likelihood gradient is well-behaved

there are still problems with applying equation 5.15.

Firstly, if w is chosen too close to the log-likelihood gradient’s
minimum, such as w, in figure 5.4, the application of equation 5.15
may result in a negative value of w and the recursion will break

ouT
down.
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Secondly, if wm is chosen to be a value which is higher than the
value of w at which the minimum of the log-likelihood gradient occurs,
such as w, in figure 5.4, it should be apparent that the application
of equation 5.15 will result in higher and higher values of w which

will direct the process to infinity.

Maximum Likelihood Estimation of w

Figure 5.5
!v(in) w(out)

4 CONSTANT MODEL 14
35} SEYS
2 Z :\ ..................................... : : 5

- Initial w{in) et -

ol AT S 1a
16F , 416

1r Final w{out) 11
05} Jos

0 . 0

-051 1-0.6
-1 ——wiin) —+ wlout) 1-1
-18[ 1 1 1 1 1 1 1 1-18
0 0.5 1 15 2 25 3 35 4

Variance Ratio, w

An alternative way of 1looking at things is given by plotting an
wm/w‘JUT graph as in figures 5.5 and 5.6. Figure 5.5 shows the
w_ /W equivalent graph for the constant model of figure 5.3, albeit

0:1N1y Oit”]zr values of w up to about 3.8, which is the minimum point of
the log-likelihood gradient. The graph recreates the LR - stage
by moving vertically from the wm line to the wour curve, and sets
w =w__ by moving horizontally from the Wy CUrve to the . line.

ouUT "IN

(Note the w line is just the straight line wm=wOUT). From the graph
we can immediately see that for values of w up to about 3.5, i.e. the
point where the wOUT curve crosses the w axis, this procedure will

always result in convergence.
Figure 5.6 gives a wider picture of the wm/wOUT equivalent graph for

the linear model of figure 5.4, which now includes the the minimum

point of the log-likelihood gradient at about w=0.5, which manifests
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itself as a singularity.

Again it is easy to see from the figure that initial values for W
such as w1 will always produce negative values for Wour? and values

such as w, will always result in a process which iterates to infinity.

Maximum Likelihood Estimation of w
Figure 5.6

w(in} w(out) .
LINEAR MODEL e

2T \ / - wiim ——wlout) | |2

-4 : 1 1 1 ! 1 1 1 1 -4
0 04 0.8 12 16 2 24 28 3.2 36

Variance Ratio, w

What does all this tell us about using equation (5.15) to find the
global optimum value of w. In general very little, since there are so
many if’s and but’s regarding which form the log-likelihood gradient
function may take that even to be certain of obtaining a local optimum

is not definite and may not even exist.

However, as long as the log-likelihood gradient is "well-behaved", it
does suggest choosing a small value for the initial value of wIN to

locate at least one of the possible optima.

Also it suggests that we can expect to get negative values of @our if
wIN is large, and to beware of infinite recursions when wIN is very
large. Finally, inspection of figures 5.1 and 5.2, suggest choosing an

initial values of wIN such that (Dz/tD1 is greater than vl/vo.
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Suppose we now rearrange equation (5.15), (dropping the parameter W

which is understood), we get:

Q/Q -T /T
2 1 10

W =W+
ouT IN
(@2/®1).(®3/®2 @2/®1) + (Oz/ﬁl).(®3/®2) (Fz/Fl).(Fl/FO)

....(5.16)

If wIN is chosen such that @2/(1:)1 > Hé/Fi, then, since ®3/(D2 > @2/0)1
and 1]'2/1T1 > Fl/Fo from @Q-ratio properties 8 and 11, this means that

Q/Q0. > Q/Q > T /T, > T /T and hence, because of properties 8 and
3 2 21 2 1 1 0

9, that (®2/®1).(®3/®2) > (Fz/Fl).(Fl/Fo).

From this we can conclude that the fractional addition to . in
equation (5.16) will always be positive, and hence - will always be

positive if w - is such that Gz(wIN)/Ql(wIN) > TZ(wIN)/Fl(wIN).

Note that this does not, in itself, show that successive recursions of
equation (5.15) will also be valid since the condition ®2(wIN)/®1(wIN)

i i >
> Fz(wIN)/Fl(wIN) does not necessarily imply that Qz(wOUT)/Ql(a6UT)

T(w J)/T (v ) for w > w_ and, even if it did it, does not
2 our’’ "1 our ouT N

exclude the possibility of an infinite recursion.

However it does mean that at least one step of equation (5.15) can be
validly performed, which we will find 1is something which can be
utilised when taken in conjunction with the second approach to finding

the optimal value of w using equation (5.10).
5.214 The Minimum Variance Approach

This approach utilises the recurrence relation of equation (5.10), the
wn(%6ur graphs for which are shown in figures 5.7 and 5.8 for the
constant and linear models respectfully. It is apparent that the
characteristics of these graphs are quite different from those of

figures 5.5 and 5.6 which utilise the maximum likelihood method.
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Figure 5.7 shows that no values of W below the singularity at W,
i.e. at about w=0.2 will result in the convergence of equation (5.10)
as they all lead instantly to a negative value for - (Note that
the value w=0_ is the point at which ®2(w3)/®1(w3)=12(w3)/vl(w3) in

both equation (5.10) and figure 5.1).

Minimum Variance Estimation of w
Figure 5.7

\_:v(in) w(out_)

:_ Initial w(in) [CONSTANT MODEL :
4| 4
oL y (2
0 ‘\\\~ 0
-2 w(3) Optimal w 1-2
-4 1-4
-6 ——wlin) —°- wlout) -1-6
-8 1 1 1 1 ) 1 1 -8
0 05 1 15 2 25 3 35 4

Variance Ratio, w

Alternatively, for any value of . greater than Wz equation (5.10)
always leads to convergence at the optimal w, since the W oot flattens

out at a level above w, at large values of w.

Unlike the likelihood example of figure 5.5, there are no values of

wIN which result in an infinite recursion.

The contrast between the two approaches is even more marked when it
comes to the linear model shown in figure 5.8. For this model every
value of wIN leads to the optimum w, since there are no positive
values of © which will satisfy the singularity condition,
®2(w)/®1(w)=vz(w)/vl(w).

In fact for larger values of w than those shown on the graph, the wmn

curve takes on a maximum, followed by a minimum, followed by a trend
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to infinity, which although interesting is completely irrelevant as
regards the convergence properties of equation (5.10) since it never
again either crosses the L. line or becomes negative which are the

crucial determining factors.

Minimum Variance Estimation of w

Figure 5.8
w(in} w(out)
031 0.3
0.26 - LINEAR MODEL o8
D
02} Jo.2
0.15} Initial w(in} P \ H0.15
* Optimal w
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0-05 RTTIIIY  rrn - . w(in) —-0~ w(ou') - 0.05
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0 0.05 0.1 0.15 02 0.25 0.3

Variance Ratio, w

We can obtain a 1little more insight into what is happening by

reflecting again on how equation (5.10) was derived.

It was produced from equations (4.62) and (4.65) of chapter four,
where ®our is defined as the ratio of the minimum variance,
unconditionally unbiased, residual variance estimates &z(wIN) and
ag .

Ge(wIN) i.e.

_ 2 ~2
Ooup = oa(wIN)/we(wIN) (5.17)

. . ~2 .
where the measurement variance estimate, ¢ (wIN), was given by
e

equation (4.61) of chapter four, i.e.

. T,.0 -T.0 (Trz/wr1 - 0/0,)
c(w ) = = (01/F0). (5.18)
€ T.T -T.T (T/T - T /T)

1 1 2 1 1 0
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. . ~2 . .
and the structural variance estimate, o (wIN), was given by equation
a

(4.59) of chapter four, i.e.

T.G,_ -T .0
0 2 171

02(wIN) = wm.&z(wm) +
2 € T.T -T.T
0 2 1 1

(@@ - T /T)
1 0

= w .&z(wm) + (@ /T). (5.19)

N (T /T - T /T)
2 1 1 0

Immediately we see that if equation (5.17) is to be a valid recursion

the two residual variance estimates should both be positive.

From equation (5.18), we see that for 3z(wIN) > 0, we require @2/031 <
T /T , since from Q@-ratio properties 4 and 11, T./T < T_./T, and @ /T
21 1 0 2 1 10
> 0.

Also, from equation (5.19), using the same reasoning, we see that if

&a(w ) > 0, then &Z(w ) will also be positive if @ /Q > T /T_.
e IN a IN 21 1" o

Hence a necessary condition for a valid step in the recursion of
equation (5.17) is that Qz(wIN)/Ql(wIN) < Fz(wIN)/Fl(wIN), and a
sufficient condition is that T (w_)/T (v ) < QO (0 _)/0 (w_) <
1IN 0 IN 2 "IN 1IN
T (w /T (w_).
2 INT 1IN

5.215 A Joint Approach

We now begin to see how this approach might be used in conjunction

with the 1likelihood approach where we found that a sufficient
condition for a valid step in its recursion using equation (5.15) was
that Qz(wxn)/®1(wxn) > FZ(wIN)/Fl(wIN). Hence as long as

Q(w _)/Q (w.) > T (w )/T (w._) we can use one or the other of
2 INT 1IN 1 IN"T 0 IN

equations (5.15) and (5.17) as the next step in the recursion and be

sure it will be valid.

This leaves us with case when Q (w_)/Q (w. ) < T (0. )/T (w_ ). Even
2 INTT 1IN 1IN 0 IN
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though recursions (5.15) and (5.17) do not guarantee a valid step in
this situation, we can still apply either of them as long as they are
seen to produce a value for Dour which is not negative. If we are
given a choice, the use of (5.17) is much more desirable than (5.15)

for two reasons.

Firstly, as we have seen (5.15) tends to produce an infinite recursion
in this situation, whereas this is not only unlikely, but is actually

impossible if (5.17) is used.

If we examine (5.17) or in its full form (5.10), we see that it can be

written in the form,

Oy = O * 8(wIN) (5.20)

T (@ (w. )Q(w. ) - T (w )/T)
0 2 INT 1IN 1IN o (5.21)

where S(wI ) = .
Fl(wIN) (Fz(wIN)/Fl(wIN) - ®2(wIN)/®1(wIN))

As we have seen, if Q/Q < T./T, then @ /@ < T /T, since T /T >
2 1 1" o 2 1 2 1 2 1

T /T, and so 8(w._ ) < 0 and hence w must always be less than o
10 IN ouUT IN

and therefore cannot recurse to infinity, (although it can recurse to

a non- positive value).

Secondly, any optimal value of w found using a valid recursive step of

(5.17) must maximise the likelihood function.

Examination of equation (5.21) shows that,

(i) If Qz(wIN)/Ql(wIN) < Fl(wIN)/FO(wIN)
then 8(w_) < 0
IN

since @2(wIN)/®1(wIN) < Fl(wIN)/FO(wIN) < Fa(wIN)/Fl(wIN)
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(ii) If 'lTl(wm)/Fo(wm) < Da(wm)/@l(wm) < 'Ifz(wm)/ﬂ'l(wm)

then d(w_) > 0O
IN

(iii) If 'lrz(wm)/lfl(wm) < QZ(wm)/@l(wm)
then 8(w_) < O
IN

since Fl(wIN)/FO(wIN) < '[rz(wm)/'ll'i(wm) < Qz(wm)/@:t(wm)

Of these three possible cases only the first two would result from the
application of equation (5.17) since if (iii) were true we have

already seen that we would apply the likelihood recursion of (5.15).

Hence if w = w_ + 8(w_) is the final step in application of the
OPT IN IN

recursion of (5.20), and if 0 < O or < o, then,

if w > w , 8w ) < 0 and O (v )/0Q (w. ) < T (0. )/T (w_), and
IN OPT IN 2 IN"T 1IN 1IN o IN
hence, from equation (5.08), aﬂ.ﬂ_/aw(wm) < 0.

i i > >
Alternatively if S(wm) 0 and ®2(wm)/®1(wm)

“1n < “opr’
i . > 0.
Trl(wm)ﬂro(wm), and, from equation (5.08), all.ll./aw(wm) 0

Since the size of 6(wm) can be made as small as we choose, then
within this tolerance the conditions dLL/8w(w. ) < 0 for w > w
IN IN OPT

and 8LL/8w(w_) > O for w__ < w are exactly those needed for w
IN IN oPT OPT

to maximise the log-likelihood, (LL), and hence the likelihood.

Finally we note that by choosing S(wm) to be sufficiently small, we
can always ensure that the final step in the recursion uses equation

(5.20) rather than (5.17), since if w and © are such that

IN OPT
Tl'z(wm)/ﬂ'l(wm) < Qz(wm)/@l(wm) and Tfi(wopT)/Fo(wOPT) =
Q@ (w }/Q (w_), then there will always be a value w between o
2 OPT" 1 OPT ouT IN
and © such that T (0 /T (v ) < Qlw_ )/0 (w__) <
OPT 1 our’’ "o ouT 2 our’” "1 our

"IT2 (wOUT)/'[r1 (wOUT) .
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5.216 The Slow but Stable Approach

The " joint approach" just described in section 5.215 still leaves us

with us with one eventually which we have not made provision for;
. . <

namely the situation when @2(wIN)/®1(wIN) Fi(wIN)/FO(wIN) and the

application of (5.20) would result in a value for - which was

negative.

In this event we offer the following fall-back mechanism which might
be termed the "Slow but Stable" approach. We suggest the following

recursive equation,

2
Our = Yo ¥ wIN.(Qz(wIN)/Ql(wIN) - Fl(wIN)/UO(wIN)) (5.22)

for the following reasons.

We can immediately see from the simple, non-fractional form of (5.22)

that there will be no problems with regard to singularities.

Also, should (5.22) converge it must converge to value wOPT such that

Q(w )/AQ(w ) = T (w )/T (w ) which from (5.08) satisfies the
2 opT’ "1 OPT oPT’’ 0 OPT

1
condition all/aw(wpr) = 0 and so optimises the likelihood function.

In addition if (5.22) converges to a final step of Wbt from W then

for w < w Q(w )/ (w.) > T(w )/T (w ) and hence from
IN 2 IN" 1IN 1IN 0 IN

oprT’

(5.08), 8lL/8w(w_) > 0. Similarly if w_ > &, dLL/8w(w_) < O and
IN IN OPT IN

hence if the recursion does converge to a value of wbPT such that 0 <

QBPT < o, it can only be to a value which maximises the likelihood

function.

Figure 5.9 shows the wm/woUT graph for the "Slow but Steady" approach

and the constant model. Two features are immediately apparent.

Firstly, because the . and Your plots are very close together,
recursions tend to be very slow, which is the reason why it is not
offered on its own as a general recursive algorithm for choosing an

optimal w.
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Secondly, the function for wOUT is never negative. This 1is no

coincidence because,

-1/w < -T/T_< Q/Q-T /T < @/Q < +1/w (5.23)
1" 0 2271 10 2" 1

since both QZ/Q1 and Fl/Fo are positive from @-ratio properties 8 and

9 and the outer limits are given by property 12. Hence,
-» < 2. (/0 -T /T ) < +w (5.24)
2 1 1 o

which ensures that w > w_ in equation (5.22).
ouT IN

Slow but Stable Estimation of w

Figure 5.9
w(in) w(out)
ar 4
3sr CONSTANT MODEL 135
3t -3
25 {28
i “~~ i
2 Optimal w 2
15} 418
1+ 41
06 ——wiin) < wlout) | 105
0 1 L ] 1 ] ] 1 0
0 0.5 1 15 2 25 3 35 4

Variance Ratio, w

Therefore for situations where Q_ (w_)/Q (v ) < T (w_)/T (w_) and
2 IN 1IN 1IN 0 IN

the application of (5.20) results in a value for ©our which 1is

negative, we can apply equation (5.22) and be certain that it will

always result in a positive value for @yt and hence not result in the

overall recursion breaking down.
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5.217 The Choice of a Random Ratio

We are now almost at the stage where we can combine all the features
which we have discussed so far into a general algorithm for the
estimation of an optimal value for w. However, because the algorithmn
can only find, at most, only one local optimum value of w for any
particular starting value, it will be necessary to repeat it for
several different starting values to be reasonably sure that the
model’s global optimum, if it exists, has been found. We therefore

require a mechanism for selecting such a set of starting values.

Because w is the ratio of two variances, (i.e. w = oi/oi), either of
which can take any value in the range zero to infinity, it would be
useful to know the what distribution of w is when the variances are
chosen randomly. Since we have no prior knowledge of what variance
values are most 1likely, this would suggest every variance value
between zero and infinity should be treated as equiprobable. Whilst
this makes no practical sense for the individual variance
distributions themselves, it does lead to an easily interpreted

distribution for their ratio.

Random Choice of the Variance Ratio

Figure 5.10
A Y

A B
W= 05r0%

o o

o P
wo

s
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Suppose that ai and 0: are each independently chosen in the range 0 to
o°. As shown in figure 5.10, this choice can be represented by a point
P, which has been randomly chosen within a square OABC of side 02 in

the X-Y plane.

Also using figure 5.10 it is seen that the probability that any other
randomly chosen point, (X,Y), within the square, has a ratio, Y/X,
less than or equal to w = oi/wz is, (for 0 = w = 1), equal to the
ratio of the area of triangle ODC, (i.e. w.04/2), to that of the
square OABC, (i.e. 04). Hence P(Y/X = w) = w/2, which is not dependent

2
on o .

Similarly, for 1 = v = o, P(Y/X = w}) = 1 - 1/(2w), which is also
independent of 02, and is hence true for all non-negative values of

02, however large these might be.

Hence an algorithm for choosing a starting value for w, i.e. Wy is as

follows.
1. Choose a value of P in the range 0 = P < 1.
2. If P < 0.5 then w, = 2P. If P > 0.5 then w, = 1/(2-2P).

Note: Whether the n sample values of P, i.e Pi for i=1 to n, should be
chosen randomly or in some form of even spread over their range, such

as Pi = i/(n+1) or (i-0.5)/n, is left as an option.
5.22 A GENERAL ALGORITHM

The following steps give a general algorithm for calculating optimum,
maximum likelihood values for the variance ratio, apr, and the two

residual variances ai(OPT) and oj(OPT).

In preparation we need to choose a sample size, N, starting values

W
LOWER)’

upper bound, (w ) and tolerance, (8) for w and finally set n=0
UPPER OPT

and the log-likelihood value LL(wOPT) to a large negative lower bound.

a%(n) for n = 1 to N (from section 5.217, a lower bound, (
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1. Set n=n+ 1, and w = starting value, w (n)
ouT )
2. Setw. =w
IN

out

3. Calculate tDZ/(D1 and FZ/F1 for w=w o and hence apply either 4(a) or
4(b)

4(a) If T/T < @ /Q calculate w using equation (5.15), i.e.
21 2’1 ouT

(Gz(wIN)/Gl(wIN) - Fl(wIN)/FO)

W= w4+
ouT IN 2 2
2.a M Ja (w ) - )/e W J- Fz(wIN)/FO)

4(b) If Q/Q < T/T. calculate w using equations (5.20) and
21 2 1 ouT
(5.21), i.e.

Fo (QZ(WIN)/QI(WIN) - Fl(wIN)/FO)

OUT IN )
Fl(wIN) (FZ(WIN)/VI(WIN) - Qz(WIN)/®1(w1N))

If w recalculate - using equation (5.22), i.e.

< w ,
ouT LOWER

-— 2 —
“our = “m * wIN'(Qz(wIN)/®1(MIN) 1r1(w1N)/1To(wm))

5. If |w - w_| < tolerance, &8, GOTO step 8
ouUT IN

6. If w GOTO step 9

> w OR w < w ,
ouT UPPER — OUT LOWER

7. GOTO step 2

8. Calculate ll(abur) using equations (4.14) and (4.15) of chapter

four, i.e.

(o) = <1/2.(T,.(1 + Inzm) - 1n(T) + T,.10(@,) + 1n(Ig, |}

124



CHAPTER FIVE

and then if LL(w ) > LL(w__) set
ouUT OPT

=w__, ¢°(0PT) = @ /T_and ¢>(OPT) = w
e 1 0 a

» .02 (OPT)
OPT ouT e

OPT

9.If n=N then terminate algorithm, otherwise GOTO step 1
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SEASONALITY

In this chapter we extend the estimating procedures of the previous
chapters to deal with the case of seasonal time series. This extension
is a natural generalisation of the non-seasonal model and easily
accommodated within its framework. As such it also serves as a useful

summary of the main results covered so far.
6.1 WHITTAKER’S FORMULATION
6.11 FIDELITY
The time series values, y,» are now decomposed to include a seasonal
component, St’ as well as the previous trend, xt, and residual

fidelity, et, components, i.e.

Y, =X ts te (6.01)

Hence equation (1.05) or (1.43) of chapter one becomes,

e = y - X -8 (t=1,2,...,T) (6.02)

which in matrix terms can be written in a similar way to equations

(1.08) and (1.45) of chapter one, i.e.

e=y-Xx-8 (6.03)
T
where y = (YT, "yz’y1)
X! = (x X ,X.)
= T’ T2’ ™
st = (s s ,s )
e - L |
e = (eT, .,e ,el)
....(6.04)
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6.12 SMOOTHNESS

The structural trend or smoothness equation remains in its general

autoregressive form as equation (1.42) of chapter one as:
X, =0 X bO X 4.+ 0X t+a (6.05)

where t takes values of d+1 to T.

or in matrix terms as equation (1.46) of chapter one, i.e.

a =D.x (6.06)
where g? = (aT,....ad+1), and D is a T-d x T matrix with structure:
1,9 ,-% ...... , =% , 0, , s e , 0
1 d
D= 0,1,-8 ,-9% ...... , -, 0, 0,0,..,0 (6.07)
1 2 d
O PR etc

6.13 SEASONAL SMOOTHNESS

The equivalent equation to (6.05) for seasonal smoothness or structure
can be modelled in several ways, fortunately none of which need be

specified for the purposes of this chapter.

For example, it could be modelled as a general autoregressive seasonal

formulation, i.e.

+ ¢ .s + ...+ @ .S +u (6.08)

2 t-2s 1 t-ks t

where "s" is the seasonal period, "k" is the seasonal lag and the

values of t range from ks+l to T.

127



CHAPTER SIX

Alternatively, it could be written such that, the seasonal residuals,
u,, for t=s-1 to T, measure the current "yearly" seasonal residual,
i.e.

... + S (6.09)
t t t-1 t-s+1

To cover all possibilities, it is sufficient at this stage to adopt
another general autoregressive model, as was done for trend, (although
in practice the trend and seasonal structures would be distinct),

namely,
s =¢.s _+t¢.s _+...+¢.s +u (6.10)

where t takes values of p+l1 to T.

In matrix terms, we can write this as,

(6.11)

e
I
d
o

where g? = (uT,...,upH), and P is an appropriate T-p x T matrix with

the same structure as the matrix D of (6.07).
6.14 WEIGHTED LEAST SQUARES
Whittaker’s approach now requires us to minimise a weighted sum of the

fidelity, smoothness and seasonal smoothness sums of squared

residuals, i.e. to minimise Y where,

Y = g?.g + (1/w).g?.g + (l/v).g?.g (6.12)

Using (6.03), (6.06) and (6.11) equation (6.12) can be written,

¥ = (y-x-8)7. (y=x-s) + (1/w).x".D".D.x + (1/v).s".P".P.s  (6.13)
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Differentiating ¢ in (6.13) with respect to x and g gives us

equations for their respective estimates, i and é, i.e.
2. (y-x-8) = (2/0).D'.D.x = (2/v).P'.P.g (6.14)
Rearranging (6.14) to be consistent with equation (1.37) of chapter
one, we get,
y=sg+TM.x=x+7T.s (6.15)
where M= I+ 1/0.D'.D and T = L. + 1/v.P'.P, I_ being a TxT
identity matrix.

Rewriting (6.15) in matrix form and inverting we get,

-1

}:{ - 17 (6.16)
s IT TT Yy
From which it follows that,
X = (x,.1_ - IT)_l.(TT—IT).x (6.17)
And similarly,
s = (m.T_ - IT)*. (m-1).y (6.18)

which are equivalent to Whittaker’s, (weighted 1least squares),

estimates for the seasonal case.
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6.2 DISTRIBUTIONAL ASSUMPTIONS

As was the case in chapter one, in considering other estimation
approaches, the only assumptions we need make regarding the elements
of the residual vectors e, a and u of equations (6.03), (6.06) and
(6.11) are that they are all independently distributed with zero means
and variances 02, oi and oﬁ respectively, i.e. we do not need to

assume Normality at this stage.

Hence the joint covariance matrix of their combined random vector is

given by:

E o .l [} 17
- e T 2
Cov| A | = @ o . I @ (6.19)
- a T-d 2
0] o o c .1
- u T-p

6.21 GENERALISED LEAST SQUARES (MMSE)

Equations (6.03), (6.06) and (6.11) can be Jjointly written in the

usual regression form as:

I e
T T X =

g |=|D e |. + | -a (6.20)
@ = -u

Applying the results of the appendix to chapter one for linear,
unbiased estimators of stochastic parameters, we obtain the following

minimum mean square unbiased estimates x and s for x and s,
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T 2 -1 4 9-1
~ I c .1 7] 0] I
b4 T T T o T T
= D @ . g o .1 %] .{D @ .continued.
-~ a T-d
s
%] o 7] c .I
u T-p -
T 2 -=1
o .l 2 @ \%
T T e T
o o o .1 @ z |....(6.21)
T-d 5
P o @ c .1
u T-p -

Simplifying (6.21) gives,

-1

oo
=
L]
e

= T ) (6.22)

n»

if T and T_are defined as in (6.15) but with w=0‘§/6'2 and v=o*i/o‘:.

Hence comparing (6.22) with (6.16) we see that the Generalised Least
Squares, (MMSE), estimates are exactly equivalent to Whittaker’s,
(weighted least squares), estimates of equations (6.17) and (6.18),

i.e.

>

— — _1 —
X = (TT.HT IT) .(TT IT).X (6.23)

and

>

n
I

-1
(.Y, - ID7.(M-L).y (6.24)

In other words the weighted least squared estimates will be minimum
mean squared linear estimates if all residuals are assumed to be
independent of each other, with zero means and respective variances
02, 0: and oi, with weights, w and v of (6.12), chosen such that

2,2 2,2
w=c /¢ and v=c /0 .
a e u e
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The mean squared error matrix of x and s is also given from the

results in the appendix to chapter one as:

-1

M
=
=i

T (HT.TT—IT)"1 —(TT.HT—IT)'1
MSE = o2,

1l
9

n»

-1 -1
(HT.TT IT) HT.(TT.HT IT)

....(6.25)

Note that the inverted matrix in (6.25) is symmetric since,
(r.n-1)" =1.7 -1 (6.26)
TT T TTT T

because TT and HT are symmetric from their definitions in (6.15).

Note also the relations,

-1 -1
HT.(TT.HT IT) (HT.I& IT) .HT (6.27)

1]

-1 -1
TT.(HT.TT IT) (T&'HT IT) .TT (6.28)

since

HT.(TT.HT—IT) (HT.TT—IT).HT

T&.(H&.T&-IT) (TT.HT—IT).TT

Finally note that since the matrix, (H&.TT—IT), is non-zero in (6.25),
the estimates x and s are correlated even though their true values x
and s are, from their generated mechanisms of (6.06) and (6.11),
obviously independent. This should not be surprising since the
regression model always produces estimated residuals which are

correlated.
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6.22 STANDARDISED RESIDUALS

Writing (6.12) with w and v defined by w=oZ/02 and v=0-/c> gives,
e u e

T T T
Yy=e.et+to0o/0c.a.a+oc/c.u.u
T T T 2 *
i.e Uy =0.(e.e/c +a.a/c +u.wo) =0c .y
* T 2 T 2 T 2
where Yy =e.e/c +a.a/c +u.uo (6.29)
e a u

Since minimisation of Y with respect to x and s is exactly equivalent
*

to minimisation of ¥ , we see from (6.29) that minimising Whittaker’s

function is equivalent to minimising the sum of squares of

standardised residuals.

6.3 THE EQUIVALENCE OF CLASSICAL, (GLS), AND STATE SPACE ESTIMATION

In chapters two and three we saw that State Space estimates were
simply the means of the posterior distributions of the parameters i.e.
for each of the trend values X, t=1 to T, the estimates were given by
the means of the conditional distributions of X, given all observed
values Y, to Yoo which we wrote concisely as the distribution of
xt(T). To do this we needed to specify the prior, (i.e. given no
observed values of yt), distribution of the initial values of xt which
would be required in order to generate the later values, 1i.e. X1(0)’
XZ(O), cee xd(O), where "d" is the degree of differencing defined in
equation (6.04). The ideas follow much the same lines as those of

section 3.1 of chapter three.

Extending the estimation procedure to include seasonality requires us
to further specify the prior distribution of the initial "p" values of
the seasonal component, 51(0)’ 52(0), cee sp(O), where the value of
"p" is explained in section 6.13 and depends on the actual seasonal

form chosen.
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6.31 THE DISTRIBUTION OF xT(O) given xd(O)
Suppose that the the prior distributions of the vectors xd(O) and
sp(O) have means B, and up, and covariance matrices Zd and Zp where
xd(O) and sp(O) have the following elements,
T
xd(O) = (xd(O], Xd-1(0)""’x1(0)) (6.30)
s (0) = (s (0), s _(0),...,s (0))] (6.31)
p P p-1 1
Then using (6.06), and assuming the residuals a  are independently

generated, we may write, (in an similar way to equations (3.04) to

(3.07) of chapter three),

aT_d(O) = D.xT(O) = B.x&_d(o) - C.xd(O) (6.32)
where,
_ T
aT_d(O) = (aT(O), e ad(O)i
xT(O) = (xT(O), e, X1(O)) )
x__(0) = (x.(0), ..., x (0))
....(6.33)

and the matrix D has been partitioned into two matrices B and C, i.e.

D = [Bi-C], where B is now a square T-d x T-d invertible matrix, as
follows:
[1,-9 ,...=8 , 0 ,..... , 0% 0, 0, 0 ]
1 d .
D = [Bi-C] = ) (6.34)
e o, 1,9, -9,..-_ _,0
11 2 d-1
0, O ,....... .0, 1 —ﬂl, A

Hence, since B is invertible, we can rearrange (6.32) to give,

1 -1
xT_d(O) = B .C.xd(O) + B .aT_d(O) (6.35)
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Taking expectations of (6.35) and remembering that E[xd(O)] = Ky
gives,
_ -1
Elx_,(0)] = B .C.p (6.36)
Hence,
x__,(0) B_l.C.ud
E[xT(O)] = ux(O) =E = (6.37)
xd(O) Hy

Since the elements of xa(O) and apﬂ(O) are independent, because all

values of ai_d(o) are generated after xd(O), then,

1 2

_ o1 T T, -1
Cov[x&_d(o)] =B .c.zd.c .(B) T+ o;.B

T

.BH™ (6.38)

Covix_(0)] = B .(C.2,.C" +oo.I_ ). (B
Covix_ (0).x (0)'] = B.C.5, (6.39)

Hence,

: X (0)
£ (0) = Covix (0)] = Cov| ¢
X T
xd(O)

[ Bl.(c.z .c™+ o1 ). BHY Blc.s ]
d a T-d d
-1

T T
Zd.C .(B) Zd
1/02.B".B -1/6°.B".C -1
= : T 2 : -1 (6.40)
-1/0".C".B 1/07.C.C+ Z
a a d

If we now assume that xa(O) has a vague prior distribution, i.e. we
let the variances of each of its individual elements tend to infinity,
then this implies that 2;1 will tend to zero, and from (6.40) and the
definition of D in (6.34) we see that,
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.B".B -1/¢°.B".C

n

1/¢

NN

s 01 s = 1/¢2.D°.D (6.41)
X a

[V

-1/62.cT.B  1/c%.C".C

[\
o

In summary, therefore, the vector xT(O), given a vague prior for
xa(O), has mean ux(O) given by (6.37) and covariance matrix Zx(O),
given by (6.41).
6.32 THE DISTRIBUTION OF s _(0) given sp(O)
A similar procedure to the above can be followed to produce the mean,
ps(O), and covariance matrix, ES(O), of ST(O), given a vague prior for
_ T
sT(O), where sT(O) = (sT(O), cee 31(0))‘
The parallel result to (6.41) is given by,
Covis (017 = £_(0)7" > 1/6°.P".P as zp(o)’1 > (6.42)
Also, by partitioning the T-p x T matrix P so that P = [Ei-F], where E

is a square T-p x T-p invertible matrix, we can produce the

equivalent result to (6.37), i.e.

s (0) E'.F.u
Els_(0)] = p_(0) = E -P = P (6.43)

6.33 BEST LINEARLY CONDITIONAL ESTIMATES
Conditioning (6.03) on zero values of y,» we can write
yT(O] = xT(O) + sT(O) + eT(O) (6.44)

where y, X, s and e are alternatively written Yo X So and e
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From (6.44) we have, on taking expectations, and using (6.37) and
(6.43),

E[yT(O)] = E[xT(O)] + E[ST(O)] = ux(o) + ps(o) (6.45)

Also from (6.44), taking into account that xT(O), sT(O) and eT(O) are
all independent, and using (6.41) and (6.42),

Cov[yT(O)] = Cov[xT(O)] + Cov[sT(O)] + oz,IT

_ 2

= zx(o) + ZS(O) + oe.IT (6.46)
Cov[yT(O).xT(O)T] = Covlx_(0)] = £_(0) (6.47)
Cov[yT(O).sT(O)T] = Covls _(0)] = £_(0) (6.48)

Hence using results (6.45) to (6.48), we obtain the joint distribution

of yT(O), xT(O) and sT(O) as,

2

yT(O) ux(O) + ps(O) H ZX(O)+ES(O)+0‘e.IT , Zx(O) s ZS(O)

x_(0) [ ~UD p (0) ; z_(0) ,» 2 (0), @

T x X x

ST(O) MS(O) H ZS(O) , @ , ZS(O)
....(6.49)

We can now apply the results of section 2.4 of chapter two to obtain
the "best" linearly joint conditional distribution of xT(T) and sT(T),

i.e. the joint distribution of xT and sT based on all T values of yT.

The covariance matrix of xT(T) and sT(T) is given by:
[ xT(T) ] { Zx(T) , sz(T) ]
Cov =
sT(T) ZSX(T) , ES(T)
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where,

2 -1
Zx(T) Zx(O) - ZX(O).(ZX(O) + ZS(O) + oe.IT) .ZX(O)

]

2 -1
ZS(T) ZS(O) - ZS(O).(ZX(O) + ZS(O) + oe.IT) .ZS(O)

z _(T)

2 -1
s - ZX(O).(ZX(O) + ZS(O) + oe.IT) .ZS(O)

z__(T)

2 -1
ox - ZS(O).(ZX(O) + ZS(O) + oe.IT) .zx(o)

....(6.50)

Defining HT and TT as in (6.15) with w=o§/0z and v=0i/o:. and using

(6.41) and (6.42) we get the following relations,

-1 _ _ 2 -1 _ _ 2
ZX(O) = (TIT IT)/O‘e and ZS(O) (TT IT)/O‘e (6.51)

Applying (6.51) to (6.50) we arrive, after some messy algebra, at

-1 -1

ZX(T) = Ge'Tf'(Hf'TT IT) ZXS(T) Ge.(TT.HT IT)

-1 -1

2 = 2 -
ZSX(T) = - oe.(H&.TT - IT) ZS(T) = oe.HT.(TT.HT IT)

....(6.52)
Hence, the posterior covariances in (6.52) are therefore exactly equal
to the mean squared errors of (6.25).

Section 2.4 of chapter two also gives us the posterior means of xT(T)

E[ xT(T) J ) [ ux(T) ]
sT(T) us(T)
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where,

ux(T)

2 -1
1 (0) - £ (0). (2, (0)+%_(0)+0%.1)™". (y 1 (0)-p_(0))

2 -1
us(T) uS(O) - ZS(O).(ZX(O)+ZS(O)+oe.IT) '(yf—”x(O)—“s(O))
....(6.53)

Applying the results of (6.50) to (6.53) we get,

u (T) = Zx(T).Zx(O)_l.ux(O) + ZXS(T).ZS(O)_i.us(O) - ZXS(T).ZS(O)_l.yT
u (T) = zs(T).zS(O)'l.ps(o) + zsx(T).zx(o)'l.ux(o) - ZSX(T).ZX(O)-I.yT
....(6.54)
However from (6.34) and (6.37) we find,
-1
[B:-C].[ B .C.p
D.ux(O) = =Cu -Cu =2 (6.55)
”d
and so using (6.41),
5 (0) . (0) = 1/6°.D°.D.p (0) = o (6.56)
x My LD Do .
Similarly we can show that,
P.u_(0) = Z_(07.p_(0) = o (6.57)
Applying (6.56) and (6.57) to (6.54) we find,
(1) = - zxs(T).zS(O)'l.yT
u (1) = - zsx(T).zx(o)”‘.yT (6.58)
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which finally give, using (6.51) and (6.52)

-1
ux(T) (T&.HT - IT) .(TT - IT).yT

-1
p (1) = (LT - 17 .(0 - L)y,

....(6.59)

Equations (6.59) are exactly the same as those obtained for the

minimum mean squared unbiased estimates in (6.23) and (6.24).

The overall conclusion is that Classical, (MMSE), and State Space
estimation procedures will produce exactly the same results as long as
the State Space approach assumes that initial trend and seasonal
components have vague prior distributions i.e. they have infinite
variances. Note that their initial means are of no consequence as long

as they are finite.

This completes the extension of seasonality to the main results of
chapters one to three. Note that in doing so we have not had to assume
Normality, only linearity. As was also explained in those chapters, if
Normality can be assumed, the same results will be obtained but

without the need to assume linearity.
The next sections go on to extend the seasonal case to the results of
chapters four and five, i.e. the estimation of the residual variances,
where Normality is an essential pre-requisite.

6.4 THE ESTIMATION OF RESIDUAL VARIANCES
6.41 THE RELATIONSHIP BETWEEN DATA AND RESIDUALS
As was the case in chapter four, we firstly need to establish a

relationship between the data vector Y, and the vectors of residuals

e, a and u where:
T T-d T-p
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= ( )t
T— yT’ YT_1 ’ yl
T
e = (e, e -
T T TT-1 1
T
= (a_, a ce. ,a. )
T-d T T-1 d+1
T
= (u, u cee o, u )
T-p T T-1 p+l
....(6.60)
The smoothness relationship of (6.05) can be written as,
®(B).x =(1-9.B-o.B -...-0.B).x =a, t=d+#l to T
d t 1 2 d t t
where B is the backward operator such that lBk.xt =X (6.61)

Similarly the seasonal smoothness relationship in (6.10) can be

written,
<I>p(IB).st = (1 ¢1.B ¢2.B cen ¢p.B ).st u, t =p+tl to T
....(6.62)
Because of the multiplicative natures of the operator functions CQ(B)
and @p(B) in (6.61) and (6.62), we can apply them to the measurement
equation of (6.01) to give,

@d(lB).CI)p(IB).yt = @d([B).<I>p([B).xt + @d(IB).Qp([B).St + @d(B).Qp(B).et

for t = d+p+l to T (6.63)

which since ® (B).® (B) = & (B).® (B) = £ (B), can be written,
d P P d d+p

Ed+p(lB).yt = @p(lB).@d([B).xt + @d(B).Qp(B).st + Ed+p([B).et (6.64)

Substituting (6.61) and (6.62) into (6.64) we get,
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.:.d+p(lB).yt = <I>p(|B).at + ®d(lB).ut + .:d+p(IB).et

for t = d+p+1 to T (6.65)
Note that the series Ed+p(IB).yt is stationary, (even though Y, itself
is not), since it is able to be defined in terms of the sum of, what

are essentially, three finite autoregressive white noise processes.

In matrix terms (6.65) can be written in terms of the vector of (6.60)

as,
G.y =P.a__ + D.u + G.e (6.66)
where G is a T-d-p x T matrix such that,
G =P.D=0D.P (6.67)

D is a T-d-p x T-p matrix and D is the T-d x T matrix defined in

(6.07), both of which have the same structure, i.e

1, 01,—0 ...... ,-ﬁd, o, , s eeeen , O
D, D= 0, 1,9 ,-9% ...... ,-% , 0,0, 0,..,0 (6.68)
1 2 d
0 R etc

and P is a T-d-p x T-d matrix and P is the T-p x T matrix defined in
(6.11), both of which have the same structure of (6.68), but with ¢i
substituted for ﬂi.

Given the assumptions that the elements of aT_d, uT and e_ are

. < . . . 2 2 2
independently distributed with zero means and variances ¢, ¢ and ¢
a u e

respectively, the vector G.yT, (with T-d-p elements), in (6.66) will
have a mean vector, @, i.e. of zeros, and a covariance matrix given by

2  where,
Gy
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S = CovlB.y ] = ¢c2.P.P° + ¢°.D.D" + 0°.6.G" (6.69)
Gy T a u e

6.42 MAXIMUM LIKELTHOOD ESTIMATION

The log-likelihood of the residual variances cri, O‘i and o*i and also

the parameter vectors ¢ and ¢, where,

9= (9, 0, o0, 9)7 and ¢ = (8, b, --- ¢p)T (6.70)

is produced in the same way as equation (4.12) of chapter four as

I]_[L[o*:,oi,oz,ﬁ,qbl, where,
LLlo?,0%,06%,8,¢] = ~1/2. ((T-d-p).1n(2n) + In|Z | + y:.usT.z;.as.yT)
....(6.71)
Proceeding on the same lines as section 4.4 of chapter four and

differentiating (6.71) with respect to 0'2, which represents any of the

three residual variances, and setting to zero gives,

-1 2, _ T T o1 2, 1
RIS, . (85, /30°)] = y .65 . (9% /80°).5 .B.y, (6.72)
Using (6.69) we have,
8% /302 = P.P, 8% /802 = D.D', 85 /80> = G.G (6.73)
Gy a Gy u Gy e

Hence combining (6.72) and (6.73) we get the three equations,

-1 T, = T oT o1 T -1

FR[ZGy.F.P ] yT.G .ch.P.P .ch.G.yT (6.74)
-1 T, _ T T o1 T o1

FR[ZGy.D.D 1 = yT.G .ch.D.D .ZGy.G.yT (6.75)
-1 T, = T oT o1 T o1

FR[ZGy.G.G ] yT.G .ch.G.G .ZGy.G.yT (6.76)
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6.43 MINIMUM VARIANCE ESTIMATION
6.431 The Quadratic Form

This section proceeds along the same lines as section 4.5 of chapter
. ~2 . 2
four. We seek an estimator ¢ of the variance ¢, where,
~2

_ T T .
¢° = y.C.MC.y (6.77)
where M is an unspecified square matrix.
Using the results of appendix B in conjunction with equation (6.69),
. ~2 .
the mean and variance of o are given by:

El¢?] = TRIM.E_ ] and VIc°] = 2.TRIM.=_.M.Z_ ] (6.78)
Gy Gy Gy

6.432 Conditionally Unbiased Estimation

Minimising Vic®) subject to the unbiasedness constraint Elc?] = 02, is

equivalent to minimising,
VIc®] - 4.x. (E[¢°] - ¢°) (6.79)
where 4.2 is a Lagrangian multiplier.
Substituting the results of (6.78) into (6.79) we get,
2.TRIM.£_.M.2_] - 4.A. (TRIM.E_] - ¢°) (6.80)
Gy Gy Gy
Differentiating (6.80) by M by employing the results of appendix C,
setting to zero, and realising that M must be symmetric, gives,

2 MZI =AZ i.e. MZT =2A.1 (6.81)
Gy Gy Gy Gy T-d-p
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where IT 4 is a T-d-p x T-d-p identity matrix.

Differentiation of (6.80) by A and substituting (6.81) we have,

o = TRIM.Z_1 = A. (T-d-p) (6.82)

which from (6.81) gives the following expression for M,

M=c¢ .ch/(T d-p) (6.83)

Finally using (6.77) we obtain,
~2

2 .T T 1 .
¢ =0 .yT.G .ZGy.G.yT/(T d-p) (6.84)

Utilising (6.69), we can define the matrix QGy as,

=% /o° = 6.6 + w.P.P° + v.D.D" (6.85)
Gy Gy e

2,2 2,2 . . .
where w = ¢ /o0 and v = ¢ /o are residual variance ratios.
a e u e

Substituting (6.85) into (6.84), we obtain expressions for
conditionally unbiased estimates of all three residual variances in

terms of the their variance ratios w and v, i.e.

~2 T T -1 L
o = y&.G .Q%y.@.y&/(T d-p) (6.86)
~2 ~2 T T -1 .
L S wo_ = w.yT.G .QGy.G.yT/(T d-p) (6.87)
~2 2 T T -1 L
o o=v.e = v.yT.G .QGy.G.yT/(T d-p) (6.88)

145



CHAPTER SIX

We can now note the similarities between equations (6.86) to
(6.88) for the seasonal case, and equations (4.31) and (4.32) in
chapter four for the non-seasonal case.
6.433 Unconditionally Unbiased Estimation
Again we seek an estimator &2 of the variance o?, of the form
described in section 6.44. However this time ¢® is defined as a
weighted sum of the three residual variances, i.e.

o2 =a .05 +a.00+a .0 (6.89)

a a u u e e
the purpose being that by setting two of the L3 to zero and the other
to unity we will find an estimate of the particular variance in
question.
Using (6.78) in conjunction with (6.69) and appendix B, we have,
Elc°] = TRIM.Z ] = 0. TRIM.P.P'] + ¢2.TRIM.D.D'] + 0. TRIM.G.G ]
....(6.90)

Since the expressions M.F.PT, M.D.D' and M.G.G' in (6.90) are

independent of the values of oi, 02 and 02, we can ensure that the
u e

estimator, ;2, is unconditionally unbiased by including the conditions

that the elements of the vector « = (aa, «, ae)T in (6.89) are such
that,
o TRIM.P.P']
«=|a |=|WRMDDI| =T (6.91)
o TRIM.G.G']

Minimising Vie?] subject to the unbiasedness constraint Ele?] = ¢, is

now, using (6.78) and (6.91), equivalent to minimising,
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2. TRIM.Z_ .M.2 1 - a.AT. (T - a) (6.92)
Gy Gy - -M

where A = (Al, A, A3)T is a vector of Lagrangian multipliers.

Differentiating (6.92) with respect to M, using appendix C, and

setting to zero gives,

s M.5 =A.P.P  + A.D.D" + A .G.G (6.93)
Gy Gy 1 2 3

From (6.93) it follows that,

M =AM +2a.M +2a.M =2A".M | (6.94)
1°P 2D 3¢ - "ppG
where the element matrices of M = (M, M, M )T are given by:
PDG P’ D G
M o=3 . %X%X.5 (6.95)
X Gy Gy

and therefore M, (=MT), is symmetric

Post-multiplying (6.94) by P.PT, D.D" and G.G' and then taking the

traces gives us the elements of F“ and hence « in (6.91), i.e.

o TRIM.P.P"] T T T A
a T PP DP GP 1
o« | =|WwRMDD] |[=]|T T 7T |.]2a (6.96)
u T PD DD GD 2
o TRIM.G.G'] T T 1o A,
ie. =T =T _ .2 (6.97)
- -M PDG -

where Fp is the 3x3 matrix in (6.95) whose elements are the matrix

traces T defined, using (6.95), by:

_ T
FXY = FR[MX.Y.W ] (6.98)
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Using (6.97) we now have an expression for the Lagrangian vector, A,
i.e.

o (6.99)
Substituting the expression for A given by (6.99) into (6.94) we get,
since T is symmetric,

PDG

M=o.T .M (6.100)

Substituting (6.100) into (6.90), we have,
2

E[&zl = TRIM.Z ] = « et .ottt a0t =0 (6.101)
Gy a a u u e e

which shows that the estimator, 32, is unbiased what for any matrices,

MP, MD, and MG in (6.94), i.e. unconditionally unbiased.

Using the expression for o° in (6.77), and substituting the value for
M in (6.99), we obtain,

e =2.0 +A.0 +2A.0 =qo.T. .Q (6.102)
1" P 2D 3" ¢ - ' PDG —PDG
where the three element vector E&DG = (DP, @D, @G) is formed from the

quadratic functions whose general form is given, using (6.95), by,

T T
Q, =y,.C.M.Cy (6.103)

From (6.89) we see that (6.102) will produce unconditionally unbiased
estimates of oi, oi and 0z when gT is chosen as (1, 0, 0), (0, 1, 0)
and (0, 0, 1) respectively. Hence, by substituting these values into

(6.101), we find that the three element vector of estimates, éz = (&j,

~2 22T . .
¢, ¢ ) is given by:
u [

~2 -1
=T

c .Q (6.104)
- PDG ' ~PDG
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For (6.104) to hold when (02, 02, 02) = (&2, &2, &2), requires that,
a u (<] a u e
“ ~2 -
T .o =@ (6.105)
PDG - -PDG
where i and = ﬁ now contain the estimates &2, &2, and &2 in
G -PDG a u e

2
place of ¢, o, o .
a u e

Incorporating the definition of H}DG, and hence the estimate ﬁfnc’ in
equations (6.96) to (6.98), (6.105) simplifies to:
m[igi.[P.IPT] = y:.GT.igi.[P.PT.fI;;.B.yT (6.106)
m[igi.m.m’f] = y’i.a;Té;;.uJ.DT.i;;.os.yT (6.107)
'ITIR[&S;.G.GT] = y:.GT.E;;.G.GT.i;;.@.yT (6.108)

51 . . . . .
where ZG again contains the residual variance estimates.
y

Note that equations (6.106) to (6.108) are exactly the same as
equations (6.74) to (6.76), 1i.e. those produced by maximising the
likelihood.

~

From appendix B, (B15) shows that the covariance of two estimators, 0?

and &j, is given by a similar result to (6.78), namely,
Covic®, 021 = 2.TRIM..Z_ .M .S ] (6.109)
i J i Gy J Gy

where Mi and Mj are their corresponding matrices as defined in (6.77).

Hence by substituting (6.100) into (6.109), we can show that,

Covic?, o%1 = 2.a0. T, @ (6.110)

PDG " ~]

. ~2 ~2
where « and aj are the a vectors corresponding to o, and GJ.

149



CHAPTER SIX

By substituting different values of « and gj into (6.110), we obtain

the covariance matrix of the vector 62, in (6.104), as,

-1

Covic?] = 2.T
- PDG

(6.111)

Note from (6.111) that the estimators of the residual variances are

not independent.

A simplified version of equation (6.108) may be obtained by
multiplying (6.106) by ¢, (6.107) by &i and (6.108) by &j, and then

a

adding. Doing this we get,

— mden = T T &1
FR[IT_d_p] = T-d-p yT.B .ZGy.G.yT (6.112)

Also, by using equations (6.67) and (6.85), we can write equations
(6.106), (6.107) and (6.112), respectively as:

~2 T 2-1 _ T T T 2-1 2

oZ TRIP'.Q.P] = y..D. (B".0 .P)%.D.y, (6.113)
. TRIDT.Q.D] = y..P. (0".Q .D)2.P.y (6.114)
e Gy T Gy T

T

~2 _ T T A-1 _ T T T 2-1
oe.(T d-p) = y&.D .P .QGy.IP.D.yT = yT.P .D .Qcy.D.P.yT

— T -
= ¥,-6.0_.6.y, (6.115)

~

where QG contains estimated variance ratios.
y

Notice that the unconditional result of (6.115) above is exactly the
same equation as for the conditional result of (6.86) which is
reassuringly consistent. It means that should we just happen to choose
the optimal "estimated" values for the variance ratios, w and v, when
producing conditional estimates, we will get the same estimates for

the residual variances as if we had used the unconditional approach.
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Substituting the value for &z in (6.115) into (6.113) and (6.114), we

obtain the two equations,

0, _ .T T _2 T T
FR[QP]/FR[QP] = yT.D .QP.D.yT/yT.D .QP.D.yT (6.116)
where Q_ =P .Q L.P
P Gy
0, _ .T T .2 T _T
TRIQ 1/TRIQ ) =y .P .Q.P.y /y .P'.Q .P.y_ (6.117)
where Q = DT.ﬁ-l.D
D Gy

Equations (6.116) and (6.117) have exactly the same form as equation
(5.05) in chapter five, and, although it is not pursued at this point,
this would suggest that a similar approach to chapter five could be

applied in order to produce an efficient algorithm for their solution.

6.5 CHAPTER SUMMARY

In this chapter we reproduced all the main results of chapters one to
four, i.e. sections A and B of stage three in the table in‘ the
introduction, on page 10, for the case of seasonality. Rather than
list them all, we refer the reader to the contents page for chapter

six.

The main point is that the procedures which were applied to estimate
the trend values and residual variances required little modification
for the seasonal case and again produced analogous results to the

those of the non-seasonal case.
Identical trend estimates to those of Generalised Least Squares were
produced using Whittaker’s Minimisation, (with suitably defined

weightings) and State Space methodology, (assuming vague priors).

Also identical residual variance estimates were produced using both

Maximum Likelihood and Minimum Variance approaches.
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THE ESTIMATION OF AUTOREGRESSIVE PARAMETERS

So far we have assumed that the "d" non-seasonal autoregressive

parameters, ﬁi’ 02, e 6d, and the "p" seasonal autoregreésive
parameters, ¢1, ¢2, cee ¢p, in the smoothness equations (6.04) and
(6.10) of the last chapter are fixed, in the sense that they are

pre-specified by the modeller.

We now turn to the case where these parameters are left unspecified
and hence need to be estimated. We will refer to this, for
convenience, as the "variable" parameter model to distinguish it from
the "fixed" parameter models already dealt with, although it should be
remembered that we do not mean "variable" in the sense of a random
variable, but only in the sense that their true values will be

different for different time series.

7.1 LEAST SQUARES ESTIMATION
7.11 THE NON-SEASONAL CASE

In chapter one we observed that from the general form of Whittaker’s

equation, written for convenience as,

v = (y-x)". (y-x) + (1/0).x'.D".D.x (7.01)
where = (X, X ,...,X% )T
T “T-1 1
=(y_., Vv y )T
T -1’77

and D was defined by the (T-d) x T matrix,

1,-9 ,—02 ...... ,—0d, o, 0, s e e , O
D= o, 1,9 ,-9 ...... , ¢ , 0,0, 0,..,0 (7.02)
1 2 d
0 etc
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~

we could obtain the least squares estimate of x, 1i.e. x, by
differentiating ¢ in (7.01) with respect to x and setting to zero,

i.e.

ay/dx = —2.[(y—§:) - (1/w).DT.D.§] =g (7.03)

which therefore gave i, as,

A T -1

x = [ IT + (1/w).D".D ] .y (7.04)
Similarly, we can also obtain the least squares estimate, &, of the
parameter vector ¢ = (ﬁl, ﬂz,...,ﬁa)T by minimising ¢ in (7.01) with
respect to 9, i.e.

ay/d0 = 8(x".D".D.x)/89 = 8(a’.a)/89 = 0 (7.05)

where D.x = a, and a is the vector of smoothness residuals given by,

However, writing out the set of T-d equations, D.x = a in (7.05), in

full we have,

X =9 .X + 9 .X + ... + 9 .% + a ford<t=T (7.06)
t 1"t 2 T2 d “t-d t

which can be alternatively written,
K=X.9+a (7.07)
where k is a (T-d)x1 vector given by,

K = (xT, Xe g +or o0 X ) (7.08)
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and X is a (T-d)xd matrix given by,

-1 “T-2 T-d
X X - X
X = T-2° “T1-3 ? TT-d-1 (7.09)
. e, .
X X X
d ’ “a-1’ |

The set of equations in (7.06) and (7.07) are in "regression" format
and hence their sum of squared errors, a?.a, can be minimised giving

the usual regression solution,

o= 015« (7.10)

7.111 Algorithms
The joint solutions of (7.04) and (7.10) can be effected by realising
that the value of ¢ in (7.01) can never be increased by either
minimising ¢ w.r.t x for any ¢ using (7.04) or minimising ¢y w.r.t. ©
for any x using (7.10). Hence we obtain the following algorithm to
jointly solve equations (7.04) and (7.10).
1. Choose an initial value for the vector ¢, say ﬁo.
2. Form Do’ from ﬂo, using (7.02).

. . . A T -1
3. Find X using (7.04), i.e. X = [ IT + (1/w).D0 .Do ] .y
4. Form K and Xo from X using (7.08) and (7.09).
5. Find a new value for 3, using (7.10). i.e. 30 = (XO
6. Repeat steps 2 to 5 until convergence where ﬁ = xo, 5 =9 .

By repeatedly the above algorithm followed by that described at the

end of chapter five, which produces maximum likelihood estimates of
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. . 2 2
the residual variances, o © and ¢ °, (and hence w), we can therefore
a e

obtain joint estimates of ¥, x, 0a2, 0e2, and w.

7.112 Results

The algorithms described in the last section have been applied to the
time series of figure 1.1, (section 1.14), in chapter one, both for

autoregressive lags of d=1 and d=2. The results are shown,

respectively, in figures 7.1 and 7.2 which follow.

Trend Estimates

Figure 71
Value Value
125 ~4 125
| CONSTANT MODEL |
120 1120
116 4118
110 4110
105 —4 1086
== Qriginal 8erics
100} —6— Fixed Parameter 4100
—%— Variable Parameter
95 1 1 1 1 1 1 1 [ 1 1 1 1 1 1 1 1 1 1 1 L 95
012345667 8 91011121314 1516 17 18 1920 21

Time Period

Figure 7.1 shows the results for, what is referred to as the
“constant", or lag d=1, model, (in line with the fixed parameter model
described in section 5.212 of chapter five, so-called because it was
invariant to constant data). As well as the original, (y), series, the
estimated trends, (i), are plotted for both fixed and variable

parameter cases.
As seen from the trend plots in figure 7.1 the variable parameter

model gives a slightly smoother trend than that with fixed parameters,

although neither are what I would consider to be sufficiently smooth.
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Other estimated values for figure 7.1 are summarised in table 7.1

below.
Table 7.1
Estimates: w o 2 o 2 9
e a 1
Fixed Parameter: 2.4329 5.1813 12.6055 +1.0000
Variable Parameter: 0.9478 7.3705 6.9855 +1.0107

From table 7.1 we see that the residual variance estimates, and in
particular the estimate of their ratio, w, are markedly different.
However, when we compare either of these estimates of w to those used
in the examples of figure 1.1, (section 1.14), of chapter one, we see
that neither is small enough to produce enough smoothing, which would
seem to require an estimated value of w of about 0.1, which in turn

would suggest that the "constant invariant" or lag d=1 model was

inadequate.
Trend Estimates
Figure 7.2

Value Value

125F 41286
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Time Period

Since the smoothness is, to a certain extent, measured by its residual

. 2 . 2, 2 .
variance, ¢, and hence w since w = ¢ /oo ~, smoothness will be
a a e
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increased by increasing the number of smoothness parameters, ¥,

thereby ensuring a better "fit" for the trend.

Figure 7.2 ‘shows the results of increasing the number of smoothness
parameters from one to two, i.e. for, what is referred to as the
"linear", or lag d=2, model, (in line with the fixed parameter model
described in section 5.212 of chapter five, so-called because it was
invariant to linear data). Again, as well as the original, (y),
series, the estimated trends, (ﬁ), are plotted for both fixed and

variable parameter cases.

Other estimated values for figure 7.2 are summarised in table 7.2

below.
Table 7.2
. 2 2
Estimates: © o o 9 9
e a 1 2
Fixed Parameters: 0.1907 9.9298 1.8935 +2.0000 -1.0000

Variable Parameters: 0.1797 9.9115 1.7815 +1.8780 -0.8761

In figure 7.2 we see that both the fixed and variable parameter cases
produce almost identical trend estimates, i; more importantly the
estimates now produce, what could fairly be described as smooth

series.

This is confirmed by the estimates of w in table 7.2 which are both of
the order of 0.1 coupled with vary similar estimates for the residual

N 2 2
variliances o and o .
a e

It would therefore appear that, on the basis of these results, that a
reasonable rule of thumb for model adequacy would be a variance ratio,
w, estimate of about 0.2, although it is recognised that this hardly

constitutes even the beginnings of a proper analysis of the topic.
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7.12 THE SEASONAL CASE

The least squares estimation of autoregressive parameters for the case
of a seasonal model is almost identical to that of the non-seasonal

case.

The equivalent seasonal version of Whittaker’s equation of (7.01) is

given by equation (6.13) of chapter six i.e.
¥ = (yx-s)7. (y-x-s) + (1/w).x".D".D.x + (1/v).s .P'.P.s (7.11)

the only new addition to {(7.01) being the vector of seasonal values,

T
s, where s = (s s ....S .
’ ( T TT-1’ 1)

Least squares estimators of x and s are given by minimising ¢ in
(7.11) w.r.t. x and s giving equations (6.17) and (6.18) of chapter

six, i.e.
% = - ey S = - -1 -
X = (I}.HT IT) .(T& IT).y and s (HT.TT IT) .(1'[T IT).y

where = I_+ (1/0).D'.D and T =1+ (1/v).PL.P (7.12)

In a similar way to the non-seasonal case, least squares estimators of
the autoregressive parameter vector, 9 = (91, ﬁz,....@d)T and the

seasonally autoregressive parameter vector ¢ = (¢1, ¢

T
ye...¢ ) are
2 p

given by minimising ¢ in (7.11) w.r.t. ¢ and ¢ to give,
8= (0. %" % .k and ¢ = (57.5)" .5 . ¢ (7.13)

where the formula for 5, described earlier in the chapter, results
from minimising xT.DT.D.x by utilising the regression approach of
equations (7.06) and (7.07), thereby defining k and X by (7.08) and
(7.09); the formula for & is obtained by exactly the same procedure, %
and § being the seasonal equivalents to k and X about which more will

be said in a moment.
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Therefore, in exactly the same way as for the non-seasonal case,
(7.12) and (7.13) can be evaluated alternatively until convergence to
give the least squares estimates ﬁ, ;, 9 and & which minimise ¥ in
(7.11).

By utilising the approach of section 6.4 of chapter six to obtain
maximum likelihood estimates of the residual variances, in conjunction
with the least squares estimation procedure described above, all model

parameters can therefore be jointly estimated.

There is a "common sense" proviso to the above procedures. In
equations (7.12), the production of the estimates, x and ;, requires
the inversion of the matrix (T}.H&—IT) and its transpose (HT.TT—IT).
If, however, the matrices D and P in (7.11) are identical, it is
easily seen from (7.12) that these matrices are singular. Hence to
effect a solution D and P must have a different structure such that

the matrix (T&.HT—IT) can be inverted.

What this means in practice is that the seasonal model cannot have
the same form as the general trend model of (7.06). In other words we

could not employ a general seasonal model of the form,

s =¢.s + ¢ .s + ...+ @ .8 +u (7.14)

This of course begs the question as to why we would ever want to model
seasonality using (7.14) anyway, since there is nothing particularly
"seasonal" about it. Hence all the proviso really says 1is that

seasonal models should have some inherently sensible seasonal form.

In this respect, two perfectly acceptable examples of seasonal models,

previously defined in equations (6.08) and (6.09) of chapter six, are,

s =¢.s + ¢ .s o 4+ ¢p.st_ps +u (7.15)

where ps < t = T, "s" is the seasonal period and "p" is the seasonal

lag, and alternatively,
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u =s + s ool + (7.16)

S
t t t-1 t-s+1

where s-1 < t = T and "s" is again the seasonal period.

The relationships (7.15) model the current seasonalities in terms of
the seasonalities of previous years. An estimate of ¢ can be obtained
from the appropriate regression and it (7.15) can easily be written in
the form P.s = u where P is an appropriate matrix and u is a vector of

residuals.

Equations (7.16) reflect the idea that sums of yearly seasonalities
should be as small as possible and can again be represented by a
suitable choice of P in P.s = u; the estimate of ¢ not being required

since the parameters are fixed.
7.2 MAXIMUM LIKELIHOOD ESTIMATION

In this section we look at the estimation of the "d" non-seasonal
autoregressive parameters, 01, 02, e 6d, and the "p" seasonal

autoregressive parameters, ¢1, ¢2, ... , ¢, by maximising the
p

likelihood function. In doing so, it should be remembered that we need
to introduce the Normality assumption for all residuals since the
likelihood function is formed on the basis of that assumption.

7.21 THE NON-SEASONAL CASE

For the non-seasonal case the relevant log-likelihood function is

given by equations (4.13) and (4.14) of chapter four i.e.
ll(w,o:,ﬁ) = -[ (T-d).1n(2n) + (T—d).ln(oi) +
InlQ | + y'.0" .o .D.y/0° ]/2 (7.17)
[5) w e

where,
Q =w.1 + D.D (7.18)
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which, since the vector of parameters, ¢, is wholly contained in D and
*
hence Qw’ is equivalent to minimising the function, LL (w,oi,@),

where,

* 2 _ 2 T T -1
LL (w,ve,ﬁ) = 0e.ln|Qw| +y.D.Q .D.y (7.19)

Whilst it is a straightforward matter to obtain first, (and higher
order), derivatives of ll*(w,oi,ﬁ) with respect to the elements of @,
I have not, so far, found it possible to solve the resulting equations

when set to zero.

The alternative is to use numerical search techniques, (Scales, 1985;
Hamilton, 1994, section 5.7), to obtain the minimum of LL*(w,oz,ﬁ) in

(7.19) and hence the maximum likelihood estimates of ®.

For example a multivariate variation on Newton’s approximation gives
the following iteration sequence,

*

o =9 - [6°{L (0, o 2
0 e

2

, 190)}/602]-1.6{11.&*((0, o2 0188  (7.20)

The problem with using (7.20) is that it relies on choosing an initial
starting point 00 which is sufficiently close to the optimum, i.e.
within, what might be termed, the, (negative), likelihood "basin";

otherwise (7.20) will not converge.

Substitution of the least squares value of x in (7.04) into (7.01)

gives,

Y(x=x) = y .D . (0.1 + p.0") '.D.y = yT.DT.Q;l.D.y (7.21)
In other words (7.19) can be written,
* 2 2 ~
LL (w,oe,ﬁ) = oe.lnIle + Y(x=x) (7.22)
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Minimisation of the last term, w(x=§), of (7.22) was discussed earlier
in this chapter and gives the least squares estimates of ¢. Hence as
long as the term oz.lnIQwI in (7.22) is relatively small, the least
squares estimates of © may be used as a starting point for the

iteration of (7.20).

In practice this seemed to work very well for "long" series i.e. for
series where T >> d. In these cases the likelihood function, (at least
for the cases d=1 and d=2, which are the only cases where one can plot
the variation of the likelihood against its parameter values), was
reasonably well behaved, (in the d=2 case the contours were
unimodal and shaped like a stretched ellipse at 45° to the parameter
axes), with the least squares optimum quite close to that of the
likelihood function. Indeed when the length of the time series was
much greater than the number of parameters needing to be

estimated, i.e. T >>> d, the two optima were almost identical.

The iteration broke down when T and hence T-d was small however, (e.g.
T ~ 5 and d ~ 2). In these cases the likelihood surface showed
multiple local optima and it appeared to be almost a case of luck as

to which optima (7.20) converged to, if indeed it converged at all.

What was worse was that as the value of the variance ratio was varied,
the global optimum would "flip" from one of the local optima to the

other when particular values of w were reached.

One may well ask whether the case when T-d is small is important in
practice since to model a series of T=5 values say, using d=2
parameters would seem to be gross over-parameterisation. However cases
such as T=10 and d=1 are borderline and no analysis would be complete
without a full investigation of these 1limitations and a proper

solution to the problem.

Box and Jenkins, (1976, section 7.1, p213), encountered the same
problem in their ARIMA modelling in which they also obtain a
likelihood function comprised of a determinant term and a sum of

squares term similar to (7.22). They say,
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" Usually the [determinant term] is of importance only for small [T].
For moderate and large values of [T, the 1likelihood function] is
dominated by [the sum of squares term] and thus the contours of the
unconditional sum of squares function in the space of the parameters
(¢,9) are very nearly contours of likelihood and of log-likelihood. It
follows, in particular, that the parameter estimates obtained by
minimising the sum of squares, which we call least squares estimates,
will wusually provide very close approximations to the maximum
likelihood estimates......... In the remainder of this section and in
[the next section] our main emphasis will be on the calculation,
study, and use of the unconditional sums of squares function...and on

calculating least squares estimates."

They do not, however, offer any idea as to what moderate and large
values of T might be, nor do they give any proof that the likelihood
function will tend to the sum of squares function as T is increased,

which are two issues which need to be addressed.

7.22 THE SEASONAL CASE

Maximum likelihood parameter estimation for the seasonal case follows
exactly the same lines as for the non-seasonal case with no extra

difficulties.

The log-likelihood function for the seasonal case is given by

equations (6.69) and (6.71) of chapter six namely,
LLIo?,02,02%,9,8] = -1/2. ((T-d-p).1n(2m) + In|S | + vy .6°.51.G.y)
a’ u e Gy Gy

... (7.23)

where,
S = CovI[G.y ] = ¢=.P.P' + ¢°.D.D" + ¢.6.6" (7.24)
Gy T a u e

Again maximisation of ll[o§,02,0:,0,¢] in (7.23) is equivalent to

u
e e . . * 2 2,2 2,2

minimisation of LL [w,v,0",9,¢] where w = oa/o , U= 0u/0 and,
e € e
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* 2 _ 2 T T -1
LL [w,u,oe,0,¢] = 0e.ln|QGy| +y.G .QGy.G.y (7.25)

with @ = G.G' + v.D.D° + w.P.P" (7.26)

Using the relationships, G = P.D = D.P, from equations (6.67) of

chapter six, we can write QG as,
y

Q =G.[I +v.A + w.A].G (7.27)
Gy T D p
where A = D. (D.D)"2.D" and A, =P. (P.P) 2. P" (7.28)
and hence,
Q =G6.A.Q.A .G (7.29)
Gy D P
where Q = DT.D.PT.P + v.D°.D + w.P..P (7.30)

Also substitution of (7.12) into (7.11) gives the seasonal equivalent
to (7.21), namely,

Y(x=x,s=s) = y .P..P.Q ".D".D.y (7.31)

Hence to show that the sum of squares term, 1i.e. yT.GKSE;.G.y, in

(7.25) is equal to y(x=x,s=s) in (7.31), we need, using (7.29), to
show that,

¢".16.4,.2.4..6'17.6 = P".P.o"".D".D (7.32)

At this point in time (7.32) is still a conjecture, although the

matrix equality has been simulated several times and on each occasion

all corresponding matrix elements were identical.
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The point of knowing (7.32) to be true is, of course, that we may then
use least squares estimates of ¥ and ¢ as a starting point for the
minimisation of (7.25) using a seasonally equivalent iteration to
(7.20).

7.3 CHAPTER SUMMARY

This chapter has been concerned exclusively with the estimation of the
autoregressive parameters for both the non-seasonal and seasonal
models, i.e. the "General", variable parameter, models and relates to

section C of stage three in the table on page 10.

The two estimation procedures investigated were Least Squares and
Maximum Likelihood, which produced different estimates although it
looks possible, (although this is still a conjecture), that these may
be asymptotically, (i.e. for long time series), the same. The
advantages of using Least Squares estimates in preference to their
"more optimal" Likelihood counterparts is twofold. Firstly, they can
be produced more more efficiently, and secondly, they are not subject
to the problems of having to differentiate between local and global
optima. However the area needs further investigation to be able to

properly clarify the situation.
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FURTHER DEVELOPMENTS

During the course of a thesis, and, in particular this thesis, one is
constantly aware of the many areas which could be, but are not being,
fully investigated and, to a great extent, this results from a simple
matter of priorities. This is not to say, however, that one does not
spend some time thinking how they might be approached and whether to
do so would seem to be a relatively straightforward matter or whether
one envisages a whole host of obstacles.

In this chapter we give an indication of what other areas need to be

dealt with and also indicate how, on the face of it, these might be

addressed.

8.1 LIMITING MODELS

It is interesting to observe what happens when one, (or more), of the
residual variances, and hence their corresponding set of residuals,

tends to zero.

8.11 THE NON-SEASONAL CASES
The general two non-seasonal model equations were:
y =X + e (8.01)

X =9 .X + 9 _.X + ... + 9 .% + a (8.02)
1 2 d

8.111 Letting aez Tend To Zero

As oez, and hence each e in (8.01), tends to zero, yt tends to xt in
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(8.01) and hence (8.02) becomes simply,

y =9 .y + 9.y + ... +8 .y +a (8.02)
For a variable parameter model, the autoregressive parameter vector,
9, and 0;2 can be estimated from (8.02) using ordinary regression on

previous values of Y-

For a fixed parameter, (i.e. © pre-specified), model, (8.02)

effectively becomes,

=u +a (8.03)

where pt is known, and all that remains is the estimation of the mean

and variance of the a, using conventional methods.

8.112 Letting oaz Tend To Zero.
As 062, and hence each a, in (8.02), tends to zero, (8.02) becomes,

X = Gl.x + 02.x + ... +9 .x (8.04)

Xx =B .m +B.m°"+ ... +B.nm (8.05)

where each m, for i=1 to d, is a root of the polynomial,

m —t‘}l.m —ﬂz.m - ...-9% .m -9 =0 (8.06)

Note that in the event that two of the roots of (8.06) are equal, e.g.
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=m = m, we would replace the terms Bl.m by Bz.mzt in (8.05) by

m
2 J ¢ 1
Bl.mj + Bz.t.mj .

Similarly, in the event that three of the roots of (8.06) are equal,

t t
- - - - +
e.g.tm3 m, m, m ?e would ri?lace tze E?rms Bs.m3 + 34 m
. i . . .t. B A th
Bs m_~ in (8.05) by 63 moo* 34 t L Bs t m and so on for other

sets of equal roots.

Also, in the event that two roots of (8.06), m and m, form a complex
pair, say r.e'* and r.e-i“, the corresponding two terms in (8.05) will

be Bu.rt.cos(u.t) and Bv.rt.sin(a.t).
Substituting (8.05) into (8.01) gives,

y =8.m vy B..m_ + ... + B..m tie (8.07)

For the fixed parameter model the ml, i=1 to d, could be found from
(8.06) and hence the Bj, j=1 to d, and an estimate of o 2 from (8.07)
e

using ordinary regression.

For the variable parameter model, initial estimates of the 0k’ k=1 to
d, could be found by substituting Y,7e, (with et=0 to begin with),
for X, in (8.04) and applying ordinary regression. This would enable
the m, i=1 to d, to be found from (8.06) and hence the Bj, j=1 to 4,
and estimates of e, and aez from (8.07) using ordinary regression.

This would then allow better estimates of ﬂk to be found and so on.
A quicker, but perhaps not so interesting, way of producing the same
estimates is, using the matrix notation of equation (7.01) of the

previous chapter, to minimise,

(y-x)". (y—x) + AT.D.x (8.08)

where A is a T-d vector of lagrangian multipliers, which has solution,
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x = (I + p'. (.0 D).y (8.09)

and hence gives the fixed parameter solution.

To obtain the variable parameter solution, (8.09) can be used in
conjunction with the regression of (8.04), which produces estimates
for the vector of autoregressive parameters, ¢, given by equation

(7.10) of the previous chapter i.e.

o= X))t xlk (8.10)

By feeding the results of (8.10) into (8.09) and vice versa until
convergence Wwe obtain the required estimates of x and ®. Substitution
of (8.09) into (8.08) then gives us an estimate of 062 i.e.

c?= y.o".0dH  .D.y/T (8.11)

8.12 THE SEASONAL CASES

The non-seasonal case is easily extended to include seasonality using
the ideas of the above sections. The only reason we do not deal with
them here is that it would mean detailing twelve variations in all
i.e. the combination of models produced by letting either one or two
of the residual variances oez, 0a2 and 6;2 tend to zero and

considering both their fixed and variable parameter versions.

8.2 EXTENDING THE MODEL

We showed how the non-seasonal model could be extended to deal with
seasonality, and, in doing so, saw that this was easily accommodated
within the general framework and hence presented no particularly new

problems. We now consider two further areas which could be
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accommodated.

8.21 BUSINESS CYCLES

As far as the model is concerned the "so-called" business cycle is
just another, extra, form of seasonality and can be dealt with in

exactly the same way.

8.22 STEP CHANGES

Perhaps my main concern with the model as it stands, is its ability to
deal with step changes in a time series or, what are sometimes
referred to as, "interventions", (see Box and Tiao, 1975, McCleary and
Hay, 1980 and Cleary and Levenbach, 1982). These are changes in the
level of a series over a specified length of time resulting from some
form of outside intervention, for example, as a result of a sales

promotion or a tax change.

However this is easily accommodated within the measurement equation

thus, (for the seasonal model),

<
-
1]

X +8 +c¢c +e (8.12)
t t t t

where for a single change, for example, c, would have values of "c

for the period of the change and zero otherwise.

The estimation of the parameter "c" is then found by either minimising
the appropriate form of Whittaker’s function with respect to "c",
(i.e. least squares estimation), or by maximising the appropriate
likelihood function, in exactly the same way that autoregressive

parameters were estimated in chapter seven.
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8.3 MODEL ADEQUACY

Two possible criteria for Jjudging a particular model’s adequacy are
the extent to which (a) the autoregressive parameters and (b) the

residual variances are significantly different from zero.

8.31 AUTOREGRESSIVE PARAMETER SIGNIFICANCE

For fixed parameter models this ©boils down to whether the
autoregressive lags are the correct ones to use, and was addressed by
Akaike, (see section 0.24 of the introduction). For variable parameter
models we need to use the 1likelihood ratio test for parameter
inclusion (see appendix). Both of these tests are asymptotic and hence
are only really valid for relatively long time series, which begs the
question as to whether we need to go to the bother of calculating
maximum likelihood rather than 1least squares parameter estimates
since, as it would appear to be the case, (see chapter seven), that

the latter tend to the former for long time series.

8.32 RESIDUAL VARIANCE SIGNIFICANCE

In section 8.1 of this chapter we began to look at what would happen
as one or more of the residual variances tended to zero. Again to test
this we could use the asymptotic 1likelihood ratio test, (see
appendix), although whether a more satisfactory test could be produced
by considering their estimates from the point of view of quadratic
forms rather than maximum likelihood, (see chapter four), is worth

pursuing further.

For example, I am able to show that, for the fixed parameter model,
under the hypothesis & = w, the statistic (T—1).é\~a2/ oaz has a
chi-squared distribution with T-1 degrees of freedom, although the
search for two such, independent statistics, which would permit a

meaningful test, has not proved successful so far.
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8.4 FORECASTING

For fixed parameter models, the area of forecasting has already been
extensively dealt by utilising the State Space approach of chapter
two. It is, after all, essentially what the "prediction" stage, (see
section 2.4 of chapter two), is concerned with and will produce

forecasts and their "errors" quite happily.

For the variable parameter case, things are not so straightforward and
we must tread very carefully, since, for example, the forecasting of
X, ,, and hence y  using equations (8.01) and (8.02), leads to all
sorts of problems with regard to the correlations between the trend,

X, and parameter, ¥, estimates.and 61 etc.

8.5 DATA TRIALS

This thesis has mostly concerned itself with developing the theory
behind a suggested "trend" model. As such there has not been time to
give the model the rigorous testing it needs by applying it to wide
selection of different time series with different characteristics,

using both real and simulated data.

In the case of simulated data this is done to test to what extent the
model can replicate the parameters of the original series, and, has
been done to some extent, when used to test the truth of a derived

theoretical result.

However, the approach was neither structured nor systematic and
certainly did not lay down any performance criteria by which a model
could be judged. This was even more true for "real life" data; the
model having only been applied to about five series, whose adequacy
was only judged by eye. In this respect the collection of "1001"
series, (Makridakis, 1982), would be a good starting point for testing

both model adequacy and forecasting ability.
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8.6 MULTIVARIATE MODELS

In section 0.144 of the introduction we described the property of
"Additivity" and how it might be tested as long as the trend could be
written in the form of equation (0.12). This was the first and last
time that "Additivity" was mentioned and as such I should, perhaps,
say a little more about how I would envisage this area could be

further developed.

The first point to note is that the trend model developed in the these
does indeed fit the requirement of equation (0.12) and as such we
could use the ideas of section 8.4 to test the adequacy of this

property both for real and simulated series.

However, the idea of several "disaggregated" series being consistent
with their "aggregated" counterpart can be taken a stage further by
asking whether, instead of treating both the "disaggregated" and the
"aggregated" series as essentially separate, and then applying the
results of the univariate trend model so far described to each series
in the hope of obtaining a match, we cannot build the additive
relationship, (using lagrangian multipliers say), 1into a joint

multivariate model, which would ensure such a property.

It must be said that the above is about as far as my thinking has gone
in this area. However, given the essentially linear constraint of
additivity, I would imagine there was every hope of success. In fact,
why stop at "Additivity"; since if it worked, it would only seem a
small step to building a general multivariate linear relationship into

such models whose parameters could be either fixed or variable.
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CONCLUSION

In considering the achievements and limitations of this thesis, we
should perhaps begin by reminding ourselves of the objectives which we

set down in the introduction.

Our original intention was to develop an approach which would estimate
the trend based on an initial set of "desirable" and, more to the
point, unambiguously "definable", (preferably in mathematical terms),
properties. As a starting point, four properties and their initial
definitions were offered, namely "Fidelity", "Smoothness"”,
"Invariance" and "Additivity", which I felt trend estimates should
inherently possess. Hence , in this critique, we should, perhaps,
begin by looking at the extent to which, on the one hand, the approach
incorporated these properties and, on the other, the resulting trend

displayed them.

Accepting the 1limited number of example data sets which were
considered, the trend’s "Fidelity" showed no obvious weaknesses, since
its definition easily accommodated the problems of seasonality and, at
least on the face of it, appeared to be flexible enough to be able to
be extended further to the areas of business cycles and interventions

without any foreseeable difficulties.

Similarly the criterion of "Smoothness" slotted nicely into the scheme
of things, and was again easily extended to include seasonality.
Moreover we were encouraged to see that the resulting trend estimates,
at least for correctly specified models, did indeed follow a smooth

path.

The only negative feature, (of incorporating the "Smoothness"
definition), arose in the estimation of the autoregressive parameters
for the "General", (variable parameter), model, which, although,
straightforward for the case of Least Squares estimates, looked less

than satisfactory for those produced wusing Maximum Likelihood.
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Nevertheless, even here, there were indications that both types of
estimate would be identical for relatively long time series, which is
exactly the criterion that would need to be met before any of the
advantageous inferential properties of likelihood estimates could be

utilised.

A luxury of the model was that the "Invariance" property would already
be accommodated within the definitions of "Fidelity" and "Smoothness",
at no extra cost so to speak, its only drawback being that the general
model would appear to break down if truly invariant data, (i.e.
conforming exactly to a simple polynomial), were used. However the
breakdown would only be to one of the model’s simpler limiting forms,

which had consequently simpler estimation procedures.

The "Additivity" property of the trend estimates has not been tested
so far. However, because of their linear nature, they did possess a
form which would allow this property to be, not only tested, but
hopefully extended, to a multivariate model in which "Additivity"

could be in-built as a special case.

Having considered the properties of the estimates, we also need to
address, what might be termed, the "effectiveness" of the estimation
procedures, themselves, and by this we mean both effective in the

sense that:

(a) they can be reasonably efficiently carried out, (since there is
little point in producing a model which, for all practical purposes,

is "inestimable"), and

(b) they in some sense produce the "best" estimates.

In the case of (a), (with the exception of the Likelihood smoothness
parameter estimates discussed earlier), the calculation of estimates
has been developed, (and in some cases explored in some depth), and
efficient procedures subsequently produced, which have then gone on to
be programmed to give example results, whose accuracy and speed of

execution compares favourably with, say, those of other statistical

175



CONCLUSION

techniques such as regression.

In considering the extent to which these are "best" estimates, as in
(b), we have adopted a slightly more pragmatic approach to the normal
one of considering the estimators’ pfoperties and distributions. The
problem here is that because of the non-linear relationships between
the unknowns, especially, in the general model, it is very unlikely
that any estimators will have any of the more commonly used
distributions, and, in common with most non-linear models, will, at
best, only have asymptotically limiting forms. Hence, rather than
following this track, we have deliberately limited our search to
estimators that are produced as a result of some form of "optimal"
process, (on the assumption that this will result in estimators which

will possess "optimal" properties).

In doing so, however, we have tried to look at as many optimal
processes as possible, and have not been happy to accept an estimator,
unless we can show that it results from at least two such optimal
processes, which, at least initially, seem to be based on different
criteria. Thus in the case of the trend estimates, we have shown that
we get the same estimates from Whittaker’s function minimisation,
Generalised Least Squares regression and State Space estimation. The
same residual variance estimates were produced whether we used Maximum
Likelihood or Minimum Variance, (of quadratic forms), estimation, and,
it would appear that, (for long series, anyway), the Least Squares and

Maximum Likelihood smoothness parameter estimates will be identical.

Moreover, there are other desirable bi-products arising from having

investigated more than one estimation procedure for each estimate.

Firstly it leads us to ask whether the two procedures will produce the
same estimates for other models, and, in general, to find the set of
models for which this is the case and hence why this should be the
case? For example, can any model capable of being expressed as a
General Regression model also be formulated in State Space format, and
will their respective estimates always be 1identical under the

assumption of vague prior information.
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Secondly, one procedure often, by its nature, reveals estimator
properties which the other does not and vice-versa. For example, the
estimation of residual variances using Maximum Likelihood does not,
(except asymptotically), give us the estimators’ variances, which the
minimum variance approach produces. Also the dual estimation approach
of the autoregressive parameters suggests that Least Squares estimates
will have the same asymptotic Normal distributions as do Maximum

Likelihood estimates.

Lastly, the "more the merrier" approach to estimation also produces a
pay-off when it comes to practical implementation. See, for example,
the way the Minimum Variance and Maximum Likelihood approaches were
able to complement each other in producing an efficient algorithm to

find their common estimates.

Whether these estimates have other desirable properties or convenient
distributions from which efficient "inference" tests can be produced
is, we would argue, not within the terms of reference of this thesis
and has therefore not been pursued, as neither have, for that matter,
the problems of forecasting, (after all forecastability was not one of
our initial "desirable" trend properties). In this sense the purpose
of this thesis was to develop something akin to the Least Squares
Estimation component of the Regression model, leaving, as Legendre did

in 1805, its fuller implications and consequences to others.

In conclusion therefore, this thesis offers an alternative approach to

trend estimation which is direct, clearly defined and easily executed.
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APPENDIX A

LINEAR, UNBIASED ESTIMATORS
FOR FIXED PARAMETERS

The usual form of the Gauss-Markov theorem refers to the equation

system,

y=X.B+e (A1)
where y is a Tx1 vector of observations, X is a Txm matrix of known
constants, e is a Tx1l vector of residuals coming from a distribution

- . . 2 o .
whose mean is zero and whose covariance matrix ¢ ".Z is also known,
e

. . T
and B is a mxl vector of unknown parameters, i.e. B = {Bl,

Under these conditions we seek a linear estimator Bi of parameter Bi,

given by:

Bi = nq.z, where mf is a 1xT vector (A2)

The criterion for choosing the vector m, is that the resulting

variance of [3i is to be a minimum.

Hence we need to minimise,
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= mT.E[ E.Ef ].m1 =¢ “.m .Z.m (A3)
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using (A1), (A2), and the fact that ‘r:'

[1]

was defined as the

covariance matrix of E.

We impose the condition that the estimator is unbiased, i.e.

{E[Bi] =B

i

or since EIB ] = E[m:.X] = mf.tE[Y] =m .E[X.8 + E] = mf.X.B

that mf.x.ﬁ =B = v’f.g, implying that m'f.x = vf (A4)

where \A is an mx1 vector whose elements are all zero except for the

‘i’ th which equals unity.

To include condition (A4) in the minimisation we need to minimise the

function f(mi), where:

_ 2 T . Ty T
f(mi) =oc".m .E.m ( mi.X v, ).A (A5)

with respect to the vector m , where A is an mx1 vector of Lagrangian

multipliers.

Hence,

— 2':.‘ -
8f(mi)/6mi = 2.0e LE.m X.a

—-1

m = 1/2¢ 2.5 '.X. (A6)
i e

g

Using (A6) with condition (A4), we have,

which gives,
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m = E‘-l.X.[ xF.2tx ]'1.v (A7)

B, = v [ X2 X ]'1.xT.5 Y (A8)

By writing equations (A8) for each i in vector form, we obtain the
unbiased linear minimum variance estimator, (B, sometimes referred to

as the best linear unbiased estimator, (BLUE), of B as:

B = [ XX ]’1.xT.E'1.g (A9)

Hence its covariance matrix of is given by:

[1]

CovIBl = [ x.E7X ]-1.XT.E_1.COV[X].E_1.X. [ xLEhx ]“1

2

[1]

which since Cov[Y] = o, leads to:

-1
CoviBl = ¢ °. [ X .E7.X ] (A10)

It can also be noted that for Normally distributed E, the estimator is
also a Maximum Likelihood (MLE) estimator, since it is easily shown
that it maximises the likelihood of Y by minimising the exponent of

the probability density of Y with respect to B, i.e.
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[ y - X.B ]T.s'l.{ y - X.B ] = el.8 e (A11)

Because it minimises the sum of squares in (Al11), it can also be
regarded as the Generalised Least Squares, (GLS), estimator of B,
(minimising the sum of squared "standardised" errors. A proof is
provided, by splitting (A3) into the sum of two squares, in (Wonnacott
and Wonnacott,1979), although it is more easily achieved by simply
differentiating (All) by B.

FOR STOCHASTIC PARAMETERS

The extension is to the case where B, in (Al), is stochastic in the
sense that it is randomly drawn from a prior distribution whose mean
is é. The surprising result is that not only do the features and
formula of (A9) still hold for an estimator, 8 of B, but that B can
also be regarded as the closest estimator to the vector variate B
itself, in that it minimises the mean squared error of all

combinations of é and é.

The proof follows almost exactly the same lines as for the fixed
parameter case. Equation (A1) still defines the estimator but
condition (A3) is achieved by the condition that the estimator is what

is known as unconditionally unbiased, (u-unbiased), i.e. its vector

mean equals E, the vector mean of E, i.e.

nz[éi] = IE[Bi] = B, for any i (A12)

Hence,
E(R ] = Elm.Y] = m.E[Y] = m.E[X.8 + E] = m.X.E[g) = m.X.B
which using (A12) gives:

EIB] =B, = mf.x.

-

=v .é, implying that nf.X =v

™1

[
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At this stage we need to minimise the mean squared error of éi, then

the equivalent first line to (A3) becomes:

= IE[[m;r. (Y - x.g)]z] = E[[mf.g}z] (A13)

The proof is identical from that point and the resulting estimator is

given by equation (A9) and referred to as the minimum mean square

linear u-unbiased estimator (MMSULE), i.e.

B = [ X .ET.X ]‘1 Xty (A14)
Similarly, its covariance matrix of is given by:
CovIBl = [ X.ET.X ]-I.XT.E_l.Gov[X].E—1.X. [ X.E7.X ]‘1
which since Cov[Y] = X.COV[E].XT + 062.5 leads to:
A 2 T -1 -1
Cov[B] = o .[ X.2°.X ] + Cov[B] (A15)

Also continuing (A13) on the lines of (A4) it is easily shown that the
matrix,

1 -1
=1x ] (A16)

has diagonal elements,
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and off-diagonal elements,

In other words the matrix in (A16) can be regarded as a matrix of mean

squared errors and can be written:

-1
MSE[R] = o‘ez.[XT.E_l.X] (AL7)

with (A15) now being written as:

CovIBl = MSE[B] + CovIB] (A18)

Note that just as forvthe fixed parameter case the two results are
distribution independent and that if the relevant distribution of Et
is Normal, we can drop the restriction on linearity and apply the

results of (Al11).

189



APPENDICES

APPENDIX B

THE MEAN, VARIANCE AND COVARIANCE OF QUADRATIC FORMS

THE MEAN AND VARIANCE

Standard results from multivariate theory, demonstrated by
(Searle, 1971,chapter 2), state that:

If the random vector Z has a Multivariate Normal distribution given

by,

Zz ~ N[ @; Z ] (B1)

where @ is its zero mean vector and £ is its square covariance matrix,
. T . .
then, the quadratic form 2 .A.Z2, where A is a square symmetrical

matrix of constants, has a:

(i) Mean given by the trace of the matrix product Z.A, i.e.
E[2".A.Z] = TRIS.A] (B2)

(In fact this result is distribution free)

(ii) Variance given by the trace of the matrix product Z.A.Z.A, i.e.

VIZ'.A.Z] = 2.TR[Z.A.5.A] (B3)

We now extend these two results to the case to the quadratic form

ZT.M.Z, where M is square but not necessarily symmetric.
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Since Z'.M.Z is scalar and hence symmetric,
z'M.z="M2) =2". M.z (B4)

Therefore,

ZZMz=Z"Mz+ 202y 2 =2 (M + M) .22 (B5)

But (M + M')/2 is symmetric and hence we can apply equation (B.02) to

give,

Elz'.M.2] = E[Z". (M+M").2Z]/2 = TRIZ. (M+MT)1/2 (B6)

And from the properties of the trace of a matrix,

TRIZ.M] = TRIM.Z] = TRIS.M'] = TRIM'.%] (B7)

Hence,
E[z'.M.2] = TRIS.M] (B8)

proving that equation (B2) is also true for non-symmetric matrices.

Similarly, applying equation (B3), we get,

VIZE.M.Z] = VIZE. (M+M7).21/4 = 2. TRIZ. (M+M7). 5. (M+M")1/4 (B9)

which simplifies after expanding and using (B7) to,
VIZ'.M.2] = 2.TR[Z.M.Z.M] (B10)

proving that equation (B3) is also true for non-symmetric matrices.
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THE COVARIANCE

We can now extend the result of (B10) to find the covariance of two

estimators, ZT.MI.Z and ZT.MZ.Z.
T T _ T
viz .MI.Z + 2 .MZ.Z] = VI[2Z .(M1 + Mz).Z]

= v[z".M .z] + vIZ".M_.Z] + 2.CovIZ".M .2, Z2".M .2] (B11)
1 2 1 2

But, from (B10),

T _
VIZ'. (M + M).2] = 2.TRIE. (M + M).Z. (M + M )] (B12)
W[ZT.Ml.Z] = 2.TRIS.M .Z.M)] (B13)

T -—
VIZ'.M,.Z] = 2.TRIZ.M_.5.M ] (B14)

Hence, substituting (B12) to (B14) into (B11), ®ov[ZT.Ml.Z, ZT.MZ.Z]

is given by,
1I[R[2.(M1 + Mz).z.(M1 + Mz)] - FR[Z.Ml.Z.MZ)] - FR[Z.MZ.Z.MZ]
= IHR[Z.(M1 + Mz).z.(M1 + Mz) - Z.Ml.Z.M2 - Z.Mz.Z.MZ]

= TRIZ.M_.Z.M_+ Z.M_.EM] = 2. TRIZ.M .Z.M_]
1 2 2 1 1 2

We therefore obtain the result,

Cov[ZT.Ml.Z, ZT.MZ.Z] = 2.TRIZ.M .Z.M ] (B15)
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APPENDIX C

PARTIAL DIFFERENTIATION OF MATRIX FUNCTIONS BY MATRICES

It often proves necessary to partially differentiate a scalar function
of the individual elements of a matrix by each of these elements in
turn. If the matrix is a rectangular mxn matrix, the result is mxn
expressions, which are then usually set to zero since the reason for

such a differentiation is normally to find an optimum.

These mxn expressions are most conveniently expressed as an mxn matrix
themselves, with each element corresponding to the result of
differentiating the scalar function by the corresponding element of

the original matrix, (see Magnus, 1995 for a full treatment).

Suppose that the mxn matrix X has ij th element Xij and that y is a
function of all these elements i.e. y = f(xij; i=1,..m; j=1,..n),
which we can abbreviate to y = f(X). The result of partially
differentiating the function y by each element of X in turn can be
conveniently represented by another mxn matrix, say Z, whose elements
ziJ are given by:

zy, = 8y’/'6xij (C1)

In matrix terms this can be written as:

dy/oX = of(X)/8X = Z (c2)

Particular instances of this technique used in this chapter relate to
the case when the scalar function is the trace of a matrix. The three

results that are needed are:

1. OTRIX]/8X
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Here, X must obviously be square, i.e. m x m say, and its trace is
given by,
m
TRIX] = ¥ X (C3)
i=1

Hence 6'11'[R[X]/6x1-1 equals 1 if i=j and O if i#j, and therefore,

JTRIX]/8X = I (c4)

2. JTR[X.A]/8X

If the matrix X is dimensioned mxn then A, assumed to be a matrix of
constants, must have dimensions nxm.

m
TRIX.A] = ¥ Lea (c5)
AR S I

1 ™M B
A
X

Hence BFR[X.A]/BX = a  and therefore
i) i

8TRIX.Al/8X = A

(Ce)

which simply equals A if A and therefore X is square and A is
symmetric.

3. OTRIX.A.X.Al/8X

Here X and A must obviously be square and
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m m m m
TRIX.A.X.A] = ¥ ¥ ¥ ¥ L TS TL
i=1 j=1 k=1 1=
n m n
Hence 8TRIX.A.X.Al/8X = 2. ¥ Y ¥ R and therefore
j=1 k=1 1=
OTRIX.A.X.Al/3X = 2.[A.X.AI" = 2.A".X".A

which simply equals 2.A.X".A if A is symmetric
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APPENDIX D

THE LIKELIHOOD RATIO TEST FOR INCLUSION OF PARAMETERS

If L(+r) is the maximum log-likelihood value with the inclusion of r
"extra" parameters, and L is the maximum log-likelihood when these
parameters are omitted, then under the hypothesis that the additional

r parameters are all zero, then the statistic,

2(L(+r)-L)
has an asymptotic xz distribution with r degrees of freedom.
Note also that any vector, Q, of M.L. estimates of Q is asymptotically
Normally distributed with mean Q and covariance matrix
~[62L/692]_1(Q=Q) which permits standard errors of ﬁ to be calculated,

and hence 2Z-values for wuse in identification of significant

parameters.
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