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Evaluation of Modern Control System Design Techniques for 

a Multivariable Electro-Hydraulic System

by

Roger Roddis

A Thesis Submitted in Partial Fulfilment of the Requirements of Sheffield Hallam 
University for the Degree of Master of Philosophy.

Abstract

An experimental apparatus has been developed with the object of providing a test plant, 
based on commercially available electro-hydraulic components, for the investigation of 
multivariable control system design methodologies. A mathematical model has been 
produced for this experimental plant and a preliminary analysis of the plant carried out.

A selection of controller design techniques has been investigated. Designs have been 
produced for two state feedback controllers in which the feedback coefficients were 
based on LQR theory, one of which used a full order estimator based on a Kalman 
Filter, the other using a reduced order observer whose poles were chosen arbitrarily. In 
addition, forward path compensators have been developed using the Characteristic 
Locus and the H 00/Mixed Sensitivity methods. These controller designs were based on 
computations and simulations utilising Matlab and a selection of its control engineering 
toolboxes and Simulink. The completed designs were implemented in digital form and 
tested on the actual plant.

A series of tests were carried out to assess the robustness of the various controllers in 
the presence of plant uncertainty. The physical plant was modified and the controllers 
based on the nominal plant model used in conjunction with this modified plant. As a 
design technique which enabled robustness issues to be addressed explicitly, the H°° 
approach was used to improve the robustness of the original H 00 controller.
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Nomenclature
A Plant State-Space Description
B Plant State-Space Description
C Plant State-Space Description
D Plant State-Space Description
ACp Compensator State-Space Description
Bcp Compensator State-Space Description
Ccp Compensator State-Space Description
Dcp Compensator State-Space Description
Ae Estimator State Space Description
Be Estimator State Space Description
c e Estimator State Space Description
De Estimator State Space Description
e Error Vector ( = y -r )
E Expectation
g Gravitational Acceleration
G(s) Plant Transfer Function Matrix
Gn(s) Nominal Plant Transfer Function Matrix
G (s) Closed Loop (with UNF) Plant Transfer Function Matrix
J Quadratic Cost Function
K(s) Compensator Transfer Function Matrix
/ Bound on Perturbation Magnitude
L Plant Model Perturbation (Uncertainty)
P (Unique Positive-semidefinite) Solution of ARE for LQR
qi(s) Eigenvalues or Characteristic Loci of Q(s)
Q Cost Function Weighting Matrix,

(Unique Positive-semidefinite) Solution of ARE for Kalman Filter
Q(s) Transfer Function of Compensator plus Plant,
r Reference Input Vector
R Cost Function Weighting Matrix
T Signal Sampling Interval
u Plant Input Vector
X State Vector
X Estimate of State Vector
X State Estimate Error (=  x -  x)

V Compensator Input Vector
V Measurement Noise Covariance
w Scalar Weighting Function
w Augmented Plant Input Vector
W Weighting Function, Process Noise Covariance
W(s) Diagonalising Matrix Operator
y Plant Output Vector
z Augmented Plant Output Vector
r Variable of Iteration for H 00 Controller Synthesis

Top, Optimal Value of y
A Normalised Plant Model Perturbation

4 Eigenvalues of a Constant Matrix

Mi Eigenvalues of a Constant Matrix

5





Vi Eigenvalues of a Constant Matrix
co Angular Frequency
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1 Introduction

1.1 Historical Background

Developments in control engineering during the Second World War brought together 

engineers and mathematicians with results which included Bode’s original work on 

stability111 and developments in the theory of stochastic processes based on the earlier 

work of Wiener121. There followed a return to the time domain and the study of the 

system differential equations, often in state space form. This was called ‘modem’ 

control theory to distinguish it from the ‘classical’ control based on the frequency 

domain and largely the product of Nyquist[3], Bode and others working with the complex 

variable.

The new theory, with its emphasis on linear algebra and numerical methods, was 

suitable for the solution of design problems using digital computers and stimulated 

much work from 1960 onwards on multivariable systems and more recently on system 

robustness. This research has necessarily adopted a mathematical perspective and 

consequently the results are given in a mathematical form often inaccessible to the 

practising control engineer. In addition, the evaluation of controller parameters based on 

these theoretical results requires extensive use of numerical methods and for all practical 

purposes they are only available to engineers using purpose designed software on digital 

computers. The emergence of these numerical methods and the digital computer has 

also led to to the availability of relatively fast and easy system simulation, whereas 

previously the engineer requiring a simulation of controller designs before 

implementation was essentially restricted to the use of analogue computers.

Prior to the development of modem control methods, a development that was in part a 

response to multivariable control problems emerging in the process control and 

aerospace industries, the control engineer had relatively few tools with which to produce 

controllers for multi-input, multi-output (MIMO) systems. Typically these systems 

manifested interaction between the desired input-output pairs such that changes in one 

input impacted on more than one output. Frequency response methods existed for 

designing single loop (SISO) controllers but the presence of interaction in the MIMO 

system meant that there was no guarantee that separate SISO controllers for each control 

loop in the system would give satisfactory or even stable performance when combined.



Coughanowr and Koppel[4] give an example of a distillation tower which has five 

interacting inputs and outputs. By use of simple controllers such as flow controls this 

was reduced to a system with two interacting control loops but the authors conclude that 

a satisfactory controller design required past experience and "when new and different 

applications arise considerable difficulty may be involved in obtaining satisfactory 

process control".

A multivariable controller design problem from the aerospace industry was posed by 

Povejsil and Fuchs[5]. Their method of solution involved managing interaction by an 

iterative process of controller synthesis which involved applying control action to one of 

the control loops, assessing the effect on the complete system by evaluating its 

characteristic equation and repeating until a satisfactory design was produced. The 

resulting controller managed rather than eliminated interaction. Kinnen and Liut6] 

produced a procedure for designing a multivariable controller using root loci. This gave 

a method of constraining interaction and achieving satisfactory performance but, whilst 

it proved practicable for two-input, two-output systems, its complexity increased 

considerably as the number of inputs and outputs increased. Both methods typically 

involved digital computation, the former for matrix manipulation, the latter for the 

transition from pole-zero form to time domain response.

The development of modem control with its emphasis on state space methods, together 

with the relative ease with which accurate linear models could be generated for 

aerospace applications, stimulated work on optimal control theory. One result of this 

was the development of controller design techniques based on quadratic performance 

indicators171. The resulting controllers, called Linear Quadratic Regulators (LQRs), 

implemented a state feedback law for which it was necessary to estimate all states not 

available by direct measurement. A deterministic estimator, or observer, was developed 

by Luenberger[81 which, by the separation principle that observer design and control law 

determination could be treated independently, was combined with the LQR to form a 

complete controller. A non-deterministic estimator, based on the Kalman filter191, [10] 

which permitted the consideration of process and measurement noise as stochastic 

processes was also used in conjunction with the LQR to give the Linear Quadratic 

Gaussian (LQG) controller1111.
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This work on state feedback acquired a larger following in academic than in industrial 

circles for several reasons. The method was based on the assumption of a good plant 

model, which did not always exist for industrial processes, and a meaningful quadratic 

performance indicator was more elusive in, say, a process control application than in a 

spacecraft guidance system. Also, there were doubts about the robustness of the LQG 

controller and the design process was considered too sophisticated and too far removed 

from the classical approach on which control engineering practice was largely based. 

For these reasons there was a resurgence of interest in applying frequency domain 

methods to the multivariable control problem.

The obvious approach was to apply a decoupling compensator1121 to the plant and treat 

the resulting system as a combination of non-interacting SISO control loops. However, 

such a compensator would have to be based on an inverse of the plant across its 

effective frequency range and, as such, was impossible to find for all but exceptional 

applications. The Inverse Nyquist Array method of Rosenbrock1131 overcame this 

problem by finding simple compensators to produce a 'diagonally dominant' system 

such that separate SISO controllers for the essentially decoupled control loops would 

produce a satisfactory design. The Sequential Return Difference method1141 sought to 

investigate and accommodate interactions to produce a controller which gave 

satisfactory performance whilst tolerating interaction.

Work by Rosenbrock1151 and others seeking to generalise the concept of poles and zeros 

to the multivariable case resulted in the system matrix, a polynomial matrix in terms of 

which the poles and zeros of the system could be defined. This development included 

the use of the McMillan form of the transfer function matrix, a diagonal form from 

which transmission poles and zeros could be readily deduced. Similar efforts to 

generalise stability criteria resulted in multivariable descriptions of the Nyquist criterion 

based on the characteristic loci1161 of the system. This focus on characteristic loci 

resulted in the development of the Characteristic Locus method1171, which approximately 

diagonalised the system and used separate, non-interacting controllers to improve the 

stability margins of the characteristic loci.

A further development in the assessment of multivariable controller performance was 

the use of principal gains[18]. These are the singular values of the transfer function matrix 

and the maximum singular values can be used in conjunction with sensitivity or other
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system functions to give worst case performance predictions with respect to, for 

example, tracking of reference inputs and noise rejection. H 00 optimisation, originating 

in the work of Zames[19], enabled an optimal solution for the maximum singular values 

of selected system functions across the frequency range to be found and was largely 

developed to address problems of robustness in multivariable systems. Further 

developments led to the use of the structured singular value[20] which enabled a 

structured uncertainty description to be used in robustness analyses.

H 00 optimisation as a controller design tool is still undergoing development. 

Kwakemaak[21], reviewing the application of H 00 optimisation to robust control 

problems, concluded that the area is a rewarding one for research and that practising 

engineers are already familiar with the aspects of classical control theory contained in 

H 00 design issues. Similarly, work on improving the robustness of LQG controllers is 

ongoing. One approach to their lack of robustness, due to the interference of the Kalman 

filter with the state feedback properties1221, has been by Loop Transfer Recovery 

(LTR)[23], which seeks to eliminate the effects of state estimation.

In a recent design exercise1241, twenty-one teams of control engineers based in various 

academic and commercial organisations throughout Europe worked on two benchmark 

multivariable control problems from the aeronautical field. Thirteen controller design 

methodologies were investigated, including H 00 optimisation, LQG/LTR and classical

control theory. One conclusion of the work was that "to some extent ....  modem

techniques can be used to design controllers for realistic problems" in this field.

1.2 Research Objectives

The present work is concerned with the implemention and comparison of several 

methods of designing multivariable control systems from the original design stage 

through system simulation to controller implementation and evaluation. The work is 

motivated by a desire to aquire a better understanding of the methods investigated, to 

use them to produce controller designs for a multivariable electromechanical system and 

to implement and assess these designs. For the purposes of producing the designs 

considerable use has been made of Matlabf251 and a selection of its specialist control 

engineering toolboxes and hence a discussion of the design process necessarily involves 

indication of some of the many functions available in these toolboxes.
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In order to form a basis for comparison of controller design methodologies, an electro- 

hydraulic experimental rig has been built which is based on further development of the 

well-known ball and beam problem. An experimental apparatus for the latter was 

produced by Wellstead et al.[26] in the Control Systems Centre at the University of 

Manchester Institute of Science and Technology. In their development of the 

experiment, the angle of tilt of a channel section beam, controlled by a moving coil 

actuator, produced the acceleration of a metal ball running along the inner edges of the 

upward facing channel. Transducers were devised to monitor the angle of beam tilt and 

the ball position, the object being to control the position of the ball along the beam. The 

ball and beam apparatus, by virtue of the double integrator contained in the ball 

dynamics, presents the control engineer with the problem of inherent instability (the 

system is unstable under unity negative feedback for all non-dynamic additional loop 

gains). Wellstead et al. solve the resulting control problem by a variety of techniques 

including the classical approach of introducing a forward path, phase lead compensator 

and the modem one of applying state feedback.

The experimental rig used in the present work was based on commercially available 

electro-hydraulic actuators so that its dynamics were relevant to industrial applications 

and the resulting design represented a coupled multivariable system, i.e. a system in 

which there is interaction between the various input-output pairs. For this reason the rig 

is a suitable vehicle for the investigation of design methodologies for multivariable 

systems.

To produce the controller designs, a subset of the available design methods was chosen, 

all resulting from modem developments in multivariable control system design. 

Adopting an approach based on the time domain, designs were produced using state 

feedback. Firstly, a design was developed utilising a full order estimator in conjunction 

with LQG theory. Subsequently a reduced order observer was produced by observer 

pole placement. From amongst the available frequency domain approaches, the 

Characteristic Locus method was chosen. Finally, it was considered desirable to apply a 

method which addresses the problem of robustness explicitly and for this an H 00 

approach based on mixed sensitivity was adopted.

Comparisons of the above design methods were initially made on the basis of the best 

available plant model and the performances of the various controllers at simulation and
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implementation stages were compared. In addition, it was considered that some 

assessment of control system robustness was desirable and for this the various controller 

designs were used with the plant after modification of its physical characteristics. In this 

way it was hoped to obtain a general indication as to how well the various designs 

would cope with plant perturbations.
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2 The Beam and Carriage Apparatus

The 'standard' ball and beam experiment is an example of a double integrator problem in 

which the objective is to maintain the ball at a desired position along the beam. It is a 

single input, single output (SISO) system, there being no attempt to control the height of 

the ball. However, if each end of the beam rested on a hydraulic ram, then the horizontal 

and the vertical positions of the ball could be controlled. Since the rams would be used 

both to raise and lower the beam and to introduce a gradient down which the ball would 

roll, coupling would exist between the two variables to be controlled, ball height and 

horizontal ball position, i.e. either of the plant inputs on its own would effect a change 

in both outputs. A multi-input, multi-output (MIMO) system with square transfer 

function matrix would result with two inputs to control the extension of the two rams 

and two outputs representing the ball horizontal and vertical positions.

For the present work an experimental rig has been developed along these lines, but in 

which a carriage has replaced the ball, this carriage being floated on the beam using a 

virtually frictionless air bearing. Figs 2.1 and 2.2 show front and rear views of the rig 

with electrical connections omitted. Fig 2.3 gives a guide to the major components of 

the rig.
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Fig 2.2 Rear View of Beam and Carriage
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I I ,  1 2 DC P O W E R  S U P P L I E S  F O R  T R A N S D U C E R S

1 0 P O W E R  A M P L I F I E R S

0 9 R E F E R E N C E  I N P U T  P O T E N T I O M E T E R

0 8 P R O P O R T I O N A L  V A L V E

0 7 R E S I S T I V E  T R A N S D U C E R

0 6 L E F T - H A N D  RAM

0 5 U L T R A S O N I C  T R A N S D U C E R

0 4 A I R  P R E S S U R E  G A U G E

0 3 C A R R I A G E

0 2 A I R  B E A R I N G

0 1 A I R  P R E S S U R E  R E G U L A T O R

P A R T  N O . D E S C R I P T I O N

Fig 2.3 Principal Components of Beam and Carriage Assembly

16



This rig is shown schematically in Fig 2.4. The hydraulic rams have potentially high 

load capacity and consequently the beam and carriage are of a substantial construction, 

introducing realistic dynamics into the operation of the experimental equipment.

Fig 2.4 Carriage and Beam Schematic

The control of the hydraulic rams is effected via double solenoid, proportional direction 

control valves, each driving a double acting hydraulic cylinder. The input to the valves 

is provided by servoamplifiers with differential inputs so that a local servo can be 

implemented for each ram, the inputs to each servoamplifier being the control input and 

a (negative) feedback signal from a resistive transducer monitoring ram position. A 

third, ultrasonic, transducer was used to measure the position of the carriage along the 

beam. The signal flow diagram is shown in Fig 2.5.

Beam
Slope

Hydraulic
Valve

Hydraulic
Valve

Carriage
Position

Differential
Amplifier

Differential
Amplifier

Ultrasonic
Transducer

Resistive
Transducer

Resistive
Transducer

Hydraulic 
Ram Position

Hydraulic 
Ram Position

Fig 2.5 Signal Flow Schematic

In order to provide an approximation of carriage height, the heights of the two beam 

ends, y2 and y3, were averaged to produce the y2 of the ultimate square system, y! being
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the horizontal carriage position. In the steady state, the beam is horizontal and the 

carriage height is therefore given precisely under these conditions.

Table 2.1 lists the proprietary components used in the beam and carriage apparatus.

Component List

Hydraulic Components: Power Amplifiers:
Vickers Proportional Valves Vickers EEA-PAM-523-A-30

KDG4V3 7 Litres/min
Transducers:

Vickers PVB10 Pump Penny and Giles Resistive Transducers
30 Litres/min HLP190/F1V250/10K

Amerace Ultrasonic Transducer
Sun Relief/Unloader Valve PCUC30M72AV

RVEA-LBN

Pall Filter HC960 FKP4H

Table 2.1

The maximum stroke of each cylinder was 228mm, the cylinder bores 38mm and the 

piston rod diameter 20mm. The cylinders were mounted vertically with a horizontal 

separation of 1140mm. Two resistive transducers were used, one for each hydraulic 

piston, and the outputs were scaled to give ± 10V over the working piston stroke. The 

ultrasonic transducer was scaled to give 0 to 10V over the 708mm working range for 

carriage horizontal position. This unipolar voltage was rescaled to give a working range 

of ±10V prior to input to the various controllers which were all based on the 

assumption of bipolar signals in the range ± 10 V.

2.1 System Identification

In order to ensure repeatability of the system it was necessary to standardise the settings 

of various parameters. For determination of the plant model and subsequent normal 

running of the system, the air bearing inlet pressure was set at 0.1 bar, which gave 

virtually frictionless performance of the bearing even under low slope conditions. The 

servoamplifiers were set to minimum deadband and maximum gain on the piston 

outstroke. For the instroke, the amplifier gains were set lower to balance the maximum 

piston instroke and outstroke velocities (it being necessary to reduce the flow rate into 

the annular side of the piston). In this way, the system was made as linear as possible 

and the ram response as fast as possible.

18



2.1.1 The Symmetrical Model

The first attempt at establishing the nominal plant model was based on analysis of the 

carriage and a subjective comparison of actual ram response to step inputs with 

simulated responses of theoretical second order systems in order to obtain an 

approximate second order model.

§ (negative as 
k shown)

Mg

Fig 2.6 Beam and Carriage Line Diagram

Fig 2.6 shows the model for analysing frictionless movement of the carriage down a 

gradient. Simple analysis showed that, for 6 small

y, = g s in 0 « £ O '2-j>3) (2.1)

where g  is gravitational acceleration. Since the intention was to produce a model based 

on volts in and volts out, equation (2.1) was rescaled on the basis of scaling factors of 

28.25 Vm'1 for the carriage transducer and 87.7 Vm'1 for the ram transducers to give the 

following equation of motion for the carriage scaled in volts:-

y t = 2.773 0>2 - y 3) (2.2)

Checks were made to establish the degree of correspondence between the time taken for 

the carriage to cover a fixed distance, /, of the beam and the theoretical time of
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21
seconds for a range of relatively small beam slopes. These showed the

‘y 2.773(y2 —y 3)

amount of friction to be too small to affect measurements made by simple, manual 

timing methods.

Comparisons of actual and theoretical second order system responses to step inputs gave 

the following (volt to volt) equations of motion for the hydraulic rams:-

y2 + 25y2 + 200y2 = 200wj 

y3 + 25y3 + 200y3 = 200u2

(2.3)

(2.4)

It was felt to be appropriate at this stage to limit the model for the hydraulic rams to 

second order to avoid generating an unnecessarily complex model for the complete 

system. If evidence of the need to do so were to arise at a later stage, attempts could be 

made to model the higher order dynamics of the hydraulic actuators as, for example, in
[27]

Combining equations (2.2), (2.3) and (2.4) and defining system states jq = y x, x2 = y2, 

x3 = y3, x4 = y x, x5 = y 2, x6 = y3, yields the state space description of the

system, G (5 ) =
A B 
C D

(2.5)

(i.e. G(s) = C (.sI-A )_1B + D) 

where

A =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 2.773 -2.773 0 0 0
0 -200 0 0 -25 0
0 0 -200 0 0 -25

(2.6)
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B =

C =

0 0
0 0
0 0
0 0

200 0
0 200_

1 0 0

(2.7)

0 0.5 0.5 0 0 0
(2 .8)

D =
0 0 
0 0

=  02,2 (2.9)

In the output equation, y = Cx + Du, y2 and y3 have been averaged and y 2, the carriage 

height, redefined as this average.

2.1.2 The Non-Symmetrical Model

In an attempt to refine the plant model, further investigation of the two hydraulic ram 

systems was undertaken. For the two rams, frequency response data were gathered, 

relating ram displacements x2 and x3 to sinusoidal excitation at servoamplifier inputs Uj 

and u2 respectively. For this a Hewlett Packard HP35665A Dynamic Signal Analyzer 

was used to perform swept frequency response tests on each ram. The resulting complex 

frequency response data were imported into Matlab and the second order transfer 

function computed for each, using function invfreqs in Matlab’s Signal Processing 

Toolbox [28]. Fig 2.7 shows the frequency response of the left hand ram to sinusoidal 

excitation of 5V amplitude produced by the HP DSA.
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Gain
(Db)

-40

0

Phase
(Degrees)

-360
0*1 Radians/Second

Fig 2.7 Frequency Response of Left-Hand Ram

20

The resulting transfer functions for left and right hand rams respectively were:-

179.4Z i  = _________________
w, 52 +49.45 + 175.7

y 3 _ 205.6
U-, s 2 +53.75 + 208.6

(2 .10)

(2 .11)

The difference between the two rams' dynamics can be accounted for in terms of 

variations in the physical characteristics of the proportional valves, the valve amplifiers, 

the resistive transducers and the hydraulic cylinders themselves.

In order to check the repeatability of the parameters in (2.10) and (2.11), further 

frequency response tests were undertaken and the corresponding second order transfer 

functions computed. These tests were all carried out after allowing time for the 

hydraulic power source to warm the hydraulic oil to normal operating temperature. For 

each ram, two tests were undertaken at each of three excitation amplitudes, these being

IV, 2V and 3V respectively. Adopting the standard form, k co.
s + 2  ga)ns + eond

, for the

ram transfer functions, the maximum deviations of con, g and k from the values 

corresponding to (2.10) and (2.11) were 13%, 32% and 7% respectively. Most of these
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variations were attributable to changes ii 

excitation consistently producing higher v 

showed that the variations in theoretical fi 

various transfer functions were small con 

theoretical frequency responses and the acti 

tests. Thus, the major source of error in tran: 

restriction of the transfer function to secon 

since the ram dynamics were fast compared 

to proceed with the second order approxima 

carriage model to sixth order.

The corresponding state space representation

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 2.773 -2.773 0 0 0
0 -175.7 0 0 -49.4 0
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2.2 Analysis of Plant Models

For purposes of analysis, both models are ba 

are all of the same order of magnitude (vi 

unnecessary to scale the models and since

the excitation levels, higher levels of 

ues of g and k. Further investigation 

}uency response corresponding to these 

ared to the discrepancy between these 

1 frequency responses obtained from the 

2r function approximation was due to the 

order. However, it was considered that,

»the carriage dynamics, it was justifiable 

>ns with a view to limiting the beam and

f the system is given by:-

(2 .12)

(2.13)

(2.14)

(2.15)

need in the sense that inputs and outputs 

± 10V). For this reason it was thought 

they were already linear, notably by the
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approximation of the carriage equation of motion, linear analysis was directly 

applicable.

2.2.1 Poles, Zeros and Stability

System zeros and poles are the zeros and poles of the 'internal model' of the plant based 

on the system matrix, P(V),[29] where

m  =
s l - A  -B  

C D
(2.16)

The system zeros for a square system are given by the roots of det(P(.s)) and are all 

invariant, i.e. they are also present in the corresponding closed loop system formed by 

constant output or state feedback. System poles are the roots of det(^I-A).

Transmission zeros and poles are the zeros and poles which appear in the transfer

function matrix (TFM) of the system, G(s)=
A B 
C D

where G(s) is given by

G(s) = C(sl -  A)-1 B + D . (2.17)

The zeros are all the zeros contained in the numerator terms of the McMillan form [30] of 

G(s), (a diagonal matrix containing all the zeros and poles of G(s)), whilst the poles are 

all the zeros contained in the denominator terms (including repeated zeros in each case). 

Where system zeros cancel with system poles, these zeros and poles do not appear as 

transmission zeros and poles and such zeros are called decoupling zeros.

Use of Matlab’s Symbolic Math Toolbox [31] established that there were no system zeros 

in either model (det(P(^)) being constant in each case) and therefore both state space 

descriptions are minimum realisations with all six system poles present in the TFM. 

These transmission poles (and the absence of transmission zeros) can be seen in the 

McMillan forms of the symmetrical and non-symmetrical models respectively,

Symmetrical Model:-

M (s) =

1
s2(s2 +25^ + 200) 

0

0

110920 
s2 + 25s + 200.

(2.18)
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Non-symmetrical Model:-

M (s) =
1

0
s2 (52 + 49.4s +175.7)(s2 + 53.7s + 208.6)

0 102281

Obviously, there are two poles at the origin in each case.

(2.19)

Beam and 
Carriage

Fig 2.8 Closed Loop System with Diagonal Compensator

For the closed loop systems based on unity negative feedback (UNF) and a constant 

forward path compensatorK = diag(kl ,k2), as shown in Fig 2.8, the McMillan form for 

the symmetrical model is given by

1
0

M (J)=  deni (2.20)
0 110920^,^2

where

deni = s6 + 50s5 + (1025 + 1 00*2 )s4 + 2500(4 + *2 )s3 + [20000(2 + *2) + 554.6*, ]s2 

+13865*,s+110920*, (1 + *2)

and for the nonsymmetrical model by 

1
M (j ) =

where

deni
0

0 102281 ,̂^2
(2 .21)

deni = s6 + 103.1s5 + (3037.1 + 102.8*2)s4 + (19739.9 + 5078.3*2)s3

+(36651.0 + 497.5*, +18062.0*, )s2 + 26715.8*,s + (1037785 +102281.0*, )*2.
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For each closed loop system, kj and k2 can be chosen such the system is not unstable 

and the small stable region in the gain space for each system can be seen in Figs 2.9 and 

2 . 10.

o

-2

-0.5

Stable Region

■1

-1.5
4 6•2 o 2 8 10 12 14 16

ki
Fig 2.9 Gain Space for Symmetric Model
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0

-2

-0.5

Stable Region
■1

-1.5
•1 o 1•2 2 3 4 5

ki
Fig 2.10 Gain Space for Non-Symmetric Model

These show that both systems would be unstable with a unity compensator (K  = I)  but 

would be stable with K = d/ag(l,-0 .8), for instance. If system G(s) is said to be 

inherently unstable when no stable closed loop system exists for any choice of constant 

forward path gain matrix, K (i.e. for all non-dynamic K), then neither system is 

inherently unstable. However, according to classical control criteria, the SISO system

k
(ball and beam), with G(s) = —— ------------ , is inherently unstable by the above

s (s +as + b)

definition. It seems that the ‘mixing’ of terms in the closed loop system due to 

interaction in the MIMO system has introduced additional terms in the characteristic 

polynomial such that the system can potentially be stabilised by a constant compensator. 

However, the scope for improving dynamic performance is very limited and the total 

elimination of both interaction and steady state error impossible with such a simple 

compensator. As an example of this, Figs 2.11 and 2.12 show the simulated closed loop 

step response of the symmetric and non-symmetric models respectively with a constant 

forward path compensator, K = diag( 1,- 0.8).
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Fig 2.11 Step Response of Symmetric Model
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Fig 2.12 Step Response of Non-Symmetric Model
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It can be seen that there is no steady state error on y x and zero steady state output on y2 

in response to a step input on rx. Examination of the closed loop system TFM shows that 

this would be true for all 2-input, 2-output systems with pure integrators in the first row 

of G(s) and no pure integrators in the second row.

2.2.2 Controllability and Observability

Since the state space descriptions of the two models are minimum realisations, they 

possess no decoupling zeros (and hence no hidden modes) and are both controllable and 

observable. The pair (A, B) and hence the system (A, B, C, D) is controllable if all 

states can be controlled by suitable choice of input vector, u. This is the case if

[B AB A2B ... A"_1b] is full rank[32] (i.e. has rank n where A is n x n).

The pair (A, C) is observable if all states can be inferred from a full knowledge of 

system inputs and outputs, u and y. The pair (A, C) and hence the system (A, B, C, D) 

C
CA 
CA2is observable if

CAM-l

has rank «[33].

If a system is uncontrollable, states which contribute to the system outputs cannot be 

controlled by any combination of system inputs and therefore the outputs are not under 

the full control of the inputs. Unobservable systems have states which do not contribute 

to the system outputs and hence cannot be inferred from observations of plant inputs 

and outputs. It is not possible to construct full state estimators or observers for such 

systems.

2.2.3 Frequency Response of the Systems

A knowledge of the frequency response of the system is essential when applying 

controller design methods based on the frequency domain. Figs 2.13 to Fig 2.16 show 

the bode plots of the four elements of the open loop TFM for the symmetric model, Figs 

2.17 to 2.20, those for the non-symmetric model.
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Fig 2.13 Bode Plot of gn(s) for Symmetric Model
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Fig 2.14 Bode Plot of g12(s) for Symmetric Model
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Fig 2.15 Bode Plot of g2i(s) for Symmetric Model
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The TFM, G(5), can be written

y = gnO) (-y) 
&i(*) S22W

u (2.22)

gn(s) and g 12(5), relating to horizontal carriage position, contain the dynamics of both 

carriage and rams whilst g21(5) and g22(s)> relating to beam height, contain only ram 

dynamics. The 180°phase shift at zero frequency in gu(s) is due to the double integrator 

in carriage dynamics. This phase shift is cancelled in g12(5) by the negative effect of 

increases in u2 o n ^ .

From the gain plots it can be seen that for the symmetrical model, g n(s) and g 12(s) have 

a crossover frequency of about 2 rs'1 and g21(5) and g22(s) are 3 dB down at about 10 rs'1. 

Corresponding figures for the non-symmetrical model are 2 rs'1 and 4 rs'1.

2.2.4 A Simple Decoupler

The TFM for the symmetrical model is given by

554.6 -554.6
s2 (s2 + 25s + 200) 52 (s2 + 25 s + 200) 

100 100
s + 25^ + 200 5 + 255 + 200

(2.23)

and for the non-symmetrical model by

497.5 -570.1
52 (52 + 49.45 +175.7) 5 " (5Z + 53.75 + 208.6)

89.7 102.8
_2 /  „2

52 +49.45 + 175.7 52 +53.75 + 208.6

(2.24)

The symmetrical nature of (2.23) suggests the simple expedient of decoupling1121 the

such that Gsym(5)K is
a b 

-a  b
system by using a constant compensator of the form K = 

diagonal. Fig 2.21 shows the gain space of Gsym(5)K where K =
‘ 0.5 0.5'
-0 5  0.5
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Fig 2.21 Gain Space of Symmetrical Model with Decoupler

Obviously this is of no practical value since for the gain matrix, K ' = diag(kx,k  2) , kx is 

effectively zero and stability has been achieved by suppressing movement of the 

carriage along the beam. However, a dynamic compensator of the form 

5+1 5
K d(s) = diag(--------- , 1 + - )  was tried with the decoupled system as shown in Fig

0.15 +1 s

2 .22.

Beam and 
CarriageK =

Fig 2.22 Decoupled System with Dynamic Compensator

This compensator introduced phase lead into the first control loop to give a positive 

phase margin and integral action into the second loop to eliminate steady state error. 

The resulting system was decoupled and stabilised, as shown by the simulated step
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responses of Fig 2.23. For completeness, this two part compensator was applied to the 

non-symmetrical model. The resulting responses, Fig 2.24, show a more oscillatory 

response and, of course, some interaction, both dynamic and steady state.

Input 1 Unit Step Responses

•S  0.5

-s<
Input 2 Unit Step Responses

O  08

0.6

0.4

0.2

0 1 2 3 4 5 6 7 8 9  10

Time (second)

Fig 2.23 Step Response of Stabilised Symmetric Model with Decoupler
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Fig 2.24 Step Response of Stabilised Non-Symmetric Model with Decoupler

In this study of the beam and carriage apparatus, two state space models have been 

created. The models are both minimum realisations and each has two poles at zero and 

no zeros. It has been shown that the symmetrical model can be completely decoupled 

using a constant precompensator and the resulting system stabilised and its steady state 

error eliminated using a dynamic compensator. The non-symmetrical model has been 

chosen for the application of the controller design methodologies which follow since it 

more clearly reflects variations in the operational characteristics of the engineering 

components used in the beam and carriage apparatus.
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3 Theoretical Design Considerations

The development of modem control theory, with its emphasis on linear algebra and 

numerical methods, has given rise to much work on multivariable systems and system 

robustness. There are currently available many textbooks summarising these 

developments, a selection of which has been used extensively for the present work[34]> [351,
[36], [37]

The techniques which have been applied to the beam and carriage problem in the 

present work and which form the basis of the comparative study, all result from modem 

developments in multivariable control system design. Controller design techniques 

based on state feedback were chosen as an example of the time domain approach, the 

characteristic locus method was adopted as a method based on the frequency domain 

and the H 00/mixed sensitivity approach was chosen as a technique for designing robust 

controllers.

3.1 State Feedback - A Time Domain Approach

For a linear, time-invariant system the objective is to place the closed loop poles at 

predetermined positions or to optimise the system in terms of some previously defined 

cost function. Where the cost function to be minimised is based on a quadratic function 

of the form1381

oo

J  = J(xTQx + u TRu)£fr (3.1)
0

or[39]

oo

J= J(yTQy + uTRu)rf/ (3.2)
0

the problem is called the Linear Quadratic Regulator (LQR) problem. The cost function

of (3.1) seeks to minimise system states and plant inputs whilst that of (3.2) seeks to

minimise plant outputs and inputs.

The state vector is usually defined such that some states are available to the control 

system designer as measured outputs but higher order states will typically be
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unavailable. In order to implement a full state feedback controller these states must be 

estimated.

The development of controller designs based on state feedback and state estimation 

made extensive use of Matlab's Control System Toolbox (CSTB)[40] and simulations of 

the resulting controllers were prepared using the associated simulation software, 

Simulink[41].

3.1.1 Determination of the State Feedback Coefficients

The object is to determine the state feedback matrix, K, shown in Fig 3.1, all system 

states being either measured or estimated.

x = Ax + Bu 
y = Cx + Du

Fig 3.1 State Feedback

Closed-Loop Pole Placement

The plant’s open loop poles are given by the eigenvalues of A which are the roots of the 

characteristic equation (CE)[42]

det(sl -  A) = 0 (3.3)

For the closed-loop system shown in Fig 3.11431

x = (A -  BK)x + Br (3.4)

and its poles are the eigenvalues of (A - B K ) . In simple cases the elements of K  can be 

found by comparing the characteristic polynomial (CP), det(^I -  A + B K ), with the 

desired CP, (s-pi)(s-p2)...(s-pn) where the p { are the desired closed-loop poles. 

Algorithms based on numerical methods are available for computing K and Matlab’s 

CSTB functions acker and place are based on these. Place minimises the sensitivity of 

the eigenvalues to variations in the plant dynamics and is more reliable than ackerm .
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LQR Design

For a linear time-invariant system the LQR design seeks to apply a control input vector, 

u = -K x  , in order to minimise a cost function of the form given in (3.1) or (3.2) whilst 

returning the plant to its original state from some arbitrary state. (Thus this is formulated 

as a regulator problem). For this problem it is assumed that Q and R  are real and

symmetric and that Q is positive-semidefinite ( xTQx > 0 for all real x) and R is 

positive-definite ( u TR u > 0  for all real u ^ O ) .  Q and R  are chosen to reflect the 

relative importance of x and u and their various components in the optimisation process.

This is a deterministic problem with optimal solution given by 1451

K = R _,Bt P (3.5)

where P is the solution of the algebraic Riccati equation (ARE)

At P + PA + Q -  PBR_1Bt P = 0 (3.6)

If (A, B) is controllable the resulting closed-loop system is asymptotically stable.

CSTB function Iqr computes K (and also P and the closed-loop poles) for the cost 

function given by (3.1), Iqry computes K  for the cost function of (3.2).

3.1.2 State Estimation

For the deterministic problem where system noise is not considered, state estimators, 

often called observers181, can be designed by selecting poles for the observer which are 

significantly faster (i.e. have significantly more negative real parts) than those of the 

plant. Alternatively, an optimisation problem may be formulated which seeks to 

minimise errors in the estimated states in the presence of process and measurement 

noise treated as stochastic processes. One such approach involves the use of a Kalman 

Filter [9]> [10] which, when used in conjunction with state feedback based on LQR theory, 

is called a Linear Quadratic Gaussian (LQG) controller[nl.

The above estimators estimate all the states of a plant, some of which may be available 

as measured outputs. It is possible to design a reduced order observer which estimates 

only the subset of unmeasured states.
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Full order Estimators

Observer Design by Pole Placement

For the observer to effectively track the actual plant states it must be supplied with 

information concerning the discrepancy between actual plant and observer outputs, 

y -  y , and this is fed back to the observer via gain matrix, L, as shown in Fig 3.2[46].

Plant

Observer

Fig 3.2 State Estimator

For the observer1461, 

x = Ax + Bu + L(y -  y) 

y = Cx + Du 

and if D=0

i  = (A -  LC)x + [B L]

(3.7)

(3.8)

(3.9)

Defining error vector x = x -  x gives 

X = (A -  LC)x (3.10)

Thus, the dynamics of the error vector are determined by the eigenvalues of (A-LC) and 

for effective estimation these dynamics must be ‘fast’ compared to the plant dynamics. 

When eigenvalues have been chosen for (A-LC), L can be computed by a process 

similar to that by which K was computed for closed-loop pole placement. In fact, 

whereas place{A, B, p) returns K such that p is the vector of eigenvalues of (A-BK), 

p la c e d ,  CT, p) returns LT such that p is the vector of eigenvalues of (A-LC).

The complete controller using full order observer and state feedback is shown in Fig 3.3.
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Plant
u x =A x + Bu 

y = Cx + Du
y

Observer

K
x

x = (A - LC) x + Bu + Ly

Fig 3.3 State Feedback with Observer

The LQG Controller

The object is to generate a control input u = -K x  to minimise a quadratic cost function

whilst returning the system to its initial state in the presence of process noise (plant 

disturbance) and measurement noise. This problem is formulated as a regulator 

problem: it is required to maintain the desired system output in the absence of a 

reference input.

The plant model is[4?1

x = Ax + Bu + (3.11)

y = Cx + Du + w„ (3.12)

where wd and wn are uncorrelated, zero-mean Gaussian stochastic processes with 

constant covariance matrices, W and V, given by

W = E{ Wrf.w/} (3.13)

V = £{w„.w„T} (3.14)

The cost function is given by1471

T

(3.15)
0

where Q and R  are as described for the LQR problem.

The LQG problem separates into the dual problem:

(i) Design an LQR to produce optimal u = -K x  as before
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(ii) Design a Kalman Filter to provide optimal estimates of x in the presence of 

plant disturbance and measurement noise

Kalman Filter Design

It is required to determine estimator gain, L, in order to minimise £ { (x -x )T( x -x ) } . 

Consequently, the variance of the estimation error is minimised.

With W symmetric, positive-semidefinite, V symmetric, positive-definite and (A, C) 

observable, the solution is given by[48]

i  = (A -  LC)x + [B L] (3.16)

where

L = QCtV_1

and Q is the solution of the ARE 

QAt + AQ -  QCtV_1CQ + W = 0

(3.17)

(3.18)

The CSTB function Iqe can be used to compute the Kalman gain matrix and, given this 

gain, estim can be used to return the Kalman estimator in state space form.

Reduced Order Observer Design

In order to implement a reduced order observer the states are partitioned into the 

measured states, xa = y , and the states to be estimated, xb.

The partitioned state equations become

X ’ A . > §.
1

X " +
X "

x _ > 1 _x ^ . _B ^_
u

y = [i o]
L J X

The state equations for the unmeasured states may be written1491

(3.19)

(3.20)

r i u*b = AbbXb +[B6 Ab J 
y
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y - [ B .  a „] (3.22)

or

* » = A wXj+[Bt Afa,]v

z = A„4xs

(3.23)

(3.24)

Equations (3.23), (3.24) suggest that an observer can be built to estimate xb which has

notional inputs given by v = and notional outputs given by z = y -  [Ba A aa]

Based on observer gain, L, the observer equation is

xb = Amx4 +[B, Afa,]v + L (z-A „(lx(,)

and

X* = (A t i -L A oS)xt

(3.25)

(3.26)

The observer gain can be chosen such that the poles of (A bb -L A ofi) are fast compared 

to the plant poles.

The observer of (3.25) cannot be implemented because a measurement of y is not 

available. If a new variable, xc = xb -L y  is defined then an observer for xc can be 

built using[50]

Xc = (Am -  LAo4)xc + [Bt -  LB„ A,„, -  LA,„ + AML -  LAo4L] (3.27)

and xb obtained from

(3.28)
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3.2 The Characteristic Locus Method - A Frequency Response Approach

The characteristic loci in general may be used for stability assessment of multivariable 

systems by summing the encirclements of the critical point in the Nyquist diagram made 

by each locus over the total number of loci[16]. This is due to the fact that the system 

Q(s) is stable (with UNF) if and only if det(I + Q(.s)) has no zeros in the RHP and

where Q(s) and diag(qj(s)) are related by the similarity transformation 

Q(s) = W(s).diag(qi(s)).W~1 (s) . W(.s), the matrix function which diagonalises Q(s), is 

made up (columnwise) of the frequency dependent eigenvectors of Q(s) and the qj(s) are 

the frequency dependent eigenvalues or characteristic loci of Q(s).

However, the characteristic locus method is a particular technique for producing 

solutions for multivariable control system design problems with respect to dynamic 

performance, steady state error and interaction.1171 The object is to diagonalise the 

multivariable control system over the system bandwidth by designing a series of 

compensators for each of the selected frequency bands (usually three), then applying 

dynamic compensation to achieve satisfactory performance.

For the present work on controller design by the characteristic locus method, extensive 

use was made of Matlab's Multivariable Frequency Domain Toolbox (MVFDTB) [51].

3.2.1 High Frequency Compensator

Firstly a constant compensator, Kh, is designed in order to diagonalise the system in its 

upper frequency range. MVFDTB function align may be used to compute real matrix, 

Kh, such that, at some target frequency, coh [521

Kh is computed such that the diagonalising matrix for G(jcoh)K fl, given by Wh where

diag(Ai) = W ~ lGUcoll)K lW , ,  approximates the identity matrix (i.e. the eigenvectors 

of G(jcoh)K h are aligned with the standard basis vectors of the system) and thus 

G U a)h)K h « diag(/1;) . Align also attempts to equalise the magnitudes of the 

characteristic values at coh and set them equal to unity, such that |/lj| = \X2 \ =.... = |/l„ |.

det(I+Q(s)) = H O + ?/(>)) (3.29)

GCM ,)K/; * diag(Ai) (3.30)
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(In this sense Kh can be taken as an approximation of G l(jcoh)). The presumption is 

that Q,(s) = G(s)K/; remains diagonal over a useful high frequency range.

3.2.2 Mid Frequency Compensator

Secondly, an Approximate Commutative Controller (ACC), Km(,s), is designed to give 

suitable dynamic performance in the mid-frequency range. This is a dynamic 

compensator which is computed such that[53]

K.w * VtjdiaglkAs))W,,;1 (3.31)

where, for some target frequency in the mid-frequency range, com

Q i(M „) = W J ia g iu W ,,- '  (3.32)

Thus K m(jo)ln) and QjO '&O approximately commute.

The forward path is now

Q2(s) = G (s)KhK m(s) (3.33)

and

Q iU a J  * (3.34)

(3.34) shows that, for frequencies sufficiently close to com where

QjC?) « 'Wmdiag(qi(s)yWn~'> there is no interaction between the dynamic elements, 

q^s) , which are the characteristic loci of Q ^ s ) , and the k^s ) , which are dynamic 

elements of the ACC. This lack of interaction persists for the closed-loop system formed

by UNF since if Q(s) = Wdiag(qi)W~l then (I + Q(.s))_1Q(.y) = W diag(— )W _1.
1 + q,

Thus the kj(s) can be specified on SISO principles by treating Qj(^) as n single loop 

systems, choosing each of the k,{s) to give the required performance when applied to 

the corresponding qt{s). The k^s) are normally specified such that lim ^^ k,{s) = 1, 

with the result that the diagonalisation of Q, (5) at high frequencies is not disturbed. As 

in the first design stage, the presumption is that the decoupling of dynamic elements at 

the target frequency persists over a useful mid-frequency range.
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The ACC may be designed using MVFDTB function face given Q fjc o m) and k f s ) , i =

1, 2 , ....., n. Function face returns real matrices A and B as approximations to Wm and

Wm_1 which are computed as align(Wm_1) and align(Wm) respectively. At this point 

ls not necessarily diagonal. The less sensitive the eigenvectors of Q ,(.jco )

are to changes in frequency, the more diagonal Q2(j<v„l) will be, since for 

w .  » Wj « I ,  Q2(/»„,) » •

3.2.3 Low Frequency Compensator

The final stage of the characteristic locus design is to apply correction for steady state 

errors. This involves the design of a low frequency compensator, K ,(s), with dynamic 

components containing integral terms where necessary. K ,(s) may be designed as an 

ACC based on a target frequency in the low frequency range and specifying suitable 

dynamic compensation for the n control loops. Integral terms, lt (s) , in the compensator 

correct steady state errors and also the large low frequency gains associated with them 

have the effect of removing interaction as follows

The final forward path gain is given by

Q3(s) = Q2(s)K i(s) (3.35)

where K ,(s) = W/t/zag(//(s))W/"1 and Q 2(jcot) « W/<fr'ag(v,)W/”1.

For low frequencies

Q 3( »  « W^ d i a g i y f U ^ W f 1 (3.36)

and for the closed-loop system

Q,C/®) » w,rf/ag( )Wf~' (3.37)
l + v ^ jc o )

For I,(ja>) sufficiently large |i/i/f(y(n)| »  1 and Q30'<u) » I .

The complete controller is shown in Fig 3.4. Since the only dynamic components in the 

compensator are the diagonal components k fs )  and (.(5), the order of the compensator 

is given by the sum of the orders of these components.
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V _ K,(s) Km(s) Kh U G(s) J

Compensator

Fig 3.4 Characteristic Locus Controller

3.3 H 00 Mixed Sensitivity - A Robust Approach

This approach is based on the minimisation of the magnitude of a mixed sensitivity 

function as measured using the H 00 norm. The H 00 norm is a measure of the maximum 

gain of an operator function and much work has been done on developing numerical 

methods for synthesising controllers which optimise the H 00 norm of design based 

operator functions.[54]

The mixed sensitivity function or operator is chosen such that the resulting controller 

designs have satisfactory characteristics with respect to, for example, performance, 

robustness and disturbance rejection.

3.3.1 The H 00 norm

The H 00 norm may be used as a scalar measure of a stable transfer function matrix. The 

H 00 norm of G(^) is defined as[55]

\\G(s)\l = sup|w cr{G{j(o)) (3.38)

the maximum singular value of G(Jco) , can be interpreted as the 

maximum gain of G(Jco) taken over all directions of input vector u(&>)[56].

i.e.

cr(G(Jco)) = maxi |yHL (3.39)

where II.II is the vector 2-norm defined by

ia||2 = (3.40)

10(5)11. is therefore the maximum gain of G(s) taken over all directions and all 

frequencies of the input vector.
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The H norm may also be written in terms of vector time functions ast5?1

llG«IL = max{|^||- <3-41>

where the 2-norm of vector time function x(7) is defined as

||x(0||2 =
o i

(3.42)

This interpretation of the H 00 norm is as a measure of the maximum gain for a set of 2- 

norm bounded input signals which represent all possible combinations of spectrum and

vector direction. For this reason the norm is suitable for use with optimal control
00problems. In addition the H norm conforms to the multiplicative property,

||G1(j).G 2(1s)|eo < IGjCsOIJIGj COIL ’ which enables robust control designs based on this 

norm to formulate a sufficient condition for robust stability and avoid unnecessary 

conservatism since the condition is also necessary[58].

3.3.2 Sensitivity Functions

A generalised model for a single degree of freedom control system[59] is shown in Fig 
3.5.

K(s) G(s)

Fig 3.5 One Degree of Freedom System

This system has exogenous inputs consisting of reference input vector, r, plant 

disturbance (or process noise), d, and measurement noise, n, and has exogenous output,

y-

The output for this system is given by[60]
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y  ( s )  =  ( I  +  G K O ) ) " 1 G K r ( j )  +  ( I  +  G K ( s ) ) ' 1 d ( s )  -  ( I  +  G K ( i ) ) " 1 G K n ( j )

(3.43)

(For convenience terms such as G (j)K(j)r(,s) are written GKr(,s)).

Here (I + G K ^))-1 is the Sensitivity Function or Operator, S(s), and

(I+G K (5))"!GK(5) is the Complementary Sensitivity Function or Operator, T (s ) . 

Hence

y(s) = Tr(.s) + Sd(.y)-Tn(.s) (3.44)

and in addition

eC0 = yCO ~ r (X) = -Sr(^) + Sd(s) -  Tn(^) (3.45)

u (s) = KSr(s) -  KSd(.s) -  KSn(^) (3.46)

(3.45) shows that in order to keep controller error low, S(s) must be kept low or, 

alternatively, (3.44) shows that T(.s) must approach I. It can also be seen that a low 

value of S(^) suppresses process noise, whilst a low value of T (s) suppresses 

measurement noise. Control effort, as measured by plant input, u, is dependent on 

KS(j) .

The two sensitivity functions are related via

S(j ) + T(j ) = I (3.47)

and, for strictly proper G K (s),

= I (3.48)

L H ^ T ( s )  = 0 (3.49)

This poses a set of interesting controller design problems. It is desirable to keep S(.s)

low to minimise controller error and plant disturbance but this tends to elevate T(^)

which aggravates measurement noise. In addition, as discussed in section 3.3.3, high 

values of T(s) lead to a lack of robustness and so are inadvisable where plant model 

uncertainty is significant.
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The typical solution involves a trade-off between S(V) and T(s) across the frequency 

range. The reference inputs and plant disturbance are usually of low frequency so at low 

frequencies S(Jco) is kept low, the bandwidth of the resulting system being 

conveniently defined in terms of this Tow’ region of SJco) . Since measurement noise 

and plant uncertainty are generally more significant at higher frequencies (in the latter 

case due to neglected higher order dynamics), the elevated magnitude of T(/tf;) in the 

low frequency range is generally tolerable. Conversely, at higher frequencies it is 

desirable to constrain the magnitude of T (Jco) to tolerate greater plant uncertainty and 

measurement noise, so here S(Jco) is allowed to rise towards unity on the assumption 

that reference inputs and plant disturbance are not significant at these frequencies. In 

fact, as shown by (3.48), this rise in S(Jco) is inevitable at high frequencies. Control 

effort can be constrained, if required, by limiting the magnitude of K S(s).

The mixed sensitivity approach described in section 3.3.4 represents a formal method 

for achieving this trade-off.

3.3.3 Robustness Criteria

The robustness of a control system is a measure of its ability to tolerate variations in the 

plant. The controller is designed on the basis of a nominal plant model but, owing to 

model uncertainty, the controller may be used with any of a set of possible plants and 

therefore some degree of robustness is required.

Model Uncertainty

Restricting consideration of plant perturbation to unstructured uncertainty, where all the 

possible causes of plant variation from the nominal model are lumped into a single 

parameter, and using the mutiplicative output model[611 shown in Fig 3.6, the set of all 

possible plant models, G(s), is expressed in terms of the nominal plant model, G tl(s)

L(s)
u y

Fig 3.6 Unstructured Multiplicative Output Model Uncertainty

by1621
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G(s) = (I + h(s))Gn(s)

Here the perturbation, L(V), is given by 

L(^) = l(s)A(s)

where l(s) is a real scalar and fAfajL < 1.

The closed-loop plant with controller is shown in Fig 3.7.

(3.50)

(3.51)

K(s)

A(s)

Fig 3.7 Controller with Model Uncertainty

The set of possible plants is given by all the possible A (s) such that flA^)^ < 1, i.e. at 

any particular frequency the possible plant models are given by

GCjco) = {l + l{co)A{jco))Gn<Jco) (3.52)

for all A (Jco) such that o^A {jco)) ^  1.

Robust Stability (RS)

A system is robustly stable if it is stable for all possible plant models. Provided that the 

system shown in Fig 3.7 is stable for the nominal plant it is stable if and only i f [63]

||T „ W /(4 ,< 1  (3.53)

where T„ (s) is the complementary sensitivity of the nominal system.

This can be written

RS o  a(T\t{jco)) < r \co ), Vco (3.54)

From (3.54) it can be seen that robust stability requires the imposition of an upper 

bound on Tn(Jco) across the frequency range. In particular, increases in plant 

uncertainty as indicated by an increase in l(a>) impose increasing constraints on the 

magnitude of Tn(Jco) .
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Robust Performance (RP)

It is common practice to use a performance specification which places an upper bound 

on the sensitivity function, S(s), in order to limit controller error. Using an H® 

description of operator magnitude, the robust performance criterion can be written1641

RP o  # S « n < 4 .<  1 (3.55)

for all possible plant models. w(s) is a scalar weight chosen to reflect the relative 

urgency of suppressing S(s) at different frequencies over the operating range. In the 

case of the unstructured, multiplicative output uncertainty description

RP <=> ISfsJwfs)^ < 1 for all possible plant models

<= Is^ m C + llT»(*vwlL < 1 (3-56>

(3.56) gives a sufficient (but not necessary) condition for RP in terms of the nominal 

plant model and the uncertainty parameter, l(s) . This satisfies the RS criterion and the 

performance criterion for the nominal system by some margin.

The form of (3.56) provides the motivation for a mixed sensitivity approach to robust 

controller design.

3.3.4 Mixed Sensitivity and H w Optimisation

The mixed sensitivity approach is motivated by a desire to achieve a balance between 

the different requirements of the controller over the operating frequency range. It is 

necessary to consider an augmented plant model with exogenous inputs, w, and 

weighted exogenous outputs, z. The augmented plant model used in the present work is 

shown in Fig 3.8.

w = r
G(s)K(s)

Fig 3.8 Augmented Plant Model with Controller
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Process and measurement noise were not considered, but weighted forms of the error 

vector, e, the control input vector, u, and the plant outputs, y, were included in the 

augmented plant. Thus the inputs and outputs of the augmented plant become

w = r

and

(3.57)

z = W2(j)u(s) (3.58)

Using (3.44), (3.45) and (3.46), (3.58) may be written

z =
- w ^ c s)
W2KS ( s )  

W3TCs )

w (3.59)

= T^v (s) , the augmented transfer function from inputs w to outputs z,
'  W,SCs) '

Here, W2KS(.s)
.  W3T(5) _

ignoring the sign in the e(s) component since magnitudes are being considered here.

The objective of the mixed sensitivity approach is to design a controller which 

minimises the magnitude of T^, (s), measured in some way, for a choice of weighting 

functions which achieves suitable controller characteristics in terms of stability and 

performance, control effort and robustness. Obviously, the choice of weights is a central 

problem to controller design. As a starting point it is expedient to proceed on the basis 

of the results given in section 3.3.2, choosing W ,^) high within the required system 

bandwidth to suppress the magnitude of S(^). W3(.s) is chosen to suppress T(s) in the 

upper frequency range where plant uncertainty may be significant (whilst bearing in 

mind the complementarity of S(s) and T(s)). W2(s) can be manipulated as necessary 

to achieve the desired level of control effort.

The H 00 optimal control synthesis problem results when the H 00 norm is used as a 

measure of the magnitude of Tzw (s) . Much work has been done on the development of 

algorithms to solve the H “ optimal control problem. For the present work functions hinf
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and hinfopt in Matlab’s Robust Control Toolbox (RCTB)[65] were used. H inf computes 

the ‘central’ controller of a family of controllers which satisfy the condition

< 1 (3.60)

if such a family exists. This is the Standard H ” control problem. Hinfopt computes the 

unique controller which maximises y  such that

H M L < i (3.61)

(The inequality is written in this form because hinfopt provides the option of selecting a 

subset of the rows of (5 ) to be premultiplied by y . For instance, the optimisation

could be based on
yW ,S
w 2k s

w 3t

< 1). This is called the H 00 optimal control problem.

The RCTB also provides a function, augtf which computes the generalised model of the

augmented plant in a form suitable for H " controller synthesis given the original plant 

model and the weighting functions. The generalised model takes the form of P in Fig 

3.9.

v = r-y

Fig 3.9 Generalised Model of Augmented System

In terms of this model, T,)(,(.s) is given by the lower linear fractional transformation of P 

and K as followst66]:-

T„ = F f  P ,K ) = Pn + P 12K ( I - P 22K )-1P21 (3.62)
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z > 1 , V W

v A P22_ u
where

Comparing (3.53) and (3.60) a correspondence between W3(.y)and l(s) can be deduced. 

From (3.60) it follows that

ct(W3T ( /6?)) < 1, \fco (3.63)

whilst from (3.53)

a(T(jco))l(o)) < l,Vco (3.64)

In the case of SISO systems these reduce to < 1 < 1

respectively and since l(a>) = G (Jo))-G n(Jco) , |J^(j )| is a direct measure of the
G„{jco)

multiplicative uncertainty of the plant model.

3.4 Model Reduction

The controller resulting from the synthesis of the H 00 controller is of the same order as 

the augmented plant. In the present work that is typically 10th or 12th order depending on 

weight selection. Obviously, it is desirable to investigate ways of reducing this order 

whilst preserving the properties of the controller. Two methods of model reduction were 

attempted in this work, balanced residualisation and optimal Hankel minimum degree 

approximation.

3.4.1 Balanced Residualisation1671

This approach involves discarding states associated with relatively small Hankel 

singular values. The controller model is first balanced by a similarity transform such 

that the controllability and observability gramians are equal and diagonal, the diagonal 

elements being the ordered (descending) Hankel values. These values correspond to 

states of the balanced sytem and their relative magnitudes reflect the importance of the 

associated states on input/output behaviour. Unimportant states are eliminated by 

residualisation, which is to say that if xr is to be eliminated, xr is set to zero and the 

resulting equation used to eliminate xr from the system of state equations. CSTB 

function balreal balances the system and produces the diagonal gramian containing the

56



Hankel singular values. Inspection of these permits an assessment of the number of 

states to be discarded and CSTB function modred is used to eliminate these by 

residualisation.

3.4.2 Optimal Hankel Minimum Degree Approximation (OHMDA)[68]

For a system K(Y) of order n, the OHMDA is system K r(s) of order k such that

| |K ( * ) - K , ( j ) |L < 2 ] > f (3.65)
i = k+1

where the cr;. are the ordered Hankel singular values. RCTB function ohkapp computes 

the OHMDA of a system given the order of the reduced model. The system does not 

need to be balanced before ohkapp is called.

3.5 Comparison of Design Methods

Of the three design methods chosen for the beam and carriage controller, the LQG 

controller would appear to be the most direct in the sense that, if statistical data for plant 

disturbance and measurement noise are available, the controller can be designed without 

recourse to iteration. However, it has been shown that LQG controller designs have no 

guaranteed stability margins [25] and may therefore result in unsatisfactory controllers for 

systems where plant perturbation is present. For control systems based on state feedback 

in which closed-loop plant and observer poles are chosen arbitrarily, a more iterative 

approach may be adopted. This permits an assessment of performance criteria for a 

range of possible designs, but no direct consideration of the resulting system robustness 

can be made at the design stage.

The characteristic locus method presents a more naturally iterative approach. The choice 

of frequency bands and single loop dynamic compensators at medium and low 

frequency are all subjective factors which influence the final design. As is the case for 

controllers based on state feedback, no explicit consideration of robustness can be 

incorporated into the controller design procedure.

The H 00/mixed sensitivity approach enables robustness to be built into the system at the 

design stage. However, for this approach a choice of weighting is required for each 

element of the sensitivity operator chosen. This must take into account the required 

'shape' of each sensitivity function with respect to frequency and the relative importance
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of the different sensitivity functions. For this reason, significant iteration is again likely 

to be required in applying this method, but separate parameters exist for influencing 

controller error, control effort and robustness levels and this should theoretically 

facilitate the design of a controller which achieves a satisfactory compromise between 

these conflicting requirements.
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4 Controller Designs Based on the Nominal Plant Model

It was considered appropriate to use the best available plant model as a basis for 

controller design. Thus the symmetrical model was discarded after early investigative 

work on LQG controller design and the nonsymmetrical model adopted for the work 

reported here. Controller designs based on state feedback were produced firstly in 

conjunction with LQG theory (state feedback via LQR theory, full order estimation by 

Kalman Filter) and secondly using a reduced order observer with observer pole 

placement in conjunction with LQR theory for state feedback. In addition to these, 

controller designs based on the Characteristic Locus Method and on H 00/Mixed 

Sensitivity were developed.

The performance of all controller designs with the nominal plant model was simulated 

in continuous and discrete forms using step inputs for the components of the reference 

input vector, r. All satisfactory designs were then implemented on the beam and 

carriage apparatus.

4.1 Controller Implementation Details

Prior to use with the controller, the beam and carriage was set up in a standard manner. 

The output of the ultrasonic transducer monitoring horizontal carriage position was 

calibrated using the gain and offset potentiometers on the transducer to give outputs of 

OV and 10V for the leftmost and rightmost positions of the carriage on the beam 

respectively. The bipolar voltage supply to the two resistive transducers was adjusted to 

± 10V such that the output of each transducer was -10V and +10V when the 

corresponding ram was at its top and bottom position respectively. The power amplifiers 

for the hydraulic valves each had separate gain settings for piston advance and retract 

commands and a potentiometer setting for the valve deadband. The potentiometers were 

set to give maximum velocity for a given voltage command on the piston outstroke and 

a matching velocity on the piston instroke (where a reduced gain was required to reduce 

the flow rate into the annular side of the piston). The deadband on each amplifier/valve 

combination was set to minimum. Finally, the regulator for air pressure inside the beam 

was set to 0 .1  bar.
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IBM PC

Controller
A/D

Converter
Beam and 
Carriage

D/A
Converter

Fig 4.1 Controller Implementation

The general configuration of the controller and beam and carriage is shown in Fig 4.1. 

Here the controller took the form of an IBM PC compatible executing compiled code 

produced by the Borland Turbo Pascal V6.0[69] compiler. The computer interface for 

analog signals and the real time clock required for interval timing were provided by a 

Keithley DAC16011701 data acquisition card. This provided 16 channels of analog input 

via a 12 bit A/D converter and 2 channels of analog output via a 12 bit D/A converter. A 

range setting of ± 10V was selected for all analog signals and the calibration of the 

converters verified. The maximum conversion rate of the A/D converter was 100 kHz.

Euler's method1711 was adopted for the controller discretisations used in both the discrete 

simulations and the actual implementation. For a continuous system in state space form 

given by

x = Ax + Bu 

y = Cx + Du

Euler's method gives the difference equations 

x(k  +1) = (I + AT)x(£) + BTu(&) 

y(k) = Cx(k) + Du(&)

(4.1)

(4.2)

(4.3)

(4.4)

where T is the sampling interval. As can be seen from Fig 4.1, the IBM PC performed 

the task of closing the control loop in addition to implementing the controller.The PC 

also rescaled the ultrasonic transducer to ± 10V and averaged the output of the two 

resistive transducers for all but the ROE controller (for which all three outputs were 

required).
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Pascal code was written for each of the controller implementations and the minimum 

sampling intervals determined by checking the maximum execution times for the 

program iterations. In each case a reliable sampling interval of 5ms of less was 

attainable. Discrete simulations showed that sampling rates of this order were sufficient 

to implement the controllers reported here by some margin, so recourse to more 

sophisticated disretisation methods than Euler was not made.

For the tests carried out on the rig, the reference inputs were supplied (in the range 

± 10V by two potentiometers or, for the step tests, using step inputs applied individually 

to the controller inputs. A Gould DSO400 oscilloscope was used to capture the step 

inputs and the beam and carriage output responses. (For all but the ROO controller the 

outputs of the two vertical ram position transducers were averaged using a simple 

summing circuit to give output y2). The captured traces were downloaded to an IBM PC 

via the DSO400's serial interface.

4.2 Controller Based on LQG Theory

Early LQG work based on the symmetric model [72] produced a controller for the beam 

and carriage, implemented on a set of analogue modellers, which resulted in a stable, 

essentially decoupled system. This work was repeated for the nonsymmetrical model 

and the controller implemented on a digital computer to enable comparison with the 

other digitally implemented controllers. As in the earlier work, Q and R  were initially 

chosen as I2 for the LQR design and W and V as 0.001BBT and 0.01I2 respectively for 

the Kalman Filter design. The design was carried out using the user-written M-file Iqg 

(see the M-file listings). This gave the coefficients of the feedback matrix, K, the 

coefficients of the state estimator in state-space form and the static decoupling matrix, 

which is the inverse of the DC gain matrix of plant plus state feedback.

The state feedback placed the plant poles at -49.44, -45.50, -4.99, -4.11, -1.30 ± 1.46j 

and the estimator poles were placed at -49.48, -45.54, -4.28, -3.91, -0.77±0.80j. The 

resulting system, closed loop plant plus estimator, is 1 2 th order and its poles are given by 

the union of the above two sets. The slowest estimator pole was significantly faster than 

the slowest open loop plant pole at 0 .0  but slower than the slowest closed loop plant 

poles at -1.30 ± 1.46j. Also, given that the open loop plant poles were at -49.48, -45.54, - 

4.22, -3.86, 0, 0, it is clear that the Kalman Filter could not accurately estimate the 

transient system states following the application of step changes in the reference input.
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4.2.1 LQG Controller Simulations

Continuous and discrete simulations were carried out on the LQG design. Fig 4.2 shows 

the simulink model for the continuous simulation. This gives the plant outputs and 

inputs for unit steps on r, and r2 at 2  and 6  seconds respectively and these are shown in 

Figs 4.3 to 4.6. These graphs indicate satisfactory performance of the controlled outputs 

with no steady state error, overshoot on y, of less than 1 0 % and negligible dynamic 

interaction. The maximum plant input signal levels are only some 20% higher than the 

step inputs and unlikely to lead to plant saturation. Attempts were made to improve 

performance by manipulation of the Q and R matrices used in the LQR design process. 

Since plant input levels were considered satisfactory, R was held at I2 and only changes 

in the (diagonal) elements of Q were considered. The obvious choice was to increase qn 

to constrain overshoot on the horizontal carriage position, y1? ram height control being 

much better behaved. However, increases in qn, whilst reducing the settling time of y l5 

did this at the expense of increases in both plant inputs in response to step inputs on r} 

and had little effect on the level of overshoot of yj. For these reasons it was considered 

that the initial values of Q and R achieved a satisfactory LQR design for the beam and 

carriage.

The Simulink model of the plant with discrete controller (i.e. with the estimator 

implemented in discrete form using Euler’s method) is given in Fig 4.7. Saturation 

blocks were inserted to simulate the limits on signals in the actual plant (±10V) 

resulting from the use of D/A and A/D converters to produce the control inputs and 

sample the plant outputs respectively. For this discrete model the reference inputs were 

scaled up to 8 V steps in order to test the controller more severely, the saturation blocks 

being inserted to enable detection of instability arising from large signal levels and the 

resulting saturation. The plant outputs and inputs using a sampling interval of 0.02 

seconds are shown in Figs 4.8 to 4.11. These indicate plant performance comparable to 

the continuous model. Simulations repeated for a variety of sampling intervals showed 

that stable performance of the model was sustained for values of T up to 0.04 seconds.

4.2.2 LQG Controller Implementation

Figs 4.12 to 4.15 show the actual plant outputs achieved for reference input steps of 

approximately 7V using a sampling interval of 4ms. From these Figs it can be seen that 

a significant cyclic drift is present on y, in the actual implementation and some
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interaction between y! and r2 is apparent. Stable behaviour of the actual plant was 

sustained for sampling intervals up to 35ms.

4.3 Controller Based on the Reduced O rder Observer (ROO)

Work on the design of a reduced order observer for the beam and carriage has been 

reported elsewhere [73]. For the reduced order observer it was desirable to define as many 

states as possible as measured outputs. For this reason the plant outputs were redefined 

as the three measured variables corresponding to x1? x2 and x3 such that 

x, = y l9 x2 = y 2, x3 = y3, x4 = y i9 x5 = y 2, x6 = y3. This involved redefining state matrix 

C as

C =
1 0 0 0 0 0'

0 1 0 0 0 0
0 0 1 0 0 0

(4.5)

resulting in a non-square system with two inputs and three outputs. This permitted 

partitioning of the state equations to give

x„ =
X,

Ti
y2 (4.6)

Xk = (4.7)

Here xa contains the measured states whilst the components of xb are the states to be 

estimated.

The state feedback was derived using LQR theory, as for the LQG controller, with unity 

weightings on each of the plant’s outputs and inputs (in this case, Q = I3, R  = I2). This 

resulted in closed loop poles at -49.31, -45.37, -5.95, -5.55, -1.15 ± 1.30j.

The observer design involved the arbitrary selection of the three observer poles, each 

required to be fast compared to the open loop plant poles. The M-file redest was used to 

obtain the observer parameters, the required observer poles being input to redest in the 

vector p. The state feedback matrix produced by the LQR design had relatively small 

coefficients in the fifth and sixth columns, the largest of these having a magnitude of
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0.015 compared to the smallest coefficient magnitude in the first four columns of 0.32. 

For this reason states x5 and x6, the ram velocities, were discarded for purposes of state 

feedback and, since the state space description of the observer, (Ae, Be, Ce, De) showed 

that these states were not required to provide the estimate of x4, carriage velocity, the 

observer was simplified to give the first order observer, (Aes, Bes, Ces, Des), also 

calculated by redest. (This observer was further simplified by the fact that estimation of 

x4 did not require use of the plant input, u). For this simplified observer it was only 

necessary to choose one pole.

4.3.1 ROO Controller Simulations

The Simulink model used to provide simulations of the controller based on the 

continuous, third order observer with unit step inputs at 2 and 6  seconds is shown in Fig 

4.16. Saturation blocks of ± 1.5 have been added immediately before and after the plant, 

at the point of D/A and A/D conversions, to ensure that saturation due to unreasonably 

large signals is likely to be simulated in the model. The plant output and control input 

signals produced by this simulation model with observer poles at -1 0 , - 1 0  ± 1 Oj are 

shown in Figs 4.17 to 4.21. These show system performance consistent with the LQG 

model. The ‘bumps’ on y 2 and y3 in Figs 4.18 and 4.19 at 2 seconds are due to the 

redefinition of the plant outputs: obviously the left and right hand rams move up and 

down respectively to advance the carriage along the beam.

Fig 4.22 shows the Simulink model for the simplified, continuous controller using the 

first order observer and the resulting plant outputs and inputs with observer pole at - 1 0  

are shown in Figs 4.23 to 4.27. There is no noticeable loss in performance as a result of 

the controller simplification.

The Simulink model representing the controller with first order observer discretised by 

Euler’s method is shown in Fig 4.28 and the corresponding plant outputs and inputs 

with a sampling interval of T = 0.02 seconds and 8 V steps applied to rl at 2 seconds and 

r2 at 6  seconds are shown in Figs 4.29 to 4.33. The 8 V steps were again chosen to 

produce reasonably severe operating conditions in relation to the ± 10V saturation 

levels imposed on the model. Comparing Figs 4.29 to 4.33 with Figs 4.17 to 4.21, it can 

be seen that the discrete, simplified controller performs satisfactorily compared with the 

continuous, unsimplified one.
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For the state observer, the faster the choice of pole, the higher the observer gain will be. 

This would cause rescaling of the observer equations to be necessary to avoid saturation 

if the the observer were implemented in analogue form but where it is implemented on a 

digital computer large values of the intermediate variables can be tolerated and the 

observer output will be no larger than for an observer with slower poles. However, 

faster poles would require faster signal sampling rates for the controller to perform 

satisfactorily as was borne out by further simulation work. Whilst the controller based 

on the discrete observer with pole at - 1 0  gave stable simulated behaviour for sampling 

intervals up to 0.2 seconds, a controller based on an observer with pole at -500 required 

a sampling interval of not more than 0.004 seconds. Poles between these two required 

sampling intervals of between 0.2 and 0.004 seconds on a roughly proportional basis. 

Thus, available sampling rate at the implementation stage is a factor which must be 

borne in mind when selecting observer pole positions.

4.3.2 ROO Controller Implementation

The controller was again discretised by Euler’s method and implemented on an IBM 

compatible PC using code compiled by Turbo Pascal. With this implementation 

sampling intervals down to 2ms were achievable. The first two plant outputs obtained in 

response to step inputs of approximately 7V at 2 and 6  seconds on rl and r2 respectively 

are shown in Figs 4.34 to 4.37. Output y3 is omitted since its behaviour is virtually 

identical to y2 (although, of course, y3 goes negative in response to a positive step on r^. 

These graphs show that the controller performance predicted by simulations has 

essentially been achieved in practice with very little of the drift experienced with the 

LQG controller. The controller exhibited stable behaviour, though with progressive 

degradation of performance, using sampling intervals up to approximately 0.175 

seconds.

4.4 The LQG Controller Revisited

The superior performance of the controller implementation based on the ROO to that 

produced by LQG design theory poses the following questions:-

(i) Why is the drift so pronounced (and at the implementation stage only) with the 

LQG controller?
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(ii) Why is the sampling interval constraint much lower for the LQG controller, even 

though the slowest pole is much slower than that for the ROO?

The answer to (ii) is that the LQG controller's estimator also has significantly faster 

poles than the ROO. The dynamics of these are required to produce satisfactory state 

estimates.

To answer (i), attempts were made to manipulate the covariance matrices W and V, in 

order to produce faster estimator poles comparable to the ROO pole. This would seem 

to be especially desirable in view of the unfavourable comparison of the original LQG 

estimator poles with the open loop plant poles. The estimator poles become faster as 

process noise covariance, W, increases, thus allowing the estimated states to respond 

more quickly to this disturbance, and slower as measurement noise covariance, V, 

increases, for the opposite reason. As a check on the effect of estimator poles on the 

implementation of the LQG controller, W was changed from 0.001BBT to BBT and V 

from 0.01I2 to 0.0001I2. The Kalman filter design now produced an estimator with 

slowest poles at -5.83 ± 9.89j and the plant outputs obtained from the implementation of 

this controller are shown in Figs 4.38 to 4.41. The drift is virtually eliminated by this 

controller since the controller is designed to react more quickly to plant disturbance (and 

also, undesirably, to measurement noise) and is therefore more responsive.

Dutton et a l . [74] give a fuller interpretation of the effect of W and V on estimator poles. 

For systems with large measurement noise relative to process noise, the Kalman Filter 

gain is decreased to give less prominence to plant outputs and more to the plant 

prediction part of the estimator. Conversely, relatively uncertain plant behaviour results 

in a high filter gain to place more emphasis on measured outputs. Higher estimator gains 

are associated with faster estimator poles.

4.5 Controller Design by the Characteristic Locus (CL) Method

To implement the characteristic locus method it was necessary to choose a suitable 

working frequency range for the design process and three separate frequencies upon 

which the three stages of compensation were to be based. Referring to Figs. 2.17 to 

2 .2 0 , a working frequency range of 0 .0 1  to 1 0 0  rs"1 was chosen, encompassing the 

dynamic range of the model from virtually steady state to a gain of less than -40 dB. 

The multivariable frequency response (MVFR) matrix was created for a set of discrete
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frequencies across this range using MVFDTB function mv2fr. The MVFR matrix 

consists of a set of component matrices corresponding to the set of frequencies selected, 

each component matrix being the gain matrix in complex form at a particular frequency. 

This matrix provides the basic data for the toolbox functions align, feig  and face, which 

align the eigenvectors of the system, calculate the characteristic loci and compute the 

parameters of the ACC respectively.

4.5.1 The High Frequency Compensator, Kh

To design the high frequency compensator, a frequency corresponding to one of the 

component matrices in the MVFR matrix is chosen and the component matrix 

diagonalised by eigenvector alignment using MVFDTB function align. The 

presumption is that eigenvector alignment spreads over a useful frequency range and 

this can be checked by using function fmisalg to compute the resulting alignment for 

each component matrix in the working frequency range.

For the earlier work on the symmetrical model, perfect alignment across the whole 

frequency range was achieved (although fmisalg reported nonzero alignment at the 

target frequency itself - possibly a quirk of the numerical processing). This is to be 

expected since, as shown in section 2.2.4, perfect diagonalisation of this model is 

achievable using a constant, decoupling compensator. For the symmetrical model align 

returned a compensator given by

K„ =
1107.8 -5.9'

-1107.8 -5.9
(4.8)

which compares with the decoupler,
’ 05 0.5'
-0 5  05

suggested in 2.2.4. The particular

values computed for Kh are due to the fact that align, in addition to diagonalising the 

system, tries to achieve |G(/a?A)K A| = I , where the notation |Q| is taken to mean

|# l l |  |^121 *

|#2 l|

For the nonsymmetrical model, the frequency upon which the computation of Kh was 

based, coh, was chosen as 30 rs'1, this being at the top of the model’s dynamic range. 

The value returned for Kh was
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83.84 -10.16
-77.53 -9.39

(4.9)

resulting in a maximum alignment error of 12.90 .

The high frequency compensator for each model has a second column which is negative 

compared to the simple decoupling compensator. The alignment process can result in 

eigenvectors pointing in either direction along the basis vectors and in this case the

GKh leading to positive feedback in the second loop of a controller based on output 

feedback. In general, it is necessary to inspect the columns of Kh and adjust their signs 

where appropriate before proceeding to the next stage. In this case the sign of the second 

column of Kh was changed.

4.5.2 The Mid Frequency Compensator, Km(s)

This compensator was based on an ACC design for which a ‘central’ frequency and a 

dynamic compensator for each loop in the (approximately) diagonalised system was 

required to be chosen. Fig 4.42 shows the characteristic loci for the diagonalised model. 

Stability requirements alone indicate the need to introduce positive phase shift into the 

loop corresponding to the first characteristic locus, q^s), so a lead-lag compensator of 

the form

where a>  1 , was investigated for this loop, the second loop being left without 

compensation at this stage. The compensator of (4.10), having unity gain at high 

frequencies, has the advantage of not disturbing the alignment produced by Kh at these 

frequencies but in the present case some high frequency attenuation was required to 

avoid excessive control effort (as manifested by large magnitude of the plant input 

vector, u) in response to steps on the reference inputs.

Using a dynamic compensator given by

a first order ACC was produced. (The ACC is the same order as Kd(s) since it was 

produced from Kd(s) by manipulation involving constant matrices only). The frequency 

upon which the ACC was based is 0.1 rs'1.

negative second column of Kh results in a negative second column of the diagonalised

(4.11)
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The characteristic loci of the system with high and mid frequency compensators are 

shown in Fig 4.43. There is now a positive phase margin on q,(s) and the stability of the 

closed loop system using the two compensators is confirmed by Fig 4.44 which shows 

the plant outputs in response to unit steps on the reference inputs. Fig 4.45 shows the 

corresponding plant inputs. From Fig 4.45 it can be seen that the maximum control 

effort required in the first control loop is somewhat less than 2 , which is acceptable in 

the context of a unit step input on the reference input of loop 1. However, in the second 

control loop, the control effort is of the order of 10V for a IV reference input and is 

likely to lead to plant saturation. In addition, there is a steady state error in the second 

loop. These problems were attended to at the third stage of compensation.

The performance of the first control loop is rather unsatisfactory and does not compare 

well with the compensators based on state feedback. It was possible to reduce the 

overshoot and the settling time using a simple lead-lag compensator in this loop but 

only at the cost of excessive control effort. Second order compensation was also tried 

but this gave rise to problems which will be discussed in section 4.4.5.

4.5.3 The Low Frequency Compensator, K,(s)

This compensator was based upon an ACC for which no compensation was introduced 

into the first loop and proportional plus integral compensation was introduced into the 

second to eliminate steady state error. The dynamic compensator upon which the ACC 

was based is

which resulted in a first order low frequency compensator. The frequency upon which 

this ACC was based was 0.01 rs'1, representing essentially steady state conditions for the 

compensated plant.

4.5.4 CL Controller Simulations

The design and simulation of the continuous controller based on the characteristic locus 

method was carried out using the M-file charloc. The final compensator, based on the 

high, medium and low frequency compensators discussed above was second order and 

was given in state space form by

K d(.s) = diag{ 1, 0.2 + — ) (4.12)
s

0 0
-0.0015 -10

(4.13)
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Bk =

Ck =

Dk =

0  - 1  

-1 -0.0093

-4.79 15.09 ‘
-4.96 -13.96

' 1.68 1.93'
-1.55 1.97

(4.14)

(4.15)

(4.16)

The plant outputs and inputs using this controller with step reference inputs were 

produced directly from charloc and are shown in Figs 4.46 and 4.47. The integral term 

in K](s) has eliminated the steady state error on y2 and the attenuation introduced in the 

proportional term has eliminated overshoot in y2 and reduced the control effort in the 

second loop to an acceptable level.

A Simulink model of the discretised characteristic locus controller is shown in Fig 4.48. 

The discretisation of the controller was carried out using Euler’s method and ± 10V 

saturation blocks were again inserted to model any saturation resulting from the 8 V 

steps on r, and r2 at 0 and 5 seconds respectively. The plant outputs and inputs obtained 

from this model with a sampling interval of 0.01 seconds are shown in Figs 4.49 to 4.52. 

Overshoot on yj of the order of 90% was certainly excessive but, as explained earlier, 

attempts to find a viable compensator based on second order compensation in the first 

loop had proved unsuccessful. With the existing signal saturation levels of ±10V , 

saturation occurred in yls u{ and u2 and the simulation includes the effect of this.

4.5.5 CL Controller Implementation

As for the previous controllers, the implementation was based on a compensator 

discretised using Euler’s method. In this case the controller utilised a second order 

compensator inserted into the forward path. Figs 4.53 to 4.56 show plant outputs y x and 

y2 obtained in response to step inputs of approximately 7V on the actual plant. The 

overshoot on y, is somewhat less than would be expected from the simulations but there 

is a low frequency drift similar to that which existed for the first LQG controller.

In an attempt to improve the performance of the system, a second order term was 

introduced for the first diagonal component of the mid frequency compensator to give

C*+i) 2

■500 + 3)'
K dO) = riSflgC ,  L , 1) (4.17)
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Trial simulations showed that this resulted in a much improved response in y, compared 

to simulations using the first order compensator and control effort was at a similar level. 

However, the implementation of the resulting third order compensator resulted in steady 

movement of the carriage to the right hand end of the beam, irrespective of the 

corresponding reference input. It was assumed that this was indicative of system 

instability and this assumption was supported by the fact that subsequent simulations 

showed that this compensator resulted in unstable behaviour when used in conjunction 

with the symmetrical beam and carriage model, whilst the previous, second order 

compensator was stable with both models. The inference is that the controller is very 

sensitive to plant model perturbation and hence that increasing the order of the mid 

frequency compensator, whilst improving performance with the nominal model, has 

resulted in a decrease in robustness sufficient to result in instability with the actual 

plant.

4.6 Controller Design by H 00/Mixed Sensitivity

Central to the H 00/mixed sensitivity controller design process are the choice of mixed 

sensitivity operator or function and the choice of weighting for each element of this 

function. It must also be decided whether to solve the standard H 00 control problem 

using RCTB function hinf or the optimal control problem using hinfopt. In the latter 

case, it must be decided whether y  in (3.61) premultiplies all or a subset of the rows of 

the mixed sensitivity function before its optimal value is found by iteration.

For the present work, the mixed sensitivity function contained three elements: the 

sensitivity function S(s); KS(s), where K(s) is the forward path compensator’s TFM; 

and the complementary sensitivity function T(s). Minimising the magnitude of suitably 

weighted forms of these functions, WjS, W2KS and W 3T, allows constraints to be 

placed on controller error, y-r, control effort, u, and controller robustness respectively. 

After some preliminary work it was decided to concentrate on the H 00 optimal control 

problem with y  premultiplying all rows of the mixed sensitivity function, i.e. hinfopt

was used to maximise y  where y
W,S (5) 

W2KS ( s )  

W3T ( s )
<1
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(Solving the standard H 00 control problem of finding a family of compensators, K(s),

< 1 , it is necessary to specify weightings such that a compensator
W'SC?) 

such that W2KS ( s )

W3T ( 5 )

exists. If the magnitude of one or more weight is chosen too large, no compensator can 

satisfy this inequality. This is equivalent to the optimal control design process returning 

a value of y  less than one.).

4.6.1 Preliminary Weight Selection and Controller Design

Generally speaking, when selecting weights, good input tracking within the system 

bandwidth is of primary importance. To achieve this Wj must have high gain within the 

bandwidth to constrain sensitivity, S. However, at higher frequencies, where model 

uncertainty and measurement noise may be a problem, it is often desirable to limit T to 

achieve robustness and good noise rejection. Therefore, W3 may be required to be large 

at these frequencies. Since neither weight should interfere with the other, Wj should 

take the form of a low pass filter and W 3 should be a high pass filter. Usually one or 

more lag-lead filters or first order lags are chosen for Wj and one or more lead-lag 

filters or differentiators for W3[75]. W, would have high DC gain and its order and break 

frequencies chosen to give the required bandwidth with adequate roll-off rate and high 

frequency gain. W3 would normally be selected to give low DC gain within the required 

system bandwidth and higher gains at frequencies where model uncertainty and noise 

may be a problem. W 2 should be chosen to limit the controller output to desired levels. 

For this a constant weight may be chosen or, where reference inputs with high 

frequency components such as step inputs are used, it may be chosen as a high pass 

filter to limit controller outputs at high frequency.

For the present work it was decided to operate within the bandwidth of the open loop 

plant as given by the Bode plots of Figs 2.17 to 2.20. The bandwidth of gn(s) and g12(s) 

can be seen from Figs 2.17 and 2.18 to be about 2 rs*1, so the first element of Wj(s) was

chosen to have a gain of 40 dB for co < 2rs_1. Above this frequency, the gain was 

prescribed to fall at a rate of 40 dB/decade to a small final value such that S(s) was free 

to rise and T(s), governing robustness, was free to fall. Similarly, the second element of 

W,(s) was determined by the bandwidth of g2i(s) and g22(s) which can be seen from Figs 

2.19 and 2.20 to be approximately 4 rs'1, so the break frequency of this second element 

was 4 rs'1. Thus the first weighting was given by
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Wj (5 ) = diag(-
0 .0 1(0.5j  + 1 )2 ’ 0 .0 1 (0 .25s + 1 )2

(0 .0 2 s + 1 )2 (0 .0 1 s + 1 )2
/- . 1x2  A i / A n r  . 1x 2 ' (4.18)

In order to select the third weight, W3(s), a roll-off in T(s) of 40 dB/decade above 2 rs'1

the imaginary axis (the beam and carriage has two poles at zero). Following the 

procedure suggested by Chiang and Safonov[76], a special bilinear transform was applied 

to the plant prior to the controller synthesis and the transform applied in reverse to the 

resulting controller. In effect, the plant poles were moved 0.1 units to the right prior to 

the synthesis and the resulting controller poles moved left by the same amount.

For the weights above, the augmented plant and therefore the controller were tenth 

order. Application of CSTB function balreal indicated that a good fourth order 

approximation should exist (the first four elements of the diagonal gramian of the 

balanced system being large compared to the other elements). CSTB function modred 

was used to reduce the model by balanced residualisation and RCTB function ohmkapp 

to reduce it by optimal Hankel minimum degree approximation (OHMDA).

4.6.2 H 00 Controller Simulation

The H 00 controller design and the simulation of the continuous controller were carried 

out using the M-file hinfinit. Figs 4.57 and 4.58 show the plants outputs and inputs 

respectively produced by simulations of the continuous optimum H 00 controller 

computed by RCTB function hinfopt using the above weightings and reduced to fourth 

order by balanced residualisation. The fourth order model reduced by OHMDA resulted 

in an unstable system. The simulated plant outputs using the full (tenth) order controller 

are shown for comparison in Fig 4.59. Fig 4.57 shows a very good response of y, to r l5 

though the response of y2 to r2 is more oscillatory than would be expected (since the 

rams without compensation are not oscillatory) and there is substantial steady state error

for the carriage response and above 4 rs'1 for the response of the rams was prescribed 

and, accordingly, the weighting was chosen as

(4.19)

As a starting point, the second weight was chosen as

W2(j) = I2 (4.20)

The H 00 controller synthesis procedure is not directly applicable to plants with poles on
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in y2 Dynamic coupling exists between y2 and r, and this is more apparent in the 

reduced than in the full order compensator.

Fig 4.58 shows that the tight response of y! was achieved at the expense of unacceptably 

large control effort. The plant inputs, u, and u2, peaked at almost five times the step 

input level of rj and this would lead to saturation in the implemented compensator for 

quite modest step commands. Control effort for y2 was of the order of 1.75 times the 

step inputs.

The process of finding suitable weights for the controller design was a difficult one, 

partly due to interactions between each weight and performance indicators other than 

those which it was intended to constrain. For instance, attempts to constrain control 

effort by increasing W2 would normally result in deterioration in terms of controller 

error. For the present work, many combinations of weightings were investigated and it 

was at this stage that the decision to restrict the investigation to optimal H 00 controller 

synthesis, with the parameter of iteration, y , multiplying all rows of mixed sensitivity, 

was made. This invariably returned a controller (and the associated optimal yop, ), which 

was not the case for standard H 00 controller synthesis.

The actual value of y  t reflected the magnitude of the weights used for the controller 

synthesis and was not necessarily an indicator of plant performance. For instance, using 

the controller weights above, yop, was 0.0408 whereas when W1? W2 and W3 were all

doubled, y t was exactly halved. The H 00 controller was unchanged by this doubling 

of the weights. Doubling Wl5 W2 and W3 separately reduced yopt to 0.0251, 0.0337 and 

0.0386 respectively and here a different controller resulted in each case. These values of 

y  , would seem to indicate that the magnitude of mixed sensitivity was most sensitive 

to changes in the term involving sensitivity, S, and therefore that S was the most 

severely constrained indicator for this set of weights. Since y t was less than one, the

family of controllers satisfying the standard H 00 controller synthesis inequality did not 

exist.

4.6.3 Design and Simulation of an Improved H 00 Controller

As a result of a process of iteration through combinations of zero, first and second order 

weighting factors and assessment of the performance of the resulting controllers at the
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simulation stage, a reasonable controller was obtained using first order weights as 

follows

W, (s) = d ia g ( - ^ — , - ^ — ) (4.21)
105 + 1 105 + 1

,0.1(0.25 + 1) 0.1(0.25 + 1).
W2 (5) = d ia g ( - ± - — p , — 7 — — f )  (4.22)

0.002.V +1 0.002s +1

W3(s) = d ia g ( ,± ± )  (4.23)

This again gave a tenth order system but the gramian of the balanced system indicated 

that a good third order approximation should exist. Figs 4.60 and 4.61 show the 

simulated plant outputs and inputs respectively using the third order compensator model 

reduced by balanced residualisation. The third order controller reduced by OHMDA 

again gave unstable results.

In order to reduce the steady state error in y2 shown by Fig 4.60, the second element of 

Wj(s) was increased to constrain the second element of S(s) more severely. This 

improved y2 but resulted in a more sluggish response in y^ Since there was scope for 

increasing control effort, the elements of W2(s) were reduced to lessen the constraint on 

both elements of KS(s). The resulting plant outputs are shown in Figs 4.62 and 4.63 

respectively, the controller again having been reduced to third order by balanced 

residualisation. This final choice of weights was

(4 -24)

W2W = ^ ( M ^ , ^ ± 1 ) )  (4.25)
0.0025 +1 0.0025 +1

W3 (s) = rf;ag(2L -L ) (4.26)

Using a version of this controller reduced to third order by OHMDA, a stable but highly 

oscillatory system resulted, as shown by Fig 4.64. For comparison, the plant ouputs 

were simulated using the tenth order compensator and these are shown in Fig 4.65. They 

can be seen to correspond closely with those for the compensator reduced by balanced 

residualisation.

Attempts to squeeze out steady state error further by increasing the constraint on the 

second element of S(s) led to unacceptably high levels of control effort in response to
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steps on r,. (This observation is based on simulations using the tenth order compensator 

since model reduction by balanced residualisation became inviable due to the generation 

of complex elements in the reduced compensator's state space description. The models 

reduced by OHMDA were again too oscillatory).

There are two points about the H 00 controllers that may be made at this point. The first 

is that in almost all the simulations produced during this work the compensated system 

exhibited little or no interaction, i.e. the system was diagonalised. Presumably this is 

because any interaction implies steady state error and this is dealt with via the inclusion 

of sensitivity in the mixed sensitivity function. Secondly, the reduction of the 

compensator by balanced residualisation resulted in a model that was not strictly proper 

(i.e. D & 0) even though the full order model was. This resulted in complications upon 

implementation which will be considered later.

For simulations using the H 00 controller discretised by Euler's method, the Simulink 

model used for the characteristic locus controller and shown in Fig 4.48 was used again. 

The plant outputs and inputs produced by this model using the final H 00 controller 

reduced by balanced residualisation and a sampling interval of 0 .0 1  seconds are shown 

in Figs 4.66 to 4.69. It can be seen that a small amount of saturation on u, and u2 

resulted from the 8 V steps applied on r, and r2 at 0 and 5 seconds respectively, but that 

this has not had a serious effect on plant performance as compared to simulation with 

the continuous controller. Further simulations showed that performance of the discrete 

model began to deteriorate seriously for sampling intervals greater than 0.05 seconds.

4.6.4 H 00 Controller Implementation

The discrete third order controller simulated above was implemented on an IBM PC 

with a sampling interval of 5ms and used in conjunction with the beam and carriage. 

The system was unstable in a non-oscillatory manner, the carriage moving to an extreme 

end of the beam and being held there by significant beam gradient. As explained above, 

the H 00 compensator was not strictly proper after reduction to third order. It was 

decided to ignore the D matrix of the reduced model (i.e. to take D = 0) as an unwanted 

by-product of the model approximation process and to implement the resulting strictly 

proper compensator. The plant outputs obtained by this implementation using step 

inputs of approximately 7V into the beam and carriage rig are shown in Figs 4.70 to 

4.73. Overshoot on both y x and y2 is greater than that exhibited in the simulations as is 

the interaction between y, and r2. There is no apparent steady state error in y { or y2.

76



The design and implementation of four controllers has been described in the foregoing. 

The performance of the LQG controller was changed considerably by varying the 

estimates of process and measurement noise. Relatively low process and high 

measurement noise estimates for the original LQG controller resulted in slower poles for 

the estimator and a slower response to step inputs as compared to the improved LQG 

controller with more conservative process noise and less conservative measurement 

noise predictions. A controller based on a reduced order observer was implemented 

which, by adopting an observer pole comparable to the slowest pole of the improved 

LQG controller, gave similar performance.

The controllers based on the Characteristic Locus and H 00 Optimisation approaches 

were less satisfactory. The process of finding suitable dynamic compensators for the 

former and performance weights for the latter was a difficult one, involving a high 

degree of iteration. However, the H 00 Optimisation design process does offer an explicit 

approach to the design of robust controllers.
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5 Robustness Assessment

In the foregoing work, five distinct controllers were designed and implemented on the 

beam and carriage equipment. Of these, three were based on state feedback - the original 

LQG design with full state feedback, the design based on a reduced order observer 

(using a modified plant model with three outputs) and an improved LQG design. In 

addition, two controllers with forward path compensation were produced, the designs 

being based on the Characteristic Locus Method and on H 00/Mixed Sensitivity.

A full and rigorous assessment of the robustness of these controllers was not possible 

due to the shortage of time available to complete the present work and the complexity of 

such an assessment. In order to obtain some information on the performance of the 

controllers with plants deviating significantly from the model used for their designs, the 

five controller implementations were tested with two modified plants, one plant 

modification involving a change in carriage dynamics, the other a change in the 

dynamics of the two rams.

5.1 Plant with Modified Carriage Dynamics

For the plant with modified carriage dynamics, the horizontal separation of the rams, L, 

was effectively halved to give the carriage equation of motion

iCj = 5.546(x2 - x 3) (5.1)

In order to avoid the need for mechanical modification of the plant, this was achieved by 

introducing a gain of 2 into the output of the ultrasonic transducer monitoring the 

carriage horizontal position.

The response of carriage position, y l5 to step inputs of approximately 4V on reference 

input r, are shown in Figs 5.1 to 5.5 for the original LQG controller, the controller based 

on the reduced order observer (ROO), the improved LQG controller, the characteristic 

locus (CL) controller and the H 00/mixed sensitivity controller respectively. The LQG 

and H 00 controllers produced highly oscillatory systems. (Simulations based on both 

the continuous and discrete controllers gave a stable but highly oscillatory result). 

Comparing the ROO, improved LQG and CL controllers' performance with those using 

the unperturbed plant (Figs 4.34, 4.38 and 4.53 respectively) and bearing in mind that, 

due to the rescaling of y„ the change of carriage position for a given variation in the
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transducer signal is halved, these controllers behaved extremely well. The improved 

LQG design shows some increase in oscillation of the carriage whilst the performance 

of the ROO controller and the CL controller is comparable to that obtained with the 

unperturbed plant. The response of the beam height, y2, was virtually unaffected by the 

change in carriage dynamics.

In situations where normal plant variations make an increase in the robustness of the 

system desirable, only the H 00/mixed sensitivity approach offers the possibility of 

improvement by the adjustment of parameters explicitly related to robustness. In order 

to try to improve the H 00 controller's tolerance to plant perturbations, the design weight 

W3 was increased by a factor of 5 to give

W , = d t a g ( y ,y )  (5.2)

Fig 5.6 shows the response of yj to a step on r, using this modified controller with the 

original plant. Comparison with Fig 4.70 shows that, whilst there is some increase in the 

low frequency drift or 'hunting' of the carriage using the modified controller, the 

overshoot is significantly reduced. Fig 5.7 shows the response of yj using the modified 

controller on the plant with modified carriage dynamics. The system, though still 

oscillatory, is much better behaved than that based on the unmodified controller and, 

bearing in mind the relatively large change in carriage dynamics, may be considered 

acceptable in situations where robustness is essential. It is possible to argue that the 

modified controller performs better with the original plant than the original H 00 

controller, that this is because it is better tuned to the nominal plant model and that this 

improvement 'stretches' to the modified plant. However, comparison of Figs 5.8 and 

4.66 shows no improvement resulting from the modified controller on the nominal plant 

model at the simulation stage and it could therefore be argued that the overshoot on 

implementation of the original controller with the original plant (Fig 4.70) is itself a 

robustness problem (due to discrepancies between the plant and the nominal plant 

model) and improving robustness to improve performance with the modified plant has 

inevitably improved performance with the original plant.
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5.2 Plant with Modified Ram Dynamics

In an attempt to change the ram dynamics so that the carriage positioning was 

significantly disturbed, the maximum upward velocity of the left hand ram and the 

maximum downward velocity of the right hand ram were halved by reducing the 

corresponding gains on the servoamplifiers. The implementations based on the 

unmodified controllers with the plant modified in this way showed only a little more 

low frequency drift of the carriage, presumably because the ram dynamics were in either 

case fast compared to the carriage. However, the imbalance in the rams' velocities was 

more marked in producing significant dynamic interaction between reference input, r2, 

and carriage position, yl9 as can be seen from Figs 5.9 to 5.13. These show that the 

worst performers with respect to low frequency drift were the LQG and CL controllers, 

whilst the worst dynamic interaction was evident using the H 00 controller. (The 

interaction is caused by the left hand ram lagging behind the right hand ram when the 

beam is raised causing the carriage to move leftwards, and the right hand ram lagging 

the left hand ram when the beam is lowered, again causing the beam to move left).

Finally, the modified H 00 controller was tried with this plant. The response of y! to a 

step on r2 is shown in Fig 5.14. This indicates that any improvement in robustness given 

by the modified controller does not extend to the dynamic interaction problem evident 

here. The H 00/mixed sensitivity approach used here is, of course, based (and only 

loosely based) on an unstructured plant uncertainty model and hence offers no 

possibility of targetting this specific plant perturbation problem. However, in the steady 

state, the interaction between r2 and y! can be seen to be of a low order using either H 00 

controller.

This brief study of robustness involved two modifications of the beam and carriage. The 

improved LQG, CL and ROO controllers performed well with the plant with modified 

carriage dynamics, whilst the H 00 and original LQG controllers gave an unstable, 

oscillatory response. A modified H 00 controller designed for greater robustness, though 

a significant improvement on the original, did not perform as well as the ROO 

controller. The ROO controller again performed best with the modified ram dynamics, 

though in this case all the controllers gave a stable response.
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6 Discussion

The beam and carriage is untypical of mechanical systems in that the carriage dynamics 

contain a double integrator and the SISO system involving the control of horizontal 

carriage position by a single ram is inherently unstable. Although, as indicated in 

Chapter 2, the beam and carriage can be stabilised by a compensator in the form of a 

constant gain matrix, this leaves no scope for achieving decoupling and satisfactory 

performance.

The comments which follow may in parts relate to the general applicability of the 

controller design methods chosen for this work, but it must be borne in mind that the 

specific design problems encountered and the results obtained may be of a different 

nature for other types of system.

6.1 General Comments

The process of designing and implementing the five controllers showed the paramount 

importance of considering the magnitude of control effort, u, throughout. Controller 

designs that achieve satisfactory performance in theory (i.e. at the simulation stage) but 

only at the expense of large control effort are liable, in practice, to lead to signal 

saturation and instability. The inclusion of appropriate saturation blocks in the 

simulation models was invaluable in indicating any occurrence of this problem.

In the present work, no attempt has been made to produce digital controllers directly by 

z transform methods. The controllers were designed in the s-plane and digitised using 

Euler's method. Some early work using Tustin[77] showed that stable results could be 

achieved using larger sampling intervals than those at which Euler became unstable but 

the sampling intervals available to the implementations used here showed Euler 

discretisations to be more than adequate.

From a robustness perspective, only plant perturbation has been considered. Process and 

measurement noise were not considered in the generalised plant model, though 

estimates of their magnitude were required input for the LQG design procedure.

Generally speaking, it is desirable that a controller for a MIMO system diagonalises the 

system's transfer function matrix such that the system effectively becomes a set of 

independent (i.e. uncoupled or non-interacting) SISO control loops. For the controllers
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based on state feedback, a steady state decoupler only was attempted, though visual 

checks showed this to result in little interaction both with the original and the modified 

plants. For the CL controller, diagonalisation is designed into the system whilst the 

H 00/mixed sensitivity optimisation punishes interaction via constraints on sensitivity, S.

Some discrepancies were found between the discrete simulations and the actual 

implementations of the controllers. Since only slight errors were anticipated in signal 

discretisation (A/D and D/A conversions) and implemented sampling times, these 

inconsistencies are likely to be caused by discrepancies between the nominal plant 

model and the actual plant. Obviously, problems of this sort would tend to suggest a 

lack of robustness.

6.2 Comparison of Methods - Application of Methods

The three controllers based on state feedback were arguably much easier to design than 

the forward path compensators based on the CL and H 00 methods. For evaluation of the 

state feedback coefficients based on LQR design theory, all three controllers used 

simple identity matrix weighting functions for the weightings of the cost function. The 

cost function was defined to penalise the plant input vector, u, and the plant output 

vector, y. The estimator design required definition of process noise and measurement 

noise levels for the LQG designs and arbitrary estimator pole placement for the ROO 

design. Although in theory it would be possible, in a given application, to produce 

empirically based estimates of process and measurement noise covariance, W and V 

respectively, in the present work it was possible and safe to implement designs based on 

a range of values of W and V such that these designs, satisfactory or otherwise, could be 

evaluated in service. The original LQG design was unsatisfactory but, with insight 

provided by the ROO controller, it was clear that the estimator poles required to be 

'speeded up' and this could be achieved by basing the design on expectations of 

increased process noise and/or decreased measurement noise. For the ROO design, a 

single estimator pole was required to be chosen and this greatly facilitated the design of 

a viable controller. (The fact that a satisfactory controller was achieved without the need 

for estimates of the two ram velocities suggests that the rams could be modelled as first 

order systems and this would result in a fourth order plant model. Intuitively, this is 

because the rams are fast compared to the motion of the carriage along the beam. Any 

further work on the beam and carriage might well use a fourth order model).

125



The characteristic locus method required the choice of high, mid and low frequencies at 

which to diagonalise the system and also the choice of dynamic compensation for the 

mid and low frequency ACC's. Care was required to examine and, if necessary, modify 

the signs of the columns of the high frequency compensator. This was facilitated in the 

present work by comparison with the simple decoupling compensator described in 

Chapter 2. The design of the CL compensator for the beam and carriage proved difficult 

in that attempts to improve system performance by increasing the order of the 

compensator showed better performance at the simulation stage but instability at the 

implementation stage.

The H 00/mixed sensitivity design process was the most difficult conceptually and the 

most complicated in practice, not least because considerations of robustness were 

involved. The method required the choice of mixed sensitivity operator, weighting 

functions for each element of the operator and, since the resulting controller was of a 

high order, the choice of model reduction method. In addition, the method cannot be 

applied directly to plants with poles on the imaginary axis and therefore, in the present 

case, a transformation of the plant was required prior to design and of the resulting 

controller subsequently. The complexity of the parameters involved in this approach and 

their manipulation made this design process a difficult one to begin and it was found 

that the adjustment of weights to improve controller design was far from intuitive.

6.3 Comparison of Methods - Results Obtained

Disregarding the original LQG controller as having been superseded by the improved 

one, the controllers based on state feedback gave very satisfactory results with the 

original, unmodified plant. In both cases overshoot and low frequency drift (i.e. 

hunting) of the carriage were minimal and beam height response and system decoupling 

excellent. For the CL controller, the control of horizontal carriage position was rather 

unsatisfactory. There was significant hunting of the carriage and overshoot of 

approximately 25%. Attempts to improve this situation proved unsuccessful in that the 

implemented controllers tended to be unstable. The H 00 controller produced overshoot 

of the order of 100%, significant hunting of the carriage and overshoot on beam height 

of around 30%. This controller gave the least satisfactory performance of all the 

designs. It was also the only controller to produce such 'soft' control of beam height. Of 

the two methods of model reduction applied to the H 00 controller, OHMDA, though
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intended as a more robust technique, proved unsatisfactory and balanced residualisation 

was used for the final H 00 controller.

It is thought that the low frequency drift or hunting of the carriage was due to deadband 

effects in the amplifier/valve combinations which drive the hydraulic rams. When the 

carriage began to drift due to finite beam gradient, a threshold change in the controller 

outputs was required before the rams corrected this tilt angle. The harder, i.e. more 

responsive, controllers crossed this threshold more quickly than the softer controllers 

and therefore drift was much reduced with the former. A possible explanation of the 

difficulty of finding controllers based on forward path compensation which compared 

with those based on state feedback is that systems containing double integrators are 

particularly amenable to enhancement via velocity feedback to introduce a coefficient of 

s in the characteristic equation. In the beam and carriage, the carriage dynamics 

contained the double integrator and carriage velocity was one of the states fed back in 

the state feedback controllers. Thus velocity feedback was implemented directly in the 

state feedback controllers, which was not the case for the CL and H 00 controllers.

To some extent the quality of the results obtained with the original plant may reflect the 

relative ease of application of the methods used to produce the controllers. The ROO 

and improved LQG designs gave responsive systems whilst the CL controller and 

particularly the H 00 controller were much softer. Although measurement noise was not 

considered explicitly during the present work, it was noticeable that noise generated at 

the ultrasonic transducer by escaping air from the hydrostatic carriage bearing produced 

occasional violent movement of the carriage with the former, hard controllers but this 

effect was much reduced with the softer CL and H 00 controllers. Further investigation 

of this susceptibility to noise, by short duration (manual) interruption of the ultrasonic 

transducer's measurement path, showed the improved LQG and particularly the ROO 

controllers to react violently whilst the CL controller was less sensitive and the original 

LQG and the H 00 controllers well behaved in the presence of this noise. In the case of 

the original LQG controller, the softness of the controller, both in terms of response to 

measurement noise and response to control inputs, is due to the more conservative (i.e. 

larger) estimates of measurement noise and less conservative estimates of process noise.

The rudimentary investigation of robustness showed the ROO controller to be 

remarkably tolerant of large changes in carriage dynamics whilst the improved LQG
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controller still performed adequately. The CL controller's performance appeared to be 

completely undisturbed but the original LQG and H 00 controllers were extremely 

oscillatory when subjected to this change in the plant. However, the H 00/mixed 

sensitivity approach does offer a means of directly improving robustness and further 

work on the controller design produced improved performance with the modified plant 

without deterioration in performance with the original plant. This improvement, 

however, was not nearly enough to match the performance of the ROO and improved 

LQG controllers.

It is possible that further improvements could be made to the CL and H 00 controllers 

but this might require considerable investigation of dynamic compensators in the former 

case and weighting functions in the latter. Investigation of weights for the H 00 

controller accounted for easily the greatest part of the total time spent on controller 

simulations in the present work.

The plant modification involving a change in ram dynamics produced dynamic 

interaction between the beam height control input and the carriage position with all the 

controllers, the worst case being the H 00 controller, probably because this controller is 

so soft. In the steady state, however, these modifications did not appear to influence the 

controller.
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7 Concluding Remarks

The work on controller designs described here has been heavily dependent on the 

support of a computational tool, namely Matlab and its associated toolboxes. To some 

extent the best results have been obtained using the methods which are easier to apply 

(although this could be partly a problem of perception - better results suggesting easier 

methods). The ROO, for instance, made far fewer computational demands than the H 00 

controller.

General conclusions cannot be drawn from the limited work on robustness assessment. 

The ROO and improved LQG controllers responded best to plant perturbations, whilst 

the original LQG and H 00 controllers performed least well. The H 00 /mixed sensitivity 

approach gives a means of improving robustness but attempts to match that of the ROO 

controller were unsuccessful. The indications are, however, that the more responsive 

state feedback controllers would perform less well in the presence of measurement noise 

and, where this is significant, a design on the lines of the original LQG controller would 

be necessary.

The use of step tests for the investigation of controller performance throughout this 

work might be thought to impose operating conditions of unreasonable severity on the 

plant. Problems of excessive plant inputs in particular could be much reduced by rate- 

limiting the reference inputs and generally more satisfactory controller designs might be 

achieved. However, step testing has been adhered to here as providing a single 

convenient basis on which to compare controllers designed by the various methods.
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8 Further Work

The present work would be enhanced by a detailed study of H 00 weight selection. It is 

also recommended that a thorough and rigorous assessment of robustness be carried out 

using a plant model extended to include process and measurement noise and that this 

assessment include, in the case of H 00 controllers, the investigation of a variety of 

model reduction techniques and their effect on robustness.

The beam and carriage apparatus in its final form is a suitable vehicle for the 

investigation of controller designs based on techniques other than those applied in the 

present work. For instance, 'soft computing' approaches such as fuzzy logic and neural 

networks may be investigated and the plant model developed here, possibly reduced to 

fourth order, will facilitate the design and simulation process.

Finally, it would be advantageous in the application of controllers such as those 

contained here, to investigate their implementation using more control-oriented 

technology, such as a modem PLC system (e.g. the Schneider PL7 Pro system) or a 

graphically programmed data acquisition system (e.g. National Instruments' Labview).
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Appendix I - Glossary of Acronyms

ACC Approximate Commutative Controller
ARE Algebraic Riccati Equation
CE Characteristic Equation
CL Characteristic Locus
CP Characteristic Polynomial
CSTB Control System Toolbox
DSA Dynamic Signal Analyzer
LQG Linear Quadratic Gaussian
LQR Linear Quadratic Regulator
LTR Loop Transfer Recovery
MIMO Multiple Input, Multiple Output
MVFDTB Multivariable Frequency Domain Toolbox
MVFR Multivariable Frequency Response
OHMDA Optimum Hankel Minimum Degree Approximation
RCTB Robust Control Toolbox
ROO Reduced Order Observer
RP Robust Performance
RS Robust Stability
SISO Single Input, Single Output
TFM Transfer Function Matrix
UNF Unity Negative Feedback
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Appendix II - M-files

Lqg

% LQG Controller Design 
clear
load nsymmod
% Compute State Feedback Matrix 
[k,s,eigvalsys]=lqry(a,b,c,d,eye(2),eye(2));
% Compute Estimator Gain Matrix 
q=0.001*b*b';
%q=b*b';
r=0.01*eye(2);
%r=0.0001 *eye(2); 
[l,p,eigvalest]=lqe(a,eye(6),c,q,r);
% Compute Estimator State Space Equations 
[ae,be,cexy,dexy]=estim(a,b,c,d,l,l :2,1:2); 
k
eigvalsys
%k(:,5:6)=zeros(2,2)
1
eigvalest
ae
be
% Remove Estimates of y 
ce=cexy(3:8,:); % =eye(n) 
de=dexy(3:8,:); % =zeros(n,n)
% Compute TFM of Closed-loop System 
af=a-b*k;
[numl,denl]=ss2tf(af,b,c,d,l);
[num2,den2]=ss2tf(af,b,c,d,2);
% Compute DC Gain Matrix of Closed-loop System
gll=numl(l,7)/denl(7);
g 12=num2( 1,7)/den2(7);
g21=numl (2,7)/denl (7);
g22=num2(2,7)/den2(7);
gO=[gll g12;g21 g22];
% and Invert it 
invgO=inv(gO)
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Redest

% Reduced Order Observer Feedback Matrix Design 
% Assumes 6th Order Plant, 3 Measured States 
clear
load nsym2x3
% Compute State Feedback Matrix
[k,s,eigvalsys]=lqry(a,b,c,d,eye(3),eye(2));
k
eigvalsys
% Compute Matrix Partitions 
Aaa=a(l:3,l:3);
Aab=a(l:3,4:6);
Aba=a(4:6,l:3);
Abb=a(4:6,4:6);
Ba=b(l:3,:);
Bb=b(4:6,:);
% Specify Observer Poles 
p=[-10;-10+1 Oi;-10-1 Oi];
% Compute Observer Gain Matrix 
L=(place(Abb',Aab,,p))'
% Compute the State Space Description of the 
% Reduced Order Observer 
Ae=Abb-L*Aab
Be=[Bb-L*Ba Aba-L*Aaa+Abb*L-L*Aab*L]
Ce=eye(3)
De=[zeros(3,2) L]
% Compute the State Space Description of the 
% Simplified Reduced Order Observer 
Aes=Ae(l,l)
Bes=Be(l,3:5)
Ces=Ce(l,l)
Des=De(l,3:5)
% Compute TFM of the Closed-loop System 
af=a-b*k;
[num 1 ,den 1 ]=ss2tf(af,b,c,d, 1); 
[num2,den2]=ss2tf(af,b,c,d,2);
% Compute DC Gain Matrix for the Closed-loop System
gl l=numl(l,7)/denl(7);
g 12=num2( 1,7)/den2(7);
g21=numl (2,7)/denl (7);
g22=num2(2,7)/den2(7);
g0=[gl 1 g12;g21 g22];
% and Invert it 
invg0=inv(g0)
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C h a r l o c

% M-file to Compute CL's and Closed Loop Eigenvalues 
% with HF, MF and LF Compensation

% load data 
clear
load c:\matlab\arr\nsymmod 
ap=a;bp=b;cp=c;dp=d;
% specify frequency vector 
w=logspace(-2,2);

% compute MVFR matrix 
f=mv2fr(ap,bp,cp,dp,w);

% get index to freq for action of HF compensator, Kh 
index=min(fmd(w>=3 0));

% align eigenvectors at this freq 
[f3 0,w3 0]=fgetf(w,f, index); 
kh=align(f30);

% adjust signs of compensator's columns 
kh=kh*[l 0;0 -1] % Sign change for stability

% and compute MVFR of HF compensated plant 
fh=fmul(w,f,kh);

% Check alignment
misalg=fmisalg(w,fh)
index
wh=w(index)

% examine resulting CL's
clh=feig(w,fh);
clhs=csort(clh);
figure(l)
plotbode(w,clhs)
disp('Press a key ')
pause

% Define kd for MF face 
% kd=[ 1/50*(s+1 )/(s+10) 0;0 1] 
snum=[l 1;1 0]; 
sden=[50*[l 10];1 0];
% kd=[l/50*(s+l)A2/(s+3)A2 0;0 1]
% This gives tighter performance than the above with the 
% nonsymmetrical model but is unstable with the symmetrical 
% model and with the actual plant. Stability margin low? 
%snum=[l 2 1;0 1 0];
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%sden=[50*[l 6 9];0 1 0];

% Get index to freq at which MF ACC is to act 
index=min(find(w>=0.1));

% Design ACC
[am,bm,cm,dm]=facc(w,fh,index5snum,sden);
[Kmnum,Kmden]=mvss2tf(am,bm,cm,dm)
% To reduce order of Km
[am,bm,cm,dm]=minreal(am,bm,cm,dm);
[Kmnum,Kmden]=mvss2tf(am,bm,cm,dm)

% Obtain MVFR of Km 
fm=mv2fr(am,bm,cm,dm,w);

% and compute MVFR with HF and MF compensation 
fmh=fmulf(w,fh,fm);

% Check alignment
misalg=fmisalg(w,fmh)
index
wm=w(index)

% Examine resulting CLs 
clmh=feig(w,fmh); 
clmhs=csort(clmh); 
figure(2)
plotbode(w,clmhs)
disp('Press a key ')
pause

% Examine closed loop step response of system so far
[ahp,bhp,chp,dhp]=mvser([],[],[],kh,ap,bp,cp,dp);
[amhp,bmhp,cmhp,dmhp]=mvser(am,bm,cm,dm,ahp,bhp,chp,dhp);
[a,b,c,d] =mvfb(amhp,bmhp,cmhp,dnihp, [],[], [] ,eye(2));
eigvals=eig(a)
t=[0:.01:25];
figure(3)
mv2stepr
disp('Press a key ')
pause

% Examine Control Inputs
[ak,bk,ck,dk] =mvser(am,bm,cm,dm, [],[], [] ,kh);
[a,b,c,d]=feedback(ak,bk,ck5dk,ap,bp,cp,dp,-1);
figure(4);
mv2stepr
disp('Press a key ')
pause
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% Define Kd for LF face 
% kd=[l 0;0 0.2+0.5/s] 
snum=[l 0;.2 0.5]; 
sden=[l 0;1 0];

% Get index to freq at which ACC is to act 
index=min(fmd(w>=0.01));

% Design ACC
[al,bl, cl, dl]=facc(w,fmh, index, snum,sden); 
[Klnum,Klden]=mvss2tf(al,bl,cl,dl)
% To reduce order of K1 
[al,bl,cl,dl]=minreal(al,bl,cl,dl);
% Display Kd
[Klnum,Klden]=mvss2tf(al,bl,cl,dl)

% Obtain MVFR ofK l 
fl=mv2fr(al,bl,cl,dl,w);

% and compute MVFR with HF, MF and LF compensation 
flmh=fmulf(w,fmh,fl);

% Check alignment
misalg=fmisalg(w,flmh)
index
wl=w(index)

% Examine resulting CLs 
cllmh=feig(w,flmh); 
cllmhs=csort(cllmh); 
figure(5)
plotbode(w,cllmhs)
disp('Press a key ')
pause

% Examine closed loop step response of complete system
[almhp,blmhp,clmhp,dlmhp]=mvser(al,bl,cl,dl,amhp,bmhp,cmhp,dmhp);
[a,b,c,d]=mvfb(almhp,blmhp,clmhp,dlmhp,[],[],[],eye(2));
eigvals=eig(a)
t=[0:.01:25];
figure(6)
mv2stepr
disp('Press a key ')
pause

% Examine Control Inputs 
[ak,bk,ck,dk]=mvser(al,bl,cl,dl,am,bm,cm,dm); 
[ak,bk,ck,dk]=mvser(ak,bk,ck,dk, [],[], [] ,kh); 
[a,b,c,d]=feedback(ak,bk,ck,dk,ap,bp,cp,dp,-1);
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figure(7);
mv2stepr
disp('Press a key ')
pause

% Compute TFM of Compensator 
[num,comden]=mvss2tf(ak,bk,ck,dk)

%Name compensator state mats, for simulink model
acpl=ak
bcpl=bk
ccpl=ck
dcpl=dk
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Hinfinit

% Program to Design Mixed Sensitivity H-Infinity Controller 
% For Beam and Carriage

% Define Plant in SS 
clear
load nsymmod 
ap=a; bp=b; cp=c; dp=d;

% Shift imag. axis left (ie plant poles right) by 0.1 
a0=a+0.1 *eye(size(a));
% and Make into Tree 
ss_g=mksys(aO,b,c,d);

% Define weights on S(s), KS(s) and T(s)
%wl=[0.0004 0.04 1;0.01*[0.25 1 1];0.0001 0.02 1;0.01 *[0.0625 0.5 1]]; 
%wl=[0 10;10 1;0 10;10 1]; 
w l=[0 10;10 1;0 50;10 1];
% w 2=[l;l;l;l];
%w2=[0.1*[0.2 1];0.002 1;0.1*[0.2 1];0.002 1]; 
w2=[0.05*[0.2 1];0.002 1;0.05*[0.2 1];0.002 1];
%w3=[l 0 0;0 0 4;1 0 0;0 0 16]; 
w3=[l 0;0 10;1 0;0 10];

% Generate augmented plant in 2-port tree format 
tss_p=augtf(ss_g,wl ,w2,w3);

% Choose design method
method=menu('Choose Design Method','Standard H-Infinity Control','H-Infinity 
Optimal Control');

% Compute 'central' controller (ie. U(s)=0) 
if m e thod= l 

[ss_cp,ss_cl,hinfo,tss_k]=hinf(tss_p); 
else

start_row=l; stop_row=6;
[gamopt,ss_cp,ss_cl]=hinfopt(tss_p,[start_row:stop_row]); 
fprintf('gamopt = %f\n',gamopt) 

end

% Return Tzw in SS form ( for cost function)
% NB. This Tzw is for pole-shifted plant and, if'hinfopt' is 
% selected, the weightings specified include gamopt as a factor 
[acl,bcl,ccl,dcl]=branch(ss_cl);
[acl,bcl,ccl,dcl]=minreal(acl,bcl,ccl,dcl);

% Calculate Tzw by alternative route to check understanding)
% NB. If hinfopt used, gamopt assumed to multiply all rows of Tzw 
if m ethod=2
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w l(l,:)=gamopt*w l(l,:); 
wl(3,:)=gamopt*wl(3,:); 
w2(l,:)=gamopt*w2(l,:); 
w2(3, :)=gamopt* w2(3,:); 
w3 (1, :)=gamopt* w3 (1, 
w3(3,:)=gamopt*w3(3,:); 
tss_p=augtf(ss_g,wl ,w2,w3); 

end
[ss_cll]=lftf(tss_p,ss_cp);
[acl 1 ,bcl 1 ,ccl 1 ,dcl 1 ]=branch(ss_cl 1);
[acl 1 ,bcl 1 ,ccl 1 ,dcl 1 ]=minreal(acl 1 ,bcl 1 ,ccl 1 ,dcl 1);

% Return Compensator in SS Form 
[acp5bcp,ccp,dcp]=branch(ss_cp);

% Shift Imag. Axis of Controller Right (ie poles left) by 0.1 
acp=acp-. 1 *eye(size(acp));

% Reduce order of Compensator 
% Model Reduction by Balanced Residualization 
[acp 1 ,bcp 1 ,ccp 1 ,g,t]=balreal(acp,bcp,ccp); 
g
[acpl ,bcpl ,ccpl ,dcpl]=modred(acpl ,bcpl ,ccpl ,dcp,[4:size(acp,l)])

% Model Reduction by Hankel Norm Optimisation 
[acp2,bcp2,ccp2,dcp2]=ohkapp(acp,bcp,ccp,dcp, 1,3);;

% Plot step responses using compensator 
[af,bf,cf,df]=series(acp,bcp,ccp,dcp,ap,bp,cp,dp);
[afl ,bfl ,cfl ,dfl]=series(acpl ,bcpl ,ccpl ,dcpl ,ap,bp,cp,dp); 
[af2,bf2,cf2,df2]=series(acp2,bcp2,ccp2,dcp2,ap,bp,cp,dp);

% Calculate CLTF of Compensated Plant, Tyr, and Plot Step Response 
% [a,b,c,d]=cloop(af,bf,cf,df,-1);
[a,b,c,d]=cloop(afl ,bfl ,cfl , d f l 1);
%[a,b,c,d]=cloop(af2,bf2,cf2,df2,-l);
t=[0:0.1:10];
figure(l)
mv2stepr
disp('Type any key to Continue') 
pause

% Plot Control Inputs for Above, Tur
%[a,b,c,d]=feedback(acp,bcp,ccp,dcp,ap,bp,cp,dp,-l);
[a,b,c,d]=feedback(acp 1 ,bcp 1 ,ccp 1 ,dcp 1 ,ap,bp,cp,dp,-1);
%[a,b,c,d]=feedback(acp2,bcp2,ccp2,dcp2,ap,bp,cp,dp,-l);
figure(2)
mv2stepr
disp('Type any key to Continue') 
pause
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