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"Some of the problems of arch
analysis cannot be solved Dby
either rational or empirical
methods alone. They are problems
in probability in which the range
of uvncertainty of ~ certain
fundamental variables is a matter
for observation, but the probable
uncertainty in the results
consegquent  upon the accidental
combination of these variables can
scarcely be determined by

experimsnt"

Frofessor Hardy Cross,

University of Illinois.
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A B &S T R A C T
( P. A. Mallinder )

THE NON-LINEAR ANALYSIS OF MASONRY ARCHES

The objective of the research programme has been to investigate the
problems besetting the national masonry arch bridge stock and to-
propose enhanced means of appraisal accordingly. The programme has
involved site assessments and limited experimentation together with
limit state and serviceability analyses. All theoretical and
empirical studies have been mounted as micro-computer software and are
supported by computer graphics. Throughout, the accent 1s on
engineering reguirements in practice; the almost universal absence of
as-built drawings and “the involvement of natural materials whose
mechanical properties are highly variable are to be noted from the

outset.

Initial considerations relating to the arch form, its historical
context and present masonry arch assessment methods are set out in
Chapter 1. Fieldwork studies are presented in Chapter 2. ‘

The concept that masonry has finite compressive strength is
accordingly considered in Chapter 3 which includes experimentation
establishing the appropriate constitutive properties with respect to
natural rock. A general moment-thrust response modelling is
established and an original non-linear limit-state moment-thrust

interaction diagram is determined.

Limit state and serviceability masonry arch bridge models of
innovatory form are included in Chapter 4. These models follow from
the studies of Chapter 3 and are novel in their own right. However,
the critical arguments upon which they are based demand that these
models be seen as prototypes of enhanced models whose features have

now besn established.

Overall conclusions are discussed in Chapter 5 wherein the practical
factors affecting the nature of masonry arch bridges are juxtaposed
with the engineesring requirements imposed upon them. Modern
assessment methods must afford output that is safe without being
overconservative. The findings of the research programme are in
keeping with this. Supporting documentation is given in the
Appendices. s
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CHAPTER 1

INITIAL CONSIDERATIONS

1.1 INTRODUCTIOE

The arch is one of the oldest structural principies known to man. Its
usefulness first became apparent to the civilisations of pre-history,
thousands of years ago. Throughout‘almcst the whole ﬁf our ascent to
technological mastery, the arch reigned supreme as the only structural
form capable of spanning appreciable distances without the need fqr
materials of tensile strength. The art of arch ekploitatibn reached
its zenith in the middle ages with the construction of nagnificenf
cathedrals throughout Europe. It was not until comparatively modern
times that the world's first non-masonry arched bridge at Ironbridge,
Staffordshire, heralded the end of the era. The rapid progress of the
industrial revolution ensured that by the beginning of the 20th
Century the masonry arch was virtually obsolete, having been replaced
by flat bridges of steel and reinforced concrete. Such is the
durability and 1ongevity of masonry arch structures, however, that
even though virtually none have been constructed for the last sixty
years or more, they still account for the largest single group of
public road bridges in the United Kingdom®'’. Figure 1.1 gives

indication of our inheritance of these old masonry bridges.



03,800

I

m il
x;:;i't\i;{\%\; |

ié%&, 4 5{
AR
\ xj:fs.’\;*.%.&

: '.5'."'."'\"".

RV '\,l.‘{ﬂ
(K "...'\'K.'k" "s“'\\.\' \'Q'\'si W
NN 60,000
IR TE R
\ 'n,n\:n ) \\-:"x\".'s.\u}l
AR TR

LRI
::::::::::::::::::::::::::::::::::::::::::::::::
-------------------------- e
vvvvvvvvvvvvvvvvvvvvvvv

NIy
'

»
v

LRLAR R AR R R AR R LR ]
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
:::::::::::::::::::::::::::::::::
---------------------------------------------------------------------------------------

13,0
w //,//// 7 /,‘/// 77 ///7/??7f/{}’///)’?/f//)%’??f?/]}’? 7/ // .
,/f/f,//ﬂ/%/ / ////// HASOHRY CULVERTS /| 37,0
. /// f///( %ﬁ//////"////////?////////lf//////f

9% 18 e

i
\
’/ 144

192z 1335

Figure 1.1

Cumulative Numbers of Public Read Bridges in the United Kingdom



Their continued abundance among the country's bridgestock gives rise
to serious problems for several reasons. -First of all, none of them
were "designed" in the modern sense. Most would probably have had no
calculations at all applied to their construction - merely having been
built to conform to traditional proportions - and even the ones that
were the subject of calculations would have often had these baaed upon
simple empirical theory or even rules of thumb. Additionally, records
of their dimensions, internal structure and so forth have rarely
survived. The second problem is that the loading that was envisaged
at the time revolved about the horse and cart - a far cry from the
modern 38 tonne heavy goods vehicle. The final problem is simply that
of old age and progressive deterioration. Even structures as durable
and with such reserves of strength as these do eventually fail. The
current position is therefore that, although no new masonry arch
bridgeé are today being built, there is a great need to develop modern
techniques aimed at determining the strength of these existing
structures when subjected to presenﬁ day highway 1loading.  The

emphasis has thus moved from design to assessment<=-%.42.

There are two main schools of thought with respect to ﬁwdern DASONry
arch analysis. The first, chronologically, is almost entirely due to
the work of Professor Heyman®®.€.7.%> of Cambridge University and
concerns limit state philosophy. His approach assumes infinite
compressive strength for the arch material and deems failure to occur
upon the formation of four mechanistic hinges (or "plasti§ hinges",
according to some sources). ffomise is shown by the technique, it

being supported by observations of failure modes of this type in



practice<®®, although actual numerical predictions of collapse loads
are often not as good as one would hope. Whilst basically appropriate
to many arch configuratioﬁs, further dévelopment is undoubtedly
necessary to achieve consistent and accurate results. The second
school of thought is concerned with evaluation of full load-
displacement .  path histories employing finite element
analysis‘“~‘°"5’, ~a technique familiar to structural engineers.
Perhaps surprisingly, the results from this approach have often been
disappointing. Again the reasoﬁ is that the modelling is not
sufficiently representative of reality, and short of a massive

increase in complexity this may remain so.

It is worthy of note that contemporary research in this field has been
primarily devoted to the prediction of an ultimate collapse load for
an arch, whereas in practice it is the service load capacity of the
arch that is of relevance to the bridge owner. It is possible that
the latter may be determinable from a collapse value by simply
factoring down, but at present the relationshié between the fwo states

is a matter for conjecture.

The author has attempted to make contributions to the current state of
knowledge in predominantly three areas. Firstly, a detailed
theoretical study of the fundamental engineering properties of masonry
has been undertaken and the resulté, apart from being of value in
their own right, have been utilised in the remainder of the work.
Secondly, a refinement of the meéhanismrtype analysis has been

developed, using the results of the above studies, whereby the



vinfinite compressive strength" assumption is replaced by actual
masonry constitutive properties. An item of computer softwﬁre has
been written to carry out the analysis and to arrive at an ultimate
collapse load prediction. The third area of épplication is again
computer based.  Essentially, an iterative, piecewise linear
flexibility analysis is performed with adjustments being>made to the
arch model during each cycle to allow for the attendant degredation of
structural stiffness. The procedure is continued until a hinge is
deemed to have developed. In the latter case, then, the objebtive is
the study of arch behaviour up to such a notional “"serviceability"
limit state and is complementary to the~previously described ultimate
limit state studies. However, it is considered possible that that a
first hinge could form very early during the loading regime and that

this would <cause revision of the notional serviceability

definition<7°?.

The various techniques developed have been compared against full scale
and model tests and the results are discussed and conclusions drawn.
Throughout, attention is focussed upon single span, non-skewed arch

forns witﬁ non-laminated arch barrels.

1.2 THE ARCH FORX

The Romans constructed the first proper roads and bridges in the

British Isles but of the latter only piers and foundations have



survived. Theyoldest surviving British bridges are medizval arched
rivef crossings. A few or these date from the 12th Century 5ut
thereafter ever increasing numbers of arch bfidges survive up to the
end of the 19th Century, and indeed there exist some examples déting

from the early 20th Century.

As a constructional material, bricks were used by the Romans but they
were not .used again in Britain until their re-introduction in the 13th
Century. The earliest examples of arch bridges in Britain are

therefore invariably of stone.

The most common arch profile is segmental - Roman arches were in fact
semi-circular, in the mistaken belief that only vertical reactions
could résult"’2>. Until the 15th Century the pointed stylebwas also
common, é product of the Gothic school of érchitecture. During this
period greater consideration was given to aesthetic gqualities than to
likely structural performance, with the inevitable result that many

arches collapsed on removal of the centering.

Many fine examples of medizval architecture still exist. Plate 1.1

depicts the magnificent York Minster - widely recognised as one of the

master works of western architecture - where instances of the
exploitation of the arch principle abound®'®’. Plate 1.2, for
example, shows one of the Minster's many flying buttresses. Yet a

further development of the arch principle can be seen elsewhere in the
construction of domes. These are merely three-dimensional arches, and

instead of the need to provide strong abutments to resist the arch's






horizontal thrust, a continuous riﬁg beam is provided around the
dome's base. The aim of the present studies is,’however, to consider
arches in their more usual form, particularly in’théir application to
bridges, and consequently their action andyconstrudtion in such casés
will be briefly described. Figure 1.2 enables the main structural
components to be observed. The maiﬁ "working" structural compahent of
an arch is the ring (or barrel) which is composed of discrete, wedge-
shaped MASONRry componenfs termed'"voussoirsf - as many of the early
studies éf arch behaviour were Conduqted by the French, then so are
ﬁanynof the terms used of French extract! The voussoirs are usuaily,
but not necessarily, cemented together. The main purpoée of this is
to provide a good bedding between adjacent voussoirs, rather than for
the purpose of transmitting temsile foroeg since the arch ring 1is
esseﬁtially, and most - importantly, a cbmpréssion—only structural
: eleméntf Iﬁdeéd,v it was the advent of true ténsile structural

materials that heralded the end of the masonry arch.

In order to provide a relatively level deck surface, a layer of fill
material vié placed oaver fhe arch ring, possibly together with a
waterproof membrane. Good fill material is relativeiy incompressible,
inorganic and inert; in practice, fill is offen of lésser 4uality;
In addition to "levelling up" the top of the arch, the fill also
provides a permanent dead load. As is sometimes the case with arches,
a counter-intuitive phenomenon exists here. That is, with most
bridges a 'large dead load is undesirable as it means that, for a
given bridge, less live load may be carried. The opposite is true of

~ arch bridges. Within reason, a greater dead load mobilises more
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pre—compfession in the arch ring - in ‘mﬁch the same way as
prestressing tendons put pre-compresgion into a beam - and thus the
arch is able to resist more live load bending. With the prestressed
beam analogy, a limiting value on the amount of prestress‘available is
quickly reached as a result of limiting compression. Owiﬁg to the
massive cross-section present in. an arch ring; its respective
compression upper limit is very high indeed, and thus the arch Qill

benefit from large depths of fill above it.

There is a second advantage in deep fill., As a 1ive load passes over
the arch, perhaps in the form of near-point 1oads‘fr0m wheels and sO
forth, the fill has the effectbaf dispérsing,the léad such that by the
time it reaches the arch ring, it has become a distributed load of
sone . kind. All structures find point loads more ORerous _than
distributed loads of the same total magnitude, but this is even more
true of the arch. The reason is that, again coUnter—intuitive¥y,‘thé
critical load position for an arch is around the quarter point -
unlike for a simple beam, where the criticall pbint is obviously
midspan. ‘This being the case, if a point load applied at the right
hand quarter point is dispersed by the fill, some of the load shed may
find its way towards the left quarter point and this would actually
provide a relieving effect, rather than cbntributing to collapse as

would be the case with an equivaient beam.
To properly perform its function, the fill must be restrained from
lateral movement and this is the role of the spandrel walls. These

simply sit astride the arch ring, debatably providing it with an edge

_19_



stiffening effect, and often giving rise to problems of a local
failure kind¢'4> (rather than a global failure of the arch) due to the
lateral pressures that they experience.  Spandrels may tilt, slide or

bulge and in doing so help allow the adjacent fill to rut and settle.

The final component of an arch is the abutment. All arch rings (even
semi-circular ones) gain part of the reaction for their large
~compressive forces from the horizontalAdireotion.‘ Thﬁs they not only
exert a vertical force on their abutments, but a signifiéanf
horizontal one also, though it may generally.be said that the steeper

the arch, the lower the horizontal component is likely to be.

These then, are the mzin elements of a nﬁsonfy arch. Although the
function of each of them is simple to>describe, and arches may be
constructed relatively easily by primitive means and by unskilled
labour, the formal action of each element, and the interaction bétween

them, is exceedingly complex to fully comprehend.

1.3 HISTORICAL RESUME

In the year 1676 Hooke¢'®> propounded the first theory of arch
mechanics. He drew an analogy between a flexible hanging catenary and
a rigid inverted caténary. It was left to.Gregory in 1697 to develop
the postulation that an arch would only be "safe" if an inverted

catenary could be included within its thickness.

_11_



La Hire (1695) was next to contemplate the problem. By constructing a
force polygon for the individual voussoir weights he was able to
determine the thrust in an arch. As a result of this he was better

able to design adequate abutments to resist this thrust.

Couplet's memoir of 1730 stated that an ércﬂ would not collapse if the
chord of half the extrados did not cut the intrados but lay within the
thickness of the arch. ~"He then examined the semi-circular arch
subjected to self—weight only and assumed that it collapsed by
breaking iﬁto four Pieces. He developed a cubic equation relating the
ratio of arch depth, 4, to the mean radius, r, and postulated thaf the
minimum value of the ratio d/r was 0.107. Unfértﬁnateiy, Couplet's

work was forgotten but later much of the same ground was covered by

Coulomb.

In the year 1800 Boistard tested a series of model arches featuring
dry-jointed voussoirs. One of the models tested.ywas, of the very
shallow Pont de Nemours, possessing a span to rise ratio of no less
than sixteen. Boistard's aims were threefold. AFirstly, he wished to
observe models of failure under various load conditions; secondly to
determine the minimum abutment requirements for resisting horiéontal
arch thrust and finally to obtain aﬁ estimate of the forces exerted on
centering during construction. During one of his tests on a semi-
circular arch of forty eight voussoirs he obéerved that if was
possible to construct the arch almost up to the quarter points without

centering. This ability of semi-circular arches to éupport themselves

..12..



was quite likely utilised by the Romans and other arch builders of

antiquity.

In 1826 Navier was the first to suggést thaf if the line.of thrust lay
 within the middle third of the voussoirs then none of the arch could
be in tersion. Following this, Professor Moselgy showed in 1835 that,
if the arch ring was unable to resist tension, the liﬁe of thrust must
lie everywhere within the arch ring. Later, iﬁ 1846; Snell was to
raise the question of the possibiiity of material failuré affecting

the position of the line of thrust.

Also in 1846 Barlow:'S” demonstrated, by means of a model, that Masely
must be corfeot. Tae model employed voussoirs with curved contact
faces such that only one contapt point was possible. Waen loaded, the
- voussoirs "rolled" against one another untii equilibrium was reached
whereupon the thrust line (joiniﬁg the contact pointé) could be
observed. Barlow pointed out that, provided the arch was sufficiently
deep to contain the thrust line, then many thrust lines were possible.
He also raised the important point that, because the assumptions of
infinite compressive strength and perfect joints were unrealistic,
then the lines of thrust must not be allowed to approach the edges of
the arck ring. This note of warning has a bearing cn thé later, much
rore recent work carried out by Professor Heyman‘s.€.7.%*, and is a

feature of the author's constitutive studies.

In the year 1845 Villarceau presented a treatise to the Academie des

Sciences in France in which he developed a design methed which
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required the centre line of the voussoirs to coincide with one of the
possibie thrust lines for the load cdndition, thereby achieving a safe
design. By solving the resulting numerical équations Villarceau thus
produéed the first definite dasign toal. ProfeSsor Heyman, in modern
times, has suggested that much of Villarceau's work is still valid and

would result in an economical and safe design.

In 1879 Castigliano¢'®> developed the concept of structural analysis
by the strain energy method and was to apply this technique to.twc
arches.. However, with the gradual introduction during the nineteenth
century of new materials such as cast aﬁd wrdught irbn, the era of
masonry arch construction was drawing‘to a close and with it much of
the interest in arch mechanics. In ‘the f{future, interest would
eventually be rekindled but not, as previously, would it be centred on
analysis for the purpose of subsequent design, but rather upon fhe*
assessment of exiéting arches required to carry loads far in excess of

those envisaged by their designers, generations before.

1.4 MODERN-DAY ARCH ASSESSMENT

1.4.1 The Work Of Professor Pippard And The MEXE Method

In the 1930's, Professor PFippard<'”?, of the Castigliang "elastic"
school, conducted model experiments and analyses that were to form
the basis of arch assessment, in various guises, for the next fifty

years. In particular, the Department of Transport's own approach¢=-=?
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is still largaly based on his work and for this reason the background

will be considered in some detail.

Professor Pippard limited consideration to the case of a two-pinned
arch¢'7” on the basis that although masonry arch bridges arebnominally
doubly encastre, hinges form at the abutments very eariy during the
loading regimé due to very slight spreading of the latter.
Furthermore, he was-only to consider arches of parabolic profile with
a ratio of quarter point rise to crown rise of 3 to 4 subjected to a
central’point load, as illustrated in Figure 1.3. Analysis of this
singly redundant system was based on strain energy. Letting M. denote

the bending moment at abscicca x, then the strain energy, U, may be

given as
1/2

U=2| M~ ds s (LD
2EI
2

where ds denotes an element of arc length of arch ring, EI refers tb

flexural rigidity and H denotes the horizontal reaction.

H can be evaluated employing the principle that dU/dH = 0, if H does

no work, such that
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Figure 1.3

Fippard's Elastic Analysis
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M ¥ d3 = 0 ' e (12D

where I represents the second moment of area of the arch ring at x,
and Io the same at the crown (Figure 1.3); this implies that the arch

ring thickness increases towards the springings. This yields

(172

Ne d¥. dx = © : ' : Cel. (1.3

noting that the horizontal component of force is constant throughout
an arch ring. Menipulation affords H., the thrust at the crown due to
live load to be

H. = 25V¥(1l/a)/128 o (LB

with the bending moment at the crown due to live load, M., becoming
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M, = -7W1/128 , cees (LD

These values must now be superimposed‘ on the corresponding values
arising from the dead loads due to the arch ring and the f£ill.
Pippard assumed that the effective width of the bridge was 2h,
suggesting a 45° live load dispersal at the crown. It is furthermore
assumed that the arch ring and fill material have equivalent specific
weights (denoted by p) with the fill posseésing zeré streﬁgth and
thereby imposing a purely vertical load on the arch ring. A second
strain energy analysis now provides the thrust at the crown, Ha, due

to dead load to be

Ha = pl=h(a/21+(h+d)/4)/a | | <'1.6§
and the bending moment at crown, Ma, due to dead loaé

M. = pl=ah/168 . coe (LT

Combining equations 1.4 to 1.7 (superposition of live and dead load

effects) yields the horizontal thrust, which is constant across the

arch, to be

H = (plh(a/21+(h+d)/4)+25VW/128)1/a | e (L8
and the bending moment at the crown

Mevown = (plah/42-7W/32)1/4 s (1.9
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Pippard now suggests two possible limiting criteria. As V increases,
either the thrust line at the crown rises and tension develops, this

tension being limited by a "middle half" rule such that
Viim vens= (32plh(2a®+4ad+21d(h+d)))/(21(28a-25d)) vev (1,100

or, it may instead be the case that a certain limiting value of

compressive stress, f, is reached, whereupon

Viiw compe= (256fhd/1+128plh(a/28/d-1/21-(h+d)/4/2))/(25/a+42/d)

vees (11D

Pippard then draws upon his éxperimental work<¢17> to conclude that tﬁe
former approach (the “"middle half") is the most apptopriate, Based
onn this work, Pippard was later to produce safe load tables for
arches. By assuming a parabolic profile with a span to rise ratio of
four and knowing the span, the arch ring thickness and the depth of
cover to the crown, together with values for the arch ring and fill
specific weights, it was possible to reéd off the maximum possible

safe central point load from the tables.

Pippard, in cqnjunction with Baker, was later to. put forward four

possible modes of arch failure:

1. Development of excessive tensile stress in the jointing

material.



2. Developrent of excessive compressive stress in the
voussoir material.
3. By the sliding of one voussoir over another.

4. By spreading of the abutments.

The formation of a “mechanism" was not épecifically mentioned - mnote
the "elastic" nature of the method - although this type of failure had
been obsarved in the model tests 172,  Presumably, since the
development of excessive tensile/compressive stresses must preceed the
formation of a mechanism, conditionsbi‘and 2 abo§e would cover this

eventuality.

During the second world war it became necessary to route heavy
military traffic, such .as tarks, over public road bridges and,
especially in times of emergency, a simple, quick means of estimating
arch bridge carrying capacity was required. The Military Engineering
Experimental Establishment (MEXE) thus developed a technique based on
the earlier work of Pippard. After the waf, the MEXE method, as it
has come to be known, was adopted by the Department of Transport and
by this stage it incorporated a nomogram to evaluate its oﬁly

"mathematical" element.

The MEXE method was issued to local authorities in various memoranda
over the years, the latest of these being the current Departmental
Standard BD21/84¢=* and its accompanying Advice Note, BA16/84+%°.

Both of these documents were issued in 19384, In addition to MEXE,
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they permit the application of alternative analyées with certain

conditions.

MEXE itself is quick and simple to apply, a desirable prerequisite
considering the ‘number of arch bridges that require assessment at
regular intervals. It initially enables the calculation kof a
“provisional axle load" wutilising the épan, arch and fill thickness
at the crown - this is done by means .of a nomogram (or a formuia).
The prbvisional axle load is then modified by a series of factors that
are meant to compeﬁsate for the deviation of the real arch from the
assumed ideal. Thase factors adjust for span to rise ratios othef
than four to one, for the shape of the arch, for the type of arch and
fill materials, for the state of the joints and for the overall
condition. The resulting "modified axle load” now represents a
pernissible axle load for a two-axled bogie. The permissible axle
load for single axle and tri-axles may then be calculatéd from this
and allowances made for the case where a bogie axle may "lift off" due
to road surface irregularities or to a hump-back bridge. A weight
restriction may then be applied to the bridge if the calculation
suggests that ‘“construction and use" vehicles canﬁot be allowed
dnrestricted péssage. Greatrrelianoe is placed on the judgement of
the bridge inspector in arriving at the various condition factors.
Furthermore, the MEXE method is thought to be tbo conservative‘f2>,
particularly so for longer spans. The Departmental Standard and

Advice Note do, however, permit the use of alternative techniques.

_21_



1.4.2 Professor Heyman's "Mechanism" Approach

Professor Heyman's approach is often termed “plastic", though this is
not used in thé same sense as when, say, it is applied to structural
steelwork analyses, since in the present context one is dealing with a
brittle material. Heyman observes that "plastic" analysis of arches
dates back to the 18th century and therefore pre-dates elastic
methods. - The objective is to defermine the ultimate limit stéte

loading on the basis that a four hinge mechanism will initiate a

collapse.
The approach is founded on the following basic assumptions:

1. The arch ring material is infinitely strong in
compression, or the stress leQels are so low that
compression failure is rendered unlikely.

2. The arch ring material possesses zero tensile strength.

3. No sliding (shear failure) is likely between voussoirs.

4, Live loads are transmitted from the deck surface down

to the level of the arch ring without any dispersal.

Assumption 1 is essentially unsafe, of course, but is considered to be
close to the truth in this context and is therefore more reasonable

than it might at first appear. In essence it implies that the "thrust
line" is able to approach the very edge of the arch ring before
failure occurs. Common sense dictates that this cannot be so, and

that failure must occur slightly sooner. Just how much sooner will be
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considered in greater detail in Chépter 3. For the present, however,
it can be said that the result of this assumption must be to give the
method a tendency to predict a slightly higher ultimate strength for
any given arch than is actually the case. It also has the implication
that no knowledge at all is needed regarding the constitutive
propeftieskdf the arch material.v This is in contrast to other methods

where some form of stress-strain relationship is required

The second assumption regarding zero tensile strength is, at least for
cemented arch rings, also untrue but in the absence of ‘any other
reliable data, a reasonable one that is often applied in general

- masonry design.

The shear failure assumption is again debatable. Punching shear
failure was not observed in the Bridgemill full-scale load test<®>,
However, punching of an individual voussoir, perhaps overlain by an
isolated piece of rock fill is feasible - Rivelin Mill bridge
described in Chapter 2 exhibited an individuél pﬁnched voussoir - but
the author would tend to agree that a global failure initiated by

punching shear under normal traffic loads is extremely unlikely.

To ignore the dispersal of live loads through the arch fill material
is quite a substantial approximation. Vhile accepting that
determination of the exact pattern of loading that the arch ring
experiences from an arrangement of loads at deck level is not simple,
almost any kind of dispersal assumption is 1likely to yield more

accurate results, particularly when the load is remote from the crown.
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However, Heyman's assumption in this respect is at least "safe" in
that it will result in the prediction of lower ultimate strengths than
in actuality, since a concentrated load of a given magnitude 1s more

onerous than a "smeared" load of the same total magnitude.

It will be seen that the two main approximations inherent in the
method, namely infinite compressive strength and the absence of live
load dispersal, tend to work in opposite directions and therefore to
cancel. The amount of “"cancelling" will depend ﬁpon many parémeters,

geometrical and constitutive, and will vary from one study to another.

From this point, Heyman next divides the arch fill and barrel into
vertical ‘slices' and assumes that the weight of each of these slices
is applied as a point load to the arch. The live loading is similarly
treated as one or more point loads and the resulting thrust line
through the arch ring constructed by a geometrical method. Failure of
the arch is deemed.to occur when the thrust line just touches thé
. extremities of the ring in four positions, these four positions being
termed "hinges", with four hinges being necessary to convert the
doubly encastre arch into a mechanism. It is nétable that an inherent
assumption here is that the natural state of all real masonry arches
is encastre. This is in marked contrast to the earlier work of
Pippard, and hence MEXE, wherein the arch ié considered to be of the
two-pinned form. Figure 1.4 depicts the salient features of the

system topology involved.
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‘Plastic Hinges' Form At Each

0f The Four Points Where
The Thrust Line (Dotted)

Touches The Arch Extremities

Figure 1.4

Typical Heyman Collapse Model
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Vith respect to the determination of the degfee of safety of an
existing arch under a prescribed pattern of loading, Heyman proposes
that the thickness of an imaginary arch ring just enclosing the thrust

line, divided by the thickness of the actual arch ring, be termed the
"geometrical factor of safety". It should be noted that the
geometrical factor of safety is not directly éomparable to a "load
factor". In other wordé doubling the load on an arch possessing a
geometrical factor of safety of two may not cause collapse, whereas
doubling the load on an arch possessing a load factor .of two would
indeed‘céuse collapse. As far .as the aﬁthor is aware, no vork has
been done on the conversion of one system of notation to the other.
Various other bodies have developed their own “mechanism
models" ¢®. 12, 12,192 a5 this kindvof behavioural nmdellingvhas become

known.

Hechanism. models have yielded promising results, but on occasions
where the results have been poor, the usual explanation has been that
arch-fill interaction has contributed significantly to the arch's
strength. In other words, rather than merely acting as a vertical
dead load and live» load dispersal medium, the fill has exerted a
passive restraint upon the barrel -and thus inhibited hinge formation.
It has been speculated‘®®* that this effect may considerably increase
the strength of the structure and as a result of these observations
the “state of the art" is typified by the incorporation of such arch-

fill interaction effects into mechanism-type computer programs.

_26_



1.4.3 Finite Element Analysis

This modefn approach employs a formal non-linear structural analysis
procedure applicable throughout £ﬁe ldading regime. This involQes the
allowance for thé:domplexities associated with the lack of tenéile
strength and crack propogation. Figure 1?5 shows a typical finite
element modelling mesh. The two finite element computer programs that
have been written fo date (in the United Kingdon, at least) are due to
Dr. Crisfield of the Transport and Road Research Laboratory<+?, and
Professor Sawko and Mr. Towler of Liverpool University<''?®. - The
former of these .two programs was developed from earlier programs
specifically written for the analysis of thin chells. Reference 4
describes the theory in soms detail, then goes on to validate the
progran against a published theoretical study<='’ due to Sawko and
Towler.  This study took the form of the applicaticnb of various
alternative analytical techniques (MEXE, Pippard's elastic, Heyman,
Sawko/Towler) to a series of hypothetical arch bridges with the
intention of observing the scatter of results from the rival
techrniques. To this 1list of comparisons Crisfield adds his own
results (both 10 and 20 element model versions) for one_df the arches
under study. As a demonstration of the effectiveness of Crisfield's
own progrém the exerciée is unfortunately rather limited. The
comparison is entirely theoretical and the "true" solution is
therefore unknown. Nevertheless, it shows a wide range of predicted
ultimate loads ranging from 63kN (Heyman lower bound) to 119kN (Sawko

& Towler) with Crisfield falling somewhere in betwzen. It would also
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appear, as Crisfield points out, that the MEXE result quoted in the

exercise is suspect and should be ignored.

Vhen Crisfield's program was applied to a full-scale load test -
Bridgemill, Girvan - it predicted ultimate collapse at sonewhere
between 1500kN and 2700kN, depending upon the parameters chosen for
densities, material compressive strength and so forth. The actual
collapsev load recorded was in fact in excess of 3100kN. In the
absence of further data it has to be said that the results given by
the program, in its present form, do not appear particularly

promising.

The second finite element program, due to Sawko and Towler, was novel
in the respect that the modelling incorporated parabolic stress-strain
~ characteristics for the arch ring material. This kind of relatibnship
was becoming accepted at that time due to the work of Hodgkinson and
Powell*==2> in the field of brickwork and is developed ﬁerein by the

auvthor.

To attempt to validate this program, two brickwork arches of four
metres span vwere constructed in the laboratories of Liverpool
University and these were tested both with respect to “"seviceability"
and to destruction. A résumé of the results so obtained was published
in Proceedings of the 6th International Brick Masonry Conference®'®?,
Rome, 1082. In predicting collapse loads, the program appears to give
quite good results,‘the authors quoting results for the two collapse

tests within +21% and -13% of "actual" values. However, for the
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serviceability tests, the nature and criteria for which are not
quoted, the published paper gives a theoretical value of 080kN
against actual values of 120kN (crown load, no fill over crown) and
140kN (crowﬁ load, 250mm fill over crown). These values, unless in

error, are far less encouraging!

A final point to remember regarding Sawko and Towler's serieé of model
tests is that the arch barrels were tested in a "pure" form, in other

words the dead load due to fill was applied by weights placed on a
stepped extrados, and the live load was aﬁplied difectly to the arch
ring itself. By this means, two of the largest and most intractable
sources of complexity were eliminated: no arch-fill inferaction could
possibly have been present and furthermore dispersal of the live load
through the fill could not occur.  In this rare instance, two of
Heyman's assumptions actually existed! For these reasons, the nmodel
tests are valuable in providing data free from two of the dsual fill-
related variables, in contrast to the full-scale test data available
in which all the variables act (and interact) at once. This
difference will later be taken advantage of in the development of the

author's own analyses.
1.5 SUMMARY
It is widely accepted that the present utilitarean arch assessment

tool, MEXE, is over-conservative, particularly so in the case of
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longer spans. Furthermore, if is not applicable to nahy real 1life
masonry arches, skewed decks, for example. The consequences of this
are that the authority responsible for the safety and maintenance of a
particular structure may be forced prematurely to apply weight
restrictions or to carry out unnecessary "strengthening" works. It
would quite clearly be of great benefit to possegs a more accurate

assessnment tool.

Before Heyman's "mechanism" work became popular, it‘ was widely
believed that a comprehensive finite element analysis would prove to
be the arch panacea; a throwback to the early 1970's wﬁen this kind of
analysis was thought to be universally applicable. This is not the
present case although the potential exists to develop a comprehensive,
threé dimensional finite elemsnt computer simulation.  However, the
effort required to develop it and the cost in computer time to run it
are daunting. Even if such a program were available, it would not
represent a day-to-day design office tool, since its running cost
would be prohibitive considering the number of arch bridge assessnents
that need to be made on a regular basis. MNechanism analysis, on the
other hand, is relativel& simple and easy to apply. Its main drawback
at present is that it is relatively undeveloped, and does not model
all the phenomena known to exist. Additionally, the author considers
that it is quite conceivable that not all arches would necessarily
fail by the formation of a mechanism, especially so in the case of low

span to rise arches with thick arch rings under deep fill.
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Having described the nature of the problem and having reviewed the
historical and topical attempts at its solution, consideration will
now be given to a series of actual structures with the intention of
studying their performance in service and the typical problens

experienced.
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CHAPTER 2

FIELDWORK

2.1 INTRODUCTION .

During the course of this study various masonry arch structures have
been visited with the object of gaining background information and

also to inspect and study various aspects of masonry arch distress.

2.2 DARFIELD AND BURYING LANE BRIDGES

Some researchers in the field of maéonry arch bridges are of the
lopinion that these structures are so "massive" that they remain
unaffected by subsidence of the abutments, such as that caused by -
pineral extraction<®®?, Plates_z.i and 2.2, taken from the personal
records of Mr. B. L. Davies, formerly South Yorkshire County Council's
Chief Bridge Engineer, amply demonstrate this opinion to be incorrect.
Both of the bridges illustrated were subjected to mining subsidence.

They were both previously in a sound condition.
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2.3 BRIDGE AT KETTLEWELL, NORTH YORKSHIRE

The failure of one of the spandrel walls of this bridge was reported
in New Civil Engineer<'<#?, 28th February, 1985. The failure was
considered as having probably been caused by’the freeze/thaw cycle.
Plate 2.3 shows the extent of the collapse (the bridée being taken out
of service as a result) ‘and Plate 2.4 reveals close-up details of the
internal construction left exposed bykthe missing stonework. It is
clear from the latter Plafe that, at least in this instance, the arch
barrel thickness internally is the same as that of the exposed

voussoirs at the edges - this is not always the case.

The minimal fill cover to the barrel at the crown position is also
apparent and, interestingly, “strata® lihes are visible in the fill
raterial, made noticeable by layers of material of differing ‘size.
This gives clues as to how the fill was originally placed. It would
seem that layers of varying thickness, thin at the crown, thicker at
the springing, were used to maintain a balanced load despite the fact
that the centering would still have bgen in place to supportvthe arch.
One can imagine that by adopting this practice less substantial.
centering would be sufficient and also that any variations in the

supply of fill material would be evened out across the whole span.

Repairs to the bridge were estimated at £100,000. The bridge had been
under regular inspection prior to the failure but yet no advance signs

of distress had been evident. This particular bridge gives an example
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of a local element failure rather than a global failure of the entire
arch. Local failure problems such as this are much more common than

overall, ultimate failure situations.

2.4 BRADBERRY BALK LANE BRIDGE, SOUTH YORKSHIRE

Constructed circa 1800 over the Dearne and Dove canal, this bridge was
in generally sound condition but its demolition was necessary in arder
to make way for the Vombwell Bypass.iﬁprovement scheme in July 1985.
The opportunity was therefore taken to obtain measurements, rock

'samples and fill samples.

The arch barrel was constructed of stone voussoirs to an elliptical
profile (Plate 2.5). Geotechnical souroeé suggest that the voussoir
stone is quite distinct from the stone used elsewhere in the bridge.
One of the voussoirs, cleaved for easier transit, is depicted in Plate
2.6 alongside a one metre rule for scale purposes. Typical voussoir

weight was 300kgf.

The same wall thickness was carried down from the parapet wall to the
spandrels while the adjoining embankment gravity retaining wall was of
similar construction but additionally backed up by roughly mortared
stones and also battered back towards the fetained side. Figure 2.1

gives the overall dimensions of the bridge.
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The £ill material consisted of 1local head deposits and local
industrial waste. At the time of inspection (Monday, 29th July, 1985)
the fill was surprisingly dry, despite the prevailing vtorrential
weather conditions; the bituminous carrigeway surfacing was obviously

serving as an efficient waterproofing medium.
2.5 RIBBLEHEAD VIADUCT, NORTH YORKSHIRE

Plate 2.7 gives an o?erall. impression of this well-known and
controversial multi-span arched viaduct‘and also shows the structure
’in the gontext of its bleak, exposed setting. Although its twenty-
four spans appear from afar to be entirely formed of stone, the
working arch barrel materialvislin fact brickwork. Clearly, a close-
up inspection of the intrados was not possible without special access
equipment, but . even from ground level it was apparent that there was a
gfeat deal of water staining accompanied by the emanation of white

leachate substances.

The piers, constructed of stone, showed abundant evidence of serious
cracking of a rather unqsual nature (Plate 2.8). Thé cracks did not
generally follow the perpend or bed joints but passed through the
blocks themselves. It seems unlikely that the cfacks were due to
applied load, neither live nor dead, as they did not particularly
occur in key, highly stressed areas but at random. The best

explanation is probably that the deck waterproofing has broken down
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allowing water to percolate down inside the piers ; the staining on
the intrados reinforces this hypothesis. From there on, possibly
expanding pier fill in conjunction with freezing and thawing cycles
(remember the exposed location) have served to burst the blocks
outwards. There is possibly also an inherent flaw in the stoné
contributing to the problem as one wouid have expectedktge mortar to
fail before the stone given the relatively weak lime mortars in use af

the time of construction.

All in all, a rather perplexing problem and, being multi-span, it
would appear not one to fall strictly within the remit of the preéent
studies. -~ Official sources bhave costed the repairs to Ribblehead

viaduct at £4 million<?=>.

2.6 BOLTON MILL BRIDGE, SOUTH YORKSHIRE

This bridge was taken out of service as a matter of urgency .in 1976.
Plates 2.9 and 2.10 serve to illustrate the overall poor condition of
the structure. Bulging spandrels, open joints and cracked masonry can
all be seen. In 1976 it was noted from beneath the bridge that a
hinge could actually be observed during the passage of traffic. A
further interesting feature concerning the hinge is that it occupied a
segment of barrel encompassing sevéral voussoirs, the voussoirs within
this segment 'rolling' in turn as loading traversed the bridge. The

arch was in fact extremely flexible and the constant relative movement
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of the voussoirs was grinding material from the voussoir ‘bearing
surfaces. Not surprisingly, the bridge was immediately closed and a

temporary culverted diversion constructed alongside.

Owing to the presence of services within the deck, the bridge was not
demolished and neither were repairs attempted. The diversion was made

permanent and the bypassed bridge still stands.
2.7 BRIDGE NEAR ARGELES, FRANCE

Plafes 2.11 and 2.12 show a partially demolished multi-span arch
bridge from which it is possible to see details of the internal
construction - such opportunities are comparativeiy rare., The bridge
appears to have been extremely well constructed. The single mbst
interesting feature can be seen in Plate 2.12. Here a massive
increase in thickness is evident as one moves dbwn from the parapet
wall to the spandrel wall. This feature would not normally have been
apparent without recourse to the drilling of trial holes through the
wéll. ’A point to béar in mind, however, is that details of Ffench and
English practice may have differed as this feature has not been

observed elsewvhere.
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2.8 RIVELIN MILL BRIDGE, SHEFFIELD, SOUTH YORXSHIRE

Rivelin MNill Bridge carries the AS7 trans-pennine Sheffield ta
anchester trunk road over Rivelin Brook. As part of Sheffield City
Council's rolling programme of bridge assessment, this highly skewed
. stone arch was inspected and a standard MEXE assessment carried out in
accordance with BE3/73¢=4°, Depending upon the parameters chosen (as
noted in Chapter 1, the method requires a large subjective inputs, it
could be shown that a weight restriction should be imposed. Visual
inspection tendéd to reinforce this result as, although the bridge
superficially appeared in reasonable condition; loose voussoirs became
apparent, including ons that had been punched to hang below the
barrel, and half of one other which resided in the river below! The
problex mainly occurred adjacent to both external faces and was
probably due in part to the high skew. Furthermore, the bridge'was
felt to vibrate under the passage of comparatively light highway
traffic. 4 more detailed analysis was therefore performed using
"MECHARCH', the mechanism model analysis developed by the author in
Chapter 4, with appliéd loading as required in BD21/84<=*.  This
revealed that the arch possessed an unacceptably low factor of safety
againsf a mechanism-type collapse. A second analysis using the
standard Heyman¢®® mechanism technique was employed and this tended to
reinforce the result. A programme of remedial works based upon a
‘reinforced concrete saddle has been prepared in the offices of the

author's employer and these works are in progress at the time of



writing. Plates 2.13 to 2.106 show the arch extrados and spandrel wall

inner face masonry exposed by these works.

Plate 2.17 depicts a spalled section of vbussoir taken from the river
bed undernsath the bridge, the bridge itself prior to the
strengthening progranmeb being visible in the background. A short
series of uniaxial stroke-controlled rock core tests was carried out
on samples obtained from this voussoir by -employing a specially
designed “"stiff" testing apparatus. This feature is discussed in the

following chapter.

2.9 SUMMARY

The masonry arch bridge form has been shown to be a complex éystem
involving natural materials and the concomitant highly variable
structural parameters. Age has led to this form suffering equally
complex in-service problems. An analytical treatment willl now be
considered, but aé an essential prerequisite, consideration will first

be given to a study of basic masonry mechanics.
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Plate 2. 14

A View Of Rivelin Mill's Extrados Showing Roughness 0Of Voussoirs
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CHAPTER 3

CONSTITUTIVE MODEL

3.1 INTRODUCTION

Masonry materials have traditionally been regarded as possessing
linear stress-strain characteristics<=s?; alternativély, infin£te
compressive strength has been assumed<s.=.7.®2, Relatively ‘recent
research*#** has, however, provided ample evidence that mascnry
exhibits strain <softening under increasing stress and that this
property may be more accurately modelled by means - of a parabolic
stress-strain relationship. It 1s proposed to émploy these findings
with the purpose of refining the analysis of masonry arch rings with

respect to both serviceability and mechanistic models.

3.2 STROKE-CONTROLLED CORE TEST PROGRAMIME

A short series of stroke-controlled uni-axial rock core compression
tests was undertaken on samples obtained from one of the masonry
arches described in Chapter 2, Rivelin ¥ill Bridge, this series being

the forerunner to a proposed larger and discrete programme of such



testz to be established at Sheffieid. City Poiytechnic. Plate 3.1
shows some of the 50mm diameter cores taken from the damaged voussoir,
recovered from the river bed beneath the bridge. Care was taken to
ensure that the cores were orientated with their longitudinal axes
along the line of thrust present in the bridge. The voussoir itself
may be seen in the backgroun&. An aspect ratio of 2:1 was employed
for the cores<=<?, Piate 3.2 shows various pieces of the same rock
after being subjected to point load testing - used to give initial
data regardingv likely strength. Plate . 3.3 shows the point load

testing equipment itself.

After sulphur capping to achieve smooth, parallel ends, the cores were
tested in a specially stiffened testing‘apparatué (depicted in Plate
3.4) at a constant rate of strain equal te 2x10~% secs™', each test
thereby being of some twenty minutes dufation. A typical load-
deflection response obtained from one of the cores is shown in Figure
3.1. "It is inevitable that the sulphur caps would have had the effect:
of altering the load-deflection response but this method presented the
most practical alternative, bearing in mind that this series of tests
was partly intended to evaluate the feasibility of the stroke-
controlled procedure anrnd to test the previously‘untried, stiffened
testing rig in this role. Plate 3.5 depicfs a typical core sample

irstalled between the platensz ready for testing.
With reference to Figure 3.1, if the reverse curve immediately éfter
the origin is neglected, it will clearly be seen that a curve oaf

approximately parabolic shape has been obtained and that the tracing
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Figure 3. 1

Typical Load-Deflection Response from a Rivelin Mill Core
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of the falling branch, the response after maximum load, has been
possible for a considerable distance. The reverse curve at the outset
is due to bedding-in, particularly with respect to the sulphur capping
which suffered extrusion. A failed core is depicted in Plate 3.6 -
the squashing of thé cap at one end is apparent. Further conclusions
on, or investigations of, this kind of ;aboratory' testing are not
possible from this limited branch of the present arch studies.
However, the at 1least qualitative confirmation of an idealised
parabolic, stress-strain law for rock, as opposed to the previously
weli documented similar law for brickwork, is very encouraging and
supports the present studies. Quantitatively, the peak stress of 35.6
¥/mm® can be considerd to typify the respecfive data; the &oussoir

rock was coarse and comparatively weak.

3.3 GENERAL FORMULATION

3.3.1 Introduction

The general form of the stress-strain relationship to be adopted,
neglecting bedding-in, and the accompanying notation are shown in
Figure‘3.2. The general equation of the curve is given by

0’/0’|~.\=2€/Em_ (e/em)2 e (8. 1)

where ow and €~ denote the peak stress and corresponding peak strain,

respectively. It is to be noted that the tensile strength is
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considered to be negligible. An analytical procedure will now be
ectablished to model the behaviour of a rectangular masonry section

under imposed axial thrust with co-existent uniaxial bending moment.

3.83.2 Uncracked Section

l-]

Consider first an uncracked section as denpoted in Figure 3.3.

Clearly, axial thrust P is given by
P= | obdy : | | Cern (3.2

where b denotes the section's depth and b its width, and bending -

morent ¥ is given by

¥=| ebydy ' ' oo 3.3
-d/2

Furthermore, for plane sections

€=kq+kzy | R 'S

where k: and k= are constants and y 1is a variable denoting the
distance from the centroidal axis of the section to the point under

consideration.
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At €=ez, y=-d/2 ’ ' ce.. (3.5)
and at e=e:, y=d/2 | | S el (3.6)

Rewriting 3.4

e==k:-k=d/2 : , . ' e, (BT
and
€17k +ked/2 R , .. (3.8)

; ki=(ezteq10/2 . 4‘ » A €< )
with
kz=(ex~((exteqr)/2))2/4 | : RN (3.;@)‘
or
z=2/d8(er/d~e=/d) : : cee. (301D
2 §=(€1+Ez)/2+y/d(€1—62) ool (80120



Substitution of equation 3.12 into equation 3.1 yields

0=Vm(2/em(((€1+€z)/2)+y/d(€1—€z))-(((€1+62)/2+y/d(€1—62))/em)z)

veen 3013
Hence, employing equatibn 3.2
d/2
p= Cab(2/€0m (((€1+€2)/2)+y/d (€1-€2) )= ({(er+€2) /2+y/d(e1~€2) ) [e) =) Ay
~-d/2 e GBI

Integration and substitution of the limits gives

P=0.bd (-1/3(e1/en)Z+e1/€nm—1/3(E1€x/En)tex/ewm—1/3(ex/€n)Z)

(3.15

Similarly, from equation 3.3
d/2

¥=| vmb(2y/en((le1tex)/2)ty/Ale1~€x) -y (((e1te2)/2+y/d(€1-€2)) /€n) =dy
-d/2 | | | cee. (3.16)

Integration and substitution of the limits gives

M'—‘o'mbd:z/6 ("1/2(61/60\)2+€1 /€1'|1—E.'.';:/En'-+1/2 (57:/6111)2) D) (3. 17)
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For specified parameters P and M, equations 3.15 and* 3.17 must be
solved simultanecusly to provide a solution for €: and €=, the
respective maximum strains. Equation 3.15 may also be rearranged to

give

(E 1 /60’.\)2:351 /Em— (E‘! 62/51‘1\2)+362/Em_ (6::-/6;.‘)2-3?/ (0"mbd)

ceee 3018
Equation 3.17 may be rearranged similarly to'give
(e1/ewm)==2(er/en—€z/entl/2(e2/En)Z- 12N/ (rnDd™) cees (3019
Equations 3.18 and 3.19 may now be equated to provide an expression
for €1/em, and this may be substituted into equation 3.17 to provide
a polyromial of degrees 4 in €=z
0=0.,bd?/6(-1/2((2(e=z/€w)-B€=z/€w+3P/ (rubd)-12M/ (0 bd=) / (1~

€x/€m) )2+ (2(ez/€n) ~BE2/€mt3P/ (0nbd) - 12/ (v mbd®) / (1-ez/€w) -

ez/entl/2(en/en)®)-N N ¢ -1s)]

Various iterative solution routines are available to provide a value
for €=, Thereafter, back-substitution is used to obtain a

corresponding value for e€..
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3.3.3 Cracked Section

Yow consider the situation prevailing should the section become
cracked in tension.  Equations 3.2 .and ‘3.3 are still applicable,
subject to revised'integral limits in accordance with the topology of
Figure 3.4 - note the effective depth, d'. From Figure 3.4 it may be

seen that, for plane sections
€=k1+kzy' ’ . ol 302D
where k. and k= are again constants and y' is a variable denoting the

distance from the centroidal axis of the section remaining uncracked

to the point under consideration; d' is. the depth of the uncracked

secticn.

At y'=d'/2, e1=Kki+k=d'/2 . | | ceen (3#22)
and at y'=-d'/2, 0=ki-k=d'/2 ‘ | - co.. (3.23)
thus

ki=kzd'/2 ‘ veee 8028
and substitution into equation 3.22 gives

€1=k=d' /2+k=24'/2 - cee 8029
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such that

€1=k=d" | | ‘ cer. (3.26)
with

2=€1/d" . cer (3.27)
and

k1=61/d;.d'/2 ' | ' .. (3.28)
or

k1=€1/2 | coe. (3.29)
Hence

€=+ /24,y /d" . B30

Substitution of equation 3.30 into equation 3.1 yields

0=0m (2(e1/2+ery' /A" ) /e (€ /24y " /A" )Z/ €6®) ool B.3D

Hence, employing equation 3.2 but with d' replacing d in the limits,
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d'/2

P= amb(2(e1/2+exy'/d')/em-(61/2+51y'/d')z/emz)dy‘ e (8.32)
-d'/2

Integration and substitution of the limits gives

P=o,mbd' /3(Ber1/cm—(E1/EMI™) voe. B33

Similarly, from equation 3.3, and again with d' replacing d in the

limits
d'/2

¥'(zPe')=| onb(2e1/en (1/24y" /A" )y~ (en/en)®(1/24y" /d" )2y )dy" .. (3.34)
-d'/2

Integration and substitution of the limits gives

M =omb(d')Z/12 (21 /em (€1 /€m)=) cev. (3.35)

Equations 3.33 and 3.35 must be solved simultaneouély to provide a

solgtion for the cracked section case. From equation 3.33

(d')*=0P=/ (70 @b2 (36 1 /€= (€1 /€a)Z)Z) vee. (3.36)
And from equation 3.35

(d")==12X"/ (rnb(2e1/em—(€17€4) 7)) veeo (8.3
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Equating equations 3.36 and 3.37 provides a polynomial

Lo bM' =(3€1/cm= (€1 /Ex)ZE)E-3PZ(2e 1 f€m— (€1 /€I Z)=0

(3.38)
Before this may be solved, M' must also be eliminated. Now,
¥'=Pe' : veee (8.39)
and, transforming
e'=e-((d-d'>/2> | : coe. (3.4
Hence
M'=P(e-((d—d')/2)) v vl (8040
But, from equation 3.36
d'=3P/(vmb(3€1/sm—(§1/em)2)) E : A..;. (3.42)
Substitution of equation 3.42 into equation 3.41 gives
H* =P (e~ ((d- (3P/ (0ab(Be1 /em— (€1 /€m)=))))/2)) .;.. (3.43)

This may now be substituted into equation 3.38 to yield a polynomial

of degree four in €.
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0=40nwbP (e~ ((d-(BP/ (rmb(3e1/em—(€1/€w)ZI)I/2)) (Be1/€m— (€3 /Ew)Z)=

_BPZ(ZE'I /€n1-(€1/ern)2) s e (3. 44>

Having solved for €., back substitution may be employed to determine

the corresponding value of d' from equation 3.42.

3.4 SOLUTION PROCEDURES
3.4.1 Introduction

There are ceveral standard iterative routines available for the
solution of polynomials, including those attributable to Bairstow and
Newton-Raphson and also the half-interval search type of routine.
Owing to the fact that ‘the nature of the polynomials under
consideration was unknown, and also that they would certainly exhibit
multiple turning points, the author decided to pﬁrpose—write his own
solution routines rather than to rely on pre-written "black box" type
procedures. This approach enabled a "feel" for the problem to be
developed and also helped a better understanding of the data trénds.
It furthermore enabled computer graphics to be employed to give a

better illustration of exactly what was taking place.

The two software items developed, one applicable to an uncracked
section and the other to a cracked section, were packaged together and
entitled PSTRESS1. Both are basically half-interval search routines

outputting a simple graphical representation of the polynomial to the
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computer visual display unit. By this means all roots present may be
examined and evaluated as required. In addition, having extracted the
apﬁropriate roots, the masonry cross-section can be graphically
displayed together with computed stresé and strain plots. It will
perhaps be useful to illustrate the nature of PSTRESS1 at this

juncture.
3.4.2 Typical PSTRESS1 Input/Output

Figure 3.5 depicts a typical page of screen output from PSTRESSI

resulting from an uncracked analysis of the following masonry cross

section:

Cross sectional dimensions : 1000 nmm wide
- : 300 mm deep

Pezk material stress, ow ¢ 16 N/mm=

€wm corresponding to ow : 0.0024

Applied axial compression (P) : 1200 k¥

Applied bending moment (D : 110 kNm

This depth of section was chosen as being perhaps representative of
the voussoir depth of a small arch bridge and the width of one metre
is the "one metre strip" bften used by engineers. The o. and €
values are similarly intended to be fairly typical<®7>. The ¢« value
and the cross-sectional area provide a squash load for the section of
4809 k¥, and with this in mind the P and M values above were chosen.

It may be observed from the graphical cutput that, within the range
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Figure 3.5

Typical PSTRESS1 Graphical Output For An Uncracked Masonry Section
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shown, there are two roots. O0Of these, the leftmost root is trivial in
that €1 1is enormously positive and €z 1s negative. It may’thefefore
be concluded that this root has a non-physical interpretation. Haviﬁg
thus decided that the rightmost root is the one required, it is
apparent that whilst €. is sensibly positive, €= is slightly negative
and hence the section must in fact crack to geherate an equal and
opposite internal reaction to the externally applied fq:cés. - This
being the case, the “un&racked" analysis just performed is in fact
invalid, and therefore control within‘the software now passes to a
second analysis based upon the cracked section mathematics previousl

~ described.

The new graphical output from the cracked section’analysis is depicted
in Figure 3.6. Again, within the rangé visible there are two roots.
The leftmost root prbvides another trivial solution (e:1=0), but the
rightmost root at last affords the required solution, €.=0.00133, and

hence that d' (the depth of section left uncracked) is 165mm.

Having found "a" correct solution, the PSTRESS1 proceéds to éldt the
appropriate stress and strain diagrams for the section and” these are
shown in Figure 3.7. One will note the curved‘boundary to the stress
plot - this is a consquence of the parabolic stress-strain law. The
deep crack (some 45% of the section) is also to be noted, yet the
section is still well below failure. In fact, maintaining the axial
force constant at 1200kN but incrementing the bending moment produces
an eventual limiting failure for this particular section of masonry at

131.5k¥m.
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Typical FSTRESS1 Graphical Output For A Cracked Masonry Section
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12.84561 W/sq.mm . 8.80133

- Crack depth = 8.13442 »
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et CRACKED ANRALYSTS #4¢

Figure 3.7
Typical PSTRESS1 Graphical Output Depicting Stress And Strain Plots

After Solution

_78_



At failure, the rightmost arm of the locus (see Figure 3.8a) curves
upwards again and 1lifts off from the x-axis. This leaves only trivial
solutions and hence the section is deemed to have failed. There may
in fact be up to four roots for any'pé;ticular problem (only the first
two have been shown in the above example), and one would expect that
only one of these would provide a physically sensible solution. In
general this is true, but a novel phenomenon is theoretically possible.
under conditions approaching the 1limit state. Under such
circumstances, two entirely viable solutions may exist, though in a
physical . sense Dner is far more probable than the other. This
phenomenon is entirely due to the adoption of‘ a parabolic stress-
strain characteristic and in particular to thelpresenoe,of the falling
branch. The effect will be described more fully in the néxt section

which relates to limit state considerations.

The stress and strain plots produced by PSTRESS1, -on the point of
failure, are depicted in Figure 3.8b. At this condition the crack
extends through nearly two thirds of the section. An interesting
feature is the separation of maximum effects - the peak stfess occurs
within the section and not at the extreme fibres undergoing maximum

strain.

Appendix ‘B' provides a full program listing of PSTRESS1, written in
BBC 'BASIC'. The ability to determine limit state characteristics
using the above numerical approach is to be noted; this feature will

be further discussed in the ensuing.

_.79_



fixial force = 12068080.8 Hewutons, Bending moment = 133808.8 Hewton tetres

o
j_/
¢.80300 E1=0.88360 d=0,18000n, poly,=9.72096885E1L "
C FOR COPYAC -
U, byZaH ' -
v /’#J‘N‘“u o
0.80180 7 =
[N
8.60120 B // —
8.08860 / Bl T
13351 f 7 %
- ."'J.”Pz
-8,08668 ff,f" /
-0.80128 j#,,f ) /

L e /

(a) PSTRESS1 Plot Depicting Post-failure Condition

15.86477 H/sq.ma g.06298

e

L~

Crack depth = 8.19699 n
 STRESS STRAIN

(b)Y Ultimate Failure Stress And Strain Plots

For The Example Given In The Text
Figure 3.8

-80-



3.5 LIMIT STATE INTERACTION DIAGRAH ‘
3.5.1 Uncracked Section

The limit state (in this context the ultimate prefix is assumed) is
determined by obtaining the maximum force, P=P., that the masonry -
- section can withstand at any given value of bernding moment, M. This

is achieved by employing
dF/3¢1 = 0 | | | ceer (3.45)
in conjunction with prescribed values of Mez).

However, to evaluate this "static" limit state would require extensivé
and very complex mathematical manipulation and & conservative
simplification is therefore employed using equation 3.45 with
preécribed values of €=(M). This alternative approachk results in a
"kinematic" limit state and a closed-form algorithmﬁzg’. Further, it
iz to be noted that the "formal" static stafe, whilsf not ‘being
armenable to closed form solution, can be determined numerically from
the previously described computer érogram PSTRESS1. = It will be shown
that the variations between the numerically defined formal static
state and the closed form kinematic limit state interaction curves are
small, and comparison using numerical data from PSTRESS1 shows that
the proposed course of action provides a kinematic solution that is in
all cases conservative in terms of thrust/moment values. Given the

inherent nature of the material under study, an approximation of this
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kind - ie the formulation of a kinematic rather than the more formal

static 1limit state - is considered justified.

Developing the kinematic formulation, then, and employing eguation
8.45 in conjunction with prescribed e€=z(M) values with respect to
equations 3.14 and 3.16 generates the limiting condition for an

uncracked section

€1 = (Bewm—€z)/2 ' , ciel (3.46)

~
(S}
.

recalling €1 ¢ 1.56wm, €=

The appropriate expression for F. is obtained by back-substituting

equation 3.46 into equation 3.14 which affords
Pu=0nbd/4 (3+2(cu/end—(€2/€n)™) e 347

The corresponding limit state bending moment M. is determined by

substituting equation 3.46 into equation 3.16 such that
¥=M,=0nbd*/16 (1-2(ez/e) + Ex/E)™) cee. (3,48

Equations 3.47 and 3.48 thereby afford the requisite limit state
interaction locus subject to the delineation of the range of validity .

of the uncracked case studies.



Intuition demands that the squash load Ps represents an upper bound on

Pm with

Pm = Py = O'mbd- . N ¢ 49)
Mh'l = 0

wherein a uniform axial stress distribution ¢, = vi = ¢wm acts acrass

the entire section. Equation 3.49 is fuily supported by the present

studies, employing, with respect to equation 3.47
OPn/d€z = @ : .. (3.5
then back-substitution yields

€z = € cen. (3.850)

Pﬂl‘:P'.ﬂ

 which affords equation 3.49 upon substitution into equations 3.47 and
3.48. The lower bound value for P, with respect to the uncracked
section studies is obtained by setting ez = 0. At this state,

equation 3.46 gives
€1 = 36m/2 I (3-52)

which accords with the 1limiting permissible extreme fibre sirain,

Further, substitution into equation 3.47 identifies the lower bound of

P. to be
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Pw = ©.750bd , vee. (3,53
at which state equation 3.48 gives
Mo = 0.bd?/16 | ... 3.5

Introducing the non-dimensional parameter n = Pm/Ps, then equations

3.47 and 3.48 afford the limit state locus for the saction in the

range 0.75 ¢ n ¢ 1.

3.5.2 Cracked Section

It is naw necessary to determine the limit state locus for @ ¢ n ¢
©.75. The approach is similar to that employed in the previous study.
Equation 3.45 remains valid although for the cracked section this is
employed in conjunction with prescribed values of berding moment

¥(d'). Applying equation 3.45 to equation 3.33 generates the explicit

limiting condition

= L5 ... (3.55)
The corresponding limiting stress condition being simply

v = 0.750w ~ coen (3.56)

Back-substituting equation 3.55 into equations 3.33 and 3.35 gives

_84_



Pm = 3owbd'/4 ' veew (3.57)

and
K. = owbd' (6d-54')/16 - | Cv. (3.58)
respectively. The above expressions thereby define the limit state

interaction locus for @ ¢ n ¢ 0.75; these expressions interface with
equations 3.47 and 3.48, affording the values given in equations 3.53
"and 3.54, at n = 0.75. At the lower bound, n = @, equations 3.57 and

3.48 afford
n=Pn=4d" =M. =0 vees (3.5

Intuition suggests that a turning point is present in the interaction

locus @ ¢ n ¢ ©.75. Employing
dM./dPw = 3Ma/dd'.2d"' /3P = O coo. (3.60)
Then, from equations 3.57 and 3.58

ar = 3d/5 | oo (36D

dKi/dPm = 0
with a maximum turning point at n = 0.45, The absolute maximum
bending moment the section can resist is, therefore, from equation

3.58
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en = M. = 9¢.,bd=/80 cees 30620

n=20.45
3.5.3 Axial Force/Bending Moment Interaction Diagram

Foting the identities of equation. 3.49 and 3;62, and introducing the
non-dimensional parameter m = Mw/Ms, then the interaction diagram can
be conveniently represented in n-m space. For this purpose, equations

3.47, 3.48, 3.57 and 3.58 are written in the form

n = (3+2(ex/em)-C(ex/end=)/4 vee. (8.63)
m = 5(1-2(ez/en)+(Ex/En)=)/9 vl (3064
n = 0.75(3'/d) , covn €3.65)
m = 5(d' (6d-5d'>/d=>/9 ... (3.6

The kinematic interaction diagram thus defined is depicted by the
solid line in Figure 3.9. For comparison, a numérically derived
static limit state locus is depicfed by the dotted line. The latter
was obtained using computer program PSTRESS1, as exemplified in
Section 3.4.2. It will be noted that the closed form kinematic locus
is everyvhere within the static locus and indeed the two are very
close. It is suggested, therefore, that the former represents an
acceptable working measure of a masonry section's capacity for most

practical applications. Figure 3.9 also shows three straight lines
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representing, respectively, a material with infinite compressive
strength, a section obeying the linear theory middle-half rule and a

section obeying the linear theory middle-third rule.

The "infinite compressive strength" line is significant in that it
represents the properties usually assumed in an arch nécﬁaﬁisnrmodel
material. The differences between such a hypothetical material and a
real material are clearly apparent. It may be seen that the
~ difference increaseé with increasing values of n. Thus, at n = @, the
error in assuming an incompressible materialvis nil, but at n = 0.2
the error is in effect to overestimate the roment capacity Df the
section by approximately 22%. Depending upon the particular states of
stress present in an arch at the ultimate 1limit state,  this
discrepancy may be significant. Yote thatkthis "line" can be shown to
be tangential to the kinematic limit state locus.

The line dépicting the linear middle half rule is also interesting in
that both the kinematic and static loci peak along this line. In
simple terms, then, this mneans that the absolute maximum bending
moment capacityA available from any masonry section occurs at the

linear middle-half law condition,

The third line in Figure 3.9 depicts the linear middle-third rule and
can be schown tc be tangential to the parabolic-law no cracking
criterion. The former provides the basis of the masonry design code
of practice, B.S. 5628¢=*®>, the latter being obtained by prescribing

d=d' (€==0) in equations 3.33 and 3.35.
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Finally, as  mentioned earlier (Section 3.4.25, under certain
conditions there are theoretically two, equaliy valid, stress and
strain distributions possible for a gi&en externally applied
.moment/thrust pair. This condition may only arise in the narrow band

between the static and kinematic loci on the interaction diagram.
This dualiﬁj phenomenon may be best eiplained by reference to Figure
8.1®; This shows €:/€w plotted against m, all at a fixed value of n =
0.45. Because the curve so produced is (partially) double valued in
m, there are always two possible solutions (at least) in the vicinity
of tﬂe static limit state. Both respective solutions possess physical
meaning and refer to pre- and post- static vconditions. However,
beyond €:1/€¢w = 1.5 the second root is deesmed non—physical.and hence

the region in which two valid roots may be said to exist is limited to
the zone between the curve's absolute peak (the static limit state)
and the point at which €:/6w = 1.5. This latter value relates to the
kinematic limit state, there also being some state possessing the séme
Pw, M. values but at a lower strain status as exemplified in Figure

3.1Q.

3.5 SUMKARY

Accepting that masonry materials exhibit parabolic stress-strain laws,
then it is obvious that fundamental understanding of the consequences
is necessary for the study of masonry arches and the study of masonry

structures in gemneral. Particularly towards the ultimate limit state
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condition, significant differences have been shown to exist between
the properties of linear—iaw and parabolic;law materials. The theory
outlined in this chapter predicts the separation of maximum stress and
strain effects prior to failure and alsc enables the section to be
“solved" regarding stresses, strains and likely crack Aepths for anyb
viable loading. ~Further, a limit state interaction diagram has been
fornulated which enables the‘ analyst to dispense with the non-
conservative infinite compressive strength dictum. The nesed for such
a refinement has been suggested<'®’ but a proper means to écﬁievé it

has not previously been forwarded; as far as the author is aware.

It is now propdsed to set out two alternative masonry arch bridge
analysis schemes, - oOne relating to (ultimate) limit state
considerations and the other to general serviceability considerations.

Both schemes employ the foregoing constitutive modelling.
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CHAPTER 4

MASONRY ARCH BRIDGE ANALYSIS

4.1 INTRODUCTION

A static mechanism analysis is first presented for both arch rings per
se and for arch ring(fill systems. This analysis enables solution for
the case of an external quarter point load. This 1loading
configuration is considered to Be the critical loading case<®.2?* for
most masonry arch bridges. The procedure'is conputerised and compared

against both full-scale and model validation data.

An attempt is also made~to establish a serviceability model on the
basis of a doubly encastre arch subject to any pattern of transverse
loading with the serviceability limit being equated to the formation
of the first hinge. Given the complexity of the analysis, the attempt
is primarily designed to highlight specific problems in a general

nmasonry arch bridge model.



4.2 STATIC MECHANISM MODEL ASSUMPTIONS

a)

b)

c)

da)

e)

The mechanical arch is considered to consist of a
single structural element, the arch ring, supporting a

homogeneous, level and isotropic fill material.

The fill is taken to impart a purely vertical load on
the arch ring and also to act as a dispersal agent for
the applied live load. Any strengthening of the arch
barrel due to its interaction either actively or
passively with the fill (so called “arch-£ill
interaction") ie nof allowed for, this being an

extremely complex effect in its own right.

A one metre strip of arch is analysed, a collapse load

for the whole arch being obtained by multiplying the

" resulting figure by the overall width of the arch.

The arch barrel is taken to possess a constant radial

thickness.

For the purpose of determining dead 1load, a single
value for specific weight is employed, this being
intended to include for both the fill material and the

arch barrel material.
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£)

g)

~h)

i

AR

Spandrel wall edge stiffening effects are considered to

be of a secondary nature.

The profile of the arch is deemed to be segmental,

other prafiles being treated by approximation.

Cdllapse is presumed to be due to the formation of four

mechanistic hinges.

The hinges are located beneath the quarter ?Dint live
load, ét the crown and at each springing. This
simplification is generally in accordance with typical
collapse patterns presented by other workers in this

field“#.%? and indeed a very similar system of hinges

-may be observed in Plate 4.1. which depicts the

collapse of Prestwood bridge during a full-scale load

Constitutive material properties are incorporated by
means of the limit state. moment-thrust interaction

locus illustrated in Figure 3.9.






4.3 STATIC MECHANISM MODEL TOPOLOGY

The essential features of the model are depiéted‘in Figure 4.1 which
relates to a typiéal one metre stri? of arch. The dispersal of live
load and the Eépproxima%ely) linearly variably distributed load due to
the fill are to Sé observed. Mechanical hinges are denoted by M.(Pi)
for 1¢i¢4, P; defining the accompanying compression normal to the
cection at which M. occurs. Pc denotes a one metre strip limit state
knife edge total load. Using a live load dispérsal based upon a
Boussinesq distribution in two dimensions, the parameter p; denotes
the peak equivalent triangular load intensity (Figure 4.1). The

specific weight of both the arch itself and of the fill is denoted by

q.
A respective pair of sub-structure systems is illustrated in Figures
4.2 and 4.3.

4.4 LIMIT STATE EQUATIONS - INCLUDING LOAD DISPERSAL THROUGH FILL

Being an overall mechanism study, the bridge is statically determinate

and the following equilibrium statements are made available:
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Taking moments about the left springing (node 4) in Figure 4.1 yields

F=( QL +Ma) /L) +(Lape/2/L) (BL/4-L: /3) +(Lzp /2/L) (3L/4+L=2/3)

+Lq/4 (2d.+dz) | R O )
Taking moments about the crown (node 3), Figure 4.2
H:((H3+M4)/h)—L2q/24)ﬁ(3d1+2dz)+L)2/#(Pc—F+Lq(d1+dz/2)) .;.. 4.2
The compreséion normal to the section at node 4 is given by
Pa=({Fc~F+Lg(d:1+d=/2))=+H?)/#cospa | Vel 8030

~ With p. denoting the angle between the resultant thrust and the

tangent to the arch ring's centreline axis at node 4, this being given

by

p4=ABS(tan“‘(V4/H4)—(9®—tan"‘(2<R—h)/L))) N - Y
V. and H. denoting the appropriate vertical and horizontal reactions,k
and R the arch's radius. The angular units are degrees, M. being

denoted in kNm units.

Taking moments about the quarter span point (node 2), Figure 4.3,

prevides
F=4/L(Hh' +M:+¥2) +2pc L=®/3/L+1q/8 (41 +5d=2/0) N € =)
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The normal compression is thereby
P.=(F2+H=) " Zcos

vhere p: is derived similarly to p;.
Resolving vertically, Figure 4.3
v'=Lq/16<4d{+3dz)—F+ch2/3

The normal compression at node 2 is given by

P== (§#+(Lq/ 16 (4d1+3d=) -F+peLz/2)2) '/ 2cosp= -

Where p= tazkes the form

Resolving forces at the crown (node 3), Figure 4.2

H

g
vl
]

Finally, with reference to the limit state interaction locus,

3.9

Mi=f Py, d) e
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for 1¢i¢4, the relevant equations beiﬁg simply based ﬁpon equations
3.57 and 3.58. Simultaneous and iterative solution of equations 4.1

to 4.11 provides a value for Pe at the limit state.
4.5 LIMIT STATE EQUATIONS FOR ARCH BARREL ORLY

Several experimental testé have been carried out on arch rings per
se<11y, That is, although a form of synthetic dead loading was
applied to the arch ring, livé loading was applied directly onto the
arch barrel itself. Analysis of such cases requires no allowance for
live load dispersal through the fill, and furthermore they are truly

free from arch-fill interaction effects.

With respect to limit state modelling, the same equations as above

apply subject to the following revision:

Equation 4.1 becomes

' F;((M1+M4)/L)+8Pa/4+Lq/4(2d1+d:) ‘. ceas ‘4.12)
and equation 4.5 becomes

F?4/L(Hh'+M1+M:)+Lq/8(d1+5d:/6) o (413D
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The normal compression at node 2 (Figure 4.1), just to the right hand

side of the point load, is thereby
P=(1)=(H2+(Lq/16(4d:+3d=)-F) =)' "=cosp= ‘ ' vee. (4.15)

Consideration of the singularity existing at the point of applicafion
of the external load requires that the abové expression be modified to
afford the lower value of Pz present just to the left hand side of the
point 1load. In other words, the bending moment capacity of the
section is greater immediately to the right of the applied point load
than it is immediately to the left due to fhe discontinuity present in
the axial thrust at the point of application of the point load. This
being the case, it ié necessary to choose the lower of the two

possible values of axial thrust. Hence

Pz (2)=(HZ+(P.+Lq/ 16 (4d1+3d=)-F)=) ' "Zcosp= cees (4.16)

4.6 COMPUTER PROGRAY MECHARCH
4.6.1 Frogram MECHARCH

A computer program, named MECHARCH and written in the "“Basic"
language, was prepared to carry out the above analyses and to solve
the resulting simultansous equations, thus providing the appropriate
value for the external live point 1load necessary to produce a

mechanism. Two verczions of the program exist, one for a directly
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applied point load and the other allowing for dispersal of the load
" through the arch fill medium. The main features of the program will

now be described.

The program thereby analyses a typical one metre strip of a segmental
arch structure and assumes mechanistic hinge positions as previously
described in the foregoing analysis. In bperation, the program asks
for the "clear span" to be input by the user, and uses this figure in
the analysis despite the fact that the span should really be measured
to the "design line" along the centre line of the arch ring, However,
thae difference between the two is of the order of 2% and this
caorrection 1is inappropriate considering the uncertainties present
-elsewhere in the analysis¢'®.-%12, Alternatively, when the program
requests'the user to input the “"clear rise" it does in fact make its
own correction in this case by adding half the voussoir depth, giving
the true rise to the design line. In the latter case the correction

ray easily be of the order of 15% and is therefore justified.

ﬁegarding fil1l and vousoir density, MECHARCH does in fact embloy a
single density value (ih kN/m® units) to represent the entire weight
of maferiéls,above and including the arch ring itself. Given the
usual uncertainties over the correct values to be used, even in the
presence of laboratory tests on material won from trial holes as at
the Bridgemill“g” full-scale test, the author considers it unrealistic
to adopt separate values for the arch ring, the fill, the various

carriageway layers and so forth.
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The moment-thrust interaction diagram (Figure 3.9) is wused to
determine the states Mi(Pi) prevailing at each hinge position - an
iterative application of MECHARCH being employed until these values

are carrect.

At this point a brief description of the method used to simulate load

dispersal in one of the two versions of the program is necessary.
4.6.2 Load Dispersal Through Fill Medium

Whereas the foregoing is common to both arches with £i1l over them and
to those without, some special consideration is required with respect

to lozd dispersal in the former case.

Load dispersal is simulated by standérd theory attributable to
Boussinesq©®®* but with a modification to reduce the dipersal to fwo
dimensions only and thus to make the simulation apt for knife edge
type loading. The basic Boussinesq theory is bhandled by a further
computer program named SPREAD. The output from SPREAD is in graphical
form - Figure 4.4 depicts a typical sample - and it is a simple manual
operation to scale-off the resulting load pattern's base dimensions to
give an idealised equivalent triangular loading pattern (see Figure
4.1). In effect the triangle's area thus represented is equivalent to
P.. The base dimensions are then Qsed as input to MECHARCH and serve
to tell the program how far to spread the point load. During progran
running, the loading triangle's height is varied as MECHARCH iterates

to find a solution, but the base dimensions remain constant.
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4.7 MECHARCH VALIDATION
4.7.1 MECHARCH Analysis Applied to Bridgemill Full-scale Test

The masonry arch bridge at Bridgemill, Girvan, Scotland‘%>,vwas loaded
to destruction in 1984 as the .first in a series of such tests
sponsored by the Department of Transport. Knife edge quarter point
live loading was applied to Bridgemill by means of four 200 tonne
hydraulic jacks reacting against ground anchors iﬁstalled.in the river
bed below. The four connecting tendons passed through holes cored in
the deck by diamond bits. The load was equalised and distributéd
across the full deck width by means of short steel spreader beams and
a 300mm thick concrete strip. The applied load was measured by load

cells interposed between each jack and its spreader beam.

Piezo-electric crystal accelerometers for the measurem;nt of acoustic
emissions were mounted at each of the expected hinge points, one on
the tension side of the voussoir and a complementary one on the
compression side. Crucially, the tension sensor beneath the load
point failed to work during the test and so the probable first

indication of cracking due to live load was lost!
The input data to MECHARCH was as follows:

Profile: The arch is reported to have a shape somewhere

between that of a parabola and that of a segment
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Span:

Rise:

Thickness:

Height of deck

above springing:

Fill density:

Constitutive

properties:

of a circle, hence MECHARCH's segmental
treatment is conéidered reasonable.

18.2%m — this figure is actually the clear span,
as noted above. |

2.84m (clear rise) + 0.3555 (voussoir
thickness/2) = 3.195m.

0.711m - it .is assumed that the internal barrel
thickness is the same as the visible edge
voussoir thickness. This is not always the

case, e.g. Clare College Bridge<="

3.753m - the deck is assumed levelt

Having duly considered the respective values
quoted for these items in the Bridgemill report,
a single figure of 20kN/m® is used as input to
MECHARCH, This is intended to represent' a
weighted mean of the materials present, having

due regard for the relative quantities involved.

The Bridgemill report quotes a mean maximunm
stress of 5 to 7 N/mm®* and a mean Young's

modulus of 5000 N/mm®.

Other researchers in the field using various techniques obtained the

collapse load predictions for the Bridgemill test given in Table 4.1.
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Elastic analysis

Edinburgh University

unable to provide

meaningful result

MEXE

Edinburgh University

1000 - 1500
(depending on

factors chosen)

Heyman mechanism Edinburgh University 2830

Finite element T.R.R.L. 1500 - 2700
(depending on
densities etc.
chosen)

Model analysis Edinburgh University 3890




Recalling equations 4.1 to 4.11 together with Section 4.6, then the
resulting output from MECHARCH provides a collapse load of 2868 kN for
Bridgemill. This represents an "error" of -9.4%, being on the "safe"

side of the true collapse load of 3100 k¥.
This value compares well with those given in Table 4.1.

It is postulated that the main reasoﬁ for the load obtained from
MECHARCH being lower than the actual figure is-almost~certainly due to
the contribution of arch-fill interaction, this effect strengthening
the real bridge. It is, however, considered that the program is in
actual fact providing a good estimate of the strength of Bridgemill's
arch barrel alone, crucially subjected to load dispersal, and that the
additional load carrying capacity of Bridgemill is due to an effect
that the program makes no attempt to model. That this is probably the
case will be later considared in Secfion 4.7.4 vhere MECHARCH is
applied to one of Liverpool University's model arches whefe arch-fill

interaction is not present.
4.7.2 MECHARCH Analysis Applied to a Comparability Study

Sawko and Towler of Liverpool Univefsity undertook a comparability
study‘='" with the aim of testing their own finite element method of
analysis against rivals in the field. It should be emphasised that

this was an entirely theoretical study and that the arches used for
this comparison were never constructed and hence which of the

alternative analyses was nearest the "correct" result would never be
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known. One ﬁf these comparisons, on a 6 metre span, 1.8 metre rise
brickwork arch of barrel thickness ©.44 metres, was later also
analysed by Crisfield<#? to  compare his own technique against
those reported by Sawko and Towler. The author proposes to do
likewise in order to compare MECHARCH against fhe widest possible

range of alternative methods.

A significant drawback in attempting to apply MECHARCH to the specimen
arch is that Sawko and Towler do not quote material properties for the
" brickwork (eg. ¢max) - most of the methods under comparisaon éssuming
infinite compressive strength, in any case. Crisfiel& was forced to
assume properties (including fill density) in order to apply his
finite element program and the author has also similarly assumed the

following values:

OCwmase = 2.5 N/mm® (as Crisfield)

Yri11,avcen = 190 kF/n® (Crisfield uses 1.8 x 10~¢ kg/mm®)

Solution of the problem was achieved by proceding in the manner
described in Section 4.6.1., utilising Figure 3.9. The results from
MECHARCﬁ and the other methods are summarised in Table 4.2. In the
absence of a “correct" value, this comparison exercise is of limited
value, as has already been pointed out. It does, however, at least
show that MECHARCH gives answers in the same ballpark as other, more

established techniques.
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Nethod - Collapse Load (kN)
Pippard elastic analysis 4
Heyman lower bound 63
Heyman upper bound 100
Sawko & Towler k 119
MEXE ‘ ‘ ’ 221+
Crisfield, 10 elements 95
Crisfield, 2® elements 85
Author's MECHARCH 108.9

#As Crisfield points out<4’, there is some doubt as to whether Sawko
and Towler interpreted MEXE properly in Dbtaining this figure. It

should be treated with scepticism.
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4,7.3 MECHARCH Analysis Applied to Two Further Full-scale Tests

The Bridgemill full-scale arch bridge test was just the first in a
series of such tests. At the time of writing, six of the series had
been completed. However, some of these tests breach the assumptibnsv,~
set out in Section 4.2 and furthermore only limited data is available
to the author for the more recent tests. | )

Of the six examples so far carried out, full and detailed information
is available to the author for the first two, namely Bridgemill and.
Bargower, Bridgemill having been described in Sectiqn 4,7.1 above.
Unfortunately  Bargower cannot be employed by the éuthor as the knife
edge loading was applied at the third point in the full-scale test and
MECHARCE, of course, is at present only applicable to quarter point
loading. For the same reason the next in the series, Presten, is
gimilarly unuseable. These bridges may have possessed features
leading the TRRL to comsider that third point loading was the more
suitable. The fourth and fifth tests, Prestwood and iorksey
respectively, are appropriate to the author's purpose although the
data available for these two tests is very much more limited than that
for Bridgemill. Thevlast test in the current series, Shinafoot, is
also inappropriate as the arch barrel thickness varied; from 390mm at

the crown to 770mm at the springing.

The data presently available to tke author on the Prestwood and

Torksey tests is given in Table 4.3.
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(mm (o) (mm) {em) 6,08 (64:08

Prestwood | 6550 | 1424 220 165 3800 228
Torksey 4502 | 1115 343 245 7045 1080
TABLE 4.3

PRESTWOQD AYD TORKSEY ERIDGES - PASIC DATA
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Regarding Table 4.3, both bridges were of segmentai profile and were
construéted of brick; no material properties are available, however.
It should also bg noted that the Prestwood arch was badiy distorted
before the test began and also that the deck possessed a longitudinal
fall (see assumptions in Section 4.2). Finally, it is also understood
that, on collapse, Torksey left both spandrels standing (literally
only the barrel collapsed) and kence tﬁe width given above is that
from parapet face to parapet face and this width only is used in the.

analysis.

Applying the same analytical procedure as before, again with the aid
of Figure 3.9, the solutions obtaired from MECﬁARCH are given in Table
4.4. MECHARCH's predictions are once more conservative. If one
accepts that arch-fill interaction provides a general arch
strengthening effect due to the inhibition of hinge formation, then
the use of a method (like MECHARCH) that does not model the effect
would naturally give rise to lower bound results. One may easily
explain MECHARCE's results for Bridgemill and'Presfwood in this way,
.but if the same is true for Torksey then it is to be observed that
there is very little arch-fill contribution here! Against this it
nust be remembered that materiél properties have had to be assumed for
the latter two arches and this must obviously have bad an appreciable
effect on the accuracy of the analyses. Nevertheless, it is
noteworthy that lower bound solutions have consistently been obtained

throughout.
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MECHARCH Collapse Load (kN)

Test Collapse Load (kD

Prestwood

160

)

N
(48]
co

Torksey

1036

1080

TARLE 4.4

PRESTWOQD AND TORKSEY RESULTS
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Consideration will now be given to a validation exercise where not
only are the material properties accurately known, but that the
stress-strain relationship is treated parabolically by the arch test's

authors and that, furthermore; arch-fill interaction was not present.
4.7.4 MECHARCH Analysis Applied to Liverpool University Model Test

Sawko and Towler of Liverpool University<''? conducted a series of
arch tests on four metre span brick "models". Several of these tests
relate to "serviceability", although exactly what is meant by this
term is not defined. Only two actual arch failures were conducted,
one with a crown knife edge load and the other with a quarter point
knife edge load. This MECHARCH appraisal relates to the quartér point
case. It is worth ooneidering that these tests could be considered to
relate not only to model tests, but also to full scale tests on arches

typical of the small spans crossing culverts and streams.

The reader is referred to published matter<'®> for a fuller
description of the tests, but basically the model bridge spannéd 4
metres <(clear), with a segmental profile providing a central clear
rise of one metre. A simulated fill dead load equivalent to 250mm of
fill above the crown was employed. The dead loading was achieved by
weights  placed on a stepped extrados and consequently arch-fill
interaction was not present. ’Similarly, the live load was applied
directly to the arch barrel and hence dispersal of the load through
the fill was similarly not present - the version of MECHARCH without

live load dispersal was prepared for use 1in just this type of case.
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Unfortunately, the assumed density of simulated fill is not quoted,
merely its depth, but a typical figure of 19 kN/m® has been taken for
the input to MECHARCH. With regard to constitutive properties, Towler
had tests conducted at the B.C;R.A. using samples of brickwerk
identical to those used in the arch. It was found that the material

exhibited a stress-strain law that could be very well modelled

parabolically with values of #.=16 N/nm?, and €.=0.,0034.

On running MECHARCH for this example it was_found>that the ﬁiﬁges
forred occupy positiqns much nearer the origin in n, m space (Figuré
3.9) than those in the Bridgemill test - typically at 0.®i7Pg against
. 0.209P.. (this accords with common sense as one would expect some scale
effect to be present) - and MECHARCH predicts a collapse load‘of
115.8 kN for the model. This agrees remarkably well.'with the
published value of 117 kN. By comparison, Sawko and Towler report a
prediction of 102kN<'®” using their own finite element computer
program. The author's own result is therefore quite encouraging and
tends to bear out the author's hypothesis that MECHARCH does in fact
provide good estimates of arch barrel strength for Bridgeﬁill,
Prestwood and Torksey but that arch-fill interaction would need to be
allowed fgr to gain a better estimate‘of the strength of the whole

arch/fill bridge system.
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4,8 SERVICEABILITY MODEL
4.8.1 Introduction

It nmust be statéd that the concept of serviceability in the context of
masonry arches is a very complex one. As far as the author is aware,
no other researchers in this field have directly addressed the
problem, presumably instead relying upon the application of arbitrary
load factoré to (ultimate) mechanism analyses. Herein is a limited
attempt to generate a serviceability analysis whereupon the limiting
critericn is to be based on or factored on the formation of the first

hinge.

Abtentative flexibility analysis for an encastre segmental arch under
single point loading is now described. A standard reducfipn procedure
is developed to solve the resulting three simultaneous equations and
the means of incorporating this procedure within a series of computer

programs is describad.

4.8.2 Initial Serviceability Model

To introduce FLEXARCH, it is useful to set oaut the basic linear
elastic modelling. Noting the topology given in Figure 4.5, from

statics, initially with Q=0, then

Hi=H=z cees 401D
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Fq14F==P

(4,18
.F2L+M1+Hg“P(L/2+RSinY5=® , - cees 4019
Fz=(P(L/2+RsinY)-M1-M=z)/L vens (4.20)
and
F1=P- ((P(L/2+R3iny¥)-K.:-Mz) /L) | - ceve (4.2

where the three statical redundancies are taken as H (=H1,=H2), M1 and
N

2. Applying Castiglianc®'®® for flexural strain effects only affords

(Y+RIR 28R

oU= | Ha(aMa/dH)ds +| Na(dMo/dWrds = @ . (4.22)
8 | EI EI

0 (Y+HIR

(Yy+8)R 28
oU= | Ma@Ma/oX > ds +| Ma(@Ha/d¥i)ds = © | e (2.23)
;i1 EI EI

0 (Y+8IR

(Y+8IR 28R
U= | Mo (@No/ddzdds +| Ma@MasdMzdds = © . (4.28)
ok EI EI

0 (Y+BIR
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The null terms signify no structural "lack of £it"<=®?, These

' equations can be rearranged in the form

(3 (8 |
Mo (dHa/dH)Rda +| Mo (@Ma/dHIRda = dU/3H = 0 cee. (4.25)
El EI |
J B ¥
y (8
Mo (dMa/9X)Rdar  + Mo @¥a/0 M1 YRAx = AU/ = © L e
El El
J B )y
¥ : B
Yo (3Mo/¥)Rdor  + | Mo (Mo/oNe)Rdar = dU/dMz = © coee (4.27)
EI - EI
-B ¥

Considering -f¢asy, taking moments about node 3 gives
Ma=-M. -H(R (cosa—cosf8) )+ ((PL/2-PRsiny+M:+M=) /L) (L/2+Rsincd .... (4.28)
which affords

d¥a = —-R{cosa-casR) el (4.29)

o



d¥a = Rsina/L-1/2 ool (4.30)
oM,
dMa = Rsina/L+1/2 - e (4.3
oMz

For y¢o$p, taking moments about node 3 gives
Mo = M=o—H(R(cosa-cosB))+((PL/2+4PRsiny~M:-¥=)/L) (L/2-Rsinc) .... (4.32)
Vhich similarly leads to

d¥a = -R{cosa—-cosB) _ cee. (4.33)

oH

d¥x = Rsina/L-1/2 ' el (4038

oMy

Rsina/L+1/2 coe. (4.3

Qs

3

>
[t}

Finally equations 4.25, 4.26 and 4.27 may ultimately be written in the

form
fi1H+f12Ml4f12Me = Pao vee. (4,.36)
forHtfzaMi+fzaMe = Pao 4,37
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far1HtfzzMy +fzale = Pao

The flexibility influence coefficients f.1 to fsaz are given by

£11=-R%/2 (-B-sinfcosR) +2R>Bcos®*B+R?2/2 (B+sinBcosP) +4R=5infcosh

f12=Rsinf-RRcoss
f1z=—Rsinf+RRcosB
:fz1=Rsinﬁ—RBcosB
fo-=R?2/L=(B~sinBcosBr+B/2
fo2=R2/1L=(f-sinBcospr-f/2
fz1=Rpfcosf-Rsinf
fzz=R=/L=(f-sinfcosB)-B/2

f22=R2/L2 (R-sinRcosP) +8/2
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The loading coefficients are given by
P1v=-PRfsin28/2+PR2¥cosﬁsinX+PRfcosXcosB+PLRsi§ﬁ/2—Pstin2§/2
-PLRfcosR/2-PR=cos=p | | cee (4.09)
sz={PR2/2/L(X-sianosx)—PRXsinx/2+PLB/4+PRCOSB/2+PRﬁcosBsinX/L
+PR=siny /L= (B-sinfcosp)-PRcosy/2-PR%cos¥siny/L BEREE (4.49)
Pa§=PRcos¥/2—Pchos¥sinX/L—PR2/2/L(X-sianosx)+PRXsinX/2
—PRcosB/2+PR2§dsBsin¥/L—PLB/Q}PRSSinX/LZ(B-sinﬁcosﬁ) cee. (4.50)

It is noteworthy that the flexibility matrix is symmetrical about its

leading diagonal and furthermore
fre=far1==f12, £ ' v... (4.51)
foz=fz=z ' o €4.52)

It should also be noted that the flexibility matrix is independent of

the loading terms - this is to be expected for linear studies.

Returning to Figure 4.5, the foregoing is repeated for Q being present

with P=0.
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H1+P=Hz=ﬁ
FzL+M.+M2-P(Rcosy-RcosB)=0

& Fz=(PR(cos¥-cosf)-Mi-Mz)/L
F1L-M:-¥2=P(RcosY-Rcosf)=0

& Fi= (M1 +¥=-PR(cos¥-cosB)) /L

(4.

4.

(4.

(4.

Taking the three statical redundancies as H (ZHz), My and Mz,

53)

54)

59)

56)

.57

and

applying Castigliano®'®=” for flexural strain effects only affords

equations identical to 4.22, 4.23 and 4.24. As before, these can be

rearranged to afford equations 4.25, 4.26 and 4.27.
Considering -B<¢a$¢Y¥ and taking moments about node 3 gives

Ko=—M+ - (E~P) (R{coso—-casB) Y+ (¥, +¥=—-FR (cosy-cosp)) /L) (L/2+Rsina)

with

Ma = —-R{cosa-cosf)

K

Mo = Rsina/L-1/2 ’ e
A,
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SMa = Rsina/L+1/2 .. (4.6D)

oM

For Yy<¢oafR, taking moﬁents about node 3 gives

Mo = Mz—H(R(cosa—qosB))+((PR(COSX—CQSB)-M1—HQ)/L)(L/Z-Rsina)... (4.6?)
with

- ¥ 0

-R{(cosa-cosf) vee. (4.63)

oH

-3 04 Rsina/L-1/2 co.. (4.64)

oM,

3Ma = Rsina/L+1/2 ' ST : ... (4.65)

2 XM=

The flexibility influence coefficients remain unchanged as befitting
functions of the datum structure only. The corresponding loading
terms become

P1+=PR%2/2(Y+sinycosy)-PR=sinycosB-PR*sinYcosy+PR*Ycosfcosy

-PR2/2 (-B-sinfBcosB)-2PR*sinBcosf+PR=ZRcos=p cee. (4,66)
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P-=~PRycosy/2+PR*cosycasf/L-PR¥caosY /L% (-R+sinfcosh)
+PR¥cosB/L= (-R+sinfcosy) -PR=cos=Y/L
-PR2sin®y/2/L+PRsiny/2+PR®*sin®R/2/L+PRsinB/2-PRBcosB/2.. ... (4.67)
Pzin=—PR2cos?Y/L+PR=cosRcos¥/L+PRYcosY/2
-PR3cosy/LZ(-B+sinfcosB)+PR¥*cos /L= (-B+sinfcosf)
-PR2sin®y/2/L-PRsiny/2+PR#*sin=R/2/L-PR*sinB/2+FRBcosB/2 ... (4.68)
Vhilst the foregoing relates to established work, no reference was
lccated containing all the key algebraic details herein set out.
Relating as it does to a general analysis of the linear elastic,
doubly encastre segmental arch (note the superposition of an arbitrary
point load), the detail given was considered worthy of inclusion. Its
development for more specific "serviceability analysis" useage is
given shortly.
4,.8.3 General Solution Of The Matrix Equations
For either loading condition, a set of three simultaneous equations is

obtained. A standard reduction procedure yields the following

solution
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Let A = (fz1%f12Pz)~(f11fz2f12Pa) = (fz1f12f2 P2)
+(fz1 fonfr1Pe) = (F21%faP1) 4 (f21 f2zfar Pr) cev. (4.69)
And let 6 = (f212f1zf33)¥(f11fzzfnzfaaﬁ
~(fz1frzfeifza)+(fz1fant, fas)

~(Ffor1®fanfiz)+ (a1 fazfaifra) : - T . (4.70)

Then
Mi = ((£11P28)=(F11fzen)=(F21P18)+(£1151a0))/ (6 (f11foz—Farfrz))

| (4.71)
Me = N6 o e (4.7é>
H= (Pi-fizMa-fizMa)/f1s Ci (473

4.8.4 Initial Serviceability Case Studies

The above mathematical procedure was incorporated into a computer
program written in BASIC language for the B.B.C. 'B' microcomputer and

termed FLEXARCH. The following data runs were made for validation



1.  With reference to Figure 4.6a, taking V¥=1, R=1, then the

application of equations 4.39 to 4.50 yields
fi1= 1.57080 fa1z= 1.00001 £:5=-1.00001 P1.= 0.500002
fza= 1.00001 fzz= 1,17810 £2:=-0.39260 Pz.= 0.285398

f21=-1.00001 £z==-0.39269 fzz= 1,17810 Pz.=-@.,285398

Solution by means of equations 4.69 to 4.73 provides

jae
n

-0.459136

M. = -0.110606

The published solution®®4® is given as.

-0.459V

2+
1]

-0¢.1126WR

2. A similar procedure may be applied to Figure 4.6b, noting though
that the pinned feet in this example requife only the application of
the first of the three simulianeous equations, giving

£11=320.6 £:12=0 £.5=0 P..=6249

And hence

H = 09,4376
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Figure 4.6

Case Studies
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By comparison, the published solution¢®4” is
H=290.45

3. Finally, a series of comparisons was made against a well-tried
computerised stiffness method employing forty straight beam

elements¢®=®>, These comparisons yielded similar close correlation.
4.8.5 Development Of The Serviceability Model

The foregoing modelling and corresponding computer program FLEXARCH
were developed continually over a pericd of time and gradually the

following features were incorporated:

1. The arch ring was notionally divided into discrete “elements"
v(rather like voussoirs, each subtending an equal arc at the arch's
centre of radius) and point loading was taken to act at the middle of
each of these "elements". Dead loading, due to fill and arch barrel
material, was taken in vertical strips, one above each element, and
the load due to that strip of fill was applied to its own element
below as a point load. Live loading could Be applied as virtually any
number of point loads at the deck surface, bpt was, in actuality,
restricted to a single point load for simplicity. The point live load
at the surface was distributed down to the level of the arch extrados
using theory due to Boussinesq®®=? (ag previcusly) in two dimensions.

The resulting load at extrados level was similarly apportioned as a
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point load to each arch barrel element, as with dead loading. See

Figure 4.7(a).

By repeated application of the elementary FLEXARCH program for each
element's own point load andvsumming the results, the redundancies
(external reactions) could be determined for the entire dead and live

loading pattern. See Figure 4.7(b).

2. The next step was to revert to numerical integration of the

original equations (4.25 to 4.27) enabling each integration station to
possess its own 'E' and 'I' values., This, significantly. enabled each
element of arch to possess its own 'E' and 'I' values father than
having fixed, constant values across the wholé arch. This procedure
primarily enables:

a) the use of locally variable constitutive properties (note below)
with increasing load, and,

b) the variation of second moment of area as local tension cracks
develop under increasing load.

Numerical integration was applied, with respect to ghe foregoing

formal integrals, at the stages demarked by equations 4.35 to 4.36,

and equations 4.65 to 4.66. At this stage the programkwas renamed
"NIARCH" - representing Non-linear Integration of an ARCH. See Figure
4.7(c),

3. A further program module was then incorporated to determine the
thrust line position at each element. It was therefore possible at

this stage to determine the thust and eccentricity at each element.
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4. Fext to be incorporated was the constitutive theory described in
the previous ohaptgr; this was essentially program PSTRESS1 in the
role of a subtoutine - see equations 3.20 (uncracked section) and 3.44
(cracked section). Live loading was thus to be applied incrementally,
after first applying the dead load in a similar incremental manner.
At each increment, the thrust, eccentricity and stress-strain state of
each element ware determinéd. From the latter, it could be
ascertained és to whether that element wa$ uncracked or cracked and'to
what extent the crack had propagated, if present. This enabled the
computation of a new 'I' value for that element based on the depth . of
section remaining together with a 'corresponding revised, mean, 'E'

value for the same element - <see Figure 4.7(d).

In summary, the final stage involved incremental loading, finding the
redundancies at each stage, thus determining the thrust line at each
stage and consequently the state of stress "in" each element. The
revised 'E' and 'I' values were then ascribed to their respective
elements to provide a new arch "stiffness" for the next load
increment. This cycle would be repeated, with 'E' and 'I' gradually
degrading locally until either an element failed completely or, mare
sensibly, until it was adjudged that an element had become so deeply
cracked that it could be regarded as a “"hinge" - a somewhat subjective
situation, taken herein to occur when the crack depth had propagated
through approximately two thirds of the section. The latter was
chosen because, given the aforementioned lack of an adequate
definition of serviceability, the author had originally considered

that a limiting serviceability state might sensibly be based on the
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formation of the first mechanical hinge. This final model/computer
program was termed SERVARCH. Once a hinge had formed, the structure
would, of course, iose a degree of redundancy and the basic analysis,
which assumed a triply redundant structure, would no longer remain
valid. For this reason the whole process could not be‘taken to the
ultimate liﬁit state; this was not considered to be a problem given

the MECHARCH ultimate modelling developed in complement.

To summarise, the whole procedure was thus to take an original
éegmental arch of known, constant E and I, to apply its dead loading
incrementally, then to apply its live loading incrementally (whilst
distributing the live load down through the fill), adjﬁsting E and I
locally at each étage until £finally a hinge was deemed to have
developed. - The results of this computerised process (called SERVARCH)

when applied to a full scale arch bridge test will now be described.
4.8.6 SERVARCH Vs Bridgemill Full-Scale Test

One of the stated objectives of the actual prototype test was to
record the formation of crécks during loadiﬁg. This is one of only
very few tests, to the author's knowledge, to spécifically set out to
measure data of diréct relevance to serviceability work. However, as
notéd eérlier, the tension sensor beneath the load failed to work
during the test and so the probable earliest indication of cracking

was lost!
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The input data to SERVARCH is as reported previously in the MECHARCH

study. Additional data specific to SERVARCH is:
Number of "elements" = 12
Dead loading: Applied over ten load increments.

Live loading: A single point load (SERVARCH can handle
multiple point loading) was applied to the right hand
quarter point (see Figure 4.7), 13.717m into the span.
This is incremented in approximately 15kN increments>(with
respect to the one metre strip). A total of 25 increments
of this magnitude would take the bridge up to its true

collapse load.

It should be noted that SERVARCH is capable of considering a
horizontal component of the vertical loads applied to the arch ring.
This is done by first computing the vertical load to be applied to
each strip, then multiplying this load by a coefficient of earth
pressure (K, typical values ©0.25 to 4) to obtain a horizontal load to
be applied to the same point on the arch. As this aspect of the
theory is not particularly well founded, and as the value of K to be
adopted should probably vary depending on whether the arch is tending
to deflect towards orAaway from the body of the f£ill, this feature has

not been invoked. Consequently a value of zero is used for K.
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The results obtained from SERVARCH were as follows:

After application of the full dead load, over ten increments, the arch
ring was found to be still wholly in compression and uncracked.
However, some elements were uncomfortably close to tension, rather
more so than would have been expected for a supposedly well designed
arch. It is to be observed in the Bridgemiil report that tension
under dead load was in fact predicted by both Crisfield's finite
element program and by an elastic analysis carried out by the
researchers. The'other assessment methods used by the researchers,
K.E.X.E., mechanism analysis and model analysis were not able to yield

data at all on this point<®>,

On applying live load, SERVARCH computed that after application of the
first live load increment (15kN) the arch ring was still wholly in
compressidn and sound. On appliction of the second live load
increment it predicted that element 10 (which is approximately under
the load) cracks for approximately 6% of its depth. This corresponds
to an equivalent lpad of merely 248kN on the real bridge. On
application of the third live load increment, elements 9 and 12 are
also predicted to have suffered tensile cracking. The most severeiy
affected element‘is 12 with cracking through approximately one third
of its depth. On application of the fourth live load increment the
analysis can be said to have effectively broken down in that elements
3, 4, 5, 6 and 11 are predicted to have "failed" and it would appear
that possibly three hinge zones are forming. The load at this point

stand at the equivalent of approximately 500kN on the real arch.
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Comparison of these findings with the log of emissions®®’ from the

acoustic sensors affixed to Bridgemill is not especially encouraging.

SERVARCH has predicted slight tensile cracking (which would surely be
accompanied by noises) under the load point, on the intrados, at about
248kN¥. VUnfortunately, this is the location of the one acoustic sensor

that failed to work! Comparison here is therefore not possible.

By the time the load has reached 500kN, SERVARCﬁ is predicting
distress under the load, plus distress at, and to the far side of, the
crovwn. The acoustic emission log'a; a;ound the same load reveals a
response from the crown intrados sensor (though slight), and nothing
elsewhere - remembering, though, that the crucial load point intrados
sensor is still inoperative. The real bridge load‘has to b2 increased
to around 800kN before anything approaching the'situation predicted
appears to cccur, and even then the emissions are very small compared
with the responses obtained later in the full-scale test when

substantial cracking occured.

Accepting that the major theoretical thrust herein is towards ultimate
limit state prediction for well established reasons - system
variability, lack of understanding of a complex system - and that this
is the modern trend in design, then the present serviceability studies
are of a lesser importance. However, something has to be done about
defining serviceability and this represents an initial attempt to
investigate the phenomenon. It is considered too complex a matter to

present herein a full treatment, but tke foregoing does serve to
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illustrate the problems associated with masonry arch bridges. Taking,
say, 450kN as the predicted serviceability limit fér Bridgemill (in
comparison with the hinge zones forming at 500kN noted above), then
this represents a load factor of almost 7 on the collapse load.
Clearly this seems very high and it is concluded that further work is

required in this area.

4.9 SUMMARY

A fundamental study of the constitutive properties of masonry, uéing
the latest parabolic form of modelling for its stress-strain response,
has been incorporated inrto a mechanism-type model. By this means, it
has been possible to allow for true compressibility effects, in
contrast to establiched techniques where an infinite compressive
strength approximation has needed to be employed®® -%.7.%>, The
resulting procedure has been computerised and tested against full-
scale arch tests, against a comparability study and against a
laboratory model test. Against the latter, a very good result has
5een achieved. In the case of the comparison against the full-scale
tests the program yielded somewhat low results, as with other
mechanism methods<®?. This effect is believed to be due largely to
the effect of arch-fili interaction, a complex effect not modeliéd by

the present computer program.
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A further limited study has been undertaken with respect to the
serviceability limit state. Compared against acoustic emissions and
observed’ cracking in the one full-scale test for which suitable data
was available, the analysis suggests that hinge formation may occur
very early iﬁ the loading regime, although the validity of the
analysis has not been well proven. If the analysisvwere shown to be
reliable, it would lead te therpostulation that the formation of a
first hinge may not be a realistic criterion on which to base

‘permissible service loading for a masonry arch bridge.
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CHAPTER S

COMMENTS AND CONCLUSIONS

5.1 PRELIMINARY ASSESSMENT

The continuing abundance and yet inevitable gradual deterioration of
the masonry arch bridge components of the national bridge stock,
combined with the continuous demands of increasingly heavy traffic
loading, clearly constitute a problem bound to grow more severe as
time passess. The problem is compounded by the inadequacy of the
analytical techniques presently available for these 'rule of thumb'
designed structures togethervwith the almost universal absence of as-
built drawings and an ignorance of the basic properties of their

natural and highly variable constituent materials.

It is widely accepted that the present utilitarean arch assessment
tool, MEXE, 1s over-conservative, particularly so. in the case of
longer spans.  Furthermore, it is not applicable to many real life
structures, such as skewad bridges, for example. The‘consequences of
this are that the authority reéponsible for the safety and maintenanée
of a particular masonry arch bridge may be forced prematurely to apply
weight restrictions or to carry out unnecessary "strengthening" works.
Given that there is a need to develop modern techniques aimed at
determining the strength of these existing structures when subjected

to present day loading, contemporary work in this field has been
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primarily directed along two paths - the first being almost entirely
due to the work of Professor Heyman¢®.€.7.%*  his approach assuming
infinite compressive strength and deemiﬁg failure to occur upon the
formation of four mechanistic hinges - and the second being concerned
with evaluation of the full load-displacement path history employing
finite element analysis‘4';@"‘”. 0f the two, "mechanism analysis"
has shown the most promise to date, hardly surprising given the highly

non-linear behaviour involved.

In(making a contribution to work in this field, the author initially
undertook a study of mascnry bridge stock, work considered to be
invaluable. Then a detailed theoretical study of the fundamental
engineering properties of masonry was undertaken and the results,
apart from being novel and of value ir their own right, have been
utilised in the remainder of the work. This ultimately erabled a
refinement of the mechanism-type analysis to be developed whereby the
"infinite compressive strength" assumption was replaced byb actual
masonry constitutive properties. Computer software (named MECHARCH)
was written to carry out the analysis and to arrive at ultimate
collapse load predictions. Given the limited data against which to

test such predictions, promising results have been obtained.
p .
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5.2 SECONDARY FACTORS

Contemporary research in this field has been primarily devoted to the
prediction of an ultimate collapse load for an arch, whereas in
practice it is the service load capacity of the arch that is of
relevance to the bridge owner. It is possible that the latter ﬁay be
determinable from a collapse value by simply factoring down, but at

present the magnitude(s) of such a factor is a matter for conjecture.

¥ithk this in mind, the author sought to develop an iterative,
pieoewiée linear flexibility analysis, adjustments being made 1o the
arch model during each increment to allow for the éttendant
degredation of‘ structural stiffness, in order to estimate a
serviceability limit state (ie. SERVARCH). This work, drawing upon
less data for validation, has produced limited resulte to-date but

serves to demonstrate key features required of such an approach. -

With respect to computer analyses in general, it was found that the
serviceability software (SERVARCﬁ) stretched the BEC's avﬁilable
rexory capacity to the limit and the switching of sefarate blocks of
program in and out of memory became nécessary. Additionally, both
with SERVARCH and EECHARCH, processing time became extremsly extended
and in particular the solution of equations in the latter program
could often take perhaps thirty minutes. This is to be expected of

non-linear algorithms in the micro-computer context with floating
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‘

point arithmetic being undertaken by software emulation - mainframes

employ specific hardware for the task.
5.3 SUGGESTICNS FOR FURTHER VORK

Vhilst claiming that the MECHARCH analysis is quite sophisticated in
its treatment of true constitutive properties, it reméins relatively
undaveloped in other areas. Further work should be directed towards
generalisation of the applied live loading and ‘extension of the
treatment to arches possessing profiles other than segmental.
Furthermore, an optimisation routine could be incorporated to
establish the mechanistic hinge positions with more accuracy. Another
development, though perhaps requiring a programme of study in its own
right, would be‘ to incorporate some form of modelling for the

aforementioned arch-fill interaction effect.

The above enhancements to MECHARCH would necessitate an improvement in
computer power and together with this improved “packaging" of the

product would prove beneficial.

At a later stége other arch forms remain to be studied - skewed arches
and multispan viaducts, for example. However, before any of this
ultimate limit state work becomes of true benefit, a relationship
between collapse and serviceability must be established and this is an

area offering considerable scope for innovation and research.
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SOFTVARE LISTING

An example of the software produced is
herein presented for completeness.
This program - PSTRESS1 - graphically
displays sectional stresses and
strains for a specific rectangular
section under combined uniaxial
compression and flexure. See pages
75, 77 and 78 for typical examples of
the output.
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DISCUSSION ON TECHNICAL NOTE 381

- On the stiffness properties of masonry
F. Sawko and M. A. Rouf

Dr N. W. Taylor, Sheffield City Polytechnic, Mr. P. A. Mallinder and
Mr. B. L. Davies, South Yorkshire County Council

The Authors have presented an interesting study with regard to the analysis of
. masonry materials subject to axial loading in the presence of bending moment.
The following points are, perhaps, worthy of consideration.

36. Do the discrete points denoted on the curves in Fig. 1 relate to actual
experimental readings or to curve fitting empiricism? The peak stress values given
do not concur with stress ordinate values.

37. It would be mterestmg to receive the Authors’ comments regarding the
nature of the stress-strain curves equivalent to those of Fig. 1 for natural stone
types. This bears directly on the study of masonry arches constructed of stone, a
common structural form.

38. The adoption of a parabolic stress-strain distribution negates the well
established middle third rule. Surely this is to be noted. Indeed, employing an
approach equivalent to that given in the Technical Note, it can be shown that the
eceentricity e at which a compressive load will cause the onset of cracking is given

by
e =fiT)/6
where T is the depth of the section and fis a parabolic factor of the form
J=6—=13(g/e,)/6 — 2(¢)/e,,)

where ¢, and ¢, are as defined by the Authors. This expression has been prog-
rammed on a micro-computer and the corresponding graphical output is depicted
in Fig. 12. Clearly, care must be taken in its interpretation at high strain ratios.

Professor Sawko and Mr Rouf
In reply to the specific points raised by the contributors, the Authors would like to
make the following comments.

40. The empirical curves in Fig. 1 are based on mean curves obtained from
twenty-six pillar tests carried out by Powel and Hodgkinson at the laboratories of
the British Ceramic Research Association at Stoke-on-Trent. The individual
curves are presented as Figs 3-6 in reference 1. The peak stress values used by the
Authors are numerically approximate; more accurate values are 27-4, 19-2 and 9-3
for the three brickwork types considered.

41. In the opinion of the Authors, stress-strain curves for natural stone and
also for concrete blockwork are certainly comparable to those in Fig. 1, and
would, therefore, be applicable to stone masonry arches.

Paper published: Proc. Instn Civ. Engrs, Part 2, 1984, 77, Mar., 1-12.
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Fig. 12. Middle third factor

42. The adoption of the parabolic stress-strain law does indeed negate many
well-known concepts derived on the basis of linear elasticity, such as the middle
third rule and the parabolic shear stress distribution in masonry sections. The
expressions for f quoted by the contributors are derived from the zero tension
criterion. At the onset of cracking the strain distribution in a section is as shown in
Fig. 13.

43. From simple geometry, centroidal strain ¢, = ¢,/2 and curvature C = &/T.
Substituting these expressions into equations (24) and (25), the corresponding
expressions for axial force and bending moment at the onset of cracking are

EoAotn (&1 &
p==0C0mfZ1 =
2 (c,,, 3e,,
Eolotn (. &6 &
M==00mfya Z
2T (t,, &

Thus the eccentricity at the onset of cracking is

e_ﬁ'!__ 6 — 3(e/c,) T
TP | 624/ [\ 6
where the expression in square brackets is the contributors’ value of f.

44. The Authors are grateful to the contributors for pointing out the practical
significance of this result.

cg. —f

(a) (o)
Fig. 13. Strain distribution at the onset of cracking: (a) section (b) strain
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PAPER 9014 STRUCTURAL ENGINEERING GROUP

On the limit state properties of masonry

N. TAYLOR, BTech, MSc, PhD*
PA. MALLINDER, BEng, MICE

An axial force/bending moment interaction diagram for the limit state of rectangular
masonry sections is presented. The strain distribution across the section is taken to be linear,
and the stress-strain relationship for the material is assumed to be parabolic. Tensile
strength is taken to be insignificant in comparison with the compressive strength. The
interaction curve generated represents the limit state configurations of axial thrust and.
bending moment; this curve is discussed in the context of masonry design to BS5628 Part 1.

Notation
b breadth of section
d  depth of section
d'"effective depth of cracked section
e ‘eccentricity,ef.. =0
m  non-dimensional bending moment parameter,m = M_/M,
M  bending moment
limit state bending moment
M, maximum limit state bending moment
M, tensile component of bending moment
non-dimensional axial compression parameter,n = P_/P,
axial compression :
limit state axial compression
squash load
sectional spatial co-ordinate, y|.. = 0
distance from centroid to fibres suffering maximum stress
flexural axis
compressive strain
compressive strain accompanying maximum compressive stress
centroidal strain at limit state
top fibre strain
£, bottom fibre strain
curvature at limit state
g compressive stress
maximum compressive stress
o, top fibrestress
g, bottom fibre stress

RNRRE

M M MmO N e e
-53 -}

Introduction .
Developments in the use of masonry in new structural forms*-? and concern with
the safe-load assessment of existing and often elderly structures such as the vous-

Written discussion closes 15 May 1987; for further details see p. ii.
* Senior Lecturer, Department of Civil Engineering, ShefTield City Polytechnic.
1 Assistant Structural Engineer, Sheffield Metropolitan City Council.
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TAYLOR AND MALLINDER

soir arch®* have led to considerable research on the structural behaviour of
masonry. Recent studies have included investigation into the fundamental proper-
ties of structural masonry.>~® This has resulted in the adoption of a parabolic
stress—strain relationship acting in conjunction with a linear strain distribution
across a rectangular masonry section subject to a singly-eccentric compressive
normal load.

2. Employing equations relating sectional strain response to any specified
loading combination of axial thrust and bending moment so established,® the
respective limit state combinations can be derived for both cracked and uncracked
sectional topologies; tensile strength is considered to be negligible in the context of
limit state configurations. ’

Non-linear theory
3. An idealized parabolic stress-strain locus is shown in Fig. 1. The relation-

ship is of the form :
U/am = 28/em - (S/ﬁm)z ' (l)

where ¢ and ¢ are the general stress and strain parameters, 6, is the maximum
stress, and ¢, is the corresponding strain.

4. A masonry section subject to a compressive normal force P acting at an
eccentricity e is shown in Fig. 2(a); the corresponding uncracked strain distribu-
tion is shown in Fig. 2(b). Incorporation of equation (1) gives the stress distribu-
tion shown Fig. 2(c). The equivalent cracked section configurations are given in
Fig. 3. Stresses o, are present at the limit state (see below). However, the general
stress responses of Figs 2(c) and 3(c), noting equation (1), are given by

6 _|feate) Y(a—& et Y(a—t
o) ()5 02) e

for the uncracked case, with £, > 0 (e, < &, < 1-5¢,),and by

o _eaf, y_d\L_ |afi, 2 4
coa(ied-D)p-[20+3-m) o

0750 {— — —_—

— e - — — — —

Stress, O
e e — o ——

3

_.
(<)
™

3

Strain, €
Fig. 1. Idealized stress—strain locus for masonry (compression)
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LIMIT STATE PROPERTIES OF MASONRY

bf2

(a) (b)

Fig. 2. General strain and stress distributions in an uncracked section: (a) section;
(b) strain; (c) stress

for the cracked case, with ¢, < 1-5¢;, (0 < d’ < d). d denotes the full depth of the
section, d’ denotes the effective depth in the cracked case, y is the sectional spatial
co-ordinate, and ¢, and ¢, represent the extreme fibre strains.

5. Interpreting the eccentric loading P as being statically equivalent to an axial
thrust P and a bending moment M acting about the flexural (zz) axis (i.e. M = Pe),
then for the uncracked configuration, integration across the section, incorporating
equation (2), gives

df2 o
P= J. sbdy= g'mbd((el + )36 — & — &) + e,az) @

F)
-d/2 3¢z,

(where b is the breadth of the section), and

d/2 _ _
M= agby dy =0, bdz((sz LG +z£2 28,“)/2) )
~a2 62
b/s2
P
a2 X | o
. e
N Sl S "2

@ (b) ()

Fig. 3. General strain and stress distributions in a cracked section: (a) section; (b)
strain; (c) stress
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Similarly; for the cracked configuration, noting equation (3)

a2 .2
P= J- obdy =0, bd'(e—‘i“-—z-e—‘ﬁ) ©)
a2 - €m
and
a2 _ ' —ae 4
M= obydy =0, bd,(a,(&:md 2¢,d -i; e, d smd)) )
d/2~-d’ lzem

Sagging bending moments (0 < e < d/2) w111 be considered first.

Limit state configuration: uncracked section

6. The limit state is determined by obtaining the maximum force P, that the
section can withstand at any given value of bending moment M. This is achieved
by employing dP/d¢, = 0 in conjunction with prescribed values of M(g;) with
respect to equations (4) and (5). Dxﬁ"erentlatmg equation (4) accordingly generates
the limiting condition

g =3¢, —€5)2 : : ©®)

recalling &, < 1-5¢,,, &, = 0. The appropriate expressions for P,, and the corres-
ponding limit state bending moment M = M, are obtained by back-substxtutmg
equation (8) into equations (4) and (5):

abd
P,

3+ 2(62/6 ) = (62/6m)”] )
and

M, =

= Aea/en) + (E2/Em)"] (10)

Equations (9) and (10) thus give the requisite limit state interaction locus, subject
to the delineation of the range of validity of the uncracked case studies.

7. Intuition demands that the squash load P, represents an upper bound on
P, with

P

m

=P,=o0,bd (11)

Mu=0

wherein, noting Fig. 2(c), a uniform axial stress distribution ¢, = ¢, = g,, acts
across the entire section. Equation (11) can also be obtained using 6P, /e, = 0
with respect to equation (9), such that

€, =g, (12)

Pn=P,

which gives equation (11) on back-substitution into equations (9) and (10). The
lower bound value for P, with respect to the uncracked section studies is obtained
by setting ¢, = 0. At this state, equation (8) gives ¢, = 3¢,/2, which accords with
the limiting permissible extreme fibre strain. Furthermore, substitution into equa-
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tion (9) identifies the lower bound of P, to be P, = 0-75¢,,bd, at which state
equation (10) gives M,, = o, bd?/16. Introducing the non-dimensional parameter
n = P_/P,, then equations (9) and (10) afford the limit state locus for the section in
therange0-75<n< 1.

8. Finally, it is instructive to determine the position, y_, at which the
maximum stress, ¢,,,, occurs under limit state conditions. This can be achieved
employing the geometry of the corresponding strain distribution, with ¢, in Fig.
2(b) being defined by equation (8), such that

Y| =¥ =Ya=d/6 (13)

T ¢m

for 0-75 < n < 1. That is, at the limit state the most highly stressed fibres occur at
d/6 above the centroidal axis, while the most highly strained fibres occur at the top
of the section (note Fig. 2(c)). This separation of maximum effects relates directly to
the presence of the falling branch in the stress-strain curve given in Fig. 1. For
. completeness, the centroidal strain ¢, and the sectional curvature v_, correspond-
_ ing to the uncracked limit state configuration can also be obtained from Fig. 2(b),
¢, being as defined in equation (8)

Eom = (81 + 52)/2 = (3£m + 82)/4 (14)
Vo = (61 — 85)/d = 3(e, — £,)/(2d) (15)

Limit state configuration: cracked section

9. The approach used to determine the limit state locus for 0 < n < 0-75 is
similar to that employed in the previous section. Employing the limiting criterion
0P/dg, = 0 in conjunction with prescribed values of M(d’) with respect to equa-
tions (6) and (7) gives the explicit limiting condition ¢, = 1-5 ¢,,, which when
back-substituted into equations (6) and (7) gives

'm?

P, = 30,bd'/4 (16)
and
M, = ¢,,bd'(6d — 5d')/16 (17)

respectively. These expressions define the limit state interaction locus for
0 < n < 0-75; they interface with equations (9) and (10) at n = 0-75 (d' = d), with a
lower bound at n = 0(d’ = 0), whereupon equations (16) and (17) afford n = P, =
d=M_=0. .

- 10. mIntuition suggests that a turning point is present in the interaction locus
0 < n < 0-75. Employing

oM, oM, od ‘
— R B.___ -0 (18)

or, od 0P,
then, from equations (16) and (17),
d = 3d/5 (19)
IMnm/O0Pm=0
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with 2 maximum turning point at n = 0-45. The absolute maximum bending
moment the section can resist, M, is therefore, from equation (17)

= M, = 90,,bd?/80 (20)

n=0-45

M,

11. Employing the geometry of Fig. 3(b) with g, = 1-5 ¢, glves the location of
the fibres undergoing maximum stress, with

yr =Jy

Om

=y = (3d - 2d)/6 (21)

tm

which interfaces with equation (13) at n = 0-75. As the tension crack develops, the
location of these fibres moves towards the top of the section (Fig. 3(c)). Again
employing Fig. 3(b) with ¢, = 1'5 &, the centroidal strain ¢, and the sectional
curvature v, corresponding to the cracked limit state configuration take the form

Eom = 0:75¢,(2d" — d)/d’ d2<d <d (22)
Vo, = 3e/(2d) (23)
both mterl‘acmg with equations (14) and (15) at n = 0-75.

Axial force/bending moment interaction diagram

12. Noting the identities of equations (11) and (20), and introducing the non-
dimensional parameter m = M_/M,, then the interaction diagram can be conve-
niently presented in n-m space. For this purpose, equations (9), (10), (16) and (17)
are written in the form

n=[3 + 2e/en) — (e2/en)*1/4 ’ (24)
m = 5[1 — 2e,/e,) + (€2/6)*1/9 (25)
n = 0-75(d’/d) (26)
and
m = 5{d'(6d — 5d)/d*]/9 27

respectively. The interaction diagram (Fig. 4) can thus be constructed for
0 < e < d/2 using equations (24) and (25) for 0-75 < n < 1 and equations (26) and
(27) for 0 < n < 0-75. These equations are in parametric form, and are most conve-
niently evaluated in increments of & and d' respectively. For —d/2<e<0
(hogging moment) the interaction diagram is simply a mirror image of Fig. 4 about
the abscissa.

13. As the axial compression reduces from P, to 0-75 P,, the falling branch
effect is immediately realized as maximum strains in excess of ¢, (see Fig. 1) are
experienced (g, < &, < 3¢,/2). The maximum stress occurs at the ‘middle third’.
These two effects are intimately connected with a degradatlon in the minimum
compressive strain &,. Compressive stress response is thereby critical for
0-75 < n < 1. Details of the interface state (0-75, 0-55) are given in Fig. 5. All
parameters interface smoothly. Maximum compressive strain now becomes
crucial, with &, = 3¢,/2 as n decreases. Flexural resistance increases up to a
maximum at (0-45, 1), whereupon crack propagation becomes crucial, resulting in
a degradation of sectional strength. Fig. 6 shows a detail of the maximum flexural
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response state; the tension crack extends to 40% of the section depth at this state.
The movement of the location of the fibres undergoing maximum compressive
stress g, as n decreases from 0-75 can be seen by comparing Figs 5 and 6. The
extreme fibre compressive stress remains unaltered throughout 0 < n < 0-75 at
¢, = 0-75 o,,. Curvature v, increases throughout as n decreases from unity, while
crack depth d —d’ increases as n decreases from 0-75. Centroidal strain ¢,
decreases from ¢, at n =1 to zero at n = 0-375; this lower limit is readily deter-
mined from equations (16) and (22) with cracking reaching up to the centroidal
axis. The (0, 0) state is effectively trivial; it is predictable, since zero tensile strength
has been assumed.

Design considerations

14, The relationship between axial compression and moment of resistance
with regard to present design practice® includes the section modulus term bd?/6.
This suggests a linear interpretation of the appropriate stress-strain character-
istics, and the respective n, m limit state moment-thrust interaction locus corre-
sponding to the cracked configuration is included in Fig. 4. This locus is derived
from the familiar elastic basis, with stress—strain characteristics being linear up to
the limiting case of a,,, €, (Fig. 1). While the expressions for squash load are the
same for both the elastic theory and the non-linear theory discussed here, it is
important to note that the maximum moment in the latter exceeds that in the
former by 20% (Fig. 4);i.e. m = 1 corresponds to M,, = M, = 90, bd*/80."

15. For design practice, the expression for the respective moment of resist-
ance,” M, , can be written in the form

M, = M, + Pd/6 (28

where M, is the permitted tensile resistance (and is not a function of P). Neglecting
this tensile component, then the relationship M,, = Pd/6 conforms to the unique
linear theory limit state n=0-5, m=0-75, corresponding to the respective
cracked/uncracked interface state.
16. Interpreting equation (28) as a design limit state locus, initially for 0 <

P < P,/2 and neglecting the tensile component, generates the non-dimensionalized
expression m = 16n/10-8, 0 < n < 0-5, which is also depicted in Fig. 4. Including
the variable tensile component and noting code constraints® on n,

m= <-9-§—% + 16n)/10-8 0<n<044) ©(29)

P,d . :
is the n-m equivalent of equation (28); this is sketched in Fig. 4 with the tensile
term being, typically, responsible for a few percent of the total resistance moment
at the prescribed upper limit value of n. This upper limit has an ‘absolute’
maximum value of 0-44 (= [0-9 x 2-5]7') as denoted in equation (29). The
relationship between this design locus and that corresponding to the non-linear
theory presented previously can be seen in Fig. 4. It is suggested that some relax-
ation of present design criteria, leading to more economic design practice, could be
considered; the availability of constitutive loci of the form typified by Fig. 1 would
be an essential prerequisite, however.

Conclusions ~
17.  An axial force/bending moment interaction diagram for masonry employ-
ing a parabolic stress-strain relationship has been produced, and the effect of the
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falling branch demonstrated. The diagram provides appropriate data with respect
to the limit state characterisitics of masonry. The area enclosed by the limit state
locus and the abscissa defines ‘safe’ combinations of axial force and bending
moment with regard to a rectangular masonry section. The study affords insight
into masonry mechanics and invites further consideration of present design prac-
tice.
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