Sheffield
Hallam _
University

An intelligent form system.

LIU, Heyun.

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/19971/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

LIU, Heyun. (1992). An intelligent form system. Doctoral, Sheffield Hallam University
(United Kingdom)..

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

EEEEEE
000000000

T |||||

(3316

Sheffield City Polytechnic Library

REFERENCE ONLY

B DX 3153)

ProQuest Number: 10697277

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

ProQuest.

ProQuest 10697277

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106 — 1346

AN INTELLIGENT FORM SYSTEM

by

Heyun Liu, B.Eng.

A thesis submitted for the
requirements of the Doctor of Philosophy

School of Computing and Management Sciences
Sheffield Hallam University
Hallamshire Business Park
100 Napier Street
Sheffield S11 8HD
United Kingdom

August, 1992

Abstract

This thesis presents an investigation of developing a user-centred
formbase system. It is based on the previous developments in Office
Information Systems. It is technically related to Al Planning Systems and
Database Systems.

An Office System is an open system inside which the data, as well as the
operations upon the data can not be pre-defined exactly. In order to set up
a stable and flexible information system in such environments, the task
representation, activity representation and data representation must be
dynamically related to each other. This research concerns how to use Al
planning system concepts to develop a formbase system. There are three
crucial aspects: (a) how to represent an activity of information processing,
(b) how to represent and refer to the data in the forms, and (c) how to
construct the problem solving process for the task of information
processing. For reasons of flexibility and stability in the open
environment, it is important that a proper link between data
representation and activity representation is achieved.

This research has generated an Intelligent Form System. The contributions
are: (a) the development of a form pattern language and the formbase
which can represent and refer to the forms, (b) the identification of the
formbase activity schema which can represent the activity upon the forms,
and (c) the development of a problem solving process for the information
processing tasks of the forms. The research has also recognized that the
information processing activities upon forms are very different from the
activities which are automatically performed by the Humans.

Key Words: Office Information Systems; Al Planning Systems; Activity
Representation; Action Reasoning; Knowledge Representation; Office
Form Systems.

Acknowledgements

I would like to thank my supervisors Professor Ian Draffan and Professor
Frank Poole for their help and advice during the research. Without their
constant support, this research would not have been possible.

Dr. Jawed Siddigi, Dr. Innes Jelly and Dr. Jon Gray have also given help
during the project.

I would like to extend my sincerely thanks to the school secretary Marilyn
‘Wilson, the technicians in the school, especially to Mick Fitzgibbons, John
Leach and Chris Mather, and to my colleagues in Room HA147 for their
warmth and humour.

Finally I would like to thank my parents and my sister for their continued
love and consistent encouragement.

List of Figures

Figure 2.1 TLA action sketches

Figure 2.2 form route coordinating

Figure 3.1 Claim for Payment
Regular Visiting Lecturer Form

Figure 3.2 Form of Appointment of Regular Visiting Lecturer

Figure 3.3 Five-key coordinating system

Figure 3.4 An Example of RVL Form

Figure 3.5 An example of ARVL form

Figure 4.1 Type Tree

Figure 4.2 Type Schemas

Figure 4.3 Instance Schema

Figure 4.4 Instance Tree

Figure 4.5 Single Form Query

Figure 4.6 Joined Form Query

Figure 4.8 Joined Net

Figure 5.1 Primitive time periods

Figure 5.2 Procedure Representation in Planning System
Figure 5.3 Activity Representation Using only Predicates
Figure 5.4 Formbase Activity Representation

Figure 5.5 Warehouse Distribution

Figure 5.6 Warehouse Management ---- Table of Spaces
Figure 5.7 Warehouse Management ---- Table of Products

Figure 5.8 Warehouse Management ---- Table of Stored Products

20
21

26
29
33
38
39
51
52
53
54
55
56
65
73
84
87
88
91
92
92
93

Figure 5.9 Warehouse Management ---- Goods Transfer Request Form 94

Figure 6.1 System Structure of IFS

Figure 6.2 Block World

Figure 6.3 Space Identifiers of Warehouses
Figure 6.4 Products of the Warehouse
Figure 6.5 Products Distribution

Figure 6.6 Warehouse Space Information
Figure 6.7 Stored Products Information
Figure 6.8 Expansion of Request-Network
Figure 6.9 Type of Request Nodes

Figure 6.10 Goal Request

Figure 6.11 Expansion-1

104
107
109
109
110
111
112
115
118
119
120

Figure 6.12 Expansion-2

Figure 6.13 Expansion-3

Figure 6.14 Expansion-4

Figure 6.15 An Abstract Request-Network
Figure 6.16 Dependent Relationship
Figure 6.17 Nearest Common Node
Figure 6.18 Node Abandon

Figure 6.19 Re-commitment

Figure 6.20 Control Automata
Figure A1.1 A RVL instance

Figure A1.2 A RVL instance

Figure A1.3 A RVL instance

Figure A1.4 An ARVL instance
Figure A1.5 An ARVL instance
Figure A2.1 Transferring a product

Figure A2.2 Initial Forms before Transferring

Figure A2.3 Forms after Transferring

122
123
123
125
128
129
130
131
133
150
151
152
153
154
169
171
174

Contents

Abstract
Acknowledgements

List of Figqu/es

CRAPLET L.ttt sttt sttt st et st st 1
INtrOAUCHON e 1
1.1 Rationale of Research ... 1
1.2 The Outline of the ThesiS ... 7
CRAPLET 2.ttt bbb 8
Background of Research.........ooiiiiiic e 8
2.1 Office Data MOdeling........cccoeuviiiiuiviieiiericiceeinrcecseresceneeseseeeessssnes 8
2.2 Office Process MOdeling.........ccovvvivvivivivininnieiiiciniicciscsccceesesinisesns 11
2.2.1 Well-Defined Network Representation..........ccececevuruenrunne 11
2.2.2 Goal-Augmented Activity Representation........cccceeeveveuenies 13
2.3 Link between Data Representation and Activity
Representation ... s 18
2.4 CONCIUSIONS.c..cvireeietirirteteittet e enes 24
CRAPLET 3. oottt e e ee 25
A Formbase SyStemM........cccuiiieieiiiiitci e 25
3.1. Form Type Definition.......cccvviiiiiicciiiciiiincncnens 25
3.2. Form Reference Patterns.....cooeiciccinccicciccnecceee, 27
3.3. Formalisation of Form Reference Pattern...........cccocecvivivmiicinienennnnn. 31
3. 4. Five-Key Allocation for Values inside a Formbase...........ccccveveuueen. 32
3. 5. Query upon FOIMS ...t 34
3. 6. Predicates UPON FOIMS ..ottt 36
3. 7. Operations Upon Form Base.......ccccuineriiiiiiiciennen 40
3. 8. Features of Form Reference Patterns.........ccccoeevicniiniinnnnes woreseorernonn 43
3.8.1 Why not Predicates.........ccoeouiieiereirniiiiiieictcececvina 44
3.8.2 Problem of Unification......cccoeevvviivinninnninininincciiciciinns 46
CRAPLET 4 oot 49
An Implemetation of the Formbase System..........cocccviniencnniinciiniinniiinienns 49

4. 1. The Internal Representation FOrms........ccccocecvvivinivinniinnecnecnnnnnn. 49

4.1.1 Internal Representation of Form Type.......ccvvvnccceincnnnee. 50
4.1.2 Internal Representation of Form Instance..........cccccceeuuue. 52
4. 2. Form Reference Pattern Processing.........cococvevveiivivinnieceninenenccnnn, 54
4.2.1 First Step ---- Filter Variables........cccccocviiviinininnnnncneccnnnn 57
4.2.2. Single Form Reference Pattern Processing..........ccccccccvvunee. 58
4.2.3 Third Step ===- JOIN .o 61
4.2.3.1 Element-Join FUNCtONcceovevverrveerecrecieetiecrveennens 63
4.2.3.2 Production-JOINcccoevurtivircereneiieieeiesiesres e sreeeseeens 64
4.3. CONCIUSIONS.....vimiiitiiittctccrc ittt eeaes e ene e 67
CRAPLET Bt bbb 68
Representation of Information Processing Activities upon Forms................. 68
5. 1. Review of Activity Representations and Problem
SOIVING ottt s 69
5.1.1 Situation Calculus and Frame Problem.........ccccccviiiinnnnncns 69
5.1.2 Time-Slot Based Activity Representation.......ccceceuvvevvuennnee. 72
5.1.2.1 Primitives for Time Periods........cccccccevurrruririnennnnn. 74
5.1.2.2 Properties of Temporal Logic......cccvueuererrrerivcncnnen. 75
5.1.2.3 Events Representation in Temporal Logic............. 76
5.1.2.4. A SUMMATY...coiieiirietititie e 77
5.1.3 State-Based Activity Representationccoccceeueeviiiiciinnnnnas 78
5.1.3.1 Modal Truth Criterion.........ccccocovvivniinnininniiininens 79
5.1.3.2 Reasoning of ReSOUICES........ccoveurmieirreniieciininrennen. 81
5.2. Why a New AI Problem Soever ..., 83
5.2.1 The Difficulties of System Analyzing........c.cccocevviiiiniirenne. 83
5.2.2 New Activity Representation ---- Situated Action............. 84
5.3. Representation of the Information Activities upon
FOIIMS oottt eres s 85
5.3.1 The Requirements for Activity Representation in
IFS s e 85
5.3.2 Analysis for the Activities upon Forms.......cccccoevvuiinninnnnns 85
5.3.3 Representation for the Activity upon Forms.......ccccccceueuue. 88
5.3.4 An EXaMPle...iiiiiiiiiiicctcc e 89
CRAPLET 6. oottt 103
A Problem Solving Process for the Activities upon Forms..........ccccoceuivnvnnecne. 103
6.1. The Frame of the Intelligent Form System.......ccccccouemveiviiiriniennnnes 104
6.2. The Special Nature of Problem Solving for the Activities
UPON FOTIMS...ootitiiitiiteict s 105

6.2.1 The Principle of State-Based Problem Solving for

Unstructured Activities......oviiveiiinivnniiinincncicceneneeen105
6.2.2 The Information Processing Activities upon
FOTMS ottt et 108
6.2.2.1 Warehouse EXample.............ccooervvvemrmrrersmreerersennee 108
6.2.2.2 Organizational Activity Assumption..........cccc...... 111
6.2.2.3 Interactions between Activities upon the
FOIMS oottt e 113
6.3. Problem Solving for the Activities upon Forms......cccceceevvucueuenncee. 116
6.3.1 Request NetWOrK ... 116
6.3.1.1 Node Definitions of Request Network................... 117
6.3.1.2 Types of Request Node.........cccevvuvurmiriirrcicinincnennes 118
6.3.2 Expansion of Request Networkcccceevceeuencrnececrcrnencnn. 119
6.3.3 Conflicts ReSOIUtION......c.cuiiiiiiiiiiiiiiccc e 124
6.3.3.1 When and Why to Conflict.......cccovvvceviccrnreuerceenennes 124
6.3.3.2 Where to CONfliCt......cccecvvuvucrieverscrinencecccccicnnens 126
6.3.3.3 Conflicts Resolution and Goal Re-
Commitment....courveenrivennnnes OO 127
6.3.3.3.1 Relations for Conflict Resolution............. 127
6.3.3.3.2 Condition for Conflict
Resolution. ..., SR 129
6.3.3.3.3 Process of Abandonccccecvenirnnicecncceneene 130
6.3.3.3.4 Re-Commitment.......cccoevvuiinvicinnncnnninennne. 131
6.4 The Control Structure of the Formbase Activity Problem
SOLVET e st 132
6.5. SUMMATY cocvititetirertetct ettt as 135
CRAPLET 7. oot s s es sttt s st en b es 136
Research CONCIUSIONS ...ttt sttt sae 136
7.1. Review Of Research AlMccccoviernninceninineirenie s 136
7.2 Contributions of the Research ... 137
7.2.1 Formbase System ... 138
7.2.2 Formbase Activity Schema......ccccccevviiivicnnncsccnncnnnennnns 138
7.2.3 Organizational Activity Assumption........ccccevveieicriniinnne.. 139
7.3 Shortcomings and Further Research...........cccecuc.. oo 140
7.3.1 Shortcomings of the System...........ccccooevecivninniinccccnnes 140

7.3.1.1 Limitations of the Form Reference
PAtEOITY ceeieeeei ittt ee e e eeveereveeeeesesessessnssnssasssnnsennnenseesnn 140

7.3.1.2 The Complex Roles of Variables in

Activity Representation ... 144

7.3.2 Further Research.......oooviiiniiiinciiiieicccecceceene 146

APPENAIX 1. et e 147

Examples of the Formbase Manipulations...........cooueiviininininiinniiceee. 147

1. Examples of Formbase QUETIes......cc.covumirnirineenieiiiicensiststssnns 154

2. Examples of Formbase Predicates...........oooeiiieiieicnriieeccccrcrnnn, 157

3. Examples of Formbase Operations..........cceevveevreeivieereriverneiininnnnnnns 158

APPENAIX 2. ot e s 168
An Application of the Intelligent Form System: a Case of a

Warehouse Management ..ot eaae 168

APPENAIX 3. oot 177

Activity Representation for the Warehouse Management............coov.eereesreeene 177

RO OTOIICES. et ettt et eeesestte e et tesseesesesssa s sataaeaeeesasssassasssasssensaessssssssssnnssnn 183

Chapter 1.

Introduction

This thesis presents research which is in the area of Office Information
Systems. Technically, it relates to Artificial Intelligent Planning Systems,
Knowledge Representation, and Database Systems. Practically, it lays down a

foundation for developing form-oriented software.

The aim of the research is to improve the flexibility and stability of an
Information System inside which data as well as the procedures that
manipulate the data can not be pre-defined. The key issue of the aim is to
identify a mechanism so that dynamic task requirements can be fulfilled
based on partially well defined procedural knowledge and the situation. This
research is based on the earlier developments in Office Information System
such as OBE (Office-By-Example) [Zloof, M., 1982], SCOOP [Zisman, 1978],
ICN [Ellis, C., 1979], OMEGA [Barber, 1983], POISE [Croft & Lefkowitz, 1984],
POLYMER [Croft & Lefkowitz, 1988], OFM [Tsichritzis, D. C., 1982], SOS
[Bracchi, 1984] and OPAS [Lum, V.Y., 1982].

1.1 Rationale of Research

The development of an Office Information System is driven by the
requirements of functionality, flexibility and stability. These requirements
can be understood in three aspects: the data representation, the activity
representation, and the link between the activity representation and the data

representation.

The data representation should be independent from the functions that the
system supports, and insensible to the modification operations. It should

also be able to represent integrity rules upon the data [Gibbs, 1985].

The activity representation should provide a flexible and stable procedural
knowledge representation which can adapt to the changes in the dynamic
environments and support the tasks that users require. This means that the
modification operations upon procedural knowledge representations should
not influence the functionality of the system, and a new functional
requirement should not result in big changes of the structures of procedural
knowledge. In other words, the activity representation should achieve

certain independence from the functions that the system provides.

For the link between office data and office activities, there are two aspects:
On one hand the activity repfesentation should be able to access the data
they need in the database, on the other hand knowledge of the state that an
activity representation neelds should be provided by the information in the
database. The first aspect reflects the information processing features of the
system, the second aspect reflects the constraints that the background

situation of an office activity has for the information processing process.

If we review the history, for a simple data processing system, the functions that
the system should support are simple and can be formally defined. There is no
difference between tasks and activities. The requirements for flexibility and
stability are mainly at the database level. The cash point services that are
provided by banks are a typical example. The procedures that a cash point should
support are simple and limited - withdraw cash, check balance, list statements,
and so on. Since there are no temporal relationships or data communications

between these procedures/operations/tasks/activities, the structure that is

required to support them are simple and straightforward. Problem solving
processes are not involved. The stability and flexibility of the systems are required

only for the modification operations of the database system.

For an Office Information System, the situation is totally different. The data
as well as the functions that the system should support can not be formally
pre-defined. If we insisted on using traditional methods to model it, we can
do nothing more than identifying a large group of independent processes
and then supporting them. This is what the first generation of office system
models have done. OFFICETALK-ZERO [Ellis, C., 1979], for example, is an
integration of several sub-systems and only supports disconnected simple
operations. OBE [Zloof, 1982] is also in this category, the operations that OBE
can support are not more than database manipulations. This is far away
from our expectations for an Office Automation System, since its

functionality is too simple.

To improve the functionality of an office model, it is necessary to model the
functional and temporal interrelationships between office
procedures/activities. SCOOP [Zisman, 1978] and ICN [Ellis, C., 1979] were
early systems which modelled office procedures. The structures that they
used to support office functionality were no longer straightforward, instead
they used networks to represent the system functions. A systems task is
decomposed into sub-procedures which are represented as nodes inside the
network. This enables SCOOP and ICN to represent the temporal the
relationships as well as data communications between the sub-procedures.
However, the mechanism that both SCOOP and ICN used for supporting
office task is not semantically based, therefore the structure of the system is
not stable. This is because a node in the network is defined by identifying a

set of operations which can be connected with others through a distinct state

condition. This identifying process is more like a simple division of a
continuous procedure rather than a construction of a network from the
semantically distinct nodes. Thus the network structure is related to the
functions that the system supports. Therefore, the system only can support
the task requirements which are expected. Moreover, since both of them
have taken every minor detail of office procedures and office data, even
minor changes in office procedures and office data may cause big alteration
of the system structure, which is difficult to carry on since semantic reasons

are not used as the basis for system construction.

Therefore, the structures proposed by SCOOP and ICN have to be
abandoned, office procedures must be represented in a form that possesses
more semantic meanings. The strongest semantic factor in an office system
is therffice task. So office procedural knowledge representation should be
augmented by their goals [Barber, 1984]. In this way procedural knowledge
can be organised by a goal which the procedure wants to achieve. Since goals
are semantically more distinct, the knowledge encapsulated within them is
more stable. Moreover, after the augmentation of goals with an office
procedure representation, the functionality of an office information system
can be supported by a problem solving process dynamically. Therefore, the
flexibility and functionality of the system are determined by the ability of the
problem solver. This is obviously a natural structure for any intelligent
system. OMEGA [Barber, 1983], POISE [Croft & Lefkowitz, 1984] and
POLYMER [Croft & Lefkowitz, 1989] are efforts toward this direction in OIS
modellingresearch. They initially discussed the problems of sﬁpporting an
office information system task, such as how to represent and how to

coherently decompose a task.

However, an office task is not so easy to support as the task of a simple data
processing system. If an office task involves personal problem solving efforts
and a large quantity of communications, it will unavoidably fall into the
problems of formalizing social conception of knowledge and action [Gasser,
L., 1991]. The developed models, such as OMEGA and POLYMER, were not
able to approach these problems. In fact, their approaches to activity
representation and problem solving are not connected with data
representation. Therefore they have an innate difficulty of developing
cognitive problem solving processes since human problem solving
strategies are usually embedded in a situation [Suchman, 1990]. Thus the
three aspects of an office information system: the data representation, the
activity representation and the link betWeen them, should be considered
together. Task decomposition and subtask cooperation are not the whole
story of modellingan office system, office data modellingmust be coherent

with activity modellingand task supporting.

There is a category of developed office models which deals with these three
aspects together. They are the form-based office models which include FFM
[Tsichritzis, D. C., 1982], OPAS [Lum, V.Y., 1982] and SOS [Bracchi and Pernic,
1984]. The most important feature that a form-based office model has is that
it can use a form pattern to define not only the data inside data base, but also
the conditions and the effects of an activity and the requirements of a task.
Therefore, there is a natural coupling between the data representation,
activity representation and task representation. This is essential for a system
whose environment is open and dynamic. However, the developed form-
based office models have limitations both in their representational ability
and in their problem solving ability. On the representational side, either
data representation, activity representation or task representation are

restricted by the form patterns that the system used. The form patterns are

basically relational, for example the reference pattern used by FFM

- [Tsichritzis, D. C., 1982], and can not represent the office forms which mostly
are nested and can not be normalized. On the problem solving side,
developed form-based office models have not explored a cognitive approach,
instead most of the systems explore procedural representation with central
concern of data modeling. Therefore, researches in this area tend to be the

same as Object Oriented Database Systems.

In this thesis, an Intelligent Form System (IFS) is presented, it includes a
Formbase System which can model office forms in an organization and a
problem solver, called Formbase Activity Problem Solver (FAPS), which can
assist the problem solving for the activities upon the forms. Office forms
and the information processing activities upon them are usually consciously
designed by an organization to perceive and to control the performance of
the organization. The research that is presented in this thesis has identified a
nice combination of data modellingand problem solving which is able to cut
the social 'corner' for identifying a cognitive problem solving process. Since
every organization deals with a large amount of forms, a computer aided
form processing system has very large application potential. In the Formbase
System, the formbase query, formbase predicates and formbase operations
are developed based on FFM [Tsichritzis, D. C., 1982] and SOS (Semantic
Office System) [Bracchi, 1984]. The FAPS (Formbase Activity Problem Solver
) is developed based on the earlier developments such as OMEGA [Barber,
1983] and POLYMER [Croft & Lefkowitz, 1988], and the Al planning systems,
such as NOAH [Sacerdoti, 1975], NONLIN [Tate, 1977}, and TWEAK
[Chapman, 1987].

1.2 The Outline of the Thesis

Chapter 2 gives a review for the developed office models, then the
developed Intelligent Form System (IFS) is presented. The Formbase System
of the IFS is presented in Chapter 3 and Chapter 4. Chapter 3 introduces the
data definition and data manipulation languages of the Formbase System,
Chapter 4 introduces the internal representation and the implementation

issue of the Formbase System.

The Formbase Activity Problem Solver (FAPS) is introduced in Chapter 5
and Chapter 6. Chapter 5 present the activity representation mechanism for
the activities upon the forms, while Chapter 6 discusses the problem solver.
A brief review of the developed Al activity representation mechanism and
their corresponding problem solvers can be found in Chapter 5. The

conclusions of the research are made in Chapter 7.

Chapter 2.

Background of Research

Many contributions have been made by the developed office models for
modellingoffice data, office activities and the link between office data and
office activities. The examples of the developed office models include
Officetalk-Zero [Ellis, 1979], OBE (Office-By-Example) [Zloof, M., 1982], OFFIS
[Konsyniski, et al, 1982], SCOOP [Zisman, 1978], ICN [Ellis, C., 1979], OMEGA
[Barber, 1983}, POISE [Croft & Lefkowitz, 1984], POLYMER [Croft &
Lefkowitz, 1988], OFM [Tsichritzis, D. C., 1982], SOS [Bracchi, 1984] and OPAS
[Lum, V. Y., 1982]. This chapter reviews the developed office models in

terms of the above three aspects.

2.1 Office Data Modeling

The aim of office data modellingis to form a viewpoint of the objects
manipulated by the office workers and support the necessary operations for
a viewpoint. At the earlier stage, office data modellingwas the major
research issue for office system modeling. There was a group of office
models which were developed based on office data modeling. This group of
models includes OFFICETALK-ZERO, introduced in [Ellis, C., 1979}, OBE
(Office-By-Example) [Zloof, M., 1982], and OFFIS [Konsyniski, et al, 1982].
They have initially tackled the information objects that an office model

should include, and the necessary operations upon these information

objects that an office model should support. Their research results for office

data modellingform the basis for the later developments.

Officetalk-Zero, introduced in [Ellis, C., 1979], was a prototype of a first
generation office information system. It integrated several subsystems
including a text editor, graphic package, communication facilities and filing
facilities. All these subsystems are provided via a simple, uniform form
interface. The information processing operations are not more advanced
than database system manipulations. More operational features of this

model can be found in [Ellis, C., 1979].

~ OBE (Office-By-Example) [Zloof, 1982] is a further development of the data
base language QBE (Query-By-Example) [Zloof, 1977]. The difference is that it
incorporates more data types such as letters, forms, reports, charts, and

graphs. The operations that OBE can perform on these data types are:

a) Cross-reference between fields by entering identical example elements
~on two or more fields of the same or different objects.

b) Formulating conditions on field values.

¢) Moving data from one field to another.

d) Deriving new values

e) Locating text by using partially underlined strings of characters.

f) Distributing objects to a dynamic list of destinations. |

g) OBE can express trigger conditions for some simple actions, such as

insert, delete, etc.

After the development of data abstraction mechanisms and rule based

production systems, office system data modellingis further developed.

Based on these technologies, Gibbs [Gibbs, 1985] identified the requirements

for modellingoffice information objects. The requirements are:

a) Using an object to model entities: Objects are used to model individual
entities, documents, and even syntax-directed editors and interactive
editors/formatters.

b) Abstraction mechanisms: This includes classification, generalization
and aggregation.

c) Integrity constraints: This includes template constraints for the values of
the attributes of objects; constraints for modification operations upon
objects; and semantic constraints for the links between objects.

d) Supporting unformatted data types.

If not considering the requirements for unformatted data types, the data
modellingmechanism which was used in SOS (Semantic Office Systems)
[Bracchi,1984] can almost match the above requirements. SOS used three
data abstraction mechanisms: generalization, aggregation, and association. It
also has a rule production system which can access the facts defined in the
data model, and therefore it is able to specify integrity rules upon data

objects. For example, an office document can be defined by SOS as follow:

<document>
{aggregation-of

name;
creator;
owner;
ownership;
}
}

A semantic constraint can be specified as the following [Bracchi, 1984]:

10

<SR1>
{
is-a static-rule;
on new program;
if not (for-each paper part-of program
such-that exist paper)
then program-irregularity

2.2 Office Process Modeling

Office procedure modellingis the most important part of office
modellingresearches. It analyzes and describes office work by looking at
different activities performed concurrent by the user and the system. There
have been two styles of modellingmethods. One tries to support the routine
office procedures by using well defined nets, the other uses problem solving

methods developed in Al to support office work.

2.2.1 Well-Defined Network Representation

SCOOP (System for Computerization Of Office Processing) [Zisman, 1978] is
the most typical system which uses a well defined network to model office
procedures. It is based on Petri Nets [Peterson, 1977] but augmented by a
production system. It consists of three parts: a set of rules constituting a
condition and an action sequence, a data base allowing data of the state to be
maintained, and a rule interpreter. The production system functions by
testing the condition of each rule. If the condition is deemed true the
consequent actions are performed. The most important contribution that
was made by SCOOP system is the discovery of using an internal network

representation and a production system to model the office procedures. An

11

important disadvantage of the system is that its data base can not represent

the office documents which are manipulated by the office processes.

To improve SCOOP's inability of referring to the office documents that an
office process needs, another office information model was proposed. That
was ICN (Information Control Net) [Ellis, C., 1979]. ICN defines an office as a
set of related procedures. Each procedure consists of a set of activities
connected by temporal orderings called "precedence constraints”. In order
for an activity to be accomplished, it may need information from
repositories, such as files or forms. An Information Control Net can capture
the notions of procedures, activities, precedence, and repositories, that is,
knowledge of (1) the particular data items transferred to or from
repositories, (2) who performs the activity, (3) the amount of data
transferred by an activity can be attached to it. For more details see reference

[Ellis, C., 1979].

Both SCOOP and ICN use well-defined networks to represent procedures,
therefore a task of the system has to be an expected request. In another
words, the mapping between the task representation and the activity
representation can not adapt itself to the open and dynamic environments.
Just as Barber pointed out in his paper [Barber, 1983]: "Precisely because of its
succinctness a procedural description suffers from two defects: first, it glosses
over minor details that may be problematic or critical in practice; second,
the reasons for the actions specified by a procedural description must be
inferred". Therefore "even routine tasks in offices encounter unexpected
obstacles." This is because "in a procedural approach, it is necessary to
foresee the possible alternative courses of action when a procedural step

cannot be performed.” But "determining what the alternatives are is part of

12

what office work is; all alternatives cannot be determined in advance.”
Thus "As a result, a procedural approach is not a very useful style of work
description because it needs to be augmented by the procedure's goal
structure. When a procedure is augmented in this way, one can examine
the procedure's goal structure in order to generate alternative steps when a

step cannot be performed."

2.2.2 Goal-Augmented Activity Representation

To augment a procedure's goal structure to describe a procedure is to find
the meta knowledge for developing a procedure net. The process of
developing a procedure net is referred to as the problem solving process in
the literature of Al planning systems. When a task request is a problem for
the problem-solver rather than a simple request to perform a pre-defined
routine, the capacity of the systems to support office tasks is dependent on
the ability of their problem solving processes. Barber proposed a model in
1983 called OMEGA [Barber, 1983], which had developed a problem solving
process to support the problem solving of office work. Croft and Lefkowitz
later developed POISE [Croft & Lefkowitz, 1984] and POLYMER [Croft &
Lefkowitz, 1988].

OMEGA [Barber, 1983] used a viewpoint reasoning system to support the
problem solving of office work. The problem solver of OMEGA was
developed based on the developments of the earlier knowledge representing
systems, such as QA4, Conniver, FRL and KRL. A shortcoming shared by
these earlier developed systems was that they could not reason
contradictions because "they are based on logics where truth is a global

characteristic of a statement." [Barber, 1983] The improvements made by

13

OMEGA limited the effects of contradictions within viewpoints. It is similar

to ATMS (Assumption Truth Maintaining System) [de. Kleer, J., 1984; 1986].

POISE [Croft & Lefkowitz, 1984] supports a simple mechanism for task
decomposition. It consists of three components, they are a procedure library
which contains the procedural descriptions; a semantic database which
contains descriptions of the objects used in the procedures and descriptions
of the available tools; a model of a particular user's state which includes
partial instantiations of procedure descriptions with parameters derived
from specific user actions, as well as instantiations of semantic database
objects. For example, in the procedure library there could be a procedure for
filling out a purchase order form. In the semantic database there would be a
description of this form, its fields, and its relationships to other forms and
fields used in the system. After a user had started to fill in a particular
purchase order form, the user model would contain a partial instantiation
of the "Fill-out-purchase-order-form" procedure with values derived from
the actual values filled in by the user. There would be also an instantiation

of the semantic database object that represents the purchase order form.

To represent office procedures, POISE uses a specific language, an example of

which is given in the following. [Croft & Lefkowitz, 1984]

PROC Purchase-Items
DESC (Procedure for purchasing items with nonstate funds.)
IS (Receive-purchase-request

'(Process-purchase-order | Process-purchase-requisition)
'(Complete-purchase))
WITH ((Purchaser = Receive-pur-request.Form.Purchaser)
(Items = Receive-pur-request.Form.Items)
(Vendor-name = Receive-pur-request.Form.Vendor-name))
COND (for-value {Purchaser Items Vendor-name}
(eq Receive-pur-request.Form
Process-pur-order.Form

14

Process-pur-requisition.Form
Complete-pur.Form))
PRECONDITIONS-
SATISFACTION (for-values {purchaser Items Vendor}
(exist Complete-pur.Form))

The algérithm syntax of the procedure is specified by the IS clause, refined by
the COND clause, and its parameters are defined by the WITH clause. The
conditions required for a procedure to begin are specified by the
PRECONDITION clause, while the goals satisfied by a procedure are
contained in the SATISFATION clause.

The IS clause of the procedure definition provides a precise way of
describing the standard algorithm for accomplishing a task in terms of other
procedures and primitive operations. The sequence of constituent
procedures is specified using the operators catenation ('), alternation (1),
shuffle (#), optional ({}), plus (+), and star (*). The concatenation operator
specifies the exact temporal ordering of two procedures. If only one of two
procedures is to occur, the alternation bperator is used. Shuffle permits the
interleaving of the components of two procedures in any order. The
optional operator is used to specify that a procedure may or may not occur.
Plus operators allow procedures to occur one or more times, while the star

operator, the closure of plus, indicates zero or more occurrences.

The above example is a "Purchase-items" procedure. The IS clause specifies
that after a purchase request has been received, either a purchase requisition
or a purchase order is processed. The task is completed by the steps in the

Complete-purchase procedure.

15

Obviously, POISE has achieved to some extent the link between office data
and office procedures, and can synthesize procedures using a set of operators
and procedural primitives. However variables can not be used in an activity
representation, the activity representation therefore is not an abstractive
template. The users of a POISE system must be familiar with the system
details so that they can modify the procedure library (primitive activities)
according to the changes in semantic database (office information objects
base), and define new office procedures based on defined primitives in the

procedure library.

Moreover, events, sub-activities and their relations must be clearly specified.
This actually means this kind of representation also can not ignore the
minor details of office procedures. Furthermore the activity representation
has not encapsulated enough information for office activities. For example,
there is no state protection information, therefore the interactions between
different activities or office tasks can only be resolved, if possible, by the
assistance of integrity rules, and this is with the condition that the designer

knows previously that the interaction will happen and how to resolve it.

POLYMER [Croft & Lefkowitz, 1989] intended to further develop the POISE
system. It uses the concepts of Al Planning systems, such as the Task
Formalisms [Tate, A,. 1984], to represent knowledge of office activities. Thus,
an office activity schema in POLYMER contains fields for describing the goal
~ of the activity, steps for fulfilling the activity (decomposition), the temporal
and causal relations among the activity's steps, preconditions and side
effects of the activity, the agents responsible for performing the activity, and

any additional constraints on the activity. An example of an office activity

16

schema of POLYMER system is shown as the follow: [Croft & Lefkowitz,
1988]

ACTIVITY: Accept-or-Reject.Way1
Goal: refereed(?paper)
Preconditions: member (?paper, papers)
Decomposition: GOAL desion-reached = exists (status (?paper))
Control: repeat decision-reached until
or(status (?paper, "accepted"), status (?paper, "rejected"))
Agents: ?editor = member (?editor, editors)

This activity description reflects the potential cyclic nature of journal
editing. It attempts to achieve the goal of reaching a decision on the paper
and indicating that this decision is either "accepted" or "rejected". If the
decision is anything else, the task will continue. The previous developed
systems, such as OMEGA, do not have a mechanism which can acquire
procedural knowledge as easily as this office activity schema. Compared
with POLYMER, OMEGA also has difficulties in acquiring information
objects in an office system, since the reasoning mechanism inside it does not
have structures to distinguish knowledge of the situation and knowledge of

the activity.

POLYMER aims to develop a goal achieving process. When an office task is
input to the system, based on the given activity schemas and the office

situation descriptions, the goal achieving process will construct a procedure
network for fulfilling the office task dynamically. Using this modellingstyle,
the procedural networks are all constructed dynamically by the goal

achieving process of the planner. Minor details can be ignored.

However, the problem solving procedure inside POLYMER is problematic.

Basically the connection between its activity representation and data

17

representation is loose, the semantic base of its problem solving process is

unclear.

In technical details, it uses the networks of the Assumption-based Truth
Maintaining System (ATMS) [de. Kleer, J., 1984; 1986] to represent the nodes
and the worlds of the system. In this way, "the parents of a world must be
specified when a world is created. They may not be modified later, nor may
existing worlds be specified as children of a world." Therefore it is not a

strong problem solver since it can not properly process interactions.
2.3 Link between Data Representation and Activity Representation

The connection between data and activities is one of the essential aspects for
modellingan office system. Among the developed office models, form based
office models, such as FFM (Form Flow Model) [Tsichritzis, D. C., 1982], SOS
[Bracchi, 1984] and OPAS [Lum, V. Y., 1982}, have developed a mechanism |
which can couple data representation and activity representation together.
The reason that a systematic approach for modellingoffice work can be
developed based on the form concept is because "an office form is a
common office information object, it not only provides a structure for
organizing office data, but also functions as an interface for office workers to
access and to manipulate the data." "The computerized forms are not only
the conceptual image of business paper forms, but are more general and
elaborate so as to be able to represent any structural data and their

templates." [Tsichritzis, D. C., 1982]

The FFM (Form Flow Model) [Tsichritzis, D.C., 1982] views an office as "a

network of stations through which forms flow." Information is gathered on

18

'forms' as structured data, and is processed at one or several stations.
‘Station' is the term used for an abstract entity which relates a person, or
their role with a physical location and device through which they can
operate. A form begins at a station within the network, is processed as it
moves through other stations, and ultimately ends at a station within the
network. The coordinating of the route which the forms take'from station to

station is accomplished by the network.

A form type inside FFM has a set of attributes and a set operation
procedures. The operations include inserting and modifying a value of an
attribute into a form, coping and deleting an instance of a form type, and the
operations which deal with mox)ing forms between stations in the system.
When forms are flowing within the network, operation requests on form

instances are issued from stations.

An office activity inside the FFM model is specified by a system called TLA
(Toronto Latest Acronym). A TLA activity is a collection of "sketches." A
sketch resembles a form, but is distinguished from form types or form
instances. A form precondition sketch is a request to find "a form that looks
like this." An action sketch is a request to modify a form that has already
been obtained by the precondition sketch. Both of them are called form
sketches. The medium of a form sketch specification is the same form
template of the form instance being described. Form sketches are used to
capture the restrictions referring to values that appear in the forms in the
working set locally or globally. Local restrictions are constant attribute
values, sets, or ranges of values, and relations between values of the
attributes on a given form. Global restrictions on the working set of an

automatic procedure are the join conditions between values of attributes

19

appearing on different forms. For example, Figure 2.1(a) is a precondition
sketch which instructs the system locally to watch for order forms which are
requesting 'Borsalino Hats', and Figure 2.1(b) is a precondition sketch that
instructs the system globally to watch for an order of an inventory form. The

linking conditions can appear in either sketch.

ORDER FORM KEY: __ INYENTORY RECORD KEY:
Customer-No.'—__ Customer-Name: — | | Item: =ord.itemn .
I'em: ______ Description: Borsalino Hat Price:
Price: Quantity in stock:
Quanlity: —
: Description:
Towl: ——
(2) (b)
Figure 2.1

Compared to the mechanism of representing activity in POLYMER system
or in ICN system, this method of representing an activity could properly
couple the data and the activity together, that is, the activity specification has
reference patterns for the data of specific forms. Since the form patterns are
supported by an interpretation process which is called when necessary, the
link between the data and the activity can be dynamic and need not be
defined as fixed connections. This makes the activity representation of the
system more flexible than models like ICN. On the other hand, since the
definition of the activities contain the form patterns, the connection

between the data and the activity is not as uncertain as POLYMER.

20

The problematic aspect of FFM is its approach to mapping a task
requirement to activity representations. The strategy that the FFM has used
is to find a path among the stations, the stations on the path should issue all
the necessary operations for fulfilling the task requirements. This is really
an issue of distributed problem solving. As it is shown in Figure 2.2, every
station needs to decide what it can do for the form and where to direct it.
Therefore, the effects of every station must be recorded, and there must be
information for deciding where to send the form next, the algebraic
approach of FFM can not deal with the semantic complexity.

Laskl task?2

form route coordination

Figure 2.2

SOS (Semantic Office System) [Bracchi, 1984] model is composed of three
submodels: static submodel, dynamic submodel and evolutive submodel.
The structure’'is shown in table 1. The static office data is modelled in the
Static Submodel. Office processes are supported by the Dynarhic and

Evolutive Submodels. The integrity constraints are supported by the

21

integrity rules in both static and dynamic submodel. The adaptability of the
system is supported in the evolutive submodel by the system evolutive

rules.

System Structure of SOS

STATIC SUBMODLE
Office Objects:
documents
dossiers
agents
Static rules

DYNAMIC SUBMODEL
Office Activities
Dynamic rules

semantic rules
authorization rules

EVOLUTIVE SUBMODEL
Office evolutive rules
System evolutive rules

table 1

The static submodel is the data model of the office system. It includes static
office elements and static rules which are the static integrity constrains.
Static office elements are documents, dossiers and agents. The most
important contribution of SOS model is the identification of an abstraction
mechanism for modellingoffice forms/documents. The mechanism
includes generalisation, aggregation and association. An example is shown

in the following:

<document>
{ aggregation_of
{ name: string;
creator:agent;
owner:agent;
ownership_type:{personal,official};

}
}

22

Office activities and tasks are supported in SOS by rules in both the dynamic
and evolutive submodels. All the rules in SOS have the following syntax

structure. Every rule contains three parts: declaration, condition and the

action body.

<rule>

{ { declaration: /* involved elements are listed here */
{ rule-id: /* rule identifier number */
is-a...;

involved-elements
aggregation-of: ...}} /* end of declaration */
{condition: /* for invocation or termination */
{ aggregation-of
{temporal-condition:...
on-event-condition:...
on-element-condition:if...}}} /* end of condition */
{ body:then body; }
} /*end of rule */

An example of activity can be specified as follow:

<selecting-paper> is-a activity
{ aggregation-of

input: { aggregation-of
{ paper-basic-info:
referee-report-dossier: }
}
output: list-of-selected-paper:
event-on-termination: paper-selected;
max-duration: 1 month;
activation-time:time-point;
activator:editor;
steps: aggregation-of
{reading-list;
paper-selection-decision;
write-list;}

The activities in SOS are described by the information objects (input or

output) related to them, the activity's time duration, the agent who is

23

responsible for the activity, and the steps of the activity. Based on the
activity description, office tasks in SOS are supported by office evolutive
rules. An office evolutive rule, specifying when to send a solicitation letter

to a later referee is as follow:

<OER1> is-a office-evolutive-rule
{ at (ending-time part-of referee-request) +1 month;
if not exist referage such that
(referee part-of referage equal destination
part-of letter-of-referage-request) and
(paper part-of referage equal paper part-of
letter-of-referage-request);
then send letter-of-solicitation-to-referee to
destination part-of letter-of-referage-request }

2.4 Conclusions

To develop an office information system, the data representation, activity
representation and task representation must be considered together. Among
the developed models, form-based office information models have
identified a structure Which is able to couple data representation and activity
representation together, but so far the form-based models are not able to
represent nested data, therefore the activities upon the forms are not
represented on the ground of office situation, it is therefore difficult to
develop a cognitive problem solving process based on organizational

semantics.

Based on this observation, one effort can be made to improve the data
reference mechanism of a form-based model, then to introduce the
techniques developed in the Al activity planning area to improve the

performance of the form-based Office Information Systems.

24

Chapter 3.

A Formbase System

This chapter presents a Formbase System. It is developed based on the
earlier form-based office models such as FFM [Tsichritzis, D., 1982] and S0OS
[Bracchi, G. and Pernic, B., 1984]. Compared to the approaches of extending
relational algebra to process the nested data such as [Mark A. Roth, et al,
1988], this system is developed based on the concepts of Office Information
Systems, the data modellingmechanism is more semantic and easier to be
accepted. Compared to the data modellingmechanism of Object Oriented
Database Systems [Kim H. J., et al 1987], this system directly deals with
ordinary forms and does not need inheritance relation and procedure
attachment, therefore is easy to implement efficiently. The definition for a
form type is based on aggregation and association abstractions which were
used by SOS [Bracchi, G. and Pernic, B., 1984]. The predicates and the
operations for the data inside the forms are based on the development of
the form reference pattern language which is first introduced in [Liu. H., et
al 1991]. A prototype of the system has been implemented on a Sun

Workstation using Common Lisp.
3.1. Form Type Definition

Office forms are common information objects in an organization. Figure 3.1

is a claim for payment form, called RVL form, for a Regular Visiting

25

Lecturer in an institute. It is an ordinary type of office form. There are two
levels of information in this form: the first level is constituted by the less
changeable information such as 'Name', 'Title', and 'School’; the second
level is constituted by the more dynamic information such as 'Subject’,
'"Working day' and 'Working hours'. Only two types of abstraction are -
needed to model such type of form, namely aggregation and association.
Aggregation defines different subfields of a form, while association specifies
groups of elements of the same type. By using aggregation and association

abstractions, the RVL form can be represented as the following:

Claim for Payment - --- Regular Yisiting Lecturer
Name: Title: Cost Center: School:

working | working . Yorking hours

bject
day date Subjec gradel|grade2 | grade3
Signature: Date: Signature: Date:
Yisiting Lecturer Manager:
Figure 3.1

(define-form
'(RVL
(name)
(title)
(school)
(cost-centre)
(aggregation-of lecturer-signature
(lecturer-signature)

26

(date))
(aggregation-of manager-signature
(manager-signature)
(date))
(association-of form-body
(working-date)
(working-day)
(subject)
(aggregation-of working-hours
(gradel)
(grade?)
(grade3)))))

This representation is very straight forward and clear. Office forms can be
generalized by recursively using aggregation and association abstractions. Its

BNF definition is shown as the following:

<form-definition> : := (define-form <type-name> <form-type-tree>)

<form-type-tree> ::= (<attribute>) |
’ : := {aggregation-of <aggre-name> <form-type-tree> } |
: := {association-of <assci-name> <form-type-tree> } |
: := <form-type-tree> <form-type-tree>

<type-name> : 1= symbol
<attribute> : 1= symbol
<aggre-name> = symbol
<assci-name> ::=symbol

The inheritance relation is not needed in this definition though most of
developed knowledge representation systems regard it as an essential
abstraction means. This is not a surprise result since an inheritance relation

does not have a wide semantic support.

3.2. Form Reference Patterns

27

Given the above definition of a form type, the form reference patterns can
be composed by the form type and the names of the fields and the attributes,

and their values. For example, the following pattern

(?rvl (instance-of RVL)
(name Howard))

may be considered to refer to all the instances of the RVL forms with a

constraint 'name = Howard'. And the pattern

(?rvl (instance-of RVL)
(name Howard)
(lecturer-signature (date "3/12/90"))

may be considered to refer to all the instances of the RVL form with
constraint 'name = Howard' and the date-of-signature = '3/12/90'. Notice
here the 'lecturer-signature’ field is an aggregation abstraction. The
reference pattern may also use association abstractions. For example the
following pattern is also clear. Besides the requirements for name and
lecturer signature date, the pattern also has requirements for the subject that

is taught on Monday.

(?rvl (instance-of RVL)
(name Howard)
(lecturer-signature
(date "3/12/90")
(time-tab
(subject software-tools)
(working-day Monday)))

The 'time-tab’ field is defined by an association abstraction. The constraints

(subject "software tools") and (working-day "Monday") are upon the

28

repeated group (or subform) 'time-tab'. Therefore, semantically it means

that one of the subjects that the lecturer teaches is on Monday.

If the value inside a constraint is allowed to take variables, then the
relations between different forms can be included into the form reference
pattern. In this way a pattern language is defined. For example, if we have
another form, called ARVL, in the institute for the Appointment of Regular

Visiting Lecturer, as shown in Figure 3.2.

Appointment of Regular Visiling Lecturer
Name: Tifle: Cost Center:

Current Occupation: School:

Day | Hours/perw | No. weeks | Subject | Course-code

Figure 3.2

It can be defined as follows:

(define-form
'(ARVL
(name)
(title)
(school)
(current-occupation)
(cost-centre)
(manager-signed)
(association-of teaching-course
(day)

29

(hours/perw)
(number-of-weeks)
(subject)))

If we are interested in those RVL form instances such that for each of them,
there is an ARVL form instance which has the same name, same cost centre,
same subject, and is authorised by the same person, the form reference

pattern can be written as the following:

(join ((?rvl (instance-of RVL)

(name ?name)

(cost-center ?cc)

(time-tab (subject ?subject))

(manager-sig (manager-sig ?man)))

(?arvl (instance-of ARVL)

(name ?name)
(cost-centre ?cc)
(manager-signed ?man)
(teaching-course (subject ?subject))))))

This pattern means for all the RVL form instances, there is an ARVL form
instance which has the same name, same cost centre, same subject, and is
authorised by the same person. The reference pattern for the office form is
interpreted as an form type together with a set of constraints. A constraint
can require an attribute of an office form have a special value, or require
that there exists a special relationéhip between two attributes which could be
inside the same form or inside different forms. For example the matching
between the '?subject’ of the RVL form, and the '?subject’ of the ARVL
form requires an equivalent relation between these two attributes. If a
variable inside a constraint of a form pattern does not have a counterpart in

other form patterns, the variable will make no sense.

30

3.3. Formalisation of Form Reference Pattern

Based on the above discussion, A Form Reference Pattern (FRP) can be

defined by form types and constraints, shown as the following expression.

FRP=((?V1ITICI1CI12.. .. Cln)
(?v2T2C21C22... ... C2n)

VM Tm Cm1 Cm2 Cmn))

In this expression, ?V1, ?V2 and ?Vm are variables which represent form
instances, T1, T2 and Tm specify the form types, and all the Cij (where i=1 ...
m, and j=1 ... n) are constraints. A constraint consists of a value and a path
from the top abstraction to the bottom abstraction where the value is
located. The value can be an atom value, or a variable. More than one
constraint condition can be specified if the field is an association abstraction.
The variables inside a constraint are used to set up relational constraint
between different forms. The matching pattern between RVL and ARVL

forms is an example of a FRP:

((?rv] (instance-of RVL)

(name ?name)

(cost-center ?cc)

(time-tab (subject ?subject))

(manager-sig (manager-sig Susan)))

(?arvl (instance-of ARVL)

(name ?name)
(cost-centre ?cc)
(manager-signed Susan)
(teaching-course (subject ?subject))))))

The BNF definition for a form reference pattern is:

<FRP> : := (<Form-var> <Form-type-spec> <FRP-body>)

31

<FRP-body> ::= Empty |
: := <single-FRP> | <single-FRP> <FRP-body>
<single-FRP> : 1= <constraint-cell>

: := (<field-name> <single-FRP>)

<constraint-cell> : := (<field-name> <value>)
<Form-type-spec> : := (instance-of <form-type>)
<form—type> : := symbol

<field-name> : :=symbol

<Form-var> 1= <var>

<value> ::=symbol | <var>

<var> : := ?symbol

3. 4. Five-Key Allocation for Values inside a Formbase

A Form Reference Pattern defines a set of form instances inside a formbase
in which we are interested, but to manipulate the values inside a formbase,
the system not only needs to know the set of form instances of our interest,
but also needs to be able to allocate exactly where the values are. Based on
the form reference pattern language, this section develops a five-key system

which is able to allocate a value inside a formbase.

If we want to manipulate a set of values, they are first inside a set of form
instances of interest. Once the set of form instances of interest are allocated,
the system needs to know which form type, which abstraction and which
attribute of the abstraction that the values are located. If the abstraction is an
association abstraction, more constraints upon the repeated group also need
to be specified. Therefore the system needs five keys to allocate values inside

the formbase. These keys are represented respectively as :form, :type,

32

:subarea-path, :sub-cond and :attribute. The key :forms uses the FRP to
define the form instances of interest. The :type key specifies which type of

the form instances that the operator/predicate is applied to.

:subarea-path (time-tab)

forms [
((?xv1 (instance-of rvl)
(name Howard) Clalm tr Payment ---~ Reguior ViMting Lecturer
(n;amg)e;)—sig (nmwger—s'y' Nome: W Tifle: Cost Certer: Sehaot:
fman, ‘type vl , ' :
{mansgor-signed Pmst)) Mo | e | subeet e

] gredel|gradeZ | grade3

- sipnety N:}“A: I h‘vmiuru: Darte:
1 Yivitinp La r v
i :subcond attibuts
- v (working-date 12/3/92) . (subject)
Figure 3.3

An attribute is inside an abstraction, for example the 'subject’ attribute is
inside 'teaching-course' abstraction in ARVL definition, or it can directly
belong to the root instance, for example the 'name’, 'title’ attributes directly
belong to the root instance in ARVL forms. An abstraction is called the
parent abstraction of an attribute if this attribute directly belongs to it. In
order to manipulate the values, :subarea-path is used to allocate the parent

abstraction of the attribute. If the attribute is a son of the root form instance,

33

then the :subarea-path key needs not to be specified. If the parent abstraction
of the attribute is an association abstraction, then the system faces a table of
data, the :sub-cond key is used to specify the set of rows to which the
operator/predicate is applied. The :attribute key specifies the attribute that

the operator/predicate is applied.

Figure 3.3 gives an example of allocating values inside a form instance.
Suppose we are going to manipulate the 'subject' attribute of the verified
'rv]l' forms (Fig. 3.1) whose 'name’ attribute value is 'Howard'. The :forms
key is:

((?rv1 (instance-of rvl)

(name Howard)
(manager-signature (manager-signature ?man)))
(?arvl (instance-of arvl)

(name Howard)
(manager-signed ?man)))

The 'arvl' form (Fig 3.2) is needed to verify the 'rvl' form. The value of :type
key is 'rvl' to indicate which type of form that the operator is going to be
applied to. Since the 'subject’ attribute is inside 'time-tab' association
abstraction, and it is the parent abstraction of it, the :subarea-path key is
(time-tab). Finally because 'time-tab' abstraction is an associate abstraction,
the :sub-cond is specified. The whole allocation process is shown in Figure

3.3.
3. 5. Query upon Forms
Based on the above allocation system, queries for form base can be defined.

Query function can use the five keys for determining the scope of the form

instances. Therefore, the query function is defined as follows:

34

(formbase-query :forms :type :subarea-path :sub-cond :attribute)

Except the :form key, all the other keys are optional as long as the query is

meaningful. For example,

(formbase-query :forms ((?rvl (instance-of rvl)
(name Howard)
(manager-sig (manager-sig ?man)))
(?arvl (instance-of arvl)
(name Howard)
(manager-signed ?man))))

searches all the 'rvl' and 'arvl' forms whose name attribute values are
'Howard' and are signed by the same manager. If we are only interested in

the instances of 'rvl' forms under the same condition, then the query is:

(formbase-query :forms ((?rv] (instance-of rvl)
(name Howard)
(manager-sig (manager-sig ?man)))
(?arvl (instance-of arvl)
(name Howard)
(manager-signed ?man)))
itype rvl)

The :type key is added. If we are interested in the value of the 'school’

attribute of the 'rvl' form under the same condition, then the query is:

(formbase-query :forms ((?rvl (instance-of rvl)
(name Howard)
(manager-sig (manger-sig ?man)))
(?arvl (instance-of arvl)
(name Howard)
(manager-signed ?man)))

:type rvl
:attribute school)

35

If we are interested in the 'subject’ attribute of the 'rvl' form, since it is

located in the 'time-tab' abstraction, the :subarea-path key is needed.

(formbase-query :forms ((?rvl (instance-of rvl)
(name Howard)
(manager-sig (manager-sig ?man)))
(?arvl (instance-of arvl)
(name Howard)
(manager-signed ?man)))
itype rvl
:subarea-path (time-tab)
:attribute subject)

This query returns all the subject values of the 'rvl' form instances. If we are
only interested those 'subject’ attribute values which are taught on Monday,

then the query takes the following form:

(formbase-query :forms ((?rvl (instance-of rvl)
' (name Howard)
(manager-sig (manager-sig ?man)))
(?arvl (instance-of arvl)
(name Howard)
(manager-signed ?man)))
itype rvl
:subarea-path (time-tab)
:sub-cond (working-day Monday)
:attribute subject)

3. 6. Predicates upon Forms

Predicates upon forms can be defined. Currently the implementation of the
system supports exists, some-equal, every-equal, subgroup, and exist-equal
predicates. Similarly every predicate can take the five keys as long as they are
meaningful. For example, exists predicate can use (exists :forms) to check if
there are forms inside the form base which match the form reference

pattern. Or it can use (exists :forms :type :attribute) to check if the value of

36

the attribute of the type of the form instances exist. Similarly (exists :forms
:type :subarea-path) checks if the values of the sub-area/sub-abstraction exist,
or checks a subset of the values of the sub-area by using (exists :forms :type
:subarea-path :sub-cond), or checks the values of a certain attribute of a
certain sub-area of certain type by using (exists :forms :type :subarea-path

:sub-cond :attribute).

For the predicates which take two set of values, such as the predicates like
equal and subgroup, two sets of keys are used. They are labelled as :formsl,
forms?2, :typel, type2, :subarea-pathl, subarea-path2 :sub-cond1, sub-cond2,
:attributel and :attribute2. In the following some examples of these

predicate are given out.

If the form of Fig. 3.4 and Fig. 3.5 exist inside the form base, then the

following expression should return true.

(exists :forms ((?rvl (instance-of RVL)
(name ?name)
(subject ?subject)
(cost-center ?cc)
(manager-sig (manager-sig Susan)))
(?arvl (instance-of ARVL)
(name ?name)
(cost-centre ?cc)
(manager-signed Susan)
(teaching-course (subject ?subject)))))

Predicate some-equal returns true if some of the values of the query are

equal to the value, for example,

(some-equal
:forms ((?rv] (instance-of rvl)
(name Howard)

37

(school CMS)))
:subarea-path (time-tab)
:attribute subject

:value Oracle)

returns true since in Figure 3.4, Howard does teach Oracle. The predicate

‘every-equal’ returns true only if every values of the of the query equals the

value. Therefore, based on the facts in the form of Fig. 3.4, the following

expression returns false, since not every subject attribute takes the value of
'‘Oracle’.

Claim for Payment ---- Regular Yisiting Lecturer

Name; Howard Liu Tite; Mr. Cost-Center; BBX: School: CM S

working-day | working-date| subject working-hours
gradel | grade2 |grede3

Wednesday | 4/3/92 Orucle 1.5
Thursday | 53192 C 1.5
Wednesday| 11/3/192 Orecle 1.5
Thursday | 12/3/92 c 1.5
Wednesday| 1813192 | Oracle 1.5
Thursday | 19/3/92 C 15
Wednesday| 25/3/192 | Orecle 1.5
Thursday | 26/3/92 C 1.5

signature: Howard signature: Susan
visiting lecturer manager of school
date: 6/4/92 date: 8/4/92

Figure 3.4
(every-equal

:forms ((?rvl (instance-of rvl)
(name Howard)

38

(school CMS)))
:subarea-path (time-tab)
:attribute subject
:value Oracle)

However, the following expression should returns true, since the working

hours of every subject is 1.5hrs.

(every-equal
:forms ((?rvl (instance-of rvl)
(name Howard)
(school CMS)))
:subarea-path (time-tab (working-hours))
:attribute grade3
:value 1.5)

Appointment of Regular Yisiting Lecturer
Name: Howard Liu Tite: Mr. Cost-Center: BBX

Current Occupation: Researcher School: CMS

Working-day | Hours!week | Number-of-weeks | Subject Course-code

Tuesday 1 11 LISP Bsc-ITIPT
Wednesday 1.5 25 Orecle Polycert
Thursday 1.5 32 C Polycert

 Signature: Susan
Director/Mansger of School

Date: 23/8/91

Figure 3.5

39

The predicate subgroup returns true if all the form instances which satisfy

the first set of keys also satisfy the second set of keys. For example,

(subgroup :forms1 ((?rvl (instance-of rvl)
(name Howard)))

:subarea-path1 (time-tab)
:sub-cond1 (subject Oracle)
:forms2 ((?arvl (instance-of arvl)

(name Howard)))
:subarea-path? (teaching-course)
:sub-cond2 (working-day Wednesday))

returns true based on the fact inside the form which is shown in Fig. 3.4.

This true value says that all the Oracle courses are taught on Wednesday.

The predicate exist-equal returns true if there are values of the first set of
keys equal to the values of the second set of keys. Therefore, the following
expression should return true based on the facts inside the forms of Fig. 3.4

and Fig. 3.5.

(exist-equal
:forms1 ((?rvl] (instance-of rvl)
(school CMS)))

:subarea-path1 (time-tab)

:attributel subject

:forms2 ((?arvl (instance-of arvl)
(school CMS)))

:subarea-path2 (teaching-course)

:attribute2 subject)

3. 7. Operations Upon Form Base
The operations that a form base needs are similar to the operations that are

needed by a data base system. They are 'set’, 'delete' and 'modify’ values of

the attributes of form instances. The same set of keys are used to determine

40

the attributes to which the operator is applied. Plus operation type and the

value for setting and modifying, an operation takes the following format:

(Form-Op : forms

: type
: subarea-path
: subcond

: op-type
: attribute
: value)

The key : op-type specifies the type of the operator, it could be set-value,
delete-value, modify-value and delete-subform. The meaning of the
operations will be explained in the later examples. The key : value specifies

the value that is set to or is modified to.

For example,

(Form-Op : forms ((?rvl (instance-of rvl)
(name Howard)))
: Op-type modify-value
: attribute title
: value Dr.)

will modify the value of 'title’ attribute of the form instance shown as Fig.
3.4 to 'Dr.". In this operation, the key : subarea-path and : subcond need not
be specified since 'title' attribute is a direct attribute of the form instance. If
on the 19th of March, the lecturer actually taught 1.5 hours' Pascal language

rather than C, then we need the following modification operation.

(Form-Op : forms ((?rvl (instance-of rvl)
(name Howard)
(lecturer-sig (date 6/4/92))))
: subarea-path (time-tab)
: subcond ((working-date 19/3/92))
: Op-type modify-value

41

: attribute subject
: value Pascal)

This operation first finds the form instance whose name attribute value is
'Howard' and is signed by the lecturer on 6th of April, 1992. It then finds the
subarea of the attribute which is 'time-tab' (see RVL definition) in this form.
This subarea is a subform of the form instance, it therefore has sub-
condition ((working-date 19/3/92)) to specify which row the operator is
applied to. Notice that sub-conditions only can be specified when the
subarea is a subform which corresponding to an association abstraction. If,
for example, we know on the 19th of March, the lecturer actually taught 3
hours rather than 1.5 hours, then we need the following modification

operation.

(Form-Op : forms ((?rvl (instance-of rvl)
' (name Howard)

(lecturer-sig (date 6/4/92))
(time-tab (working-date 19/3/92))))

: subarea-path (time-tab (working-hours))

: Op-type modify-value

: attribute grade3

: value 3)

For this operation, the condition ((working-date 19/3/92)) is specified in the
forms key since the subarea of this operation is 'working—hour' which is a

subfield of 'time-tab'.

If the operation type is not set-value or modify-value, then we do not need
to specify : value key. If the operation is delete-subform, then we even need

not to specify : attribute key. For example,

(Form-Op : forms ((?rvl (instance-of rvl)

42

(name Howard)
(lecturer-sig (date 6/4/92))))
: subarea-path (time-tab)
: subcond ((subject Oracle))
: Op-type delete-subform)

will delete all the rows whose 'subject' attribute has value 'Oracle’ in the
RVL form instance whose name is 'Howard' and is signed by the lecturer on

6th of April.

In addition to the above operations, the form base management system also
supports add-subform operation which add a row into a subform of a form
instance. A query to form base is to find all the form instances which satisfy
the constraints that are specified by a form reference pattern. In the current
implementation, function (list-form-instances :forms) searches the form

base and lists all the subfields, subforms and their attribute values.
3. 8. Features of Form Reference Patterns

This section presents a detailed discussion about the features of the form
reference patterns. A form reference pattern is a set of constraints upon a
form type. For example, if we have many goods containers which have

different colours, weight, and are made in different places. Then

(?container (instance-of container)
(colour red))

means that the ?container variable represents all the containers whose

colour are red. And

(?container (instance-of container)

43

(colour red)
(made-in England))

means that the variable ?container represents all the containers whose
colour are red and are made in England. To further study the features of the
patterns, in the following the patterns are compared with first order
predicates. If the above examples are represented by predicates, the following

relation is defined first:
(container container-id colour made-in-place weight)

Then predicate (container ? red ? ?) represents all the containers whose
colour is red, and (container ? red England ?) represents all the containers
whose colour are red and are made in England. From this example, we can
see that in a form reference pattern, the order of the constraints is not
meaningful, but in a predicate the order of the constraint values is
important since their semantic meaning is actually giveri by their position

in the relation.
3.8.1 Why not Predicates

A predicate, a functor or a relation represent the relationship between data
through a row of positions. These positions are remembered by the
processing program. This representation method is concise and expressive,
and has been used by almost all the Al systems to describe information and
knowledge. However to represent knowledge in term of their positions
inside a row implies that the semantic dependent relation of data is fixed

and the working context of the activities to access these data are predefined.

44

So the methods are effective only if the system which we are going to
describe is closed and small. In an organization, a meaningful information
object is usually processesed by different departments which have different
working contexts (or viewpoints). It is then difficult to use the relational

patterns to effectively represent the information objects.

For example the RVL form (Fig. 3.1) is an ordinary office form. Like all the
other forms, it provides and records information for the related information
processing activities. A visiting lecturer fills his/her work to claim the
payment, the manager certifies the hours that the lecturer has claimed, and
the cashier department processes the payment. However, it also can be
noticed that the manager can not certify a form without a name, and the
cashier department can not process a form without the signature of the
manager. So, the data integration of a form imkplies not just storing and
providing data, but also implies a sequence of activities upon the form. This
implication certainly can not be afforded by the relational representation

patterns.

The activities upon a form are usually located in different departments of an
organization and have different working contexts. They have different
interest for the data inside a form. For example, the cashier department will
concern information such as cost centre, while the visiting lecturer has no
interest for it at all. An important advantage of the form reference pattern is
that it could form different concerns (viewpoints) based on one form type.

For example,

(?rvla (instance-of RVL)
(Name Howard)
(School CMS)

45

(time-tab (Day Monday))) (@)

refers to all the RVL instances whose Name is Howard, School is CMS, and
the Day is Monday. It concerns something which is connected with a specific
lecturer in the school, and Monday. The following reference pattern reflects

however another concern.

(?rvlb (instance-of RVL)
(School CMS)
(Manager-signature Susan)) (b)

This reference pattern concerns the connection of the Manager of the school
and the RVLs. The interesting thing is though they reflect different
concerns, they are defined based on the same information object! This is the
way which the information is organized in practice. A form or a document
does not provide information for just one working context, but potentially

for all the working contexts related to it.
3.8.2 Problem of Unification

Because the form pattern language is able to represent the association
abstraction, the unification process for first order predicate calculus is not
applicable to it. For example, the following two first-order predicates can be

unified.

(container ? red ? ?)
(container ? red England ?)

They can correspond to the following form reference patterns.

46

(?container (instance-of container)
(colour red))

(?container (instance-of container)
(colour red)
(made-in England))

Because the form patterns in this example do not have association
constraints, they are consistent with the unification process (the latter
expression represents a subset of the former). If a form reference pattern
contains association abstraction, then it can not be consistent with the

unification process. For example,

(?rvl1 (instance-of RVL)

(School CMS)
(Subject Software-tools)) 6))
and :
(?rv12 (instance-of RVL)
(School CMS)
(Subject Information-system)) (g)

are two form reference patterns. Pattern (f) refers to all the visiting lecturers
who are teaching software tools, pattern (g) refers to all the lecturers who are

teaching information systems. Their corresponding relational patterns are:

(RVL ? CMS Software-tools 2....7 (h)
and

(RVL ? CMS Information-system ?.... ?) G
According to unification procedure, pattérn (h) and (j) can not be unified

because the subject attribute has different values: 'software-tools' and

'information system'. However, the form patterns (f) and (g) may represent

47

a same set of instances of the RVL form since a lecturer may teach both of
the subjects 'information system' and 'software tools'. In fact, the relation
between the two sets can not be judged from the syntax level. They could be
one set, or absolutely exclusive. The judgement only can be made with the

help of the semantics.

48

Chapter 4.

An Implementation of
the Formbase System

This chapter presents an implementation of the formbase system. The
implementation of the form base system concerns three main problems.

| They are:

- the internal representation of form type and form instances;
- the processing of a single form reference pattern, that is
the query upon one form type;
- and the processing of a joined form reference pattern which is

joined query upon more one forms.

The current prototype of the formbase is implemented in a UNIX
environment at Sun-3 Workstation using Common Lisp. The data of forms

can be persistently stored in the Unix filing system.
4. 1. The Internal Representation Forms

The semantic data model which the Formbase System has used to represent
office information objects implies that it is necessary be able to model the
association relation between a form (an entity) and its associated subforms
which have an arbitrary number of instances. Such an association relation is

very common for an office form, since there are always some messages in a

form more changeable than the others though they are bound together. The
SOS office model [Bracchi and Pernic, 1984] has the ability to define the type
of a form, but it has not proposed an internal representation and a proper

retrieval language.

The representation and retrieval strategy that the Formbase System uses is
developed based on the assumption that once an office form type has been
defined, its subforms and attributes (association relation and aggregation
relation) are all fixed. Therefore the type of an office form is easily stored.
Therefore, every input of an instance of a form type is to model a copy of the
form type. The retrieval of the pattern language can use the required values
of the attributes as a set of constraints upon all the instance occurrences of
the form type. Therefore the retrieval process becomes a constraints

satisfaction process.
4.1.1 Internal Representation of Form Type

A form contains attributes, aggregation abstractions or association
abstractions. Each aggregation abstraction and association abstraction again
can have attributes, aggregation abstractions and association abstractions.
Therefore, a form type can be represented as a tree, called type-tree. Figure
4.1 is the type-tree for RVL form type. Every leaf of the tree is a schema
which only contains a set of attributes, that is, it is the parent of a set of
attributes. In Figure 4.1, the root schema RVL contains the attributes that
belong to the top level abstraction of the form type. The other attributes of
the form belong to their own parent, and are related to the root through

association-of and aggregation-of relations.

50

RVL

association-of Aawt‘on‘Of

time-tab lecture-sig manager-sig

o
/aggregatlon—of

working-hours

Figure 4.1

So, Figure 4.1 and Figure 4.2 illustrate the representation of the definition of
the RVL form (Fig. 3.1). Since in a tree every son can only has one parent, -
the relation between the nodes can easily represented by using the following

relation pattern:
(schema-name assic-parent aggre-parent)

For example, the form type of Figure 4.1 can be represented by the following

instances of the pattern:

(manager-sig nil rvl)
(lecturer-sig nil rvl)
(time-tab rvl nil)
(working-hours nil time-tab)

It is even simpler to represent schemas. The schemas in the type tree of
Figure 4.1 are shown as Figure 4.2. Obviously simple relations can represent

the schemas.

51

lecturer-sig

P AN

name title school cost-centre signature date
manager-sig time-tab
signature date working-day working-date subject

working-hours

N

gradel graae2 grade3

Figure 4.2
4.1.2 Internal Representation of Form Instance

Every form type may have an arbitrary number of instances. How should

one form instance be represented?

In current prototype system, just as one type-tree represents a form type, one
instance-tree represents a form instance. The schemas which are used to
represent an instance-tree are the occurrences of the schemas in the type
representation of the form. They are automatically generated and managed
by the system, the names of these schemas are meaningless. For example
Figure 4.4 is a representation of an instance of the RVL form. The names of
the schemas are generated by the system. In this example, G309 is an
instance of RVL schema in the Figure 4.1, if its name value is 'Howard', title

is 'Mr.' school is 'CMS' and cost-centre is 'bbx’, then it is a relation shown as

52

Figure 4.3. Correspondingly G310, G311, G312, and G313 are instances
lecturer-sig, manager-sig, time-tab and working-hours. Obviously, G309,
G310 and the others, are instances of the schemas in the typé-tree. The
connections of them constitute an intance-tree of an instance of the RVL

form.

G309 (instance-of RVL)

Howard Mr. CMS bbx
(name) (title) (school) (cost-centre)
Figure 4.3

In the tree representation, the subfield-of relation is related to the
aggregation abstraction in the form type definition, while the subform-of
relation is related to association abstraction in the form type definition. In
the Formbase System, an instance tree is represented by the following

relational pattern:

(instance subform-of subfield-of)

Therefore, Figure 4.4 can be represented by the following instances of the

relational pattern:

(G310 nil G309)
(G311 nil G309)
(G312 G309 nil)
(G313 nil G312)

53

(G412 G309 nil)
(G413 nil G412)

How many subforms that a form instance such as G309 may have (such as

G312, G412) is arbitrary.
G309 (instance-of RVL)
subfield-of
subform-of
"""" G310 G311
(instance-of (instance-of

lecturer-sig) manager-sig)

G312 G412

Ginstance-of ~ (instance-of
time-tab) time-tab)
has-subfield has-subfield
G313 G413
(instance-of : (instance-of
working-hours) Wroking-hours)

Figure 4.4

4. 2. Form Reference Pattern Processing

A Form Reference Pattern uses more than one form type to refer to a
portion of data of interest in the formbase. In system implementation, we
call the pattern which uses more than one form type joined form reference
pattern, and the pattern which only uses one form type single form
reference pattern. The semantic difference between joined form reference
pattern and single reference pattern is illustrated in Figure 4.5 and Figure 4.6.

A single form reference pattern does not contain variables and is upon one

54

form type. While a joined form reference pattern contain variables and is

upon more than one form type.

(7rvl
(instance-of rvl)
(School CMS)
(lecturer-sig (date 30/4/92))
(time-tab (subject Oracle)))

RVLform

name: John title: Mr.

day

signature: date:

Figure 4.5

In order to determine whether a joined form reference pattern can be
satisfied by the formbase, it is necessary to decompose it into many single
form reference patterns, then to consider the relations between the single
reference patterns. The algorithm for processing a joined form reference
battern has three steps: the first step is to abstract all the variables and
decompose the joined pattern into many single form reference patterns. The
second step is to process the single form reference patterns and find the
instances of every type which satisfy the constraints of the pattern after the
variables have been filtered. In the third step, the relational constraints

which are identified in the first step are applied to the instances which are

55

found in the second step. The results are the final set of instances that meet

the requirements.

L 2

{Join (
(G (?arvl (7emp
(instance-of rvl) (instance-of arvl) (instance-of emp)
(nsme 7name) (name ?name) (name 7name)
(time-tab (teeching-course (subject 2subject))) ~ (sex female))))

(subject 7subject)))

SN

U - v
R

——
—

e ———————
—_—
e e

ey

RVL-fom ARVL-Txm Erployss o
nane: John Tils: Mx Memd: Howed ?&Wﬁcm
U M. Bchool I8,

- "_\. L

Figure 4.6

There are four data structures used in this algorithm. One is called 'var-list’,
one is called 'instan-set’, one is called 'join-list’, and the other is called
‘production-list’. The 'var-list' data structure is generated in the first step,
the 'instan-set’ is generated in the second step, then both of them compose
the ‘join-list' which is used in the third step. The 'production-list' record the

join results.

56

4.2.1 First Step ---- Filter Variables

The first step of the algorithm abstracts all the variables from the joined
form reference pattern, and generates single form reference patterns and the
'var-list' data structure.The single form reference pattern will be processed
in the second step. The 'var-list' will be used to form the ‘join-list' in the
third step. An element of 'var-list' is a list which contains a variable name
and the Attribute Path of this variable. An Attribute Path is composed by the
subarea-path of the parent abstraction and the attribute name. For example,
(?subject (teaching-course (subject))) is an element of 'var-list' which

contains a variable '?subject’ and an attribute path '(teaching-course

(subject))’. A 'var-list' is defined for one form type, it contains all the
variables and their attribute paths inside the joined query. For example, if

we have a form reference pattern as the following:

(?rvl
(instance-of rvl)
(name Howard)
(time-tab (subject ?sub))
(manager-sig (date ?date)))

Then, after the first step, the program generates a single form reference

pattern:

(?rvl
(instance-of rvl)
(name Howard))

and a 'var-list"

((?sub (time-tab (subject)))
(?date (manager-sig (date))))

57

4.2.2. Single Form Reference Pattern Processing

A single-form-query function is designed based on the following
assumptions: every single form reference pattern is composed by a form type
specifier such as (instance-of rvl), and a list of constraints such as (school
CMS), (lecturer-sig (date 30/4/92)) and (time-tab (subject Oracle)). Every
constraint is composed by a value and an Attribute Path (AP), for example
the constraint (lecturer-sig (date 30/4/92)) is composed by the attribute path

(lecturer-sig (date and the value '30/4/92'. The value of a constraint

specifies the specific value of interest, the attribute path specifies which
subform or subfield the attribute is allocated. The following is a single form

reference pattern:

(?rv]l (instance-of rvl)

(school CMS)

(lecturer-sig (date 30/4/92))

(time-tab (subject Oracle)
(working-day Monday)
(working-hour (grade3 1))))

To process a single form pattern is a constraint satisfaction process. The
system first process the head of every attribute path which is underlined in
this example, they are 'School’, 'lecturer-sig' and 'time-tab'. If the head is an
attribute, for example 'School’, it will be put into a set called attri-list, if the
head is an aggregation abstraction, for example 'lecturer-sig’, it will put into
a set called aggre-list, if the head is an association abstraction, for example
'time-tab’, it will be put into a set called assci-list. Therefore after the initial

process, we have:
attri-list: ((school CMS))

aggre-list: ((lecturer-sig (date 30/4/92)))
assci-list: ((time-tab (subject Oracle)

58

(working-day Monday)
(working-hour (grade3 1))))

Obviously, the constraints for attributes consist of the first set of constraints
for the top level instances in the instance tree.Therefore they are first
applied to search out an initial set of instances, called Init-Set. In the Init-
Set, the constraints of the attri-list are satisfied.After having Init-Set, aggre-
list and assci-list, The Formbase System uses another function, called instan-
constraints-query, to carry on the constraints satisfaction process against
every instances in Init-Set. The instan-constraints-query function is defined

as follows:

(instan-constraints-query instance attri-cons aggre-cons assci-cons)

The 'instance’ in the function specifies the instance submitted to the
instance constraints satisfaction process, 'attri-cons' specifies the constraints
upon attributes, 'aggre-cons' specifies the constraints upon aggregation
abstractions, and the 'assci-cons' specifies the constraints upon association
abstractions. The constraint satisfaction process checks the instance inside
Init-Set one by one, if an instance satisfies the constraint conditions, then it
will be kept, otherwise it will be deleted from the Init-Set. Therefore, in
above example if there is an instance G309 which satisfies the (School CMS)

constraint, then the system will have a function call:

(instan-constraints-query G309 nil
((lecturer-sig (date 30/4/92)))
((time-tab (subject Oracle)

(working-day Monday)
(working-hour (grade3 1)))))

To check if an instance satisfies the constraints, the process distributes the

constraints to different levels of its instance tree. The distribution process

59

searches out the subfields or the subforms of the instance for which the
constraint are specified. Then there are two other functions to process the

constraints upon aggregation and association respectively. They are:

(aggre-constraints instan type cons)
and

(assci-constraints instan type cons).

The 'instan’ is the subfield instance or the subform instance of the
corresponding abstraction types which the constraints are specified. Suppose
the instance tree of the G309 is as shown in Figure 8. Then for the above

example, the system will have:

(aggre-constraints G310 lecture-sig

((date 30/4/92)))

(assci-constraints G312 time-tab
((subject Oracle)

(working-day Monday)
(working-hour (grade3 1)))

(assci-constraints G412 time-tab
((subject Oracle)

(working-day Monday)
(working-hour (grade3 1)))

These functions again will first process every head of the constraints
(underlined) to construct the attri-list, aggre-list and assci-list at this level,
then call the instan-constraints-query function recursively. For example, to
process G412 in above, another call to instan-constraints-query will be made

as the following:
(instan-constraints-query G412

((subject Oracle) (working-day Monday))
((working-hour (grade3 1)))

60

nil)

This function first check if G412 satisfies the constraints upon its attributes
'subject’ and 'working-day’, if it does not, then G412 fails to satisfy the
constraints. If it does, the constraint upon its subfield G413 will be further

checked by a recursive function call:

(aggre-constraints G413 working-hour
((grade3 1)))

It will again call instan-constraints-query function. In this way, the

constraints satisfaction process goes on and on.

Every single form reference pattern generates an 'instan-set'. An 'instan-set'
contains all the form instances of one form type in the joined form reference

pattern.
4.2.3 Third Step ---- Join

The third step of the algorithm is to join the query results of the second step
by checking the relational constraints required by the variables. This step is
similar to the join-pattern processing of Forge's Rete algorithm [Forge, C.,
1982]. The join pattern nef for the join of the form instances is shown in
Figure 4.8, At the top of this join net, the input of every node is a 'join-list'.
A 'join-list' is a list which contains form instance and the 'var-list' of a form
type. For example, if 'instan402' and 'instan411' are the instances of form
type 'rvl' which satisfy the query:

(?rvl
(instance-of rvl)
(manager-sig
(manager-sig Susan)))

61

The the 'join-list' for pattern

(?rvl (instance-of RVL)
(name ?name)
(subject ?subject)
(cost-center ?cc)
(manager-sig
(manager-sig Susan)))

is:
((instan402

((?subject (subject))

(?cc (cost-center)) (?name (name))))

(instan411
((?subject (subject))
(?cc (cost-center)) (?name (name)))))

join-list1

And if 'instan405' and 'instan455' are the form instance of form 'arvl’'

which satisfy the query:

(?arvl
(instance-of ARVL)
(manager-signed Susan))

then the 'join-list' of query

(?arvl (instance-of ARVL)
(name ?name)
(cost-centre ?cc)
(manager-signed Susan)
(teaching-course
(subject ?subject)))

would be:

((instan405
((?name (name))
(?cc (cost-center))
(?subject (teaching-course
(subject)))))
(instan455
((?name (name))
(?cc (cost-center))

62

(?subject (teaching-course

(subject)))))

.............. join-list2

To process a joined form reference pattern, two basic functions are needed.
One is to join two elements of two join-lists, called element-join, the other

is to join a join-list with a production-list, called production-join.
4.2.3.1 Element-Join Function

To join two elements of two join-lists is to judge if the join conditions
between the two elements are satisfied. A join condition is defined if there
are two variables which have the same variable name. A join condition is
true if the values of both form instances that correspond to the variable are
equal. The Formbase System has developed a function (attri-refer instan
attri-path) which returns the instance's value of the attribute which is

referred by the attribute path 'attri-path’. Therefore, if we join

(instan402 ((?subject (subject))
(?cc (cost-center))
(?name (name))))
and

(instan405
((?name (name))
(?cc (cost-center))
(?subject (teaching-course (subject)))))

the join conditions are:

(and
(equal (attri-refer ‘'instan402 ‘'(name))
(attri-refer 'instan405 ‘(name)))
(equal (attri-refer 'instan402 '(cost-center))
(attri-refer 'instan405 '(cost-center)))
(equal (attri-refer
'instan402 '(time-tab (subject)))
(attri-refer

63

'instan405 '(teaching-course
' (subject)))))

If two form instances do not have relational constraints between them,
which means they do not have variables which have same names, then two

of them always can be joined.

4.2.3.2 Production-Join

The result of joining join-lists together is a production-list. An element of a
production-list is called a production. Each production contains the

~ elements of each join-lists, and all of these elements can be joined with each
other. For example, to join the above given join-list] and join-list2, we get

the following production-list:

(
((instan402
((?subject (subject))
(?cc (cost-center))
(?name (name)))
(instan405
((?name (name))
(?cc (cost-center))
(?subject (teaching-course (subject)))))
)
((instan411
((?subject (subject))
(?cc (cost-center))
(?name (name)))))
(instan455
((?name (name))
(?cc (cost-center))
(?subject (teaching-course (subject))))))

This production-list contains two productions:

((instan402

64

((?subject (subject))
(?cc (cost-center))
(?name (name)))
(instan405
((?name (name))
(?cc (cost-center))
(?subject (teaching-course (subject))))))

and

((instan411
((?subject (subject))
(?cc (cost-center))
(?name (name)))))
(instan455
((?name (name))
(?cc (cost-center))
(?subject (teaching-course (subject)))))))

This means that the form instances instan402 and instan405, instan411 and

instan455 can be joined together according to current joining requirements.

Join-list1 Join-list2 Jon-listk

v

((elt11 elt21)
(elt12 elt22)

((elt'11 elt'21 ... elt'k1)

(eltin eltZn)) (1112 elt'22 ... elt'k2)

(elt'lm elt'2m ... elt'km))

Figure 4.8

To join more than one join-lists, the system first joins two of them, which

generates a production-list as explained in above. It then joins the rest of the

65

join-lists with this production-list. This process is shown in Figure 4.8. After
the join of 'join-listl' and 'join-list2', the system generates a production-list

as the following:

((elt1l elt21)
(elt12 elt22)

(eltln elt2n)) »

In this 'production-list’, -eltlj (j= 1, ..., n) belongs to Join-list1, and elt2j (j=1,
...,) belongs to Join-list2. Each production (eltlj elt2j) satisfies the join
requirements. Then the system goes on to join the rest Join-lists with the
generated production-list. With the progress of the joining process, the
production-list and the productions inside it change their structures. For
example, to join a Join-list3 with the generated production-list, for each
element in Join-list3, the system checks if it can join with every elements in
every production of the production-list. If it can join with every elements of
a production, then it will be pushed into the production, this production
will then be a new production for the new production-list of the join results.
This process goes on and on, until the final production-list is generated as

the following;:

((elt'11 elt'21 elt'k1)
(elt'12 elt22 elt'k2)
(elt'Im elt2m elt'mk))

In the implementation, this production-list is processed to return sets of
form instances with their type information, therefore, a query for the all the

instances of a certain type which matches the join constraints can be

66

returned. This function is required by the form base operations such as 'set-

value', 'delete-value’' and 'modify-value'.

The ability to generate the production-list also provides a potential for

developing a rule production system based on form reference patterns.

4.3. Conclusions

The development of the data definition and manipulation language for the
formbase system enables us to manipulate nested data through the familiar

office form concepts. It opens the potential to further develop Spread Sheet

type of software.

67

Chapter 5.

Representation of Information
Processing Activities upon Forms

Based on the developments of the Formbase System, this chapter discusses
the representation of the information processing activities upon forms. The
identity of an activity has been studied for more than twenty years. Started
from the pioneer work of John McCarthy and Patrick Hayes [McCarthy, J.
and Hayes, P., 1969], contributions have been made by Richard Fikes, Nils
Nilsson, D_rew McDermott, James Allen, Robert Moore, and Thomas Dean
in [Fikes, R. and Nilsson, 1970; McDermott, D., 1982; Allen, J., 1984; Moore,
R., 1985; Dean, T. and Dermott, D., 1987]. Currently there are two styles of
approaches for representing an activity: one is time-slots based [Allen, J.,
1984], the other is state-based Y[Fikes, R. and Nils Nilsson, 1970]. The time-slot
based approach uses temporal logic [McDermott, D., 1982] and reasoning
mechanism to reason about activities, while the state-based approach uses
the add-list and delete-list representation [Fikes, R. and Nils Nilsson, 1970]
and the heuristic searching to solve problems. The representation based on
reasoning mechanism is logically sound and accurate, but the axiom and
constraint rules that it needs for representing even a trivial activity are
complex, the knowledge acquisition for an office information system would
be enormous. The state-based activity representation suits knowledge
acquisition better, but it needs the ability of sensing and switching

background situation, at which today's computer systems are found to be

68

poor. Because of these technical details, we do not have a marvellous choice.
A practical system only can be implemented by properly "cutting corners"
within an application domain. In the following, I first present a brief
investigation of the developed activity representation methods, then
develop the representation for the activities upon forms. This activity
representation is the basis of the development of the Intelligent Formbase

System (IFS).
5.1. Review of Activity Representations and Problem Solving

Problem solving is a very common activity in normal life, but in computer
science, no matter whether the approach is logical or heuristic, identifying a
"neat" algorithm of problem solving for general purposes has proved to be
very difficult. Currently there are three mechanisms which are clear and
useful: one is a time-slot based activity representation whose problem
solving process is based on reasoning mechanism; one is a state-based
activity representation whose problem solving process is similar to the
Modal Truth Criterion [Chapman, 1987]; the thifd is also state-based activity
representation, but its problem solving process is based on reasoning
resources of the activities. First of all, this review starts with an

introduction to situation calculus and the frame problem.
5.1.1 Situation Calculus and Frame Problem
In 1969, John McCarthy and Patrick Hayes presented their work on

representing activities [McCarthy, J. and Hayes, P., 1969]. They identified a set

of concepts which are generally used by the researches that follow them.

69

- A situation s is the complete state of the universe at an instant of time.

A system can never completely describe a situation; it can only give facts

about the situations. These facts will be used to deduce further facts about
that situation, about future situations and about situations that persons

can bring about from that situation.

- A fluent is a function whose domain is the space of the set of all
situations, denoted by Sit . If the range of the function is (true, false), then
it is called a propositional fluent. If its range is Sit , then it is called a
situation fluent. Fluents are often the values of functions. Thus
raining(x) is a fluent such that raining(x) (s) is true if and only if it is
raining at the place x in the situation s. This is also written as raining (x,
s) making use of the equivalence between a function of two variables and
a function of the first variable whose value is a function of the second

variable.

- Causality: assumptions of causality can be made by means of fluent F(r)
where 7 is itself a propositional fluent. F(rw, s) asserts that the situation s
will be followed (after an unspecified time) by a situation that satisfies

the fluent . We may use F to assert that if a person is out in the rain he

will get wet, by writing:
Vx. Vp. Vs. raining (x, s) A at (p, X, s) A outside(p, s) o F (As'. wet(p, s'), s)
- Actions: A fundamental role in study of actions is played by the

situation fluent. For example, if p is a person, ¢ is an action or more

generally a strategy, and s is a situation.

70

result (p, ¢, s)

denotes a situation that results when p carries out ¢, starting in the
situation s . If the action or strategy does not terminate, result(p, ¢, s) is
considered undefined. With the result fluent, a formula about a person

who has ability to open a safe can be expressed in the following:
has (p, k, s) A fits (k, sf) A at (p, sf, s) © open (sf, result(p, opens(sf, k), s))

In this formula, k denote a key that fits the safe sf , then in the situation
resulting from his performing the action opens(sf, k), that is, opening the

safe sf with the key k, the safe is open.

The above concepts illustrate formalism of the initial attempt for
modellingand reasoning activities. This formalism opened discussion of the

frame problem. The frame problem is defined by Hayes as follows:

"given a certain description of a situation s ---- a collection of statements
of the form f[s], where the brackets means that every situation in f is an
occurrence of 's' ---- a system wants to be able to infer as much as possible
about result(¢, s). Of course, what the system can infer will depend upon

the properties of ¢. Thus the system requires assertions of the form:
f1[s] & y(¢) D f2[result(¢, s)]
such an assertion is called a law of motion. The frame problem can be

briefly stated as the problem of finding adequate collections of laws of

motion."

71

The laws of motions are needed because logically s and result(¢, s) are
different entities and there is no a priori justification for inferring any
properties of result(¢, s) from those of s. However it is not possible for us to
identify a sufficient set of these laws of motion by using the situation
calculus, since the number of laws which are needed to describe a motion
depend on the situation. Hayes gaﬁe an example in his paper for this

problem.

"Suppose I am describing to a child how to build towers of bricks. I say
'You can put the brick on top of this one onto some other one. if that
one has not got anything else on it.' The child knows that the other
blocks will stay during the move. But if I write the corresponding law of

motion:
(on (b1, b2, s) & Vz. -on(z, b3, s)) o on (b1, b3, result(move(b2, b3), s))

Then nothing follows concerning the other blocks. What assertions
could we write down which would capture the knowledge that the child

has about the world?"
5.1.2 Time-Slot Based Activity Representation

The time-slot based action representation and problem solving methods
were developed through the efforts of Drew McDermott, James Allen, and
Thomas Dean. A detailed introduction of this mechanism can be found in
[Allen,]., et al, 1991]. This mechanism is a logical approach to action

reasoning. The first order logic is augmented by temporal logic, then a set of

72

axioms for activities and planning process are identified to support activity

representation and the problem solving.

j i X
€ -4

(1) For every period i, there is a j that meets it, and a k that is meets

i j X 1
> < >4 <

< >

m

(2) Foranyj and X, where j meetws k, there is a period m=j+k

>4
>«

(3) If i meets j and also meews k, and 1 that meets j also mees kK

k i 1
>4 >

< >

(A)If kmeesiand j, and iand j meetl, then i=j

g i o
- p-<) : ' .
K : 1 | SR k v 1
L e ™ >

(5) The three ways that two pairs of meeting periods can be ordered

Figure 5.1

73

5.1.2.1 Primitives for Time Periods

The temporal logic is based on a simple set of primitives for time.periods. A
time period is the intuitive time associated with some event or property of
the world. Intuitively, two time periods m and n meet if and only if m
precedes n, yet there is no time between m and n, and m and n do not
overlap. Therefore the axiomatization of the meets relation can be listed as
follows, where i, j, k, I, and m are logical variables restricted to time periods.

[Allen, J., et al, 1991], and they are shown as Figure 5.1.

(1) Every period has a period that meets it and another that it meets.

Vi, 3 j,k Meet(j,i) A Meets(i,k).

(2) Periods can compose to produce a larger period. In particular, for any
two periods that meet, there is another period that is the "concatenation”
of them.
V i,j.k,1. Meet(i,j) A Meets(j,k) A Meets (k,1)
D 3. Meets(i,m) A Meets(m,l).

(3) Periods uniquely define an equivalence class of periods that meet
them.

V i,j.k,l. (Meets(i,j) A Meets (i,k) A Meets(l,j)) D Meets(1,k).
(4) If two intervals both meet the same period, and another period meets
both of them, the periods are equal:

V i,j (3 k,1. Meets(k,i) A Meets (k,i) A Meets (i,1) A Meets(j,1)) D i=j.

(5) The three ways that two pairs of meeting periods can be ordered.

74

V i,j,k,1. (Meets(i,j) A Meets (k,1)) D (® Meets(i,l)
(3 m. Meets(k,m) A Meets(m,j))
(3 m. Meets(i,m) A Meets(m,l)))

With these axioms, one can define the complete range of the intuitive
interval relationships that could hold between time periods. For example,
the following formula describes that one period is before another if there

exists another period that spans the time between them:

Before(i, j) = 3m. Meets(i, m) A Meets(m, j).

In this way, we could define Overlaps(i, j), Starts(i, j), During(i, j) and
Finishes(i, j), and even define more relationships based these definitions

such as:

In(i, j) = Starts(i, j) v During(i, j) v Finishes(i, j) v i=j

SameEnd(i, j) = Finishes(i, j) v Finishes(j, i) v i5j

5.1.2.2 Properties of Temporal Logic

Then a temporal logic can be developed. The properties that are identified
for temporal logic are Homogeneity, Concatenability and Countability. A
proposition is homogenneous if and only if when it holds over a time

period T, it also holds over any period within T. That is:

V ij. P@l, ..., in, t) A In(t, t) D P(il, ..., in, t')

75

A proposition is called concatenable if and only if whenever it holds over

time i and j, where i meets j, then it holds over the time i+j:
V ij. P(l, ..., in, t) A PG, ..., in, t)) A Meets(t, t') D P(il, ..., in, t+t')

A proposition is called countable if none of the times over which it holds

overlap, that is, they are disjoint or equal:
V i,j. P31, ..., in, t) A P(l, .., in,) Dt (<K m=mi >) t.
5.1.2.3 Events Representation in Temporal Logic

Based on these temporal axioms, events can be represented. Every instance
of an event defines uniquely the variables and the time over which it

occurs:

Ve,il, .., in, t, 1'l, .., iI'n, t' . E(il, ..., in, €, t) A E(i'], ..., I'n, e,)

S@{l=i1Y,.,Yin=inYt=r).

For example to represent the event of stacking one object a to another object
b, the following two axioms can be identified. The first axiom concerns the
temporal structure of the activity, the second concerns the changes to
situation that it brings about. In the axioms, the preconditions of the event
have the prefix "pre", the effects of the event have the prefix "eff", and the

conditions that must occur during the event have the prefix "con".

(1) Temporal Structure

YV e, 3 a,b,e. Stack(a, b, e) D

76

Overlaps(prel(e), i) A Finishes(con1(e), i) A
Meets(prel(e), conl(e)) A Meets(i, eff1(e)) A
SameEnd(i, pre2(e)) A Meets(i, eff2(e))

(2) Stacking Axioml
Ve,da,b,e. Stack(a, b,e) D
Clear(a, prel(e)) A Holding(a, conl(e)) A Clear(a, eff1(e)) A
Clear(b, pre2(e_)) A On(a, b, eff2(e))

The above two axioms describe the knowledge which is independent of the
situation. There exists however knowledge about actions which is relevant
only in certain situations. For example, if the object a the system intends to
move is on another object ¢, then after a is moved, ¢ will be left clear. In
order to describe such change, the following axiom should be added into the

system.

Vi,a,b,c,t,e. Stack(a, b, e, 1) A On(a, c, t) A Overlaps(t, i)

D Clear(c, eff3(e)) A Meets(t, eff3(e)) A Meets(t, conl(e)).
5.1.2.4. A Summary

From the above, we can see how the temporal axioms are coming to the
point to support activity representation. Since time-slot based mechanism
takes a universal view of time and states, the frame problem does not exist.
_Therefore, once a system has the activity representations, an inference
engine always can be implemented to support the problem solving for the
activities. More discussion of the axioms concerning problem solving can be

found in [Allen, J., et al, 1991].

77

However, since temporal logic is the foundation of time-slot based activity
representation, the effects and the conditions of an event or an activity are
described in a very "historical perspective”, the actual problem solving

methodologies at action point are not able to be represented or applied.
5.1.3 State-Based Activity Representation

In 1971, Richard Fikes and Nils Nilsson developed a state based activity
representation in STRIPS planner [Fikes, R. and Nils Nilsson, 1971]. An
activity in STRIPS is represented by preconditions, delete list and add list.
For example, consider an activity push(k, m, n) for pushing object k from m

to n. It can be described as follows:

precondition: ATR(m) A AT(k, m)

delete list: ATR(m); AT(k, m)

add list: ATR(n); AT(k, n)
It supposes that for all the wffs that are not metioned in the delete or add
lists will remain the same. Compared to the situation calculus, this
representation method provides a better modellingmeans for catching up
knowledge of motion, since when people communicate to each other, they

usually only describe the changes.

Modifying only the properties which have been changed is abstracted by

STRIPS as a principle to deal with the frame problem, that is, a new state has

78

the properties of add-list and inherits all the properties of the parent state
unless they are mentioned in the delete-list. Therefore, different from time-
slot based activity representation, the problem solving process for state-based
activity representation maintains a state network. Its goal achieving process
expands the network until a goal state has been acquired. Currently most of

the developed goal achieving processes are an incomplete interpretation of

MTC [Chapman, 1987].

In literature, many people emphasistthe difference between STRIPS and the e
later developed planner such as NOAH [Sacerdoti, 1975], NONLIN [Tate,

1977] and SIPE [Wilkins, 1984], but the activity representation of these

planners is similar to each other. Further developments were made by
Saceroti [Sacerdoti, 1975] and Tate [Tate, A., 1977] by augmenting a goal
structure which enable the activity representation to catch up the

hierarchical structure of an activity, but the goal achieving process is still
based on GPS [Newell, A., and Simon, H.A., 1970]. In the following, a more
detailed discussion for the Modal Truth Criterion and the problem solving

process based on reasoning resources are presented.

State-based activity representation suits to the application where the
identities of states can be identified through a sequence of activities, and
where the activity sequence is always generated before the execution.

5.1.3.1 Modal Truth Criterion

Solving problems by reducing differences is a general principle (GPS) which

was identified by Newell and Simon in 1960's [Newell and Simon, 1970].

Based on GPS, Sacerdoti developed a heuristic searching process which is

79

able to handle hierarchical planning problem by using a data structure called
TOME (Table Of Multiple Effects) [Sacerdoti, 1975]. Austin Tate further
developed the searching process by identifying the GOST (GOal STructure)
structure [Tate, A., 1977]. The clarity and the applicability of the searching
process come from backward chaining mechanism and predicate
representation of the world. Because of predicate representation of the
world, through unification process, the interactions between different
activities can be assessed after every extension of the network, and therefore
least-commitment of sub-goals is possible. This clarity was revealed by
Chapman by his identification of the Modal Truth Criterion (MTC) for the

assertions in the planning process [Chapman, 1987].

MTC: A proposition p is necessarily true in a situation s iff two
conditions hold: there is a situation t equal or necessarily previous to s in
which p is necessarily asserted; and for every step C possibly before s and
every proposition g possibly codesignating with p which C denies, there
is a step W necessarily between C and s which asserts r, a proposition

such that 7 and p codesignate whenever p and g codesignate.

This criterion can be expressed by the following expression:

3t0t < s A O assert-in(p, t) A
vVCOs<Cv
vq O —denies(C, q) v
Og#pv
IWAOC < W a
OW<sa
dr asserts(W, r) Ap=g=q-=r

80

It can be interpreted more clearly as a logical programming procedure. For
the achievement of the precondition p of activity R, we first have a
contributor which asserts p which occurs before R in the plan. If there is no
such a contributor, the procedure must create one by instantiating an
appropriate operator schema and installing it in the net. If there is already a
contributor for p, but it is not yet ordered before R, then we can simply add
the requirement ordering. After this we will have a guarantied contributor
for the precondition p for R. Next, the procedure must check for activities
that possibly delete the condition p. p is possibly deleted if there is an activity
in the plan that could come after C, the contributor, and before R, the point
of requirement. Not all activities are relevant : only those that explicitly
mention p (or can codesignate with p) on their delete list can actually delete
p- If no such deleters exists, then the truth of p for R is gﬁarantied. If there is
such a deleter, then it must be ordered outside of the range over which p is
expected to be held. This deleter may be rendered harmless by ordering it

before C, the point of contribution, or after the R, the point of requirement.

Most of the developed non-linear planner is an incomplete interpretation of
MTC. Chapman [Chapman, 1987] has proved a theorem for the correctness
and completeness for such planning process: If a planner, given a problem,
terminates claiming a situation, the plan it produces does in fact solve the
problem. If the planner returns signalling failure or does not halt, no

solution exists.
5.1.3.2 Reasoning of Resources

Although MTC can be "neat" and useful under certain circumstances, it is

however not able to deal with the situation in forward chaining manner. If

81

we process the activity of turning on a light by using MTC, we suppose that
the condition of liéht on is the button of the switch is down. Therefore, if
the button has already been down, the light should have been on, otherwise
there should be an activity which can achieve the state of button down.
Therefore if the preconditions of the activity which can achieve the button
down state are true, then the light should on, otherwisé there should be
activities (such as removing the barriers towards the button, or whatever)
which can achieve the preconditions of the activity which can achieve the

button down state. The process can go on and on.

The big assumption of MTC is that it supposes action starts after a complete

" planning pfocess. This is not proper for those application domains where
we can not plan exactly what to do unless we reach certain level of
execution. For modellingan open information system, we do need a
problem solver which can handle problems in an open and forward
chaining manner, but to identify a goal achieving process for such a problem
solver has proved to be even more difficult. Since in an open system,
problem solving is distributive, the distributed issues such as task
decomposition, communication, disperse viewpoints, and so on have to be
considered. More detailed discussion for these issues can be found in papers

of Distributed Artificial Intelligence [Allen and Gasser, 1990].

There is a sightly different goal achieving process which was developed by
Wilkins in his plahner SIPE [Wilkins, 1984] which is forward chaining. Its
problem solving process reasons the resources to resolve the interactions
between the sub-activities, which means the system has to know not only

the sub-activities which are available for the goal, but also the resources

82

which are needed by these activities. This requirement makes the planning

process not very much different from MTC as we described in last section.

5.2. Why a New AI Problem Solver

In the above section, the developed mechanisms for representing activities
have been reviewed. In this section the representation for the activities
upon forms will be represented. Before the discussion, the initiatives for
choosing an AI problem solving process for modellingan information
system, and reasons why we need to develop a new activity representation

for the activities upon forms are illustrated first.

5.2.1 The Difficulties of System Analyzing

The difficulties for analyzing a system is well known. So far we still do not
have a method for organising a flexible as well as stable system in an open
environment. Every methodology, no matter whether it is SSADM or SSM,
tries to identify the structured aspects of a system. The analysis on the
procedures of the system is required to be systematic and complete, and the
operations upon data are required be clear before we actually store the data

into a data base.

One benefit of using an Al problem solver to model an information system
is that it can avoid the difficulties of analyzing the procedural knowledge of
the system. As it is shown in Figure 5.2, the procedural knowledge
acquisition needs not to be complete and systematic. For any procedural
knowledge, as long as it could be defined in terms of goal, preconditions,

effects, it could be captured and stored in the activity base of the system. The

83

system can then support required task based on the procedural knowledge

through a problem solving process.

However, as it has been pointed out, this architecture could not replace a
system which needs more than one agent (problem solvers). For multi-user
systems, further research is needed in Distributed Artificial Intelligence

[Bond and Gasser, 1988].

GOAL

l

A SEQUENCE OF

ACTIVITIES FOR
PLANNER [®R(] pI1 [THE GOAL
T Procedural knowledge is described
in terms of activity schema:
Procedursal <acuvity>
Knowledge
Goal:
Preconditons:
Effectws:
}
Figure 5.2

5.2.2 New Activity Representation ---- Situated Action

In Al action representations, actions are described in terms of their relation
to situation descriptions, and the descriptions about situations are usually in
first order predicates. But predicates are usually abbreviation of natural

language rather than queries to the database system, therefore the action

84

descriptions are not directly upon the database. In another words, the

activities are not situated.

As we can see from the development of the Formbase System in Chapter 3
and Chapter 4, in the formbase, if we only use first order predicates in the
task formalism to describe formbase activities, the description would not be
situated in the formbase. The cdnsequences of having activity descriptions
not situated from the formbase are that we would not be able to catch up
knowledge of form processing directly. This will bring about difficulties for

modellingthe information systems.
5.3. Representation of the Information Activities upon Forms
5.3.1 The Requirements for Activity Representation in IFS

There are two basic requirements for the representation of the activities
upon forms. First, as it has been explained above, the activity representation
must be situated in the formbase. Second, the activities representation must
be "nearly independent” to each other [Stefik, M. J., 1981]. This is because the
knowledge of information processing of an organization is only partially
well defined. Therefore the activity representation must provide a
mechanism to identify the partially well defined procedural knowledge for

processing forms in an office system.
5.3.2 Analysis for the Activities upon Forms

How is the procedural knowledge for processing forms partially organised?

How should the activity representation be situated in the form base?

85

The key problem of representing an activity upon forms arises from the fact
that the activity manipulates more than one type of information object. The
task formalisms which are used by the developed Al planners, such as
NONLIN and TWEAK, only use predicates, therefore can not effectively
represent an activity which crosses different representation objects. For
example, when a guest arrives a hotel, in order to register, the service desk
needs to check if the guest has booked a room, if he has, then the room is
assigned to him. This is a simple and ordinary activity, but it actually crosses
different representational objects: the request for a room can be represented
by a predicate, such as (room-request ?guest), but booking information is
represented in a booking form. If we use a task formalism which only uses
first order predicates to describe the activity, it turns out to be a superficial

description rather than a well situated representation.

<room request>

{
goal: (assign-room ?guest)
precondition: (room-booked ?room ?guest)
effects: (occupy ?guest ?room)

)
In this representation, the predicates such as (room-booked ?x ?y) and
(occupy ?x ?y), can not reveal the connections between the activity and the
information objects (such as booking form). In order to improve this

disadvantage, the solution is to enable the task formalism to use the Form

Reference Patterns (see Chapter 3) for the information inside the formbase.

To augment the task formalism to refer to the Formbase, two aspects of

activity representation need to be noticed. An activity representation has its

86

effects and conditions which are factual, and its goal pattern and sub-goals
which are intentional. For an activity upon formbase, the factual data are
upon the formbase while the intentional data are used to communicate
with other activity schemas. Therefore, when the task formalism is
augmented to represent the information processing activities upon forms,
we only need to augment the reference ability of its factual data. That is, the
reference of the factual data should be directly upon the formbase by using
the formbase query or formbase predicates (Chapter 3). The changes of the
augmentation is shown by the Figure 5.3 and Figure 5.4. For traditional task
formalism, goal pattern, conditions and effects are all represented by the first
order predicates, but to represent the activity upon forms, within one
activity representation we use both the first order predicates as well as the

formbase query and formbase predicates.

subgoals to environments
' required goal
pattern preconditions for
applying the activity
effects of the activity
to environments
Envirannsends

Figure 5.3
Base on the above discussion, representation for the activity upon form can

be defined, it is called Formbase Activity Schema (FAS) in this thesis.

Similar to state-base activity representation, slots such as goal-pattern,

87

preconditions and effecfs are used. However the system draws a clear line
between intentional data and factual data of formbase activity schemas.
There are no the supervised preconditions similar to NONLIN system that
can be interpreted as sub-goals. The sub-goal or assistant requirements of an
activity is represented by a separated slot :assistant-activities. Instead of
having supervised conditions, the formbase activity schema has a condition
called non-assistant-condition. When non-assistant-condition is true, the

assistant-activities slot of the activity schema will not be evaluated.

COMMUNICATION
CONTEXT

AN
goal pattern
assistant

activity

SNNNAAN
AAAAALANAANLANL AN L AR AN AN AN AN
AUAALLANLLNLLNLANAANA NN ASAANANNANANAY

\\\‘ ASALTAALATLLTATULLNLANALN L AN LA L A R L AN NN NN AN NN Y
ATARALALANALR A AN UAN A NN AN NN OO OA SO NN N NN NN Y
AARAANANANLANOAN AN NN NN UAN NN NN AN SN Y

N NANSNANYN

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ o\ AR AR A A R NNNNNNY
hSNNSN ARRARN) AARARARRRAARN ARARMN NANANANSNSN NANNANNNY
\\\\\\\\\\\\ \\\\\\\\\\\\\ \\\\\\\\\\ AN NAANAAN SANAAAY
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ SAANNNAN A ARV R AN AN A A A ANANNNNY
AAAANATALEALALLANA AN NNNANNANAANNANANANAY e < NANNANANANN ANALRLANNANNANLANNNANNNANNN N AANAANNY
ALAALLALNLANL LA L ANLANLANL AN AN N ARALLLLLLALLLNALALLAAA AR NNNNANANA Y
A di TN e ffecis R T e

hNANN N ° SNANAN SANANANNNN N NANANANAN
MNANNANANYN \\\\\\\ Pmcon ltlons ‘efkcts AANRANANANNLNRNNN NN NNANNA NN NNANAANNANY
ANANANANNNANNANNNNN S s s v e es e s erenc e NANNANN N ANNNNNNUNUNANNNNNNASAN NANNNNANNNY
b NN\ \ \ SANAANNANNNNNNNY NN ATTALAAALANLLANANNANANA LN NNANNAAN NN NANNANAANY
\\\\\\\\\\\\\\\\\\\\\\\\\\\\ NA\M AALLLALANLANLALAANNANNNNA NN AN NN NN
EUALALANLARLLANENAANNANA NSNS NAAANY N AANAUANNANAANLAANANNASANANYN NANNNNNNNNY
NANNAN ANANNNANANNAANNNASNAY NN\ AN N AARRRRARRARRAARRN) NANANANN SNNNNN\Y
AANAANALNLUANNAN L LN VAN AR ANANNNANAY \ N\ N\ ARALLLALLALALNAN AN LA ANNNANANNAANAY
ENAANANANANNNANAANANNANNAY AN AN ANANANANAANNR LAV NNNNANAY
ANNANNNANAAYN NANNANNNANNANANANNAN NANN SNANAN NANNNNAYN NN\ N N\ NANNANNY
AN AATTLAATIALARALALTATLLATALLLALATATALATATLAATLL LA TLUL LA LA A AR A LNA LR A ANA AN NSO A AN A AN AR AN Y
B NN ANANNAANAANNGY \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\‘
PUANAAANNANNNNANNNNNANNANN \\\\\\ NAN AR AR RS N\ SANANNANANANNY ANANNAANNNNNANSNNY

Figure 5.4

5.3.3 Representation for the Activity upon Forms

Therefore, an formbase activity schema upon form base has the following
slots. Except 'goal-pattern’, all the others could be optional for representing

an activity.

<activity>

{

88

goal-pattern
holding-cond
non-assistant-cond
assistant-activity
effects

)
The semantic meaning of the slots are:
goal-pattern : represents the aim of the activity in the first order
predicate or relation patterns;
holding-cond : conditions for applying activity schema, they are
expressed in the formbase predicates;
non-assistant-cond : conditions for not evaluating assistant-activities slot
they are expressed in the formbase predicates;
assistant-activities : assistant activities to achieve the goal pattern. If the
non-assistant-cond is evaluated true, this slot will not be
evaluated.
effects : operations upon forms, they are represented by using

formbase operations.
5.3.4 An Example

The following is an example of the éctivity schema. It describes the activity
of checking the 'rvl' form (Figure 3.1) before payment. Basically it checks if

the 'rvl' forms have been signed by the manager.

<check-rvl-payment>

goal-pattern: '(check-rvl-payment $name)
non-assistant-cond: '(every-equal
:forms ((?rvl (instance-of rvl)
(name $name)
(cost-centre ?cc))
(?arvl (instance-of arvl)
(name $name)
(cost-centre ?¢c)))

89

:type rvl
:subarea-path (manager-sig)
:attribute manager-sig
:value Susan)
assistant-activities: '(for (rvll :in
(formbase-query
:forms
((?rvl
(instance-of rvl)
(manager-sig (manager-sig ~Susan))))
:do (sub-goals (manager-sig rvl1)))

A formbase activity representation is basically written in Lisp code, besides
the functions developed for formbase system in Chapter 3, there are two
things that need more explanation. The first is the concept of activity
variable. An activity variable, denoted as $x style, is used by an activity
schema to represent the semantic links between the slots of the schema, its
scope is within the activity schema, and it is interpreted within the schema.
The reason why we need the activity variables is because an activity variable
is different from the variable that is used by the form reference patterns,
denoted in ?x style (see Chapter 3). The variables used by form reference
patterns represent the links between different form types, and are
interpreted by the query processing program which has been explained in
Chapter 4. The activity variables are processed by the problem solving

process which will be illustrated in Chapter 6.

The second thing that needs more explanation is the functions that are used
by assistant-activity slot to seek other activities. There are two developed
Lisp functions, namely for and sub-goals. Since a formbase query inside an
activity schema may have many values, the for function provides an

iteration structure to explore all the alternatives of the values. The sub-goals

90

function pose the sub-goal pattern to the system as a goal pattern to search

for assistant activities.

site B

site C

site A

\@(distribution of warehouses

Figure 5.5
5.4. Modellinga Warehouse System

This section presents representations of the activities of a warehouse
management system by using the activity schema concept developed in
above section. The warehouses are shown in Figure 5.5. Four of them are
located at site A, B, C and a dock. The storing and transfering management
of them are based on four forms. They are the Table of Space (TS), the Table
of Products (TP), the Table of Stored Products and the Goods Transfer
Request Form (GTREF).

The TS table contains information of all the spaces of the warehouses

(Figure 5.6), which includes the space identifier of a space, the status of

91

whether a space has been occupied, and the size of a space. It is defined as

follows:

(define-form
(TS

(site)

(manager)

(date)

(association-of space-tab
(space-id)
(status)
(space-size))))

Table of Space (TS)
Site: Manager: Date:

Space-id [Status | Space-size

Figure 5.6.
The TP table contains information of the products. which includes the type

of a product and required space of it (Figure 5.7). It can be defined as follows:

Table of Products (TP)

P-type | space-required

92

Figure 5.7

(define-form

(TP
(association-of product-tab
(P-type)
(space-required))))

The TSP table is an actual notebook of a warehouse. It contains information
of which product is stored at where (which space), and the product-type,

entry-date, etc (Figure 5.8). It can be defined in the following:

(define-form
(TSP

(site)

(manager)

(total-space-left)

(association-of ware-house-tab
(product-id)
(product-type)
(space-id)
(entry-date))))

Table of Stored Products (TSP)

Site: Manager: Total-space-left:

Product-id |Product-type | Space-id | Entry-date

Figure 5.8

93

The Goods Transfer Request Form records request of transfering a product

form one side to another side, it is shown as Figure 5.9, and can be defined as

follows:

(define-form

(GTRF

(product-type)
(product-id)
(present-site)
(destination-site)
(space-required)
(manager-signature)))

Goods Transfer Request Form

product-type: product-id:

present-site: destination-site:

space-required: manager-signature:
Figure 5.9

Based on the above definition of forms, the operations of forms can be

modelled. The first operation that we are going to represent is the transfer

operation:

<transfer-product>

{

goal-pattern: (transfer $product-id $departure $destination)
holding-cond:

(exists
((?gtrf (instance-of GTRF)
(product-id $product-id)
(present-side $departure)
(destination-side $destination))))

assistant-activities:

(let ((pro-type (formbase-query
:forms ((?gtrf (instance-of GTRF)

94

(product-id $product-id)
(present-side $departure)
(destination-side $destination)))
:attribute product-type)))
(spa-size (formbase-query
:forms ((?gtrf (instance-of GTRF)
(product-id $product-id)
(present-side $departure)
(destination-side $destination)))
:attribute space-required)))
(sub-goals (store $product-id pro-type spa-size $destination)))
effects:
(delete-subform
:forms ((?gtrf (instance-of GTRF)
(product-id $product-id)
(present-site $departure)
(destination-side $destination))))
(delete-subform ’
:forms ((?tsp (instance-of TSP)
(site $departure)
(ware-house-tab (product-id $product—1d)))
:subarea-path (ware-house-tab))
(modify-value
:forms ((?ts (instance-of TS)
(site $departure)
(space-tab (space-id ?space-id)))
(?tsp (instance-of TSP)
(site $departure)
(ware-house-tab
(product-id $product-id)
(space-id ?space-id))))
:type TS
:subarea-path (space-tab)
:attribute Status
:value Free)

Whenever a product is required to transfer from one side to another, the
'holding-condition' is that there is a corresponding Goods Transfer Request
Form, and the sub-goal is that the product can be stored at the destination
site. As to the effects of the activity, the space occupied by the product at the
departure site should be released and the transfer request which is recorded

in the GTRF form should be removed.

95

The following is the representation of the activity of storing an activity into

a ware-house.

<store-product>
{
goal-pattern: (store $product-id $product-type $space-required $site)
non-assistant-cond:
(some-bigger
:forms ((?ts (instance-of TS)
(site $site)
(space-tab (status Free))))
:subarea-path (space-tab)
:attribute space-size
:value $space-required)
assistant-activities: (sub-goals (find-space $space-require $site)))
effects: o
(let ((sp-id (one-of (formbase-query
:forms ((?ts (instance-of TS)
(site $site)
(space-tab
(status Free) »
(space-size >=$space-required))))
:subarea-path (space-tab)
:attribute space-id))))
(set-value :form ((?ts (instance-of TS)
(site $site)
(space-tab (space-id sp-id))))
:subarea-path (space-tab)
:attribute status
:value Free)
(add-subform
:forms ((?tsp (instance-of TSP)
(site $site)))
:subarea-path (ware-house-tab)
:value ($product-id $product-type pt-id (date))))

This activity first checks if there are spaces which are free and bigger than
the required space, if there are such spaces, the Lisp code in effects parts are
evaluated, otherwise the assistant activities will be evaluated. The assistance

activity tries to find spaces for the product, the effects of having a product

96

The following is the representation of the activity of storing an activity into

a ware-house.

<store-product>
{
goal-pattern: (store $product-id $product-type $space-required $site)
non-assistant-cond:
(some-bigger
:forms ((?ts (instance-of TS)
(site $site)
(space-tab (status Free))))
:subarea-path (space-tab)
:attribute space-size
:value $space-required)
assistant-activities: (sub-goals (find-space $space-require $site)))
effects:
(let ((sp-id (one-of (formbase-query
:forms ((?ts (instance-of TS)
(site $site)
(space-tab
(status Free)
(space-size >=$space-required))))
:subarea-path (space-tab)
:attribute space-id))))
(set-value :form ((?ts (instance-of TS)
(site $site)
(space-tab (space-id sp-id))))
:subarea-path (space-tab)
:attribute status '
:value Free)
(add-subform
:forms ((?tsp (instance-of TSP)
(site $site)))
:subarea-path (ware-house-tab)
:value ($product-id $product-type pt-id (date))))

This activity first checks if there are spaces which are free and bigger than
the required space, if there are such spaces, the Lisp code in effects parts are
evaluated, otherwise the assistant activities will be evaluated. The assistance

activity tries to find spaces for the product, the effects of having a product

96

stored in the ware-house is that space is occupied, and the storing

information has to be recorded in TSP form.

The following is the representation of the activity of finding a space.

<find-space>
{
goal-pattern: (find-space $space-required $site)
holding-cond:
(some-bigger
:forms1 ((?ts (instance-of TS)
(site $site)
(space-tab (status Occupied)
(space-size >=$space-required))))
:subarea-path1 (space-tab)
:attributel space-size
:forms2 ((?ts (instance-of TS)
(site $site)
(space-tab (status Occupied)
(space-size >=$space-required)
(space-id ?space-id)))
(?tsp (instance-of TSP)
(site $site)
(ware-house-tab
(space-id ?space-id)
(product-type ?product-type)))
(?tp (instance-of TP)
(product-tab (P-type ?product-type))))
:type2 TP
:subarea-path2 (product-tab)
:attribute2 space-required)
assistant-activity:
(for (pro-id :in (formbase-query
:forms ((?tsp (instance-of TSP)
(site $site)
(ware-house-tab
(space-id ?space-id)))
(?ts (instance-of TS)
(site $site)
(space-tab
(space-size >=$space-required)
(space-id ?space-id))))
:type TSP
:subarea-path (ware-house-tab)
:attribute product-id))

97

:do (if (bigger
:forms1 ((?ts (instance-of TS)
(site $site)
(space-tab (space-id ?space-id)))
(?tsp (instance-of TSP)
(site $site)
(ware-house-tab (space-id ?space-id)
(product-id pro-id))))
:typel TS
:subarea-path1 (space-tab)
:attributel space-size
:forms2 ((?tsp (instance-of TSP)
(site $site)
(ware-house-tab (producet-id pro-id)
(product-type ?pro-type)))
(?tp (instance-of TP)
(product-tab (P-type ?pro-type))))
:subarea-path2 (product-tab)
:attribute2 space-required)
(sub-goals (move pro-id $site))))

Find-space activity first checks if there are products which have occupied a
space that is bigger than the required space, and at the meanwhile is bigger
than the need of the product itself. In this activity representation, to find out
if the product has occupied a space which is bigger than necessary, three
forms are used in the query. If there are products which have occupied a
space that is bigger than the required space and is bigger than its need, then
the system tries to move it. The following is the representation for the
activity of moving a product. There are two situations for moving a product,
in the first case, we re-arrange (move) a product inside the warehouse if a
space can be found inside the warehouse. Secondly, if there is no free space
in the warehouse, we check if there is a product which will be transfer out.

In the following, we consider moving inside a warehouse first:

<moving-product-1>

98

goal-pattern: (move $product-id $site)
non-assistant-cond: ;; check if there is free space which is bigger than
;; the space that the product requires.
(some-bigger
:form1 ((?ts (instance-of TS)
(site $site)
(space-tab (status Free)))
:subarea-path1 (space-tab)
* :attributel space-size
:form2 ((?tsp (instance-of TSP)
(site $site) A
(ware-house-tab (product-id $product-id)
(product-type ?pro-type)))
(?tp (instance-of TP)
(product-tab (P-type ?pro-type))))
:type2 TP
:subarea-path2 (product-tab)
:attribute2 space-required)
:assistant-activities
(let ((sp-size (formbase-query
:forms ((?tp (instance-of TP)
(product-tab (P-type ?pro-type)))
(?tsp (instance-of TSP)
(ware-house-tab
(product-id $product-id)
(product-type ?pro-type))))
:type TP
:subarea-path (product-tab)
:attribute space-required)))
(sub-goals (find-space sp-size $site)))
:effects
(let* ((old-sp (formbase-query ;; space the product stored
:forms ((?tsp (instance-of TSP)
(site $site)
(ware-house-tab
(product-id $product-id))))
:subarea-path (ware--house-tab)
:attribute space-id))
(reg-sp (formbase-query ;; the space-size the product required
:form ((?tsp (instance-of TSP)
(site $site)
(ware-house-tab
(product-id $product-id)
(product-type ?pro-type)))
(?tp (instance-of TP)
(product-tab (P-type ?pro-type))))
:type TP
:subarea-path (product-tab)

99

:attribute space-required)
(new-sp (one-of ;; space the product will move to
(formbase-query
:forms ((?ts (instance-of TS)
(site $site)
(space-tab (status Free)
(space-size >=rep-sp))))
:subarea-path (space-tab)
:attribute space-id)))
(pro-type (formbase-query ;; find out the type of the product
:form ((?tsp (instance-of TSP)
(site $site)
(ware-house-tab
(product-id $product-id))))
:subarea-path (ware-house-tab)
:attribute product-type)))
(modify-value ;; free the old space
:forms ((?ts (instance-of TS)
(site $site)
(space-tab (space-id old-sp))))
:subarea-path (space-tab)
:attribute status
:value Free)
(set-value ;; record the occupation of the new space
:forms ((?ts (instance-of TS)
(site $site)
(space-tab (space-id new-sp))))
:subarea-path (space-tab)
:attribute status
:value Occupied)
(delete-subform ;; delete the old space information
:forms ((?tsp (instance-of TSP)
(site $site)
(ware-house-tab (space-id old-sp))))
:subarea-path (ware-house-tab))
(add-subform ;; record the new occupation information
:forms ((?tsp (instance-of TSP)
(site $site)
(ware-house-tab (space-id new-sp))))
:subarea-path (ware-house-tab)
:value ($product-id pro-type new-sp (date))))

Although the code of this activity is lengthy, the logic structure of this

activity is simple, if there is a space which is free and bigger enough for the

100

product, then we move the product into the space, otherwise we try to find a

space for the product. The effects of moving a product requires a bit more

code, since it means the space which was occupied by the product should be

released after the moving, and the new space should be occupied. If there is

no such spaces inside the ware-house, the following moving activity checks

if there is a product will be transferred out.

<move-product-2>

{

goal-pattern: (move-product $product-id $site)
holding-cond:
(some-bigger
:forms1 ((?gtrf (instance-of GTRF)
(present-site $site)
(product-id ?pro-id))
(?tsp (instance-of TSP)
(site $site)
(ware-house-tab (product-id ?pro-id)
(space-id ?sp-id)))
(?ts (instance-of TS)
(site $site)
(space-tab (space-id ?sp-id))))
:typel TS
:subarea-pathl (space-tab)
:attributel space-size
:forms2 ((?tp (instance-of TP)
(product-tab (P-type ?pro-type)))
(?tsp (instance-of TSP)
(site $site)
(ware-house-tab (product-id $product-id)
(product-type ?pro-type))))
:type2 TP
:subarea-path2 (product-tab)
:attribute2 space-required)
assistant-activities:
(let ((rep-sp (formbase-query ;;space required by the product
:forms ((?tp (instance-of TP)
(product-tab (P-type ?pro-type)))
(?tsp (instance-of TSP)
(site $site)
(ware-house-tab
(product-id $product-id)
(product-type ?pro-type))))

101

:type TP
:subarea-path (product-tab)
:attribute space-required)))
(for (mp-id :in (formbase-query
:forms ((?gtrf (instance-of GTRF)
' (present-site $site)
(product-id ?pro-id)
(?tsp (instance-of TSP)
(site $site)
(ware-house-tab
(product-id ?pro-id)
(space-id ?sp-id)))
(?ts (instance-of TS)
(site $site)
(space-tab (space-id ?sp-id)
(space-size >=rep-sp))))
:type GTRF
:attribute product-id)
:do (let ((dep (formbase-query
:forms ((?gtrf (instance-of GTRF)
(present-site $site)
(product-id mp-id)))
:attribute present-side))
(des (formbase-query
:forms ((?gtrf (instance-of GTRF)
(present-site $site)
(product-id mp-id)))
:attribute destination-side)))
(sub-goals (transfer mp-id dep des)))))

The logic of this activity is also very simple, once there is a product which
has occupied a space that we are looking for and is requested to be

transferred to another side, the system first carry out the transfering process.
5. 5. A Summary
In this Chapter, the developed methods for representing activities have

been reviewed, based on the investigation, a representation mechanism for

the activities upon forms are developed, and an intensive example of how

102

to use this mechanism to model a practical system is introduced. The
problem solving algorithm for the activities is presented in the next

Chapter.

103

Chapter 6.

A Problem Solving Process for
the Activities upon Forms

This chapter presents a problem solving process to assist human
information processing activities upon the formbase. The concept of
formbase activity schema was been introduced in Chapter 5. The
development in this chapter is based on the formbase activity schema and
the concepts of the developed nonlinear planners, such as NOAH [Sacerdoti,
1975], NONLIN [Tate, A., 1977] and TWEAK [Chapman, 1987]. The problem
solving process of nonlinear planners maintains a planning
network/procedure network ---- a network of situations which are
connected by activities ---- so that the requirements and the effects of every
involved activity can be evaluated for the purpose of achieving a required
goal. The issue of developing a problem solving process upon the formbase

involves the following problems:

- how to represent the planning network;
- how to take account of effects of the activities;

- how to resolve the interactions between the subgoals.

In the following, the framework of the Intelligent Form System (IFS) is
presented first, then the special nature of the problem solving for the
activities upon forms is discussed. Finally a problem solving process for the

Formbase activities is developed.

104

6.1. The Frame of the Intelligent Form System

The reason for developing a Intelligent Form System (IFS) is to improve the
functionality, flexibility and stability of the formbased Office Information
System. This requires certain flexibilities of the mapping between the task
representation, the activity representation and the data representation. By
using a problem solving process, the IFS is able to achieve such flexibility.

The system frame of IFS is shown in Figure 6.1.

User Requirement
(task representation)

activity problem
representation »- solver

a transaction for

a user request
form base : \/

generated
pmcedures

execution

Figure 6.1

When user's requirement is input to the system, the problem solver works
to generate a sequence of activities which can process the formbase so that
the goal can be achieved. Since in the formbase, the activity representation

and the task representation are independent of each other, and only relate to

105

each other dynamically during the problem solving process, certain

flexibilities of the system can be achieved.

6.2. The Special Nature of Problem Solving for the Activities upon

Forms

This section discusses the special natures of the problem solving for the
activities upon the forms. The most important feature of the activities upon
forms is that they satisfy Organizational Activity Assumption which will be
introduced later. This feature makes the problem solving upon forms
different from previous problem solvers. In the following the principle of
the developed state-based problem solvers is reviewed first, then a set of
concepts for identifying the features of the activities upon forms are
presented. Most of the developed problem solver deals with the activities
which are performed by human-beings spontaneously. This thesis refers to

them as unstructured activities.

6.2.1 The Principle of State-Based Problem Solving for Unstructured

Activities

Problem solving is to identify a sequence of activities to fulfil a task from an
initial state. Every state-based activity representation has a list of
preconditions and a list of effects. The problem of choosing which activity
and when to apply it to the system is systematically related to every aspect of
the problem solving process. On one hand, the applicability of an activity
depends on the situation before its application; on the other hand, every
activity may modify the situation description. Therefore unless the order of

the activities has been specified, the situation descriptions inside the

106

planning network are nondeterministic. Thus a problem solver can not

deduce its solutions based on the concept of situation.

The problem solving of a state-based planner is to take account of each
predicate in the precondition list and effect list of every needed activity in
terms of their logic dependency in the planning network. In other words, in
the planning network, the truth of a predicate at a node can be judged based
on both the initial situation and the effects of the activities. One important
functionality of the problem solver is to maintain and to generate data for
the logical connections and protections of each predicate. The main data
structures for this mechanism are planning network/procedure network,
Table Of Multiple Effects (TOME) [Sacerdoti, 1975], and the GQal STructure
(GOST) [Tate,A., 1977]. Among them the planning network records the time
order or the time relation of the activities, TOME records all the effects of
the activities at every node, and GOST records the contributors of every

condition.

Almost all the developed planners concern the daily activities which are
performed automatically by human-beings. For daily activities, there is no
commonly accepted symbolic information which can be used for defining
the order of the activities, but why an activity is jeopardised by the others is
usually clear. So inside a computer problem solver, the order can be
generated by taking account of effects and requirements of every activity in
the planning network. It is a main task of the planning systems to find out a

right order of activity sequence to achieve the goal.

107

C B
A
B
C
Figure 6.2

Figure 6.2 gives a very simple example of the unstructured activities. The
initial situation is that block A is on block C, block B and C are on the table,
and the top of block A and block B are clear. The goal is to build a tower of
the blocks where block A is on block B, block B is on block C, and block C is
on the table. A human will automatically first put block A on table, then put
block B on block C, then put block A on block B to fulfil the task. The trouble
is why he does not put block A on block B first, or put block B on block A
first are so much related to the situation that it can not be abstractly
represented. The basic knowledge about the process that can be represented

independent to situation is the following activity:

<move>

{
preconditions: (clear ?x) (clear ?y)
add-list: (on ?x ?y)
delete-list: (clear ?y)

}

108

When this activity represehtation is used by a problem solver to find the
solution for the above question, efforts have to be made to check out how
one move of a block will change the situation and how the moves are
related to each other. The data structures such as TOME [Sacerdoti, 1975] and
GOST [Tate, A., 1977] are identified for the use of resolve the interactions

between the activities.
6.2.2 The Information Processing Activities upon Forms

The information processing activities upon forms, called formbase
activities, have a different background. Forms and the formbase activities
are consciously designed by an organization. Every formbase activity
processes a certain set of data in the formbase, therefore there are no direct
interactions between the formbase activities like the interactions between
the activities in the block example. Whether a formbase activity is applicable
depends on whether there is a set of data in the formbase which match the
preconditions of the activity. Since every formbase activity may modify
values of attributes of certain set of form instances, the actual scope of the
activity ---- the instances which are influenced by the activity ---- is not clear
unless the activity sequence is defined. The problem solving for formbase
-activities is therefore to identify the assistant activities needed and to

determine the actual scopes of the effects of these activities.
6.2.2.1 Warehouse Example
Suppose we have two warehouses: one is on site A, the other is on site B,

and each of them has five spaces, shown as in Figure 6.3. The s1, s2, ..., s5 are

space identifiers.

109

si| s2 33

34 s5
SITE A
sl | s2 33
s4 85
SITE B

Figure 6.3

Suppose we only have three types of products which requires space size 1, 2,
3 respectively (Figure 6.4), and suppose that space size 3 is bigger than size 2,

and size 2 is bigger than size 1.

Table of Products (TP)

P-type | space-required

pti 1

pt2 2

pt3 3
Figure 6.4

110

Suppose we have seven products: p1, p2, ..., p7, and they are stored in the
warehouses of the two sites as it is shown in Figure 6.5. The name p1, pZ, ...,

p7 are product identifications.

Pl p2
p3 p4
SITE A
pS
pé p7
SITE B

Figure 6.5

Therefore, we have the following two form instances (Figure 6.6) of the
Table of Space (TS) form to describe the space situation of the two site. The
s1 space in site A is free, whose size is 1. The s2 and s3 spaces in site B are

free, whose size are respectively 1 and 2.

The actual distribution of the products in the two warehouses are recorded
in another two form instances of the Table of Stored Products (TSP) form
(Figure 6.7). It can be seen that at Site A, space s3 which is size 2 is occupied
by p2 which is type pt1 and only needs size 1 space. Space s4 and s5 are
occupied by p3 and p4 which are pt2 type and only need size 2 space.

111

Table of Space (TS)

Table of Space (TS)

Site: A Manager: Ross Date: Site: B Manager: Bob Date:
Space-id | Status | Space-size Space-id | Status | Space-size
s1 Free 1 sl Occupied 1
s2 Occupied 1 s2 Free 1
33 Occupied 2 s3 Free 2
84 Occupied 3 54 Occupied 3
35 Occupied 3 5 Occupied 3
Figure 6.6

6.2.2.2 Organizational Activity Assumption

Now, suppose we want to transfer product p6 from site B to site A (Figure

6.5), let us check what will happen to the corresponding forms. Intuitively

we know p6 is of type pt3 and needs a size 3 space, but all the size 3 spaces in

site A have already been occupied. Fortunately the products which currently

occupy the size 3 spaces s4 and s5 can be put into a size 2 space. Therefore we

try to find an empty size 2 in the warehouse. The only size 2 space s3 is

occupied by another product p1, but this pI which is of pt1 type and only

needs a size 1 space. So, it can be moved to space s which is free at this

moment, therefore product p6 can be transfered from site B to site A.

112

Table of Stored Products (TSP)

Site:A Manager: Ross

Total-space-left:

Product-id [Product-type | Space-id | Entry-date
pl ptl 82
P2 ptl 33
p3 pe s4
p4 pe 35

Table of Stored Products (TSP)

Site:g Manager:Bob Total-space-left:
Product-id |Product-type | Space-id | Entry-date
pS ptl sl
pbé P8 s4
p7 pus s5
Figure 6.7

113

The computing modellingof the activities that are involved in the
management of the warehouses such as 'find-space’, 'move' and 'store’ will
manipulate the forms such as TS (Figure 6.6) and TSP (Figure 6.7). These

- activities have been discussed in Chapter 5. The physical appearance of these
activities do not look different from the activities that are involved in the
block example, but there is a profound difference between them. In the block
example, an activity may manipulate an atomic entity more than once to

achieve the goal, and an activity may directly override the effects of another

activity. For example, in the block example, block A is first.put on the table,
then block B is put on block C, then block A is put on block B. During this
process the block A is processed by the same activity twice for achieving the
goal. Moreover, the goal is a set of predicates { (on A B), (on BC), (on C
table), (clear A) }, they are achieved by different activities in the sequence of
activities. There are pbssibilities that the required goal predicates are
achieved by some activities, and later are overridden by some others, and

then are asserted again.

In formbase activitiés, this does not happen. For example, in the warehouse
example, no datum in the forms will be processed more than once by the
same activity, and usually one activity will not directly override the effects
of another. This is because the forms about the spaces and the products in
the warehouses, and the operations upon them are consciously designed for
the management of the warehouses. An activity will not override the effects
of the activity which searches it out. This is generally true for all the
information processing activities upon forms. Therefore it is abstracted as an
assumption called Organizational Activity Assumption. The problem solver

which is developed later in this chapter is based this assumption.

6.2.2.3 Interactions between Activities upon the Forms

Formbase activities obey the Organizational Activity Assumption, therefore
there is no direct conflict between two activities which are designed to assist

one another. The problem solving process will be simplified in terms of

this, but there is another type of uncertainty and interaction.

114

In the IFS, since the FRPs can not unify each other (see Chapter 3), the
problem solver upon forms can not use least-commitment methods (the
method of using predicate patterns to submit sub-goals to the system) to
process sub-goals/assistant-activities as those developed in problem solvers
such as NONLIN [Tate, 1977] and MOLGEN [Stefik, 1981]. In the Formbase
Activity Schema, the goal patterns for searching assistant activities are
generated by using function For to explore every instance in the sets which
are referred to by the FRPs. Therefore, every formbased activity schema may
generate many goal patterns for searching assistant activities. For example,
based on the RVL form instance (Figure 3.4), if one activity wants assistance
for checking out the date when ‘Howard' taught Oracle, the assistant activity

slot might be specified as the following:

assistant-actvities:
(for (date :in (formbase-query
:forms ((?rvl (instance-of RVL)

(name Howard)
(time-tab (subject Oracle))))

:subarea-path (time-tab)

:attribute date))

:do (sub-goals (check-date date)))

It then will generate the following goal patterns:

(check-date 4/3/92)
(check-date 11/3/92)
(check-date 18/3/92)
(check-date 25/3/92)

These goal patterns do not assist each other, but they may compete for the
same resources. In other words, conflicts may‘exist between them or their
assistant activities. For example, in the warehouse example, in order to
transfer p6 from site B to site A, we need a size 3 space; in order to find a size
3 space in the warehouse at site A, we can move p2 from s3 to s1, then move

either p3 or p4 into s3. The goal pattern (move p3 A) and (move p4 A) are

115

two sdn-requests of the request-node (find-space 3 A). Since there is only one
size 2 space, only one of them, p3 or p4, can be moved. This is an example of
the interactions between the formbase activities (request nodes). More

detailed discussion about the interaction can be found in section 6.3.3.

P (wensferps B A) >@

?@

(store p6 pB 3 A)——P (transferp6 B A) —V@

7

(find-space 3 A) [(store p6 pB3 3 A) [P (ransfer p6 B A) —>@

(move p3 A)

N\
/4

(move p4 A)

(find-space 3 Ay—(store p6 pB 3 A)—(trensfer pé B A))@

P

(find-space 2 Ay¥move p3 A)

(find-space 3 A) P (store p6 pB3 3 A)P-{transfer p6 B A)—P

VAN

(find-space 2 A)p{move p4 A)

(move p2 A) - (find-space 2 A) - (move p3 A)
\ (find-space 3 A)DXstore p6 pB 3 Ay transfer p6 B A) —P

(move p2 A) - (find-space 2 A) - (move p4 A)

Figure 6.8

116

6.3. Problem Solving for the Activities upon Forms

In this section, the problem solving process for the activities upon forms is

developed.

Whether a task, such as (transfer p6 B A), can be achieved by a IFS system
depends on if the request-node of the goal pattern can be satisfied. The
problem solving process uses a request network to explore the requests of

the goal pattern and to resolve the conflicts.

The whole process has two phrases. The first phrase is to expand the request
network until all the leaves of the network have been satisfied, the second
phrase then tries to resolve the conflicts. Figure 6.8 shows an expanded
request network for (transfer p6 B A) goal pattern. In order to resolve the
conflicts of the expanded network, the effects of the activities must be

evaluated.
6.3.1 Request Network

A request network is a network of the request-nodes. For example, Figure 6.8
is a request network for the activity of transferring p6 from site A to site B. A
request network also has a start node and a end node . Except start node and
end node, every request-node in the request network is labelled by its goal
pattern, such as (transfer p6 B A), (store p6 pt3 3 A) and so on. Except start
node, every node has at least one son-request, and except end node, every
node is a son-request of another request-node. Request network is directed,

the request at the tail of an arrow is requested by the one that is at the head.

117

The one at the tail is the son-request of the one at the head, similarly the
one at the head is the parent-request of the one at the tail. For example, in
Figure 6.8, (store p6 pt3 3 A) is the son-request of (transfer p6 B A), and both
(move p3 A) and (move p4 A) are son-requests of the same request-node
(find-space 3 A). Start node has no son-request, and end node has no parent-

request.

Another important concept is called Branch-request. Except start node and
end node, every request-node in the request network has a Branch-request.
A Branch-request is the request-node which is at the head of a branch
(direction defined by the arrows in the branch) in the request network, and it
is the goal of the branch. For example, the Branch-request of the (move p2
A) node in the upper position in Figure 6.8 is (move p3 A). The Branch-
request of (find-space 3 A) is end node. Obviously, if one request-node can

not be satisfied, its Branch-request fails.
6.3.1.1 Node Definitions of Request Network
Three types of nodes have been defined for representation of a request

network: they are start node, end node, and request node. The request-node

contains following information:

node-id : a system generated identifier;
goal-pattern : the goal-pattern label of this node;
holding-cond : constraints which represent the conditions which are

not controlled by the knowledge of this node;
non-assistant-cond: constraints which represent the conditions whose

achieving assistant activity is specified in the assistant-
activities slot of this node;

118

status : Phantom (need not to extended), WEC, WE, WB,
Expanding and AE;

current-act : the activity-identifier of the activity currently used to
expand the node;

activity-list : the list of activities that can be used, but have not been
used to expand the goal pattern;

operations : if all the conditions are satisfied, the operation here
will be performed upon the forms instances in the
form variable slot;

next : Request-nodes that follow this node;

prev : Request-node that is precedent to this node;

6.3.1.2 Types of Request Node

A request-node (a formbase activity) may require that all its son-requests be
successful, or require that some of its son-requests be successful. If a request-
node requires that all its sons be successful, the request-node is referred as J-
request-node, otherwise, the request node is referred as D-request-node. If a
request-node only has one son, it is also called a request-link. A J-request-
node, a D-request-node or a request-link can be represented by diagrams as it
is shown in Figure 6.9. In this Figure, A is a request-node (or an activity), Al,

A2 and A3 are its son-requests.

‘ /<A\ :
At x/ A3 \
A2 Al A3

A2 Al

J-request-node D-request-node request-link

119

Figure 6.9

The IFS system defines that a]-request-hode is satisfied if all of its son-
requests can be satisfied, and defines a D-request-node is satisfied if at least
one of its son can be satisfied, and a request-link is satisfied only if its son
can be satisfied. Obviously, an activity (a request-node) can be achieved if its

son-requests can be satisfied.
6.3.2 Expansion of Request Network

Request network expansion is the first phrase of the problem solving upon
forms. The algorithm of éxpansion is a recursive process. The aim of
expansion is to make sure that every request-node follows the Start Node is
in phantom status, that is, all the goal patterns which follow Start Node can
be satisfied by the formbase directly. In the following, the warehouse

example is used to present the expansion process.

(STOREP6PT33 A)
IFS

Figure 6.10

Suppose the initial goal pattern required is (store p6 pt3 3 A), see Figure 6.10.
After the goal is input, the IFS system uses this goal pattern to search
assistant activities which can assist the goal fulfilment. One of these
activities will be chosen as 'current-act' to expand and to explore the details

of the problem solving, the rest of them will be stored in ‘activity-list' for

120

backtracking. In this example, the activity representation that matches the
request is <store-product> (see section 4 of Chapter 5), the system then get an
initial request network shown in Figure 6.11. This request network means
that the request (store p6 pt3 3 A) can be fulfilled by performing activity
<store-product>. In this example, <store-product> is the only activity that

can fulfil the goal pattern, therefore the 'activity-list' of this node is empty.

(8 (store pb pt33 4) ———» (&)

current-act: <store-pmduct>
activity-list: ()

Figure 6.11

In Figure 6.11, the goal pattern (store p6 pt3 3 A) is used to label the request-

node, but the actual content of this node contains the following

information:
node-id : Fam-1
goal-pattern : (store $product-id $product-type $space-required $site)

form-variable :(($product-id p6) ($product-type pt3)
($space-required 3) ($site A))

holding-cond :0

non-assistant-cond : (some-bigger
:forms ((?ts (instance-of TS)
(site $site)
(space-tab (status Free))))
:subarea-path (space-tab)
:attribute space-size
:value $space-required)

status : Unexpanded;

current-act : <store-product>

121

activity-list 10

operations :
(let ((sp-id
(one-of (formbase-query
:forms ((?ts (instance-of TS)
(site $site)
- (space-tab
(status Free)
(space-size >=$space-required))))
:subarea-path (space-tab)
:attribute space-id))))
(set-value :form ((?ts (instance-of TS)
(site $site)
(space-tab (space-id sp-id))))
:subarea-path (space-tab)
:attribute status
:value Free)
(add-subform
:forms ((?tsp (instance-of TSP)
(site $site)))
:subarea-path (ware-house-tab)
:value ($product-id $product-type pt-id (date))))

next : End-Node

prev : Start-Node

The work of creating the node is done by the expansion process, in the
following only the goal patterns are used to label the nodes, the content of

the nodes willvbe omitted.

In Figure 6.11, the <store-product> activity Has a non-assistant-condition to
search if there is a space which is equal or bigger than the requirement of the
product. If suppose that the current situation in site A warehouse is as
shown in Figure 6.5, then there is no such spaces available, therefore more
assistant activities will be searched. The <store-product> activity has a son-
request which is a request-link for searching assistant activities. In this case,
the goal pattern for the request-link is (find-space 3 A). The system then uses

this goal pattern to search activities for expanding the network. There is

122

again only one activity that matches the goal pattern, that is <find-space>.

Therefore, the request network can be expanded as shown in Figure 6.12.

(s)—® (find-space 3 A) —P (store pb pt33 A)—»~(e)
current-act: <find-space> current-act: <store-product>

activity-list: () activity-list: ()

Figure 6.12

Notice that <find-space> activity has holding conditions which at this
moment can be satisfied by the situation. If the holding conditions can not
be satiéfied, then <find-space> activity can not be applied. Since there are no
other activities in the 'activity-list' of the (find-space 3 A) request-node,
(find-space 3 A) request can not be satisfied. Therefore IFS system will
backtrack to find if there is an alternative activity representation to expand
the Figure 6.10 request network. There is no other activities in the 'activity-
list' for (store p6 pt3 3 A) node, the (store p6 pt3 3 A) also can not be satisfied.
The goal request of (store p6 pt3 3 A) is End Node, therefore if the holding
condition of <find-space> activity could not be satisfied, the goal pattern

(store p6 pt3 3 A) would fail.

Since the holding conditions of <find-space> can be satisfied, the system
continues to expand the request network. The goal patterns for searching
assistant activities in this case are (move p3 A) and (move p4 A). The <find-
space > activity does not require all of them be successful, therefore (find-

space 3 A) is a D-request-node of the two son-requests. See Figure 6.13.

123

current-act:i<move-product-1>
activity-list: (<move-product-2>)

(move p3 A) _

current-act: <find-space>

activity-list: ()

(find-space 3 A)-P(store pb pt3 3 A) —P@
current-act: <store-product>
activity-list: ()

(move pd A)

current-act: <move-product-1>
activity-list: (<move-product-2>)

Figure 6.13

Following the same principle, this request network can be further expanded
until all the request-nodes next to the Start Node can be set to phantom

status, see Figure 6.14.

status: phantom
(move p2 A find-space 2 AHmove p3 A)

s (find-space 3 A)pfstore pb pt3 3 A)——>@

/

(move p2 AXfind-space 2 A)jp-(move pd A)

status: phantom

Figure 6.14

The expansion algorithm is mainly composed by two processes. One is
expansion, the other is backtrack. These two processes recursively call each
other. The backtrack of the expansion happens when there is no activity
representation available for expanding a request-node. Generally the
backtrack process checks if there are any alternative activity representations

in the 'activity list' in the parent-request node for its goal pattern. If there

124

are, it re-expands the request network with another activity representation.
If there isn't any, it continues to backtrack until a Branch-request is
encountered. It then checks if the parent-request node of the Branch-request
is a D-request-node, if it is a D-request-node, this branch will simply be
discarded from the network, otherwise the parent-request node of the

Branch-request can not be satisfied.

6.3.3 Conflicts Resolution

The expansion process ends when every request-node that follows the Start
Node is in phantom status, but this is not the end of the problem solving,
serious conflicts may still exist. For example the expansion for (store p6 pt3 3
A) request will end with a request network that is shown in Figure 6.14, but
conflicts are still existing in the network, (move p3 A) and (move p4 A)
nodes are conflicting to each other since only one pt2 type product can be
moved into space s3. In this section, the process of resolving the conflicts is

introduced.

6.3.3.1 When and Why to Conflict

Before getting into the details of the algorithm, in this section the condition
of the conflicts is studied. A form is consciously designed for the
management of an organization. It functions as a window or a filter for
office workers to observe and to control the activities inside the
organization. That is, what data to perceive and how to perceive it are
usually defined when the type of an form is designed. Every time of
perception or manipulation of a special portion of data may require that

some data had been perceived or some manipulations had been carried out.

125

In another words, every activity may require assistant activities. According
to the design, an assistant activity will not override the effects of its parent
activities since they take charge of different portions of data inside the
forms. However, the activities which are not to assist each other may try to
fill an attribute with different values. If an attribute is single valued, this

would cause confusion for data perception and disorder for the data

manipulations.
Alll
Al1l
. \ A1
A12 .
A2
—ps . Pe
S AO E
initial form A3l AT
base system / A3
A32
A322
Figure 6.15.

This type of conflict can easily be sensed if the system keeps a record of
which activity adds a value to which attribute. From Chapter 4, we know
that every attribute belongs to an instance of an abstraction. Therefore, IFS
uses the following structure to record the effects of every activity, it is called

Form Effect Token (FET).

<FET>
{

126

instance-id:
attribute:
attibute-type:
value:
activity:
node-id:

)
The "attribute-type’ slot specifies whether the attribute is multiple valued or
single valued. A conflict happens if two activities try to give different values

to one attribute which is single valued.
6.3.3.2 Where to Conflict

After expansion, the request network is a directed graph. Every arrow in
the network directs from the Start Node to the End Node, indicating the
actual order of the activities. A diagram of a request network is shown as
Figure 6.15. Since every activity in the network follows the
organizational activity assumption, every activity at the tail of the arrow
supports the activity at the head of the arrow, therefore an activity at the
tail of the flow will not conflict with the activities at the head of the flow.
For example, A21 will not conflict with A2 and A0Q, and A322 will not
conflict with A32, A3 and AO. However, sons and the posteriors of one
request-node may conflict with each other. For example, A113 may

conflict with A112, A111, and with A12, A31, and etc.

If a conflict is existing between two sons of a J-request-node, this conflict
can not be resolved, the J-request-node can not be satisfied. For example,
if A111 is conflicting with A112 or A113, since they belong to a J-request-
node, both of them has to be true at the same time, therefore the conflict
can not resolved. Usually to resolve a conflict between two activities, one

of the activities has to be abandoned, in other words, only one of them

127

can be satisfied. For example if A321 is conflicting with A322, then one of
them has to be abandoned. For every réquest-node in the request
network, as long as there is a path which is composed of the request-
nodes of its assistant activities from the Start Node to it, and the conflicts
are resolved, the goal pattern of this node can be achieved. If after

resolution, there is no such a path, this node can not be satisfied.

Therefore, if all the conflicts of an expanded request network can be

resolved, the left network can be executed to achieve the initial goal.
6.3.3.3 Conflicts Resolution and Goal Re-Commitment

In a request network, though every activity will not conflict with its
assistant activities, there is still a large number of activities which may
conflict with each other. Once a conflict is identified through FET (Form
Effects Token), it needs to be resolved. Some conflicts can not be
resolved, therefore they will cause re-commitment of the goal pattern. If
a conflict can be resolved, one of the node of the conflict will be

abandoned.
6.3.3.3.1 Relations for Conflict Resolution

To develop the conflict resolving process, the concept of node
dependency is developed first. A request-node R1 is dependent on
another request-node R2 if and only if the failure of R2 will cause the the
failure of R1. In this case, we also say R1 is a dependant of R2. In a request
network, inside one branch the request-node at the head always depends

on the request-node at the tail. For example, in Figure 6.16(a) node B is

128

dependent on node A, and node C is dependent on both node A and
node B. Obviously in one branch of a request network, the dependent
relation is transitive. B is dependent on A, C is dependent on B, C is also
dependent on A. Therefore, the branch-request node is always dependent

on the other nodes of the same branch.

A—» B ———p C
()

A—PB-PC

(b)

Figure 6.16

If the parent-request node of a branch-request node is a J-request-node, all
the nodes that are in the same branch of the J-request-node will be
dependent on the nodes which are in the same branch as the branch-
request node. For example in Figure 6.16(b), node E is a J-request-node,
therefore node E and node G are dependent on node A, B, C and node F.
However, node H is a D-request-node, therefore node H is no longer

dependent on either node G or node I.

Another concept of request-node which is defined based on the

dependent relation is called farthest dependent node. As we can see from

129

Figure 6.16(b), node G is dependent on node A, but node H is no longer
dependent on it, therefore node G is the farthest dependant node of node
A in the network. So a request-node R1 is the farthest dependent node of
another request-node R2 if and only if the parent-request node of R1 is
no longer dependent on A. A farthest dependent node of a request-node
- could be the node itself, for example, the farthest dependent node of

node I in Figure 6.16(b) is node I itself.

A—p AL
A
All
C
" Bll /
B— g -
Figure 6.17

If a conflict is identified between node A and node B as it is shown in
Figure 6.17, the conflict resolving process first searches out the nearest
node which requests both of them, which is called the nearest common
receiver of A and B. In Figure 6.16(b), the nearest common receiver of
node A and node F is node E, while the nearest common receiver of

node A and node I is node H.
6.3.3.3.2 Condition for Conflict Resolution
In Figure 6.17, suppose that the nearest common receiver of node A and

node B is node C, in order to resolve the conflict between A and B, the

conflict resolving process checks whether node C is dependent on node

130

A and node B. If node C is dependent on both of them, the conflict
between A and B can not be resolved, therefore node C can not be
satisfied. If node C is dependent on one of them, then the node which C
is not dependent on will be abandoned to resolve the conflict. If node C
does not depend on either of them, then an interactive process will be

used to ask user to choose which one will be abandoned.

6.3.3.3.3 Process of Abandon

If a request-node in a request network is asked to be abandoned, the
processing is simple. The conflict resolving process searches out the
farthest dependent node of the abandoning node, and cut all the request-

nodes that are requested by it and itself away from the request network.

—> P
E
base system
A32
A322
Figure 6.18

For example, in Figure 6.15 if the system abandons node A111, it first

searches out the farthest dependent node of A111, which is A11 in the

example. It then cuts A11 and all the nodes that are requested by A1l

away. The left request-network is shown as Figure 6.18.

6.3.3.3.4 Re-Commitment

If a conflict can not be resolved, the nearest common receiver of the two
conflicting nodes can not be satisfied by this expansion, the goal pattern
of the request-node will be re-commited to the system. The re-
commitment is another expansion process which starts from the failed
goal pattern. For example, if in Figure 6.15 the node A31 and node A32
are conflicting to each other, since their nearest common receiver A3 is
dependent on both of them, the conflict can not be resolved by this
expansion. Therefore re-commitment of the A3 is required, as it is

shown in Figure 6. 19. Here A3 is not in Phantom status, therefore needs

to be expanded.
Al11
. P
AQ E
initial form
base system

Figure 6.19

132

Obviously the expansion may again involve backtracking. If the re-
commitment succeeds, the request network will be again handed in for

checking conflicts.

Once the re-commitment fails, the problem solving process for the initial

goal fails. This will be a failure end of the problem solving.
6.4 The Control Structure of the Formbase Activity Problem Solver

This section presents the control structure of the problem solving for the
activities upon the forms. The problem solver has been fully implemented

by using Common Lisp in Sun-3 workstation.

Different from the developed planner such as NONLIN [Tate, 1977] and
TWEAK [Chapman, 1987], since the interactions of the subgoals of the
formbase activities can not be evaluated during the network expansion, due
to the inability of the pattern matching of the form reference pattern
language (see section 3.8), the problem solving of the formbase activities can
not be controlled by a searching process such as Dependent Backtrack
Searching used by TWEAK. However, since the formbase activities obey the
Organizational Activity Assumption, the needed step during the problem
solving process can be determined by the node status of the nodes in the
request network, therefore an automata can be designed to control the

problem solving process. The state graph of the automata is shown as Figure

6.20.

The automata contains 8 states, the state information is stored in the

request-network which is defined as a global variable and can be accessed by

133

the procedures that are attached to the states. The status field of every node
in the request network may take 5 different values: they are "WEC" which
stands for Waiting for Expansion Checking, "WE" which stands for Waiting
for Expansion, "WB" which stands for Waiting for Backtracking , "AE"
which stands for After Expansion and "Phantom" which means the node

needs not expansion.

task
initialization 4) expansion

we

conflict unresolvable (re-commi’(ment)

searching
expansion conflicting- node

checking

conflicts
resolution

wec

nodes expanded found & conflict

»-

wec Goal L
oal Loop conflict resolved
wb no conflict exist
The goal .
of sgstem ‘unable to backtracking
fails backtrack agenda generation

wb

The State Graph of the Control Automata
Figure 6.20

Basically when a list of activities is searched out against a goal pattern, a
node is generated attaching on the list of activities. The node is then in the
status of WEC (waiting for expansion checking), the expansion-check process
will check if there is an activity whose holding-conditions are matched by

the formbase, if there is one, then the information of this activity will be

134

installed on the node and the status of the node is set as WE (waiting for
backtracking). If however there is no activity whose holding-conditions are
true (matched by the formbase), the status of the node will be set as WB
(waiting for backtracking), then the backtracking process will backtrack the

expansion process from this node.

When a task has been initialized, the request network contains nodes which
are in status of "WEC", such as the network shown in Figure 6.11. The
procedure of State 1 in Figure 6.20 then takes control of the problem solving
process based on the request network. The pseudo code of the procedure is

shown as the following:

Procedure goal-loop
begin
while (t)
begin
if (all the leaves of reg-net are in Phantom status)
then exit while
else begin
case (status of the nodes of the request network)
there is WEC node: expansion-checking;
there is WB node: backtracking;
there is WE node: expansion;
end {case}
end {else}
end {while}
search conflicting nodes;
end; {procedure}

Therefore if there are nodes which are in WEC status, the system will carry
on expansion checking; if there are nodes in WB status, the system will carry
on backtracking, and if there are node in WE status, the system will carry on
expansion process. Every process is itself an iteration, so unless there is no
node in the network that is in the status of the process corresponding to, the

process will not return. control to Goal-Loop process.

135

For example, the expansion-check process uses the following pseudo

algorithm.

Procedure expansion-check
begin
while (t)
begin
if (there is no WEC node)
then exit while
else expansion-checking;
end {while}
end; {procedure}

6.5. Summary

In this chapter, the specialties of the problem solving upon forms are

discussed. A problem solving process for the activities upon the forms is

developed. The problem solving process involves expansion,

backtracking, conflict resolution and re-commitment. It provides a

mechanism for office form user to search out possible assistant activities

and resolve the conflicts between these assistant activities.

136

Chapter 7.

Research Conclusions

This chapter reviews the research aim, and summarises the contributions
and the unsatisfactory aspects of the system. A suggestion regarding further

research is also presented.
7.1. Review of Research Aim

This research is based on earlier developments in Office Information
Systems such as OBE (Office-By-Example) [Zloof, M., 1982], SCOOP [Zisman,
1978], ICN [Ellis, C., 1979], OMEGA [Barber, 1983], POISE [Croft & Lefkowitz,
1984], POLYMER [Croft & Lefkowitz, 1988], OFM [Tsichritzis, D. C., 1982], SOS
[Bracchi, 1984] and OPAS [Lum, V. Y., 1982]. The aim is to improve the
flexibility and stability of an Information System inside which data as well as
the procedures that manipulate the data can not be pre-defined. The key
issue of the aim is to identify a mechanism so that dynamic task
requirements can be fulfilled, based on partially well defined procedural

knowledge and the situation.

The methodology that this research has taken is to apply the structure of an
Al planner to the system modeling, that is, the situation is modelled by a
database while the activities are modelled by activity schemas. In an open
system, knowledge of the activities can only be partially defined, the
approach of using activity schemas (task formalisms) to model the activities

therefore fits the semantic requirements. However, the information

137

processing activities are different from the activities of a robot, the
application of Al Planning systems to such a system is not at all

straightforward, much effort has been directed towards research in this area.

By taking this methodology the research has successfully identified a
mechanism so that the aim can be achieved. That is, when constructing a
system, the mechanical analysis of the system is no longer needed, instead
only partially well defined knowledge needs to be identified. Therefore
when changes take place in the environments, alterations are only needed

for the related portion of knowledge.

However, the representational methods of activities has not yet identified a
"neat” language, the activity representation is still trivial, programming
language related and very un-friendly to user. These features are
unfortunately results of the un-normalised nature of forms, therefore in
order to improve the usability of the system, further research is needed to

explore a graphical interface for the system.

7.2 Contributions of the Research

In order to construct the Intelligent Form System, the following problems
must be considered: 1) how to represent user's task requirements; 2) how to
represent the activities upon forms; 3) how to define and represent the
primitive activities upon forms; and 4) how to generate the activity

sequences for achieving the task requirement of a user.

Three major efforts have been made for developing the Intelligent Form

Systems. They are: a) the development of the Form Reference Pattern and

138

the Formbase System so that data of forms and prifnitive operations can be
represented; b) the identification of the formbase activity schefna to
represent the activities which are not primitives; c) the identification of the
Organizational Activity Assumption and the conflict resolving mechanism,

on which the problem solving mechanism for a task can be developed.

A prototype of the system has been constructed on Sun-3 Workstation,
which is able to demonstrate the process of task representation,

decomposition and fulfilment in a practical situation.
7.2.1 Formbase System

The Formbase System developed enables us to represent as well as to
manipulate the data in a more complex data structure ---- form. A form is a
data entity that is normalised. The Form Reference Pattern Language that
has developed in the formbase supports a complete set of operations which
include data definition as well as data manipulations. Compared to Codd's
relational calculus or SQL, and even the more recent DAPLEX and OSQL, a
system with such specifications has extended our ability to directly
manipulate the data inside forms. In contrast to the Object-Oriented
Database Systems, the Formbase System does not aim to be a generic data
modellingsystem, it does not support inheritance relations as well as
procedure attachment mechanisms, therefore the storage structure and

implementation can be largely simplified.

7.2.2 Formbase Activity Schema

139

The formbase activity schema can represent the activities that process two
types of representations, namely predicate representation and form
reference pattern representation. Thus the information processing activities
upon forms can be directly represented by the activity schemas. The
significance of this is that the activity representation can therefore be
situated in the forms. For open information system modeling, this ensures
the stability of conceptual modeling, since when activities are represented
purely in terms of predicates, the representations are not situated in the
information entities of the system. Instead, because predicates can be freely
chosen, the activity descriptions are superficial and random, the system

modellingtherefore runs a big risk of uncertainty.

It is the definition of formbase activity schema that opens the possibility of
applying the Al problem solving technologies to problem solving for

activities upon forms.

7.2.3 Organizational Activity Assumption

The Organizational Activity Assumption can be described in one sentence --
---- in a procedure network an activity will not override the effects of the
activity which searches it out. The activities will not override the effects of
those activities that search them out, the extension of the network (which is
actually a tree) therefore need only be considered at the leaf-level. With the
identification of the condition of conflicts resolution, the problem solving

process for the formbase activities can be constructed.

It is the Organizational Activity Assumption that distinguishes problem

solving for the information activities upon forms from the unstructured

140

activities which are performed automatically by the human. Since
organizational activities exist, this éssumption reveals a cognitive process
which is on-going but which has not been formally recognized. Based on the
Organizational Activity Assumption, problem solving for the formbase

activities is a process of conflict resolving for a network of requests.
7.3 Shortcomings and Further Research

The shortcomings and proposals for further research for the IFS are

addressed in this section.
7.3.1 Shortcomings of the System

The prototype of the system has successfully demonstrated the ability of the
system to generate an activity sequence for the required task based on
knowledge of the partially well defined activities. However, the form
reference pattern language and the activity representation methods still

have shortcomings that need to be improved.

7.3.1.1 Limitations of the Form Reference Pattern

The FRP (Form Reference Pattern) has shortcomings which can be
introduced by comparing it to the pattern of Prolog. For example, in Prolog
the following pattern represents variable Y is Jim's father and X is Y's father

and Jim's grandfather.

?- parent(Y, Jim), parent(X, Y)

141

In this pattern, not only is the variable Y in pattern parent(Y, Jim) the same
as the Y in parent(X, Y), but there is also a close link between Y and Jim, Y
and X so that they have to be satisfied together. This convention is not
however conserved in the Form Reference Pattern. For example, look at the

following reference pattern.

((?ts (instance-of TS)
(location A)
(space-tab (status Occupied))
(space-tab (space-size 3))
(space-tab (space-id ?sp-id)))
(?tsp (instance-of TSP)
(site A)
(warehouse-tab (space-id ?sp-id))))

This pattern searches the TS forms (Figure 6.6) which are in location 'A’,
and have occupied spaces and also have size 3 spaces. It also requires that the
TS forms have corresponding TSP forms (Figure 6.7) which have at least
one space 'id' the same as the space in the TS forms. But in the TS forms
that are searched out, whether all the size 3 spaces are Occupied or not is not
clear, since the constraints are not accumulatively required. For the same
reason the variable ?sp-id only represents the space identifiers that satisfy
the relational constraint of TS and TSP. It does not represent the spaces
whose size is 3 and are occupied. For example, based on Figure 6.6 and
Figure 6.7, the ?sp-id variable in above pattern will refers to 52, S3, 54 and

S5, only S4 and S5 have size 3.

This feature of the form reference pattern would cause problems for queries
in certain situations when variables are needed in sub-condition
specifications, and when constraints for the attribute exist in other tables.

When the constraints of the attribute are existing in the same form, the

142

query is still able to give out the right results. For example if we want to
query the space which is occupied and is of size 3, and also has connection

with the TSP form, we can have the following query:

(formbase-query
:forms
'((?ts (instance-of TS)
(location A)
(space-tab (status Occupied))
(space-tab (space-size 3))
(space-tab (space-id ?sp-id)))
(?tsp (instance-of TSP)
(site A)
(warehouse-tab (space-id ?sp-id))))
:type 'TS
:subarea-path '(space-tab)
:sub-cond '((status Occupied) (space-size 3) (space-id ?sp-id))
:attribute 'space-id)

In this query, the ?sp-id variable is used, but since ?sp-id does not
accumulate the results of (space-size 3) and (status Occupied), they are
specified again in the sub-condition specification. This query is able to give
what we want. However, if we want the product identifier in the space
which is of size 3, the direct result cannot be given out by the formbase-
query function. For example, if we use the following query, since ?sp-id
variable in this query actually has values 52, S3, 54, S5, we are not able to get

what we want.

(formbase-query
' :forms
'((?ts (instance-of TS)
(location A)
(space-tab (status Occupied))
(space-tab (space-size 3))
(space-tab (space-id ?sp-id)))
(?tsp (instance-of TSP)
(site A)
(warehouse-tab (space-id ?sp-id))))

143

:type 'TSP

:subarea-path '(warehouse-tab)
:sub-cond '((space-id ?sp-id))
:attribute 'product-id)

When we use this system, since the prototype is implemented in Lisp, we

can finish this query by the help of Lisp, shown as the following:

(let ((spid-list (formbase-query
:forms
"((?ts (instance-of TS)
(location A)
(space-tab (status Occupied))
(space-tab (space-size 3))
(space-tab (space-id ?sp-id)))
(?tsp (instance-of TSP)
(site A)
(warehouse-tab (space-id ?sp-id))))
:type 'TS
:subarea-path '(space-tab)
:sub-cond '((status Occupied) (space-size 3) (space-id ?sp-id))
:attribute ‘space-id)
(for (sp-id :in spid-list) :do
(formbase-query
:forms
'((?ts (instance-of TS)
(location A)
(space-tab (status Occupied))
(space-tab (space-size 3))
(space-tab (space-id ?sp-id)))
(?tsp (instance-of TSP)
(site A)
(warehouse-tab (space-id ?sp-id))))
:type "TSP
:subarea-path '(warehouse-tab)
:sub-cond '((space-id sp-id))
:attribute 'product-id)))

To improve this complexity, the pattern language has to be augmented with

a more complex structure, or with more calculus. For example, '@i' may be

introduced to mark the constraints that must be satisfied accumulatively.

Therefore, we may have:

144

((?ts (instance-of TS)
(location A)
@1 (space-tab (status Occupied))
@1 (space-tab (space-size 3))
@1 (space-tab (space-id ?sp-id)))
(?tsp (instance-of TSP)
(site A) '
(warehouse-tab (space-id ?sp-id))))

In this pattern, the constraints that are marked by '@1' mean that they

should be satisfied accumulatively.

7.3.1.2 The Complex Roles of Variables in Activity Representation

The above shortcomings of the Form Reference Pattern causes the
complexity in activity representation when using the five-key system to
query or manipulate the formbase. The roles of the variables in activity
representation is also very complex, therefore at the moment the activity
representation is lengthy and Lisp programming language related. For
example in the following, to represent the activity of moving a product in
warehouse management, there are many places where a quote (') or a
backquote (') and a comma (,) have to be used. This is because in
representing an activity, the roles which a variable will play in the

expression are very complex.

<moving-product>
{
goal-pattern: '(move $product-id $site)
supervised-cond: ;; check if there is free space which is bigger than
;; the space that the product requires.
'(some-bigger
:form1 '((?ts (instance-of TS)
(site $site)
(space-tab (status Free)))

145

:subarea-path1 (space-tab)
:attributel space-size ,
:form2 '((?tsp (instance-of TSP)
(site $site)
(ware-house-tab (product-id $product-id)
(product-type ?pro-type)))
(?tp (instance-of TP)
(product-tab (P-type ?pro-type))))
:type2 'TP
:subarea-path2 '(product-tab)
:attribute2 'space-required)
:assistant-activities ,
*(let ((sp-size (formbase-query
:forms '((?tp (instance-of TP)
(product-tab (P-type ?pro-type)))
(?tsp (instance-of TSP)
(ware-house-tab
(product-id $product-id)
(product-type ?pro-type))))
:type 'TP
:subarea-path '(product-tab)
:attribute 'space-required)))
(sub-goals 'find-space ,sp-size ,$site)))
:effects
'(let* ((old-sp (formbase-query ;; space the product stored
:forms '((?tsp (instance-of TSP)
(site $site)
(ware-house-tab
(product-id $product-id))))
:subarea-path '(ware--house-tab)
:attribute 'space-id))
(req-sp (formbase-query ;; the space-size the product required
:form '((?tsp (instance-of TSP)
: (site $site)
(ware-house-tab
(product-id $product-id)
(product-type ?pro-type)))
(?tp (instance-of TP)
(product-tab (P-type ?pro-type))))
:type 'TP
:subarea-path '(product-tab)
:attribute 'space-required)
(new-sp (one-of ;; space the product will move to
(formbase-query
forms “((?ts (instance-of TS)
(site $site)
(space-tab (status Free)
(space-size ,rep-sp))))

146

:subarea-path '(space-tab)
:attribute 'space-id)))

7.3.2 Further Research

Despite the above described shortcomings, the conceptual model of the IFS
has demonstrated a full cycle of user-centred information processing. The
complexity of data that the activities can access and the nature of the
activities are all more advanced than the systems that have been developed
so far. The usability of the system then largely depends on whether there is a
graphical interface so that the complexity of using the five-key system, and

- representing the activities upon the formbase can be reduced.

147

Appendix 1.

Examples of the Formbase Manipulations

This appendix lists a demonstration of the formbase manipulations. The
system haé been implemented by using Common Lisp in Sun-3
Workstation. The manipulations of this demonstration are made upon the
RVL (Figure 3.1) and the ARVL (Figure 3.2) forms. In current system the

function "list-form-instances" lists all the values of a set of form instances.

For example,

(list-form-instances
forms '((?rvl] (instance-of rvl)))

itype 'rvl)
will list all the values of the RVL form instances in the current formbase.
When "list-form-instances" function lists the values of a form instance, the
subarea-path of the schema inside which the values are stored is listed first.
For example, if there are three RVL form instances, shown as Figure Al.1l,
Figure A1.2 and Figure A1.3, stored in the formbase, the above query will

give the following results.

> (list-form-instances
' :forms '((?rvl (instance-of rvl)))

:type 'rvl)

--------------- form instance: instan181

/RVL
NAME: HOWARD TITLE: MR. SCHOOL: CMS COST-CENTRE: BBX

/RVL/MANAGER-SIGNATURE
DATE: 8/4/92 MANAGER-SIGNATURE: SUSAN
/RVL/LECTURE-SIGNATURE

148

DATE: 6/4/92 LECTURER-SIGNATURE: HOWARD
/RVL/TIME-TAB
WORKING-DATE: 4/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADE1: NIL-
/RVL/TIME-TAB
WORKING-DATE: 26/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADET1: NIL
/RVL/TIME-TAB
WORKING-DATE: 15/3/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADE3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB
WORKING-DATE: 4/3/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADET1: NIL
/RVL/TIME-TAB
WORKING-DATE: 19/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADE3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB
WORKING-DATE: 18/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB
WORKING-DATE: 12/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADE3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB
WORKING-DATE: 11/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADET: NIL
--------------- form instance: inst181
/RVL
NAME: CHUCK TITLE: MR. SCHOOL: CMS COST-CENTRE: BBX
/RVL/LECTURE-SIGNATURE
DATE: 6/4/92 LECTURER-SIGNATURE: HOWARD
/RVL/MANAGER-SIGNATURE
DATE: 8/4/92 MANAGER-SIGNATURE: SUSAN
/RVL/TIME-TAB
WORKING-DATE: 19/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

149

GRADES3: 1.5 GRADE2: NIL GRADE1: NIL

/RVL/TIME-TAB

WORKING-DATE: 15/3/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADE1: NIL

/RVL/TIME-TAB

WORKING-DATE: 26/4/92 WORKING DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADET1: NIL

/RVL/TIME-TAB

WORKING-DATE: 12/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADET1: NIL

/RVL/TIME-TAB

WORKING-DATE: 18/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADE1: NIL

/RVL/TIME-TAB

WORKING-DATE: 4/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

WORKING-DATE: 11/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

WORKING-DATE: 4/3/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADET: NIL

--------------- form instance: instan229

/RVL

NAME: TONY TITLE: MR. SCHOOL: CMS COST—CENTRE CCX
/RVL/MANAGER-SIGNATURE

DATE: NIL MANAGER-SIGNATURE: NIL
/RVL/LECTURE-SIGNATURE

DATE: 10/7/92 LECTURER-SIGNATURE: TONY

/RVL/TIME-TAB

WORKING-DATE: 25/5/92 WORKING-DAY: MONDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 3 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

150

WORKING-DATE: 15/5/92 WORKING-DAY: THURSDAY SUBJECT:
BATABASE

/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 2 GRADE2: NIL GRADET: NIL

NIL
>

Claim for Payment ---- Regular Visiting Lecturer
Name: Howard Liu Title: Mr. Cost-Center: BBX: School: CMS

working-day | working-date| subject working-hours
gradel | gredeZ |grede3
Wednesday | 43192 Orecle 15
Thursday 1513192 C 1.5
Wednesday| 1114192 Orecle 1.5
Thursday 414192 C 1.5
Thursday 2614192 C 1.5
Thursday 1214192 C 1.5
Wednesday| 18/4/92 Orecle 1.5
Thursday | 1914192 | C 1.5
signature: Howard signature. Susan
visiting lecturer manager of school
date: 6/4!92 date: 8/4/92
Figure Al.1

In this list, "instan181" corresponds to Figure A1.1, "inst181" corresponds to
Figure A1.2 and "instan229" corresponds to Figure Al.3. Basically, the "list-
form-instances" function searches through the type tree (Chapter 3) of the

form instances, gives out the "subarea-path” of the schemas, and lists their

values.

151

Claim for Payment ---- Regular Visiting Lecturer

Name: Chuck Tite: Mr. ‘Cost-Center:BBX: Sthoal: CM S

warking-day [working-date| subject working-hours
gradel | gradeZ | gmded

Wednesday | 4302 Orecle 1.5
Thursiey 1523192 Orecle . 1.5
Wedresday| 114192 Orecle 1.5
‘Thursday 41492 Cc 1.5
Thursday 261192 C 1.5
Thusday | 1214192 C .5
Wedresday| 18M!92 Onrcle 1.5
Thusday | 194192 | C 1.5

signatre: Chuck signature: Busm

visiting lecturer manager of school

date: 614192 dat: 8792

Figure Al.2

We also can list all the ARVL form instances in the formbase by using the
following function.
> (list-form-instances

:-forms '((?arv! (instance-of arvl)))
:type 'arvl)

152

Claim for Payment ---- Regular Visiting Lecturer

Neame: Tony Tite: Mr. Cost-Center: CCX School: CMS
working-day | working-date| subject working-hours
gradel | gradeZ |grede3
Monday 2515192 C 3
Thursday 1515192 Orecle 2
signature: Tony signature:
visiting lecturer manager of school
date: 10/7192 date:
Figure A1.3

--------------- form instance: instan200

/ARVL
NAME: HOWARD TITLE: MR. COST-CENTRE: BBX CURRENT-

OCCUPATION: RESEARCH-ASSISTANT SCHOOL: CMS
/ARVL/TEACHING-COURSE

COURSE-CODE: POLYCERT SUBJECT: C NUM-OF-WEEK: 32
HOURS/PERW: 1.5 DAY: THURSDAY

/ARVL/TEACHING-COURSE
COURSE-CODE: BSC-IT/PT SUBJECT: LISP NUM-OF-WEEK: 11

HOURS/PERW: 1 DAY: THUESDAY

/ARVL/TEACHING-COURSE
COURSE-CODE: POLYCERT SUBJECT: ORACLE NUM-OF-WEEK: 25

HOURS/PERW: 1.5 DAY: WEDNESDAY
--------------- form instance: inst200

153

NAME: CHUCK TITLE: MR. COST-CENTRE: BBX CURRENT-

OCCUPATION: RESEARCH-ASSISTANT SCHOOL: CMS

/ARVL/TEACHING-COURSE
COURSE-CODE: BSC-IT/PT SUBJECT: LISP NUM-OF-WEEK: 11
HOURS/PERW: 1 DAY: THUESDAY
/ARVL/TEACHING-COURSE

COURSE-CODE: POLYCERT SUBJECT: ORACLE NUM-OF-WEEK: 25
HOURS/PERW: 1.5 DAY: WEDNESDAY
/ARVL/TEACHING-COURSE COURSE-CODE: POLYCERT SUBJECT: C
NUM-OF-WEEK: 32 HOURS/PERW: 1.5 DAY: THURSDAY

NIL

>

Appointment of Regular Visiting Lecturer

Neame: Howard Liu Title: Mrx. Cost-Center: BBX

Current Occupation: Regearcher ~ School: CMS
Working-day | Hoursiweek | Number-of-weeks | Subject Course-code
Tuesday 1 11 LISP Bsc-ITIPT
Wednesday 1.5 25 Orecle Polycert
Thursday 15 32 C Polycert

Signature: Susan

Director!Mansger of School

Date: 23/8/91

Figure Al.4

154

In this list, "instan200" corresponds to Figure A1.4, "inst200" corresponds to

Figure A1.5.

With these form instances in the formbase, shown as Figure Al.1, A1.2,
A13, A14 and A1.5, examples of manipulations of the formbase system are
demonstrated in the following sections. Queries to the formbase are
demonstrated first, then is the predicatés of the formbase, then is the

formbase operations.

Appointment of Regular Visiting Lecturer
Name: Chuck Tite: Mr. Cost-Center: BBX

Current Occupation: Regeaxcher School: CMS

Working-day [Hours!week | Number-of-weeks [Subject Course-code

Tuesday 1 11 LISP Bsc-ITIPT
Wednesday 1.5 25 Orecle Polycent
Thursday 1.5 32 C Polycert

Signature: Susan
Director/Mansger of School

Date: 23/8/91

Figure A1.5

1. Examples of Formbase Queries

155

>(formbase-query
:forms '((?rvl (instance-of RVL)

(school ?sch)

(time-tab (subject ?subject))

(name 7name))

(?arvl (instance-of ARVL)

(name ?name)
(school ?sch)
(teaching-course (subject ?subject)))))

Form RVL has following instances that satisfy the query: (instan181 inst181)
Form ARVL has following instances that satisfy the query: (instan200 inst200)

NIL
>

>(formbase-query
:forms '((?rvl (instance-of RVL)
(school ?sch)
(time-tab (subject ?subject))
(name ?name))
(?arvl (instance-of ARVL)
(name ?name)

(school ?sch)

(teaching-course (subject ?subject))))

:type 'arvl)

(ARVL (linstan200! 1inst2001))

>(formbase-query
:forms '((?rvl (instance-of RVL)
(school ?sch)
(time-tab (subject ?subject))
(name ?name))
(?arvl (instance-of ARL))
(name ?name)
(school ?sch)
(teaching-course (subject ?subject))))
:type 'rvl
:subarea-path (make-path :path-link 'time-tab))

(TIME-TAB (linst184 | linst188| linst186! linst1921 linst190] linst198 |

linst196 | linst194! linstan188! linstan190! linstan1921 linst an194|
linstan184! linstan2361 linstan198! linstan1861))

156

>(formbase-query
:forms '((?rvl (instance-of RVL)
(school ?sch)
(time-tab (subject ?subject))
(name ?name))
(?arvl (instance-of ARVL)
(name ?name)
(school ?sch)
(teaching-course (subject ?subject))))
:type 'rvl
:subarea-path (make-path :path-link 'time-tab)
:attribute 'subject)

(CORACLE)

>(formbase-query
:forms '((?rvl (instance-of RVL)
(school ?sch)
(time-tab (subject ?subject))
(name ?name))
(?arvl (instance-of ARVL)
(school ?sch)
(name ?name)
(teaching-course (subject ?subject))))
;type 'rvl
:subarea-path (make-path :path-link 'time-tab
:selection '((working-date 15/3/92)))
:attribute 'subject)

(CORACLE)

>(formbase-query
:forms '((?rvl (instance-of RVL)
(school ?sch)
(time-tab (subject ?subject))
(name ?name))
(?arv] (instance-of ARVL)
(school ?sch)
(name ?name)
(teaching-course (subject ?subject))))
:type 'rvl
:subarea-path (make-path :path-link 'time-tab
:selection '((subject ?subject)))
:attribute 'subject)

(ORACLEC)

157

>(formbase-query
:forms '((?rvl (instance-of RVL)
(school ?sch)
(time-tab (subject ?subject))
(name ?name))
(?arvl (instance-of ARVL)
(school ?sch)
(name ?name)
(teaching-course (subject ?subject))))
:type vl
:subarea-path (make-path :path-link 'time-tab
:selection '((working-date 15/3/92))
:sub-path (make-path
:path-link 'working-hours))
:attribute 'grade3)

(1.5)

2. Examples of Formbase Predicates

>(exists
:forms '((?rvl (instance-of RVL)
(school ?sch)
(time-tab (subject ?subject))
(name ?name))
(?arvl (instance-of ARVL)
(name ?name)
(school ?sch)
(teaching-course (subject ?subject)))))
T
>(exists
:forms '((?rvl (instance-of RVL)
(school ?sch) :
(time-tab (subject ?subject))
(name ?name))
(?arvl (instance-of ARVL)
(name ?name)
(school ?sch)
(teaching-course (subject ?subject))))
:type 'rv] :subarea-path (make-path :path-link 'time-tab))
T
>(exists
forms '((?rvl (instance-of RVL)
(school ?sch)

158

(time-tab (subject ?subject))
(name ?name))
(?arv] (instance-of ARVL)
(name ?name)
(school ?sch)
(teaching-course (subject ?subject))))
:type 'rvl
:subarea-path (make-path :path-link 'time-tab)
:attribute 'subject)
T
>(exists
:forms '((?rvl (instance-of RVL)
(school ?sch)
(time-tab (subject ?subject))
(name ?name))
(?arvl (instance-of ARVL)
(school ?sch)
(name ?name)
(teaching-course (subject ?subject))))
:type 'rvl
:subarea-path (make-path :path-link 'time-tab
:selection '((working-day Wednesday)))
:attribute 'subject)
T

3. Examples of Formbase Operations

>(list-form-instances

forms '((?rvl (instance-of rvl)

(name Howard)))

:type 'rvl)
--------------- form instance: instan181
/RVL
NAME: HOWARD TITLE: MR. SCHOOL: CMS COST-CENTRE: BBX
/RVL/MANAGER-SIGNATURE
DATE: 8/4/92 MANAGER-SIGNATURE: SUSAN
/RVL/LECTURE-SIGNATURE
DATE: 6/4/92 LECTURER-SIGNATURE: HOWARD
/RVL/TIME-TAB
WORKING-DATE: 4/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADE3: 1.5 GRADE2: NIL GRADE1: NIL
/RVL/TIME-TAB
WORKING-DATE: 26/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

159

GRADES3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

WORKING-DATE: 15/3/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADET1: NIL

/RVL/TIME-TAB

WORKING-DATE: 4/3/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADE1: NIL

/RVL/TIME-TAB

WORKING-DATE: 19/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADE1: NIL

/RVL/TIME-TAB

WORKING-DATE: 18/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADET1: NIL

/RVL/TIME-TAB

WORKING-DATE: 12/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADE1: NIL

/RVL/TIME-TAB

WORKING-DATE: 11/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADET1: NIL

NIL

>(Form-Op
:forms '((?rv] (instance-of rvl)

(name Howard)))

:type 'rvl
:Op-type 'modify-value
:attribute 'title
:value 'Dr.)

>(list-form-instances

:forms '((?rv] (instance-of rvl)

(name Howard)))

:type 'rvl)
--------------- form instance: instan181
/RVL :
TITLE: DR. NAME: HOWARD SCHOOL: CMS COST-CENTRE: BBX
/RVL/MANAGER-SIGNATURE

160

DATE: 8/4/92 MANAGER-SIGNATURE: SUSAN
/RVL/LECTURE-SIGNATURE

DATE: 6/4/92 LECTURER-SIGNATURE: HOWARD

/RVL/TIME-TAB

WORKING-DATE: 4/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

WORKING-DATE: 26/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

WORKING-DATE: 15/3/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

WORKING-DATE: 4/3/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

WORKING-DATE: 19/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

WORKING-DATE: 18/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

WORKING-DATE: 12/4/92 WORKING-DAY: THURSDAY SUBJECT C
/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADET1: NIL

/RVL/TIME-TAB

WORKING-DATE: 11/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADET: NIL

NIL
>(Form-Op
:forms '((?rv] (instance-of rvl)
(name Howard)))
:type 'rvl
:Op-type 'modify-value
:subarea-path (make-path :path-link 'time-tab

161

:selection '((working-date 15/3/92)))

:attribute 'subject

:value 'pascal)
>(list-form-instances

forms '((?rvl (instance-of rvl)

(name Howard)))

itype 'rvi)
--------------- form instance: instan181
/RVL
TITLE: DR. NAME: HOWARD SCHOOL: CMS COST-CENTRE: BBX
/RVL/MANAGER-SIGNATURE
DATE: 8/4/92 MANAGER-SIGNATURE: SUSAN
/RVL/LECTURE-SIGNATURE
DATE: 6/4/92 LECTURER-SIGNATURE: HOWARD
/RVL/TIME-TAB
WORKING-DATE: 4/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADET1: NIL
/RVL/TIME-TAB
WORKING-DATE: 26/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADE3: 1.5 GRADE2: NIL GRADET1: NIL
/RVL/TIME-TAB
SUBJECT: PASCAL WORKING-DATE: 15/3/92 WORKING-DAY:
THURSDAY .
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADET1: NIL
/RVL/TIME-TAB
WORKING-DATE: 4/3/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB
WORKING-DATE: 19/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB
WORKING-DATE: 18/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB
WORKING-DATE: 12/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADE3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB

162

WORKING-DATE: 11/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADET: NIL

NIL
>(Form-Op
:forms '((?rv] (instance-of rvl)
(name Howard)
(lecture-signature (date 6/4/92))))
:type 'rvl
:subarea-path (make-path
:path-link 'time-tab
:selection '((working-date 15/3/92))
:sub-path (make-path
:path-link ‘working-hours))
:Op-type 'modify-value
:attribute 'grade3
:value 3)
>(list-form-instances
:forms '((?rvl (instance-of rvl)
(name Howard)))
:type 'rvl)
--------------- form instance: instan181
/RVL
TITLE: DR. NAME: HOWARD SCHOOL: CMS COST-CENTRE: BBX
/RVL/MANAGER-SIGNATURE
DATE: 8/4/92 MANAGER-SIGNATURE: SUSAN
/RVL/LECTURE-SIGNATURE DATE: 6/4/92 LECTURER-SIGNATURE:
HOWARD
/RVL/TIME-TAB
WORKING-DATE: 4/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB
WORKING-DATE: 26/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADE1: NIL
/RVL/TIME-TAB
SUBJECT: PASCAL WORKING-DATE: 15/3/92 WORKING-DAY:
THURSDAY
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 3 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB
WORKING-DATE: 4/3/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

163

/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

WORKING-DATE: 19/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

WORKING-DATE: 18/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

WORKING-DATE: 12/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

WORKING-DATE: 11/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADET: NIL

NIL
>(Form-Op
forms '((?rvl] (instance-of rvl)
(name Howard)
(lecture-signature (date 6/4/92))))
:type 'rvl
:subarea-path (make-path
:path-link 'time-tab
:selection '((working-date 15/3/92))
:sub-path (make-path
, :path-link 'working-hours))
:Op-type 'delete-value
:attribute 'grade3)

>(list-form-instances

:forms '((?rvl (instance-of rvl)

(name Howard)))

:type 'rvl)
--------------- form instance: instan181
/RVL '
TITLE: DR. NAME: HOWARD SCHOOL: CMS COST-CENTRE: BBX
/RVL/MANAGER-SIGNATURE
DATE: 8/4/92 MANAGER-SIGNATURE: SUSAN
/RVL/LECTURE-SIGNATURE
DATE: 6/4/92 LECTURER-SIGNATURE: HOWARD

164

/RVL/TIME-TAB

WORKING-DATE: 4/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

WORKING-DATE: 26/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

SUBJECT: PASCAL WORKING-DATE: 15/3/92 WORKING-DAY:
THURSDAY |
/RVL/TIME-TAB/WORKING-HOURS

GRADE3: NIL GRADE2: NIL GRADEI: NIL

/RVL/TIME-TAB

WORKING-DATE: 4/3/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

WORKING-DATE: 19/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADEI: NIL

/RVL/TIME-TAB

WORKING-DATE: 18/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADE1: NIL

/RVL/TIME-TAB

WORKING-DATE: 12/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADE1: NIL

/RVL/TIME-TAB |

WORKING-DATE: 11/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE |
/RVL/TIME-TAB/WORKING-HOURS

GRADE3: 1.5 GRADE2: NIL GRADET: NIL

NIL
>(Form-Op
:forms '((?rvl (instance-of rvl)
(name Howard)
(lecture-signature (date 6/4/92))))
:type 'rvl
:subarea-path (make-path
:path-link 'time-tab
:selection '((working-date 15/3/92)))

165

:Op-type 'delete-subform)

>(list-form-instances

forms '((?rvl (instance-of rvl)

(name Howard)))

:type 'rvl)
--------------- form instance: instan181
/RVL
TITLE: DR. NAME: HOWARD SCHOOL: CMS COST-CENTRE: BBX
/RVL/MANAGER-SIGNATURE
DATE: 8/4/92 MANAGER-SIGNATURE: SUSAN
/RVL/LECTURE-SIGNATURE
DATE: 6/4/92 LECTURER-SIGNATURE: HOWARD
/RVL/TIME-TAB WORKING-DATE: 4/4/92 WORKING-DAY: THURSDAY
SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADE3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB
WORKING-DATE: 26/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB
WORKING-DATE: 4/3/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADET1: NIL
/RVL/TIME-TAB
WORKING-DATE: 19/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADE3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB
WORKING-DATE: 18/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB
WORKING-DATE: 12/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB
WORKING-DATE: 11/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE
/RVL/TIME-TAB/WORKING-HOURS
GRADE3: 1.5 GRADE2: NIL GRADET: NIL

NIL

166

>(add-subform
:forms '((?rvl (instance-of rvl)
(name howard)

(lecture-signature (date 6/4/92))))

:type 'rvl

:subarea-path (make-path :path-link 'time-tab)

:value-list

'((working-date 15/3/92)
(working-day Wednesday)
(subject Pascal)))

>(list-form-instances

forms '((?rv] (instance-of rvl)

(name Howard)))

:type 'rvl) ‘
--------------- form instance: instan181
/RVL
TITLE: DR. NAME: HOWARD SCHOOL: CMS COST-CENTRE: BBX
/RVL/MANAGER-SIGNATURE
DATE: 8/4/92 MANAGER-SIGNATURE: SUSAN
/RVL/LECTURE-SIGNATURE
DATE: 6/4/92 LECTURER-SIGNATURE: HOWARD
/RVL/TIME-TAB
WORKING-DATE: 4/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: 1.5 GRADE2: NIL GRADE1: NIL
/RVL/TIME-TAB
WORKING-DATE: 15/3/92 WORKING-DAY: WEDNESDAY SUBJECT:
PASCAL
/RVL/TIME-TAB/WORKING-HOURS
GRADES3: NIL GRADE2: NIL GRADE1: NIL
/RVL/TIME-TAB
WORKING-DATE: 26/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADE3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB
WORKING-DATE: 4/3/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE
/RVL/TIME-TAB/WORKING-HOURS
GRADE3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB
WORKING-DATE: 19/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS
GRADE3: 1.5 GRADE2: NIL GRADET: NIL
/RVL/TIME-TAB

167

WORKING-DATE: 18/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADET1: NIL

/RVL/TIME-TAB

WORKING-DATE: 12/4/92 WORKING-DAY: THURSDAY SUBJECT: C
/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADET: NIL

/RVL/TIME-TAB

WORKING-DATE: 11/4/92 WORKING-DAY: WEDNESDAY SUBJECT:
ORACLE

/RVL/TIME-TAB/WORKING-HOURS

GRADES3: 1.5 GRADE2: NIL GRADE1: NIL

NIL
>

168

Appendix 2.

An Application of the Intelligent Form System:
a Case of a Warehouse Management

A demonstration of task planning and agenda execution is introduced in
this appendix. The case is about a warehouse management system. As
introduced in section 5.4, the warehouse management system uses four
types of forms. They are: table of space (TS, Figure 5.5), table of stored
products (TSP, Figure 5.7), table of products (TP, Figure 5.6) and the goods
transfer request form (GTRF, Figure 5.8). The demonstration is a formbase
activity which transfers one product from one site to another site. Based on
the activity knowledge and the situation inside the formbase, an agenda for
fulfilling the transferring can be automatically generated by the Intelligent
Form System. By executing the agenda, the effects of transferring the

products will be recorded in the formbase.

The initial situation of the warehouse is described by Figure A2.1 (a). The
goal is to transfer product p6 from site B to site A. After the transferring, the

situation is shown as Figure A2.1 (b).

By using IFS system, we first list the initial situation as the following:

> (list-form-instances
:forms '((?ts (instance-of TS)
(location a)))
:type 'ts)

169

pl

p3 P4
SITE A
P5
pé
SITEB
(2) inidal situation

pl| p4
p3 pé

SITE A

PS
SITEB

(b) goal situation
Figure A2.1

170

--------------- form instance: instan243

/TS

LOCATION: A MANAGER: ROSS DATE: 1992
/TS/SPACE-TAB

SPACE-SIZE: 3 STATUS: OCCUPIED SPACE-ID: 54
/TS/SPACE-TAB

SPACE-SIZE: 1 STATUS: OCCUPIED SPACE-ID: 52
/TS/SPACE-TAB

SPACE-SIZE: 1 STATUS: FREE SPACE-ID: S1
/TS/SPACE-TAB

SPACE-SIZE: 3 STATUS: OCCUPIED SPACE-ID: S5
/TS/SPACE-TAB

STATUS: FREE SPACE-SIZE: 2 SPACE-ID: S3

NIL
> (list-form-instances
:forms '((?tsp (instance-of TSP)
(site a)))

:type 'tsp)

--------------- form instance: instan255

/TSP

SITE: A MANAGER: ROSS TOTAL-SPACELEFT: NIL /TSP/WAREHOUSE-
TAB)

SPACE-ID: S5 PRODUCT-TYPE: PT2 PRODUCT-ID: P4 /TSP/WAREHOUSE-
TAB

SPACE-ID: S4 PRODUCT-TYPE: PT2 PRODUCT-ID: P3 /TSP/WAREHOUSE-
TAB

SPACE-ID: S2 PRODUCT-TYPE: PT1 PRODUCT-ID: P1

NIL
> (list-form-instances
:forms '((?tsp (instance-of TSP)
(site b)))

:type 'tsp)

--------------- form instance: instan260

/TSP SITE: B MANAGER: BOB TOTAL-SPACELEFT: NIL
/TSP/WAREHOUSE-TAB

SPACE-ID: S5 PRODUCT-TYPE: PT3 PRODUCT-ID: P7 /TSP/WAREHOUSE-
TAB

SPACE-ID: S1 PRODUCT-TYPE: PT1 PRODUCT-ID: P5 /TSP/WAREHOUSE-
TAB

SPACE-ID: $4 PRODUCT-TYPE: PT3 PRODUCT-ID: P6

171

Table of Space (TS) Table of Space (TS)

Site: A Manager: Ross Date: Site: B Manager: Bob Date:
Space-id | Status | Space-size Space-id | Status | Space-size

sl Free 1 si Occupied 1

s2 Occupied 1 s2 Free 1

33 Free 2 3 Free 2

s4 Occupied 3 34 Occupied 3

s5 Occupied 3 35 Occupied 3

(@)

Table of Stored Products (TSP)
Site:A Manager: Ross Total-space-left:

Product-id |Product-type | Space-id | Entry-date
pl pt 52
p3 pe 34
p4 pC 35

Table of Stored Products (TSP)
Site:3 Manager:Bob Total-space-left:

Product-id |Product-type | Space-id |Entry-date
PS5 pil s1
pb pq3 s4
p7 PG 85
(b)
Figure A2.2

172

NIL
> (list-form-instances
:forms '((?ts (instance-of TS)
(location b)))

itype 'ts)

--------------- form instance: instan249

/TS

LOCATION: B MANAGER: BOB DATE: 1992
/TS/SPACE-TAB

SPACE-SIZE: 1 STATUS: FREE SPACE-ID: 52
/TS/SPACE-TAB

SPACE-SIZE: 2 STATUS: FREE SPACE-ID: S3
/TS/SPACE-TAB

SPACE-SIZE: 3 STATUS: OCCUPIED SPACE-ID: 54
/TS/SPACE-TAB

SPACE-SIZE: 1 STATUS: OCCUPIED SPACE-ID: S1
/TS/SPACE-TAB

SPACE-SIZE: 3 STATUS: OCCUPIED SPACE-ID: S5

NIL
> (list-form-instances
:forms '((?tp (instance-of Tp)))

:type 'tp)

--------------- form instance: instan239

/TP |
WAREHOUSE-NAME: MECHANICAL-HOUSE
/TP/PRODUCT-TAB

SPACE-REQUIRED: 3 PRODUCT-TYPE: PT3
/TP/PRODUCT-TAB

SPACE-REQUIRED: 1 PRODUCT-TYPE: PT1

/TP /PRODUCT-TAB

SPACE-REQUIRED: 2 PRODUCT-TYPE: PT2

NIL

The initial situation which has been listed in the above corresponds to the
the forms in Figure A2.2. The task of transferring product p6 from site B to
site A can be represented by a predicate (transfer pé b a). What the user needs

to do is to call IFS by type "(gofs)" at lisp prompt as the following, then the

173

system asks user to input task requirement. If the system is able to fulfil the

task, an agenda will be generated.

> (gofs)
#0000t Goal Oriented Form System 0o
please input your task:(transfer p6 b a)

The activity agenda successfully generated

NIL

> (list-agenda)

score: 1 :goal (MOVE P4 A)

score: 2 :goal (FIND-SPACE 3 A)
score: 3 :goal (STORE P6 PT3 3 A)
score: 4 :goal (TRANSFER P6 B A)
NIL

>

After the agenda has been generated, it can be executed. After the execution,
the contents of the forms should be changed so that information of the

situation after the performance of the activity is correctly recorded.
> (run-agenda)

#+x+ Eyecution will delete the agenda,
do wish to save before this execution, y/n ? n

> (list-form-instances
:forms '((?ts (instance-of TS)
(location a)))

:type 'ts)

--------------- form instance: instan243

/TS

LOCATION: A MANAGER: ROSS DATE: 1992
/TS/SPACE-TAB

STATUS: OCCUPIED SPACE-SIZE: 3 SPACE-ID: S4
/TS/SPACE-TAB

174

Table of Space (TS)

Table of Space (TS)

Site: A Manager: Ross Date: Site: B Manager: Bob Date:
Space-id | Status | Space-size Space-id | Status | Space-size

sl Free 1 s1 Occupied 1

s2 Occupied 1 32 Free 1

53 Occupied 2 33 Free 2

s4 Occupied 3 34 Free 3

35 Occupied 3 s5 Occupied 3

(a)

Table of Stored Products (TSP)
Site:A Manager: Ross Total-space-left:

Product-id |Product-type [Space-id |Entry-date
pl ptl 52

p4 27 33

p3 pe 34

pé pq s5

Table of Stored Products (TSP)

Site:p Manager:Bob Total-space-left:
Product-id |Product-type | Spece-id | Entry-date
PS ptl s1
p7 P8 s5
(b)
Figure A2.3

175

SPACE-SIZE: 1 STATUS: OCCUPIED SPACE-ID: S2
/TS/SPACE-TAB

SPACE-SIZE: 1 STATUS: FREE SPACE-ID: S1
/TS/SPACE-TAB

SPACE-SIZE: 3 STATUS: OCCUPIED SPACE-ID: S5
/TS/SPACE-TAB

STATUS: OCCUPIED SPACE-SIZE: 2 SPACE-ID: S3

NIL

> (list-form-instances
:forms '((?tsp (instance-of TSP)
(site a)))

:type 'tsp)

--------------- form instance: instan255

/TSP

SITE: A MANAGER: ROSS TOTAL-SPACELEFT: NIL /TSP/WAREHOUSE-
TAB

SPACE-ID: S4 PRODUCT-TYPE: PT2 PRODUCT-ID: P3 /TSP/WAREHOUSE-
TAB

SPACE-ID: S5 PRODUCT-TYPE: PT3 PRODUCT-ID: P6 /TSP/WAREHOUSE-
TAB

SPACE-ID: S3 PRODUCT-TYPE: PT2 PRODUCT-ID: P4 /TSP/WAREHOUSE-
TAB

SPACE-ID: S2 PRODUCT-TYPE: PT1 PRODUCT-ID: P1

NIL
> (list-form-instances
:forms '((?tsp (instance-of TSP)
(site b)))

:type 'tsp)
--------------- form instance: instan260
/TSP
SITE: B MANAGER: BOB TOTAL-SPACELEFT: NIL /TSP/WAREHOUSE-
TAB

SPACE-ID: S5 PRODUCT-TYPE: PT3 PRODUCT-ID: P7 /TSP/WAREHOUSE-
TAB
SPACE-ID: S1 PRODUCT-TYPE: PT1 PRODUCT-ID: P5

NIL
> (list-form-instances
:forms '((?ts (instance-of TS)
(location b)))
:type 'ts)

176

--------------- form instance: instan249

/TS

LOCATION: B MANAGER: BOB DATE: 1992
/TS/SPACE-TAB

SPACE-SIZE: 1 STATUS: FREE SPACE-ID: S2
/TS/SPACE-TAB

SPACE-SIZE: 2 STATUS: FREE SPACE-ID: S3
/TS/SPACE-TAB

STATUS: FREE SPACE-SIZE: 3 SPACE-ID: 54
/TS/SPACE-TAB

SPACE-SIZE: 1 STATUS: OCCUPIED SPACE-ID: 51
/TS/SPACE-TAB

SPACE-SIZE: 3 STATUS: OCCUPIED SPACE-ID: S5

NIL
>

The above vlaue list of the forms which are shown as Figure A2.3

corresponds to the situation after the transferring , as shown in Figure A2.1

(b).

177

Appendix 3.

Activity Representation for the Warehouse
Management

The followi’ng is a list of the activity representation for the warehouse

example demonstrated in appendix 2.

(make-activity
:goal-pattern '(transfer $product-id $departure $destination)
:holding-cond
‘(exists
:forms '((?gtrf (instance-of GTRF)
(product-id $product-id)
(present-site $departure)
(destination-site $destination))))
:assistant-activity
'(let ((pro-type
(car (formbase-query
:forms '((?gtrf (instance-of GTRF)
(product-id $product-id)
(present-site $departure)
(destination-site $destination)))
:type 'gtrf
:attribute "product-type)))
(spa-size
(car (formbase-query
:forms '((?gtrf (instance-of GTRF)
(product-id $product-id)
(present-site $departure)
(destination-site $destination)))
;type 'gtrf
:attribute 'space-required))))
(sub-goals 'store '$product-id pro-type spa-size '$destination))
-effects
‘(let ((re-sp
(car (formbase-query ;; find the removed space id
:forms '((?tsp (instance-of TSP)
(site $departure)
(warehouse-tab (product-id $product-id))))
:type 'tsp
:subarea-path (make-path :path-link 'warehouse-tab
:selection '((product-id $product-id)))
:attribute 'space-id))))

178

(Form-Op ;; remove transfer request
:forms '((?gtrf (instance-of GTRF)
(product-id $product-id)
(present-site $departure)
(destination-site $destination)))
:Op-type 'delete-subform)
(Form-Op ;; remove product info at departure site
:forms '((?tsp (instance-of TSP)
(site $departure)
(warehouse-tab (product-id $product-id))))
:type 'tsp
:subarea-path (make-path :path-link 'warehouse-tab
:selection '((product-id $product-id)))
:Op-type 'delete-subform)
(Form-Op ;; set the removed space free
:forms '((?ts (instance-of TS)
(location $departure)))
:type "TS
:subarea-path (make-path :path-link 'space-tab
:selection “((space-id ,re-sp)))
:attribute 'Status
:Op-type 'modify-value
:value 'Free))

(make-activity
:goal-pattern '(store $product-id $product-type $space-required $site) :non-
assistant-cond
'(some-bigger
:forms1 '((%ts (instance-of TS)
(location $site)
(space-tab (status Free))))
:typel 'ts
:subarea-path1 (make-path :path-link 'space-tab
:selection '((status Free)))
:attribute1 'space-size
value2 '$space-required)
:assistant-activity
'(sub-goals 'find-space '$space-required '$site)
-effects
'(let ((sp-id (car (formbase-query
:forms
'((Mts (instance-of TS)
(location $site)
(space-tab (status Free))
(space-tab (space-size $space-required))))
:type 'ts
:subarea-path (make-path
:path-link 'space-tab
:selection
'((status Free)
(space-size $space-required)))
:attribute 'space-id))))

179

(Form-Op
:forms “((?ts (instance-of TS)
(location $site)
(space-tab (space-id ,sp-id))))
:type 'ts
:subarea-path (make-path :path-link 'space-tab
:selection “((space-id ,sp-id)))
:Op-type 'modify-value
:attribute 'status
:value 'Occupied)
(add-subform
:forms '((?tsp (instance-of TSP)

(site $site)))
:type 'tsp
:subarea-path (make-path :path-link 'warehouse-tab)
:value-list

*((product-id $product-id)
(product-type $product-type)
(space-id ,sp-id)

(date nil))))

(make-activity
:goal-pattern '(find-space $space-required $site)
:holding-cond
'(let ((sp-size (formbase-query
:forms '((?ts (instance-of ts)
(location $site)))
‘type 'ts
:subarea-path (make-path :path-link 'space-tab)
:attribute ‘space-size)))
(some-bigger
:valuel sp-size
:forms2 '((?ts (instance-of TS)
(location $site)
(space-tab (status Occupied))
(space-tab (space-size $space-required))
(space-tab (space-id ?space-id)))
(?tsp (instance-of TSP)
(site $site)
(warehouse-tab (space-id ?space-id))
(warehouse-tab (product-type ?product-type)))
(Mp (instance-of TP)
(PRODUCT-TAB (product-type ?product-type))))
:type2 'TP
:subarea-path2 (make-path :path-link PRODUCT-TAB)
:attribute2 'space-required))
:non-assistant-cond
'(some-bigger
:forms1 '((?ts (instance-of TS)
(location $site)
(space-tab (status Free))))
:typel 'ts

180

:subarea-path1 (make-path :path-link 'space-tab
:selection '((status Free)))
;attribute1 'space-size
:value2 '$space-required)
:assistant-activity
'(for (pro-id :in (formbase-query
:forms
'((?tsp (instance-of TSP)
(site $site)
(warehouse-tab (space-id ?space-id)))
(?ts (instance-of TS)
(location $site)
(space-tab (space-size $space-required))
(space-tab (space-id ?space-id))))
:type "TSP
:subarea-path (make-path :path-link 'warehouse-tab
:selection '((space-id ?space-id)))
:attribute 'product-id))
:do (if (some-bigger
:forms1
*((ts (instance-of TS)
(location $site)
(space-tab (space-id ?space-id)))
(?tsp (instance-of TSP)
(site $site)
(warehouse-tab (space-id ?space-id))
(warehouse-tab (product-id ,pro-id))))
:typel 'TS
:subarea-path1 (make-path :path-link 'space-tab)
:attribute] 'space-size
:forms2 ((?tsp (instance-of TSP)
(site $site)
(warehouse-tab (product-id ,pro-id))
(warehouse-tab (product-type ?pro-type)))
(?tp (instance-of TP)
(PRODUCT-TAB (product-type ?pro-type))))
:type2 'tp
:subarea-path2 (make-path :path-link 'PRODUCT-TAB)
:attribute2 'space-required)
(sub-goals 'move pro-id '$site))))

(make-activity
:goal-pattern '(move $product-id $site)
-non-assistant-cond ;; check if there is free space which is bigger than
' ;; the space that the product requires.
'(some-bigger
:forms1 '((?ts (instance-of TS)
(location $site)
(space-tab (status Free))))
;typel 'ts
:subarea-path1 (make-path :path-link 'space-tab)
:attribute1 'space-size
:forms2 '((?tsp (instance-of TSP)

181

(site $site)
(warehouse-tab (product-id $product-id))
(warehouse-tab (product-type ?pro-type)))
(?tp (instance-of TP)
(PRODUCT-TAB (product-type ?pro-type))))
:type2 'TP
:subarea-path2 (make-path :path-link PRODUCT-TAB)
:attribute2 'space-required)
:assistant-activity
'(let ((sp-size
(car (formbase-query
:forms '((?tp (instance-of TP)
(PRODUCT-TAB (product-type ?pro-type)))
(?tsp (instance-of TSP)
(warehouse-tab (product-id $product-id))
(warehouse-tab (product-type ?pro-type))))
:type 'TP
:subarea-path (make-path :path-link 'PRODUCT-TAB
:selection '((product-type 7pro-type)))
:attribute 'space-required))))
(sub-goals 'find-space sp-size '$site))
:effects :
'(let* ((old-sp
(car (formbase-query ;; space the product stored
:forms
'((?tsp (instance-of TSP)
- (site $site)))
‘type 'tsp
:subarea-path (make-path :path-link 'warehouse-tab
:selection '((product-id $product-id)))
:attribute 'space-id))) _

(req-sp
(car (formbase-query ;; the space-size the product required
:forms
'((?tsp (instance-of TSP)
(site $site)
(warehouse-tab (product-id $product-id))
(warehouse-tab (product-type ?pro-type)))
(?tp (instance-of TP)

(PRODUCT-TAB (product-type ?pro-type))))

:type 'TP

:subarea-path (make-path :path-link 'PRODUCT-TAB
:selection '((product-type ?pro-type)))
:attribute 'space-required)))
(new-sp (car ;; space the product will move to
(formbase-query
:forms “((?ts (instance-of TS)
(location $site)
(space-tab (status Free))
(space-tab (space-size ,req-sp))))
:type 'ts
:subarea-path (make-path :path-link 'space-tab
:selection “((space-size ,req-sp)))
:attribute 'space-id)))

182

(pro-type
(car (formbase-query ;; find out the type of the product
:forms '((?tsp (instance-of TSP)
(site $site)
(warehouse-tab (product-id $product-id))))
:type 'tsp '
:subarea-path (make-path :path-link 'warehouse-tab
:selection '((product-id $product-id)))
:attribute 'product-type))))
(Form-Op ;; free the old space
:forms “((?ts (instance-of TS)
(location $site)
(space-tab (space-id ,0ld-sp))))
;type 'ts
:subarea-path (make-path
:path-link 'space-tab
:selection " ((space-id ,0ld-sp)))
:attribute 'status
:Op-type 'modify-value
:value 'Free)
(Form-Op ;; record the occupation of the new space
:forms “((?ts (instance-of TS)
(location $site)
(space-tab (space-id ,new-sp))))
:type 'ts :subarea-path (make-path
:path-link 'space-tab
:selection “((space-id ,new-sp)))
:attribute 'status
:Op-type 'modify-value
:value 'Occupied)
(Form-Op ;; delete the old space information
:forms “((?tsp (instance-of TSP)
(site $site)))
‘type 'tsp
:Op-type 'delete-subform
:subarea-path (make-path
:path-link 'warehouse-tab
:selection “((space-id ,old-sp))))
(add-subform ;; record the new occupation information
:forms “((?tsp (instance-of TSP)

(site $site)))
:type 'tsp
:subarea-path (make-path :path-link 'warehouse-tab)
:value-list

*((product-id $product-id)
(product-type ,pro-type)
(space-id ,new-sp)
(date nil))))

183

References

Allen, J. F., and Koomen, J. A., "Planning using a temporal world
model", in Proceedings of IJCAI-1983, pp. 741-747, 1983.

Allen, J. F. "Towards a General Theory of Action and Time", Artificial
Intelligence 23 (1984) 123-154.

Allen, J., Hendler, J. and Tate, A. (eds) "Reading in Planning", Morgan
Kaufmann Publishers Inc., 1990.

Banerjee, J., Chou, H. T., Garza, J. F., Kim, W., Woelk, D. and Ballou, N.,
Kim, H. J. "Data Model Issues for Object-Oriented Applications”, ACM
Transaction on Office Information Systems, Vol. 5, No. 1, January 1987,
pp- 3-36.

Barber, G. "Supporting Organizational Problem Solving with a Work
Station" ACM Transaction on OIS, Vol. 1, No. 1, January 1983.

Bond, A. and Gasser, L. "Reading in Distributed Artificial Intelligence”,
Morgan Kaufmann Publishers Inc., 1988.

Bracchi, G. and Pernic, B. "SOS: A Conceptual Model for Office
Information Systems,” Data Base, vol. 15, Winter 1984.

Bracchi, G. and Pernic, B."TRENDS IN OFFICE MODELLING," in
Proceedings of the IFIP TC 8Working Conference, ed. R.A.-HIRSCHHEIM,
pp. 77-97, ELSEVIER SCIENCE PUBLISERS B.V, 1985.

Bruce, B. and Newman, D., "Interacting Plans", Cognitive Science, 2 (3),
:195-233, 1978.

Cammarata, S., McArthur, D., and Steeb, R. "Strategies of Cooperation in
Distributed Problem Solving" Proceeding of IJCAI, 1983, pp. 767-770.

Charniak, E. and McDermott, D. "Introduction to Artificial Intelligence"
Addison-Wesley 1985

Chapman, D. "Planning for Conjunctive Goals" Artificial Intelligence 32
(1987) 333-377

Cattell, R.G.G., "Object Data Management: Object-Oriented and Extended
Relational Database Systems", Addison-Wesley Publishing Company,
1991.

Checkland, P. "System Thinking, System Practice”, John Wiley & Sons,
Chichester.

Christodoulakis, M., Theodoridou, Ho, F., Papa, M., and Pathria, A,
"Multimedia Document Presentation, Information Extraction, and
Document Formation in MINOS: A Model and a System", ACM
Tranction on Office Information Systems, Vol. 4, No. 4, October 1986.

Cohen, P. R., and Perrault, R. C. "Elements of a Plan-based Theory of
Speech Acts", Cognitive Science, 3(3): 177-212, 1979.

Corkill, D.D., Gallagher, D.Q., and Johnson, P.M. "Achieving Flexibility,
Efficiency, and Ganerality in Blackbroad Architectures”, Proceeding of
AAAI-1987, page 18-23.

Croft, B. and Lefkowitz, L. "Task Support In an Office System" ACM
Transictions on Information System, Vol. 2, No. 3, July 1984, pp. 197-212.

Croft, B. and Lefkowitz, L. "A Goal-Based Representation of Office
Work" IFIP Conference on Office Knowledge, 1988.

Currie, K., and Tate, A., "O-Plan - Control in the Open Planning
Architecture”, in Allen, J., Hendler, J. and Tate, A. (eds) "Reading in
Planning", Morgan Kaufmann Publishers Inc., 1990.

Date, C.J., "An Introduction to Database Systems", Addison-Wesley
Publishing company, Inc. 1990.

Dean, T. L., and McDermott, D. V., "Temporal Data Base Management”,
Artificial Intelligence 32 (1987), page 1-55, 1987.

Dean, T., Firby, R. J. and Miller, D. "Hierarchical Planning Invc;lving
Deadlines, Travel Times, and Resouces"”, Computational Inteligence Vol.
4, No. 4, pp. 381-398. [FORBIN]

Doyle, J. "A Truth Maintenance System" Artificial Intelligence 12 (1979)
231-272

Dreizen, H. M. and Chang, S. K. "Imprecise Schema: A Rational for
Relations with Embedded Subreltions"”, ACM Transaction on Database
Systems, Vol. 14, No. 4, December 1989, pp. 447-479.

Durfee, E. H., Lesser, V. R. and Corkill D. D. "Coherent Communication
among Communicating Problem Solver" IEEE Transactions on
Computers, C-36: 1275-1291, 1987.

Durfee, E. H., Lesser, V. R. and Corkill D. D. "Using Partial Global Plans
to Coordinte distributed Prolem Solvers" in Proceeding of 1JCAI-1987,
page 875-883, 1987.

Ensor,].R., and Gabbe, J.D. "Transactional Blackborads", International
Journal for Artificial Intelligence in Engineering, 1(2): 80-84, 1986.

Ellis, C.G. "Information Control Nets: A Mathematical Model of
Office Automation Flow," Proceedings of the 1979 Conference on
Simulation, Measurement and Modellingof Computer System, 1979.

Feldman, J.A., and Sproull, R. F. "Decision Theory and Artificial
Intelligence II: The Hungry Monkey", Cognitive Science 1, pp. 159-192,
1977.

Fikes, R.D. "REF-ARF: A System for Solving Problems stated as
Procedures”, Artificial Intelligence, 1(1970), 27-120.

Fikes, R.D., Nilsson, N.J. "STRIPS: a new approach to the application of
theorem proving to problem solving", Artificial Intelligence, 2 (1971),
189-208.

Fikes, R.D., Hart, P.E. and Nilsson, N.J. "Learning and Executing
Generalized Robot Plans”, Artificial Intelligence, 3 (1972).

Fishman, D. H., Beech, D., Cate, H. P., Chow, E. C., Connors, T., Davis, J.
W., Derret, N., Hoch, C. G., Kent, W., Lyngbaek, P., Mahbod, B., Neimat,
M. A. and Shan, M. C. "Iris: An Object-Oriented Database Management
System", ACM Transaction on Office Information Systems, Vol. 5, No. 1,
January 1987, pp. 48-69.

Forgy, C. "A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem", Artificial Intelligence, 19 (1982), 17-37.

Fox, M. S. "An Organizational View of Distributed Systems", 1EEE
Transaction on System, Man and Cybernetics, SMC-11: 70-80, 1981.

Fox, M. S. and Smith, S. F. "ISIS - a Knowledge-base System for Factory
Scheduling”, Expert System, Vol. 1, No. 1, July 1984.

Gasser, L. "Social conception of knowledge and action: DAI foundations
and open systems semantics”, 47 (1991) 107-138.

Georgeff, M. P. "Communication and Interaction in Multi-agent
Planning" Proceeding of AAAI-1983, page 125-129, 1983.

Georgeff, M. P. "Theory of Action for MultiAgents Planning" Proceeding
of AAAI-1984, page 121-125, 1984.

Georgeff, M. P. "The Representation of Events in MultiAgents Domain"
Proceeding of AAAI-1986, page 70-75, 1986.

Georgeff, M. P. "Planning”, Annual Reviews Computer Science, 2: 359-
400, 1987.

Green, C., "Application of Theorem Proving to Problem Solving",
Proceedings of IJCAI-1969, page 741-747, 1969. "

Gibbs, S.J. "Conceptual Modelling and Office Information System”, 1985

Greif, 1. (ed.) "Computer Supported Cooperative Work: a book of
readings”, Morgan Kaufmann Publishers, Inc. 1988.

Hammer, M. and Howe, G.W. "A Very High Level Programming
Language for Data Processing Applications,” CACM, vol. 20, no. 11, 1977.

Hayes, P. J., "A Representation for Robot Plans”, in Proceedings of IJCAI-
1975, page 181-188, 1975.

Hayes, P.J. "The Logic of Frames" in "Frame Conceptions and Text
Understanding" 41-61, edited by D. Metzing, Berlin: Walter de Gruyter
and Co., 1979.

Hayes-Roth, B., and Hayes-Roth, F., "A Cognitive Model of Planning”,
Cognitive Science, 3(4) pp. 275-310, 1979.

Hayes-Roth, B. "A Blackbroad Architecture for Control", Artificial
Intelligence, 26 (1985), page 251-321, 1985.

Hendler, J. A., "Integrating Marker-Passing and Problem Solving", in
Allen, J., Hendler, J. and Tate, A. (eds) "Reading in Planning", Morgan
Kaufmann Publishers Inc., 1990.

Hewitt, C. "Office Are Open Systems", ACM Transctions on OIS, Vol. 4,
No. 3, July 1986, pp 271-287.

Hewitt, C. "Open Information Systems Semantics for Distributed
Artificial Intelligence”, Artificial Intelligence, 47 (1991) 79-106.

Hirschheim, R.A. "Understanding the Office: A Social-Analytic
Perspective,” ACM Transaction on Officce Information Systms, vol.
4, no. 4, pp. 331-344, October 1986.

Hornick, M. F. and Zdonik, S. B. "A Shared, Segmented Memory System
for an Object-Oriented Database", ACM Transaction on Office
Information Systems, Vol. 5, No. 1, January 1987, pp. 70-95.

de. Kleer,] "An Assumption-based TMS" Artificial Intelligence 24 (1984)
205-280

de. Kleer,] "Extending the ATMS" Artificial Intelligence 28 (1986)
163-196

de. Kleer,] "Problem Solving with the AMTS" 28 (1986) 197-224

Konsynski, B., Bracker, L. and Bracker, W. "A Model for Specification
of Office Communications," IEEE Trans. Commun. COM-30,, vol. 1, pp.
27-36., Jan. 1982. .

Korf, R. E., "Planning as Search: A Quantitative Approach”, Artificial
Intelligence, 33 (1987), pp. 65-88.

Kirsh, D. "Foundations of Al: the big issues", Artificial Intelligence, 47
(1991) 3-30.

Leao, L.V., and Talukdar, S.N. "COPS: A System for Constructing
Multiple Blackbroads" International Journal for Artificial Intelligence in
Engineering, 1(2): 70-79, 1986.

Leavitt, H., "Appiled Organizational Change in Industry", In: Handbook
of Organizations, ed by J. March, Rand McNally, Chicago.

Lenat, D. B. "BEINGs: Knowledge as Interacting Expert" Proceeding of
[JCAI, 1975, pp. 126-133.

Lesser, V. R, and Corkill, D. D. "Functionally Acurate, Cooperative
Distributed Systems", IEEE Transaction on System, Man and Cybernetics,
SMC-11 (1): 81-96, Januray, 1981.

Lifschitz, V. "On the Semantics of STRIPS" reprinted in Allen, Hendle
and Austin (eds.) "Reading in Planning", Morgan Kaufman Publishers
Inc., pp.523-530, 1990.

Liu, H., Draffan, I. and Poole, F. "A Representation for Office Form
System", in Proceedings of 4th International Symposium On Artificial
Intelligence, Mexico, November, 1991.

Liu, H., Draffan, L. and Poole, F. "A Goal Oriented Office Form System”,
ACM SIGOIS Bulletin, Vol 12, Number 2,3, pp. 123-128, November, 1991.

Lochovsky, F.H. "Managing Office Tasks." Proc. IEEE Computer
Society Symposium on Office Automation, 27-9 April 1987, Gaithersburg
MD, 206-16.

Lum, V.Y., Choy, D.M. and Shu, N.C."OPAS: An Office Procedure
Automation System," IBM System], vol. 21, no. 3, p. 327, 1982.

Lockermann, P. C., Mayr, H. C., Weil, W. H,, and Wohllere, W. H. "Data
Abstractions for Data Systems” ACM Transaction on Database Systems,
Vol. 4, No. 1, March 1979, pp. 60-75.

Malone, T. W. "ModellingCooridnation in Organizations and Markets",
Management Science, 33 (10): 1317-1332, 1987.

Mazer, M.S. "Exploring the Use of Distributed Problem Solving in Office
Support Systems" Proc. IEEE Computer Society Symposium on Office
Automation, 27-9 April 1987, Gaithersburg MD, 217-25.

McDermott, D., "Planning and Acting", Cognitive Science, 2 (2), pp. 71-
109, 1978.

McDermott, D., "A Temporal Logic for Reasoning About Processes and
Plans", Cognitive Science 6, 1982, pp. 101-155.

Minsky, M. "A Framework for Representing Knowledge" in "Mind
Design", 95-128, edited by J. Haugeland, Cambrige, 1981

Mogenstern, L. "Knowledge Preconditins for Actions and Plans", in
Proceeding of IJCAI-1987, pages 867-874.

Moore, R. C., "A Formal Theory of Knowledge and Action", in Allen, J.,
Hendler, J. and Tate, A. (eds) "Reading in Planning", Morgan Kaufmann
Publishers Inc., 1990.

Mylopoulos, J., Bernstein, P. A. and Wong, H-K. T. "A language Facility
for Designing Database-Intensive Applications” ACM Transaction on
Database Systems, Vol. 5, No. 2, June 1980, pp. 185-207.

Navathe, S. B., and Fry, J. P. "Restructuring for large Databases: Three
Levels of Abstraction”, ACM Transaction on Database Systems, Vol. 1,
No. 2, june 1976, pp. 138-156.

Newell, A., and Simon, H.A., "GPS: A Program that Simulates Human
Thought", in Allen, Henderler and Tate (eds.), "Reading in Planning”,
pp. 59-66, Morgen Kaufmann Publishers, Inc. 1990.

Nils J. Nilsson. "Principles of Artificial Intelligence" Springer-Verlag
1982

Peterson, J. "Petri Nets", Computing Surveys, Vol. 9, No. 3, September
1977.

Rosenschein, J. S. "Synchronization of Multi-Agent Plans", in
Proceeding of AAAI-1982, pp. 115-119.

Rosenschein, J. S., Ginsburg, M., and Genesereth, M. R. "Cooperation
without Communication”, in Proceeding of AAAI-1986, pp. 51-57.

Rosenchein, J. S., "Plan Synthesis: A Logical Perspective", in Proceedings
of IJCAI-1981, pp. 33-337, 1981.

Rosenschein, J. S., Ginsburg, M., and Genesereth, M. R. "Deals Among
Rational Agents", in Proceeding of IJCAI-1985, page 91-99.

Roth, M. A, Korth, H. F. and Silberschatz, A. "Extended Algebra and
Calculus for Nested Relational Databases", ACM Transaction on
Database Systems, Vol. 13, No. 3, September 1988, pp. 389-471.

Sacerdoti, E.D., "Planning in a Hierarchy of Abstraction Spaces",
Artificial Intelligence, 5 (1974), 115-135, 1974.

Sacerdoti, E.D. 1975 "The Non-linear Nature of Plans" Proc. of IJCAI-75.
[NOAH] ,

Shoham, Y., and McDermott, D., "Problems in Formal Temporal
Reasoning", Artificial Intelligence, 36 (1988), page 49 - 61, 1988.

Shipman, D. W. "The Functional Data Model and the Data Language
DAPLEX", ACM Transaction on Database Systems, Vol. 6, No. 1, March
1981, pp. 140-173. :

Smith, J. M., and Smith, D.C.P. "Database abstractions: Aggregation”
Comm. ACM 20, 6 (June 1977), 405-413.

Smith, J. M., and Smith, D.C.P. "Database Abstractions: Aggregation and
generalization" ACM Transaction on Database Systems, Vol. 2, No. 2,
June 1977, 105-133.

Smith, R. G., and Davis, R. "Frameworks for Coo[eration in Distributed
Problem solving" IEEE Transaction on System, Man and Cybernetics,
SMC-11 (1): 61-70, 1981.

Steeb, R., Cammarata, S., Hayes-Roth, F. A., Thorndyke, P.W., and
Wesson, R. B. "Distributed for Air Fleet Control” in "Reading in
Distributed Artificial Intelligence" edited by Bond, A., and Gasser, L.,
Morgen Kaufmann Publishers, Inc., 1988.

Stefik, M. J. "Planning With Constraints" Artificial Intelligence 16 (1981)
111-140. [MOLGEN]

Stefik, M.J. "Planing and Meta-planning” Artificial Intelligence 16 (1981)
141-169 [MOLGEN]

Stonebraker, M., Anton, J. and Hanson, E. "Extending a Database System
with Procedures”, ACM Transaction on Database Systems, Vol. 12, No. 3,
September 1987, pp. 350-376.

Stuart, C. J. "An Implementation of Multi-Agent Plan Synchronizer", in
Proceeding of IJCAI-1985, page 1031-1033.

Suchman, L. A. "Plans and Situated Actions: the problem of human
machine communication”, Cambridge University Press, 1987.

Sussman, G.A. 1973 "The virtuous nature of bugs" , in Allen, J.,
Hendler, J. and Tate, A. (eds) "Reading in Planning”, Morgan Kaufmann
Publishers Inc., 1990.

Tate, A. 1976. "project Planning Using a Hierarchical Non-linear
Planner". Dept. of Artificial Intelligence, Report 25, Edinburgh Univ.
[NONLIN]

Tate. A 1977 "Generating Project Networks" Proc. of IJCAI-77 [NONLIN]

Tate. A 1984 "Goal Structure: Capturing the Intent of Plans" Proc. of
ECAI-84 Pisa, Italy, 9, 1984 [NONLIN]

Tenney, R. R., and Sandell Jr., Nil R., "Strategies for Distributed
Decisionmaking”, IEEE Transation on Systems, Man and Cybernetics,
SMC-11 (8): 527-538, 1981.

Tsichritzis, D. C. "Form Management,” CACM, vol. 25, July,1982.

Tsichritzis, D., Fiume, E., Gibbs, S. and Nierstrasz, O. "KNO: KNowledge
Acquisition, Dissemination, and Manipulation Objects”, ACM
Transaction on Office Informaiton Systems, Vol. 5, No. 1, January 1987,
pp- 96-112.

Vere, S.A. "Planning in Time: Windows and Durations for Activities
and Goals" IEEE Tranctions on Pattern Analysis and Machine
Intelligence. Vol. PAMI-5, NO. 3, (1981) pp. 246-267. [DEVISER]

Vere, S.A. "Splicing Plans to Achieve Misordered Goals" Proc. of IJCAI-
85. pp. 1061-1021. [DEVISER]

Waldinger, R., "Achieving Several Goals Simultaneously”, in Allen, J.,
Hendler, J. and Tate, A. (eds) "Reading in Planning", Morgan Kaufmann
Publishers Inc., 1990.

- Wilensky, R., "A Model for Planning in Complex Situations”, Cognition
and Brian Theory, Vol. 4, No. 4, Fall, 1981.

Wilkins, D.E. "Domain Independent Planning: Representation and Plan
Generation" Artificial Intelligence 22 (1984) [SIPE]

Wilkins, D.E. "Recovering from Execution Errors in SIPE"
Computiational Intelligence 1 (1985). pp. 33-45 [SIPE]

Wilkins, D.E. "Practical Planning: extending the classical Al planning
paradigm”, Morgen Kaufmann Publishers Inc., 1988.

Woo, C.C. and Lochovsky, F.H. "Supporting Distributed Office Problem
Solving in Organizations”, ACM Transactions on OIS, Vol. 4, No. 3, 1986.

Zisman, M. D. "Use if Production System for Modelling
Asynchronous,Concurrent Processes,” Patten directed Inference
Systems, Academic Press, 1978.

Zloof, M. M. "Office-By-Example: A Business Language that unifies Data
and Word Processing and Electronic Mail,” IBM Systems Jounal, vol. 21,
Jan,1982.

Office Information System Modeling and
Artificial Intelligent Problem Solving

Conference for Computer Applications in the Social Sciences and Business

European Research Press, Portsmouth, September, 1991.

| OFFICE SYSTEM MODELLING and PROBLEM SOLVING
Heyun Liu, Ian Draffan, Frank Poole

School of Computing and Management Sciences
Sheffield City Polytechnic
Hallamshire Business Park

100 Napier Street
Sheffield S11 8HD, U.K.
Email: Heyun@uk.ac.scp.cms

abstract

Modelling an office system is to identify a subsystem of the office
system which can be hardened and merged with the social community of
the office. In order to achieve this, it is necessary to study the
connection between the routine office work and the decision making
process, and the relation between the decision making process and the
social activities of the office system. This paper presents a perspective
which interprets an office system as a structure which is constructed by
two levels of problem solving process. Comparing to the information
processing perspective, this perspective is more open and dynamic;
comparing to the open system perspective, it is more complete and
close. A programming structure which supports this perspective is
proposed.

1. Introduction

The perspective for an office system should promote the development of office system
modelling. There are mainly two well-known perspectives for viewing an office system.
One is the information processing perspective which views an office system as nothing but
information processing [Price, 1979; Mokhoff, 1979]. The other is the open system
~ perspective which views an office system as an open system [Carl, Hewitt, 1986]. Both of
them have revealed certain natures of an office system. But the information processing
persective is routine and inflexible, and the open system perspective is unstructured and
loose.

1.1 Information Processing Perspective and its Failure

In the last decade, based on the persepctive that an office system is a well defined
information processing system, the Office Information System modelling has generated
many office models, such as SCOOP [Zisman, 1978], ICN [Ellis, C., 1979], FFM
[Tsichritzis, D.C., 1982], OPAS [Lum, V.Y., 1982], and SOS [Bracchi, G., 1984].
These models can only model very routine office work. For example, SCOOP system
[Zisman, 1978] is based on Petri Nets [Peterson, 1977]. ICN [Ellis, C., 1979] is based on
the Information Control Net which is a modification of Petri Net. Both of them suppose
that office work can be defined by a well structured network before the setting up of the
system. Although later, the rule production system is used to model office models, such as
SOS (Semantic Office System) [Bracchi, 1984], the demands for succinctly characterizing
office work before the creation of the system is still very strong.

Therefore, these models only can describe the very routine phenomena of office work. This
is impractical since very little office work can be rigidly defined in the office environment.
Just as Barber pointed out in his paper [Barber, 1983], "precisely because of its

succinctness an office model suffers from two defects: first, it glosses over minor details
that may be problematic or critical in practice; second, the reasons for the actions specified
by a procedural description must be inferred”. Therefore "even routine tasks in offices
encounter unexpected obstacles.” This is because in the information processing approach
"it is necessary to foresee the possible alternative courses of action when a procedural step
cannot be performed.” But "determining what the alternatives are is part of what office
work is; all alternatives cannot be determined in advance.” Thus this approach "is not a
very useful style of work description because it needs to be augmented by the procedure's
goal structure. When a procedure is augmented in this way, one can examine the
procedure's goal structure in order to generate alternative steps when a step cannot be
performed” [Barber, 1983].

1.2 Open System Perspective and its Limitations

The unsatisfied developments of the information processing view enforce the researches in
office automation to examine deeply the nature of the office system and its requirements.
The investigation has revealed that an office information system is an open system which
can be characterized by following features [Carl Hewitt, 1986]:

- Concurrency. To handle the simultaneous influx of information from many outside
sources, the components of an office system must process information concurrently.

- Asynchrony. An office system functions in asynchrony to process the unpredictable input
information. Besides, office systems may be impossible to be synchronized because of the
physical distribution of its components.

- Decentralized control. Because of communications asynchrony and unreliability, a
controlling agent could never have complete, uptodate information on the state of the office
system. Therefore control must be distributed throughout the system so that local decisions
can be made close to where they are needed.

- Inconsistent information. Information from outside and even the information from the
different parts of the same office system may turn out to be inconsistent. Therefore
decisions must be made by the components of an office system by considering whatever
evidence is currently available.

- Arm-length relationships. The internal operation, organization, and state of one
computational agent may be unknown and unavailable to another agent for reasons of
privacy or outage of communications. Information should be passed by explicit
communication between agents to conserve energy and maintain security. This ensures that
each component inside an office system can be kept simple since it only needs to keep track
of its own state and its interfaces to other agents.

The recognition of the above features of an office system, such as decentralized control,
inconsistent information, and arm-length relations, has made it impossible for people to
directly apply any theories and technologies developed for modelling any centrally
controlled system to an office system. New foundations have to be developed for the

~modelling of an open system, such as an office system. An effort has been made by the
scientists in the Artificial Intelligent circle of computer science. A new discipline called
Distributed Artificial Intelligence (DAI) which aims to find out a solution for distributed
problem solving in the multi-agents system [Alan H. Bond and Les Gasser, 1988] is
emerging. The fundamental problems of DAI have been raised by the initial researches
which are summarised by Gasser as follows [Gasser, 1991]:

- How 1o formulate, describe, decompose, and allocate problems and synthesize results
among a group of intelligent agents.

- How to enable agents to communicate and interact; what communication languages or
protocols to use, and what and when to communicate.

- How 1o ensure that agents act coherently in making decisions or taking action,
accommodating the non-local effects of local decisions and avoiding harmful interactions.

- How to enable individual agents to represent and reason about the actions, plans and
knowledge of other agents in order to coordinate with them; how to reason about the state
of their coordinated process.

- How 1o recognize and reconcile disparate viewpoints and conflicting intentions among a
collection of agents trying to coordinate their actions.

This list of problems actually represents another perspective of people viewing an open
system (or an office system). It is based on a rather social observation of an organization.It
has identified a set of problems which are fundamental for modelling an office system.
However, it has been too strongly influenced by the distributed facts of an office system,
so that it simply accepts the concurrent and asynchronous phenomena of an office system
without analyzing them in per se. Therefore, the problems in above list does not imply a
systematic approach for modelling office system. It is unstructured in terms of creating a
computerized office system. It has ignored the fact that office work inside an organization
is firstly inside a frame of an organizational problem solving process. It then secondly has
its features no matter the office work is decomposition of tasks, or communication between
agents, or reconciliation of disparate viewpoints.

Moreover, this perspective does not have a structure for analyzing the interactions between
the partially well defined office activities and decision making processes. It can not set up
connections between the decision making processes and the social community of the office
system.

If modelling an office system is to identify a subsystem inside the office environment
which can be hardened, and merged with the social community of the office system, it is
necessary to study the connection between the routine office work and the decision making
process, and the relation between decision making and the social activities. In the
following, we first present a new perspective for an office system in Section 2, we then
intrduce the technical base of this perspective ---- Al Planning system, in Section 3. In
Section 4, we discuss two applications of the AI planning system in office system
modelling. It is followed by a discussion of the interactions between human and computer
problem solving process. Finally, a two dimensional problem solving structure for
modelling office system is proposed in Section 6.

2. Problem Solving and Office System Mbdelling

An office is a very complex system. It can be viewed by many perspectives. Every
perspective represents an interpretation of what an office model should be in the office
environment. The information perspective interprets office model as a well defined activity
network inside which the former always initiates the successors. The rationale of this
viewpoint is due to the fact that in a well-defined sub-environment, once an office agent has
chosen a method to fulfil the work, the office activities do have fixed relations. But this
persective is criticized for not having a mechanism to reason which methods to choose.
Therefore, the goal/task oriented approach looks more realistic [Barber, 1984].

However, the goal/task oriented approach can easily lead to the open system perspective
since the context under which a goal is required is so complex and dynamic, and can not be
represented easily. The open system perspective does identify a list of problems which are
fundamental for modelling an office system. But it has no interpretation of the contexts
under which the goals of the problems are proposed. Therefore, it is loose and
unstructural. Needless to say, an organization does.provide a context for every problem,
the point is how it should be represented, since it may closely related to the solutions of
problems. '

There is another point which has not been addressed by the previous perspectives. That is
the relationship between the office model and the office environment. This is specially
important for the goal/task oriented approach, since the problems which concern how the
initial goal is generated, and where the human interfere should happen have to be clear. In

3

the previously developed modelling methodolgy, the concepts like goal, activity, problem
solving process of the office model which we are going to set up, and these concepts of an
office system itslef are not addressed separately. These concepts are discussed in a way
which seems an office model will simply simulate an existing office system.

The perpsective we are going to present is based on the information processing perspective
and the open system perspective, but it represents an interpretation of the working contexts
of the office work, and an mtcrprctauon of the interaction between the office worker and
the office model. The main assumptions and observations are:

Guide Line
Modelling an office system is to identify a subsystem of the office system which can be
hardened and merged with the social community of the office system.

Human Machine Interaction
The computerized system should be considered as an intelligent system which has its
own problem solving process, its own definition of goal/task, and activity. The
interaction between an office worker and the computerized system is actually the
interaction between the human problem solving process and the problem solving
process of the computerized system.

Two Levels of Problem Solving

The office work inside an organization is organized by two levels of problem solving
process. One is at the organizational level, the other is at the office agent level. The
existence of a problem solving process at the office agent level is obvious. The
existence of a problem solving process at the organizational level can be noticed
through many observations. For example, when the business is small, a simple
organization is enough to meet the requirements of the system functionality. But when
business is enlarged, more complex structures have to be introduced to ensure the
functionality and the efficiency of the organization. This expansion is a result of an
application of the organizational problem solving process to the new requirements. We
all aware the fact that a skilled manager would be able to solve his/her problems no
matter in what type of organizations he/she is. This means that an organizational
problem solving process for an organization should be able to be generalized. The
interactions, or the balance of the organizational problem solving process and the agent
problem solving process are very important for organization. Not only an organization
is constructed based on these problem solving processes, but also the interactions, and
communications of office agents inside office system are largely dependent on the
interactions of the two problem solving processes. The failure of an organization is
actually the failure of these problem solving processes in front of new requirements
because of the organizational culture at that time.

It is a generalization of this observation that a computerized office system should be
developed based on two levels of computer problem solving process. If an office model
is developed based on problem solving processes, its functionality, flexibility, and
applicability are all dependent on the ability of these problem solving processes.
Moreover, the problems listed by Gasser [Gasser, 1991] should be considered based
on these problems solving processes, and their relationships. It is these problem
solving processes and their relationships that link the problems of an organization
together. It should be a common base for the computer system to solve the
organizational problems without falling into the ocean of technical details.

The problem solving process no matter at which level for a computer organization should
not be a simple simulation of human organizational problem solving methodology. The
human organizational problem solving process is too much related to the life activities of a
human. For example, what is a proper size for people to work as a group? This is
obviously related to the nature of the work. But it also related to many life activities such as
holiday arrangements, possible sickness, even working time, etc. The size of a group will

4

again influence the task decomposition, communication, concurrence and etc. Therefore, it
is methodologically not right to simulate human organizational process.

3. The Problem Solving in AI Planning System

This section gives an introduction to the Al planning system. For more theoretical and
technical discussion, please refer to [Allen, J., Hendler, J. and Tate, A., 1990].

3.1 The General Planner Theory

An Al planning system is charged with generating a plan which is one possible solution to
a specific problem. The problem in the Al planning system is characterized by an initial
situation and a goal situation description. The initial situation description tells the planning
system the background of the problem in the world. The goal situation description tells the
planning system what the world description should be after the plan has been executed. The
plan generated will be composed out of activity schemas, which characterize activities and -
are provided to the planning system for each domain of applications. The activity schemas
describe activities, or actions, in terms of their preconditions, steps, side-effects and goal.
Each activity schema actually characterizes a class of possible events.

A plan is an organised collection of activities. A plan is said to be a solution to a given
problem if the plan is applicable in the problem's initial situation, and if after plan
execution, the goal is true. The plan is applicable if all the preconditions for the execution
of this first operator hold in the initial situation. Repeated analysis can determine whether or
not all the operators can be applied in the order specified by the plan. Repeated operator
applications produce intermediate situation descriptions. If the goal is true at the end of this
projection then the plan is a solution to the specified problem. So, the inputs to a typical Al
planning system are a set of activity schemas and a problem which is characterized by an
initial situation description and goal. The output from the planner is a plan which under
projection satisfies the goal.

3.2 Plan Representation

To represent a planner, a network is used. The nodes of the network are activity
descriptions. The arches of this graph are simple links which implies the order of the
activities. The planning process is an expansion process of this network. This expansion is
complex. Basically, the network is expanded by searching the activities whose goal can
satisfy the goal or the subgoals the planner wants to achieve. This network has a start node
and a finish node, the order from start node to the finish node represents the actual order of
the activities.

3.3 Activity Schema

Using activity schema to describe the actual activities is very important in planning theory.
It is based on the observation that all the activities no matter what level they are in an
activity hierarchy can be described by a set of attributes. The set of attributes are goal,
preconditions, side-effects, decompositions (steps), protections, and agents.

facﬁvity>
goal;
preconditions;
side-effects;
decomposition: stepl, step2... ;; related subactivities
;; for achieving the goal
protections: (statel timel time2)
(state2 timel time2)

;; states must be true
;s between timepoints

}

An activity schema actually describes a partially specified activity network. It is
incompleteness, first it contains variables in its descriptions which potentially can unify a
set of situation predicates and bring about a set of events. Second the order of the
subactivity is not completely specified, since the order can only be enforced when
protection intervals are violated.

3.4 Goal Achievement Procedure
Generally, the goal achieving process is divided into three steps.

1) The planner checks whether the goal is already true at the current node in the network. If
itis already true then no more actions are needed, otherwise it carries on step 2.

2) In this step, the planner checks if there are some other nodes inside the network
where the goal is true. If there are, it tries to link in one of the node to make the goal
held at the current node.

3) If none of above steps succeeded, the planner searches the activity schemas which it has
to find one which can achieve the goal, and expands the current network.

3.5 Outcomes of Planning

A planning system may have problems that it can never produce answer, because activity
addition can make the plan grow arbitrary large, the search may never converge on a plan
that necessarily solves the problem. Chapman [Chapman, 1987] discussed this problem.
He pointed out that "In fact, there are three possible outcomes (for the planning system):
success, in which a plan is found; failure, when the planner has exhaustively searched the
space of sequences of plan modification operations, and every branch fails; and
nondetermination, when the plan grow larger and larger and more and more operations are
applied to it, but it never converges to solve the problem.” Chapman proved a theorem for
the correctness and completeness of Planner using the goal achievement procedure. That is,
if planner, given a problem, terminates claiming a situation, the plan it produces does in
fact solve the problem. If the planner returns signalling failure or does not halt, no solution
exists.

- 4. An Analysis of an Application of Al Planner to Office System

In this section, two office system modelling applications of the AI planning system are
presented. These two applications are different in how to use the planning network. In the
first application, the planning process is used to fulfil a transaction of office work. That is,
whenever an office task is required, the system generates an activity network which is able
to complete the task, then executes the network. The execution will update the data base
which has information of the status of an office system, and meanwhile reset the planning
network to 'nil'. In other words, it acts like a robot agent.

The second application is a program for scheduling a set of required tasks. The tasks will
be fulfilled by a group of agents. The scheduling process is based on what functions an
agent can perform for the fulfilling of a task, and what is the current loading of all the
agents. The planning network will no longer just represent a transaction of work, but it
provides information to the scheduling process. Specially, when large amount of tasks are
concurrent, the existing planning network functions mostly as a set of constraints for the
scheduling process.

4.1 A Goal-Oriented Office Form System

A goal oriented office form system is developed following the developing clue of the office
information system modelling [Liu, H., 1991]. The planning process is able to directly
manipulate office form instances. This achieves a very flexible link between the office
information objects and the office work. For example, an office form shown as figure 1
can be represented as follows:

Claim for Pagmént - -~~ Regular Yisiting Lecturer
Name: Title: - Cost Center: School:
working | working . Working hours
S .
day date ubject gradel|grade2 | grade3

Signature: Date: Signature: Date:
Yisiting Lecturer " Maneger:

Figure 1.

<office-form-doc.>
{ (creator)
(owner)
(status)
(create-date)

......

<RVL-working-hours>
{ (is-a office-form-doc)
(name)
(title)
(school)
(cost-centre)
{aggregation-of lecturer-signature
(lecturer-signature)
(date)} ,
{aggregation-of manager-signature
(manager-signature) ,
(date)}
{association-of form-body
(working-date)
(working-day)
(subject)
{aggregation-of working-hours

(gradel)

(grade2)
(grade3) }}}}
USER
Ofrfice
Activity Office Form
Beose Processing Task

planning tnput
\ Planning Process

planning input__—"

planning output

Inftiel state
Form System planning input

& planning updesating
7 [Agenda

Planning
Network

updating

Reference

"\ reset Pattern
/ Interpreter

| Execution : l

office Torm
base

Figure 2.

The following is an example of an activity schema of this office form system. The situation
is that after an office form system received an RVL form, it needs to verify it. The verify
process can be expressed by the activity schema.

* <verifying-RVL>

office-forms: (?rvl &(instance-of RVL))
(?arvl &(instance-of ARVL))
preconditions: (received ?rvl)
goal: (verified 7rvl)
decomposition:
goal-step signature-check
= (exist (?rvl &(lecturer-sig (lecturer-sig))))
goal-step contract-check
=(and (?rvl &(is-a RVL-working-hours)
& (name 7name)
& (subject ?subject)
& (cost-center 7cc)
& (manager-sig (manager-sig Susan)))
(?arvl &(is-a ARVL)
& (name name)
& (cost-centre 7cc)
& (manager-signed Susan)

& (@teaching-course (subject ?subject)))))

. This activity schema states that when the system receives an instance of the RVL form, it
first checks the signature and the contract. To check the signature it checks if the signature
is exist. To check the contract, it will find an instance of the ARVL form, then check if the
name, the subject, and the cost-centre in the RVL are the same as those in the ARVL. Both
forms should be authorised by the same person. If all these are done, then the instance of
the RVL form is verified.

The system structure of the goal oriented office form system is shown in figure 2. The
planning network is used to represent a transaction of office work. When is task is
required, the plan network for fulfilling the task is generated by the planning process based
on knowledge of the situation and the activity schemas. The execution of the network will
update the situation description data base, and reset the planning network to null.
Therefore, this office form system functions like a robot agent. The planner required by
this system needs not to be very complex, a SIPE [Wilkins, 1985] or NONLIN [Tate, A.,
1977] style planner will be able to meet the requirements.

4.2 An Office Task Scheduling for Intelligent Agents

A scheduling system is simply a planning system. For scheduling, time constraints must be
considered. So, it should be a DEVISER [Vere, S. A., 1981] style planner. But in order to
schedule the agents, the activity schema is augmented with an agent slot which specifies
who is able to perform the activity. The schema can be shown as follows:

task

task net-

work planner

- agent 1ib.
execution

output
Figure 3.

?activity>
goal;
preconditions;
side-effects; .
decomposition: stepl, step2 ... ;s related subactivities for
achieving the goal
protections: (state] time1 time2)
(state2 timel time2)
...... ;» states must be true between
;; timepoints
time-window:
agents;

In order to schedule office work, the generated planning network must be stored. It
then functions as a set of constraints for the new emerging tasks. This cause a big
change in the system structure.

The structure of the system is shown in figure 3. When a task is required, the system first
enquires the task network that has already been stored in the system. If a sequence of
activities for fulfilling this task is already there, the system just executes the sequence of the
activities. Otherwise, the planner will be initiated to modify the task networks so that the
new task is able to be fulfilled. The modification is based on the current task network and
the agent library which has knowledge of the functions which the agents are able to

perform. ,
5. Planning, Activity and Human Interfere

The Al planning system represents one interpretation of activities by the computer system.
This interpretation is significant since it is clear in both organizational terms and
programming terms. This interpretation can serve a base for us to developing the interaction
of the computer problem solving process and the human problem solving process.

From the input of a task to the completion of the activity network, programmes are
performed by a planner based on activity schema descriptions, the goal achieving process,
and the control of searching as introduced in section 3. This is clear in programming terms.
But what are the semantical meanings of these operations in the organizational terms. In
another words, what is the semantical meaning of activity schema, and what is that of goal
achieving process, and that of the control process?

The activity schemas of the planning system correspond to the well defined office activities
inside an office system. For example knowledge of how to verify the RVL form as shown
in Figure 1 is a well defined activity. The meaning of well defined is that the knowledge is
independent from other activities. Once the preconditions of this activity is satisfied, this
activity is applicable in the situation. The connection of the activities are set up by the
situation description instead of by the activity description itself.

The goal achieving process and the search control is a further division of a problem solving
process. The former refers to the ordering activity of a problem solving process, the later
refers to the decision making activity of a problem solving process. Inside a planner, the
goal achieving and the search controlling process recursively call each other to fulfil the
goal. The goal achieving part can nicely solve most of the ordering problem, but the search
part can make no decisions at all. It is actually the search strategy that simply replaces the
decision making process. This probably is the reason why the applicability of the Al
planners is limited to the problems which have mechanical natures. This implies a
suggestion that in order to improve system the applicability of the problem solving process,
human interfere happens exactly inside the search process.

Therefore, based on an Al planner, problem solvir{g activity is divided into three levels.
The well defined activity, the ordering activity, and the decision making activity.
Human interactions should happen at the third level — the decision making level.

6. Two Dimensional Planning and Office Work Modelling

This section presents a new system structure for modelling office system. It is based on a
concept called two dimensional planning. This concept is abstracted from many practical
situation such as an organization. Inside an organization, all the work is at least inside two
dimensions of problem solving. One dimension is the organizational problem solving
process, the other is the problem solving process of the agent. It is the dynamic
developments of the two dimensional problem solving processes that give an organization
the flexibility and stability.

10

6.1 A New Frame for Modelling Office System

Office work is considered inside a two dimensional problem solving space in this new
frame. One dimension represents the organizational problem solving, the other represents
an agent problem solving. In the previous development of office system modelling,
knowledge of the organization is usually modelled as static information. The disadvantages
of this style of modelling is that there is no meta-problem solving process. Therefore, there
are always some relationships which have to be well defined before the setting up of the
system. This always means that many details of an organization can not be ignored.
Without an organizational problem solving process to dynamically define the relationships
between agents, their relationships and even the detailed reasons of the relationships have
to be recorded. Again minor changes will cause problems. For example, if there is no
organizational level problem solving process, in order to implement communication
between the office agents, information has to be recorded for every possible agent to whom
the communication might happen.

The organizational problem solving process also provides a base for the system to solve the
problems listed by Gasser [Gasser, 1991]. Such as how to communicate, and how to
reconcile disparate viewpoints, and so on. And the two dimensional problem solving
should not influence human participation as discussed in the last section.

6.2 Interactions Between the two Dimensions

The most important problem for two dimensional problem solving is to find the join points
of the two problem solving processes, and redefine the goal achieving process and control
structures of both processes.

The interaction of the two problem solving processes should happen at the decision making
activity level. This is similar to the problem solving inside an organization. When a
manager needs to decide which office agent to be chosen for a specific job, he/she usually
evaluates the possible consequences that they possibly will produce. And when an agent
does hot sure which other agent to contact for a problem, he/she usually consults a
manager. These facts mean that inside a two dimensional problem solving space, both
problem solving processes recursive call each whenever necessary.

7. Conclusion

Viewing office system as nothing but information processing is a misleading perspective,
since it only can describe the superficial phenomena without being able to explain the
reasons. Viewing office system as an open system, and tackling the corresponding problem
solving strategies are actually trying to model office system by one level of problem solving
processes. Since there is no meta-problem solving process, a large number of details have
to be predefined before the setting up of the system, and the flexibility the system can
achieve is limited.

The perspective which interprets that an organization is constructed by two levels of
problem solving processes gives a very loose structure for the opened office system.

References
[Alan H.Bond and Les Gasser, 1988]

Alan H.Bond and Les Gasser, 1988, Reading in Distributed Al,
Morgan Kaufmann Publishers, Inc.

11

[Allen, J., Hendler, J., and Tate, A., 1950]
Allen, J., chdler,] and Tate, A., 1990, Rcadmgm Planning,
Morgan Kaufmann Publishers, Inc.

[Barber, 1983] G. Barber, "Supporting Organizational Problem Solving
with a Work Station" ACM Transaction on OIS, Vol. 1,
No. 1, January 1983.

[Bracchi, 1984] G.Bracchi and B.Pemic, "SOS: A Conceptual Model for
Office Information Systems,” Data Base, vol. 15, Winter
1984.

[Bracchi, 1985] G.BRACCHI and B.PERNICAL, "TRENDS IN OFFICE
_ - MODELLING," in Proceedings of the IFIP TC 8 Working
Conference, ed. R.A HIRSCHHEIM, pp. 77-97, ELSEVIER
SCIENCE PUBLISERS B.V, 1985.

[Chapman, 1987] David Chapman. "Planning for Conjunctive Goals"
Artificial Intelligence 32 (1987) 333-377

[Croft & Lefkowitz, 1984]
Bruce Croft and Lawrence Lefkowitz "Task Support In
an Office System" ACM Transitions on Information
System, Vol. 2, No. 3, July 1984, pp. 197-212.

[Croft & Lefkowitz, 1988]
Bruce Croft and Lawrence Lefkowitz "A Goal-Based
Representation of Office Work" IFIP Conference on
Office Knowledge, 1988.

[Ellis, C 1979] C.G.Ellis "Information Control Nets: A Mathematical
Model of Office Automation Flow," Proceedings of the
1979 Conference on Simulation, Measurement and -
Modeling of Computer System, 1979.

[FAOR, 1987} ESPRIT Projéct 56 Main Report, FAOR, 1987.

[Gasser, L., 1991] Gasser, L., 1991, Social conceptions of knowledge and action:
DALI foundations and open systems semantics, Artificial Intelligence
47 (1991) 107 - 138

[Hewitt, C., 1986] Carl Hewitt, "Office Are Open Systems”, ACM
Transitions on OIS, Vol. 4, No. 3, July 1986, pp 271-287.

[Hewitt, C., 1991] Carl Hewitt, "Open Information Systems Semantics for Distributed
- Artificial Intelligence", 47 (1991) 79-106

[Hirschheim, 1986] R.A.Hirschheim, "Understanding the Office: A Social-
Analytic Perspective,” ACM Transaction on Office
Information Systems, vol. 4, no. 4, pp. 331-344,
October 1986.

[Lochovsky, 1986] Carson C. Woo and F. H. Lochovsky, "Supporting
Distributed Office Problem Solving in Organizations",
ACM Transactions on OIS, Vol. 4, No. 3, 1986.

[Lochovsky, 1987] F. H. Lochovsky. "Managing Office Tasks." Proc. IEEE

12

Computer Society Symposium on Office Automation,
27-9 April 1987, Gaithersburg MD, 206-16.

[Lum. V.Y., 1982] V.Y.Lum, D.M.Choy, and N.C.Shu, "OPAS: An
Office Procedure Automation System,"” IBM System J,
vol. 21, no. 3, p. 327, 1982.

[Mazer, 1987] M. S. Mazer. "Exploring the Use of Distributed Problem
Solving in Office Support Systems" Proc. IEEE Computer
Society Symposium on Office Automation, 27-9 April
1987, Gaithersburg MD, 217-25.

[Mokhoff, N., 1979] Mokhoff, N., 1979, Office Automation: A Chanllenge. IEEE
Spectrum, No. 16.

[Peterson, 1977] James L. Peterson, "Petri Nets", Computing Surveys,
Vol. 9, No. 3, September 1977. .
[Price, S., 1979] Price, S., 1979, Intrducing the Electronic Office, NCC
Publications, Manchester.
[Tate, 1977] Tate. A 1977 "Generating Project Networks" Proc. of
- DDICAI-77 [NONLIN]
[Tate, 1984] Tate. A 1984 "Goal Structure: Capturing the Intent of

Plans" Proc. of ECAI-84 Pisa, Italy, 9, 1984 [NONLIN]

[Tsichritzis, D.C. 1982]
D.C.Tsichritzis, "Form Management," CACM, vol. 25,
July,1982.

[Vere, S.A., 1981] Vere, S.A. "Planning in Time: Windows and Durations

. for Activities and Goals" IEEE Tranactions on Pattern
Analysis and Machine Intelligence. Vol. PAMI-5, NO. 3,
(1981) pp. 246-267. [DEVISER]

[Vere, S.A., 1985] Vere, S.A. "Splicing Plans to Achieve Misordered Goals"
Proc. of IJCAI-85. pp. 1061-1021. [DEVISER]

[Wilkins, 1984] Wilkins, D.E. "Domain Independent Planning:
Representation and Plan Generation™ Artificial
Intelligence 22 (1984) [SIPE]

[Wilkihs, 1985] Wilkins, D.E. "Recovering from Execution Errors in
SIPE" Computiational Intelligence 1 (1985). pp. 33-45
[SIPE]

[Zisman, 1978] M.D.Zisman, "Use if Production System fir Modeling

Asynchronous,Concurrent Processes,” Patten directed
Inference Systems, Academic Press, 1978.

13

A Representation for an Office Form System

The 4th International Symposium on Artificial Intelligence

Casncun, Mexico, November, 1991.
page of the Proceedings:336-342

A REPRESENTATION OF AN OFFICE FORM SYSTEM
’ Heyun Liu, Ian Draffan, Frank Poole

School of Computing and Management Sciences
Sheffield City Polytechnic
Hallamshire Business Park

Sheffield S11 8HD
United Kingdom

Abstract

An office form is a common office information
object. It not only provides a structure for organizing
office data, but also functions as an interface for office
worker to access and manipulate them. To model office
forms, one of an important issue is to handle the asso-
ciation of a form to its subforms, since in practice
almost all the office forms have a subform which has a
group of repetition of the same structure. Based on the
frame system and pattern matching process in Al, this
paper presents a pattern language which can solve this
problem. By combining this pattern language with the
Alstyleactivity schema [Tate, 1984; Croft & Lefkotwiz,
1988], the activities upon office forms can be specified.
This representation of the activities upon office forms
is more complete and expressive.

1. Introduction

An office form is acommon office information object.
It not only provides a structure for organizing office
data, but also functions as an interface for office work-
ers to access and manipulate the data. The abstraction
of an office form has led to an integrating office form
concept [Tsichritzis, D., 1982] which means that com-
puterized forms are not only the conceptual images of
business paper forms, but are more general and elabo-
rate so as to be able to represent any structural data and
their templates in an office system. This concept has
been used in many developed office models such as
BDL [Hammer, M., 1977], Officetalk [Ellis, C., 19801,
FFM [Tsichritzis, D., 1982], OPAS [Lum, V. Y.,
1982], and SOS [Bracchi, 1984]. To model office
forms, one of an important issue is to handle the
association of a form to its subform, since in practice
almost all the office forms have a subform which has a
group of repetition of the same structure. For example
in figure 1, Working day, Working date, Subject, and
Working hours constitute a subform which hasa group
of instances. The data base oriented office form sys-
tem, such as FFM, OPAS, cannot handle this associa-
tion problem, since it is not normalized. The SOS
model [Bracchi, 1984] proposes association abstrac-
tion, but does not have a way to handle it. Based on
the frame system and pattern matching process in Al,
this paper presentsa pattern language which cansolve
this problem. It can model any office paper forms, and

can also model a generalized abstract form which has
any number of layers of subforms. This pattern lan-
guage can be combined with the office activity schema
proposed in POLYMER [Croft & Lefkowitz, 1988].
The office schema contains fields for describing the
goal of the activity, steps for fulfilling the activity
(decomposition), the temporal and causal relations
among the activity's steps, preconditions and side ef-
fects of the activity, the agents responsible for perform-
ing the activity, and any additional constraints on the
activity. Combining this office activity schemaconcept
with the pattern language described in this paper, the
representation of the activity schemes for the office
forms can be specified.

2. A Pattern Language for an Office Form System

A pattem language for an office form system is pre-
sented in this section. The syntax of it can be found in
Appendix A. The implementation of this language can
be achieved by using the pattern matching process and
the frame system in Al [Liu, H., 1990]. In the following,
the definition of the type of an office form is developed
first, then the reference patterns of the language is
proposed, finally the operations and predicates for the
forms are specified.

2.1. Definition of Form Type

To define the type of an office form, similar to the SOS
[Bracchi, 1984] model, three types of abstractions are
introduced. They are: generalization, aggregation, and
association. Generalizations and aggregation respec-
tively define superform and subform of types, and
groups of elements of different fields. Associations
specify groups of elements of the same type. For exam-
ple, figure 1 is a claim for payment form, called RVL
form, for an Regular Visiting Lecturer in an institute. It
has three levels of information. The first level informa-
tion is about the office form itself which usually people
can not see from the surface. For example every office
form has creators, owners, status, and etc. The second
level is constituted by the less changeable information
such as ‘Name’, ‘Title’, and ‘School’ in this example.
The third level usually is the more detailed, and more
changeable information. In thisRVL form, for instance,
‘Subject’, ‘Working Day’, and etc. are obviously more
changeable than the ‘Name’ of the lecturer. By using the

Claim for Payment ----- Regular visiting lecturer

Name: Title: Cost Center: School:

Working| Working | Subjecf ~ Working hours
day
Gradel|Grade2 | Grade3

oo
e
e
.

X3
)

Signature: Date: Signature: Date:

Visiting Lecturer Manager

Figure 1.

three abstractions, generalization, aggregation and as-
sociation, the form can be represented as following.

<office-form-doc.>

(creator)
(owner)
(status)
(create-date)

}
<RVL-working-hours>
{

;; the first level information
(is-a office-form-doc)
;; the second level information
(name)
(title)
(school)
(cost-centre)
{aggregation-of lecturer-signature
(lecturer-signature)
(date)
)
{aggregation-of manager-signature
(manager-signature)
(date)

)
;» the third level information
{association-of form-body
{aggregation-of
(working-date)
(working-day)
(subject)
{aggregation-of working-hours
(gradel)
(grade2)

(grade3) }1}}

The syntax for defining office form type can be defined
as follows:

<form-type> : :=
<form-type-id> {<form-body-spec>)

<form-body-spec>
::=Empty|
: := <form-body-spec> <form-body-spec> |
: := (is-a <form-type-id>) |
: := { aggregation-of <field-name>
<field-body >} |
: := { association-of <form-type> }

<field-body> ::= Empty |
: 1= <field-body> <field-body> |
: := <form-body-spec> |
: := (<attribute-name>)

<form-name> : := symbol
<attribute-name> : := symbol
<field-name> : := symbol

Having this definition and given the office form concept
is used as an integrating concept, almost all the struc-
tures of office information objects can be modelled.
This data modelling method emphasises the semantic
aspects of the information model.

2.2, Patterns for the Office Forms .

The names of forms, fields, and attributes can be used to
refer to a particular set of instances of forms. For
example, the pattern RVL-working-hours & (name
H.Liu) may be considered to refer to all the instances of
the RVL forms with a constraint ‘name = HLiu’. And
the pattern RVL-working-hours & (name HLiu) &
(lecturer-signature (date “3/12/90™)) refers to all the
instances of the RVL form with constraint ‘name =
H.Liu’ and the date of the signature is ‘3/12/90°. The
reference pattern can get into more details. For example:

RVL-working-hours & (name H.LIU)
& (lecturer-signature (date “3/12/90”))
& (@form-body & (subject “software tools”™)
& (working-day “Monday™))

This is also a reference pattern upon the R VL-working-
hours form. The symbol ‘@’ is introduced to indicate
that the symbol that follows it is a field defined by
association abstraction. The field defined by association
abstraction is regarded as a subform inside the form. So,
the above pattern has two levels of constraints. The first
level constraints are (name H.LIU) and (date “3/12/
90”). The second level constraints are (subject “soft-
ware tools™) and (working-day “Monday™), and they are
upon the repeated group (or subform) ‘form-body’.

The syntax of reference pattern can be defined as fol-
lows:

<form-refer> ; := <form-name> & <field-refer>

<field-refer> : := Empty |
: .= <field-refer> & <field-refer> |
: := (<attribute-name> <value>) |
: := (<field-name> (<field-refer>))
: := (@<field-name> “&” <field-refer>)

<form-name> : := symbol

<field-name> : := symbol

<value> ::=symbol | string | <variable> 1?7 | $?
<variable> : := ?symbol

If avalueisallowed to take a variable, the wild character
‘2", or the wild section character ‘$?’, then the reference
pattern is defined for this office form system. For
example, if we have another form, called ARVL, in the
institute for the Appointment of Regular Visiting Lec-
turer, as shown in figure 2.

It can be defined as follows:

<AR
{ .
(is-a offi-form-doc)
(name)
(title)
(school)
(current-occupation)
(cost-centre)
(manager-signed)
{association-of teaching-course
{
(day)
(hours/perw)
(number-of-weeks)
(subject)

)
}

A matching pattern between an ARVL form and an
RVL form can written as follow:

(Forall (RVL-working-hours
& (name ?name)
& (subject ?subect)
& (cost-centre ?cc)
& (manager-sig (manager-sig Susan)))
(ARVL & (name 7name)
& (cost-centre 7cc)
& (manager-signed Susan)
& (teaching-course
(@subject &(?subject)))))

This pattern means for all the RVL form, there is a
ARVL form which has the same name, same cost centre,
same subject, and is authorised by the same person.
Notice the matching between the variable ‘?subject’ of
the RVL form, and the variable ‘?subject’ of the ARVL
form. By employing the recursive pattern matching
process, the system can set pattern restrictions by asso-
ciating the values deep inside an associated subform

Appointment of Regular Visiting Lecturer
Name: Title: Cost Center:

Current Occupation: School:

Day| Hours/perw| No. weeksl Subjecti Course-cods

.
.

Figure 2.
with any other values.
23. Operations and Predicates

Like all the other data management system, the form
document system support operations like create, delete,
set, modify, and so on. Their syntax can be defined as
following:

(create <form-name> <form-type-id>)
1 create an instance of a form called ‘form-name
;» whose type has already been defined
(create <form-refer>)
;; create an instance of an associated subform
(delete <form-refer>)
;» delete a value or an instance that the
sy ‘form-refer’ refers to
(set <form-refer> <value>)
;» set the attribute referred by ‘form-refer’
3 to ‘value’
(modify <form-refer> <value>)
;s modify the attribute referred by ‘form-refer’
3 to ‘value’

All these operations are little different from the opera-
tions in a data base system. For example, if we have a
form ‘Julian-contract’ which is an instance of the form
type defined in figure 2, the operation (set (Julian-
contract &(title)) Mr) will set the field ‘title’ to value
‘Mr’. The operation (modify (Julian-contract &(title))
Dr) will modify the value of the field ‘title’ to a new
value ‘Dr’.

Thereis one thing needs alittle more explanation. When
an instance of an office form is set up, for example
(create Julian-contract ARVL), the system always set
up the it together with the instances of the subform
which its association abstraction corresponds to. Usu-
ally association abstraction corresponds to an arbitrary
number of repetition of the same structure. Forexample,
inside an ARVL form (figure 2), the number of courses
that the visiting lectureris teaching is not fixed. So when
the system creates an instance of the ARVL form, the
teaching-course field should be created by an iteration

procedure. Every time the system asks the user if there
is any more to input. Only when the answer is negative,
is the association abstraction created. More instances of
the associated subform can be added in. For example,
(create (Julian-contract (@teaching-course))) will cre-
ate another instance of the associated subform ‘teach-
ing-course’ for the form ‘Julian-contract’.

The values and the status of the values of fields inside
the office forms constitute part of the situation descrip-
tion for an office form system. Therefore having a setof
predicates to express the status of values of a form are
very important. Predicates can be defined for the status
of a value of a form’s attribute as following:

(exist <form-refer>)
;» check if the value of the attribute existing
(equal-to <form-refer> <value>)
»» if the value of the attribute is equal to the
»» value specified
(equal-to <form-refer> <form-refer>)
»; if the value of the two attributes are equal

For example, the predicate

(exist (Julian-contract
&(name Julian
&(@teaching-course
&(subject “software tools™))))

returns true only when there exist at least one form
‘Julian-contract’ whose name is ‘Julian’, and the sub-
ject is ‘software tools’. Following the same pattern,
predicates like >, <, not-equal, and so on can be defined.
With the help of these predicates, the system can define
three kinds of integrity rules. The template constraints
for the values of attribute fields of forms; the integrity
rules for modification operations; and the semantic
integrity rules to specify logical links among the fields.

3. A Goal Augmented Office Form
Activity Representation

Having the above definition of office forms, the office
activity schema defined by POLYMER [Croft &
Lefkowitz, 1988] can be applied to model the office
activities upon an office form. The syntax can be found
in Appendix A. Following is an example of an office
activity schema. The situation is that after an office
workerreceivesan RVL-working-hours form, she needs
to verify it. The verify process can be expressed by the
activity schema shown as follows:

<verifying-RVL>

(

preconditions : ((received ?rvl)
& (instance-of 7rvl RVL-working-hours))
goal : (verified 7rvl)
decomposition:
goal-step signature-check
= (exist 7rvl & (lecturer-sig (lecturer-sig ?)))
goal-step contract-check
=(Forall
(?rvl & (name name)

& (subject ?subect)
& (cost-centre 7cc)
& (manager-sig
(manager-sig Susan)))
(?arvl & (name ?name)
& (cost-center 7cc)
& (manager-signed Susan)
& (@teaching-course
&(subject ?subject)))
(instance-of ?arvl ARVL))
Ordering : signature-check before contract-check
Agent : Joan

}

This activity schema states that when agent Joan re-
ceives an instance of the RVL form (figure 1), she will
first check the signature, then check the contract. To
check the signature she just checks if the signature is
there. To check the contract, she will find an instance of
the ARVL form (figure 2), then checks if the name, the
subject, and the cost-center in the RVL are the same as
those in the ARVL. Both of the form should be author-
ised by the same person. If all these are done, then the
instance of the RVL form is verified.

4. Discussions

By combining the pattern language proposed in this
paper with the office activity schema proposed in [Croft
& Lefkotwitz, 1988], a representation system for office
forms can be specified (see Appendix A). Together with
this pattern language, the activity schema upon the
office form is more expressive and complete.

For example, following is an example of the office
activity schema: [Croft & Lefkowitz, 1988]

ACTIVITY: Accept-or-Reject.Way1
Goal : refereed(?paper)
Preconditions: member (?paper, papers)
Decomposition: GOAL decision-reached =

exists (status (?paper))
Control : repeat decision-reached until

or (status (?paper, “accepted”),

status (?paper, “rejected’))

Agents : %editor = member (?editor, editors)

Thisactivity schemaaims to reflects the potential cyclic
nature of journal editing. The activity attempts to achieve
the goal of reaching a decision on the paper and indicat-
ing that this decision is either “accepted” or “rejected”.
If the decision is anything else, the task will continue.
The activity schema has all the information. What is
weak is the link between the activity and the data. More
precisely, isthe usage of predicates. Since the predicates
can be freely chosen, the link between the activity and
the data is loose, and open. And the modelling of the
structure of office data runs a bigger risk of uncertainty.
By using the pattern language described in this paper,
many predicates can be designed as attributes of office
forms, only is a small set of system predicates needed.
This makes the system more complete, and stable. For
example, in the above example an office form can be

designed for the journal editing process, shown as figure
3.

Having defined this form, we can reconstruct the “ac-
cept-or-reject” activity schema as follow:

<accept-or -reject>

goal : (exist (?paper &(decision)))
preconditions : (instance-of ?paper journal-editing)
decomposition: goal decision-reached=

(exist (?paper &(desion)))
control : repeat decision-reached until

(or (?paper &(decision “accepted™))
(?paper &(decision “reject™)))

}

This activity schema looks similar to the previous one,
but its expressiveness is largely strengthened by the
direct connection between the activity schema and the
office form.

5. Conclusions

Based on the frame system and the pattern matching
process in Al, a pattern language for an office form
system can be defined. By combining this pattern lan-
guage with the AI planner style activity schema, the
activity schema for the office form system can be
specified. Therefore, further research can concentrate
on how to apply an Al problem solving process to office
form system modelling.

References

G. Barber, “Supporting Organizational Problem Solv-
ing witha Work Station” ACM Transaction onOIS, Vol.
1, No. 1, January 1983

G.Bracchi and B.Pernici, “SOS: A Conceptual Model
for Office Information Systems,” Data Base, vol. 15,Win-
ter 1984,

Bruce Croft and Lawrence Lefkowitz “A Goal-Based
Representation of Office Work” IFIP Conference on
Office Knowledge, 1988.

C.G.Ellis “Information Control Nets: A Mathematical
Model of Office AutomationFlow,” Proceedings of the
1979 Conference on Simulation, Measurement and
Modeling of Computer System, 1979.

M.Hammer and G.W.Howe, “A Very High Level
Programming Language for Data Processing Applica-
tions,” CACM, vol. 20, no. 11, 1977.

Liu, H., “Task Oriented Office Form System”, Research
report for transfer from Mphil to Ph.D, School of
Computing and Managemant Sciences. Sheffield City
Polytechnic, England, 1990.

V.Y.Lum, DM.Choy, and N.C.Shu, “OPAS: An
Office Procedure Automation System,” IBM System
J, vol. 21, no. 3, p. 327, 1982.

Journal-Editing

Title: Author: Receive-date:
reviewers mark

Decision:

Figure 3.

Tate. A 1984 “Goal Structure: Capturing the Intent of
Plans” Proc. of ECAI-84 Pisa, Italy, 9, 1984 [NONLIN]

D.C.Tsichritzis, “Form Management,” CACM, vol.
25, July,1982.

Appendix A
The BNF Grammar for GOOFS
(Goal Oriented Office Form System)

Office Form Documents Definition Language

<form-type> : := <form-type-id>
{<form-body-spec> }

<form-body-spec>
::=Empty | .
: := <form-body-spec> <form-body-spec> |

: 1= (is-a <form-type-id>) |

: := { aggregation-of <field-name>
<field-body> } |

: := { association-of <form-type> }

<field-body>: := Empty |
: :=<field-body> <field-body>1
: := <form-body-spec> |
: := (<attribute-name>)

<form-name> : := symbol
<attribute-name> : := symbol
<field-name> : := symbol

Office Form Pattern Language
<form-refer> : := <form-name> & <field-refer>

<field-refer> : := Empty |
: := <field-refer> & <field-refer> |
: := (<attribute-name> <value>) |
: := (<field-name> (<field-refer>)) |
: i= (@«<field-name> & <field-refer>)

<form-name> : := symbol
<field-name> : := symbol
<value> ::=symbol | ?2symbol | string | ? | $?

Manipulations and Predicates on Office Forms

<form-operation>
::= (create <form-name> <form-type>) |
(<operation1> <form-refer> <value>) |
(<operationl> <form-refer> <form-refer>) |
(<operation2> <form-refer>)

<operation1> ::= set I modify
<operation2> ::= delete

<form-predicate>
== (is-a <form-name> <form-type>) |
(<predicatel> <form-refer><value>) |

(<predicate1> <form-refer> <form-refer>) |
(<predicate2> <form-refer>)

<predicatel> i=<>I=1>1<I>=l=<
<predicate2> ::= exist

Office Form Activity Definition Language
<office-activity-obj> : := <obj-name>

<goal>
<preconditions>

[<side-effects>]

[<decomposition>]
[<plan-rationale>]
[<control>]

}

: == <doc-wff>
: := (<predicate> <form-refer>) |
: := (<predicate> <form-refer>
<form-refer>)
: := <system-prediate> |
<kb-predicate>
<system-predicate> : := clear | existing |
equal | bigger | less |
sub-form | received | processed|
defined Imember | instance-of
<preconditons> : := <doc-wif>*
<side-effects> ::= <doc-modification>*
<doc-modification> : := (<doc-action> <doc-wif>)

<goal>
<doc-wff>

<predicate>

<doc-action> ::=set}add | delete
<decomposition> : := <activity-step>*
<activity-step> : := <step-spec>
[done-by <agent-spec>]

<step-spec> : := (goal <step-name> <subgoal-spec>)
| (activity <step-name> <activity-spec>)l
(action <step-name> <action-spec>)

<subgoal> : := <doc-wff>
<activity-spec> : := <activity-name> |

(one-of <activity-name>*)
<action-spec>

: := (<action-typel> <form-refer>) |
(<action-type2> <form-refer> <form-refer>)
(<action-type2> <form-refer> <value>)

<action-typel> : :=setl delete | create | input | output
<action-type2> ::=+1-1* [\| modify
<plan-rationale>: := <enabling-relationship> |
<protection-interval>
<protection-interval>
: := protect <states> [from <time-spec>]
to <time-spec>]

<states> ::= <doc-wff> | (<doc-wff>+)
<time-spec>: := <step-name> | before <step-name>|
after <step-name>

<enabling-relationship>
: := <step-name> enables <enabling-step>

<control> : := before <step-name> <step-name>+ |
: 1= if <doc-wff> then <step-or-net>
[else <step-or-net>] |
: := optional <step-or-net> |
: = star <step-or-net>
: := plus <step-or-net> |
: i=repeat <step-or-net> bounds
[<iterate-when> <doc-wif>]
<bounds> : := while <doc-wff> |
: = until <doc-wff> |
times count |
for variable in value-list
<step-or-net> : := <step-name> | <plan-subnet>
<plan-subnet> : := (<step-name> to <step-name>)
<step-name> : := symbol

A Goal-Oriented Office Form System

Conference on Organizational Computing Systems
ACM SIGOIS Bulletin, Vol. 12, Number 2,3
pp. 123- 128, November, 1991.

abstractions are introduced. They are: generalization, ag-

Claim for payment -- Regular visiting lecturer

name: Title: Cost centr: School:

working working subjec

Working hours
day |day

grade 1{grade2fzrade3

signature: date:
Visiting Lecturer

signature: date: |

Manager

Figure 1.

gregation, and association. Generalization and aggregation
define superform and subform of types, and groups of ele-
ments of different fields respectively. Associations specify
groups of elements of the same type. For example, figure 1
isaclaim for payment form, called RVL form, foran Regular
Visiting Lecturer in an institute. It has three levels of infor-
mation. The first level information is about the office form
itself which usually people can not see from the surface. For
example every office form has creators, owners, status, and
etc. The second level is constituted by the less changeable
information such as ‘Name’, ‘Title’, and ‘School’ in this
example. The third level usually is the more detailed, and
more changeable information. For example, the ‘Subject’,
and ‘Working Day’ attribute in the RVL form are obviously
more changeable than the ‘Name’ of the lecturer. By using
the three abstractions, generalization, aggregation and asso-
ciation, the form can be represented as following.

<office-form-doc.>
{ (creator)
(owner)
(status)
(create-date)

<RVL-working-hours>
{ (is-a office-form-doc)
(name)
(title)
(school)
(cost-centre)
{aggregation-of lecturer-signature
(lecturer-signature)
(date)}

{aggregation-of manager-signature
(manager-signature)
(date)}
{association-of time-table
(working-date)
(working-day)
(subject)
{aggregation-of working-hours
(gradel)
(grade2)
(grade3) }}}}

2.2. Patterns for the Office Forms

The names of forms, fields, and attributes are used to refer to
aparticular set of instances of forms. For example, the pattern
(?rvl &(instance-of RVL) & (name H.Liu)) may be consid-
ered to refer to all the instances of the RVL forms with the
constraint ‘name = H.Liu’. And the pattern (?rvl &(instance-
of RVL) & (name H.Liu) & (lecturer-signature (date *“3/12/
90™))) refers to all the instances of the RVL form with the
constraints ‘name=H.Liu’ and the date of the signature is *3/
12/90°. The reference patterns can get into more details. For
example:

(?rvl &(instance-of RVL)

& (name H.LTU) ,

& (lecturer-signature (date “3/12/90™))

& (@form-body & (subject “software tools™)
& (working-day “Monday™))

Itisalsoareference patternupon the RVL form. The symbol
‘@’ is introduced to indicate that the symbol that follows it
is a field defined by association abstraction. The field
defined by association abstraction is regarded as a subform
inside the form. So, the above pattern has two levels of
constraints. The first level constraints are (name H.LIU) and
(date “3/12/90"). The second level constraints are (subject
“software tools”) and (working-day “Monday”), and they
are upon the repeated group (or subform) ‘time-table’.

If avalue isallowed to take a variable, the wild character ‘?°,
or the wild section character ‘$?’, then a pattern language is

- defined for an office form system. For example, if we have

another form, called ARVL, in the institute for the Appoint-
ment of Regular Visiting Lecturer, as shown in figure 2.
It can be defined as follows:

<ARVL>
{ (is-a offi-form-doc)
(name)
(title)
(school)
(current-occupation)
(cost-centre)
(manager-signed)
{association-of teaching-course

{ (day)
(hours/perw)
(number-of-weeks)
(subject) }}}

A matching pattern between an ARVL form and an RVL
form can be written as follow:
(and (?rvl &(instance-of RVL-working-hours)
& (name 7name)
& (subject ?subject)
& (cost-centre 7cc)
& (manager-sig (manager-sig Susan)))
(?arvl &(instance-of ARVL)
& (name 7name)
& (cost-centre ?cc)
& (manager-signed Susan)
& (@teaching-course (subject ?subject)))))

This pattern means for all the RVL form, there is a ARVL
form which has the same name, same cost centre, same
subject, and is authorised by the same person.

The reference pattern for an office form is actually inter-
preted as an office type together with a set of constraints. The
constraints can require an attribute of an office form has a
special value, or that there is a special relationship existing

Appointment of Regular Visiting Lecturer

Name: Title: Cost Center:

Current Occupation: School:

day|hours/perw] No.weeks|subject]course-cod¢

Figure 2.

between two attributes which could be inside the same form
or inside different forms. For example the variable matching
between the ‘?subject’ of the RVL form, and the ‘?subject’
of the ARVL form requires that an equivalent relation exists
between these twoattributes. More examples of the reference
patterns can be found in [Liu, H., 1990}.

There is another type of reference which does not use
constraints. Once an instance of an office form is known, to
refer to the value of a special attribute inside the form
instance, the names of the attributes, subfields and subforms
constitute a path to find the value. For example, if variable
?arv] has been bound to an instance of the ARVL type, the

following reference pattern is a clear path to access the value
of the subject attribute of the subform teaching-course of the
form instance ?arvl.
(?arvl &(instance-of ARVL)
& (@teaching-course &(subject ?subject)))

2.3. Operations and Predicates -

The basic operations for manipulating the office forms are
little different from the operations in a data base system. For
example, the operation (set (Julian-contract &(title)) Mr.)
will set the field title to value ‘Mr.’. The operation (modify
(Julian-contract &(title)) Dr.) will modify the value of the
fieldtitletoanew value ‘Dr.’. There is one thing which needs
tobe mentioned. When aninstance of an office form is set up,
for example (create Julian-contract ARVL), the system al-
ways sets it up together with all the instances of the subform
to which its association abstraction corresponds. Usually the
association abstraction corresponds to an arbitrary number of
repetitions of the same structure. For example, inside an
ARVL form, the number of courses that the visiting lecturer
teaches is not fixed. So when the system creates an instance
of the ARVL form, the teaching-course field should be
created by an iteration procedure. Every time the system asks
the user if there is any more to input. Only when the answer
isnegative, is the association abstraction created. The type of
an office form should be defined before we actually want to
create an instance of the form.

The values and the status of the values of fields inside the
office forms constitute part of the situation description for an
office form system. Predicates can be defined for the status
of a value of a form’s attribute. For example, the predicate
(exist (Julian-contract
&(name Julian)
&{@teaching-course
&(subject “software tools™))))

returns true only when there exist an ARVL form whose
name is ‘Julian’, and the subject is ‘software tools’. Follow-
ing the same pattern, predicates like >, <, not-equal, and etc.
can be defined.

3. The Internal Representation of an Office Form

To represent an office form, both the type definition of the
office form and its instances are stored inside the system. To
representatype definition of an office form, a tree of schemes
isused. The root schema represents the top level attributes
of the form. The other schemes are related to the root schema
through relation ‘aggregation-of or 'association-of'. Figure 3
and Figure 4 illustrate the representation of the definition of
the RVL form (fig. 1). The RVL schema in figure 3 is the root
schema of the RVL form. The others, lecturer-sig., manager-
sig., time-table, and working-hours, are corresponding to the
aggregation and association abstractions in the RVL defini-
tion. The relations of these schemes are then represented in

Figure 4, which illustrates the whole image of the represen- -

tation of the RVL definition.

The instances of an office form are represented in the system
by the same method. But the schemes which are used to
represent an office form instance are the occurences of the
instances of the schemes in the type representation of the
office form. They are automatically generated and managed
by the system, the names of these schemes are meaningless.
For example figure 5 is a representation of an instance of the
RVL form. The names of the schemes are generated by the
system. In this example, G309 is an instance of RVL schema
in the Figure 3, correspondingly G310, G311, G312, and
G313 are instances of lecturer-sig., manager-sig., time-tab.
and working-hours. Their connections constitute a represen-
tation of an instance of the RVL form. In the instance
representation, the ‘'has-subfield' relation may connect a
schema to a set of occurences of an association abstraction
(for example, the time-table association abstraction in figure
5). This corresponds to the repetitions of a subform.

A reference pattern of an office form is a set of constraints
upon all the instances of the type of the office form. An
instance satisfies a reference pattern if all the constraints of
different levels are satisfied by the instance. The process of
the constraint satisfaction is guided by the stored type defini-

RVL lecturere-signature

S VAN

name title school cost-centre signature date

manager-signature time-table
signature daten working-day working date subject

working-hours

A

gradel grade2 grade3
Figure 3.

RVL

association-of /Ngmgation-of

time-tab lecturer-sig manager-sig

/ aggregation-of

Working hours
Figure 4.

G309 (instance-of RVL)

has-subform has-subfiled

311
(instace-of
man-sig)

(instance-of
lec-sig)

G312 (instance-of time-tab)

has-subfield
G313 (instance-of working-hours)

Figure 5.

tion of the form.

4. A Planner for Office From System

A planner for the office form system is developed based on
the office form pattern language. Some of the crucial
problems of the planner are addressed in this section. To
understand the discussion, knowledge of the Al planning
system is required.

4.1 Representation of the Activity Schema

The activity schema concept is developed from the office
activity schema of POLYMER|[Croft, 1988] with the addi-
tion of the 'office-forms' slot which has constraints for the
office forms used in the activity schema. The following is an
example of an activity schema. The situation is that after an
office form system receives an RVL form, it needs to verify
it. The verification process can be expressed by the activity
schema shown below.

<verifying-RVL>
{

office-forms: (?rvl &(instance-of RVL))
(?arvl &(instance-of ARVL))
preconditions: (received ?rvl)
goal: (verified 7rvl)
decomposition:
goal-step signature-check
= (exist (?rvl &(lecturer-sig & (lecturer-sig))))
goal-step contract-check
= (and
(?rvl &(is-a RVL-working-hours)
& (name 7name)

& (subject ?subject)
& (cost-centre ?cc)
& (manager-sig (manager-sig Susan)))
(?arvl &(is-a ARVL)
& (name 7name)
& (cost-centre 7cc)
& (manager-signed Susan)
& (@teaching-course (subject ?subject)))))}

This activity schema states that when the system receives an
instance of the RVL form, it first checks the signature, then
checks the contract. To check the signature it checks if the
signature exists. To check the contract, it will find an
instance of the ARVL form (fig. 2), then check whether the
name, the subject, and the cost-centre in the RVL are the
same as those in the ARVL form. Both forms should be
authorised by the same person. If all these are done, then the
instance of the RVL form is verified.

4.2 Representation of Planning Network

In common with other action ordering planners, the plan-
ning network is represented by the start, end, phantom, goal
and activity nodes. The plan node (which contains basic
information for goal node and activity node) contains infor-
mation such as the value of the goal, preconditions, effects,
pointers to predecessor, successor and parent nodes, €tc.

Unlike the plan node of either NONLIN [A.Tate, 1984] or
POLYMER(Croft, 1988], there is a field called ‘office-
forms’. The ‘office-forms’ field is actually a table whose
every row contains a variable of a form, and its type, and a
list of the constraints specified in the ‘office-form’ slot of the
corresponding office form activity schema. The algorithm
for finding all the instances of an office form which satisfies
a set of constraints in the planning network is presented in

section 4.4.

4.3 Form Effect Token

The effects of an activity in the planner is represented by
either an ordinary predicate such as (verified ?rvl), or by a
Form Effect Token. A Form Effect Token is a record which
contains a sign field which isa (+) ora (-), an attribute
reference which refers to an attribute of a form, and a value.
If the sign is (+), it means the value of the attribute has been
added into the system. Otherwise, if the sign is (-), it means
the value of the attribute has retracted from the system. So,
after the operation (set (Julian-contract &(title)) Dr.), the
token (+, (Julian-contract &(title)), Dr.) should be added in
the planning network.

With the help of the Form Effect Token, the TOME [Sacerdoti,
1975] and the GOST [A.Tate, 1984] structures are easy Lo set
up to support the developing of the goal achieving process

for the office form system.

4.4. Form Constraints

It is crucial for the planner to find the instances of an office
form which satisfy a set of constraints in the planning
network. In a reference pattern, like that shown below

(and (?rvl &(is-a RVL-working-hours)
& (name ?name)
& (subject 7subject)
& (cost-centre 7cc)
& (manager-sig (manager-sig Susan)))
(?arvl &(is-a ARVL)
& (name 7name)
& (cost-centre 7cc)
& (manager-signed Susan)
& (@teaching-course (subject ?subject)))))

the variables are used for the purpose of setting up constraints
between the attributes. The attributes can be inside one form
or inside different forms. To find the instances of a form
which matches the reference pattern, the algorithm is divided
into three steps. The first step is to abstract all the variables,
and set up the constraint relationships based on the relations
or the predicates upon these variables. The second step is to
find all the instances of every type of the form which satisfies
the constraints after the variables have been filtered. In above
example, we need to find (?rvl &(instance-of RVL) &(man-
ager-sig Susan)) and (?arvl &(instance-of ARVL) &(man-
ager-sig Susan)) in this step. In the third step, the constraints
set up in the first step are applied to the instances which are
found in the second step, the results are the final set of
instances that match the requirements.

The second step of the above algorithm is a searching process.
Depending whether the form variable has been bound. If ithas
been bound, the search should start from where it was bound
last time. If it is not bound, then the search should start from
the initial office form base. It searches through the planning
network. A constraint upon an attribute of a form is satisfied
at a node, if it is either satisfied by the initially set of the
instantiations of the variable of the office form (for unbound
form variable, the initial set of instantiation includes all the
instances of the form type), or satisfied by a predecessor node
of this node, and no Form Effect Token been added in before
this node, which has a negative effect for the same atiribute.

5. Discussions

By combining the pattern language with an Al planning
system, an Al planner which can manipulate the office forms
has been developed. Comparing to the previous developed
goal-oriented office work representation system, such as
POLYMER, the activity schema in this system becomes

Journal-Editing

Title: Author: Received-date:
reviwer mark
Decision:

Figure 6.

more expressive. For example, the following is an example
of the office activity schema: [Croft & Lefkowitz, 1988]

ACTIVITY: Accept-or-Reject. Way1
Goal: refereed(?paper)
Preconditions: member (?paper, papers)
Decomposition: GOAL decision-reached =
exists (status (?paper))
Control: repeat decision-reached until
or(status (?paper, “accepted”),
status (?paper, “rejected”))
Agents: ?editor = member (?editor, editors)

This activity schema aims to reflect the potential cyclic
nature of journal editing. The activity attempts to achieve the
goal of reaching a decision on the paper and indicating that
thisdecision iseither “accepted” or “rejected”. If the decision
is anything else, the task will continue. The activity schema
has all the information. Whatis weak here is the link between
the activity and the data. More specifically, the use of
predicates. Since the predicates can be freely chosen, the link
between the activity and the data is loose, and open. And the
modelling of the structure of the office data runs a bigger risk
of uncertainty. By using the pattern language described in
this paper, many predicates can be designed as attributes of
office forms, only is a small set of predicates needed. This
makes the system more complete, and stable. For instance, in
the above example an office form can be designed for the
journal editing process, shown as figure 6.

Having defined this form, we can reconstruct the “accept-or-
reject” activity schema as follow:

<accept-or -reject>

office-form: (?paper &(instance-of journal-editing))
goal: (exist (?paper &(decision)))
decomposition: goal decision-reached=

(exist (?paper &(decision)))
control: repeat decision-reached until

(or (?paper &(decision “accepted”))
(?paper &(decision “reject”)))
}

This activity schema looks similar to the previous one, but its
expressiveness is largely strengthened by the direct connec-
tion between the activity schema and the office form.

The coexistence of both representations, the office form and
the predicates in the system, makes it possible for an office
model to model the more routine work by office forms, and
the more changeable situation by predicates. This is closer to
the practical situation.

References

Bracchi, G., and Pernic, .B.,“SOS: A Conceptual Model for
Office Information Systems,” Data Base, vol. 15, Winter
1984.

Croft, B. and Lefkowitz, L., “A Goal-Based Representation
of Office Work™ IFIP Conference on Office Knowledge,
1988.

Hayes, P. J. 1975. A representation for robot plans. In the
advance papers of IJCAI-75. Thbilisi, USSR.

Liu, H., “Task Orented Office Form System”, Research
report for transfer from Mphil to Ph.D, School of Computing
and Management Sciences. Sheffield City Polytechnic, Eng-
land, 1990.

Lum, V., Choy, D., and Shu,N.,“OPAS: An Office
Procedure Automation System,” IBM SystemJ, vol. 21, no.
3, p. 327, 1982.

Tate, A., "Generating Project Networks" In proc. of IJCAI-
77. Boston, Ma., USA. [NONLIN]

Tate, A ., “Goal Structure: Capturing the Intent of
Plans” Proc. of ECAI-84 Pisa, Italy, 9, 1984 [NONLIN]

Tsichritzis, D., “Form Management,” CACM, vol. 25,
July, 1982,

Wilkins, D. 1984. Domain independent planning: repre-
sentation and plan generation. Artificial Intelligence, No.
22. [SIPE]

