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Abstract

Modular Development of Manufacturing Simulation Models

It is common practice within manufacturing companies to create simulation models at 

different time periods. These models are often used to represent various parts of the 

manufacturing systems. In general, these pre-built simulation models are required to be 

integrated together in order to evaluate the entire manufacturing system, this is not a 

simple task. This research addresses the issues involved in the integration of pre-built 

simulation models.

An in depth literature review was carried out to identify current strategies to overcome 

these issues. Based on structured research work, a set of recommendations is proposed 

to ensure easy integration of models. This set of recommendations will help simulation 

practitioners to minimise the errors occurred during the integration of simulation 

models.

The findings conclude more effort is required than is anticipated by most model builders 

and involves far more than ‘just simply changing’ the name of variables. A set of 

recommendations is therefore proposed to cope with the complexity and understanding 

of manufacturing systems. The research focuses on manufacturing systems but in 

general can be applied elsewhere.
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Chapter 1 

Introduction

1.1. Introduction

By accommodating problem solving and decision-making processes, simulation can be 

considered as a very powerful tool as it meets the demands of large-scale manufacturing 

systems identified by Law and McComas (1999). To be more competitive, 

manufacturing companies are forced into lower production costs, continuous quality 

improvements, lower capital costs, and the minimisation of risks. Businesses need to re

evaluate their existing manufacturing systems with the goal of re-organising or 

replacing their current systems. Real-world manufacturing systems are quite complex 

and are heterogeneous in nature, hence mathematical methods do not allow these 

systems to be evaluated accurately. As a consequence, Law and McComas (1999) 

identified simulation has become an invaluable tool for analysing their behaviour as it 

has the ability to deal with very complicated systems. Well known benefits of 

simulation include understanding complex interactions, identifying bottlenecks and the 

ability to perform “what i f ’ analysis. Among the simulation techniques available, 

discrete event simulation software is proving to be highly favourable throughout the 

manufacturing industry discussed by Randell et al. (1999).

1.2. Simulation modelling of large and complex manufacturing systems

Manufacturing companies often develop models for a specific part of a larger 

manufacturing system, for example, a model for a cell. It appears, however, in certain 

situations that companies wish to model the entire manufacturing facility in order to 

evaluate the performance of this facility. Instead of building a new model for an entire 

system, it may be possible to amalgamate previously built models to create the required 

model of the whole system. However, difficulties arise when merging two independent 

stand-alone simulation models, due to one or more conflicts with variable names. It is a 

problem identified by the author, through discussing with simulation practitioners and 

software vendors. This problem has also been recognised by Hlupic (1999), and needs 

to be fully addressed. Modularity is the term used to define the construction of smaller,
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independent and simpler simulation models, which are often referred to as ‘modules’. 

These modules may be integrated to produce a single simulation model. As many 

simulation models become more complex, the need for modularity is increasingly being 

recognised by Decker (1999). Modularity has become a recognised technique to deal 

with these issues. These techniques will be discussed in chapter 2 in more detail.

1.3. Modular development of large scale manufacturing simulation models

In manufacturing companies, it is recognised in a survey conducted by Hlupic (1999) 

that the integration of two or more modules, which were constructed at different times, 

can be a difficult process. Simulation practitioners often only require the modification 

of a section or a single ‘module’ in order to deal with a specific problem. The time to 

alter a module could be significantly less than creating a new simulation model. 

Manufacturing companies will benefit greatly by adopting the modular approach. This 

can be shown in the diagram below (figure 1).

Integrated Model 1

Module 1

Module 4

Module 2

Module 7

Module 3 

Module 8

Integrated Model 2

Module 5

Module 9

Module 6 Module 10

Figure 1 ; Diagram showing the adaptation of modular approach.

1.4. Potential issues with modularity

There are potentially many issues surrounding modularity, some of which are listed 

below;

• Simulation packages may do particular tasks automatically i.e. referencing 

numbers generated by the simulation software. These reference numbers may 

not automatically change when the integration of modules takes place. 

 Consequently, the reference number would be invalid._____________________



• Data could be lost by deleting required building blocks during the integration 

process.

• The flow of entities through a manufacturing system may be misinterpreted 

during the integration of two modules.

• Misinterpretation of variable names i.e. the user may use the same resource 

name. This may not cause an error but might misinterpret the incorrect output as 

the resource utilisation increases.

1.5. The need for research

Ideally simulation practitioners would like to be able to ‘cut and paste’ modules -  

changing variable names, as required. This may not be the case.

The immediate question is:

“Would it be sufficient to bring together modules simply by changing the

variable names?”

This is the basis of this research. As explained in section 1.2. it is an invaluable question 

which the manufacturing industry should consider.

The research hypothesis reflects on the construction of simulation models and analyses 

the difficulty, as well as identifying the issues of modularity of simulation models. The 

main objective of this research is to develop a framework to aid the user to minimise the 

error caused by the integration of simulation modules. In effect, a ‘large’ simulation 

model is to be built from ‘smaller’ components.
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1.6. Contribution to the practice of simulation

This research will contribute to the practice of simulation with particular application to 

manufacturing industries. The benefits of adopting a modular approach are evaluated. 

The following points emerge;

•  Changing the variable name alone is not adequate.

•  A development of a set of recommendations will minimise the potential 

problems of integrating modules together.

1.7. Objectives of the project

The aim of this project is to develop a set of recommendations, which enables modular 

development of simulation models for large-scale manufacturing systems. This aim will 

be accomplished in the following four objectives:

1.7.1. Identify the issues involved in the simulation of large-scale manufacturing 

systems.

In order to understand the needs of simulation models, a survey of the current literature 

in the field of manufacturing systems and simulation will be conducted. The 

information accumulated on large scale manufacturing systems will be analysed and the 

problems encountered in simulation modelling of large-scale systems will be 

determined.

1.7.2. Construct a series of modular simulation models.

This task will consist of integrating a series of modules and constructing simulation 

models, based on real industrial situations. These models will be assembled individually 

as modules, and hence operated independently. Decker (1999), described how these 

individual processes are linked through ‘interprocess communication’. The modules are 

connected in series, parallel or a combination of both. The simulation models will be 

constructed using Arena® simulation software, as described by Collins and Watson 

(1993). Figure 2 illustrates an example of a simulation model with modules and the 

interaction between them.
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OutputInput

Operator Operator

Input Output
Module 6Module 2 Module 4

Module 3
Module 1 Module 5

Figure 2 : Diagram showing the interactions between modules.

1.7.3. Study the issues involved with the integration of the modules developed in 

section 1.7.2.

Experience gained from the above stage will be used to assess the issues and determine 

the difficulty of integrating the simulation modules together. Maxwell (1999) described 

a methodology as a “specification approach method”, where the modules will be

encapsulated, and are only interfaced by their inputs and outputs. He believes that this

method will bring great potential for modular model development in the field of 

simulation. Some of the current issues related to the integration of modules are:-

•  Conflicts in variable names

•  Interaction between modules (Inputs/Outputs)

•  Redefinition of input variables (from individual modules to the

integration of modules)

1.7.4. Develop a set of recommendations to enable the modular development of 

manufacturing simulation models.

The issues involved with the above task will be concluded. A set of recommendations to 

enable the modular development of manufacturing simulation models will be

developed, this will ultimately minimise these imperative issues, if any, enabling any 

further developments, if  necessary.
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1.8. Delimitation of scope and key assumptions

To focus the scope of the project, there must be limitations. There are other areas in the 

field of simulation that can be researched i.e. healthcare, military and transportation. 

This project focuses, in particular, on large scale manufacturing systems. These 

boundaries include the following;

•  Applied to a commercial simulation package.

•  Discrete event simulation (discrete, dynamic and stochastic simulation 

models)

The important assumption made during this research is that the simulation modules are 

validated independently before the integration process takes place i.e. each module is 

independent and operates as an individual module.
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Chapter 2 

Literature Review

To identify the issues involved for the research programme, an in depth literature survey 

is necessary and the review considers the following topics in the field of simulation and 

related areas.

• Definition of simulation

• Discrete-event simulation

• Industrial benefits

• Drawbacks

• Product life cycle

• Modular simulation

• Work done in modular simulation

• Object-oriented simulation

• Distributed simulation

2.1. Definition of simulation

Simulation is a useful tool in mimicking reality; it validates decisions before physical 

implementation. Ball (1998) defined simulation as “ the technique of building a model 

of a real or proposed system so that the behaviour of the system under specific 

conditions may be studied.” As mentioned in section 1.1, manufacturing industries are 

forced to lower production costs and continuous improvements; this has led to 

flexibility in the use of automation and components. As a result, complex production 

systems need to be controlled in planning and manufacturing operations for optimum 

efficiency. However, simulation alone does not provide a solution; instead it provides a 

valuable tool for identification of existing or potential issues. Problems can be identified 

and the opportunity to test alternative solutions can be made possibly without interfering 

with the real system.
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2.2 Different types of simulation models

2.2.1. Static and dynamic

Law and Kelton (1991) defined a static model as “...a representation of a system at a 

particular time, or one that may be used to represent a system in which time simply 

plays no role”. These authors also give an example of a static model by Monte Carlo 

models.

A dynamic model defined by Banks (1999) “....simulation models represent systems as 

they change over time.” He also gives an example of a bank starting at 9am and 

finishing at 4:30pm. The measures of performance can be described by a variety of 

issues; some of these are ‘work in progress’, ‘throughput’ and ‘possible rejects’. A 

dynamic model gives more of a true representation of the real system by including 

queues (bottlenecks within the system), and delays. Animation incorporated in the 

simulation software can also be used to give a visual dimension to the working model.

2.2.2. Deterministic and stochastic

A stochastic simulation model defined by Banks (1999) “..has one or more random 

variables as inputs”. This type of simulation model produces random realistic data as 

well as providing a true characteristic of a real system to the model. The author also 

relates this to the previous example of a bank; it would be classed as a stochastic 

simulation model by the random inter-arrival and random service times. A deterministic 

model is a simulation model that does not contain random numbers, where stochastic 

simulation models contain the probabilistic behaviour. Thus stochastic simulation 

models would be more suited to manufacturing systems.

2.2.3. Continuous and discrete

Harrell and Tumay (1997) defined discrete-event simulation as “change in state at 

discrete points define discrete-event simulation in time as a result of specific events”. 

They also define continuous simulation as “model systems whose state changes 

continuously with respect to time”. This research focuses on discrete-event modelling.



2.3. Discrete-event simulation

As aforementioned, refer to 1.8 this research concentrates on discrete-event simulation, 

focusing on the dynamic, stochastic and discrete simulation models. Banks (1999) 

defines discrete-event simulation as “modelling of systems in which the state variable 

changes only at a discrete set of points in time”.

Simulation models in manufacturing systems are generally discrete-event. One 

particular interest of discrete-event simulation is the analysis of queuing systems. This 

can be especially useful if there is a bottleneck in a manufacturing system; an analysis 

of the work-in-progress of a simulation model, or the flow of entities within a 

manufacturing system.

Discrete-event systems can be either stochastic or deterministic. Stochastic simulation is 

concerned with random probabilistic components; dynamic simulation is related to a 

system represented within a given period of time whereby results are generated. 

Stochastic simulation gives a more realistic representation of a manufacturing system in 

comparison to a deterministic representation due to the randomness used; however, this 

can be disadvantageous by not giving a true representation of the system. This 

randomness gives an estimate of the manufacturing system being investigated.

Deterministic simulation gives a true representation of a system, as long as the 

parameters are correct. This randomness is called static representation; it is a situation 

where there is a set change in the dynamic behaviour in the use of a simulation language 

to compute the change of states at a particular event. The use of simulation language 

portrays the system more realistically than humans, not normally contemplated in terms 

of the changes in events and states. This is where a specific, purpose built simulation 

language becomes useful, particularly in the case of discrete-event distribution.
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Discrete-event simulation can be broken down into key stages according to Tye (1999). 

Figure 3 showing this of the modelling process is shown below.

Experimentation

Design & Development ExperimentationSpecification

Problem Formulation

Objectives Definition

Model Formulation

Model Representation

Model Programming

System Investigation

Data Collection

Verification and Validation

 : ►
TIME

Figure 3 : Overview of the modelling process for discrete-event simulation

2.4 Trends in simulation

Simulation was first introduced in the 1962. Since then discrete-event simulation has 

become widely used by manufacturing industries. Complex systems have increased 

immensely over the past years; therefore, simulation tools have become more 

sophisticated, identified by Davis (1998). Simulation has enhanced the advancement in 

animation (e.g. Quest simulation software). This aids the user to visualise the systems’ 

behaviour more easily. Commercial simulation software has also increased in power 

over the years. In its earlier stages, simulation models were only able to run on 

mainframe computers, and using only Fortran-based languages. As personal computers 

(PC’s) have become more powerful over the last decade, simulation has become a 

proposition for remote computing, identified by Roberto (1997). According to Thomas 

Jefferson from the Intel Corporation (Banks, 1999), the characteristics of simulation 

packages, which must be improved, are ‘speed, flexibility, ease of use, and accuracy.’
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An example would be Ford and BMW companies (Kochan, 1998). Both manufacturing 

companies have identified that simulation plays an important part of the product life 

cycle in new product development.

Avni (1999) provided an example of reducing costs through ‘seven wastes’ in lean 

manufacturing. The author stated that after the ‘seven wastes’ have minimised the 

amount of waste and then simulation can be applied to quantify improvements. The use 

of simulation has expanded immensely and it is considered to be an accepted tool as a 

result of the following:

• Specific purpose of simulation languages

• Increase in computing capabilities.

• Increase in simulation methodologies.

The aim of simulation programs is to map objects from the real world on a ‘one to one’ 

basis. The simplest method of constructing these models is by using a programming 

language. Simula is an example. It possesses expressiveness, extensibility and 

reusability described by Wong et al. (1999). Due to increasing in demands for flexibility 

in manufacturing systems, objected-oriented modelling is gradually becoming more 

popular. It requires minimal effort for design modification. Garnett (1999) summaries 

and analyses a recent survey. The survey suggests that large portions of forty-one 

respondents are currently involved with simulation. A pie chart shown in figure 4 

illustrates the responsiveness of the survey.

H Currently using simulation

44% DO Future plans

0  Have not used simulation

El Have used simualtion

Figure 4 : Responsiveness of a survey conducted by Garnett (1999)
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This pie chart suggests that simulation is very much “alive”; however, Garnett (1999) 

believes that simulation is a growing trend; he also believes simulation could be too 

complex to be mainstream.

2.5. Industrial benefits

In the recent years, simulation avoids disturbance by simulating the implementation of a 

machine before installations are implemented into a real system. The daily operations of 

a real manufacturing system are not disrupted by simulation. Robinson (1994) lists other 

benefits:

• Risk reduction

• Greater understanding

• Operating cost reduction

• Faster plant changes

• Answer ‘what i f  question

• Lead time reduction

• Capital cost reduction

2.5.1. Applications

The industrial benefits can be enormous if simulation is used in the correct manner. The 

initial cost may be high but this can be out-weighed by cost minimising methods 

resulting from a faster decision-making process. There are a variety of applications and 

benefits in the field of simulation. It can be applied to other areas, apart from 

manufacturing industries; nevertheless, they are the most popular applied application 

identified by Hlupic (1999).

Some other applications include:

•  Healthcare (Strandridge, 1999)
%

•  Military (Sisti, 1998)

•  Transportation systems (Ruiz-Toires and Zapata, 2000)

•  Education (Nance, 2000)

•  Construction (Kamat and Martinez, 2000)

12



2.6. Issues in simulation

As computer hardware becomes more powerful, faster and easier to use over the years, 

manufacturing companies are recognising the potential usage of simulation by having 

the ability to simulate manufacturing situations using powerful computers. However, 

simulation also has issues that need to be addressed. Auguston (1997) suggested a 

comprehensive list of the “no-no’s” in simulation, which are tabulated below (table 1),

1. Performing a simulation without clear definition of the objectives.

2. Believing that the model itself can compensate for data collection.

3. Lacking an understanding of statistical processes.

4. Failing to do order profiling.

5. Ignoring the effects of randomness.

6. Incorporating randomness inappropriately.

7. Failing to consider down time.

8. Making illogical assumptions.

9. Failing to question the results.

10. Failing to recognise that simulation is a study tool.

Table 1; Top ten list of simulation ‘no-no’s’ (Auguston, 1997)

2.6.1. Issues: Limits in modelling capacity

Simulation is currently limited in modelling capability. Davis (1998) states that there 

are “critical deficiencies in the existing approaches to simulation modelling and analysis 

that limit both their efficacy and applicability in addressing these systems”. He 

discussed three major concerns regarding simulation; modelling scope, model 

reusability, and model use; he also states that the user overestimates the performance of 

a model by simplifying the assumptions. This leads to errors in the model; therefore, 

validation at each simulation process is becoming essential. Banks and Gibson (1998) 

said that simulation needs constant validation of the simulation process. They state, 

“The expectations are often naive and sometimes unrealistic. If allowed to stand, 

unfulfilled expectations can spell failure for a simulation project”; often, the initial

13



design is validated. Banks and Gibson question the validity of the final design model 

simply because it is ignored, and the concept of validation is vital to the final design if 

misunderstood.

2.6.2. Issues: Validation and verification

One of the most difficult tasks facing a modeller is building an accurate representation 

of a real system, and to be used for decision-making. Decision-makers are concerned 

with the data derived from results of models, and subsequently use this information to 

make decisions. They (the decision-makers) often ask the question: “Are these results 

correct?” To assure these crucial decisions, two factors, verification and validation, have 

attempted to address the issues involved. Schlesinger et al. (1979) defined verification 

and validation by,

Verification: “ensuring that the computer program of the computerized model 

and its implementation are correct,”

Validation: “substantiation that a computerized model within its domain of 

applicability possesses a satisfactory ' range of accuracy 

consistent with the intended application of the model”

Carson (1986) suggested both processes should be involved from the start of the 

simulation project and be consistent throughout, except at the end. Therefore, it is vital 

that verification is employed throughout the simulation process.

In the validation process, there are vast amounts of techniques in testing the validity of 

simulation models. Sargent (1999), described 16 techniques that would be useful in 

determining the validation of simulation models. Some of these are listed below,

• Animation

• Degenerate tests

• Face validity

• Event validity

• Historical data validation

14



Sargent also mentioned numerous techniques for operational validity. This involves the 

output behaviour of the model, which must have the accuracy required consistent with 

operational specifications. He suggested three techniques to approach operational 

validity,

• Graphs of the model system data behaviour

• Confidence intervals

• Hypothesis

In addition Sargent (1999) stated that model verification is crucial and if  the 

programmer uses high-level language then the technique carried out would be by the 

software engineer. Examples of techniques that might be used are object-oriented 

design, structured programming, and program modularity. Therefore, the only concern 

would be simulation functions, programming and correct implementation. There are two. 

techniques for testing simulation software; namely static and dynamic testing. Examples 

of static testing techniques are ‘walk-throughs’ and ‘correctness proofs’; examples of 

dynamic testing are ‘traces’ and ‘internal consistency checks’. Validation of a 

simulation model is the crucial stage of the simulation process and costs the project 

extensively in time and money.

2.6.3. Issues: Incorrect data

The simulation process can be undermined by the use of bad assumptions and incorrect 

data. Auguston (1997) stated “without good input data, the chances of simulation 

success are slim”. However, Carson (1986) concluded that the ‘good’ data is not always 

available. In large manufacturing companies, there are lots of data; but possibly in the 

wrong form: i.e. out of date or incorrect. When a constructed model is in use constantly 

or for a new purpose, then it should be noted that a system is continually changing. 

Therefore, data can be invalid for the system. Carson (1986) suggest re-validating the 

system at frequent intervals. This will ensure that the manufacturing system will be up 

to date with changes.

2.6.4. Issues: Inappropriate use of animation

Animation is also an aid to verify that the simulation model acts correctly with the real 

system. Law and McComas (1989) stated that the use of animation has many 

advantages. However, animation can also provide a ‘false sense of security’ about the
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model presented to the client. Animation requires a lot of time to construct, which may 

defeat the object of the real problem of constructing the simulation model. Animation 

has also its advantages; the visual effect of animation can convince the management of a 

proposed alternative to a solution.

2.6.5. Issues: Modularity

Manufacturing companies have a tendency to build simulation models that represent 

sections of a manufacturing system and at a later stage it is often required to integrate 

these models together in order to evaluate a larger section of a manufacturing system. 

Issues arise due to the level of difficulty when integrating individual simulation models 

together. The issues raised could be potentially very difficult to resolve and time 

consuming. An example could be changing all internal reference numbers to a particular 

building block. Hence, the level of difficulty could be minimised by reducing the 

amount of issues arising and integration between simulation models could be less 

complicated.

2.7. Modularity and the modelling process

In the model building process, modularity plays a part in the following stages of 

development.

i
• Model formulation

• System investigation

• Model representation

• Model programming

• Validation and verification (V&V)

• Experiments

• Documentation

With reference to Tye (1999), there are nine stages to the model building process; 

modularity effects 78% thereof.
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2.7.1. Model formulation

Tye (1999) stated that model formulation is decided on the following:

• How the system elements should be modelled?

• What level of detail they should be represented?

Modularity could play an important part in the level of detail of the simulation model.

2.7.2. System investigation

A system investigation decides what is included in the model. The modules of the 

system, and what is to be the function of each module determine modularity at this 

stage.

2.7.3. Model representation

Model representation is an important part of the modelling process cycle; it describes 

the infrastructure of the system in terms of modularity and prepares the information to 

develop the model on a computer. Modularity allows the planning of a large-scale 

model to be easily understood and planned, as it can be very complex to construct as 

one whole project. This representation allows preparation of the variables and limitation 

of the complex interactions of a large-scale simulation model.

2.7.4. Model programming

It is easier to program each small section than one whole simulation model. Modularity 

is very beneficial in determining the inputs and outputs of each module, as well as being 

easier to construct. This drives towards object-oriented simulation.

2.7.5. Verification and Validation (V&V)

V&V play a crucial part in the modelling life cycle, as noted in chapter 2. Modularity 

affects V&V by making the process of validation easier. Each module is verified and 

validated before integration. It is simpler to validate and verify each module rather than 

one large-scale model. One large-scale project has many variables to consider in 

comparison with each module. V&V often refer to a real time system as one that is 

constantly operating. Modularity can only affect certain parts of the system; therefore, it 

does not disrupt the system as it was validating it as a whole.
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2.7.6. Experiments

This stage offers the possibility of expanding the simulation model. Modularity 

provides the capability of modifying a module, or a number of modules that do not 

affect the rest of the simulation model. As a result, potential problems may be easily 

solved through investigating and modifying individual modules.

2.7.7. Documentation

Documentation of the variables used also plays an important part for the user and other 

people, who wish to maintain and upgrade these models. Documentation will include 

the parameters, as well as the variables, used in each module.

2.8. Complex systems

In the past decade, manufacturing companies have been anxious to lower production 

costs as well as making improvements in quality. This is the underlying philosophy of 

‘Just In Time’ (Storey, 1994). This leads to complex, large-scale manufacturing systems 

due to the increase in flexibility and automation. Some of these problems are much 

more difficult to address in large-scale manufacturing systems, where they are highly 

varied and complex. It is impractical to address the needs of all manufacturing systems 

with one solution or a software package. Clark (1996) stated that many manufacturing 

systems are impossible to analyse through simply thinking and proposing possible 

solutions due to the complexity of manufacturing systems.

In complex manufacturing environments, it is not practical to build the entire 

manufacturing system as a whole. A more feasible approach would be to develop 

individual ‘units’ and then integrate them together as a whole. As complex 

manufacturing systems increase, the importance of decision-making process intensifies; 

simulation can be beneficial in this process.

As mentioned in section 1.2, manufacturing systems are very complex and Nicol et al. 

(1999) stated that there is a gap between the size of simulation models and the scale of 

problems. Four issues are raised:
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■ How do we express a large-scale model?

■ How do we validate a large-scale model?

■ How do we solve a large-scale model?

■ How do we trace and understand the output of a large-scale model?

The authors mentioned above concluded in their strategic directions in simulation 

research that it is more important to understand the results of a large-scale simulation, 

which has millions of interacting entities, with “interesting behaviour at levels of spatial 

and temporal scale”. Joines and Roberts (1999) agreed that the ‘real’ limitation as they 

can foresee is the ability to represent complex systems and advocate discussion of the 

modelling style.

To accommodate this rapidly growing field of simulation, research is crucial in 

providing a more precise and accurate decision-making progress. The process of 

building simulation models can be time consuming and very costly; new techniques and 

research is required in order to reduce these effects.

2.9. Modular simulation

It appears that little research has been carried out concerning the issues surrounding the 

modular development of manufacturing simulation models with the use of a commercial 

package; although, certain methodologies have been carried out in hierarchical modular 

modelling within the field of discrete simulation (Proth et al., 1995, Zeigler, 2000).

Pidd and Castro (1998) defined modular simulation, in terms of large-scale systems that 

are fragmented into smaller sub-systems, as ‘developing modular approaches to reduce 

complexity of model building and to make such models easier to maintain. The authors 

suggested that the modular approach is the ‘key’ to cope with the complexity of large 

systems. Decker (1999) also suggested that modular simulation is the only way to 

satisfy all the clients’ requirements, and sometimes, conflicting demands.

An approach to cope with complex dynamic systems is to use modular, hierarchical 

system modelling as stated by Praehofer (1996), which notably Ziegler (1984, 1987,
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1990, 1993) introduced discrete-event simulation in the 1970’s. According to Sargent 

(1993), there are three basic approaches to hierarchical modelling,

•  Closure under coupling

•  Metamodels

•  “Specific software frame”

However, Sargent (1993) stated these methodologies as ‘hierarchical modelling are not 

readily available’ because encapsulation requires a different approach of modelling 

other than the “current practice” which simulation languages are not designed to 

execute.

2.10. Potential benefits of modularization for manufacturing industries

The proposed set of recommendations will enable simulation practitioners to plan the 

development of individual models and facilitate the subsequent integration. The 

approach will enable manufacturing companies to maintain individual modules more 

easily, and be able to alter a module easily, without affecting the rest of the integrated 

modules. The advantages for manufacturing companies include;

•  Save time and cost

• Less prone to error

•  Reusability

•  Independence

•  Multiple groups

•  Maintainability

•  Flexibility

Save time and cost
Once the simulation model is constructed, it will posses the advantage of being in a 

modular infrastructure. Modifying a particular module will be less time consuming and 

therefore less costly than constructing a completely new simulation model.
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Less prone to error

It is easier to model a ‘real-system’ by breaking it up into sections rather than capturing 

it as a whole at once. Building and capturing smaller sections of the ‘real-system’ aids 

verification and validation. Consequently, the whole process is less error prone.

Reusability
Constructing large simulation models is often time consuming process. After the model 

has been built, it then has to be validated by constructing experiments to test the various 

different scenarios. Reusability of modules reduces the development time of 

applications. Therefore, the ability to re-use the model can be very beneficial.

Independence
As the complexity of applications increase, the need for a modular structure also 

increases. Highly independent modules are becoming necessary. This enhances the 

concept of encapsulation by minimising interdependencies between modules. Each 

module would be able to be verified and validated as it is integrated into a larger 

simulation model.

Multiple groups
Modularity facilitates team working. Each independent module can have a team 

working on it in parallel with other teams. Consequently, a simulation model can be 

built quickly in comparison to one person building a large-scale model. Communication 

between groups may provide valuable new ideas.

Maintainability
It will be easier to maintain and verify a particular independent module than it would be 

to alter a whole complex of simulation models. As large scale manufacturing systems 

change to meet new requirements, it will be relatively easy to re-configure and maintain 

the model by altering specific modules.

Flexibility
Modularity facilitates flexibility. Each module is highly independent and could 

therefore be changed to satisfy a different purpose. A modular infrastructure could 

readily adapt to changes in the manufacturing system.

21



Manufacturing systems have become so complex and diverse that a breakdown into 

smaller modules has become a requirement. Modularity will be most beneficial and 

applicable to large-scale simulation projects.

2.11. Work done in modular simulation

Modularity has been used in many areas of application and simulation languages; but a 

limited number of authors have applied modularity to a commercial simulation package, 

which has a simulation language with a simulator. Zeigler (1984, 1987, 1990, 1993) has 

discussed the methodology of the use of sub-models placed in a hierarchical structure in 

discrete-event systems. This consists of encapsulation, where sub-models are ‘coupled’ 

with other sub-models through the emphasis of inputs and outputs. However, modular 

simulation research has been carried out ‘indirectly’ to the related research and is 

concentrated in two areas. These two main areas are object-oriented simulation and 

distributed simulation. Figure 5 shown below shows how modular simulation using a 

commercial package fits into the research.

Distributed Simulation

Modular Simulation

Object-oriented Simulation

Modular development o f simulation models 
using a commercial package

Figure 5: Where modular simulation using a commercial package fits into 
research
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2.11.1. Object-oriented simulation

Modularity has been applied in object-oriented simulation (Roborts and Dessouky, 

1998, Daum and Sargent, 1999, Hwang and Choi, 1999, Ninios et al., 1995). It is 

chosen because each object is placed into sub-systems, and hence is in modular form as 

well as being encapsulated in the rest of the simulation program. Each sub-system 

communicates through their inputs and outputs to the rest of the program.

Object-oriented simulation technique is popular due to the benefits of maintainability, 

extensibility and reusability (Wong et ah, 1999). It has been noted by Narayanan et al.

(1998) that one fundamental problem exists when applying simulation languages to 

manufacturing systems; the authors state this as abstractions used to describe the system 

being analysed. This rapid growth is appealing because it provides a more ‘natural 

mapping’ paradigm than the traditionally used concept of the ‘seize-hold-release’ 

paradigm, as stated Narayanan et a l (1998). This major change in concepts has the 

ability, in manufacturing systems, to map ‘one to one’ between objects. The key 

principles of object-oriented simulation are based on the three concepts of classes, 

inheritance, polymorphism and encapsulation.

Narayanon et al. (1998) discusses five different research areas to implement object- 

oriented simulation:

•  BLOCS/M

• DEVS

•  Lavel

•  OOSIM

• OSU -CIM

As noted by Narayanon et al. (1998), each one of architectures mentioned above, a 

strategy is also discussed to implement object oriented simulation; however, according 

to these authors, they have isolated two distinct phases: development and testing. The 

development of the architecture (figure 6) begins with a domain. At this point, a process 

and modelling takes place which, results in the proposed architecture (‘...a generic 

manufacturing system modelling formalism...’). Using the traditional simulation 

process, testing of the proposed architecture and all architectures has been proven to be
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workable. Narayanan et a l (1998) also notes that the testing phase shows opportunities 

for better optimisation of architecture.

Table 2 shows the research of all the architectures of object-oriented simulation (page 

23) and Narayanan et al. (1998) have identified the research objectives with justification 

of these objectives. Figure 6 shows the development of the architecture, which is used 

to create and analyse specific simulation models. The implementation and applications 

are linked to the development of the architecture, which demonstrates and evaluates the 

classes and methods. Table 2 shows the research objectives for object-oriented 

simulation and the justification for each system or group. Figure 7 and 8 shows the 

different structures and abstractions for the different manufacturing entities of each 

architecture. In these structures, two fundamental issues are discussed; the first issue is 

to discuss the representation of a specific behaviour and the way the architecture of 

separate structures are coupled. They conclude in the paper that object-oriented 

simulation can be very beneficial but the design principles and domain analysis must be 

further developed to ensure maximum benefits. These authors believe that the coupling 

mechanism is a weak point in object- oriented programming and need further 

development.
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research’ (Narayanan et al.% 1998)
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System/Group Research Objectives OOP Rationale

BLOCS/M

Design a library o f software modules to assemble 
special-purpose simulation models for manufacturing.

Make the class library more reusable and easily 
comprehensible.

Develop simulation models so they run efficiently.

Reusability.

Ease o f maintenance.

DEVS

Hierarchical and reusable model bases.

Combining simulation modeling and Al techniques.

Exploring distributed simulation models and 
architectures.

Exploring compatibility 
between OOP and discrete-event 
world-view.

Reusability.

Laval

Develop an intelligent object-oriented model and 
simulation o f manufacturing systems.

Simplify the description of complex systems.

OOP provides a hierarchical 
world-view and polymorphism.

Natural mapping.

OOSIM

Develop an object-oriented simulation modeling 
framework for representing the interactions between 
parts, automated processes, and operator problem 
solving for discrete manufacturing systems.

Design a reusable library o f classes to support 
modeling o f manufacturing systems at different levels 
of abstraction from the viewpoint o f material flow 
control and supervisory control.

Support real-time, interactive simulations.

Natural mapping 

Reusability.

OSU-CIM

Develop a modeling, analysis and optimization 
environment for manufacturing systems.

Develop a modeling framework that permits the 
separate specification o f physical, information and 
control elements.

Develop formal methodologies for multi-level 
modeling and simulation model parallelizing.

Design and implement an OOP-based modeling 
environment that permits programming-free model 
creation and multiple problem-solving approaches with 
a single base model.

Modularity and reusability.

OOP facilitates modeling at 
different levels o f abstraction.

Natural mapping.

SmartSim/
SmarterSim

Produce a simulation environment that can be used by 
manufacturing engineers as a computer-aided design 
tool for the design of manufacturing systems.

OOP is useful in creating a 
simulation program generator.

A good mapping is possible 
between system entities and 
icons in the software.

Reusability.

Table 2: ‘Research objectives and rationale for using obiect-oriented

programming’ source (Narayanan et al.% 1998)
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XOmochftf?l£catiaflc£̂P
cTrrhviKSn̂ H
dia±Mci415

OSU-CIM

Physical^ Informational
9  Plant* 9  CustomerOrdei*
9  WorkCenter* 9  ShopOrdei*
9  'Workstation* 9  Operation*

AssemblyWorkStation* $  Routing*
9  MatcrialKandlci* 0  BOM*
9  Queue* 9  ItemMasterS
9  CapacitatedQueuC*
f) BufFcrS

C ontro l^
QueueControHer*
AssemblyQueueController*
WorkCenterControllcrS

lllotc: The OSU-CIM arehitce-: 
;ture is composed of a collection; 
jof the classes shown. The h ie r 
archy typically does not com-: 
;prise many levels.^ ;

SmartSim/
SmaterSim

Simula tot

Object

Shtionaiy 
Simulation Part 

Object

Router

Event

Source Sink

Subsystem

Storage Facility 
Workstation

Conveyor

Figure 8: ‘Manufacturing classes and hierarchy’ (Narayanan et al.* 1998)

28



Luna (1991) described modular concepts applied to object-oriented environment. He 

discuses two advantages, firstly, each task is clearer as it is in a modular form and 

secondly, each part can be tested and developed incrementally. Sargent and Daum

(1999) mentioned object-oriented simulation and hierarchical structures and conclude 

that for ease of manageability, the overall problem can be broken up into smaller 

problems. This leads to inter-operability.

However, Ball (1998) stated that the bridge between object-oriented techniques and 

traditional software design is still far off. Traditional software has been designed so that 

events and data have been used throughout the software but in the object-oriented 

approach, data and events are been grouped together. An example of software that uses 

object-oriented simulation is Simple ++.

However, Ulgen (2000) viewed that there should be no ‘hard coding’ required for 

object-oriented simulators because it is difficult to learn but recommends a ‘menu 

driven’ simulation software that captures all the true characteristics of object-oriented 

simulation.

Meinert et a l (1999) provided an example of a modular system: the United States Postal 

Service (UPS), where, the modular system evaluates the material handling system. 

Commercial simulation packages, based on a simulation language, have less flexibility 

in modularity. These authors have also mentioned the use of a hierarchical structure 

with the incorporation of sub-models.

2.11.2. Distributed simulation

Distributed simulation, also known as parallel simulation involves modularity. The 

basic concept of this technique is the execution of discrete-event simulation programs, 

where it is executed on a multiprocessor system or a network of workstations. Cavitt et 

al (1996) stated that distributed simulation is a very cost-effective technique to 

examine, and the ability to understand complex real world systems.
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Distributed simulation can bring many benefits. It reduces the simulation run time by 

taking advantage of multiple processors working in parallel. Other advantages of this 

technique mentioned by Fujimoto (1999) are,

• Geographical distribution

• Execution of integrating simulators from different manufactures

• Fault tolerance

Luna (1992) discussed a scheme called a “coupling scheme”. This consists of each 

module being interfaced with the inputs and outputs. They argued that each module 

must be regarded as a “black box” and that the only communication to the mechanics in 

the black box are through the inputs and outputs. They also stated that each module 

must be independent.

Outputs

Figure 9: Inputs and outputs can only communicate to black box. (Luna, 1992)

Davis (1999) argued from the researchers point of view that the initial development of 

distributed simulation was to cope with large models but, as stated in section 2.4., 

computers have increased in power and memory. Hence, the need for research to 

address these issues has declined. However, previously, the Defense Modelling and 

Simulation Office (DMSO) of the Department of Defense (DoD), U.S.A. attempted to 

develop a framework that allowed individual models to operate together in a situation, 

called High Level Architecture (HLA), using distributed simulation applications. The 

advantage of this technique is that it facilitates the reuse and interoperability of 

simulations. Davis and Moeller (1999) listed some of the advantages for HLA,

t

• Maximise the reusability of existing simulation models.

• Allow individual simulation models to be integrated in order to model more 

complex systems.

• Allow the individual simulation models to interact that support distributed 

simulation technologies.

Inputs Module 
(black block)
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Davis (1996) described that HLA is a technique, which saves simulation models from 

previously constructed simulation models, which are not used again, once the problem 

has been solved. Hence, simulation models will be used to their maximum potential, but 

this does not ‘promote the future’ of simulation and states that it is not the ideal 

framework for future simulation needs. John Carson from Autosimulations states that 

the HLA is too complicated to develop unless it is simplified and ‘re-jigged’.

Moreover, McLean and Riddick (2001) stated with reference to software architectures 

that issues of integration problems encountered by software vendors and simulationists 

need to be addressed.

2.12. Conclusion

It is evident that many authors have addressed in many diverse areas, but it appears that 

only one journal (Meinert et a l , 1999) has addressed the issues surrounding commercial 

packages, which have a simulation language content as well as a simulator.

Therefore, research in the modularity of simulation models using a commercial package 

is required in order to reduce the gap between research in object-oriented simulation, 

distributed simulation and real manufacturing systems. A more detailed hypothesis (a 

refinement of section 1.5.) can be stated, namely

“Would it be possible to create an integrated simulation model from independent 

simulation modules simply by changing the variable names?”
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Chapter 3 

Methodology

3.1. Introduction

This chapter endeavours to describe the research work undertaken in order to address 

the issues identified in chapter one. The chapter begins with a brief introduction to 

various software packages that are currently available on the market followed by a 

justification of software package selected for this research. Also included in this chapter 

is a detailed analysis of the simulation software package, namely Arena.

Nevertheless, the ultimate objective of this chapter is to elaborate on the research work 

carried out. Thus, analysis of each phase of the research process is embarked upon. 

There are a total of five phases of research work undertaken, namely; analysis of Arena 

building commands (phase 1), elimination of logic blocks (phase 2), experimentation 

(phase 3), recommendations (phase 4) and conclusion (phase 5). Each phase of the 

research procedure is based on Arena. Finally, the chapter ends with a detailed example 

of an experiment conducted.

3.2. Selection of software

There are many packages available on the market that could be used for this analysis, 

some examples are Arena (Sadowski et al., 1998, Arena Internet web page, 2000, Swets 

and Drake, 2001, Kelton W.D. et al., 1998), Automod (Phillips, 1998, Stanley, 2000), 

Quest (Bames, 1997, Mahajan et al., 1993, Quest Internet web page, 2000), Witness 

(Rawles, 1998, Witness Internet web page, 2000), Extend (Krahl, 2001, Extend Internet 

web page), Simul8 (Simul8 Internet web page, 2000).

There are many different representations of simulation software but resource based and 

entity flows are the most popular. Resource based is represented by each resource 

defining their individual inputs and outputs. Entity flow is represented by a series of 

building blocks to determine the flow of each entity.
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The diagram (figure 10) below illustrates the two major types o f  representations:

Input

RELEASE

DELAY

SEIZE

STATION

STATION

CONVEY

ACCESS

EXIT

Output 

Entity flow

Input

Resource
(Logic)

Conveyor
(Logic)

Output 

Resource based

Figure 10: Types of representations

Some of the well-established simulation software is listed below illustrating the 

categorisation (table 3).

Sim ulation software Resource based E ntity  flow based
Witness X

Quest X
Simul8 X
Arena X

Automod X
Promodel X

Table 3: Categorisation of well-established simulation software packages
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For the analysis, a simulation package called Arena (Collins and Watson, 1993, 

Sadowski et al., 1998, Arena Internet web page, 2000, Swets and Drake, 2001, Kelton 

W.D. et al., 1998) was selected. The justification for using Arena is listed below:

•  Well-established commercial product and one of the most widely used 

software package.

•  In-house expertise (within Sheffield Hallam University).

•  Good technical support

•  Flexible to suit many industries

•  Easy to use

•  Previous experience of the author

Arena is a highly recognised simulation package that has been used by large 

corporations. Companies who utilise the Arena package (Kelton et al., 1998) have 

found the package to be an invaluable tool. Even though Arena package was used for 

this research, yet the research and outcomes can be generalised to suit for other 

simulation packages.

3.3. Arena simulation package

Arena® provides flexibility for a broad range of applications. The package is based on a 

simulation language known as SIMAN. The package requires input parameters (data) as 

well as the logic in order to create a simulation model. Consequently, the user requires 

only a minimal knowledge of programming languages. Some of the targeted markets 

include; manufacturing, call centres and business processes.

Arena also has the ability (Professional edition) to create customised building blocks. 

This provides flexibility to the user. Related subjects can be grouped together as 

libraries within templates.

Structure of Arena software

Arena is based on simulation language called SIMAN, which was developed in 1981 

and offers a range of building blocks. These building blocks carry out a specific task. 

They are grouped together into five templates i.e. common, support, transfer, blocks and
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elements. Arena has three levels of templates. The lowest level template used in Arena 

is the elements and block templates. These are the basic statements of SIMAN, and are 

very useful for complex algorithms or loops. Block and element templates are the 

lowest levels of logic and data modelling in Arena. Block modules define the logic and 

characterisation of different objects that are used in simulation. The element module 

becomes useful when additional information is required that is not represented by 

higher-level modules i.e. tallies and frequencies.

Higher levels of templates are the support and transfer. The building blocks within these 

templates are more customised to the user. This makes the building block easier to use 

in comparison to the block and element templates.

The highest-level template in Arena is the common template. High-level template in 

commercial simulation packages caters for common processes or a collection of 

processes. They are therefore less flexible to the users’ requirements but very user 

friendly. This is illustrated in figure 11.

I A COMMON

ELEMENTS BLOCKS

SUPPORT TRANSFER

Figure 11; Template structure of Arena simulation software



The diagram (figure 12) below outlines the procedure of the experiments.

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

Analysis o f  
Arena building 

blocks

Experimentation

Eliminate logic 
blocks

Conclusions

Recommendations

Figure 12: Outline of different phases of experiments conducted

Details of each individual phase will be described in chapter 4.

3.4 Conclusion

In the attempt to address issues raised in chapter one, the author anticipated to lay the 

foundations for this research project through in-depth investigation of potential 

resources and knowledge currently available. The research process provides a good 

insight to the simulation software Arena, which will prove to be invaluable to the 

experimentation at the next stage. According to the research undertaken, Arena 

appeared to be very user friendly and highly suitable for the purpose of the 

experimentation to be undertaken.

A discussion of the step by step process of the experiments conducted is presented in 

the following chapter.
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Chapter 4 

Experimentation

4.1. Introduction

This chapter endeavours to describe the research work undertaken in order to address 

the issues identified in chapter one. The ultimate objective of this chapter is to elaborate 

on the research work carried out with a detailed example of an experiment conducted. 

Thus, analysis of each phase of the research process is embarked upon.

There are a total of five phases of research work undertaken, namely; analysis of Arena 

building commands (phase 1), elimination of logic blocks (phase 2), experimentation 

(phase 3), recommendations (phase 4) and conclusion (phase 5). Each phase of the 

research procedure is based on Arena.

4.2. Phase 1: Analysis of Arena building commands

Arena building blocks generally consist of a logic element and a data element. 

However, they can be characterised into three groups;

• Logic only

• Data only

• Logic and Data

The logic element is defined by Arena software as;

“ ....Logic modules are connected together to define the process through which 

entities flow (customers, work pieces, patients, communication packets, etc.) During the 

simulation run, entities may arrive at and depart from logic modules that remain 

dormant until they are activated by the arrival of an entity....”

Source: Arena On-Line Help
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The Arena software also defines the data element as:

“ Data modules are used to define data associated with the model. Unlike

logic modules, data modules are not connected to other modules. Entities do not arrive 

at or depart from a data module. Data modules are passive in nature and used only to 

define data associated with the system ”

Source: Arena On-Line Help

Often building blocks are constructed with a combination of logic and data elements. 

This is to provide the user a more useful building block.

In addition, each building block belongs-to one of eleven different categories, namely:

• Entities and attributes

• Station

• Resources

• Queues

• Storages

• Sets

• Transporters

• Conveyors

• Sequences

• Statistics

• Run control

In order to determine the appropriate section for each building block, the following 

steps are taken:

1. Insert a building block from one of the five templates into an active window, shown 

in figure 13. In this case, the building block inserted into the active window is 

ASSIGN from the support template.
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N a v ig a te

No objects selected.

| Eft Start | Arena [M odeiiT7
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[ 4 ^ 0 ! E • $ 5 : 2 5 AM,

Figure 13; Insertion of building block from templates

2. Make the building block active and insert the required information in all the 

parameters inside the building block (shown in figure 14). The information inserted 

is a variable name called dummy, with a value of 1.

[B1 £ie Edit iiiew : £oels >' frtarige V ■ flbjeel Bun Window £Mp

 .................   i . .  111360,1556] . „

tiJ3K  Floppy (A.) ~ |  ^M crosoft Word • Ch | 5:29AM'Arena - [WodellJ s j My Computer

*fe Navigate

Chance

Choose

□
[Assign

Batch

□

Count

<> Support

Figure 14: Input variable name
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3. Go to the run menu, SIMAN and then view command (shown in figure 15). This 

is to view the basic SIMAN commands.

t Arena -[M odellJ

loci* grange gbject | ] ] Q  ifndow Uefc

"a
' £«<-fo(wafd

m u

Choose

Navigate

► N ►► n  h  «

■Displays SIMAN model and experiment

So F5
s t s t ^ X f : X l : : n b n ; i X

East-Toward
. tP.-

-  ! j

\ ....11
\  ¥**

Check fclodel F4 
tjiReaciew Ertcn M: I >s........................... 1 I f

U

. . 1 .POO.OJ
a a s u , . | I^A rena-[M odeM ] » My Computer f~G33H Floppy {A) f 3 yMfc.0roftV0rd-Ch.-l 5.3SAM

Figure 15: Viewing basic SIMAN commands

4. Two windows will appear regarding the building block (shown in figure 16).

> Arena - Modell
|£ ite  £ d i t l ; y ie w j i ' Ip o lS ; ' fenange Object f lu n  T^indow  : H elp

O  S u p p o rt

VARIABLES:

Batch

BE

Chance Eodel;stat̂ en̂ ;;(for:::w
- l / '- H a k in g a s s i j
d u rn y l;

Choose

Count

*fe N avigate

[ffiStart 11£$ Atena’- M idair, * 1 'J j  y/cornpiier f y  MiS^ft W oid-cEj: a  7&34 AM;:J3 3  3H Floppy (A)

2 windows

Figure 16: Pop up windows following insertion of building block
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5. One window will show data information with a extension filename called *.exp and 

the other window is a logic window, with an extension filename *.mod (shown in figure

17)
rngnnA rens - Model!

E*e £c4t Joob &rsnga Qbjeet flui yhdow Help

Jj D e» Q  I & &  a  U\ * * Ih F . ! ^  - 0 5 1
!'■•  P  D : . c ' : EJ> A  j  ■> <> -  X  ’  , ®  -  I s  -  S 3  -  I A  f 4

r=sr;!^jjE|
O  --Support

n a g

mmm

□
Count

Ujw

e! 9ta teaen ts toe acdule: Assign 2 

: TRACI, - 1 , '’-Ka)ting assignaentsN n"

► M ►► II H

S la rtll^ A ia n a -M o d e n  ■ : j j  My ConpUe. | S J  3k Poppy (A.) | 3yM c.090ftWo.d-Ch . |  J v A j  537 AM

Figure 17; Extension files *.exp and *.mod

6. The SIMAN language scripts that are written inside these windows determine 

the building blocks function. The information written (SIMAN) in these 

windows determine the characteristics of the building block (shown in figure

18).

*Eie £dft yiew Jods &iange fibtect flun Vfndow Hefci

i f D c s a | ® l &:i  > e ; o  r< | p | i o « “ 3 | * i i g
p  A  ; J L  »  ® . ' r  ; =  *• fA  *■ I ^  r^>

' -      ———,—„...  __
O  Support

... ' -*■'-------
'AtA.V' t  ->

/  ‘ ’ VARIABLES: dummy;

Chance

HodeI:: s ta tem en ts= f o r ?moduie: -  Assign 2

-1 ,"-Making a s sig n m en tsW :; 
dummy*!;Choose

•te Navigate

A rena-M odel! Cnmputet / .  ( C£j3^Roppy(Aj [ MbccoftWofd > C h 'j  35  5:37AM j

Figure 18: Determination of building block characteristics
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An example of an Arena command that only contains logic properties is a CHANCE 

building block. To illustrate this further a few building blocks examples are shown 

below (table 4);

Template Logic only Data only Logic and Data
ROUTE Transfer X
ASSIGN Blocks X

RELEASE Blocks X
RECEIPES Common X

SETS Support X
STATIONS Element X

ADVSERVER Common X
SIGNAL Support X

FREE Transfer X

Table 4: Examples of building blocks

Certain Arena commands can be eliminated from the analysis, as they are not internal 

commands, but external commands. These building blocks are blacked out to show 

these building blocks are not included. An example of an external building block would 

be the WRITE building block in the support template.

The results of the experimentation with the remaining building blocks are shown below 

(table 5 -9 ) ;
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Statics X DATA
Depart X X BOTH

Receipes X X DATA
Arrive X X X BOTH

Sequences X X X BOTH
Actions X BOTH
Leave X X X LOGIC

Process X X BOTH
Enter X X BOTH

Resources X X BOTH
Server X X X X X BOTH
Inspect X X X X X BOTH

Advserver X X X X X X X X BOTH
Containers X BOTH

Menu X BOTH
Statistics X X X X DATA

Sets X X X X X DATA
Queue X DATA
Storage X DATA

Simulate X DATA
Expressions X DATA

Variables X DATA

Note:- The building blocks that are blacked out are commands that communicate 

outside the Arena environment and are irreverent to the research.

Table 5; Results from experiments conducted (common template)
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Support template
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Assign X ' BOTH
Batch X LOGIC

Chance X LOGIC
Choose X LOGIC
Create X BOTH

Dispose X LOGIC
Duplicate X LOGIC

Match X BOTH
Read X BOTH
Signal X BOTH
Split X LOGIC
Tally X BOTH
Wait X BOTH

PickQueue X LOGIC
PickStation X BOTH

Station X BOTH
Delay X BOTH

Release X BOTH
Seize X BOTH
Store X BOTH

Unstore X BOTH
Count X BOTH

Note:- The building blocks that are blacked out are commands that communicate 

outside the Arena environment and are irreverent to the research.

Table 6: Results from experiments conducted (support template)
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Transfer Template
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Route X LOGIC
Route Path X DATA

Activate X BOTH
Allocate X BOTH

Free X BOTH
Halt X BOTH

Move X BOTH
Network Link X DATA

Request X BOTH
Transport X BOTH

Transporter X BOTH
Access X BOTH
Access X BOTH
Convey X BOTH

Conveyor X BOTH
Distance X DATA

Exit X BOTH
Segment X DATA

Start X BOTH
Stop X BOTH

Table 7: Results from experiments conducted (transfer template)
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Blocks template
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Combine X LOGIC
Copy X LOGIC

Create X LOGIC
Delay X LOGIC

Dispose X LOGIC
Dropoff X LOGIC

Duplicate X LOGIC
Proceed X LOGIC
Qpick X LOGIC
Split X LOGIC

Unblock X LOGIC
Scan X LOGIC

Station X LOGIC
Transport X LOGIC

Alter X LOGIC
Assign X LOGIC

Preempt X LOGIC
Release X LOGIC

Seize X LOGIC
Select X LOGIC
Signal X LOGIC
Insert X LOGIC
Match X LOGIC
PickQ X LOGIC
Pickup X LOGIC
Queue X LOGIC

Request X LOGIC
Search X LOGIC
Wait X LOGIC

Group X LOGIC
Store X LOGIC

Unstore X LOGIC
Free X LOGIC
Halt X LOGIC

Activate X LOGIC
Allocate X LOGIC
Capture X LOGIC
Move X LOGIC

Relinquish X LOGIC
Remove X LOGIC

Route X LOGIC
Access X LOGIC
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Convey 
Exit 
Start 
Stop 

Block 
Branch 
Tally 
Trace 
Count 
Detect 
Findj 

•Read 
Write 
Begin 
Close 
Else 

Elseif 
Endif 

Endwhile 
Event 

If  
Include 

Modifiers 
VBA 
While 
Zap

Note:- The building blocks that are blacked out are commands that communicate 

outside the Arena environment and are irreverent to the research.

Table 8: Results from experiments conducted (blocks template)

X LOGIC
X LOGIC
X LOGIC
X LOGIC

X LOGIC
X LOGIC

X LOGIC
X LOGIC

X LOGIC
X LOGIC
X LOGIC
X LOGIC
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Elements Template
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Arrivals X Data

Attributes X Data

Discrete X Data

Nicknames X Data

Sequences X Data

Stations X Data

Failure X Data

Resources X Data

Schedules X Data

Statesets X Data

Queues X Data

Rankings X Data

Storages X Data

Sets X Data

Distances X Data

Intersections X Data

Links X Data

Networks X Data

Redirects X Data

Transporters X Data

Conveyors X Data

Segments X Data

Counters X Data

Cstats X Data

Dstats X Data

Reports X Data

Outputs X Data

Project X Data

Replicate X Data

Tasks X Data

Trace X Data

Begin X Data

Expressions X Data

Frequences X Data

Initialize X Data

Levels X Data

Parameters X Data
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Rates 

Recipes 

Reportlines 

Seeds 

Statics 

Tables 

Tallies 

Variables 

Blockages 

Continuous 

Distributions 

Events 

Files 

Include 

Pictures 

Rules

Note:- The building blocks that are blacked out are commands that communicate 

outside the Arena environment and are irreverent to the research.

Table 9: Results from experiments conducted (elements template)

4.3. Phase 2: Elimination of logic blocks

After determining these properties (logic, data or both), the logic building blocks can be 

eliminated from the experiments. This is because the logic determines the control and 

direction of entities through the simulation model and does not affect the integration of 

modules. The logic of the simulation model is within the module and therefore does not 

effect the inputs and outputs connected to other simulation models. This information is 

detailed from pages 46 to 47.

4.4. Phase 3: Experimentation

Arena experiments are conducted by investigating a particular Arena building block in a 

simulation module. The module must have the building block being investigated. Once 

this module runs successfully as a single module, it can then be duplicated i.e. two 

modules can then contain the same building block name.
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Integration of the two modules takes place depending on the structure of the inputs and 

outputs of the simulation modules. Since the two modules have the same building 

blocks, the variable names require changing. This case is the same for other building 

blocks. Once this has been completed, then other integration issues can be investigated.

This process will be repeated until all the remaining building blocks have been 

investigated. The issues arising with respect to the integration of modules are derived 

from the experiments conducted and are explained in chapter five.

The process of elimination of the Arena building blocks began from the common, 

support, transfer and then the element template. The block template is eliminated, as all 

block building blocks are logic (phase 2). However, some logic building blocks will be 

required, as the element building blocks require some of the logic building blocks in 

order to run.

4.5. Phase 4: Recommendations

A series of recommendations can be obtained from the identified issues. The author 

believes that these recommendations would be beneficial for the modularity 

development of simulation models in Arena simulation package. This will be described 

in chapter five.

4.6. Phase 5: Conclusions

From all the experience gathered and experiments conducted, a discussion and 

conclusions can be produced to question the feasibility of the integration of simulation 

models. This discussion will be presented in chapter five.

4.7. An example of experiments conducted

This section gives an insight into the type of experiments conducted. The example 

below (figure 19) consists of a first module with a conveyor and then the second module 

that consists of a process and a conveyor. In both these modules, there are also VBA
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building blocks. These building blocks are to retrieve external data as well as outputs 

data to an external source (for e.g. Microsoft® Excel).

M odule 1 M odule 2

Conveyor Process » » » » C o n v e y o r

Output data Input data Output dataInput data

Figure 19: Example of an experiment using VBA

In the simulation software Arena, this is represented by a collection of logic building 

blocks (figure 20):

M odule 1 M odule 2

CREATE
CREATE
VBA(l)

VBA(3)
SEIZE

STATION DELAY
ACCESS STATION
CONVEY ACCESS
STATION CONVEY

EXIT STATION
VBA(2) EXIT

DISPOSE VBA(4)
DISPOSE

Figure 20; Representation of building blocks in Arena

In order to integrate these two modules together, the DISPOSE building block from the 

first module and the CREATE building block must be deleted. Thus, permitting the 

integration of the two modules. This is shown in figure 21:

In tegrated  M odule 

Conveyor » » » »  Process » » » » >  Conveyor

Figure 21: Deletion of DISPOSE and CREATE building blocks for successful

module integration
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Therefore, the revised Arena building blocks would be (figure 22),

Integrated module

CREATE
VBA(l)

STATION
ACCESS
CONVEY
STATION

VBA(4)
EXIT

VBA(2)
SEIZE

DELAY
STATION
ACCESS

RELEASE
CONVEY
STATION

VBA(4)
EXIT

Figure 22: Revised representation of building blocks in Arena

In this example, all conflicts in variable names have been eliminated during the initial 

experimental stage i.e. using different variable names of the following building blocks:

• STATION

• SEIZE

• ACCESS

• CONVEY

• RELEASE

An example of an integration issue would be the VBA cookie numbers. VBA cookie 

numbers are internal reference numbers from a VBA building block in the simulation 

model and this is connected to a particular VBA subroutine code. This can be illustrated 

in figure 23;
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V B A  B uild ing b lock in sim ulation m odel V B A  sub routine

Private Sub V B A _ B lo ck l_ F ire()

V B A  (1)

End Sub

Figure 23: Connection between a VBA building block and a VBA subroutine code

Before integrating the two modules together, the relationship between the VBA cookies 

and the VBA coding are automatically defined. Once integrated, the VBA cookie 

numbers lose the relationship. This may not cause an error but may perform an incorrect 

task (depending on the VBA coding) due to the referencing of these VBA cookie 

numbers. Therefore, by identifying these issues, the author can establish a list of 

recommendations in order to answer the hypothesis.

In the next chapter, the results of the remaining issues are presented and discussed.
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Chapter 5 

Results

5.1. Introduction

In order to investigate the hypothesis (page 31), a number of experiments were 

conducted. From the methodological process, it is necessary to collect all the data for 

analysis in order to obtain an answer for the hypothesis. Appendix 1 contains all the 

results collected and collated. Each identified issue of concern has been allocated with 

an issue number. These issues surrounding the integration of the modules are reference 

to a particular building block. The results are split into four sections, common, support, 

transfer, and elements templates. The results are presented over the next three pages.

5.2. Summary of results

From page 54 to 56 shows a summary of the results from the experiments conducted. 

Table 10 to 13 shows only the identified issues during the experiment stage. Appendix 1 

shows the full results conducted, including the experiments, which contained no 

integration issues.

5.2.1. Common template results

The table (table 10) below lists a summary of the identified issues from the experiments 

conducted.

Category Building Blocks Integration Issues (Issue number)
Entities and attributes ARRIVE Animation properties (la) 

Mark Time Attributes (2)

DEPART Mark Time Attribute (2)

SEQUENCES ‘Roll on’ effect after changing 

SEQUENCE / STATION name (3)

SERVER Animation properties (lb)

Station ARRIVE Animation properties (la)

ACTIONS Animation properties (la)
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Resources ADVANCE SERVER Animation properties (lb)

ENTER Animation properties (la)

INSPECT Animation properties (lb)

RESOURCE Utilisation (4)

Queue QUEUE Follow on from resource name (5)

STORAGE Animation properties (lb)

Transporters ADVANCE SERVER Deletion and creation of Network links (6)

Statistics CONTAINERS Requires unique number (7)

Run Control MENU Only accepts 2nd module MENU building 

block (8)

SIMULATE Last inputted value (9)

Table 10: Summary of results (common template)

5.2.2. Support template results

The table (Table 11) below lists a summary of the identified issues from the 

experiments conducted.

Category Building Blocks Integration Issues (Issue number)

Entities and Attributes ASSIGN Lost ofWIP(lO)

CREATE Mark Time Attribute (2)

READ When integrating assignments -  Lost of 

assignments which are crucial in defining 

the variable matrix (10)

Storages STORE Animation properties (lb)
UNSTORE Animation properties (lb)

Table 11: Summary of results (support template)
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5.2.3. Transfer template results

The table (Table 12) below lists a summary of the identified issues from the 

experiments conducted.

Category Building Blocks Integration Issues (Issue number)

Station ROUTE PATH Requires unique number (7)

Transporters FREE Issue with free to guided and vice versa 

(11)
NETWORK LINKS Deletion and creation of Network links (6)

Conveyors SEGMENT Animation properties (lb)

Table 12: Summary of results (transfer templates)

5.2.4. Element template results

The table (Table 13) below lists a summary of the identified issues from the 

experiments conducted.

Category Building Blocks Integration Issues (Issue number)

Station SEQUENCES Requires unique number (7)

Queues Queues Requires unique number (7)

Rankings Queue and ranking names need to change 

after integration (5)

Transporter NETWORKS Requires unique number (7)

Variables RATES Requires unique number (7)

Table 13: Summary of results (element template)
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5.3. Integration issues

A further detailed examination of the integration issues is explained below using the 

issue numbers mentioned in section 4.1. Table 14 shows a summary of ‘the effects’ due 

to the integration of two or more modules. Theses effects are derived from the 

experiments conducted.

Issue The effect
Issue la  & b Limited to the use o f animation

Issue 2 Deletion o f Mark Time Attribute -  can be used at a later stage.
Issue 3 Incorrect order o f sequence
Issue 4 Validation o f integrated simulation model (utilization)
Issue 5 Error with identical queue variable names
Issue 6 Confusion caused by the complexity o f network links
Issue 7 Fundamental: Identifying each unique number
Issue 8 Validation errors in multiple use o f MENU building block
Issue 9 Validation: Multiple values for the length o f replication

Issue 10 Absent o f parameters that may be required at a later stage.
Issue 11 Fundamental issue: Transporter

Table 14: Summary of integration issues derived from the experiments conducted

5.3.1. Further detail: Integration issues (Table 14)

Issue 1: Animation properties

In the common template, integration of modules proves to be difficult. There will be 

inconsistency between the animation properties and logic of Arena commands 

controlling the animation. Deletion of the ARRIVE building block (Common template) 

in order to “connect” to other building blocks can cause errors. This is caused by the 

animation properties which remain active in the system that relate to the Arrive building 

block, this also applies to the DEPART building block. The DEPART building block 

also has animation properties. For example, if the module was deleted, the animation 

properties remain within the system. The animation properties are divided into two 

categories, la  and lb.

Animation: 1A

Each building block is associated with animation properties. These animation properties 

will be deleted if the building block is deleted. These animation properties will be
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associated with other animation properties, thus, causing an error with the simulation 

model.

Animation: IB

When the user inserts the animation properties associated with the building block, thus, 

there is a need to be aware of the implications of the animation properties. In 

comparison, this category is more flexible and gives the user the option of inserting the 

animation properties than category la.

Issue 2: Mark Time Attribute

The mark time attribute plays a crucial information-gathering role by measuring 

performance, usually by calculating the time of an entity into the system. The attribute 

parameters are entered in the ARRIVE, CREATE, ARRIVALS building blocks. Thus 

deleting these building blocks would also delete the mark time attribute, thus rendering 

the time of an entity invalid.

A possible methodology of verifying and validating each individual module is by 

calculating the lead-time of a manufacturing system, which can be used as a 

measurement of performance. In Arena, setting a name in the CREATE module and 

within the module, the mark time attribute parameter is set. Arena calculates this value 

by a TALLY building module at the end of the modular system. An issue arises by the 

integration of two or more modules together. Each module will have its own lead-time 

attributes and names. When the integration takes place, the CREATE command is 

removed, but the TALLY building block still remains within the module. Therefore, the 

TALLY building block must also be removed. Arena also does not allow the same name 

to be used in all the modules and therefore, the names must to be different to each 

module.
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Before

Create ------

Disnose

Create --------

^  Disnose

\7

After

Create

Figure 24 : Showing the integration and deletion of build blocks

As evident from the diagram on the previous page (figure 24), the difficulty arises in 

removing the creation of entities, upon integration into another module. The entities 

create a certain pattern (e.g. the time of intervals), which could affect the rest of the 

modules already integrated together. The entities are created by a user definition; this 

can be altered when the module is integrated.

Issue 3: Sequences

As shown in the diagram below (figure 25) the integration of two modules can cause a 

‘roll on’ effect. The flow of entities can be altered and the module requires a change in 

STATION building block names. Sequences will be affected by the name alterations, 

which in turn change the logic names.
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Module 1 Module 2

Route

Route Station Name: 
Instn

Station Name: 
Process 1

Station Name: 
Process 3

Route

Route

Station Name: 
Instn

Station N am e: 
Process 4ExitStation N am e: 

Process 2 Exit

Sequence:

InStn 
Process 1 
Process 2 
Process 1 

Exit

Sequence:

InStn 
Process 4 
Process 3 
Process 3 

Exit

Integration

Station Name: 
Process 3

Station N am e: 
Process 4 Exit

RouteStation Name: 
Process 1

Station Name: 
Instn

Station N am e: 
Process 2 Exit

Route

Station Name: 
Instn Route

Route

Figure 25 : Alteration of flow of entities entails name changes to the 
STATION building block

The error occurs when the sequence order could change. This could lead to an incorrect 

validation of the manufacturing system and therefore, the order of sequences needs to be 

redefined. An example of the ‘roll on’ effect could be the change of variable names to 

adjust for the sequence order.
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Issue 4: Utilisation

The Arena software does not report an error with multiple resources, but instead the 

utilisation of a resource with the same name, which increases the utilisation of one 

resource. An example of an increase in utilisation is one module with an operator as a 

resource, where in another module, the resource name is used. When the modules 

integrate, the software assumes that the resource is the same. But if there were two 

building blocks with the same resource name, Arena will assume that the resources are 

sharing the same resource: i.e. the utilisation of the resource will increase. Since, the 

simulation model is large-scale then the name and number of resources may be over

looked. This will invalidate the results in the simulation model but will give no errors in 

Arena.

Issue 5: Queues

The Arena software sets individual queue names using the name of the resource, with 

additional characters (_Q). Therefore, referring to the resource building block can make 

an assumption; if the resource name is not the same as other resources, then the queues 

will not affect other queues. An issue arises when two modules have the same queue 

name. Therefore, only individual modules are valid for integration otherwise an error 

will occur.

Issue 6: Network links (animation)

For integration of two modules that contain network links, Arena requires them to be 

deleted before they can be replaced with a different variable name. This can cause 

confusion if there is a large amount of network links between modules. These network 

links display a route that the transporter will trek. In order to successfully substitute for 

a different variable name, network links need to be replaced in the exact place where 

they were deleted. Thus, this can cause confusion if  the user replaces a group of 

network links and does not know which network link corresponds to which transporter.

Issue 7: Unique numbers

The building block number that relates to SIMAN must be unique, this is important in 

the low-level template, where they are heavily related to SIMAN. When integrating two 

modules together, which have two equal building blocks, an error will occur if unique 

numbers are detected to be identical, thus, names of the building blocks are different.
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The user is required to change these numbers if there is a conflict between the modules. 

Each container used in the Arena model must be unique. Thus, in the SIMAN language, 

it can be referred to as a unique number. Therefore, integration of these containers can 

cause a problem, as it is possible to have the same container number, multiple times. 

This causes an error in the simulation model during a simulation run.

Issue 8: MENU building block

An issue arises when two MENU building blocks are in the same model but the contents 

are not the same. When each module has a menu system within these modules; 

furthermore, the integration of these menus can cause a problem.

Issue 9: SIMULATE building block

In Arena, the SIMULATE command (common template), allows two or more of these 

commands to be in the same active window. However, the simulation software takes the 

last inputted replication value, and as soon as it is changed, the other simulate modules 

within each module will change to the last inputted value. This can be useful if each 

module has a simulate command.

The SIMULATE building block from the common template and the REPLICATE 

building block (Elements template) are incompatible with each other. Arena will report 

an error of “invalid element name”. If the replicate module was within a module, then 

Arena will run the simulation model.

Issue 10: Parameters within CREATE building block

Within the CREATE building block, there is an opportunity to set certain parameters, 

known as assignments. These assignments can be used to define a variable matrix to be 

used at a later stage in the simulation model. When integrating the two modules 

together, the CREATE building block is deleted and the assignments within the 

CREATE building block are also deleted. When these parameters are called upon, this 

will cause an error within the simulation model.

62



Issue 11: Transporter

When a transporter (i.e. forklift) is being used in the Arena model and moves from one 

module to another, Arena does not conflict with the same type. However, an issue arises 

when a transporter is freely guided in a module, but the same transporter guided 

(AVG’s) is declared in the other module. Arena automatically changes certain 

parameters. For a module containing a transporter (guided) integrating into the shared 

module, also containing the same transporter (free), certain parameters change and vice- 

versa. A diagram (figure 26) below describes the implications with the integration of 

these modules.

Transporter (Free)

Module 1

Transporter (Guided)

w

Distance set parameter
changes to the shared
module’s name and the
velocity parameter also
changes.

Distance
w

set parameter

Transporter (Guided)

Module 2 (Shared) 

Transporter (Free)

changes to the shared 
module’s name but no 
other parameter changes.

Figure 26 : Implications of the integration of modules

In both cases, Arena does not change the initial position parameters when integrating 

into the new module. The guided transporter is more complex i.e. more input parameters 

and less to alter in comparison to the free transporter.

5.3.2. Further detail

From the experiments conducted, table 15 illustrates other issues which is derived from 

the author’s experience during the experimental stage.

Other issues The effect

Module integration Inaccurate distributions in the simulation model
Fundamentals o f encapsulation Encapsulation is reduced

Viewable screen As integrated simulation model increases, the less 
manageable it becomes.

Visual Basic Application (VBA) VBA reference cookies automatically change in software 
package when integrating
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File becoming too large Handling of large simulation model files
Documentation Confusion o f variable names

Verifying connections Errors with incorrect connections
Excel spreadsheets In connection with VBA, referencing to Excel sheet can 

cause errors.
Assumptions Fundamental: Redefinition o f assumptions

Simulate and replicate building blocks Incompatible building blocks
Redefinition o f input variables Inputs change and need to be refined.

Table 15: Summary of other issues that the author has experienced.

Module Integration

In Arena, validation of modules can be inaccurate due to the distribution created by the 

CREATE building block. This distribution can be different and depends on the 

CREATE and DISPOSE building blocks. Assumptions are made with the CREATE 

module and leading to invalidity of the module integrating into the shared modules, 

when the CREATE building block is deleted. It therefore integrates into the shared 

modules. Assumptions would be required for a module to be an exponential that fits for 

that particular module.

Fundamentals of encapsulation

Encapsulation is defined by Luna (1992) as “..its own variables and implementation 

details, which are hidden from other modules.” In certain commercial software 

packages, the independent modules are not encapsulated. This provides a one-to-one 

correspondence in a group of real world objects. An issue arises when the commercial 

software cannot recognise the difference between the individual modules. Therefore, 

they are not modules, but one simulation model to the commercial package, with which 

the internal values and details co-host with other modules.

Viewable screen

As the integration of the simulation models increases, particular modules will be more 

difficult to be identified. In Arena, the window of the simulation model is limited to the 

size of the screen as well as the commands surrounding the active window. This can be 

ambiguous if the simulation model is too large to view.

Visual Basic Application (VBA)

The integration of modules with Visual Basic programming within simulation modules 

conflicts by the inability to transfer all the VBA block contents into the shared modules:
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i.e. the integration of VBA programming. When programming, for example with 

VBA_Blockl_Fire( ), the command codes are integrated into the shared modules. The 

shared module VBA does not contain the programming for that particular block. Arena 

also automatically detects VBA blocks when integrating into shared modules and 

creates new VBA blocks with new references, and consequently ignores the 

programming codes in the previous block.

A problem arises when the commercial package does not allow the user to reference the 

VBA unique cookies. A VBA unique cookie is an internal variable used by Arena to 

reference a particular sub-routine in the VBA coding. This can cause confusion when 

referencing the VBA logic blocks in the model. An example would be a module 

(module one) with one to four referenced VBA cookies, doing various functions. 

Another module (module two) has two VBA cookies with another set of functions. 

When the two modules integrate together, the newest module integrating into the shared 

modules, the VBA cookies automatically convert into cookies five and six with no code 

programming inside these blocks.

File becoming too large

When the integration of the modules are complete, the file that contains all the modular 

simulations might become too big. The computer running the simulation module may 

require a higher specification computer capable of running large simulation models. The 

higher specification consists mainly of the Central Processing Unit (CPU), memory and 

video card.

Documentation

The lack of accurate detailed documentation could raise an issue concerning the named 

variables used, and the alteration of variable names. Documentation is required if  future 

modifications are needed for maintenance. Details of the documentation should include 

the assumptions, variables used and any relevant information made during the 

development of these simulation models.

Verifying all the connections (individual modules)

It is essential that the simulation model captures the dynamic behavioural characteristics 

of the system being studied. The quality of the results obtained from the simulation 

model is only as good as the simulation model being used. Therefore, it is crucial that
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the simulation model is as accurate as possible to give accurate results for decision

making. When a module is completely integrated into another module, it requires 

verification. An issue arises when the module requires to be benchmarked to a real time 

system or to existing reliable data. If the system does not exist, then the module has 

nothing to be compared to. It will be assumed that each module will be verified before 

integration with the rest of the modules.

Excel spreadsheets

In Arena, there is a facility to use data from an external source. Inserting a VBA (Visual 

Basic® Applications) building block can utilise this data source, which can be in the 

form of a spreadsheet, e.g. Microsoft® Excel. An issue arises when the shared data are in 

different formats or linked to different Excel cells. Upon integration, the programming 

command in VBA is required to be altered. The simulation software has not change. 

This will cause confusion within the Arena program due to the VBA extracting a 

particular cell in a spreadsheet if the data in the cell is different.

Assumptions

To give a true representation of a complete system, assumptions must be clearly defined 

within each module. An example would be a forklift truck. In one module, a forklift 

could be defined as free transporter building block within the module. The assumption 

here is that the forklift is defined as a free transporter. In another module, the same 

forklift could be defined as a guided transporter; i.e. it has a set path for the forklift, but 

the assumptions are different.

Redefinition of input variables (from individual to the integration of modules)

When all of the modules have integrated, the input values have to be redefined. There 

may be differences between the integrated modules and individual modules. The initial 

input values would be different if the initial value came from the output from another 

module. The diagram below (figure 27) illustrates an example of the redefinition of 

variables,
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Figure 27: An example of the redefinition of variables 

5.3.3. Classification of issues

Errors fall into three types requiring building blocks to be either edited, deleted or 

created.

Type I: If there is a syntax error within a building block

This category is only required to edit a building block if the name conflicts with another 

building block name.

Type II: If a building block is deleted

This category will require deleting one or more building blocks in order to integrate two 

or more building blocks.

Type III: If a building block is deleted and a replacement is required.

This category will require deleting one or more building blocks, it is also required to 

insert a new building block in order for a successful integration between modules. Table 

16 below outlines examples showing each case.



Type I Type II Type III
STATION building 

block
Mark Time Attribute, COUNT, 

TALLY building blocks
MENU building block

Animation CREATE AND DISPOSE 
building blocks

Network Links

Unique numbers ASSIGN building block VBA
SIMULATE 

building block
STATISTICS building block CREATE building block

Conveyors and 
SEGMENT building 

block

CREATE building block Conveyors

Table 16: Examples of each type

5.3.4. Conclusion

Table 17 shows the frequency of each issue in accordance to which Arena template.

Issue
Number

Frequencies % tage Common
Template

Support
Template

Transfer
Template

Element
Template

1a 3 9.38 3
1b 7 21.88 4 2 1
2 3 9.38 2 1
3 1 3.13 1
4 1 3.13 1
5 1 3.13 1
6 2 6.25 1 1
7 2 6.25 1 1
8 6 18.75 1 5
9 1 3.13 1
10 4 12.50 1 3
11 1 3.13 1

Total --> 32 100 16 4 4 8

Table 17 - To show the conflicts with the simulation commands

It is evident from the table above, that the common template is the worst affected by 

conflicting issues. This is mainly due to the animation properties used within the 

common template. A bar chart, shown on the next page, illustrates the percentages 

between the four templates (figure 28). The transfer and support templates demonstrates 

to be the least conflicting, it is also one of the most important issues with reference to 

the transporter and conveyors. If these are not clearly defined then integration issues 

could arise.
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Element Template 
25 .0%

T ransfer Template 
12 .5%

Support Template 
12 .5%

Common Template 
50 .0%

Figure 28 ; A pie chart illustrating the proportion of the conflicting issues of four 
templates that are effected.

The graph above suggests that the Arena building blocks, that should be avoided, are 

from the common template. This implies that beginners, who normally use the common 

template, must be aware of, or avoid, the common template, in particular animation 

properties.

By rearranging the table, the frequencies were put in descending order and tabulated 

below (table 18).

Issue
Number

Frequencies % tage Common
Template

Support
Template

Transfer
Template

Element
Template

1b 7 21.88 4 2 1
8 6 18.75 1 5
10 4 12.50 1 3
1a 3 9.38 3
2 3 9.38 2 1
6 2 6.25 1 1
7 2 6.25 1 1
3 1 3.13 1
4 1 3.13 1
5 1 3.13 1
9 1 3.13 1
11 1 3.13 1

, Total --> 32 100 16 4 4 8

Table 18: Conflicts with the simulation commands (revised table)
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From the graph shown above, Pareto analysis can be applied. Pareto analysis is a 

technique that highlights the most significant issues involved. By applying the theory, 

he states that the first 80% are the most significant issues while the remaining 20% are 

minor issues.

The diagram (figure 29) below shows a graph to showing the percentages of each issue 

identified.

Integrated issu es

10 -

Issue num ber

Figure 29 : A graph to show the relationship between the cumulative frequency 
and the result references

The implications of these results will be discussed in the next chapter.
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Chapter 6

Discussion

6.1. Introduction

This section will discuss the experiences encountered with the simulation package 

during the integration of two modules, and in particular the first seven most significant 

issues that have arisen according to Pareto analysis (section 4.2.4.). The tables shown 

below (table 19-20) summarise all the issues derived from the experiments conducted 

and other issues to be discussed. This chapter also explores the implications of the 

findings with respect to the industry and the possibility of further research.

Issue num ber D escription issues
l a & b Animation

2 Mark time attribute
7 Unique numbers
8 Menu building block
6 Network links (animation)
10 Parameters with CREATE building block

Table 19 : A summary of issues discussed as ‘experimental issues’

O ther issues 
Visual Basic Application 

Documentation 
Fundamentals o f encapsulation 
Redefinition o f input variables 
Distribution entities creation

Table 20 : A summary of issues discussed as ‘other issues’

6.2. Experimental issues

6.2.1. Animation

The most frequent problem encountered, as shown in table 18, is the animation 

properties. They are mostly found in the common template due to the pre-defined 

construction building blocks with pre-defined animation properties. These pre-defined 

animation properties restrict the user from integrating ‘animation to animation’ together.
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However, once the integrated modules are up and running, model animation can be a 

very helpful tool in verifying and validating the integrated simulation models.

6.2.2. Mark time attribute

The second most frequent issue is the mark time attribute, which can easily be removed 

within the CREATE or ARRIVAL building blocks, where the user is not aware of the 

deletion. The significance of the mark time attribute within a module can be substantial 

as it could be used at a later stage in the simulation model. Moreover, when the two or 

more modules are integrated and the mark time attribute is deleted. The absence of a 

mark time attribute may present an error. Hence, the author would advise caution when 

using the mark time attribute as this building block is frequently deleted in order to 

‘inter-connect’ with other modules.

6.2.3. Unique numbers

The author did not experience any difficulty with the unique numbers alteration, 

particularly in dealing with the elements template. However, it can be confusing if many 

modules have to be integrated, as building blocks require a unique identification 

number. This particular issue must be accurately documented, if large amounts of 

numbers require alteration during the integration process.

6.2.4. Menu building block

From the results in chapter four, it appears that the user must avoid the use of the 

MENU in independent modules. This may present a problem at a later stage when 

integrating two or more modules. The author advises the MENU building block to be 

implemented at the final stage when all the necessary the modules have been integrated.

6.2.5. Network links (animation)

The most difficult issues encountered were the network links. The building blocks are 

easy to change, however, the entire module must be reviewed, as further changes may 

be required following the initial building block changes. It is not just the variable name 

of the network links that require changes but a series of variable name changes within 

other building blocks associated with the network links. In some cases, it was necessary 

to change the segment names and other variables that are ‘inter-linked’ to other network 

links. This can be confusing and many alterations are necessary, particularly if  there are 

multiple network links.
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6.2.6. Parameters within CREATE building block

The integration of these building blocks tends to be at the beginning of each module. 

Caution is required when deleting the CREATE building block as it is very easy to miss 

these parameter variables. In most cases, these issues are dealt with at the beginning or 

at the end of each module. This enhances encapsulation but the network links require 

more changes, which the user is required to alter within the module by changing the 

necessary requirements.

6.3. Other issues

Other issues are ranked in order of their complexity beginning with the easiest 

simulation models to integrate. By applying Pareto analysis to the ‘other issues’, the 

first 80% are considered the most significant and are explained below.

6.3.1. Visual Basic Application (VBA)

In manufacturing systems, simulation models are often required to retrieve ‘external’ 

data into an Arena simulation model or module. In Arena this is accomplished by using 

a VBA building block. This can be very confusing if there are many VBA building 

blocks in one single module referencing to multiple external ‘factors’ but the VBA 

cookies automatically change. VBA cookies are internal values used by Arena as a link 

between the logic (VBA building block) in the Arena model and a particular sub

routine. As a consequence, the user will need to identify and re-correct all the cookie 

reference numbers. This could prove tedious and time consuming for the user. In 

particular, users may find it difficult to identify the VBA cookies. This would lead to a 

loss of valuable time and labour.

An example explained below identifies the above issue during the integration process. 

The first diagram (figure 30) illustrates a module containing a conveyor and a VBA 

building block. The representation of this module is a conveyor and the number of 

entities is counted through the VBA building block. This value is then placed into a 

particular cell in an Excel spreadsheet, as shown in figure 32. In this example, Arena 

will communicate with Excel to find the designated cell and place the value in the 

worksheet. When the integration is complete, all the variable names are unique, 

however, a problem arises when the simulation package will lose the relationship 

between the VBA cookies and VBA block. Consequently, Arena will place a designated
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value into the wrong cell. This is caused by the loss of relationship between the sub

routine reference number and logic building block number.

Figure 31 illustrates the process by which Arena communicates with an Excel 

spreadsheet. At the first stage, an entity enters a conveyor that is conveyed to another 

location, however, in this model the entity leaves the module. Once the entity has left 

the conveyor, counter mechanism increments by one. Thus, the mechanism keeps track 

of the total number of entities being conveyed.

Module 1

OutputInput
Conveyor

VBA
building

block

Figure 30 : Diagram showing the representation in a simulation model

The diagram below shows figure 30 being represented in the Arena simulation package.

H  £ ie  £drt yiew  'loo ts  Atranpe Q tfec t g u n  y fre low  H *  I g I :X f

O  B a s ic  P r o c e s s

Blocks
Sup p o rt

C A d v a n c e d  P r o c e s s

Dispose 2
I Convtyo

Dropoff

Pickup

Q  R e p o rts  
N avigate

j [ j \  ^  "><?[ □ £ >  O  A  j . £ ^  a  -  A -  i « H  =  -
objects selected • . •  vM-'i'  

U p s ta r t  | j ^yMooso/tWord» Chapter Aiena IPjcturel.doel

Figure 31 : Representation of the simulation model in Arena
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As illustrated in the diagram (figure 32) below communication takes place through a 

referenced sub-routine and runs a series of commands. The simulation program 

automatically generates the relationship between the simulation model and sub-routine. 

These commands open a spreadsheet file and write a current variable value into a 

designated cell.

VBA
building

block
Input Conveyor

Communicates to the 
relevant subroutine

From the programming 
in the subroutine, the 
counter variable value 

is inserted into the 
spreadsheet

Figure 32: The relationship between VBA model and Excel spreadsheet.
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Once the integration between two modules is complete, the relationship between the 

simulation model and the sub-routine will be lost. Consequently, this could place the 

designated value to another location, as shown in figure 33.

M odule 1 M odule 2

Input

L

VBA
Conveyor — ► building

block

Com m unicates to the 
relevant subroutine

11E 1...

From the programming 
in the subroutine, the 

counter variable value 
is inserted into the 

sp read sh ee t

Output
Conveyor building

Com m unicates to the 
relevant subroutine

From the programming 
in the subroutine, the 
counter variable value 

is inserted into the 
sp read sh ee t

Variable nam e h as  changed locations

Figure 33; Incorrect VBA referencing during the integration of modules.

It is recommended when integrating two or more modules together that VBA building 

blocks must be avoided. However, if  integration involving the VBA cookies is crucial,
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the user must document each relationship between the VBA cookies. The external 

reference data therefore must be clearly and accurately documented to avoid confusion 

at a later stage for successful integration.

6.3.2. Documentation

Documentation is essential to facilitate the integration of simulation models. 

Documentation provides the user with crucial information regarding the variables 

concerned. Once documented, the user will be able to identify any obvious integration 

issues.

An example would be the changes required with the VBA cookies to suit the software 

but without documentation of the relationship between the VBA cookie number and the 

VBA building block. This would be a very difficult task and time consuming whereby 

the user must identify the relationships and correct or restructure the VBA cookies.

6.3.3. Fundamentals of encapsulation

This issue is an ‘indirect’ issue with the integration of simulation models but a 

fundamental, issue with respect to the simulation software. The issue lies with the 

encapsulation, which requires all the variables to be concealed within a ‘black box’ or 

‘module’. This is not the case within the Arena simulation model as shown below; 

(figure 34)

as

a  INTERSECTIONS ••

J ■/ j a e  «  *  J B  j  j [ g  f e u  n

'  ' j "  f ;  \  s, -j
forhop,pr*»*Ft ; ; c j; i  T _ * l

 |n -£

Figure 34 : Diagram showing fundamentals of encapsulation
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Arena provides a facility to ‘sub-model’ and treat the simulation model in a sub-model 

system as a ‘black box’. This facility defeats the objective put forward in the hypothesis 

of section 2.11 because, as stated in section 1.8, the research focused on one level of 

hierarchical infrastructure, and when integrating simulation modules; the modules 

become one large simulation model and lose the identity of independent individual 

modules. This is the ‘downfall’ of the simulation software.

6.3.4. Redefinition of input variables

Care must be taken when using independent simulation modules. Since the input data 

for individual ‘modules’ has been validated and verified, the input data required needs 

to be redefined if a new set of data is required for the integrated simulation modules.

6.4. Discussion of the hypothesis

The hypothesis of (2.12) is re-stated.

“Would it be possible to create an integrated simulation model from independent 

simulation modules simply by changing the variable names?”

This section brings together the results of the research to answer the above question. It 

is evident from the research and experiments conducted that it is not sufficient to 

integrate modules, simply by changing variable names.

Following the experiments conducted in chapter four and in the author’s opinion a large 

number of building blocks are required to fulfil the hypothesis. The author used a 

process of elimination and the errors produced due to the integration of two or more 

simulation modules are valid. The validation of the results are valid due to the errors 

occurred as noted in the type I, II and III. Since the simulation package used is very 

flexible and versatile, it would seem impractical to test every combination that the 

simulation package has to offer.

The results explained in chapter four, show that there are still errors and fundamental 

issues that need to be considered. The research has identified the main issues concerned 

and the approach to the experimentation.
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The principle motivation for the use of simulation with commercial packages is to 

improve efficiency. Simulation must be applied to a situation in order to gain any true 

benefits. In order to do this, research must be conducted in order to develop the ‘grey 

areas’ that are common in modem day industry. The research conducted focuses on the 

development of a ‘grey area’ that needs investigation.

The strategy developed by the author is only a tool to assist and minimise the errors that 

have occurred in the integration of simulation models rather than a solution ‘package’ 

that eliminates all errors incurred during the integration process.

On balance for economic and technical reasons, the arguments for the hypothesis 

outweigh those against.

6.5. Implications for Industry

This outlines the benefits arising from the use of the research recommendations. This 

can be viewed from three different perspectives:

• Customers and users of a simulation project

• Modellers and analyst providing the service

• Software vendors

6.5.1. Customers and users

Customers and users will not benefit from the recommendations as much as the other 

perspectives. The main benefits to the customers and users come from the use of smaller 

simulation models. In particular, the customer may find it easier to visualise a section of 

the real system than the whole system.

6.5.2. Modellers and analysts

This group of people will benefit most from the recommendations. In particular, using 

Arena simulation software to construct the simulation models. They will be able to 

provide a more efficient service to their clients or senior managers. Modellers will be

able to construct large-scale models in modular form. Beginners will also benefit,

although they will lack experience in the construction of simulation models.
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6.5.3. Software vendors

Software vendors can benefit from the research conducted by using the 

recommendations. In particular, Rockwell software who bought the Arena software 

rights from Simulation and Modelling Limited. By using this information, later versions 

could eliminate the issues concerning the integration of simulation models. It is evident 

from the literature review that a market for this research exists and that the 

manufacturing industry would benefit greatly from such innovation.

6.6. Limitations

Although the set of recommendations (section 5.7) offer a number of benefits for 

undertaking the integration of two or more simulation models, it also has a major 

limitation. This limitation revolves around the fact that the recommendations can only 

act as a guideline to aid the user for a better integration of modules. Thus, the 

recommendations are not solutions.

The author’s experience suggests that the problems encountered with the integration 

between two or more simulation models are important issues, which could affect the 

significance of commercial simulation capabilities.

6.7. Recommendations

From the results in chapter four, a set of recommendations is derived. These 

recommendations aim to assist the user to successfully integrate two or more simulation 

modules together. The recommendations are based on the results in chapter four and the 

experienced gained from the author. Illustrations of these recommendations can be 

viewed from page 92 to 95 (figures 32, 33, 34, 35). The author emphasises that the 

recommendations do not provide a solution to all the problems but instead act as a 

guideline to minimise the occurrence of errors during the integration of two or more 

modules.
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The diagram (figure 35) below shows the overview of the recommendations. The 

recommendations begin in sequential order with type I issues and then type II, HI and 

finally, other issues.

Modular development of simulation models

Type I

Type II

Type III

Other issues

Figure 35 : Overall structure of recommendations
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6.7.1. Recommendations for Type I and II

The diagrams (figure 36) below show the recommendations for type I and type II.

M odular development o f simulation models

Animation
properties

Utilisation

Make all vanables 
unique Q ueues

Unique Numbers

Route Path

RECOMMENDATION

(1) T hese issues will be eliminated by making each  building 
block variables unique. Hence, th ese  issu es  will be eliminated 

once the variables a re  unique.

(2) Documentation is very important before and  after 
integration in order to keep  record of the old and modified 

variables.

Simulate building (1) Document all param eters from the sim ulate building block.
block (2) Delete the  SIMULATE building block

Type II Make variables 
unique -► Mark time attribute

(1) Document all attributes /  variables before integration 
(2) Delete all multiple variables i.e. WIP variable 

(3) Insert required building block a t the  correct location of logic 
into integrated module i.e. WIP variable a t the  end  of 

integrated module.

To type III

Figure 36 : Recommendations for type I and II



6.7.2. Recommendations for Type III (Continued)

The diagram (figure 37) below shows the recommendations for type II.

From type II

RECOMMENDATION

MENU building 
block

Transporter

Network links 
(animation)

Type III issues 
should be avoided

CREATE building 
block

Type III

Sequences

(1) Document all param eters in relation to the TRANSPORTER building 
block.

(2) Delete all animation and links and re-link manually.
•This should be avoid*

(1) Document all sequences in each  module 
(2) Integrate module and redefine sequences in accordance to the 

integrated module.
•This should be avoid*

(1) Document all contents in the MENU building block 
(2) Insert information to the integrated MENU building block 

'This should be avoid until the integrated module is complete'

(1) Document the object nam es (animation) and variables before 
integration.

(2) Delete network links and reconstruct links a s  different unique variable

’This should be avoid'

(1) Document all param eters in the CREATE building block 
(2) Insert param eters to the integrated CREATE building block i.e. 

information in the assignm ents param eters 
‘Caution m ust be taken when deleting CREATE building blocks - som e 

of the param eters are hidden within the CREATE building block*

To type III

Figure 37 : Recommendations for type III
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6.7.3. Recommendations for other issues (Continued)

The diagram (figure 38) below shows the recommendations for other issues.

From type III

Distributions

Encapsulation

View screen

File too large

Other issues Documentation

Connections

Excel spreadsheet

Assumptions

Simulate / 
Replication

Redefinition of 
input variables

UF() 
(User Function)

RECOMMENDATION

(1) Document type and values of distribution.
(2) Redefine the distribution of integrated module.

(1) Document the each module and size
(2) Insert a  perimeter around each module and label the module.

(1) Use (+) & (-) on the keyboard to zoom in and out
(2) The recommendation of the encapsulation issue will help

(1) Document the relationship between VBA cookies and VBA 
subroutine.

(2) Integrate the modules together.
(3) Reconnect in accordance to the documentation from (1)

(1) Reduce VBA coding /  logic but does the sam e task
(2) Use process analyzer

(1) Document all variables /  connections to other modules 
(2) Construct a  documentation manual outlining each module and 

the each relationship between modules

(1) Document all connections between module 
(2) Verify all connections by animation

(1) Document all reference data between Excel spreadsheet / 
VBA.

(2) Integrate the modules together.
(3) Reconnect and verify in accordance to the documentation from 

(1)

(1) Document all assum ptions

(1) Delete all SIMULATE building block
(2) Document the warm period /  simulation length and any other 

parameters.
(3) Insert one SIMULATE building block for integrated module

(4) Populate building block with documented parameters.

(1) Document the input variables.
(2) Re-populate input variables for the new integrated module.

(1) Create unique attributes to identify each User Function coding.
(2) Document attribute information with the corresponding User 

Function coding.

END OF RECOMMENDATIONS

Figure 38 : Recommendations for other issues
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6.8. Validation of recommendations

Sweden Post is an international company that use highly automated systems to sort both 

parcels and letters at their sorting offices in Sweden. Everyday 22 million letters are 

sorted and distributed by Sweden Post. Sweden Post has 13 sorting centres at different 

locations in Sweden. Those sorting centres manage both outward and inward sorting. 

The sorting process, outward, for first class mail is mainly between 17:00 and 22:00. 

The letters are sorted in different machines and most of the handling with trays is done 

automatically. The transporting within the sorting centre is handled with conveyors and 

the loading and unloading with different types of robots.

Since most of the handling with trays is done automatically, an Arena template that is to 

be built by Sheffield Hallam University should enable Sweden Post to simulate the tray 

handling process. This will help the decision making process and improve the 

effectiveness of the conveyor system at the sorting centres.

Sweden Post project provided an excellent opportunity to validate the recommendations 

as stated in section 6.7. The recommendations (section 6.7.) from the research were 

applied. The applied recommendations are shown step by step from page 86 to 92.

In the professional version of Arena, there is the possibility of constructing customised 

modules, which was applied to the Sweden Post project. Each module will have a 

selection of building task to build and carry out a particular task. In this case, a single 

module will be constructed in Arena with a selection of building blocks to perform a 

particular task. The module presents an operator attending to a conveyor and then 

counts the number of large items being passed the conveyor. This is represented by the 

following logic in Arena.

Figure 39 shows the building blocks required to accommodate the above situation.
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STATION

CONVEY

EXIT

RELEASE

CREATE

SEIZE

ACCESS

DELAY

STATION

DISPOSE

Figure 39; Construction of logic building blocks

The diagram below (figure 40) shows how the logic as described in figure 39 is 

represented in Arena.

| d s # b  c ? b  a a ; <  > * B | o  
| V *  *>V  A

.ISeize^ - ■ ^Station^ ^ c c e s s  ̂ jConvfyi

Figure 40: A series of building blocks
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The professional version of Arena provides a facility of customising modules to one 

single building block.
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Figure 41: A customised building block

This customised template is then duplicated to produce two customised templates. This 

is shown figure 42.
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Figure 42; A customised building block

87



Once the integration was made and the recommendations were applied. The following 

diagrams show the stages of the validation process. The validation process begins with 

type I issues. This is shown in figure 43.

ISSUE ACTION

Simulate building 
block

Unique Numbers

Animation
properties

Type II

Utilisation

Mark time attribute
Make variables 

unique

Type I Q ueuesMake all variables 
unique

Route Path

(1) Docum ented all param eters from the sim ulate building 
block.

(2) Delete the remaining SIMULATE building block

Once the utilization value w ere unique; no integration issues 
occurred.

Once the variables w ere unique; no integration issues occurred.

Once the utilization variables nam es w ere unique; no iniegration 
issu es  occurred.

Route paths were not included in the integration process.

O nce the utilization value w ere unique; no integration issues 
occurred.

Mark Time Attribute w as used  to calculate the num ber of 
letters passing through the conveyors. Therefore, the 

param eters (CREATE building block) from module 2  w ere 
transferred to m odule 1 CREATE building block.

Modular development o f simulation models

To type III

Figure 43: Validation of recommendations for type I and II



Following on from the actions o f type I and II, type III o f  recommendations follows;

F ro m  typ e  II

RECO M M EN D A TIO N

T y p e  III

C R E A T E  bu ild ing  
b lock

T ra n sp o rte r

S e qu en ces

N e tw o rk  links  
(an im a tion )

T y p e  III issue s 
sh o u ld  be  avo ide d

M E N U  bu ild ing  
b lock

N o seq u e n ce s  w e re  invo lved  in  th e  in te g ra tio n  p ro cess .

N o T ra n sp o rte r  w e re  invo lved  in  th e  in te g ra tio n  pro cess .

N o  M E N U  bu ild ing  b lo cks  w e re  invo lved  du rin g  th e  in te g ra tio n  pro cess .

N o  n e tw o rk  links  w e re  invo lve d  in  th e  in te g ra tio n  p ro cess .

(1 ) D o cu m e n t a ll pa ra m e te rs  in  th e  C R E A T E  bu ild in g  b lo ck  
(2 ) In se rte d  pa ram ete rs  to  th e  in te g ra te d  C R E A T E  bu ild ing  b lo ck

T o  typ e  I

Figure 44: Validation of recommendations for type I and II
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Following on from the recommendations of type III, other issues identified from the 

author are shown below in figure 45.

ACTION
From type

View screen

Other issues

Connections

Documentation

Encapsulation

VBA

Simulate/
Replication

Excel spreadsheet

Assumptions

File too large

Redefinition of 
input variables

Distributions

UF()
(User Function)

Inserted a  perimeter around each module and label each module 
accordingly.

(1) Use (+) & (-) on the keyboard to zoom in and out 
(2) The recommendation of the encapsulation issue will help

(1) Document the relationship between VBA cookies and VBA 
subroutine.

(2) Integrate the modules together.
(3) Reconnect in accordance to the documentation from (1)

(1) Documented type and values of each distribution 
(2) Redefine the distribution for integrated module

(1) Documented all variables /  connections to other modules 
(2) Constructed a documentation manual outlining each module 

and the each relationship between modules

Verified all connections by following through the logic of each 
module.

(1) Documented all assumptions, i.e. variable names, station 
nam es (Conveyors)

The file size was not large in size. Therefore, this issue was not 
taken into account

Since the entity arrival were the sam e and consistent, the input 
values did not change for the combined integrated module.

(1) Created unique attributes to identify each User Function 
coding.

(2) Documented attribute information with the corresponding User 
Function coding.

Replication building block was not involved in the integration 
process.

(1) Document all reference data between Excel spreadsheet / 
VBA.

(2) Integrated the modules together.
(3) Reconnect and verified in accordance to the documentation 

from(1)

END OF RECOMMENDATIONS

Figure 45: Validation of recommendations for other issues
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This concludes the validation process. The simulation modules were on a small scale 

but if the recommendations were applied to larger scale modules, then the 

recommendations would be more effective. Thus, there are more interactions within 

each module.

During the Sweden Post project, a new issue was identified in constructing a new 

module object. VBA command could not be used, therefore, a User Function, UF(), was 

used. VBA command could not be used because the VBA reference number could not 

be altered since the user would not be able to alter the module once complied.

This generic function is identical when integration took place. This problem was solved 

through the identification of each User Function by a unique attribute attached to the 

entity to differentiate User Function coding.

An example is given in order to explain how the User Function was applied instead of 

the VBA building block. In Arena, the User Function programming is generic 

throughout the simulation model but is required at different parts of the simulation 

model. In a case scenario, since the programming is generic, programming was needed 

to cater for all possible situations. The use of attributes was a possible solution if the 

modules were to be integrated.

The conditions for the attributes were as follows:

Miss process = 1 

Carry out process = 2 

Delay for 10 seconds = 3

Then the programming structure would be:

If Att_Process = 1 Then 

{Do not perform process)

Else
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If Att_Process = 2 Then 

{Perform task}

Else

{Delay for 10 seconds}

End If

Figure 46 : Programming structure for identifying unique User FunctionQ

The diagram above (figure 46) shows the if the attribute is equal to 1 then a particular 

task is not performed. If the attribute is equal to 2 then the simulation program will 

perform a particular task and finally, if  the attribute is equal to 3 then the simulation 

module will stop for 10 seconds before carry on. The programming structure shown 

above would be common to each module. Therefore, the user would be able to define 

the outcome without changing the structure of the module or changing the reference 

numbers if VBA building blocks were used. The new identified issue is now inserted 

into the recommendations as shown in page 84 (figure 38) as part of the validation 

process.

The next chapter concludes the final comments to the issues of the modular 

development of manufacturing simulation models.
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Chapter 7

Conclusions

This chapter resolves to provide a definitive conclusion to the issue of the modular 

development of manufacturing simulation models. In response to increasing demands 

for more complex simulation models, the technique of modularity appeared to provide 

the solution to the problem of simulation modelling of large and complex manufacturing 

systems. Nonetheless, the foundation of the research conducted is based on the 

hypothesis;

“Would it be possible to create an integrated simulation model from independent 

simulation modules simply by changing the variable names?”

This chapter will draw on all the evidence obtained from the research process as well as 

the theoretical discussions undertaken to provide an informed solution to the 

underpinning hypothesis re-stated above.

The objectives of this research as stated in chapter 1 (page 4 to 5) were met. The first 

objective is stated below,

Identify the issues involved in the simulation of large-scale manufacturing systems.

Within the thesis, evidence shows the first objective was initially met in chapter 1 where 

section 1.3 introduced the issues involved in the simulation of large-scale manufacturing 

systems. Following from section 1.3, the literature review of chapter 2 discusses 

particular identified issues, including modularity.

The second objective of the research was;

Construct a series of modular simulation models.
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The model builder has to undergo a number of highly iterative experiments, which 

involved the use of the simulation package called Arena in order to meet the second 

objective. This is evident in chapter 4 where a step by step process of the construction 

of simulation models is discussed.

The third objective of the research was to;

Study the issues involved with the integration of the modules developed.

The research findings and identified issues during the experiments were discussed in 

chapter 5 leading to an answer to the hypothesis of the research.

The final objective of the research was to;

Develop a set of recommendations to enable the modular development of 

manufacturing simulation models.

Derived from the results and from all the points above, a set of recommendations are 

presented from page 81 to 84. The set of recommendations indicates that simulation 

practitioners will benefit most from the recommendations and minimise the errors 

occurred in the integration process.

Further more, evidence shows that contribution to the practice of simulation was met by 

the following,

Changing the variable name alone is not adequate.

This contribution is evident in chapter 4 where the experiments conducted demonstrate 

that the user will experience difficulty in changing the variable name during the 

integration process and required more than just simply changing the name. From the 

above statement, the research findings was found to be inadequate, thus, sound 

knowledge or expertise of multiple module integration will be required. The result will 

contribute to the recommendations and conclusion put forward in this thesis.
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The last contribution to the practice o f simulation is:

A development of a set of recommendations will minimise the potential problems

of integrating modules together.

The set of recommendations is shown on pages 81 to 84. The recommendations provide 

a guideline for the user to reduce the occurrence of errors, which can also be applied to 

a real manufacturing scenario. Through evidence, the author found the set of 

recommendations very useful by minimising the errors occurred through the validation 

process. The validation process is shown on page 85 to 92.

On the other hand, this chapter also aims to evaluate the research procedure adopted and 

thus, to suggest possible improvements. In particular, the author’s comments and 

perceptions with respect to the research undertaken in this thesis will also be taken into 

account.

The author suggests that in order to achieve maximum benefit from the integration of 

two or more simulation models, the common template should be avoided. Limitation of 

the construction of simulation models within modules to support, transfer and element 

templates are advisable. Consequently, it is recommended that beginners, who are new 

to the simulation package, should not attempt to integrate modules despite the fact that 

the simulation package is easy to learn. If the integration of these modules is absolutely 

necessary, then the set of recommendations in chapter five should guide the beginner to 

reduce the complexity of integrating these modules together. As a final comment, the 

strategy is a set of recommendations and not a solution to all the integration issues 

encountered by other users of Arena simulation software.

Research is needed to incorporate some of the best features of object-oriented 

simulation and distributed simulation with commercial simulation software. For 

example, model creation based on object oriented simulation principles with a ‘built in’ 

simulator will benefit modellers because of the predefined objects, such as operator and 

machines. From the literature review, it is evident that object oriented simulation is the 

way forward, but there needs to be a compromise between theory (Research) and 

applying object oriented simulation in commercial packages (Industry).
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The results derived from the experiments indicate that the simulation software still has 

some fundamental issues remaining that need to be addressed in order to facilitate 

modularity and object-oriented simulation. There is a gap between commercial 

packages and object-oriented simulation. It is clear that further research is necessary in 

order to reduce this gap.

In view of all results and findings from the research process, the author offers the 

following conclusions in respect of the research described in this thesis.

• The demand for modularity in simulation is a key issue to be considered due to 

the complexity of manufacturing systems and the need for manufacturing 

companies to remain competitive. Key authors, in particular, Ziegler (1984, 

1987, 1990, 1993), have recognised the need for the continuous development of 

modularity.

• Problems have been identified regarding the integration of modules. It is 

apparent that current existing software is not sufficient to handle these problems. 

As yet there is no facility to simply ‘cut and paste’ modules.

• Through experiments with the commercial simulation package Arena, it was 

found that bringing modules together by simply changing names was not an 

option.

• In consideration of the experiments undertaken, the simulation software still has 

some fundamental issues remaining that need to be addressed in order to 

facilitate modularity through object-oriented simulation.

• Encapsulation poses a major problem stemming from the fact that Arena fails to 

fulfil the precondition of all variables being concealed within a ‘black box’ or 

‘module’.

• The main drawback stems from the ‘sub-model’ facility in Arena that defeats the 

ultimate objective of integrating individual simulation models. Instead, the ‘sub

model’ facility produces one large simulation model, which evades the problem 

stated in the hypothesis.
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Nevertheless, the author identifies the limitations of the research embarked upon in this 

thesis and thus, proposes the following possibilities for consideration when undertaking 

further research:

• Testing and possibly developing the methodology to include all possible 

situations that have not yet arisen using Arena software. These would also 

include commands, which give multiple outputs.

• To transform the recommended methodology to a menu system. This would help 

the simulation practitioner using the Arena software by providing a problem

solving guide.

Finally, the author stresses that the power of the research and findings offered in this 

thesis is only confined to Arena. Thus, further research could be conducted on 

alternative simulation software packages as research with other simulation software 

might establish a common ground as a basis for further development. It might also 

suggest alternative ways forward with Arena. The author concludes that the research 

and experimentation carried out on Arena has produced some valuable results as well as 

raising interesting issues which are worthy of addressing when undertaking further 

research. Arena offers great versatility and flexibility however it fails to provide a 

solution to the key issue of module integration. Thus, giving rise to the need for further 

research and experimentation with other commercial simulation software packages.
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Glossary

Throughout the thesis, terms that are not defined are defined in this section.

Building Blocks: These are the basic components (blocks) for creating simulation 

models. Each block provides a particular function to carry out a particular task.

Words in Capital Letters'. Commands used to describe building blocks used in the 

Arena® simulation software.

Module: Represents a collection of building blocks with a defined boundary.

VBA, Abbreviation for Visual Basic Application used in the Arena® simulation 

package.

Data encapsulation: Data encapsulation describes the hiding of data structures and the 

implementation of procedures called methods to operate on the data of an object. 

(Narayanon et al.9 1998)

Inheritance: Inheritance is a technique for deriving new classes from existing one 

through creating a subclass. A subclass inherits both data and methods of an exiting 

superclasses (Narayanon et al., 1998)

Reuse: Reuse is associated with the ability of using the same software elements for 

several purposes in different applications.

Polymorphism: Polymorphism is the ability to take more than one form. Through 

polymorphism, the same method results in different behaviour depending on the object 

to which it is bound. (Narayanon et al., 1998)
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Issues with integration of simulation models (Reference Number) |

Animation properties ( l a ) , Mark Time Attribute (2) |
If delete depart then issues involve COUNT and TALLY with mark attribute also Statistics(2) |

The roll on effect of changing the sequence name, station etc.(3) |
Animation properties with the same entity picture (lb) |

Animation properties (la) |

Animation properties (la) |

Animation properties ( lb) |
Animation properties (la) j
Animation properties (lb) |

Utilisation (4) |

Follow on from the resource name (5) |

Result
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Issues with integration of simulation models (Reference Number) |

Animation properties (lb) |

Animation properties: Deletion and creation nework Links (6) |

Container no. has to be unique. (7) |

Only takes 2nd module menu system (8) |
Last inputted value (9) |

Result
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Issues with integration of simulation models (Reference Number) |
Lost of WIP (10) |
Lost of Attributes through deletion of dispose and create during integration (2) |

When integrating assignments they are deleted which are cmcial in defining the variable matrix (10) |

Animation Properties ( lb) |
Animation Properties (lb) |
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Issues with integration of simulation models (Reference Number) |

The name need to be unique and consistent (7) |

Issue with free to guided and vice versa (11) |

Need to delete links and insert correct Network Links of the second module (6) |

Deletion of animation and conveyors (lb) |

Result
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Issues with integration of simulation models (Reference Number) |

Sequence numbers must be unique (7) |

Each queue number has to be unique (7) |
The queue and ranking names need to change after integration (5) |

Each network number needs to be unique (7) |
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Issues with integration of simulation models (Reference Number) j

The number needs to be unique (rate variable number) (7) |
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