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POWER ASPECTS OF ANALYSIS OF VARIANCE

IN VARIOUS MODELS

Summary
The object of the present work is to study the robust-

ness-of the power in Analysis of Variance in relation to the
departures from the in-built assumptions (i) equality of
variance of the errors, (ii) statistical independence of the
errors, and (iii) normality of the errors in fixed and random
effects models. It is difficult if not impossible, to conduct
an exhaustive study of the problem, because the above assuﬁp-
tions can be violated in many wéys. However, a general model
and some important particular models have been used to obtain
fairly conclusive evidence regarding the robustneés of the

power in Analysis of Variance.

In order to obtain the power value in relation to the
departure from the usual test assumptions, the general linear
hjpothesis model is considered. The power values when the
assumptions of equality of variances and independence of
errors are violated, are obtained ahd presented in Table IA
~and IB. The result suggests that in the above model, for
tests regarding the inference about means, the power value is
greatly affected by the inequality of error variances but only
slightly affected by the serially correlated error variables.
By using‘phe permutation theory an approximate method is —

developed to study the effect of non-normality of the errors

on the probability of type two errors in the above situation.
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Havihg studied the most general case in Analysis of Variance
some particular models are discussed to investigate certain
important aspects of the prdblenxthat.are generated by these

models.

First of all fixed model one-way classification is con-
sidered to investigate whether it could show a different picture
for unequal replication. The results so obtained are presented
in Table IIA and IIB. They indicate that the power value is
greatly affected by the ineQuality of error ﬁariances and unequal
group sizes. This procedure is easily.hodified to handle the

random model,

Another particular case of the general linear model, that
is fixed effect model two-way classification, is discussed.
Thé results so obtained are presented in Table IIIA and IIIB. They
indicate that in two-way classification for the between Column
test, the power value is greatly affected by the inequality Qf
cdlumﬁ variances but only slightly affected by the serially
correlated within rows error variables. Again this proceduré

is easily modified to handle the random model.

The use of simulation methods_for calcﬁlating the power
values in the case of‘non—normal errors is discussed. One and
two-way classifications are considered for the fixed effect
model. Thg Erlangian and contaminated normal distribution are
taken as examples of a non-normal error distribution. The
results obtained by these methods are given in Table IVA and IVB
which indicate that for the inference concerning means, the

power calculated under normal theory is only slightly affected

by the non—normality of the errors.

) .



Finally, the effect of non-normality on the power in analysis
of variance for a random effect model is also discussed by a
simulation method. One and two-way classification are considered
for this model and the Erlahgian and contaminated normal
distributions are taken as examples of non-normality. The results
obtained by these methods are given in Tables VA and VB which
indicate that non-normality has little effec£ on the power of the

test.

G.K.K.
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1. INTRODUCTION

1.1 Historical Background

' The assumptions usually associated with analysis of variance
are that the errors in the measurements (i) have equal variances,
(ii) are statistically independent and (iii) are normally

distributed.

Box (1953) introduced the tefm 'Robust' to denote a statis-
tical procedure which is insensitive to departures from assumptions
underlying the model on which it is based. Such procedures are in
common use, and several studies of robustness have been carried

out in the field of 'Analysis of Vafiance'.

Numerous attempts have been made to study the effects of
departures from the usual test assumptions on Analysis of Variance
techniques. For example, the effect of departure from normality
in the distribution of the error term was studied for a oné—way
layout by Pearson (1931), Geary (1947) and Gayen (1950). David
and Johnson (1951) considered the extent to which the non-

‘ﬁérmality of the error distribution affects the F test. The test

in general has been found very insensitive to non-normality of

errors. Welch (1938) studied the effect of unequal group variances

on the 't' test. His results indicate that when the groups are of
equal size the effect is small, but this effect becomes larger when the
groups are of unequal size; Hsu (1938(a)) also attempted to find the
exact probability for this case. Gronow (1951) carried out the
investigation using a different approximating method. Both of

their investigations supported Welch's finding. Horsnell (1953)
brought David & Johnson's work a step further, and considered the

effect of unequal group variances on the power of the test for a



special case of the one-way layout. The method used by David &

Johnson is only approximate.

Box fl954(a),(b)) discussed the efifect on tests of the null-
.hypothesis in Analysis of Variance of departures from the assump-
~ tions that errors (i) have equal variances and (ii)‘are staﬁis-
tically independent. The result he obtained for the one-way layout
shows that if the group variances are unequal, and group sizes are
equal, then the test is not sefiously affected. In the two-way
layout, when the error variances are unequal from column to column,
then there is an increased chance of exceeding the significance
level for the test that column means are equal. For the corres-
ponding test on row meané; the chance of exceeding the
significance level is decreased. For small differences in the
variances neither effect is large. First order serial correlation
within rows affects the between rows comparison more than the

between columns comparison.

Iﬁo and Schull (1964) investigated the robustness of the
TOZ test in multivariate analysis of variance when ﬁariance and
‘co-variance matrices are not equal. They showed that, for large
samples of equal size and moderate inequality of variance and co-
variance matrices, the test is not seriously affected but that for
.unequal size the effects are quite large. Murphy (1967) used a
simulation method for his study of the two sample test wheg the
- variances are unequal. His investigation indicates that the
permutation test and 't' test are virtually identical in practice
and are fairly robust to inequality of variances as long as sample

sizes are equal.

The statistically important problem of the distribution of



homogeneous positive quadratic forms has been discussed in
detail by Robbins (1948), Robbins and Pitman (1949),

and Hotelling (1948).

The more difficult distributions of non—homogeneous
Quadratic forms have been investigated by Solomon (1961). Ruben
(1962) has obtained a very general result, expressing the
distribution of both homogeneous and non-homogeneous quadratic
forms as an infinite linear combination of chi—square distributions
with arbitrary scale parameters. He has also expressed the non-
homogeneous quadratic form as an infinite linear combination of

non-central chi-square distributions with arbitrary scale parameters.

Box (1954) discussed the effect on tests of null-hypothesis
in analysis of variance when the in-built assumptions other than
the normality of errors are violatéd. He has ennunciated certain
theorems concerning the distribution of relevant quadratic forms and
épplied his results to determine the effect of inequality of group

variances in one way layout.

The permutation theory which provides a method for deriving
robust criteria was first discussed by Box and Andersen (1955).
When the errors are non-normal, Box and Watson (1962) deveioped
- an approximate method for studying the robustness of the
regression test in the null-hypothesis case. Through an B
approximation to the permutation test, they adjusted fdr non-
normality by modifying the degress of freedom of the usual F-test
in Analysis of variance. The extent of the adjustment provided

a means of assessing ﬁhe effect of non~normality though little

work has appeéred on how the test's power is affected.



1.2 Relationship of this thesis to earlier work

In this thesis with the help of certain theorems due to
Ruben (1962), a distribution of the ratio of two independent
quadratic forms is obtained and has been referred to as a general-
ised incomplete beta distribution. It is then applied to invest-
igate the effect of unequal error variances and serially corfelated
errors -on the power in the genepal linear model, in one-way and twoj

way layout analysis of variance for fixed and random effect models.

This thesis differs from most other works in this field in
that it is concerned with the direct approach and is more accurate
than those of previous authors. In particular, it is shown that
Tang's (1938) result for fhe power of the test can be easily

obtained as a special case.

Using permutation theory and the generalised incomplete
Beta distribution introduced earlier, a convenient method is
devised to calculate the power values for the general linear
hypothésis model. Unlike others this method provides power values
for a desired non-centrality parameter and degrees,of freedom to
‘study the robustness in analysis of variance. In particular it is
shown that the Welch (1938 page 152) result for the variance of
E2 for a limited population can be easily obtained as a special

case.

In this thesis, unlike the previous authors (i.et Gééry,
Gayen, Daﬁid and Johnson) a simulation method is used to investigate
the sensitivity of the power of the test for the non-normality of the
error distribution in one and two-way layout analysis of variance.
Both fixed and random effect models are considered and the

Erlangian and contaminated normal distributions are used for non-



normal distributions.

1.3 Note
Some of the results presented in this thesis have already:
appeared in various journals. Copies of the relevant papers are

" included at the end of the thesis.



POWER ASPECTS 'IN GENERAI, LINEAR MODEL

2.1 Estimation of the parameters

"The general linear model of full rank can be written as
y = xB + e : (2.1.1)

~ ~

where y is a (n x 1) vector of observations, x is a (n x p) matrix

of known coefficients (psn), B is a (p x 1) vector of parameters

and e is a (n x 1) vector of 'error' random variables.

An assumption which is made on the e vector of random
variables is that e is distributed as N(o,02I) where I is a (n X n)

unit matrix and o? is unknown.

In order to investigate the effect of a departure from the
usual test assumptions on the power in Analysis of Variance, we
will consider the vector e such that e is distributed as N(O,ozé)
where § is an (n x n) unknown positive definite symmetric matrix
and o2 a scale factor. This will allow for both heteroskedasticity
(differing diagonal elements of §).and interdependence (non zero
off diagonal elements of §) of the errors. Since the errors are
normally distributed with expectation zero and variance covariance
.matrix of 02§, the sum of squares that would appeaf in the exponent

.of the likelihood function is

1
2072

-1

Alg=xB) & (y=xB))

This exponent will have to be minimized in order to maximize the’

likelihood function.

The likelihood equation is given by

|6 ] : (ty - txB)'(ty - txB)
f(e,B 0%8) = ——— Exp X ~"~202~¥ tx8 (2.1.2)




When 8 & = t't, since any symmetric matrix can be split up into

the product of triangular matrices, the maximum likelihood

estimates of B and o? are

~

B = (x'6 "t kel (2.1.3)
and
_ (ty-txB)' (ty-txp)
G2 = =z ommx =R omen (2.1.4)
n _
since E(B) = B, then B is an unbiased estimate of B. It can

also be proved that E(62) = 25202 and therefore 62 is a biased

estimate of ¢?. But

~o _ D "o o aN ~en' e o~
0% =g5p © nop , (2.1.5)

is an unbiased estimate of o?Z2.

2.2 Test of Hypothesis

Testing the hypothesis E = §* in the model (2.1.1) is equiv-
glent to testing simultaneously that each Bi equals a given
constant B¥. In testing the hypothesis H_: B = g* it ié
essential to devise a test function. For the-evaluation of the
‘power of the test, it is also necessary to know the distribution
of the test function when the alternative hypothesis Hy: B # §*
is true. Also we canktest any sub-hypothesis Yy = I* where the
elements of Yy constitute a subset of the parameters and those of
the y* are given constant, (see, for example, Graybill (1961)p.135).

This can be seen in a following chapter which will examine one-way

and two-way layouts.

The likelihood ratio criterion that has been used to test

the hypothesis can be expressed as



-—y -

(o] ‘ 1
I = . = |t (2.2.1)

where Vb = (EX-EXB)'(tX—t§B), VE = (txXR-txB*) ' (txXB-txXB*)
Let,
Vv (th th*)'(th txB*)
T = = = N mnv | v v i (2.2.2)
o )

~n e

Since M = E:x(x't'tx)“l x'ti] is an idempotent matrix.

~a N e e

'We:therefdre have

(ty-txB*) 'M; (ty-txp*)
e (Ey=Ex8%) " (L1 ) (Ey-£3B%) (2.2.3)

~

Let us denote the numerator and denominator of 1 as q4 and q,
the two quadratic forms. In order to determine the rank of the
matrix Ml which is also the rank of the quadratic form q, we

proceed as follows

trace (M) = tr. tx(x't'tx) "

~y N AN e ~ o~

I

Therefore the rank of Ml is p and similarly the rank of (I-M.)
_ié n-p, and hence qq and q, are positive semidefinite quadratic

forms.

Since we are interested in knowing whether the two quadratic

- forms dy and q, are independent, we will express dq and q, as

9, = (2 - W' (z -~ y) and g, = (z - ¥) " (I-M )(Z"— u)
where z is an n-dimensional vector distributed as multivariate normal
dlstrlbutlon with expectatlon zero and variance covariance matrix v
and M; is a positive semidefinite matrix, yu being a given vector.

Let & be the orthogonal matrix such that:

Rat




Now (z - w)'Ilz-m = (z-p)'Mz-p + (-p'(@-H)Ez-y
let H=gfz, =gy
then (H-p'E -1 = E-MAE-p + HE-D I - DE-D

n
(H, - ni)2 + I (H.

- n.)? (2.2{4)
1 i=p+l 1 L ’

1
™Ry

i=1

so that the quadratic form (z - u)'Ml(z - ﬁ) and (z - u)'(I - Ml)(z-u)
are independent, i.e. the numerator dq and denominator d, of t are

mutually independent with rank p and (n - p) respectively.

2.3 Distribution of the quadratic forms

We now apply a theorem due to Ruben (1962) concerning the
distribution of the quadratic form to find the distribution of

q4 and d,- Now q, can be expressed as
q; = (y = xB*)'M¥(y - xB*) | (2.3.1)

where

i s txxts ™ lxy) "Ixis7t

~ o~ o~ -~

x'§

since the y's are distributed as N(xB, V) we therefore have that.
Y*'s are distributed as N(0,V) where ¥Y* =y - xB.

Hence substituting the value of y in (2.3.1) we have

1

q; (Y% = p*) "My (Yr-px) (2.3.2)

where p*

~

(x8 - xB%)

To achieve the required quadratic form for the application

of Ruben (1962) theorem 1, we find that the linear transformation

- ¥* = NKx u* = NKb

~ v ~ oy



changes the quadratic form g, to the canonical form given by
: 1

(x - b)'A(x - b). Where x's are N(0,I) and N is the lower

triangular matrix defined by 71 = vl = nN' and X is the

orthogonal matrix of the eigen vectors of N'M*N. The a;'s are

~ o~ o~

~ N A leo~

the diagonal elements of the matrix A = K'N'MiNK and also the

eigen values of N'M*N and b is a fixed n dimensional vector.
~ ~l~ ~
Since d; is a nonhomogenous quadratic form we can apply Ruben's

(1962) theorem 1 (Appendix A) and we see that

H_' b (a) = P[q; < a] = i ijzn,+2j(a/g) (2.3.3)

where n' = p is the rank of matrix M¥, g is an arbitrary con-

stant and x? (.) is a chi-square distribution. Cj can be

n+2j

calculated by the recursion relation given in the theorem. In equation

(2.3.3) the expression H_'
n IAIb ) ~
combination of central x2?-distribution function. The noncentrality
parameter (say A) which specifies the alternative hypothesis can be
obtained by using the vector b. o
We now proceed to derive the distribution of the quadratic form

d,; we have

9 = (y - xBR)'MI(y - xB%) | (2.3.4)
where
-1
* = - *
My =3 My

Proceeding as for d,r we find that we can apply the Ruben (1962)
theorem 1 to find the distribution function of the quadraticv
form d,. But in this case the noncentrality parameter A is zero,
and we therefore have 9 = O and hence q, is a homogeneous - |
quadratic form. Applying theorem 2, we find that the distribu-

tion of d, is

= Play ¢ o] = Eodszn'+2j(a/g) (2.3.5)

H 1
n ,A,O(a) i

where n' = n - p, the rank of the matrix M*.
"2

() is represented for b#0 as a linear

B Te



It is always desirable to express the noncentrality parameter
A in terms of y* and V. Therefore we proceed to relate the
b's in terms of p* and V where pu*'s and V's are és before.

From the equations

we have b = K IN Tp* = R'N 1p* (2.4.1)

where K is orthogonal matrix. Again we have
vi=nmn or Nl =Ny

and hence

Now A? = 5(b'b) = %Ibi?
b'b = p*!V' NKK'N!'V p* = p*y' NN! v p*

bib = u*ty!

~ ~

{3 =
*

We therefore obtain A2 = %¥b'b = Lu*iviu*

‘2.5 Distribution of the ratio of gquadratic forms

The distribution of qq and d, having been obtained in the
preceding section, we require the distribution of the ratio of
d; to a5 i.e. distribution of 1. Since the g;s in the equation
(2.3.3) and (2.3.5) are arbitrary scale parameters, we can take

value of g equal to -unity in all cases.

It can also be noted that d4 and q, are ihdependently
distributed as mixtures of central y?'s so that the ratio ql/q2

is distributed as a mixture of ratios of central x2's. (See

Appendix B).




Thus

[ee] [ee)
P(t = - m=p+2i
:P(T ql/qz € o) jio iio dei Fp+2j,n—p+2i( p+2j o) (2.5.1)

and Fv,t(.) is an F distribution.

2.6 Power of the test

As it is easier to compute the incomplete Beta function than

the F distribution, we express the series in (2.5.1) in terms of

incomplete Beta function with the help of the identity
X
Foon (%) = T3 (5m, %n)
where

Ix(.) is the incomplete Beta function.

The series (2.5.1l) then can be written as

© ©

p(t = ql/q2 £ a) = .Z L C.diI o
: i J=0 1=0 J T+a

(Br2), nopt2l)  (a.6.1)

where Ia (pP,q) is an incomplete Beta function.

1 T
et G=1-1L = =
= 1+ i 1 + 1
T
then P(G £ D) = P(—— < D) = P(T € =)
R T T f 14T T 5 1-D
l.e.
o _ . D -
P(G < T 1 a) = P(T &€ q) ;f we put T-p5 = ¢
Hence,
0 > b p+23 +2 1
— . r N=D 1
P(G € T a) = .2 'E deiI o ( 5 5 ) (2.6.2)
' J=0 1=0 T+ao

Let P11 be the type two error. Hence

P—]l = P(g = ql/q2 £ 110,7\7‘ o)



pPr4a)] NTPTLL
4T, e T (2.6.3)

1+ uy

is a generalised incomplete beta distribution,

where

u, = 535 Fs’ and where € is the level of significance.

| Therefore the power of the test is given by

(o] o«

B(A) =1- I I C.d.I

425 oo
I rocgar (R, BBEA, (2.6.4)
j=o i=o

2

(®]

1+uO

The manner in which the calculation of p,,; values is carried out is

given in Appendix E.



POWER ASPECTS IN GENERAL LINEAR MODEL BY PERMUTATION THEORY

3.1 Assumptions and Test Criterion

" The general linear model of full rank can be written

Y=xB+e (3.1.1)

~ o~ ~

where Y is a (nxl) vector of observation, x is a (nxp) matrix of
known coefficients (p < n), B is a (pxl) vector of parameters

and e is a (nxl) vector of error random variables.

An assumption which is made on the e vector of random

variables is that e is distributed as N(0,V) where V = o¢2I,

~

~ ~

I is a (nxn) unit matrix, and o2 is unknown. The estimate § of B

is then given by B = (x'x) lx'Y.

In testing the hypothesis B = B* in the model (3.1.1) we

'shall use the likelihood ratio criterion

L= |—t |2 | (3.1.2)

where Vo = (¥ = xB)'(x - xB), Vg = 6B - 580 Gcf - 580
Let IS ~

VE (XB - xB*) ' (xB - xB*)

T = v— = dind ~~A indad :~ (3.1.3)

o (Y- xB)'(Y-xB)
which after simplificationvcan be written as P

(Y - xB*) "M(Y - xB%*)

d indad = = ndind (3.1.4)

T kB T TW Y - k)

where M = x(x'x) !x' is a symmetric idempotent matrix.

Since the Y's are distributed as N(xB, V), we therefore have



that the D's are distributed as N(O,V) where D = Y - X8.

Substituting the value of Y in (3,1,4), we have

Vg = (D = p*) "M(D - p*)

2(8 = ).

where u*

When the null-hypothesis is true the equation (3.1.4) is

given by

=
vzlio

Dl
T = —

BT (3.;.5)

LR

)D
Since the elements of D are the deviations from the mean we
therefore have D'l = 0, where 1 is the (nxl) vector, all of

whose elements are unity.

To study the shape of the distribution of the test criterion
Z =1 - L, and the power of the test when the errors are not
normally distributed we proceed as follows.’ We will assume like
Box and Watson (1962) that the vector giin (3.1.1) are symmetrically °
distributed and hence the moments of the test criterion can be
obtained using permutation theory. We will also assume that
| X = 1 for all the values of 1i.

1li

3.2 Moments of the Test Criterion

Expressing the D's in terms of power sums

n . .
. r _ .
i.e. Z Du = Vr v -
x}u=l

V.
E
= = ' = = e
we have Vl o, V2 9 9 Vo + VE and % V2'
To obtain the expectation of Z in the above situation we will

first of all establish the required condition M 1 = 1, in the

following theorem.




Theorem , E .

If X = (a|lb) is a partitioned matrix where a is a (nxl) matrix,
b is a [nx(p-1)] matrix and M = X(X'X)"!X' is a symmetric

idempotent matrix then the product Ma = a.

Proof A A

The Matrix M can be written as
. . N - 1

. - a' a' .
u= @& e (&

~ ~

)
t

E%l = constant=

1=

I

-
D
e
——
o,
PO TN Mg
to
Teatlex
|
N
?U'lfm
- -y

| Ni |a'by
- Ma = (a]b) [b'a b'b)

0
~~
o]
o
ol
PEUR Biash
T
tRex KXol
1
Y o N
Tl =
Q’b—'
| SR

Then

when O is a null vector.
Therefore

1
Ma = (alb)[é) = a '
~ o ~ ~ et ~ - K (:‘

Since we assumed that X4 = 1 for all values of i, we



therefore have a = 1 and hence M1 = 1.

. Now using the relation M 1 = 1, we obtain (see. Appendix

C) the permutation mean as

_ (p-1)
E(z) = 25y | (3.2.1)

Also using David and Kendall's table (1949) and writing V2 and
V, in terms of Fisher K Statistics we obtain (see Appendix C)

the permutation variance as

Ku/Kz N
= 2(p-1) (n-p) 2 (p—~1) (n~p) e
viz) = (n-1) (n+l) (n"l)z [ ‘E‘ n(n+l) ] (3.2.2)

where m is the sum of‘squares of the diagonal elements of y.

The result obtainéd in (3.2.2) has great similarity to the
result given by Box and Watson (1962). Also with proper
grouping and substituting m = I éL in (3;2.2) for one-way layout

i
analysis of variance we can easily obtain the value V(E?) by

Welch (1938).

3.3 Approximate Distribution of Test Criterion

We know that when the elements of the error vector are
normally distributed, the test criterion Z is distributed as a
Beta distribution. We have assumed ea;lier that xli = 1 for all

the values of i. Therefore the model (3.1.1) can be written as

g = } §l ~2R2 + e (3.3.1)

given the following partition matrices,
R
B = |==| and X = (l|§2)

Hence a test of the hypothesis R, = R2 is required in the model
(3..3.1)where R¥ is known. Following the method for the testing -

the sub-hypothesis, we find that when the errors are normally distri-



buted and the null-hypothesis is true, the test criterion 2 is
distributed as a Beta distribution with (p-1) and (n-p) degrees
"of freedom, comparing the normal theory moments of Z with the
permutatioh moments, we find that the mean is the same for both
cases, whereas the variance differs. Pitman (1937) has shown that
‘the third and fourth moments of the permutation distribution of
Z agree closely with those of the Beta distribution. Hence the
permutation distribution of 2 could be approximated to a Beta
distribution by adjusting the degrees of freedom. It could be
readily shown that the approximating distribution has degrees of
freedom d(p-1l) and d(n-p) where

2{n(n-1)2% - (n-3)slsz}

d = \'Z=OZnE-0 =+ (©-3)8,5,7
K
S = .._4__ ’
1772
2
s - n(n-1) (n+1) [ B2 _ 2(p-1) (n-p)
2 (p-1) (n-p) (n-3) L n n(n+l)

,ﬁéuivalently the permutation distribution of T could be approximated
by an F distribution with degrees of freedom d(p-1l) and d(n-p). The
numerical value of d for a special case i.e. one-way layoﬁt~Analysis
of Variance could be easily obtained [see Johnson and Leone (1964)

p.21].

3.4 Power of the Test-

In order to obtain the power of the test in the case of the
non-normality of errors, we proceed as in Section 2.6 and find

that the test criterion is given by



and

or

P(%2 ¢ ==—) = P(T g o) if we put IgE = q

When the errors are normally distributed then from the

equation (2.6.2) we have the test criterion Z as a Beta distribution

with p—l and N-p degrees of freedom. With the help of the theory

‘developed in the preceding sections of this chapter we can now

approximate the distribution of Z (when the errors are not normally

distributed) by Beta distribution, by adjusting the degrees of

freedom in the normal theory case.

Let Pll be the probability of type two errors. Hence

P,, = P(T < a|r # O)

11
© o I . .
_ . , a ,d(p-l) + 25 d(n-p) + 2i

j=0 i=0

p-1
. n-p
‘and where ¢ is the level of significance. Therefore the

where Ia(.) is an incomplete Beta distribution, o = == F

the test is given by B(X) =1 - Pll' The non-centrality
A and Pll in (3.4.1) can be easily obtained by following
chapter. We have thus found a practical method to study

of non-normality on the probability of type two errors in

- Analysis of Variance.

(3.4.1)

€

power of
parameter
previous
the effect

the

L



POWER ASPECTS IN FIXED AND RANDOM EFFECT MODELS

4.1 Fixed model: one-way classification

In certain circumstances, the group to group heterogeneity of
variances may be obtained while testing the group to group
homogeneity of means in the one-way analysis of variance

classification.

Suppose we have n; observations in group i, i = 1,2,...,k.

h th

Denote by vy, . the j'® observation in group i, by §i the i

J
group mean and §.. the grand mean. Suppose there are N

observations allocated. Usually we assume,

Yij = £ + Y; + eij (4.1.1)

where £ + Yi is the population mean from the ith group,

Xniyi = 0, and eij are errors distributed normally and
independently about zero with the same variance ¢?. We retain

the assumption of normality and independence but now assume

variances

¢

01%, 02%, ..., 0%, for each group.

The sum of squares for the fixed effect model can be expressed

as Q, and Q, where Q, is the within groups and Q, the between groups

sum of squares.

We will first consider the distribution of Q; and Q,. Here
Q, is a quadratic form in V;. Yase .. §k' and the matrix of the

quadratic form is

B = {ng8,. - =3} - : (4.1.2)

where Gij is the Xronecker delta.



We may write the quadratic form Q, = Y'BY, where Y is the

~ s

~

vector of normally distributed variables §i" with expectation

2
. 0’ .
: . . i
¢*¥ and diagonal covariance matrix V = {7;—}
~ . . -~ i

Setting 2 =Y -~ ¢¥*

we may write this in the form Q, = (Z +';*)'B(Z + T*),

Since the elements of ¢* are deviations from the mean, the elements

of Z are distributed with mean zero and variance V.

We shall trénsform the quadratic form to -
Q, = (x-b) 'A(x-b).
The transformation used is

Z'=NK x £ =-NKb

(4.1.3)

and the elements of x are now normally distributed with zero

mean and unit variance. A is a diagonal matrix of the form

A = K'N'B N K, where K is the orthogonal matrix of eigenvectors of
N'B N and ai's the diagonal elements of A are the eigen values of
N'B N. N is the lower triangular matrix V-! = N N'. Thus the

quadratic form Q, or the between groups Sum of Squares can be

‘expressed as a non-homogeneous quadratic form.

Q. (see Section 2.3) is given by

© .
o

The distribution of

P S = z d- 2 . - 401.4
Q2 < a) JZo 45X pr23 ) ( )
where p' = k-1 is the rank of the positive semidefinite quadratic

form B, g is an arbitrary constant and XzP'+2j

(.) is a chi—square

distribution. d. can be calculated by the recursion relation

J
j-1

d; = (23)7!' £ h,_._d j
J r=0 J°FT -

1'2'000



° i=1 ti=l 7
‘where
. PI pl b.2
_ _ m 1 _ m-1 _
hy = 2 (l-g/a;)" +mg I (7= (1-g/a;) m =
i=1l i=1 i

N

Similarly, Q, can be written as a quadratic form Z'D Z where
normally distributed with mean zero and variance V. By the

transformation 2 = N K Z the quadratic form Q, is reduced to

~

1,2’00.

is

X'A X where X's are normally distributed with zero mean and unit

~ o~

variance and the ai's are the latent roots of the matrix N'D N,

~ v~

where N and K are defined earlier and a; = ozi.

The distribution of Q; is given by

©

P(Q1 v$ a) = I
i=0

2 (¢}
CiX N-k+2i (G (4.1.5)

where Ci can be obtained by the recursion relation given by

li-l
C; = (21)"" £ h,_C i=1,2,...
i =g I°TT _
1 . _ . %
¢, I (g/a5)
Jj=1
where h = I (l-g/a.)n n=1,2,...

The quadratic .forms Q, and Q, are statistically independent, since

for each i, ?i. and
gt (Y54 = ?i.) are independently distributed.
j=1 -

The non-centrality parameter is given by

(3b'0) % = (%Ib, %) (4.1.6)

P
il

where b = K'N"1¢g*

~



Proceeding as 1n Section 2.5 the distribution of the test

criterion u is given by

Q2 _ o co ' .
= = r'+2i
P(u = a, £ o) = jio izodein,+2j’r,+2i(p.+2ja) (4.1.7)
where p' =k - 1, r' = N~k and Fp. r.(.) is the central F
14
distribution function, or
m m V ' . . ' .
Pluga) = I IdcT (B ;23, r ;21) (4.1.8)
' j=0 i=0 -lT
: 0.

a generalised incomplete beta distribution, where

o = p'/r'Fe, where ¢ is the chosen level of

significance.
Thus the probability of a type II error of magnitude p(u < o/A # 0)

can be calculated from the equation (4.1.8) and given by

[ o

P = I X p'+23 r'+2i
IT © ylo im0 34GT 4 5 =) (4.1.9)

1+

where the power of the test is B (L) =1 - Prg-

4.2 Random Model: One Way Classification

The situation may arise where a sample of K populations is
drawn from a larée set of populations. If we then consider that
the K populations are randomly drawn from the large (possibly
infinite) set of populations, then the model described by (4.1.1)

changes to the Random effect model outlined below.

e

For example consider the determination of the effect of
certain treatments on the nitrogen content of the tree leaves in
an orchard. Wevselect at random a group of trees, and then
chéose a set of leaves at random from each selected tree. Let

yij be the observed nitrogen content of the jth leaf from the ith tree



then the structure of the model is given by

yij = £ + Yj + eij : (4.2.1)

The general procedure for testing a hypothesis, and for
estimation with the random effects model is the same as with the
fixed effect model. Scheffé (1959) has discussed the power of
the test when the error variances are equal and the lay out is
balanced. We will now discuss the power of the test in the
Random effects model when the error variances are unequal and the

layout is not necessarily balanced.

In the model (4.2.1) we shall assume that Yi and eij are
independent random variables, each with expectation zero and with
variances o_? and ciz respectively. The oi2 (i =1,2,...K) are

not necessarily equal. We shall also assume that the Yy and e. .

1]
are normally distributed.
Now the sums of squares that are involved are
0, = IZ< ot (s - v, )? (4.2.2)
i=1 §=1 ij i.
and
K - - ) :
Q, = iirii(yi -Y..) (4.2.3)
Under the present model, the quadratic form
0= 5 3 (gi-F. 02 3 (el -en? (4.2.4)
. i=1 j=1 ij .1. i=1 3=1 ij i

is the same as that for the fixed effect model, and thus the distri-

bution of Q; is also' the same.

As before, we find that Q, can be expressed as a quadratic



form in Vi. Vao. «.. §K' Namely Q = Y'B g, where B is given in
(4.1.2). Since the y;, are now distributed as N(E, 0, %7 + 0;21) 4
we have that the §i are distributed as N(E, Gng + diZ/niE).
The £'s are the same as in the fixed effect model; but the Y's
are now distributed as N(g, 0Y25.+ oiz/niz). Yhen ny = n, f is an
n xn matrix each element of which is equal to unity.

~Setting g =Y - §, we may exbress Q, in the form

Q, = (g - §)'§(§ - §) where the Z's are distributed as N(O,Y)

the variance-covariance matrix being V = (ong + ciz/ni;).

We have seen in SeCtion.d.l that without loss of generality
the quadratic form Q, can be reduced to the fdrm Q) where
Q2 = (x = b)'A(x - b). The elements of x are standard normal
variates. The distribution of Q} can then be obtained easily

and is given by

o

P[Q) s a]l = & 4, x? .

(a/9g) (4.2.5)

where p' is the rank of the positive semidefinite quadratic form
' ) q )

B.

To test the hypothesis of equal treatment effects, we must

choose between the null and alternative hypothesis.

H a2 =0 -

° Y 4.2.6)
H o 2 0 (4.2.

1 y #

—_—

The power of the test for the situation (4.2.6) is then given

py 1 f PII’ where

(o] co

I 1 : 1 1
Prr = P[Q'2/0Q, < a] jio LG el 2 )

(4.2.7)



. . )
where p' = K -1, vy' =N - Kand a = %T F

er € is the chosen level

of significance and dé #Idj

4,3 Fixed Modei - Two-way classification

Sometimes, when testing the k treatments in the n blocks in
the two-way layout, circumstances arise where the variances of the
k treatments differ from treatment to treatment. Similarly, when
the experimental material is not homogeneous in mean from block

to block, chahges in variance may also occur from block to block.

The,data given by Fisher (1958) on the frequency of rainfall
at different hours in different months of the year, can be
classified as a two-way layout. Fisher has mentioned the strong
serial correlation of the errors within months, since rainfall
which continues for more than one hour is recorded in successive

hours. The method of randomisation cannot be applied in this case.

Fisher has also remarked on the non-validity of the 'between months'

. comparison, due to the serial correlation between hours within

months{

Let us consider a set of S values of the variate Y arranged

in k columns and n rows where Yy represents the value of the

th column and the ith row. We accept

member belonging to the t
the usual assumptioﬁs that Yy may be represented by a linear

model

Yeq T £ + wi +oyy o+ €is (4.3.1)

where Zwi = 0, Eyt = 0; our assumptions concerning the ey will

be given later.
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We shall represent the model in (2.1) for all elements of

the t™ column of the table (t = 1,2,...k) by

Yt

~ °

=EL + ¥+l +e, C (4.3.2)

where Y. is the n x 1 vector, ln is a n x 1 column vector all

~

- of whose elements are unity, e, is the vector of errors and V¥

~

is a n x 1 vector of row constants Vi, Y25 s wn. We shall
also use the notation Yoy and e., where’y.i and ey are
respectively k x 1 vectors of observations and errors in the ith

row of the table.

Instead of making the usual assumptions concerning the

Y namely that they have the same variance and are

statistically independent, we shall also aSSume.like Box (1954)

e

that the e.; are normally distributed with

E(gli) =0

1 p—ri
E(g.i e. i) v

The e.i being mutually independent for i = 1,2,...,n. Thus the
k-variances and %k(k - 1) covariances are the same for every
‘row. This assumption permits us to study the effect of column

to column inequality of variances and within row correlation of

errors.

Box (1954) has shown with the help of the orthogonal

transformation

H, =Py, =0+ ¥ +y A+ E

(where P is the n x n orthogonal matrix, A = Pln, Y = Py

~ ~

Et = Pet ) that the original tWo—way table can be changed and -

e pee st



the ey and Eti are distributed in the same manner and E.i has

the variance covariance matrix V.

Now the sums of squares involved in the analysis of

variance two-way lay-out are

k .
— <~ - 2

Qc =n El(yt. Yeo)

n < > 2
Op =k I (Yo; = ¥..)

i=1

and
n k _ _ )

Q. = L L (Yo: = Y - Ve, + V..)
E i=1 t=1 ti t i

where Qc, QR and QE are the Between columns, Between rows and

Error sums of squares respectively.

v 1 -
Using the transformation He, = n’yt and H. = n%y.. the
sum of squares Qc can be written as aAquadratic form in th

We can therefore express the quadratic form Q as H'C H where

lkl‘ -
- Xk ) and ¥y {g - £}. Now setting

fi's are N(y, V), C = (Ik

. ¥Y=H - Yy we will have that Qc = (Y + y)'C(Y + v) where the ¥'s

.~ .o~ ~

are N(O; V). The Qc can be then transformed to the form where

Qc = (x - b)'A(x - b) in which the x's are normally distributed

with expectation zero and unit variance co-variance matrix. A is a

diagonal matrix of the form A = K'M'CMK, where K is the orthogonal

~ N A

matrix of eigenvectors of y 9@ and M is the lower trlangular matrlx
given by Yf =M @'. The distribution of QC can then be obta;ned
(see Sectidn 2.3) and is given by
© ,
P(Qp € ) = I dy sz+2j (%) (4.3.3)
j=o
where p = k - 1 is the rank of the positive semi-definite
quadratic form g, g is an arbitrary constant and )&b+2j(') is a

-



chi-square distribution. . dj can be calculated by the recursion

relation given by

j-1 : ’
d. = (25)"' £ h,__a4a : j =1,2,...
J r=o 7T T
-1 P p 8
d_ =e 2 b2 T (g/a,)*
© i=1 L i=1 %
P o p bl i
where hm = .Z (1 - g/ai) + mg ‘Z (ET) (1 - g/ai) ©om —.1,2,...
i=1 i=1 i :

and ai's are the latent roots of the matrix M' C M. The non-

centrality parameter ) is equal to

A= (:b' B)f = (5IDb)*.

~

where b = R'M™?! v.

We can write QE as the quadratic form in Eti and in the

- matrix notation express it as Z'C Z where C is the matrix given
1.1 -t - _
~k£k ). The E.i's are distributed as N(O, V) and

Z's are similarly distributed with expectation zero and

by C = (I -
variance covariance matrix V.

In order to obtain the distribution of g'g g we reduce
this to the canonical form given by §'§ X; the transformation
used is g = y § X, where the §'s are normally distributed with
zero mean and unit variance, and ais are theblatent roots of
the matrix M' C M. (The matrix M and K were defined earlier.)

The distribution of the homogeneous quadratic form QE.is then

given by

= 2 | -
P(QE < a) = iio Cix Yk"l’Yl’l"lj’f‘Zl (g) (4.3.4)

where C is a positive semi-definite matrix of rank k-1.
Ci in equation (4.3.4) can be calculated by the recursion relation



given by

) i-1 :
Ci = (21) z fi—rcr : i=1,2,...
=0 .
. L
Co = T (9/aj)2
j=1 A
where fm = I (l—g/aj)m. ' mil,2,...
. j=l .

"Box (1954) has proved that the quadratic form Qc and QE are

mutually independent whereas QR and QE are not statistically

independent.

In order to find the distribution of the Between columns
test criterion, we proceed as follows, Between column test
criterion is given by u = gﬁ. Since the distributions of Q.
and QE are known, the distribution of u is found to be (see

section 2.6).

Q o © = . _ _ .
P(u = 69 <a) = I %40 & 12+2J‘, (n-1) (15 1) +2i,
(4.3.5)

Thus the Type II error of magnitude P(u < o/X # O) can be

.calculated from the equation (4.3.5) and given by

p._ = 3 3 d.c,x (k123 (n-l) (k=1)+2i, ., 5 g
I s~ ] 1T o 2 2
10 170 7 Tag .

where the power of the test is B(A) =1 - PII'

If we now consider the V matrix as diagonal, with unequal
diagonal elements, then we have the case where variances change
from column to column. The errors remain statistically independent.

in the ith

Again, if the errors €147 ©p4r eor Sy row are‘normally

distributed but not independently, then their variance covariance

matrix is V = 02§ where § = (pig) is a k x k positive definite



matrix with unit diagonal elements and off-diagonal elements Pes

~is the coefficient of correlation between ey and ey

We will consider the serial correlation which arises when
the observations within columns or rows are made at equally

spaced intervals of time or space. [ R R G5 O 5 IO D

4.4 Random Model: Two way classification

In the preceding section we have confined ourselves to the
fixed effects model. We now consider a situation where the
treatments and Blocks are also random samples, from the population

of treatments and Blocks respectively. This is the random effects

model.

Consider the analysis of variance in the Two way layout of our
Random effect model. The error vgriances may be unequal and errors
are not necessarily uncorrelated. We“will assume a model similar
to that of the fixed effect case, namely

Yeg T8 T U5 tvg tey | | ' (4.4.1)

But unlike for the fixed effect model we assume that wi, Yir ©¢i
are three independent random variables. Further, wi and Yy are
taken to be normally distributed with zero expectations and
variances ¢2I and oiI respectively.

¥

‘Using the same notation in this model for all the elements

of the tth column of the table (t = 1,2,...k) as for the fixed

effects model, we have



Yo, =&l v +oy L, e, (4.4.2)

Here the e.i are random normal variables with variance covariance

matrix E(e.i e..) = V. We also assume that the ey (3 = 1,2,...n)

~ ~

follow the same distribution independently of the €.y Let us
choose an n X n orthogonal matrix p, such that all the elements

.y :
in the last row are n *; transforming the Xt into Ht‘ we find that

I:-I.tn = vn Yt'
Then
Be =B ¥e, = 8L+ T H vl + B, (4.4.3)

where A,'W and E, are the same as in the fixed effect model.

We have seen in the earlier section that owing to the
nature of the orthogonal matrix p, We can obtain the trans-

formed columns of the original two way table.

| In the random effect model, unlike for the fixed effects
modél, Y.does not vanish. The error sum of squares remains the
same as in the fixed effect model case, i.e. the distribution of
QE in the Random effect model is the same as in the fixed efféct

model. The form of Qc is then given by

K -
Q,=n I (¥, -¥..)? _
= % H, -H.)?
£=1 ~tn n

The sum of squares Q. can then be written in matrix notation as

a quadratic form in ch.

V = {GYZI + 028}, and the § matrix in V is the positive definite

The H's are distributed as N(y, V) where

~



matrix which introduces the inequality of error variances

and the correlation of errors.

Setting Y = H - Y in the Quadratic form Qc = H'C H where

I,I.°
~K=
K },

K
are distributed as N(O, y). Again, with the help of an orthogonal

C ='{§K - we have Qe = (¥ + Y)'C(Y + y) where the Y's

transformation, we can always transform the quadratic form Qc into
the form (x - b)'A(x - b) where the x's are N(O, I). A is thé
diagonal matrix whose elements a; are the latent roots of the

matrix N'c N, where V = N N'., The transformation used is
Y =NK x, Yy =NKXKDb

where K is the orthogonal matrix of the éigenvectors of N'C N.

~ o~ o~

The distribution of the quadratic form Q. is then given by

Plo, < o] = jio A} X142y (@/9) (4.4.4)

The ' s in (4.4.4) are not the same as those in (4.3.3) since

the V matrix has changed.

To test the hypothesis of equal treatment effects we choose

between the null and alternative hypothesis.

H ‘oY?- =0 | | (4.4.5)

. 2
Hl‘ OY # 0

The power of the test for the situation (3.4.5) is then given

by 1 - PII’ where

(o] 0
_ _ p'+29 y'+2i
J 1+a
(4.4.6)
with p' =k-1, y' = (n-1) k-1), and a is the same as fixed

model case.



EFFECT OF NON~-NORMALITY ON THE POWER: A SIMULATION STUDY

5.1 Simulation method and Non-normal Distributions

' The effect of departure from normality in the distribution of
the error term was studied for a one-way classification by Pearson
(1931), Geary (1947) and Gayen §1950). David and Johnson (1951)
discussed the effects on the F-test as a result of the non-normality
of the error distribution.. The test in general was found to be

very insensitive to non-normality of errors.

In this chapter, unlike the previous authors, a simulation
method is used to investigate the sensitivity of the power of
the test for the non-normality of the error distribution in one and

two-way layout analysis of variance.

—~Numerically, analysis of varianée can be regarded as an
algebraic decomposition of variation into different components.
More specifically, it is concerned with observed data and the sum
of squares of déviations of individual observations from their
mean. The decomposition of this sum of squares takes account of

various criteria of classification into which the data has been

,grduped,

The method of simulation does not give us the polished analytic
results of mathematical theory but it helps us to duplicate the
observations resulting from a particular mathematical model, without
first questioning the exact realism of the model used to fit ddtg.
Modern computing facilities have taken a leading role.in overcoming
the tedious work involved in carrying out such simulation and it |
is jﬁstifiable'to belieVe'thaf concentrated research on simulation
method will improve the reliability and usefulness cf these |

techniques.



The calculation of power values in this thesis is carried out
by the simulation method on an electronic computer by first
generating independent random variables uniformly distributed
on (0,1), and then allowing them to take the shape of the sfandard

normal, the Erlangian and the contaminated normal distribution.

The Erlangian random variable, X, which we shall consider
here is defined as the sum of k independent negative exponential
random variables each with parameter 6. Its distribution is of the

form

- (Gx)k_l

g(x)ax = e “HeTyT 89X (k 3 1, integer) (5.1.1)

X

with the known mean and variance and 5z respectively.

)
The contaminated normal distribution which we shall consider

is obtained as follows. Suppose we have two normal populations

- with the same mean, the first having h times the standard deviation

of the second; if we mix popuiations by adding small amounts of

the second to the firét then we obtain a contaminated normal

distribution. The probability density of such a distribution of

contamination, ¢, and ratio of standard deviations, h, of the

-component normal distributions is given by

1 -22/2n?
dZ'l'Cm-e

-2z2/2

e 4z (5.1.2)

= (l-c) =
Ny p(2)dz = (1-c) =

If ¢ = O, then (1) reduces to the standard ndrmal distribution.

The standard deviation of the distribution (1) is given by

/ch2-c+lﬂﬂ

5.2  TFixed Model: one-way Classification

Let N observations be classified into s groups, the jth

th

observation in the i group being Yi4e Instead of the usual

assumption of normality for the errors, we will assume that the

-



error follows (a) the Erlangian distribution, and (b) the
contaminated normal distribution. The sum of squares in the one-way
layout when the group sizes are equal (i.e. n) are giﬁen by

q = g1 + g2, where q is the total sum of squareé, gq; the within sum
of squares and g, the between sum of squares. The hypothesis and the
_test criterion concerning the inference about the mean in the above

situations are given by

Ho: vy = 0, Hi: Y; #0 (1 =1,2,...5)
and
_ 95/s-1 _
U= %S | (5.2.1)

When the yij‘s are normally distributed and the null hypothesis
Ho is true, we have U distributed as a central F distribution with
s-1 and N-s degrees of freedom. But when the alternative hypothesis

. H1 is true then the power value B(A) is given by

B(A) = p[' > %—:—]s—' Fs:l | (5.2.2)

where U' is a non-central F distribution, F€ is the value of F at

e-per cent level of significance, and A denotes the non-centrality

‘parameter.

The process of generating the random variables and finally
the calculation §f the ratio U' is repeated 2000 times. The power
value B(A) is obtained by counting the number of times U' is
greater than %E% Fe and dividing the number by the total number of
repetitions. When the yij follow the Erlangian distribution, or the
contaminated normal distribution, then the U' will no longer be
distributed as a non-central F. The ratio U' may, however, still

be computed by the same meﬁhod as for the normal theory, and the

power value can thus be obtained.



5.3  Fixed model: two-way classification

Let us consider ns values of the variate yij arranged in s

columns and n rows where Yis represents the value of the member

‘ J
belonging to the ith column and jth row.., The sum of squares
involved in the two-way layout analysis of variance are given by

q = 4g, + dg + dg where g, d.s 95 and qp are the total, the between

columns, the between rows and the error sum of squares respectively.

In testing the hypothesis of equal treatment effects, we

will consider the hypothesis and the test criterion as follows:
H H Y- = O, Hl M Yj # O (j = 1,2,...11)

and

_ q./s-1

~.gg/ (m-1) (s-1) (5.3.1)

U

The power of the test for this situation when the errors are

normally‘distributed is given by

_ s—-1
B(A) = P[?' > mo1) (5=D) Fé] (5.3.2)

where U' is the non-central F distribution.

In order to obtain the power value B(A) for the non-normal
errors, we allow the random variablés to take the shape of
Erlangian and contaminated normal distribution and follow the

same procedure as for the one-way layout.

5.4 " Random Model: One-way classification

The general procedure for estimation and testing of the

hypothesis in the case of the random effects model is the same

as for the fixed effects model.

The structure we shall assume for the one-way layout random



effects model is given by

yij = €.+ 'Yi + 2lj | (5.4.1)

where Yy and zij are independent random variables each with exéec-
tation zero and variance aYZ and 022 respectively. Here Yig is a
linear function of two variables. In order to obtain the power of

the test in the case where the errors are not normally distributed,

we shall consider the random variables Y; as normally distributed.

The random variable Yij will be allowed to follow different non-
normal distributions and the power value will be obtained in different

cases of non-normality of error, in particular for the Erlangian

and contaminated normal distributions of erxrors.

Now the sums of squares involved are

k om S 2 k - - 2
q = I I (Yi2=V..)° and g2 = I n(y;-vy..)
i=1 j=1 13 7% i=1

where §i is the mean of the ith treatment effects and y.. is

the grand mean.

To test the hypothesis of equal treatment effects we must

choose between the null and alternative hypothesis

The test criterion for the above model is given by

U= %%é%;% . (5.4.3)

B—

when the Zij are normally distributed and the null ﬁypothesis

Ho is true, then U follows the central F distribution. But when

the alternative hypothesis is true then the power of the test

is given by

8(A) = p[u > &L g

g Fel (5.4.4)



where B(A) is a function of A =g¢ 2/022 and U is again an F-

Y
distribution. The method of calculation of U is the same as for

the fixed effects model, but here Yj is a linear function of

j

two random variables. When the zi. are non-normal, the U will no

J
longer be an F-distribution; but we can still compute the value of
U and B8(A) by the method of simulation. The detailed procedure

for calculation of the power is given in section 5.2.

5.5 " Random Model: Two-way classification

We shall now consider the random effect model in a two-way
layout. The linear model we accept for the present case is given

by

Yi5 = £ + by o+ Yj + Rij _ (5.5.1)

where wi and Yj are independent random normal variables with mean
zero, and variance awz and ch respectively. The random variable
zij will not necessarily follow the normal distribution. In order
to obtain the power of the test in the case of non-normal errors,
we aliow the error random variable to assume Erlangian and

contaminated normal distributions.

In the random effects model, to test the hypothesis of equal
treatment effects, we must choose between the null and alternative

hypothesis
Hi:ic 2=0 leoYZ # 0 (5.5.2)

The test criterion for the between column test in the above

situation is given by



. ln(§i. v.)? pea
gy A
U= 7 n - - ) | ‘5.5.3)
R (ylj -Yy, Y 5t y--) /(n-1) (K-1)

where §i is the mean of the itP
5 row and Y.. is the ground mean.

column, y 3 is the mean of the

When the error random variables are normally distributed,
then in the null-hypothesis case U will be distributed as a éentral
'F-distribution. Again if the null-hypothesis is not true, the ratio
U will be distributed as a central F-distribution and the power of

the test is given by

K-1 F (5.5.4)

BV = PIU > oryR=17 e

o 2

where A = 51?, F_ is the table value of F at the & percent level

- 0of significance and (K-1) and (n-1) (K-1) degrees of freedom. For
the method of calculation of B (A) thenreader is referred to

section 5.2.
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DISCUSSION OF THE RESULTS AND CONCLUSIONS

6.1 Power of the Test in General Linear Model

The results of the Tables in 1A give us values of Pll.(i.e.
type two error) at the 5% and 1% level of significance for normally
distfibuted errors with unequal variance in the general linear hy-
pothesis model. For‘comparison, the values of P;; for equal error
variances are given in the first row of table 1lA. It is seen from
both fig.l (one of the table values from 1A) and the tables in 1A that
the power value is seriously affected when normally and independently
distributed error variables have unequal error variances. Wherever
error variances are unequal, the power valué_is greater than for
equal error variances; the largest effect on the type two errors is
observed where one of the error variances is much greater than the
rest. The values of P;; for equal error variances given in the first

row of table 1A can also be obtained by Tang's methods (1938).

The values of P ;; at the 5% and 1% level of significance in:
table 1B show the effect on the power value due to the largest
serial correlation among the normally distributed error variables.
,fﬁe first row of table 1B gives the values of P;; for uncorrelated
error variables. Tables in 1B and figure 2 (one of the tables values
from 1B) show that wﬁen the error variables are normally distributed
and the errors are serially correlated then the tYpe two errors are
neither much greater nor much smaller than for uncorrelated error
variables. Hence it can bé inferred from the results obtained that
the power of the test is little affected by the serial correlation

of normally distributed error variables.

" Table 1C indicates the accuracy of the results for equal error
variances obtained by the present method compared with Tang's

(1938) results._
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6.2 Power of the Test in One-way Classification

The results given in Table IIA are the values of p;; (i.e.
type two error) at the l%'and 5% level of significance for»the
normally distributed errors with unequal group variances for our
model. Table IIB shows the effect of unequal group sizes on the

power value when the group variances are unequal.

It is obvious from Table IIA and figure 3 that the powér of
the test when the group variances are not equal is larger than when
they are equai. Table HB.and figure 4 indicates that the group
sizes do not greatly affect the power calculations, the
allocation of 15 observations, 7,5,3 to groups gives greater

power than 5,5,5.

However, it is obvious from the results that the P,;; values
are greatly affected when the variances are in the ratio 1:6:3
and group sizes are n; = 7, n, = 5, n3 = 3: Hence it may be
.concluded that for the fixed effect ohe—way layoﬁt the power
will be affected if the group variances and group sizes are

greatly unequal.

6.3 Power of the Test in Two-way Classification

Table IIIA gives us a clear picture of the effect of unequal
column variances on the power of the between-column test in the
two-way layout Analysis of Variance. From Table IIIA, it is seen
that the power of.the between column test is greatly affected bj
the unequal column variances. The first row of Table IIIA shows the

value of P when the column variances are equal.

IT

Table IIIB gives us values of PII when the variables within
rows in the two-way layout Analysis of Variance are serially

correlated. It appears that serial correlation within rows has
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little effect on the power value for the between column comparison
of homogeneity of means. The power values obtained for
correlation coefficients p = O are those for independently

distributed error variables within rows.

6.4 Power of the Test by a Simulation Method in Fixed Model

The results obtained by simulation methods for the one and
two-way classification analysis of variance when the errors are

normally distributed are given in Tables IVA and IVB respectively.

To check the accuracy of the results obtained by the simulation methods,

the power values are also calculated by Tang's (1938) method. The
power values obtained by Tang's method are given in the second
column of Tables IVA and Ivﬁ,lwhile the simulation results in the
normal théory case are given in the third column. Columns four
and five of these tables represent the power values obtained by
simulation methods for the Erlangian distribution of errors. The
values of k=1 and k=4 indicate the one and four stage,Eflangian
distribution. The power values concerning the contaminated normal
distribution of errors are given in columns six and seveﬁ with the

probability of contamination, A, and the standard deviation of

' the wider normal distribution, h.

It is quite cleér from the results obtained in Table IVA and
figure 5 that an Erlangian distribution for the errors has little
effect on the power of the test. 1In the case of the contaminated
normal distribution for the error variables, the power value is
slightly more affected than for the Erlangian distribution. A
similar conclusion can be drawn from Table IVB. In general the
result indicates that the power value is not greatly affected by

the non-normality of the errors.

R Al
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The results obtained by simulation methods for the one and two-
way layouts for this model when the errors are both normally and non-

normally distributed are given in tables VA and VB respectively.

It is quite clear from the results obtained in table VA and figure
6 that both Erlangian and contaminated normal distributions for the
errors have little effect on the powervof the test. In geheral for
the contaminated normal distribution the power value is slightly

more affected than for the Erlangian distribution.

6.6 Discussion of Results

(i) One of the more interesting features of the results described
above is the way in which the power of the test increases
whenever the error vériancés are unequal. This is most important
since not only is the case of unequal error variances the one
which occurs most frequently in practice, but also statisticians
have spent much time and ingenuity devising transformations to
ensure equality of such variances. 1In the future, provided a :
éomputer is available, or more probably, suitable published
tables, the applied statistician can not only savé himSelf some

work but use a more powerful test as well.

(ii) Serial correlagion of the errors affects the power in an un-
expected way. A negative correlation increases the power while
a positive correlation decreases it (Fig.2). In view of the
first result, one woﬁld have expected a positive correlation
to produce a reduction in the power since this is moving
towards equality of variances. However, a negative correlation
by inserting more "unequalness" in the variances produces an
increase in the power. This result may be useful in those

practical experiments in which results are taken sequentially



(iii)

6.7

and it is impossible to eliminate a time effect.

Box (1954)'has shown that the true significance level in the
case of unequal group variances is different from the nominal
significancé level. 1If the curves in Fig.l, approach » = O
in a reasonably smooth Qay it will indicate that in thé case
of unequal\group variances the true 1evéls of significahce
are different from the nominal significance level Supporting
Box;s.finding. It is clear from the results that the pow;r
curves for unequal error variances do lie above the standard

situation, possibly owing to the increased values of the

true significance levels. Therefore, for different group

‘'variances one should use corresponding true level of

significance because the evidence indicates that it will

provide the mbst-powerfﬁl'test.

The development and application of generalised incomplete

Beta distribution suggests areas that lend themselves to further

study.

(1)

(ii)

S (iii)

(iv)

These are

Robustness of poﬁerhin mixed model.

Robustness of power when the assumption of additivity- of
the model is violated.

Relationship of the power with the cost function of the
experimental design.A

Effect on power values in analysis of variance when the

experimental design is non-orthogonal.
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APPENDIX A

Theorem l.- Ruben (1962)
(1) '
1. H,'; A; b(a) =

J

Il ™ 8

. 2 »
o CJ X n+2j ((X/g)

where g is an arbitrary positive constant.

N
(0]
b

j Cj, n" A’ b(g)
nl
I b2,

-5 =% i=l

= A o' w10 m,, @B /29

3.. where sz is the Hermite polynomial of degree 2j and L

and Q are defined by

L

L(x) = I(b;/a; )%, Q=) = I - Dx,?
1

and the X; are independent normal variables with zero means
and unit variances. Further, the series in (1) converges
uniformly on every finite interval of a.

(ii)
. ) -7% . 1 . -1
4. Exp[}%Zbiz = (11—Zg/ai)2£] m(g/a;)* [: - (1 - g/ai)z{] 2

|z*| < min |1 - g/a,|™"

= Zc.Z*j
J

(iii)The Cj satisfy the recursion relationship.

. 'ng'bi;2 e )
S. C, = e 2 izl (g/ai)2 P
. —1'-1 .
CJ = (23) rio hj__Y CY j=1,2,...
where
n' m. ot 2  om-1
h, = iil (1 - g/a;)" + mgiil (b*;/a,) (1 - g/ay)

m = 112,0004



(1) o
' = 2
6. H ') A, 0, (a) = jio dj X nv425

(a/9)

where g is an arbitrary positive constant.

7. a5 =45 nt, A0, (9 =a7F ¢ B e

and Q is defined in (3). : Further the series in (6)

converges uniformly on every finite interval of a.

(ii)

n' : ' '
8. iil {(gra))* [; - (1 - g/a;)z*]*} = zdjz* (|z*] < min,|1-g/a;]™")
The dj satisfy the recursion relationship.
(iii)
. . j-1
. . = 1)~ . d
- 4y = (BT I By dy
a = 7 (arapt 3 =1,2
- 2 : - 4 4 o e e
°© i=1 7
where
nl
hm= z (l-g/ai) I”I=l, 2' e e e



APFPFLNDIA D

Distribution of the ratio of two quadratic forms

Since the g's in the equations (2.3.3) and (2.3.5) in chéptér 2

are arbitrary scale parameters, we can take the value of g equal

to unity in all cases. We have from (2.3.3) and (2.3.5)

L

' < = 3. x2 . (o) ’
plaa ol i—.’EO CJ- X p+2j'(a) (1)

and
p[q2 £ a] = i-E-o dl in_P+2i(a) . (2)

where sz(-) is the central x? distribution with p.d.f.

With the help of conditional probabilities we £ind that

Plai/a: < o] = | bl <o w/@)El@)da,  (3)
. 0o
where £(q,) is the probability density function of q,
n-p+2i _ 1

0 @ . ® ~d2 /2 .
= J {z c;x? (ad,/d,) & d;.=2 /2 g,

S j p+2] . i —p421 5421
ly j=o i=o oh=p+2i r('r'l 22 21,

bdqz}

since the two series are uniformly convergent on every finite

interval of o, we have

- . —p+2i
® e © X? 42y (092/d2) I
plas/@ <ol = I I cyd | ™02/ g,
j=o i=o - T Jy _n-p+2i -p+2i ’
o NPT [ (BB,
= I I C.d; J h A . (u = q1/qg2)du
j=o i=o 37 prJ,n p+2i v '
 where h (u) denotes the probability distribution function

p+23j,n-p+2i

of the ratio of two independent chi=-square variates (central) with

d.f p+2j and n-p+2i in the numerator and denominator respectively.

Consider now,

-dg,

(4)



P(u = ﬁi £ o) where u; and u, are two independent x? (central)

variate with d.f v and y respectively. Then
. o
P(u £ a) = h u du
( ) L o,y @

as just defined.

v .ul /\) : )
But P(u < a) = P(—L2 ¢ L q) =F (La)
: u2/Y v VeY 'V

where Fv Y(.) denote the cumulative distribution of Fisher's
4

variance ratio (central F).

Hence returning to equation (4), we have

o o

P(u=qi1/g2 £ ) = Z I C.d; F

-p+2i
_ . (n p+2i )
j=o i=o Jj i “p+2j,n-p+2i

p+2j



APPENDIX C

Expectation and Variance of Test Criterion 2

. VE
=E —_—
E,(2) = E (50
or
szp(z) = Ep (VE)
Now,

E,(Vg) = E,(D'M D) = E_(M,DD')

= trace {M E_ (DD")}

|

_ Vo [

= NN trace {M (NI - 1nln)}

= ﬁT%%TT [trace (M NI) - trace (M 1,1°)]

- Vs - =
BoVp) = Femy AN M=

trace (M) = p

' _ V, (p-1)
E, (Vg) = =2 b=

éubstituting the value of Ep(VE) in (1) we obtain

- b1
Ey(2) = §o7
The variance of 2z is given by

2 .
= [-E2] - 7) }2
Vp(2) = Ep{sz} B, (2)}

Now, since

V. = D'MD =

B D.2 M,, +I £ D,D.M,.

i3 3

it follows that

(1)

(2)

(3)



v.? = § D.?M,. + £ I D.D.M, (4)
j=1 + i i iy i97i3

Since the X's are fixed, the M, remains fixed even when the D's are
permuted in all possible ways. Now expanding the R.H.S. of the

equation (4) and taking the expectation we have

E_(Vg?) = E_(D;")IM, 2 + E, (D,;?D.2) (23 I MA + I I M M)
p E p- 1y J i gL i]j i g7 iiTj3

+ E (D. DJZD ) (42 = T M.,.M. + 2 I )3 )

M, M.
K75 kAL 3#1,K 3k i KAL 57K,1 1 3K

+ E (D 5p.)4r T M,.M.. + E (D;D.DLDy)
j i g4 iiij K7L

r I X z
i 371 KA9,1 07K, 3,15k (5)

Now, using David and Kendall's table (1949) we find

vV, Vs o 2y - V2, = Uy

. by _
1) E,(D;f) =3

. _ 2V, - V,? _ Vs
(i4) B (D;Dy D) = FrTy(=7) (v)  Ey(Dy D) = —gr-Ty

_ 3v%, - 6V |
(111) E (Dl j DgDy) = N(Nil)(N-a)(N-3) ' ()

Also, using the relation

M=M, M1l = 1» M2 = M and trace (M) = p

we find that the sums in (5) can be expressed in terms of m, N,
p, where m is the sum of the'squares of the diagonal elements of the

matrix M = {Muv}.

We derive (see Appendix D)

(vi) * I M,.M.. = p-m , (ix) ¢ x T M,.M., = Np-2p-p2+2m
i K#Aj, j#i,x ot K



(vii)Z T M,.M.. = p“-m (x) Z Z M, ;M. = p-m

i 37 iijj i 57 iiTij
(viidd)r » I M,.M._ = N-3p+2m
i KA j#i,g T3 I
R ' ' - N2- ; 2_
(xi) Z I z z MijMK2 = N?-2Np-4N+1Op+p*-6m

i j#i K#j,1i #K,J,1
(7)

Now substituting (7) and (6) in(5) and writing V, and V, in terms of

Fisher's K-statistics i.e.

VvV, = (N-1) (N-2) (N-3) K, + 3(N-1)3 K,?

we have

UE2
= —_—1 - 2
Vp(z) Ep{ 22} {Ep(z)}

- 2(p-1) (N-p) . Ku/K,? [m - P _ 2(P-1)(Nﬁp)]
(N-1) 2 (N+1) * (N-1)? N N(K+1)



APPENDIX D

¥1 =1 ZMiK =1 | | (1)
M, = M : o ZMij Mg = Mg (2)
M 1$ symmetric Mij = Mji
P = Mg M= EM My T § M 3My4
(1) IM?,, =3I I M,.M. —Z[ZMM - M..M..]
; it i 3#1 ij 31 i o5 13 ji 1ii7ii
= I [My; - MMy
- ZMll - nglMll = RO
i i
(2) = I M M. =71 [IM - M, .M. .]
i34 11753 i3 ii jj 1ii7ii
= ZMii Zij - EMllMll
=Ez—m
(3) T = I L
. s g M..M._ =12 1% L M,.M._ - M, -
i K#l j#i,K i3 3K i K#i [j "13 JK ii 1K 1KMKK
=z I [ M - MiiMiKMKK] from (1)

i K#i

= i{i(MlK 11MiK—MiKMKK [M 11M11 MiiMii]}

= ? (ZMiK)—ZM (EMlK) E M

(ZM )-2M..+22M..M..
i K K KK ii ii 1%

= N-p-p-p+2m = N - 3p + 2m



(4) Z I L M, .M., =27 £ [IM, .M., - M..M. - M..]
S kg 140,k LK T3 gostiiaatx T Miitx Mpx™ik

I [p(My
J K#J

n

SE{p(M.,) = M..M._ =M, M. }~{pM.. - M..M,. -
Aj[K{p( s 7 My5Mr T Meetlix T IPMyg T Mgty

- M 1

oM.
J3 3]

= pZ(ZM.,) - IM..(IM.,) - L (EM..)
PR R R R ’KMKK P

- PIM.. + 25M..M..
pj 33 5 33733

Np-p-p- (pXp) + 2m

.= Np - 2p - p2 + 2m

(5) & £ M,.M,

= L[IM,. .M., - M, .M..]
i KAL 11.1K iK ii1"iK ii il
. ' = IM;j; (ZMyp) = IM; Mgy
K i
=p-m
.(6) I I z z

i #i K#9,i 47K, 3,1 Tij KL

= 4L E Z Moo -M-- - . . - o o
i i K#j,i[g 131%2 13MKK MleK] MljuKl]
=¥ I I [M,. - M..MK - M..MK. - M. .M,.]
i 9L KA 17 iJ7KK 1J7K]J 134K1

=% % [E{M,. - M. M, - M..M,. - M .M.}
i §#i K ij 13MKK 1JMKJ v 1JMK;



™M

J7i

T [(N-p-4)M,. + 2M,.M.. + 2M,.M.. +
371 i3 13733 13791

- ™

™

I {(N-p-4)M,. + 2M .M., + 2 ~
3 [j¢i HN-p-d) M, 4 15733 Mi3M1

‘{(N—p—4)Mi. - 6MllMll}]

5 (N-p-4) + 2pIM,. + 2IM,, + 2IM_,
i i’lj ;i ; ii

- (N-p-4)IM,, - 6IM; M.
N(N-p-4) + 2p + 2p + 2p - p(N-p-4) - 6m

N2 = N - 4N + 6p - Np + p?2 + 4p - 6m

N2 - 2Np - 4N + 10p + p? - 6m

z [{(N—Z)M - p(Mij) - M, J—M .} o+ 3M, .M.

13733

ZM:LJ ll]

+ 2M, .M,

ij7ii

}

+ 2M, .M..+2M, .M.

ij7i ijrii

]



APPENDIX E

Construction of Tables TA and IB and II

The construction of Tables ' IA and IB for p;; corresponding to
the 5% and 1% levels of significance was carried out in the A

following manner.
1

(1) v~ = NN' (where V is the error variance-covariance matrix)
(2) My =y lxtv T gty
(3) My = vy ix(xty T Tipty

(4) Latent roots and latent vectors of y'gig. Let a; (i=1,2..n)
be the latent roots of g'yfg and K be the orthogonal matrix

of the latent vectors of g'g;@.

(5 b =K'N"!

-~ ~

p* where p* (B-xg*)

(6) ¢y ,
1.m ' 1,m-1 o
g = 3(1 - )™ 4 mz(b2/a.) (1 - L) m=1, 2 ...
m i ai i 1 1 ai v
“Lyn2 L
¢, = e P 1 (H)*
. . d.
i=j i
-1 71 .
Cj = (23) :2::0 gj—r Cr (3 =1, 2 ...)

(7) Latent roots of N'M*N (let aj(j=l,2;..n) be these latent roots)
~ ~o- :

:(8) 4,
1
gn=§.:(1""a—.- n=l,2...
i %3 »
do = Tz
J J
: -1 i-1 , - -
d; = (2i) Dog,_d. (i=1, 2 ...)
) r=0 .

(9) u, = H§§F€ where F_ is the value of F at the chosen level of

significance with p and n-p d.f's. The value of ¢ is taken

as 0.05 and 0.0l respectively.

p+2j n-p+2i
o) 1, (B, RS

1+u0 i ) i=0, 1, 2’...»15

j o, 1, 2,... 15

where I, (p,q) is the incomplete Beta function.



- LR N

(11) pyjy = I I cjdit I
i=o j=o

(9+2j n—p+2i)
2 14

u 2

(@]

l+qO

In calculation of p;; the summations of i and j are considered up
to the value of 15 because the value of p;; is not changed in the
four places of decimal by summing over any more extra terms for i

and j greater than 15.

To enter the table IA, the unequal diagonal elements in the diagonal

variance covariance matrix V are giVen.under the heading 'error

L
variances'. The noncentrality parameter is given by A = (% Q'?)z.'
v; and v, are the d.f. and ¢ is the level of significance. Hence

v; = p and v, = n-p respectively.
In table IB, p represents the first order serial correlation of the
errors. We note that the matrix V = § where

p O ooo-;. 0 0

1 P ......0 0

1o
n

® 60000 000 a0 0a s 000 o0

® @€ 8 6 ¢ 3 68 600000 ee P e

O O O e 00 oo p l
v; and v, are the degrees of freedom, and the non-centrality
parameter is given by A = (% 9'9)2. In the first row of table IA

a particular case of our general formula is obtained by substituting

unity for the diagonal elements of the variance covariance matrix‘V.'

Similarly in table IB we have substituted p = O for the particular
case. Since 8§ is by definition a positive definite matrix it is
necessary that the value of p lies between -% < p < % (see SCHEFFE

(1959) pp. 334).

» TP MR et des T T Ty
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