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ABSTRACT

This thesis describes a study of the synthesis and characterisation of a new family of 
cationic alkane-thiolate and -selenolate compounds bearing a phosphonium (or phosphine 
oxide) head group, and the applications as ligands for the stabilisation of gold 
nanoparticles. The ability of these cationic phosphonium gold nanoparticles as substrates 
for the detection of negatively charged biomolecules has also been explored.

In chapter 1, topics concerning the synthesis of functionalised gold nanoparticles, 
their biorecognition properties, the application of these nanoparticles in the biomedical field 
and gold nanoparticles stabilised with phosphorus-containing ligands, are outlined in a 
literature review.

Instrument details of the analytical methods employed to characterise all the 
compounds and nanoparticles obtained in the study are outlined in Chapter 2. The syntheses 
and structural characterisation by NMR, ESMS and X-ray crystallography of cationic 
phosphonium-containing ligands are described in Chapters 3 to 5. Chapter 3 contains the 
description of the synthesis of phosphonioalkylthiosulfate zwitterions. The synthesis of 
related phosphonioalkylselenide compounds is presented in Chapter 4, and Chapter 5 is 
concerned with the synthesis of phosphonioalkylthioacetate and related phosphine oxide 
ligands.

In Chapter 6 , the preparation of the cationic phosphonium-fimctionalised gold 
nanoparticles using the phosphonium-containing compounds as protecting ligands, in a 
two-phase liquid-liquid (DCM-H2O) and one phase (ethanol) systems, is described. This 
chapter also contains details of characterisation of these nanoparticles by NMR, XPS and 
TEM. The ability of the cationic phosphonium gold nanoparticles to interact with RNA and 
cDNA, and the potential of using these nanoparticles as biorecognition systems was 
investigated by the Biacore Surface Plasmon Resonance technique and this work is 
described in Chapter 7. Finally, a summary of conclusions and some suggestions for future 
work are presented in Chapter 8 .
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1.1 Introduction

Nanobiotechnology is an interdisciplinary field based on fundamental chemistry, 

biotechnology and materials science which has evolved over the past few decades. 

Nanobiotechnology is a convergence of nanotechnology and biomedical sciences which 

has opened a wide variety of biological research topics and medical uses at the 

molecular and cellular level (Figure l ) .1

The main purpose of developments in nanobiotechnology is the integration of 

biological and non-biological materials and structures in order to generate new 

biocompatible devices of nanoscale dimensions, potentially useful for sensing, catalysis, 

transport, and other applications in biological and medical sciences.2,3,4 Learning how to 

control the formation of two- and three-dimensional assemblies of molecular scale 

building blocks into well-defined nanostructures, and understanding the interface 

between biological and non-biological materials on the molecular scale are the principal 

challenges in this area.5,6

The utilisation of nanoparticles of a variety of shapes, sizes and compositions 

has made possible the fabrication of the biocompatible and functional devices, and has 

also changed the analytical measurement landscape for biomolecules.7,8 It is clear that 

nanoparticles will be able to overcome many of the significant chemical and spectral 

limitations of molecular fluorophores. Nanoparticles are being used as tags in biological 

assays to eliminate the use of either organic fluorophores or radioactive labeling.9 For 

this reason, methods for the preparation and handling of nanoparticle-biomolecule
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conjugates and organic ligand-stabilized nanoparticles have been developed. These 

functionalised nanoparticles have already had an impact in the designing of biosensors, 

in drug and gene delivery, and tissue engineering technologies.10' 13

Nanosuucture

N an o & h e lit

mmmm
Nanotechnology 
Size Comparisons

Bid  m o la r

wide

10’*4

Atomic handw riting

NiMvtJ c h ip

A 6’ m an  is 1 62 m otors t.il 
or 7 M*ion rartnrr»<tt«r

rim (head  of a

3QQmp (OHM

*5 million

drop  of

Me Jit. ulion 
delivery sy stem

Q uantum  corral

Strand
o f DNA

- 2  mn
w ide

'2 nm

picometers

Figure 1. Size comparisons between several human made nanodevices and biological 
species. (Figure taken from: http://www.nsf.gov/news)

Metal nanoparticles are generally considered to be a number of atoms or 

molecules bonded together with a radius of < 100 nm. These particles differ from the 

bulk materials in the number of atoms (Figure 2) and their physical properties are also 

different from those of the bulk.14 These differences arise through the small size and

2
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large surface area of the particles: for a 10 nm particle, 15% of atoms occupy surface 

positions, compared with 0.0015% for a 1 pm (lOOOnm) particle.13

Number of atoms Radius (nm) 

1

102

Molecules

103

10*
10

Nanoparticles

105

106

Figure 2. Distinction between molecules, nanoparticles, and bulk materials according to
the number of atoms.

Nanoparticles that act as signal transducers show the most promise in diagnostic 

assays, due to the elimination of the need to tag a biological sample. With the sample 

preparation steps reduced or eliminated, the diagnostic test will become more robust and 

less expensive.16 The eventual goal for any diagnostic assay is detection from whole
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blood. This goal has been achieved by Hirsch and co-workers,17 who developed an 

aggregation assay to detect immunoglobins in whole blood using gold nanoshells, 

which are spherical nanoparticles made up of a dielectric core (often silica) and 

surrounded by a thin metal shell.

One of the most exciting areas of nanobiotechnology is the use of nanomaterials 

to carry out particle-specific functions. In other words, intrinsic physical or chemical 

properties of the particles effect analytically relevant transformations. Recently, 

Tkachenko and co-workers18 published their initial findings on multi-functional gold 

nanoparticle-peptide complexes for nuclear targeting. For this function, the particles 

must be small enough to penetrate cells and nuclear membranes, rugged enough to 

survive harsh endosomal/lysosomal processes, and must be able to carry targeting 

peptides for nuclear localization. These functions were met by 20 nm diameter gold 

nanoparticles coated with bovine serum albumin and derivatised with well-defined 

quantities of combinations of targeting peptides.

Despite the considerable variety of contributions, this literature review will 

focus on the synthesis and stabilization of gold nanoparticles (AuNPs), and various 

types of assemblies, their physical and chemical properties, and finally their 

applications in biochemistry, biomedicine and catalysis.
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1.2 Gold nanoparticles (AuNPs)

There is a current interest in the development of receptor-functionalised metal 

and semiconductor nanoparticles which are able to recognise and interact with specific 

biomolecules. Such systems are expected to form the basis of new diagnostic biosensor 

technologies and novel therapeutic agents, and the most widely studied systems are 

based on gold.19,20 Gold nanoparticles present interesting aspects such as their stability, 

inertness, behaviour as individual particles, and size-related electronic, magnetic and 

optical properties. Furthermore, gold nanoparticles (AuNPs) have the advantages of 

easy preparation and the possibility of chemical modification of the surface.21,22

The beginning of the chemistry of gold colloids dates from the middle of 

nineteenth century, when Michael Faraday performed his famous experiments to 

generate gold colloids. Faraday reduced tetrachloroaurate using white phosphorus to 

yield deep-red solutions.19,21 At the beginning of 20th century, Wilhelm Ostwald 

contributed decisively to the further development of colloid science. He was the first to 

establish that the properties of metal particles in the nanometre range are predominantly 

determined by surface atoms and he concluded that those nanoparticles, called colloids, 

should exhibit novel properties with respect to bulk particles. The term “colloid” has 

meanwhile been mostly substituted by “nanoparticle”, or “cluster” .19
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1.3 Synthesis of gold nanoparticles

The number of procedures for generating gold nanoparticles is almost 

indeterminable. There are two main approaches to synthesize gold nanoparticles: a 

physical and a chemical one. Physical methods are defined as those by which gold 

nanoparticles are directly generated from bulk gold via the generation of isolated atoms 

by various distribution techniques, whereas chemical routes use gold compounds as a 

starting material, linked with reduction steps.

An important aspect of both approaches is the stabilization of the particles to 

avoid coalescence between them. This stabilization can occur in many different ways, 

for instance by electrostatic repulsion, steric hindrance, or using organic ligand 

molecules to functionalise the gold nanoparticles.

1.3.1 Synthesis of AuNPs based on physical methods

The simplest way to obtain nanoparticles is the generation of metal atoms in the 

gas phase followed by their controlled condensation to nanoparticles through a process 

known as metal-vapour synthesis. In special cases the colloidal metals can be studied in 

the gas phase; however, in order to obtain them as solid matter, the vapours have to be 

condensed into a dispersing medium.
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Recently, laser ablation has been used for the production of nanoparticles but the

range of dimensions of the nanoparticles obtained was very large. A further

improvement in the laser technique is laser-induced size reduction. Laser irradiation of

metal sheets in diluted sodium dodecyl sulfate at 532 nm yields nanoparticles in the

01range of 1.7 and 3.2 nm. Another recent method described is the solvated metal atom 

dispersion (SMAD) method. In this technique, metal atoms are generated from bulk 

metal and frozen at 77K in acetone vapour and then warmed to give colloid metal 

stabilized in acetone. The colloids can be further stabilized by dodecanethiol and can 

then be dispersed in toluene. These methods allow for the easy handling of colloids in 

common organic solvents.

Stable gold nanoparticles can be generated in the presence of an ultrasonic field 

(200 kHz), which allows the control of the rate of AuCLj reduction in an aqueous 

solution containing only a small amount of 2-propanol, and also of the sizes of the 

formed AuNPs, by using parameters such as the temperature of the solution and the 

intensity of the ultrasound.24,25 AuNPs have also been fabricated via decomposition of 

[AuCl(PPh3)] by reduction in a monolayer at the gas/liquid interface.26 The thermolysis 

of [Ci4H29-Me3N][Au(SCI2H25)2] at 180 °C for 5 hours under N2 produced alkyl-group- 

passivated AuNPs of 26 nm.
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1.3.2 Synthesis of AuNPs based on chemical methods

The basic concept of chemical synthesis of gold nanoparticles is that a salt of the 

metal is dissolved in an appropriate solvent and then reduced to the zero valence state 

(Figure 3). The problem is that the lifetime of the atoms in the solution is short, and they 

tend to coalesce into large aggregates. The crucial step in the process is then to 

determine when to stop the growth and thus prevent the formation of large aggregates- 

“bulk formation”. In many cases the use of ligand molecules has been found to be 

effective in stopping bulk formation. These ligands coordinate strongly with the surface

28 30atoms of the growing nanoparticle.

Reduction of gold

_ Reducing agent

Au3+ » Au°

Au3+ = HAuCI4i KAuCI4, NaAuCI4 

Reducing agent = NaBH4 sodium citrate

Colour change

Figure 3. Reduction of Aum using a reducing agent.
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1.3.2.1 Citrate reduction: synthesis of gold nanoparticles stabilised by sodium 
citrate

Among the so-called salt reduction methods, the Turkevitch31 route is still one of 

the most commonly applied procedures. Sodium citrate reduces [AuCLJ- in hot aqueous 

solution to give colloid particles of 15-20nm. Citrate itself and its oxidation products 

(e.g. acetone dicarboxylate) can act as protecting agents, if no other stabiliser is used. 

Frens32 reported a method to obtain AuNPs of chosen size between 16-147 nm. The 

method was based on the variation of the ratio between the reducing/stabilising agents 

(the tri-sodium citrate-to-gold ratio) in order to control the size of the AuNPs. Many 

variations and improvements of this method have been reported.33'35

1.3.2.2 The Brust method: synthesis of gold nanoparticles in a two-phase solvent 
system and stabilisation by thiols

The use of ligands with greater affinity for the gold than citrate was a major 

improvement for the synthesis and handling of gold solutions. Ligand-capped gold 

clusters have been known for many years; however, the practical formation of stable, 

isolable monolayer-protected clusters (MPCs) has only recently been demonstrated. 

Phosphines and thiols are excellent stabilisers due to rather strong Au-P bonds and even 

stronger Au-S bonds. These molecules allow the isolation of gold nanoparticles as 

solid materials that can be re-dispersed in appropriate solvents. This is not possible with 

weakly binding stabilisers such as citrate.38
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Thiols are the most important type of stabilizing molecule for gold nanoparticles 

of any size. The stabilisation of AuNPs with alkanethiols was first reported in 1993 by 

Mulvaney and co-workers. It is commonly accepted that the use of thiols leads to the 

formation of RS" thiolates that form strong covalent Au-S bonds.36,39,40

One of the most popular modem methods for preparing gold nanoparticles of 

various sizes was published by Brust and co-workers 41 The strategy consists of growing 

the metallic clusters with the simultaneous attachment of self-assembled thiol 

monolayers on the growing nanoparticles. In order to allow the surface reaction to take 

place during metal nucleation and growth, and also due to the solubility of the thiol 

compounds, the particles are grown in a two phase system (water-toluene). Bmst used 

tetraoctylammonium bromide as a phase transfer reagent, to transfer AuCLf from 

aqueous solution to the organic phase (toluene) in the presence of dodecanethiol 

(C12H25SH). The method uses NaBHj to reduce gold salts in the presence of 

alkanethiols to yield 1-3 nm gold particles (Figure 4).

By varying the thiol concentration, the particle size can be controlled between 2 

and 5 nm.42 Recently, thiol-stabilised gold nanoparticles have become available 

following a seeding growth approach starting with 3.5 nm particles. The particle size 

can be varied by changing the seed-particle to metal-salt ratio 43
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NaftHj
HAuCI4  '

AuCI4 (aq) + N(C8H17)4+(C6H5Me) _ ►  N(CgH17)4+AuCI4 (C6H5Me) 

mAuC«4- (C6H5IVIe) + /jC12H2 5SH(C6H5Me) + 3me' — ► 4mCI (aq) + [Aum(C12H25 SH)n](C6H5Me)

Figure 4. Formation of AuNPs coated with organic shells by reduction of Aum with 
NaBH4 in the presence of thiols in a two-phase liquid-liquid system using 

tetraoctylamonium bromide as the phase-transfer reagent.41

Other thiol ligands containing reactive end groups have been used in the 

synthesis of functionalised gold nanoparticles in order to design new biomolecular 

surface recognition systems.43 Among thiol ligands reported in the literature for the 

fabrication of stable gold nanoparticles with the ability to interact with biomolecules, 

the ones containing trimethylammonium- and fluorophore-end groups are the most 

widely studied.44-46

1.3.2.3 Other sulfur- and selenium-containing ligands

It has been shown that organic thiosulfates (Bunte salts) with either aliphatic or 

aromatic groups as part of their chemical structure, constitute a novel family of surface- 

active compounds containing sulfur, making possible the synthesis of stable self­
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assembled monolayers (SAMs) and gold nanoparticles.47’48 Lukkari47 has described the

AO
generation of alkanethiolate-protected gold surfaces, whereas Murray and co-workers 

have prepared clusters from sodium S-dodecylthiosulfates (Bunte salts), which are 

identical to those obtained directly from the use of the free thiol ligands, the sulfur- 

sulfur bond undergoing cleavage with loss of sulfite ion as a result of the interaction 

with the gold surface (Figure 5).

Selenium-containing ligands have been shown to offer interesting, and 

alternative chemical characteristics than the widely used alkanethiols for the formation 

of self-assembled monolayers on metal surfaces. Yee and co-workers49 developed a 

one-phase preparation of alkaneselenol-protected gold nanoparticles using 

alkaneselenols and dialkyldiselenides as protecting ligands. More recently, Tong and 

co-workers50 used octaneselenols as the protecting ligands to form stable monolayer- 

protected metal nanoparticles, and studied the gold-selenium bonding interaction by

7 7  ♦ ™NMR making use of Se nuclear magnetic resonance.

Gold nanoparticles in a size range of about 10 and 30 nm or more have been 

synthesized by the NaBFL* method using mercaptosuccinic acid for stabilisation. By 

varying the succinic acid to HAuCU ratio from 2.5 to 0.5, particles of 10.2, 10.8, 12.8, 

19.4, and 33.6 nm were isolated as water-redispersable powders.51 11- 

Mercaptoundecanoic acid was also used to cover gold nanoparticles generated by the 

Brust method. The carboxylic functions were then treated with trifluoroacetic anhydride

12



to give the corresponding carboxylic anhydrides which are highly reactive and can, for 

instance, be used to anchor the nanoparticles to silica supports.52

S.'CV*
AuCV * CH3;CH?}iaS S 03' ------------------  [-AuSR-|r

-:sc3)

f AufOjSS :CH3J, 3CHj )rC:«. „J-

NaBH,

I

Au

A'j

Figure 5. Synthesis of alkanthiolate-functionalised gold nanoparticles using 
S-dodecylthiosulfate as protecting ligand.48
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1.3.3 Characterisation techniques

The most common characterization technique is high-resolution transmission
OQ CO

electron microscopy (HRTEM), ’ from which an electron micrograph of the gold core 

of the AuNPs can be obtained. However the core dimensions can also be determined 

using scanning tunnelling microscopy (STM),54 atomic force microscopy (AFM) ,55,56 

small-angle X-ray scattering (SAXS),57 and X-ray diffraction.58

The histogram providing the size distribution of these cores gives relevant 

information on the dispersity of the nanoparticles can be obtained from TEM 

micrographs.39 From the elemental analysis, giving the Au/S ratio, allows calculation of 

the average number of S ligands at the surface.22,41,42 This number can also be deduced 

from X-ray photoelectron spectroscopy (XPS)59 or thermogravimetric analysis (TGA).36 

Brust and co-workers also examined the oxidation state of the gold atoms of the core 

using X-ray photoelectron spectroscopy showed that the binding energies of the doublet 

for Au 4f7/2 (83.8 eV) and Au Afsa (87.5eV) are characteristic of Au°. No peak 

corresponding to Au1 (84.9 eV) was found in the spectrum, although one-third of the 

gold atoms are located at the surface and bonded to thiols, in the 2 .0-2.5 nm sized 

particle cores,22 and it is commonly assumed that at the surface of such assemblies, the 

unit Au1 — "SR is present.

IR provides an identification of the ligands surrounding the nanoparticle core 

that can also be confirmed by NMR spectroscopy, except that the ligand atoms close to 

the core give broad signals. This latter experimental observation is due to (i) spin-spin
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relaxational (7^) broadening (main factor), (ii) variations among the gold-sulfur bonding 

sites around the particle, and (iii) a gradient in the packing density of the thiolate 

ligands from the core region to the ligand terminus at the periphery.60*62 The NMR 

spectra can be very useful, as for all molecular compounds, for the part of the ligand 

remote from the core.

Kenndler and co-workers demonstrated, by capillary zone electrophoresis in 

acetate buffer, that the mobility of AuNPs with a given core diameter decreased with 

ionic strength. They observed, at the highest ionic strength (6 mmol/L), a good linear 

dependence of the mobility on the reciprocal of the core radius allowing them to 

characterise the size of the AuNPs.

1.4 Physical properties of AuNPs

The dark-red colour of AuNP colloids dispersed in water reflects the surface 

plasmon band (SPB), which is a broad absorption band in the visible region around 520 

nm (Figure 6).64 The SPB is due to the collective oscillations of the electron gas at the 

surface of nanoparticles (6s electrons of the conduction band for AuNPs) that is 

correlated with the electromagnetic field of the incoming light.65 The SPB provides a 

considerable amount of information on the development of the band structure in metals 

and has been the subject of extensive study of optical spectroscopic properties of 

AuNPs.
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V to v e le n g th  (n m )

Figure 6. The deep-red colour of gold nanoparticle colloids in water reflects the surface 
plasmon resonance (SPR), a broad band absorption band in the visible region around

520 nm.

The main characteristics of the SPB are:

(i) Its position around 520 nm.

(ii) Its sharp decrease in wavelength with decreasing core size for AuNPs with 

1.4-3.2 nm core diameters due to the onset of quantum size effects that become 

important for particles with core sizes < 3 nm in diameter and also cause a slight blue 

shift (the damping of the SP mode follows a 1/radius dependence due essentially to 

surface scattering of the conduction electrons;66,67 this decrease of wavelength of the 

surface plasmon band (SPB) as particle size decreases is accompanied by broadening of 

the plasmon bandwidth.

(iii) Step like spectral structures indicating transitions to the discrete unoccupied 

levels of the conduction band with monodispersed AuNPs with core diameters between

1.1 and 1.9 nm.68-69

The SPB is absent for AuNPs with core diameter less than 2 nm, as well as for 

bulk gold. For AuNPs of mean diameter of 9, 15, 22, 48, and 99 nm, the SPB maximum
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^max was observed at 517, 520, 521, 533, and 575 nm, respectively, in aqueous 

media.19,70 The maximum and bandwidth are also influenced by the particle size,

7 0  77dielectric constant of the medium and temperature.

The refractive index of the solvent has been shown to induce a shift of the SPB. 

Mulvaney and co-workers74 studied solutions of dodecanethiolate-stabilised AuNPs 

with an average diameter of 5.2 nm, and observed an 8 nm shift in SPB as the solvent 

(toluene) refractive index is varied from w /0 = 1.33 to 1.55. The ligand shell alters the 

refractive index and causes either a red or blue shift. This shift is especially significant 

with thiolate ligands, which are responsible for a strong ligand field interacting with 

surface electron cloud. With elliptical particles, the SPB is shifted to higher wavelength 

as the spacing between particles is reduced, and this shift is well described as an 

exponential function of the gap between the two particles.71

Fluorescence studies of AuNPs have been carried out under various conditions, 

including femtosecond emission75 and steady-state investigation76 of the interaction 

between thiolate ligands and the gold core, Capping fluorescent groups such as pyrenyl, 

polyoctylthiophenyl, fluorenyl, and other probes have been used.77-80 Resonant energy 

transfer has been observed in fluorescent ligand-capped AuNPs that is due to the size 

and the shape of the AuNPs, and the distance between the dye molecules and the 

orientation of the dipole with the nanoparticles axis. These studies have contributed to 

developments in biophotonics and materials science.81,82
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1.5 Chemical and recognition properties of AuNPs

1.5.1 Chemical Properties: reactions of thiolate-stabilised AuNPs

Alkanethiolate-stabilised AuNPs possess a unique property in that some of the 

thiolate ligands attached onto the core can be substituted by reaction with other thiols. 

This reaction, so-called ligand place-exchange, depends on the chain length and steric 

bulk of the leaving thiolates and incoming thiols and on the charge of the AuNPs.36,83,84 

The oxidation of the functionalised gold nanoparticles increases the chance of larger

O f

numbers of fresh new thiolate ligands being incorporated onto the gold surface. 

Ligand place-exchange is a key step in monolayer protected cluster (MPC) 

fimctionalisation to obtain the mixed monolayer protected clusters (MMPCs). For 

instance, MPCs with alkanethiolate monolayers (RS) can be functionalised with R'S 

groups by the reaction:

x(R'SH) + (RS)^MPC ► x(RSH) + (R,S)JC(RS)m.JCMPC

where x and m are the numbers of the new and original ligands, respectively. The rate 

and equilibrium stoichiometry (x) of the reaction are controlled by factors that include 

the mole ratio of R'SH to RS units, their relative steric bulk, and R versus R' chain 

lengths.21'36
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The study of ligand place-exchange dynamics and mechanism shows that the 

exchange reaction (i) has a 1:1 stoichiometry, (ii) it is an associative (as opposed to 

dissociative) reaction, (iii) it yields the displaced ligand in solution as a thiol, and (iv) it 

does not involve disulfides or oxidized sulfur species.83

Various functional thiols could be partially incorporated into AuNPs using this 

reaction. Rotello and co-workers could incorporate 11-mercaptoundecanoic acid into 

thiolate-stabilized AuNPs giving amphiphilic AuNPs that were soluble in basic aqueous 

media but which aggregated in acidic media due to hydrogen-bonding. This property
o /

was controlled by adjusting the pH.

Complexation of pyridine-functionalised thiol AuNPs also led to solid substrate 

assembly, and such bifunctional ligands were used to link AuNPs, which led to 

electron-hopping studies and applications as sensors.87 Other electroactive and 

photoactive groups, and catalysts, as well as simple groups such as halides, nitriles, 

alkenes, and sulfonates, have similarly been introduced using the ligand-exchange

88-91reaction.

1.5.2 Recognition properties: molecular recognition AuNPs systems

Many biomolecule-gold nanoparticle hybrids, and positively charged- and 

negatively charged-gold nanoparticle systems have been reported in the literature. There

19



is a great interest in these systems and they have been widely studied over the past 15 

years due to their unique recognition property for biomolecules (Figure 7 ).44’92 93

The use of well-controlled functionalised gold nanoparticles in solution, based 

on non-covalent bonding, is a general strategy for biomolecule recognition.94 

Approaches using hydrogen-bonding,95 71-71,96 host-guest,97 van der Waals, 8 

electrostatic,99 and antigen-antibody100 interactions have also been reported.

Antigen detection

Linkers 

Protective layer

Linkers

Fluorescent signalling

Biocompatibility

Linkers

Biomolecule recognition

Figure 7. Features of the metal nanoparticles for biorecognition

Amide-functionalised AuNPs have been synthesised and used as optical sensors 

for anions,101 and heavy metals have also been recognised using AuNPs-based
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1 (V)sensors. The sensitivity of the plasmon band with the core environment is a source of 

sensing, and the optical response (SPB) has been studied,103 in particular the colour 

sensitivity of the AuNP-DNA assemblies.

1.6 Applications of gold nanoparticles in biology and medicine

The use of gold colloids in biological applications began in 1971, when Faulk 

and Taylor invented the immunogold staining procedure. Since that time, the labelling 

of targeting molecules, especially proteins, with gold nanoparticles has achieved the 

visualisation of cellular or tissue components by electron microscopic techniques.104

There are two basic strategies in the development of receptor functionalised gold 

nanoparticles: the utilisation of (i) organic dyes and (ii) biological coatings that possess 

the ability to recognise and interact with specific biomolecules. Such systems are 

expected to form the basis of new diagnostic biosensor technologies and novel 

therapeutic agents. The most widely studied systems, reported in the literature, are 

based on gold due to their unique physical and chemical properties, previously 

mentioned. The main purpose of the construction of these biocompatible materials in 

most investigations is the detection of precise DNA sequences.105
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1.6.1 BiomoIecule-AuNP hybrid systems: conjugates for recognition of 
biomolecules

Many conjugation protocols have been reported in the literature for the labelling 

of a broad range of biomolecules with gold colloid, e.g., involving protein A, avidin, 

streptavidin, glucose oxidase and DNA (single and doubled-stranded).

Mirkin’s group has pioneered strategies that rely on the use of biomolecules, 

such as DNA, to organise nanometer-sized and functional structures and materials. 

There are three categories: the use of

(i) Oligonucleotides (single stranded DNA) to prepare meso- and macroscopic 

organic structures.

(ii) Duplex DNA as a physical template for growing inorganic wires and 

organising nonbiological building blocks into extended hybrid materials.

(iii) Oligonucleotide functionalised gold nanoparticles and sequence-specific 

hybridisation reactions for organising such particles into functional structures.5 Some of 

their strategies have already been shown to be useful in generating novel nanostructured 

materials,106'108 and in developing a promising new detection technology for DNA.109,110

Gold nanoparticle conjugation was applied to polynucleotide detection in a 

manner that exploited the change in optical properties resulting from plasmon-plasmon 

interactions between locally adjacent gold nanoparticles. The characteristic red colour 

of gold colloid is known to change to a bluish-purple colour upon colloid aggregation.93
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i noStorhoff and co-workers developed a one-pot selective colourimetric 

polynucleotide detection method based on AuNP probes which align in a “tail-to-tail” 

manner onto a target polynucleotide. AuNPs (~ 13 nm diameter), which were capped 

with 3’- and 5’-(alkanethiol)oligonucleotides, were used to complex a 24 base 

polynucleotide target. They observed that after the hybridisation of the target with the 

probes, a change in colour of the solution from red to purple occurred, indicating the 

formation of an extended polymeric AuNP/polynucleotide aggregate. This change in 

colour was monitored by UV-visible techniques and a dramatic shift of the surface 

plasmon band of the AuNPs was observed (red shift of the SPB from 520 to 600 nm). 

Because of the extremely strong optical absorption of gold colloid, Storhoff and 

Mirkin110 also suggested that this colourimetric method can be used to detect ~ 10 fmol 

of an oligonucleotide, which is 50 times more sensitive than sandwich hybridisation 

detection methods based on fluorescence detection.

Brust and co-workers111 developed a highly sensitive and simple microarray 

method for protein detection and for assaying enzyme functionality. The identification 

and characterisation of substrates and inhibitors of kinases is of interest for the 

biomedical sciences since the phosphorylation of proteins by kinases plays a key role in 

regulating cellular processes and is believed to be involved in many diseases such as

• 119 11^ , . ..cancer, diabetes, and inflammation. ’ The method reported by Brust is based on 

labelling specific recognition or phosphorylation events on a microarray with gold 

nanoparticles using avidin-biotin chemistry followed by silver deposition for 

enhancement and resonance light scattering detection. This approach overcame the need
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to use the radioactive labelling required for traditional assaying of kinase activities. 

Also, with this method, the screening of many different protein-protein or peptide- 

kinase interactions could be carried out simultaneously on the same microarray.

More recently, Wang and Brust114 showed the use of specifically designed, 

peptide-stabilised gold nanoparticles as artificial substrates for kinases, and developed a 

very simple colorimetric method for the evaluation of kinase activity and inhibition, 

suggesting that this may have important implications for the future use of nanoparticle- 

based technologies in drug discovery.

1.6.2 Organic ligand coated-AuNPs: biocompatible nanomaterials for 
biomolecule recognition

Biomolecules are often coupled through non-covalent electrostatic interactions. 

Ligands carrying a positive group can interact with the polyanionic DNA molecule. The 

repulsive charges of these biomolecules should, in theory, prevent flocculation. As 

noted by Kumar and co-workers,115 the attractive Coulombic interactions between the 

positively charged gold nanoparticle and the negatively charged DNA form linear, 

closely packed assemblies of varying lengths depending on the size of the DNA 

molecule. Petty and co-workers116 also agree that the interaction of DNA with 

nanoparticles by electrostatic interaction depends on the nucleotide length.

The recognition of biomolecular surfaces relies on the fundamental interactions 

involved in small molecule host-guest systems and core-shell nanoparticle systems such
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as monolayer protected clusters (MPCs) and mixed monolayer protected clusters 

(MMPCs). These possess four important attributes that make them promising scaffolds 

for the creation of receptors targeted to biomolecular surfaces:

(i) The size of the nanoparticle core can be controlled from 1.5 to 8 nm with

•  117 •overall diameters of 2.5 to 11 nm. This control of core size allows particles to be 

made on comparable size scales to their biomolecular targets (Figure 8).

(ii) Nanoparticles can be fabricated with a wide range of surface functionality, 

providing a flexible route to the creation of surface-specific receptors.

(iii) MMPCs can be generated with a range of metal and semiconductor cores 

featuring useful electronic, fluorescence, and magnetic properties.44 This versatility 

makes these systems excellent materials for probes and diagnostic agents.

(iv) MMPCs can self-template to complementary surfaces, which allows an 

increase in the affinity and selectivity of the recognition process on incubation with the

$ nm •*

Nanoparticle DNA Protein

Figure 8. Fabrication of functionalised gold nanoparticles on comparable size scale of 
their biomolecular targeting, controlling their core size.117
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To test the ability of MMPCs in modulation of DNA activity through non- 

covalent interactions, Rotello and co-workers119 used gold nanoparticles (2nm) 

functionalised with octanethiol and 11-trimethylammoium-undecanethiol units, as 

MMPCs, to bind to DNA. The trimethylammonium end-groups on the MMPC surface 

could bind to the negatively charged phosphate backbone of 37mer duplex DNA 

through electrostatic complementarity (Figure 9). The binding of the DNA to the 

positively charged nanoparticles was monitored through a UV centrifugation assay, 

which relies on the change of the DNA conformation on the binding to this MMPC 

surface and its subsequent precipitation from the solution. The stoichiometry of 

association was found to be 4:1 nanoparticles to DNA duplex.

In solid phase studies, extended aggregates of this MMPC have been assembled 

using DNA templates.120 The strength of the binding was further tested by the ability of 

the nanoparticles to inhibit DNA transcription in vitro. The authors demonstrated that 

on incubation with DNA, the MMPC effectively inhibited DNA transcription by T7 

RNA polymerase.121 The experimental results indicated that the MMPC with 

trimethylammonium end-groups binds with higher affinity than the T7 RNA 

polymerase or that the altered conformation of the nanoparticle-bound DNA interrupts 

the recognition process.
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b)

Figure 9. a) MMPC with Cg and trimethylammonium end-group and 37-mer DNA 
counterpart (to scale), b) specific interactions formed between the cationic 

trimethylammonium side chains of MMPC and the anionic DNA119

Recently, the use of inorganic nanoparticles such as cationic gold nanoparticles 

as functional gene carriers was reported. The special character of the gold nanoparticles 

differs from that of organic gene carrier molecules and their use in nonviral gene 

delivery into cells promises to overcome the major obstacles of the application of

t ' j ' j  1 O '!

nonviral systems to gene therapy. Sandhu and co-workers demonstrated that gold 

nanoparticles modified with A,A(N-trimethyl(l 1-mercaptoundecyl)ammonium chloride

27



and alkylthiols of several chain lengths (MMPCs) showed DNA-binding and 

transfection ability in cultivated mammalian cells. More recently, Niidome and co- 

workers developed an easy method for the preparation of cationic gold nanoparticles 

modified with 2-aminoethanethiol, which have a shorter alkyl chain than the MMPCs, 

and examined the DNA-binding ability and transfection efficiency of these 

nanoparticles into cultivated cells (Figure 10).

Plasmid 

©  ( 0 ™

G o l d
Nanoparticle

DNA/Gold
Nanoparticle

Complex

Transfection

Col l

Figure 10. Preparation of primary amine-modified AuNPs and their transfection ability
1 99into cultivated cells.

Wang and co-workers124 have studied the possibility of ethidium intercalation as 

a means of inducing binding of AuNPs to DNA (Figure 11). These workers referred to 

their AuNPs as monolayer protected Au clusters (MPCs) because of the protective 

virtue of the ligand covering the gold. Ethidium cation was incorporated onto the 

surface of the cationic nanoparticle (AuNPs functionalised with A^A-trimethylO 1- 

mercaptoundecyl)ammonium chloride) only at a few places, restricting the reaction
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sites. An increase in the ethidium fluorescence in the DNA-MPC solution was observed, 

indicating that the ethidium binding to DNA released some of the excitation energy.

Figure 11. Structure of ethidium bromide (Eb) and structure of mixed monolayers 
protected cluster of trimethylammonium and ethidium thiolate.124

Cationic-functionalised nanoparticles have demonstrated versatility as 

transfection and recognition agents in a number of biomedical applications. However, 

all cationic-functionalising ligands currently reported in the literature contain various 

ammonium species. Based on the physical and chemical properties and the previous 

work on cationic monolayer protected gold colloids, this thesis describes the synthesis 

and characterisation of a family of novel cationic functionalised nanoparticles of gold 

modified with a new series of phosphonium thiolate ligands, as new alternative systems. 

The phosphonium moiety offers a number of advantages including biocompatibility and 

the relative ease of preparing a wide range of derivatives using a variety of substitution 

patterns. Lipophilic cations, such as methyltriphenylphosphonium (TPMP), have been 

shown to have a remarkable ability to cross phospholipid bilayers of mitochondrial 

membranes and accumulate inside the mitochondrion, with consequent influence on the

19 S 197 • • • •chemistry of the host cell. ' This ability to pass through biological membranes is 

due to the distribution of charge over a large, hydrophobic surface area.
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The more recent discovery of mitochondrial DNA (mtDNA)-associated diseases 

and the proposed role of mtDNA mutations in aging have led to renewed interest in 

these organelles and the genome they carry.129 Few important proteins are encoded on 

mtDNA and expressed exclusively in the mitochondrial matrix. Long recognised as the 

site of ATP production in the animal cell, these organelles (Figure 12) are also key 

players in the apoptosis pathway for programmed cell death in addition to being 

involved in thermogenesis and calcium homeostasis.129 Mitochondrial dysfunction may 

be due to mutations/deletions in either the nuclear genes encoding mitochondrial 

proteins or due to mutations/deletions in mtDNA.125,129

Any mutation in mtDNA affects the normal function of the respiratory chain and 

causes defects in the final common pathway of oxidative metabolism. Therefore, the 

correction of these disorders by the administration of alternative metabolic carriers of 

energy does not seem to be possible. However, strategies can be designed to repair 

mutations in the existing mtDNA or prevent the mutated mtDNA copies from 

replicating. For a permanent cure of mtDNA diseases, it is considered that the balance 

between mutated and healthy mtDNA needs to be shifted below the threshold level 

required for the phenotypic expression of the disease for the complete eradication of the

i oo i mmutated portion of the mitochondrial genome. ’

Due to the widely advanced development of nucleus targeting viral and non­

viral vectors, many efforts to correct mitochondrial DNA defects have relied on the 

delivery of the therapeutic DNA to the nucleus. The viral approach to correct the
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mtDNA mutations is based on the delivery of a construct of the wild type mitochondrial 

gene fused to a sequence encoding a mitochondrial targeting sequence into the nucleus, 

followed by nuclear cytosolic expression and subsequent import of the gene product
1 1 1  i

into the mitochondria. ’ In contrast to the viral strategy, non-viral gene delivery 

systems have had a promising start in mitochondrial gene therapy.133,134,135 Weissig and 

co-workers129,134 have designed two non-viral mitochondria specific delivery vectors. 

The best characterised system is based on the use of vesicles prepared from 

mitochondriopic quinolinium compounds. These vesicles called DQAsomes have been 

developed for the purpose of transporting DNA specifically to the immediate vicinity of 

the mitochondrion of a live cell.133,136,137
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Figure 12. Mitochondrial organelle (Figure taken from: 
http://www.search.com/reference/Mitochondrion)
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Given the relative ease with which liposome formulations can be modified with

various targeting ligands, mitochondriotropic moieties synthesised with suitable linker

motifs could be used to produce mitochondriotropic liposomes. Boddapati and co- 
1̂ 0

workers have described in their work the preparation of liposomes with a novel lipid 

consisting of a mitochondriotropic triphenylphosphonium cation conjugated to a stearyl 

anchor. These liposomes have been shown to be mitochondria specific in their 

subcellular distribution and preliminary data showed that these liposomes can be 

formulated to bind DNA and hence putatively serve as mitochondria-specific DNA 

delivery systems.129 Following similar approaches, the phosphonioalkanethiol-capped 

gold nanoparticles in this thesis might be suitable for mitochondrial gene therapy using 

them as non viral gene delivery vectors (Figure 13).

The versatility of the triphenylphosphonium cation has been shown in several 

studies reported in the literature. Murphy and co-workers139,140,141 have conjugated 

triphenylphosphonium cations with antioxidants and other probes to direct them 

selectively to mitochondria within cells and in vivo, and one such compound is now in 

phase II trials for Parkinson’s disease. They have also improved the extent and 

selectivity of mitochondrial delivery by using lipophilic dications, and they have shown 

that these dications are dramatically more effective at delivering antioxidants to 

mitochondria in vivo.125 Rideout and co-workers142 have shown that cationic lipophilic 

compounds containing a triphenylphosphium group selectively accumulate in the 

mitochondria of carcinoma cells compared to normal cells, due to the characteristically 

elevated plasma membrane potentials of neoplastic cells.
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Figure 13. Utilisation of triphenylphosphonium cations as non-viral DNA delivery1
vectors in gene therapy.

Thiobutyltriphenylphosphonium bromide has been used successfully by Murphy 

and co-workers128 to identify changes in the redox state of mitochondrial thiol 

compounds during oxidative stress. They demonstrated that the lipophilic 

triphenylphosphonium cation interacts with the negatively charged mitochondrial 

matrix causing its accumulation inside the isolated mitochondria and in mitochondria 

from living cells.I4j These workers also detected the formation of disulfide bonds due to 

the reaction of the thiol groups in the matrix with the mitochondrial protein and low 

molecular weight thiols during the oxidative stress. This showed that such salts 

containing lipophilic cations can be used to determine mitochondrial 

dysfunction.128’143’144

Based on the importance of the mitochondriotropic triphenylphosphonium 

cations in mitochondrial gene therapy, gold nanoparticles functionalised with 

phosphonium cation-containing ligands have been fabricated as new potential delivery
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systems, This thesis describes the synthesis a new series of phosphonium thiolate 

compounds which behave as masked thiol ligands, and the fabrication and 

characterisation of a family of novel cationic functionalised gold nanoparticles using 

these ligands. The potential of these phosphonioalkylthiolate-functionalised gold 

nanoparticles as biorecognition systems for DNA detection through electrostatic 

interactions, using the Surface Plasmon Resonance technique, has also been explored.

1.7 Monolayer-protected metal clusters stabilised with 
phosphorus-containing ligands

Phosphorus has perhaps been one of the most studied elements and this has been 

translated into a considerable number of applications based on these discoveries 

expanding in different areas. According to Walker, one of the most prominent 

contributors in organophosphorus chemistry, phosphorus can be considered as dynamic 

element which can mimic carbon depending on its coordinated state.145,146

Organophosphorus chemistry can be classified into two broad categories. First, 

the reactions of the phosphorus atom itself, and second the modification of the reactions 

of the organic substituents by the presence of the phosphorus atom. Phosphorus, as 

carbon, occupies a fairly central position in the periodic table and can easily form bonds 

with either electronegative or electropositive elements. These bonds are generally strong 

(e.g. P—O, P—F, P—C), and therefore a wide variety of phosphorus compounds are 

known.146
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In the trivalent state, phosphorus possesses a lone pair of electrons and is readily 

polarisable, which enables it to act as a nucleophile towards a wide range of species. 

However, phosphorus is relatively electropositive and so can also act as electrophile. 

This behaviour is assisted by the ready oxidation of phosphorus (III) to phosphorus (V), 

which further increases the range of compounds obtainable.146

The main objective of this section is to emphasize the most recent work based 

on the utilisation of phosphorus-containing compounds as protecting ligands in the 

synthesis of monolayer-protected metal clusters. The interest in these systems has been 

growing for several reasons during the past few years. Among these are the relevance to 

biological systems, the application to supramolecular chemistry, and electronics.

•5 1
Moreover, it has been shown that P NMR spectroscopy is a convenient method to 

monitor monolayer-protected metal clusters synthesis and to characterise the 

phosphorus-containing ligands surrounding the metal nanoparticle surface.147

One of the most widely studied systems is the tertiary phosphine-stabilised gold 

nanoparticle, originally formulated as Au55(PPh3)i2Cl6 by Schmid and co-workers in 

1981.37 These nanoparticles have been investigated as models for metallic catalysts and 

as building blocks for nanoscale electronic devices. The synthesis of the phosphine- 

stabilised gold nanoparticles reported by Schmid and co-workers37 involved rigorous 

anaerobic conditions and diborane gas as reducing agent. However, Hutchinson and co­

workers148 reported a safer and more convenient synthesis of phosphine-stabilised 

nanoparticle analogous to those originally reported by Schmid.37 The synthesis
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eliminates the use of diborane or borane, and can be carried out quickly under ambient 

conditions. It allows the utilisation of a wide range of phosphines as passivating ligands, 

and provides control over particle core size.148

Hyeon and co-workers149 have reported the synthesis of monodisperse palladium 

nanoparticles stabilised with several phosphine compounds. This has become possible 

through an understanding of the coordination chemistry of phosphine ligands on the
*31

palladium particles achieved using P NMR spectroscopy. These palladium systems 

have also been investigated by El-Sayed and co-workers.150 They investigated the effect 

of reagents and surfactants on the stability of palladium nanoparticles during Suzuki 

coupling reactions. The synthesis of phosphine fuctionalised nanoparticles has become 

very important due to the most recent work reported in the literature.151 They discovered 

asymmetric catalytic applications of chiral phosphine-stabilised palladium 

nanoparticles.149

I

Glueck and co-workers have described the synthesis of monolayer-protected

gold cluster coated with phosphido (PR2 ) groups. They prepared these nanoparticles in

order to extend the investigations of the surface chemistry of gold, and they showed that

in comparison to the Au-thiolate MPCs, fewer larger phosphido groups were required to

cover the surface, and that the Au-P bond is not cleaved in reactions with small

1molecules as is its Au-S counterpart.
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1
Le Floch and co-workers were the first to report the synthesis of gold 

nanoparticles coated by a substoichiometric amount of phosphinine ligands, and their 

immobilisation on mesostructured silica and titania hosts. They have shown that the 

phosphinines possess a pronounced 7t-accepting capacity and therefore are attractive 

ligands for the stabilisation of zerovalent metal nanoparticles.153

The synthesis of phospholipid-capped gold nanoparticles has been reported in 

the literature by Zhu and co-workers.154 They have provided a method to fabricate 

biocompatible metal quantum dots based on liposomes as a template. Phospholipids are 

traditionally considered as a model system to study the biological membrane and its 

interaction with proteins due to their well-defined structure and property. The 

combination of biomolecules, especially lipids, with metal particles has been 

extensively applied as biosensors or for the drug delivery.154,155 It has been shown that 

quantum dots of encapsulated CdS or CdSe semiconductor nanocrystals by 

phospholipid worked as in vitro fluorescent probes to hybridise to specific 

complementary sequences when conjugated to DNA.156

Organometallic-based pathways to obtain high quality cadmium selenide (CdSe) 

nanoparticles have been improved since their first synthesis in early 90’s. A wide range 

of precursors of passivating ligands has been used to prepare nanoparticles of the 

desired size and shape. The most common surfactant, tri-w-octylphosphine oxide 

(TOPO) has been used as a passivating agent and as solvent for a wide range of 

materials, from semiconductors, to metals and metal oxides. In the synthesis of CdSe
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nanoparticles, the selenium is often delivered in the form of a tri-rc-octylphosphine 

selenide (TOPSe) solution, which has also been identified as a passivating agent as well 

as the selenium precursor. Green and co-workers157 have investigated a phosphonium 

ionic liquid as a replacement for TOPO due to its potential to bind to both anionic 

(selenium) and cationic (cadmium) surface sites maintaining the solubility in organic 

solvents. The ionic liquid used by Green’s group was trihexyl(tetradecyl)phosphonium 

bis(2,4,4-trimethylpentylphosphinate) and it was selected due to its thermal stability at 

temperatures associated with the nanoparticle synthesis, low bioactivity and potential

1 ̂ 7for recycling.

In Chapter 2, a brief description of the analytical methods employed to 

characterise all the compounds obtained in the project is outlined. In the three following 

chapters, the syntheses of phosphonium cation-containing ligands are described. 

Chapters 3, 4 and 5 describe the synthesis and structural characterisation by NMR, 

ESMS and X-ray crystallography of a new family of stable phosphonioalkylthiosulfate 

zwitterions, triphenyl- and thioacetyl-alkylphosphonium bromide and phosphonioalkyl 

selenolate zwitterions, respectively. In Chapter 6, the synthesis and characterisation by 

NMR, XPS and TEM of the cationic functionalised-gold nanoparticles using the 

previously synthesised compounds as protecting ligands are described. In Chapter 7, the 

immobilisation of the gold nanoparticles onto dextran sensor chips and studies of their 

potential as biorecognition systems using Surface Plasmon Resonance technique are 

described. Finally, Chapter 8 contains a summary of conclusions and some suggestions 

for future work.
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CHAPTER 2
Experimental-General Methods
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This chapter describes the general analytical methods used to characterise all the 

compounds and nanoparticles obtained during this project.

2.1 Melting point

Determination of the melting points of the solid state compounds were carried 

out using Electrothermal melting point apparatus, with a temperature gradient from 

room temperature (temp, ramp: 0.5°C).

2.2 Elemental analysis

All the samples submitted for elemental analysis were dried in an oven at 60°C. 

Carbon and Hydrogen analysis was carried out by MEDAC Ltd. (analytical and 

chemical consultancy service), Brunei Science Centre, Coopers Hill Lane, Englefield 

Green, Egham, Surrey, UK.

2.3 Thin layer chromatography (TLC)

Analytical thin layer chromatography (TLC) was performed on Merck silica gel 

60F254 plates using mixtures of dichloromethane : methanol as eluent system.

2.4 Fourier transform infrared spectroscopy (FTIR)

KBr discs were prepared for solid samples (previously dried in an oven at 60°C) 

for the analysis by FTIR. Spectra were obtained on an ATI Mattson Instruments
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Genesis Series FTIR spectrometer. The data were recorded using Winfirst software 

version 3.57.

2.5 Nuclear magnetic resonance spectroscopy (NMR)

Samples were dissolved in an appropriate deuterated solvent to a concentration 

of 10 to 15 mg mL'1 for proton and phosphorus-31 experiments. Spectra were obtained 

using a Brucker DMX 250 (250 MHz) nuclear magnetic resonance spectrometer with 

data recording and handling carried out using a Brucker mass spec 3000 computer 

running ADAKOS version 890201.0 software.

2.6 Mass spectrometry (MS)

Samples were dissolved in an appropriate solvent (methanol or acetonitrile) to a 

concentration of ~ 2 mg mL'1 for molecular ion determination. Electrospray mass 

spectra were recorded using an Applied Biosystems “QStar-Pulsar-i” hybrid quadrupole 

time of flight LCMSMS instrument.

2.7 Ultraviolet-visible absorption spectroscopy (UV-Vis)

Samples were analysed in quartz cuvettes with a 2 cm pathlength. UV-visible 

spectra were obtained on an ATI UNICAM UV2 spectrometer with data recording 

using Unicam Vision software version 3.42.
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2.8 X-ray crystallography

Crystalline samples were submitted to the EPSRC National Crystallography 

Service at the Department of Chemistry, University of Southampton, Highfield, 

Southampton, UK. Detailed crystallographic reports, that give experimental details for 

each of the structures presented in this thesis, are contained in the appropriate 

experimental details in the respective chapters.

2.9 Transmission electron microscopy (TEM)

TEM analysis of the phosphonium gold nanoparticles was performed on a FEG- 

NOVA Nano-SEM (MERI, Sheffield Hallam University) and ZEISS STEM 

(Cambridge) instruments operating at 15 kV and 30 kV accelerating voltages, 

respectively.

2.10 X-ray photoelectron spectroscopy (XPS)

XPS measurements of the freeze-dried cationic phosphonium-AuNP samples 

were made on a KRATOS AXIS 165 Ultra Photoelectron Spectrometer operated at 

10KV and 20mA using the A1 K X-ray source (1486.6 eV). The takeoff angle was fixed 

at 90°.
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CHAPTER 3

Synthesis of Phosphonioalkylthiosulfate
Zwitterions
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3.1 Introduction

Sulfur-Au bonding has been extensively investigated in many papers reported in 

the literature based on the synthesis of gold nanoparticles and self-assembled 

monolayers (SAMs). Among the reported sulfur-containing ligands that have been used 

for the generation of self-assembled monolayers on gold surfaces and nanoparticles, the 

most commonly used are thiols and disulfides.19,21,48 In general, the synthetic strategies 

for the preparation of thiol- or disulfide-containing organic compounds consist of the 

addition of hydrogen sulfide to alkenes, or the substitution of alkyl halides and 

haloaromatic compounds carrying a strong electron-withdrawing substituent with RS". 

It is well-known that these reactions are accompanied by a significant amount of side 

products, mostly sulfur-containing compounds, in the synthesis of the thiol-containing 

ligands. In order to avoid the formation of these side products during the reaction, 

several synthetic methods have been developed including additional hydrolysis, 

reduction and bond cleavage steps. One disadvantage of thiol compounds is their strong 

and unpleasant smell,47 and so their generation in-situ is a desirable goal.

Lukkari47 and Murray48 were the first to report the use of thiosulfate-containing 

ligands in the preparation of SAMs and functionalised gold nanoparticles, respectively, 

as novel alternatives to the thiol compounds already reported in the literature. Organic 

thiosulfates have the formula RSSOaM, where R is an aliphatic or aryl group and M a 

monovalent cation. They also can be considered as 5-alkyl or 5-aryl esters of 

thiosulfuric acid, and are known as Bunte salts after the German chemist Hans Bunte, 

who was the first to study them, as long ago as the 1870s.48
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Bunte salts have been shown to possess biological activity. For instance, sodium 

ethylthiosulfate exhibits a striking synergic effect when used with bacteriostatic 2 - 

mercaptobenzothiazole against Staphylococcus aureus158 and tubercle bacillus}59 This 

antibacterial activity can be explained by the interaction of Bunte salts with cell 

membranes or by their influence on oxidation and reduction processes inside a bacterial 

cell. Czerwinski and co-workers161 studied the electrochemical behaviour of the Bunte 

salts, and described the influence of the organic thiosulfate adsorption on their 

oxidation processes at the surfaces of two different electrodes, gold and platinum.

The principal advantage of using thiosulfates is their easy preparation compared 

to that of the corresponding thiols. Bunte salts can be obtained by the reaction of 

sodium thiosulfate and the corresponding alkyl halide in aqueous phase or in a mixture 

of organic and aqueous solvents (equation 1), and in many cases, the synthesis of a 

surface-active Bunte salt can be carried out in a one-step procedure.

R-X + Na2S20 3 -► R—SS03Na (l)

The crystalline odourless salts, which form as the final products, can be easily 

separated from the reaction mixture. Additionally, Bunte salts can be converted into the 

corresponding thiols in good yields without previous isolation. Lukkari47 and Murray48, 

using X-ray photoelectron spectroscopy (XPS), demonstrated the ability of the sulfur- 

sulfur bond to undergo cleavage with loss of sulfite ion as a result of the interaction 

with gold surfaces.
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The interest in the chemistry of phosphonium systems has led to the design and 

synthesis of a family of novel phosphonioalkylthiosulfate ligands which can be used to 

fimctionalise the surface of gold nanoparticles. In this chapter, the synthesis and 

characterisation of a family of phosphonioalkylthiosulfate zwitterions is described.
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3.2 Experimental

3.2.1 Synthesis of the series of triphenyl- and tributyl- 
phosphonioalkylthiosulfate zwitterions

The synthesis of the series of triphenyl- and tributyl-phosphonioalkylthiosulfate 

zwitterions has been carried out based on the work of Lukkari47 and Murray.48 

Adapting these approaches, co-bromoalkylphosphonium salts (4) have been converted 

into a series of phosphonioalkylthiosulfate zwitterions (5a-5e, R = phenyl, n = 3, 4, 6 , 

8, 10; 5f-5g, R = butyl, n = 3, 6), which act as cationic masked thiols, being sources of 

the phosphonioalkanethiolates for the synthesis of the functionalised gold 

nanoparticles.

The pathway used in the synthesis of triphenyl- and tributyl*- 

phosphonioalkylthiosulfate zwitterions is shown in Scheme 1. All the compounds were 

generated by the reaction of triphenylphosphine or tributylphosphine (3.8 mmol) with 

the appropriate bromo-alcohol (15 mmol) in acetonitrile under reflux for four hours, to 

obtain the corresponding hydroxyalkylphosphonium salts (3). The salts (3) were 

dissolved in HBr (48%) and heated under reflux for five hours to obtain the 

bromoalkylphosphonium salts (4). Finally, a series of phosphonioalkylthiosulfate 

zwitterions (5) was prepared by treatment of the salts (4) (1 mol) with sodium 

thiosulfate (1.5 mol) in aqueous ethanol under reflux for five hours. Progress of the 

reactions was monitored by TLC, using 20% methanol : 80% dichloromethane as 

mobile phase. Compounds (4) and (5) were obtained by dichloromethane extraction of
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the reaction mixtures and initially purified by trituration with dry diethyl ether. Only 

the reaction of tributylphosphine with the corresponding bromo-alcohols was 

performed under nitrogen. The 4-triphenylphosphoniobutylthiosulfate (5b) was 

prepared from the commercially-available (4-bromobutyl)triphenylphosphonium 

bromide.

R R

R - ^ P :  +  Br--------(CH2)n -------- 0H  R— --------- (C H ^ ------- OHBr

R CD (2) R (3)

R
HBr \ +  „  Br'

(3)  ► R— P ------- (CH2)n Br

R
(4)

R
Na2S20 3 \ +  -

(4 )  —  — ► R P  (CH2)n s S 0 3
E thanol-H 20  /

R
(5)

5a - 5e, R = Ph, n = 3, 4, 6, 8, 10 
5f- 5g, R = Bu, n = 3, 6

Scheme 1



3.2.2 Synthesis of diphenyl-l-pyrenylphosphoniopropyl thiosulfate 
zwitterion

In order to investigate the use of fluorescent phosphoniumalkanethiosulfate 

zwitterions as protecting ligands for AuNPs, their interactions with DNA, and their use 

in fluorescence detection methods, the synthesis of the diphenyl-1- 

pyrenylphosphoniopropyl thiosulfate zwitterion (11) was carried out.

(6)

Br

/ U A nBuLi

RT

nBuLi
.P

RT

(I)

, /
(8)

P\ + Br
- (CH2)3 QH Acetomtr"e > Py— P ------(CH2)3 OH

(2a)

(9)

(10)

Ph

Ph.

(9)

HBr
--------------- *-Py—^ P ---- (CH2)3 Br Br

Ph
(10)

P\
■ Na2S2°^  »  Py— P (CH2)3— S ----- S 0'3
EtOH-H20  /

Ph7

(II)
(11)

Scheme 2. Synthesis of diphenyl-1-pyrenylphosphine (I) and synthesis of diphenyl-1- 
pyrenylphosphoniopropyl thiosulfate zwitterion (II)
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As a first step in the synthesis of diphenyl-1-pyrenylphosphoniopropyl 

thiosulfate zwitterion (11), the preparation of diphenyl-1-pyrenylphosphine (8), using 

the method of Craft161 was carried out in order to use it as a starting material. This 

method involves the reaction of methyl diphenylphosphinite with 1-pyrenyllithium at 

-70°C. However, using this route, a lower yield of product was obtained than claimed 

by Craft. Furthermore, the 31P NMR spectrum of the crude product displayed, in 

addition to the diphenyl-1-pyrenylphosphine signal at 6 -13.1 ppm, peaks at 8-15.3, 

+22.2 and +33.4 corresponding to PI12PBU, Ph2POMe and diphenyl-1-pyrenylphosphine 

oxide161 in significant amounts. Consequently, in the present study, the synthesis of 

diphenyl-1-pyrenylphosphine was carried out at room temperature, using 

chlorodiphenylphosphine instead of methyl diphenylphosphinite as a starting material 

for the nucleophilic substitution reaction (Scheme 2 .1).

The compound was formed by the reaction of bromopyrene (6 ) (1 mol) with 

n-butyllithium (1.2 mol) in dry THF at room temperature to give pyrenyllithium (7). 

After 1 hour, chlorodiphenylphosphine (0.9 mol) dissolved in dry THF, was added to 

the reaction mixture to obtain the diphenyl-1-pyrenylphosphine (8) after 3 hours 

stirring.

The diphenyl-1-pyrenylphosphoniopropyl thiosulfate zwitterion was obtained 

following the same procedure for the synthesis of triphenylphosphoniopropyl 

thiosulfate zwitterion (5a), using the previously synthesized diphenyl-1- 

pyrenylphosphine (8) instead of triphenylphosphine (1) (Scheme 2. II).
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3.3 Characterisation of the series of triphenyl- and tributyl-
phosphonioalkylthiosulfate zwitterions

3.3.1 3-Triphenylphosphoniopropylthiosulfate (5a)

The chemical structure of the compound 5a is shown in Figure 14. This 

compound was isolated as colourless crystals which were suitable for X-ray 

crystallographic analysis. These crystals are soluble in polar organic solvents such as 

methanol, dichloromethane and acetonitrile.

1  ̂1Analytical and electrospray mass spectrometry (ESMS) data, H and P NMR 

spectroscopy support the formulation of this compound as 5a. When studied by ESMS 

in positive mode, ions corresponding to [M+H], [M+Na] and [2M+Na] were observed.

SS03

Figure 14. 3-Triphenylphosphoniopropylthiosulfate (5a)
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Formula: C21H21O3PS2, Formula weight: 416.5 

Melting Point: 240-243°C 

Elemental Analysis:

Element Carbon (%) Hydrogen (%)

Theory 60.56 5.08
Found 60.53 5.11

ESMS: 417 [M+H4], 439 [M+Na+], 855 [2M+Na+]

NMR: 831P NMR (CDCI3/DMSO) = 23.2 ppm; 6lU NMR (CDCI3/DMSO) = 1.6 

(2H,m), 2.6 (2H,m), 3.1 (2H,m), 12-13  (15H,m) ppm

3.3.2 4-Triphenylphosphoniobutylthiosulfate (5b)

The chemical structure of the compound 5b is shown in Figure 15. This 

compound was isolated as a crystalline solid. The obtained crystals are soluble in polar 

organic solvents such as methanol and dichloromethane and fairly soluble in 

acetonitrile.

Analytical and electrospray mass spectrometry (ESMS) data, and !H and 31P 

NMR spectroscopy support the formulation of this compound as 5b. When studied by 

ESMS in positive mode, ions corresponding to [M+H], [M+Na] and [2M+Na] were 

observed.
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Figure 15. 4-Triphenylphosphoniobutylthiosulfate (5b)

Formula: C22H23O3PS2, Formula weight: 430.52 

Melting Point: 256-260°C 

Elemental Analysis:

Element Carbon (%) Hydrogen (%)

Theory 61.38 5.38
Found 61.24 5.55

ESMS: 431 [M + ^ ,4 5 3  [M+Na+], 883 [2M+Na+]

NMR: 831P NMR (CDCI3/DMSO) = 23.6 ppm; S'H NMR (CDCI3/DMSO) 

(2H,m), 2.2 (2H,m), 2.7 (2H,t), 3.5 (2H,m), 7.3-7.5 (15H,m) ppm



3.3.3 6-Triphenylphosphoniohexylthiosulfate (5c)

The structure of compound 5C is shown in Figure 16. It was isolated as light 

crystalline flakes; however this solid proved to be unsuitable for X-ray crystallographic 

analysis. Analytical and electrospray mass spectrometry (ESMS) data, JH and 31P NMR 

spectroscopy, support the formulation of this compound as 6- 

triphenylphosphoniohexylthiosulfate.

SS03

Figure 16. 6 -Triphenylphosphoniohexylthiosulfate (5c)

Formula: C24H27O3PS2, Formula weight: 458.58 

Melting Point: 63-65°C
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Elemental Analysis:

Element Carbon (%) Hydrogen (%)

Theory 62.86 5.93
Found 62.12 5.95

ESMS: 459 [M+H+], 481 [M+Na+], 939 [2M+Na+]

NMR: S31P NMR (CDCI3) = 24.06 ppm; S’H NMR (CDC13) = 1.5 (2H,m), 1.6 (4H,m), 

1.7 (2H,m), 3.05 (2H,t), 3.4 (2H,m), 7.6-7.8 (15H,m) ppm.

3.3.4 8-Triphenylphosphoniooctylthiosulfate (5d)

The structure of compound 5d is shown in Figure 17. It was isolated as a pale 

cream powder. Attempts to isolate this compound as a crystalline solid were 

unsuccessful and it was therefore unsuitable for X-ray analysis. Analytical and 

electrospray mass spectrometry (ESMS) data, lH and 31PNMR spectroscopy support the 

formulation of this compound as 8-triphenylphosphoniooctylthiosulfate.
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c
Qc

Figure 17. 8-Triphenylphosphoniooctylthiosulfate (5d)

Formula: C26H31O3PS2, Formula weight: 486.63 

Melting Point: 40-45°C 

Elemental Analysis:

Element Carbon (%) Hydrogen (%)

Theory 61.88 6.59
Found 62.14 6.37

ESMS: 485 [M4], 510 [M+Na4]

NMR: 831P NMR (CDC13) = 23.8 ppm; 5 ^  NMR (CDC13) = 1.2 (5H,m), 1.5 (7H,m),

2.4 (lH,m), 2.9 (1H, t, J=  6.2 Hz), 3.3 (2H,m), 7.6-7.7 (15H,m) ppm.
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3.3.5 10-Triphenylphosphoniodecylthiosulfate (5e)

The structure of compound 5e is shown in Figure 18, and it was isolated as pale 

yellow solid. Attempts to isolate this compound as a crystalline solid were unsuccessful 

and it was therefore proved to be unsuitable for X-ray analysis. Analytical and 

electrospray mass spectrometry (ESMS) data, and 31P NMR spectroscopy supported 

the formulation of this compound as 10-triphenylphosphoniodecylthiosulfate.

S S 0 3

Figure 1 8 ,10-Triphenylphosphoniodecylthiosulfate (5e)

Formula: C28H35O3PS2, Formula weight: 514.68 

Melting Point: 60-65°C 

Elemental Analysis:

Element Carbon (%) Hydrogen (%)

Theory 63.13 7.00
Found 63.69 6.75
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ESMS: 513 [M4], 538 [M+Na+]

NMR: 831P NMR (CDC13) = 23.6 ppm; S'H NMR (CDCI3) = 1.0 (8H,m), 1.4 (6H,m), 

3.2 (2H,m), 3.9 (4H,m), 7.5-7.7 (15H,m) ppm.

3.3.6 3-Tributylphosphoniopropylthiosulfate (5f)

The structure of compound 5f is shown in Figure 19. 5f was isolated as 

colourless crystals. They proved to be suitable for X-ray analysis. Analytical and 

electrospray mass spectrometry (ESMS) data, and 31PNMR spectroscopy supported 

the formulation of this compound as 3-tributylphosphoniopropylthiosulfate.

Figure 19. 3-Triphenylphosphoniopropylthiosulfate (5f)
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Formula: C15H33O3PS2, Formula weight: 356.53

Melting Point: 133-136°C 

Elemental Analysis:

Element Carbon (%) Hydrogen (%)

Theory 50.53 9.33
Found 50.27 9.69

ESMS: 357 [M+H+], 379 [M+Na+], 735 [2M+Na+], 1091 [3M+Na+]

NMR: 531P NMR (CDCI3) = 33.7 ppm; 8 'H  NMR (CDC13) = 0.9 (9H,t), 1.5 (12H,m),

2.1 (8H,m), 2.5 (2H,m), 3.1 (2H, t, J=  6.7 Hz) ppm.

3.3.7 6-Tributylphosphoniohexylthiosulfate (5g)

The structure of compound 5g is shown in Figure 20. 5g was isolated as a 

colourless oil. Attempts to isolate 5g as a crystalline solid for X-ray analysis were 

unsuccessful. Matrix-assisted laser desorption ionization (MALDI) time-of-flight mass 

spectrometry (TOFMS) positive ion mode (accurate analysis), and 31P NMR 

spectroscopic data supported the formulation of this compound as 

6-tributylphosphoniobutylthiosulfate.
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Figure 20. 6 -Tributylphosphoniohexylthiosulfate (5g)

Formula: C18H39O3PS2, Formula weight: 398.61 

MALDI-TOFMS:

Elemental [M+HT]

Theory 399.6103

Found 399.6099

NMR: 531P NMR (CDC13) = 24.06 ppm, 5 ^  NMR (CDC13) = 1.5 (2H,m), 1.6 (4H,m),

1.7 (2H,m), 3.05 (2H, t, J=  6.6 Hz), 3.4 (2H,m), 7.6-7.8 (15H,m) ppm.
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3.3.8 Diphenyl-l-pyrenylphosphoniopropyl thiosulfate zwitterion

3.3.8.1 Diphenyl-l-pyrenylphosphine (8)

The structure of compound 8 is shown in Figure 21. Compound 8 was isolated 

as a yellow powder. Attempts to isolate 8 as a crystalline solid for X-ray analysis were 

unsuccessful. Electrospray mass spectrometry (ESMS), MALDI-TOFMS positive ion 

mode (accurate analysis), *H and 31P NMR spectroscopic data supported the 

identification of this compound as diphenyl-l-pyrenylphosphine.

The yield of the product from the reaction with the new conditions was 76%. 

The 31P NMR spectrum of the final product showed a major signal at -13.3 ppm due to 

the phosphine, and traces of the corresponding oxide at 32.8 ppm. The ESMS spectrum 

in positive mode showed a well-defined molecular ion [M+FI+] 383.

r ^ i

P.

Figure 21. Diphenyl-l-pyrenylphosphine (8)
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Formula: C28H19P, Formula weight: 386.12 

Melting Point: 183 °C 

ESMS: 387 [M+H+]

MALDI-TOFMS:

Elemental [M]

Theory 386.1224

Found 386.1233

NMR: 831P NMR (CDCI3) = -13.3 ppm, 8 *H NMR (CDCl3)=7.6-7.9 (10H,m), 8.1-8.5 

(9H,m).

3.3.8.2 Diphenyl-l-pyrenylphosphoniopropylthiosulfate (11)

The chemical structure of compound 11 is shown in Figure 22. Compound 11 

was isolated as a tanned yellow powder. Attempts to isolate 11 as a crystalline solid for 

X-ray analysis were unsuccessful. Electrospray mass spectrometry (ESMS), 

MALDI-TOFMS positive ion mode (accurate analysis), !H and 31P NMR spectroscopic 

data supported the identification of this compound as diphenyl-1-

pyrenylphosphoniopropylthiosulfate.
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The *H NMR and 31P NMR and electrospray mass spectrometry (ESMS) data 

supported the identification of the synthesized compound. This compound is soluble in 

ethanol, acetonitrile and dichloromethane.

sso

Figure 22. Diphenyl- 1-pyrenylphosphoniopropylthiosulfate (11)

Formula: C31H25O3S2P, Formula weight: 540.63 

Melting Point: 255 °C 

ESMS: 541 [M+H+]

MALDI-TOFMS:

Elemental [M+H*]

Theory 541.1262

Found 541.1259

NMR: 831P NMR (CDCl3)=23.5ppm, 5JH NMR (CDC13)=2.3 (2H,m), 3.3 (2H,m), 3.9 

(2H,m), 12-1.9 (10H,m), 8 .1-8.5 (9H,m) ppm.
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3.4 X-ray crystallography

3.4.1 3-Triphenylphosphoniopropylthiosulfate zwitterion (5a)

An X-ray structural study of the triphenylphosphoniopropylthiosulfate (5a, R = 

Ph, n = 3) was carried out which confirms the expected structure (Figure 23). Crystal 

data and structure refinement details are presented in Table 1. Selected bond lengths 

and bond angles are presented in Table 2. There are no intramolecular interactions 

between the cationic head group and the thiosulfato group which could lead to the 

formation of a quasi-7-membered cyclic structure from the electrostatic attraction of P+ 

with O .

Similarly, intermolecular electrostatic effects do not appear to dominate the way 

in which the dipolar units pack in the crystal, which is rather unusual. Along the [101] 

direction the individual units pack in a head-to-head manner in which 'supramolecular 

edge to face’ interactions between the triphenylphosphonio units162, and possible weak 

C-H O hydrogen bonds (ca. 2.5A) seem to dominate. Along the [10-1] direction an 

intermolecular 'head-to-taif arrangement is found, whereas along the [010] direction, 

the individual units associate as 'head-to-tail' dimers.
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Figure 23. Molecular structure of 3-triphenylphosphoniopropylthiosulfate (5a)-an 
ORTEP drawing with 30% probability ellipsoids.
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Table 1. Crystal data and structure refinement for 
3 -triphenylphosphoniopropylthiosulfate (5a)

Compound 
Empirical formula 
Formula weight 
Crystal system 
Space group
a (A) 
b (A) 
c (A)
fin
Volume (A )

Z (Dcaic (Mg / m )
Absorption coefficient (mm ) 
F(000)
Crystal
Crystal size (mm3)
Grange for data collection (°) 
Reflections collected 
Independent reflections 
Completeness to 6= 25.02° 
Max. and min. transmission 
Data / restraints / parameters 
Goodness-of-fit on F2 
Final R indices [F2 > 2 oiF2)]
R indices (all data)
Largest diff. peak and hole

5a
C2iH210 3PS2
416.47
Monoclinic
Plxln
11.6475(3)
14.2692(3)
12.0730(3)
P= 106.561(1)
1923.30(8)
4
1.438
0.380
872
Colourless Block 
0.15x0.08x0.08 
3.39-25.02 
6267
3381 [ ^  = 0.0434]
99.7 %
0.9924 and 0.9630 
3381 /0 /2 4 4  
1.043
R1 -  0.0416, wR2 = 0.0994 
R1 = 0.0565, wR2 = 0.1068 
0.311 and-0.444 e A-3
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Table 2. Selected bond lengths [A] and angles [°] in
3-triphenylphosphoniopropylthiosulfate zwitterion (5a).

C l-P l 1.795(2) 01-S2 1.4507(19)
C7-P1 1.792(2) 02-S2 1.4442(18)
C13-P1 1.794(2) 03-S2 1.4484(19)
C19-P1 1.805(2) S1-S2 2.1117(9)
C21-S1 1.820(3)

C20-C19-P1 115.39(17) C21-S1-S2 99.77(9)
C20-C21-S1 114.77(18) 0 2 -S 2 -0 3 115.11(12)
C7-P1-C1 107.97(11) 0 2 -S 2-01 113.38(11)
C7-P1-C13 111.12(11) 03-S 2 -0 1 113.15(12)
C1-P1-C13 110.13(11) 02-S2-S1 105.60(7)
C7-P1-C19 111.92(11) 03-S2-S1 101.20(8)
C1-P1-C19 108.79(11) 01-S2-S1 106.97(8)
C13-P1-C19 106.90(11)

3.4.2 3-TributylphosphoniopropyIthiosiiIfate zwitterion (5f)

An X-ray structural study of the 3-tributylphosphoniopropylthiosulfate (5f, 

R = Bu, n = 3) confirmed the expected structure (Figure 24). Crystal data and structure 

refinement details are presented in Table 3. Selected bond lengths and bond angles are 

presented in Table 4. Figure 25 shows possible hydrogen bonding between C-H bonds 

a  to the phosphonium centre and the thiosulfato oxygen atoms which influence the 

packing of the molecules in the unit cell. The structural parameters for these hydrogen 

bond interactions are presented in Table 5.
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Figure 24. Molecular structure of 3-tributylphosphoniopropylthiosulfate (5f)
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Table 3. Crystal data and structure refinement for
3-tributylphosphoniopropylthiosulfate zwitterion (5f)

Compound 
Empirical formula 
Formula weight 
Crystal system 
Space group 
a (A) 
b (  A)
c (A)
p n
Volume (A )

Z (DCaic (Mg / m )
Absorption coefficient (mm-1) 
F(000)
Crystal
Crystal size (mm3)
Grange for data collection (°) 
Reflections collected 
Independent reflections 
Completeness to 6= 25.02° 
Max. and min. transmission 
Data / restraints / parameters 
Goodness-of-fit on F2 
Final R indices [F2 > 2c(f^)] 
R indices (all data)
Largest diff. peak and hole

5f
C 1 5 H 3 3 O 3 P S 2

356.50
Monoclinic
P2\/n
9.0500(3)
14.3012(4)
15.0732(6)
96.326(2)
1938.98(11)
4
1.221
0.364
776
Colourless Block 
0 .10x0.10x0.03 
3.07-25.02 
23499
3406 [Rint = 0.0797]
99.7 %
0.9892 and 0.9645
3406/39 /194
1.042
R1 = 0.0594, wR2 -  0.1487 
R1 = 0.0775, wR2 = 0.1589 
1.078 and-0.633 e A’3
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Table 4. Selected bond lengths [A] and angles [°] in
3-tributylphosphoniopropylthiosulfate zwitterion (5f).

P1-C9
P1-C5
P1-C13
P l-C l
S1-C15

1.796(4)
1.798(3)
1.799(4)
1.805(3)
1.805(4)

C9-P1-C5
C9-P1-C13
C5-P1-C13
C9-P1-C1
C5-P1-C1

107.56(17)
108.13(18)
110.89(17)
110.16(16)
110.32(18)

C13-P1-C1
C15-S1-S2
0 2 -S 2 -0 3
0 2-S 2-01

109.73(18)
99.78(14)

114.45(18)
113.3(2)

51-S2
52-02 
S2-03 
S2-01

2.1030(14)
1.439(3)
1.440(3)
1.441(3)

03-S 2-01
02-S2-S1
03-S2-S1 
01-S2-S1

113.90(18)
104.75(14)
102.34(13)
106.67(14)

C9

02

03 01

.C13

C5

C9

Figure 25. Intermolecular contacts showing possible hydrogen bonding between C-H 
bonds a to the phosphonium centre and thiosulfato oxygen atoms in 

3-tributylphosphoniopropylthiosulfate.
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Table 5. Intermolecular contacts for hydrogen bonding between C-H  bonds a  to the 
phosphonium centre and thiosulfato oxygen atoms in 

3 -tributylphosphoniopropylthiosulfate 5f

Donor H Acceptor

C(l) H(1A) 0(2)
C(5) H(5B) 0(1)
C(9) H(9A) 0(2)
C(9) H(9B) 0(3)

C(13) H(13B 0(3)

Symm D -H

SI 0.99
$2 0.99
$1 0.99
$2 0.99
$2 0.99
$1 = 1-x,-y,l-z,

$2 = -l/2+x,l/2-y,-l/2+z

H...A D...A D -
H...A

2.44 3.2657 140
2.44 3.4173 171
2.39 3.2529 146
2.45 3.2929 142
2.54 3.3672 141

P I ...0 2 -  3.744(13) SI 
P I . ..03  = 3.541(12) $2 
P I . ..01 =4.730(16)

A successfully synthetic strategy has been developed for the preparation of a 

novel family of compounds containing cationic phosphonium functional groups. The 

use of these compounds for the formation of functionalised gold nanoparticles is 

presented in Chapter 6,
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CHAPTER 4

Synthesis of Phosphonioalkylselenide Ligands
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4.1 Introduction

Most of the compounds used as protecting ligands in the synthesis of 

functionalised gold nanoparticles reported in the literature are those containing thiol 

groups. Selenoate anions offer an alternative to thiolates as capping agents for gold 

surfaces as a result of the similarity of the sulfur and selenium atoms in terms of 

chemical properties. Despite this similarity, organo-selenols and diselenides have not 

received the same attention as the sulfur analogues in this regard and there are only a 

few examples of organoselenium-stabilised MPCs, although organoselenium species, 

including dialkyl diselenides and dialkyl selenides are known to form self-assembled 

monolayers (SAMs) on planar noble metal surfaces.163

Kim and co-workers investigated the adsorption behaviour of benzeneselenol 

(BSe) and diphenyl diselenide (DPDSe) on a gold substrate by Surface Enhanced 

Raman Spectroscopy (SERS). They demonstrated that the selenol chemisorbs on gold 

as the selenolate, and in the case of diselenides, the Se-Se bond is cleaved when the 

diselenide is in contact with the gold surface, resulting in the formation of a stable 

monolayer.164 Zhamikov and co-workers165 confirmed Se-Se bond cleavage in 

bis(biphenyl)diselenide on gold and silver substrates by High Resolution X-Ray 

Photoelectron Spectroscopy (HRXPS).165 Selenoate-stabilised MPCs have been 

reported by Yee and co-workers,49 who investigated the use of the alkaneselenols and 

dialkyldiselenides to protect the nanoparticle surface. They developed a one-phase 

preparation of alkaneselenol-protected gold nanoparticles and also provided a detailed 

study f of the gold nanoparticle morphology, structure and bonding preference as

73



compared to their alkanethiolate analogues. As is well-known, when the S/Au mole 

ratio decreases from 2:1 to 1:1 to 1:2 to 1:3 in the synthesis of alkanethiol-protected 

gold nanoparticles, the average particle size increases.49 However, in the case of the 

dialkyldiselenide/Au ratio, no such tendency and no significant dependence were 

observed.49 Tong and co-workers50 synthesized octaneselenol-protected gold 

nanoparticles using the method developed by Brust and Schiffrin, with dioctyldiselenide 

as the precursor of the protecting ligand. They were the first to report the observation of

7 7  •

Se NMR signals from the octaneselenoate-protected gold nanoparticles, showing the 

potential of NMR as a powerful tool to investigate the interactions of the ligand with the 

nanoparticle surface.50

Thus, selenium capping agents would appear to be an attractive alternative to 

sulfur-based compounds for the stabilisation of gold monolayer-protected clusters. In 

this chapter, the synthesis and characterisation of a series of masked phosphonioalkyl 

selenoate ligands is described.
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4.2 Experimental

4.2.1 Synthesis of the series of triphenyl’phosphonioalkylselenide 
ligands

The synthetic strategy is outlined in scheme 3 and is based on the protocol 

described previously for the preparation of phosphonioalkyl 'masked* thiolate ligands 

(Section 3.2.2, Chapter 3). The syntheses of 15a and 13b were performed by the 

reaction of the corresponding (bromoalkyl)triphenylphosphonium bromide (4, lmol) 

with potassium selenocyanate (12, 4 mol) in aqueous ethanol under nitrogen and heated 

under reflux for 6 hours. Progress of the reaction was monitored by TLC, using 10% 

methanol : 90% dichloromethane as a mobile phase. The resulting compound was 

obtained by dichloromethane extractions of the reaction mixture and initially purified by 

trituration with dry diethyl ether.

Ph Ph
V _ + - V

Ph P  (CH2)n Br Br + KSeCN ----------- ► P h P  (CH2)n SeCN SeCN

Ph (4) (12) Ph (13)

n = 3, 6 13a (n=3) 
13b (n=6)

Ph .Ph
\+  + /  

Ph— P -(CH2)n—Se-Se-(CH2)n- P — Ph

Ph (15) -
2SeCN

15a (n=3)
15b (n=6)

Ph

Ph
V

Ph P-

p/

SeCN

•(CH2)n-----

(14)

14a(n=3) 
14b (n=6)

■Se + Se
CN

CN

H ,0

KOH, HCN, H2S e
Scheme 3
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4.3 Characterisation of the series of triphenyl- 
phosphonioalkylselenide ligands

4.3.1 Bis(3-triphenylphosphoniopropyl)diselenide-di(selenocyanate) 
(15a)

Initially the synthesis of the selenocyanopropyl phosphonium salt (13a, n = 3) 

was planned as a possible source of the phosphonioalkylselenide zwitterion (14) after 

the reduction of (13) with NaBFL* or Au° during gold nanoparticle functionalisation. 

However, spectroscopic data indicated that the bis(3- 

triphenylphosphoniopropyl)diselenide-di(selenocyanate) salt (15a, n = 3), rather than 

13a, was obtained by treatment of the bromopropylphosphonium salt (4a, n =3) with an 

excess of potassium selenocyanate in aqueous ethanol. It is likely that the diselenide 

(15a) is formed by in-situ oxidation of the phosphonioselenoate (14a, n = 3), which may 

arise as shown.

Microanalytical data supported the formulation of 15a (Figure 26) but indicated 

the presence of one mole of KOH per mole of diselenide salt. Electrospray mass 

spectrometry also supported the formulation of this compound as containing the bis(3- 

phosphoniopropyl)diselenide cation. When studied by ESMS in positive ion mode, ions 

corresponding to 1/2M+H, 1/2M+Na, 1/2M+Se and M+K were observed.
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Se Se

2SeCN

Figure 26. Bis(3-triphenylphosphoniopropyl)diselenide-di(selenocyanate) (15a)

Formula: C44H42N2P2Se4.KOH, Formula Weight: 1032.71 

Melting Point: 106 °C 

Elemental Analysis:

Elemental Carbon (%) Hydrogen (%) Nitrogen (%)

Theory 51.17 4.20 2.71

Found 51.47 4.56 2.55

ESMS: 383 [1/2M+H4], 410 [1/2M+Na+], 460 [1/2M+Se], 804 [M+K+]NMR: 

831P(CDC13) = 23.4 and 23.5 ppm, 8‘H(CDC13) = 2.2 (2H,m), 3.2 (2H, t, J  = 6.2 Hz),

3.7 (2H,m), 7.7-7.8 (15H,m) ppm

77



4.3.2 6-(selenocyano)hexyl-triphenylphosphonitim selenocyanate (13b)

Since the synthesis of the propyl analogue did not follow the expected pathway 

the synthesis of the six carbon chain analogue of 15a was attempted by following the 

same synthetic route. However, 6-(selenocyano)hexyl-triphenylphosphonium 

selenocyanate (13b, n = 6 , Figure 27), rather than 15b (15, n = 6 , Scheme 3), was 

obtained. NMR spectroscopy supported the proposed structure of this compound. 

Compound 13b forms as a yellow oil, the longer chain 3- 

triphenylphosphonioalkylthiosulfates also tend to form as oils. When studied by 

MALDI TOFMS positive ion mode (accurate analysis), an ion corresponding to M + H 

was observed. It may be that the longer carbon chain suppresses the inductive effect of 

the phosphonium group on the cyano group of the alkyl selenocyanato group, such that 

nucleophilic attack by excess of selenocyanate anions is not favoured.

W

SeCN SeCN

V /
Figure 27. 6-(selenocyano)hexyl-triphenylphosphonium selenocyanate (13b)
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Formula: C26H2?N2PSe2, Formula Weight: 556.40

MALDITOFMS:

Elemental [M++H+]

Theory 452.1040

Found 452.1045

63iP(CDC13) = 23.6 ppm, 5*H(CDC13) = 1.5-1.8 (6H,m), 1.9 (2H,m), 3.1 (2H, t, 

J=  6.2 Hz), 3.5 (2H,m), 7.6-7.8 (15H,m) ppm.
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4.4 X-ray crystallography

4.4.1 Bis(3-triphenylphosphoniopropyl)diselenide-di(selenocyanate)
(15a)

Salt 15a was re-crystallised from DCM-ether as a yellow crystalline solid 

suitable for single crystal X-ray diffraction. X-ray analysis confirmed the formulation of 

15a as a diselenide rather than as the selenocyanate (13a) originally anticipated. Crystal 

data and structure refinement details are presented in Table 6 . Selected bond lengths [A] 

and bond angles [°] in 15a are presented in Table 7.

The molecular structure of 15a (Figure 28) contains Se-Se and C-Se-Se bonds 

which indicate the presence of a dialkyldiselenide group in the molecular structure. The 

Se-Se bond length in 15a [2.318(10)A] is similar to those found in other 

diorganodiselenides (R-Se-Se-R); although the molecular structures of a number of 

diorgandiselenides have been reported the majority contain aryl groups or sterically 

demanding alkyl groups as substituents.166 Previous studies of diorganodiselenides have 

shown that the Se-Se and Se-C bond lengths are largely independent of the organic 

substituents and steric strain is relieved by increasing the C-Se-Se-C dihedral 

angle.166,167 The phosphonioalkyl groups in 15a are not particularly sterically 

demanding and the dihedral angle C(22)-Se(2)-Se(l)-C(21) [62.80(4)°] is significantly 

lower than those with bulkier groups, which typically lie in the range 73 - 104°.166 The 

bond lengths and angles around the triphenylphosponium moieties are similar to those 

in the comparable 3-triphenylphosphoniopropyIthiosulfate zwitterion (Section 3.4.1,
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Chapter 3) The crystal structure of 15a shows two N-C-Se bond systems, indicating the 

presence of two selenocyanates as counter ions (two anions per molecule for neutrality), 

and confirms the presence of K+ and OH ions in the unit cell.

The overall structure consists of bis(3-triphenylphosphoniopropylselenium) 

diselenocyanate units arranged in pairs around an inversion centre. The potassium ion is 

disordered over several positions but its main component forms a near linear 

[172.99(7)°] K...Se contact of 3.459(6)A to the diselenide group, which is similar to the 

K...Se distances found in other compounds;168 e.g. potassium 

2-methoxybenzenecarboselonate has K-Se bond lengths in the range 3.309(1) - 

3.625(2)A, One of the two independent selenocyanate anions forms a slightly bent 

hydrogen bond (01W-H1W...N2 = 166°) to the OH anion; the other is involved in 

Se...K interactions to the disordered potassium (the exact nature of these interactions is 

hard to assess due to the disorder). Figure 29 shows interactions between the K and the 

Se atoms corresponding to the diselenide group of the molecule and Se atom of the 

counterion. These K...Se interactions, (and the 0-H--N hydrogen bonds (Table 8), 

influence the packing of the cations and anions in the unit cell.
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Figure 28. Molecular structure of bis(3-triphenylphosphoniopropyl)diselenide-
di(selenocyanate) (15a)
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Table 6. Crystal data and structure refinement for
bis(3 -triphenylphosphoniopropyl)diselenide-di(selenocyanate) (15a)

Compound

Empirical formula

Formula weight 
Crystal system 
Space group
a (A)
6(A)
c(A)
P O
Volume (A )

Z (
Dcaic (Mg / m )
Absorption coefficient (mm ) 
F(000)
Crystal
Crystal size (mm3)
Grange for data collection (°) 
Reflections collected 
Independent reflections 
Completeness to 0= 25.02° 
Absorption correction 
Max. and min. transmission 
Refinement method 
Data / restraints / parameters 
Goodness-of-fit on F1 
Final R indices [F2 > 2o(F2)] 
R indices (all data)
Largest diff. peak and hole

15a
C 4 4 H 4 3 K N 2 0 P 2S e4

C42H42P2Se22+ . (SeCN‘)2 . K+OH'
1032.68
Monoclinic
Plxln
12.4500(2)
18.3601(2)
19.4363(3)
P= 103.0690(10)
4327.74(11)
4
1.585
3.597
2056
Yellow Sharp 
0 .40x0.25x0.15 
3.09-25.03 
50997
7618 [Rint = 0.0890]
99.6 %
Semi-empirical from equivalents 
0.6145 and 0.3272 
Full-matrix least-squares on F2 
7 6 1 8 /2 /5 0 4  
1.035
R l = 0.0424, wR2 = 0.0925 
R l = 0.0748, wR2 = 0.1029 
0.694 and-1.115 e A’3
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Table 7. Selected bond lengths [A] and angles [°] in
bis(3-triphenylphosphoniopropyl)diselenide-di(selenocyanate) (15a)

P1-C19 1.79(6) Sel-C21 1.96(7)
P1-C7 1.79(6) Sel-Se2 2.318(10)
P l-C l 1.79(6) Se2-C22 1.97(6)
P1-C13 1.80(6) Se3-C43 1.74(12)
P2-C37 1.79(6) C43-N1 1.18(11)
P2-C24 1.79(6) Se4-C44 1.83(9)
P2-C25 1.79(6) C44-N2 1.12(9)
P2-C31 1.80(6)

C19-P1-C7 111(3) C8-C7-P1 119(5)
C19-P1-C1 109(3) C12-C7-P1 122(5)
C7-P1-C1 109(3) C18-C13-P1 121(5)
C19-P1-C13 110(3) C14-C13-P1 118(5)
C7-P1-C13 108(3) C20-C19-P1 114(4)
C1-P1-C13 110(3) C20-C21-Sel 114(5)
C37-P2-C24 112(3) C23-C22-Se2 114(4)
C37-P2-C25 108(3) C23-C24-P2 114(4)
C24-P2-C25 109(3) C30-C25-P2 120(5)
C37-P2-C31 108(3) C26-C25-P2 120(5)
C24-P2-C31 109(3) C32-C31-P2 118(5)
C25-P2-C31 110(3) C36-C31-P2 121(5)
C21-Sel-Se2 100(2) C38-C37-P2 120(5)
C22-Se2-Sel 100.4(19) C42-C37-P2 121(5)
C6-C1-P1 120(5) N l-C43-Se3 179(8)
C2-C1-P1 120(5) N2-C44-Se4 178(7)
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S e2

S e3

Se3

Se2

Figure 29. Intramolecular contacts showing possible K...Se interactions between the K 
cations and the Se atoms corresponding to the diselenide groups and the selenocyanate 
counterions in bis(3-triphenylphosphoniopropyl)diselenide-di(selenocyanate) (15a).
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Table 8. Intramolecular contacts for hydrogen bonding between O-H of the KOH 
moiety and nitrogen atom of the selenocyanate counterion in 

bis(3-triphenylphosphoniopropyl)diselenide-di(selenocyanate) (15a)

D-R'-A______________ d(D- H) d(R-A) d{D-A) Z(DUA)

01W -H1W —N2‘ 0.900(16) 2.1(3) 3.03(9) 166(100)

Symmetry transformations used to generate equivalent atoms:
(i) -x+ 2 ,-y+2 ,-z+ l

A successfully synthetic procedure has been developed for the preparation of a 

series of masked phosphonioalkylselenoate ligands. The use of these selenium 

containing compounds for the stabilisation of gold nanoparticles is shown in Chapter 6 .
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CHAPTER 5

Phosphonioalkylthioacetate and Related 
Phosphine Oxide Ligands
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5.1 Introduction

Other sulfur-containing organic ligands have been reported in the literature and used 

as precursors of the corresponding thiolates in the gold nanoparticle stabilisation. The 

organic thiols can undergo air-oxidation, to form the related disulfides, therefore, 

various easily removable thiol-derivatives, e.g. S-acetyl, S-cyano and S-(N- 

ethylcarbamoyl), have been prepared. These protecting groups have been shown to 

undergo cleavage in situ in the presence of a gold electrode.169

Molecules terminated in thioacetate groups have been used for the preparation of

1 7 0  171self assembled monolayers (SAMs). ’ Aromatic thiols or thiolates, which are the 

typical molecules used for the synthesis of SAMs, have been reported to be more

171susceptible to air oxidation, forming disulfides and other oxidised products. For this 

reason, thioacetate derivatives have been shown to be a more stable alternative to thiols 

and to be deprotected in situ to corresponding thiolate by reacting with a small amount

170of base (e.g. aqueous ammonium solution), and form a SAM on the Au substrates.

1 77Ashwell and co-workers have reported the synthesis of self-assembled 

monolayers on gold using zwitterionic dyes containing-thioacetate tail-groups, such as 

CH3COS-(CH2)«-A-CH=CH-D, where A is a quinolinium acceptor and D a phenolate 

donor. The ligands were synthesised through the reaction of the dihalogenated 

precursor and potassium thioacetate under reflux for 24 hours. The zwitterionic dyes
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were left in contact with a gold substrate in an ethanolic solution with ammonium

1 7 0hydroxide which was used to remove the acetyl group.

171Plenio and co-workers have synthesised cavitands with thioacetate terminal 

groups. They showed that the thioacetate protective group in these cavitand compounds 

can undergo cleavage with a reducing agent such as UAIH4, leading to the formation of 

the corresponding hemicarcerands with SH groups.173

However, Tour and co-workers171 suggested that thioacetate tail-groups can be 

linked to gold substrates without prior conversion to the corresponding thiolates for 

monolayer assembly. They showed that a similar coverage of the surface relative to that

171 177achieved by Ashwell and co-workers 5 can be achieved using a higher concentration 

of thioacetate ligands and a longer adsorption time without the use of ammonium 

hydroxide.

Knowing the important role of the hydrogen bonding interactions between 

biomolecules in biological processes, it has been decided to synthesise phosphine oxide 

related ligands and explore the potential of these ligands to interact with biomolecules. 

Due to the strong hydrogen-bonding properties of phosphonic acids, R-P(0 )(0 H)2 are 

of general interest, as they exhibit a wide range of biological activity as potent 

antibiotics and enzyme inhibitors.174 Phosphonic acids are also used as corrosion 

inhibitors and adhesion promoters. The phosphonic acid group can act both as a 

hydrogen-bond donor through the two P—OH groups and as an acceptor via the P=0 

oxygen. Reven and co-workers174 have recently reported the synthesis of gold
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nanoparticles capped with sodium 10-mercaptodecanesulfonic acid (MDS) and 

11 -mercaptoundecanylphosphonic acid (MUP). They have investigated the effect of the 

acid terminal groups (PO3H2 tail groups) on the monolayer properties by NMR 

chemical shift and relaxation measurements.174 The synthesis of the phosphine oxide 

related ligands was carried out in this project in order to use them as protecting ligands 

in the gold nanoparticle stabilisation and promote interactions with biomolecules 

through hydrogen bonds.

Thioacetate-containing molecules appear to be an alternative to thiols and have 

the potential to act as 'masked thiolate' ligands for the preparation of gold MPCs. In this 

chapter, the synthesis and characterisation of phosphonioalkylthioacetate ligands are 

outlined. Chapter 5 also describes the synthesis of phosphine oxide related ligands.
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5.2 Experimental

5.2.1 Synthesis of the triphenyl-phosphonioalkylthioacetate ligands

The synthesis of triphenyl(3-thioacetylalkyl)phosphonium bromide is shown in 

Scheme 4. The compound was generated by the reaction of the 

(3-bromoalkyl)triphenylphosphonium bromide (4, 2 mmol) with potassium thioacetate 

(16, 3 mmol) in a mixture of ethanol and water at room temperature. The reaction 

mixture was left stirring overnight under nitrogen. Progress of the reaction was 

monitored by TLC, using 10% methanol : 90% dichloromethane as mobile phase. The 

triphenyl (3-thioacetylalkyl) phosphonium bromide (17) was obtained by 

dichloromethane extractions of the reaction mixture and initially purified by triturations 

with dry diethyl ether.

w  w
 - P -------(CH2)n Br Br +  KSOCH3 0vem i9 h» . ^ ----------------------- -- P ---(CH2)n Br Br +  KSOCH3 >  (/ \ ) -------- p ------- (CH2)n-------SCOCH3 Br +  K Br

(4a, 4b) (16) /  \  (l^a, 17b)

\  /  \  /
n “ 3 (a), 6 (b)

Scheme 4



5.2.2 Synthesis of (3-thioacetylpropyl)diphenylphosphine oxide

The synthesis of (3-thioacetylpropyl)diphenylphosphine oxide is shown in 

Scheme 5. The compound was generated by an alkaline hydrolysis of 

hydroxypropylphosphonium salt (3a) as a first step to obtain the 

(hydroxypropyl)diphenylphosphine oxide, following the Okuma and co-workers 

method.175 Hydroxypropylphosphonium salt (3a, 1 mmol) was dissolved in 1.5 mL of 

ethanol and then heated with 2mL of 20% aqueous NaOH solution. The 

(hydroxypropyl)diphenylphosphine oxide (18) was then dissolved in HBr (48%, 5mL) 

and heated under reflux for five hours to obtain the corresponding 

bromopropylphosphine oxide (19). The (3-thioacetylpropyl)diphenylphosphine oxide 

(20) was then obtained by the reaction of the latter (19, 2 mmol) with potassium 

thioacetate (3 mmol) in a mixture of ethanol and water (4mL) at room temperature. The 

reaction mixture was left stirring overnight under nitrogen.

Progress of the reaction was monitored by TLC, using 10% methanol : 90% 

dichloromethane as mobile phase. The (3-thioacetylpropyl)diphenylphosphine oxide 

(20) was obtained by dichloromethane extractions of the reaction mixture, and then all 

the extracts were combined and dried with MgS(>4 and rotary evaporated. Initially, the 

product was purified by triturations with dry diethyl ether to yield a yellow oil.
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Scheme 5

5.2.3 Synthesis of 3,3'-bis(diphenylphosphinylpropyl)disiilflde

In order to show the capacity of the (3-thioacetylpropyl)diphenylphosphine 

oxide (2 0 ) ligand to form its corresponding thiolate species under reductive 

conditions and explore the air-oxidation of the corresponding thiolate, an oxidation 

reaction using 20  as starting material was carried out under the reductive condition 

and O2 to yield the corresponding disulfide compound. The synthesis of 

3,3’-bis(diphenylphosphinylpropyl)disulfide (21) is shown in Scheme 6 . The synthesis
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of this ligand was carried out by the reaction of 

(3-thioacetylpropyl)diphenylphosphine oxide (20, 0.25 mmol) with ammonium 

hydroxide (20% solution) in aqueous ethanol stirring the mixture at room temperature 

overnight. The reaction mixture was then extracted with DCM (3xl0mL), and then all 

the extracts were combined and dried with MgS04  and rotary evaporated to yield a 

yellow oil. As a further purification step for the oily sample was performed. Several 

triturations with dry diethyl ether were done to give a fine pale powder.

Ethanol

20% aqueous NH4OH

Scheme 6
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5.3 Characterisation of the series of 
phosphonioalkylthioacetate and related phosphine oxide 
ligands

5.3.1 Triphenyl (3-thioacetylpropyl) pliosphoniuni bromide (17a)

The structure of 17a is shown in Figure 30. 17a was isolated as pale cream 

powder. Attempts to grow crystals of 17a suitable for single crystal X-Ray analysis 

were unsuccessful. Compound 17a is air stable and soluble in methanol, ethanol, 

acetonitrile, and dichloromethane. NMR data, MALDI-TOFMS positive ion mode 

(accurate analysis) and electrospray mass spectral results supported the structure of this 

compound as triphenyl(3-thioacetylpropyl)phosphonium bromide. When studied by 

ESMS in positive ion mode, an ion corresponding to M* was observed. The structure of 

triphenyl(3-thioacetylpropyl)phosphonium bromide (17a) was also supported by IR. A 

significant absorption band at Vc=o 1680 cm"1 due to the presence of the carbonyl group 

was observed in the spectrum, as well as absorption bands corresponding to Ar-H 

stretching, C-H stretching of methylene groups, symmetric and asymmetric C-H 

stretching vibrations of the methyl group, and Ar-H bending. This compound could 

potentially be used as a protecting ligand in the formation of monolayer-protected gold 

nanoparticles, assuming that S-COCH3 cleavage occurs in presence of Au° and a 

reducing agent (NaBFLj).
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Figure 30. Triphenyl(3-thioacetylpropyl)phosphonium bromide (17a)

Formula: C23H240PSBr, Formula Weight: 459.38 

Melting Point: 85-89 °C.

ESMS: 380 [M+H*]

MALDITOFMS:

Elemental [M l [M+H+]

Theory 379.1285 380.1366

Found 379.1307 380.1323

S31P NMR (CDC13)=23.8 ppm; S'H NMR (CDC13)=1.9 (2H,m), 2.2 (3H,s), 3.2 (2H,m),

3.8 (2H,m), 7.6-7.8 (15H,m) ppm.

FT-IR: vat-h 3010, vc-h 2800-2880 (methylene and methyl groups), vc=o 1680, vc=c 

1600, vibrations of Ar ring 1450, Sc-h  900-1000, 5ai--h 700-750 cm"1.
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5.3.2 Triphenyl (6-thioacetyIhexyl) phosphonium bromide (17b)

The structure of compound 17b is shown in Figure 31. 17b was isolated as a 

pale yellow oil. Attempts to isolate 17b as a crystalline solid for X-ray analysis were 

unsuccessful. MALDI-TOFMS positive ion mode (accurate analysis), !H and 31PNMR 

spectroscopic data supported the formulation of this compound as 

6-tributylphosphoniohexylthiosulfate.

,CH3 Br

O

Figure 31. Triphenyl (6-thioacetylhexyl) phosphonium bromide (17b)

Formula: C26H3oOPSBr, Formula weight: 501.46 

MALDITOFMS:

Elemental [MJ [M+lT]

Theory 421.1755 422.1835

Found 421.1742 422.1824
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NMR: 831P NMR (CDC13) -  23.91 ppm, SlH NMR (CDC13) = 1.14-1.59 (8H,m), 2.19 

(3H,s), 2.72 (2H, t, J=  6.1 Hz), 3.68 (2H,m), 7.6-7.8 (15H,m) ppm.

5.3.3 (3-ThioacetyIpropyI)diphenylphosphine oxide (20)

The structure of compound 20 is shown in Figure 32. Compound 20 was 

isolated as a yellow oil. Attempts to isolate 20 as a crystalline solid for X-ray analysis 

were unsuccessful. MALDI-TOFMS positive ion mode (accurate analysis), ESMS,
a  t

and P NMR spectroscopic data supported the formulation of this compound as 

(3 -thioacetylpropyl)diphenylphosphine oxide.

21It was also observed that there is a significant difference in terms of the P 

chemical shift between this compound (20) and the triphenyl(3- 

thioacetylpropyl)phosphonium bromide (17a). The 831P corresponding to the phosphine 

oxide compound (20) is 31.42 ppm, whereas the 8 of the phosphorus atom contained in 

the triphenyl(3-thioacetylpropyl)phosphonium bromide (17a) is 23.8 ppm. This 

difference might be due to the oxygen atom double bonded to the phosphorus atom of 

20 , which is more electronegative than the carbon atoms corresponding to the phenyl 

groups bound to the phosphorus atom in the chemical structure of 17a.
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Figure 32. (3-Thioacetylpropyl)diphenylphosphine oxide (20)

Formula: C17H19O2PS, Formula weight: 318.37 

ESMS: 244 [M-SCOCH3], 319 [M+H+], 341 [M+Na*]

MALDITOFMS:

Elemental [M+HT]

Theory 319.1143

Found 319.1136

NMR: 531P NMR (CDCI3) = 31.42 ppm, 5 ^  NMR (CDC13) = 1.76-1.92 (2H,m), 2.22 

(3H,s), 2.24-2.33 (2H,m), 2.90 (2H, t, J  = 7.2 Hz), 7.35-7.50 (5H,m) ppm, 7.63-7.71 

(5H,m).
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5.3.4 3,3'-Bis(diphenylphosphinylpropyl)disulfide (21)

The structure of compound 21 is shown in Figure 33. Compound 21 was 

isolated as a fine pale powder. Attempts to isolate 21 as a crystalline solid suitable for 

X-ray analysis were unsuccessful.

The synthesis of this compound involved the utilisation of ammonium 

hydroxide (20% aqueous solution) in order to remove the acetyl group of the starting 

compound (20), as reported by Ashwell and co-workers,172 and an in situ oxidation 

reaction. The synthesis of 21 took almost 24 hours to be completed. The reaction was 

monitored by TLC. At the beginning of the reaction, only one spot was observed on the 

TLC plate (Rf 0.33) when the reaction mixture was run using 90:10 of DCMrMeOH. 

During the first 2 hours, the formation of a clear pale yellow spot (Rf 0.25) on the plate 

was observed. However, even after 15 hours, the reaction was not completed. A small 

amount of the starting material could still be observed on the TLC plate. At the time of 

24 hours, the spot with Rf 0.33 completely disappeared indicating that the oxidation 

reaction was completed. MALDI-TOFMS positive ion mode (accurate mass analysis), 

2H and 31P NMR spectroscopic data supported the formulation of this compound as 

3,3'-bis(diphenylphosphinylpropyl)disulfide.
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Figure 33. 3,3'-Bis(diphenylphosphinylpropyl)disulfide (21)

Formula: C30H32O2P2S2, Formula weight: 550.65 

MALDITOFMS:

Elemental [M+HT] [M+Na+]

Theory 551.13973 573.12167

Found 551.13746 573.12151

NMR: S31P NMR (CDCI3) = 31.93 ppm, S'H NMR (CDCI3) = 1.86-2.09 (4H,m), 

2.28-2.40 (4H,m), 2.66 (4H, t ,J = 6 .9  Hz), 7.40-7.50 (10H,m) ppm, 7.67-7.75 (10H,m).
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Synthetic strategies have been successfully developed for the preparation of a 

novel family of phosphonioalkylthioacetate and the related phosphine oxide ligands. 

The use of these compounds for the formation of functionalised gold nanoparticles is 

presented in Chapter 6 .
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CHAPTER 6

Phosphonium Monolayer-Protected gold
Nanoparticles
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6.1 Introduction

The preparation of the monolayer-protected gold clusters using the compounds 

previously synthesised (described in Chapters 3-5) as protecting ligands was carried out 

following the chemical methods developed by Brust41 and Murray48 (methods cited in 

the main Introduction, Chapter 1).

The Brust strategy41 involves synthesis of the metallic nanoparticles with the 

simultaneous attachment of self-assembled thiol monolayers on the surface of the 

growing nanoparticles. In order to allow the surface reaction to take place during metal 

nucleation and growth, and also due to the solubility of the thiol compounds, the 

particles are grown in a two phase system (water-toluene). Brust41 used 

tetraoctylammonium bromide (TOAB) as the phase transfer reagent to transfer AuCLf 

from aqueous solution to an organic phase (toluene) in the presence of dodecanethiol 

(C12H25SH). Murray and co-workers48 carried out a similar approach using sodium 

S-dodecylthiosulfates (Bunte salts) instead of alkanethiol type compounds.

In this project, the cationic phosphonioalkanethiolate-capped gold nanoparticles 

were synthesised in a two phase liquid-liquid system, following the methods developed 

by Brust41 and Murray48, via reduction of potassium tetrachloroaurate in biphasic media 

with an excess of sodium borohydride, with two variations based on the use of 

dichloromethane: water instead of toluene: water as the biphasic system, and without 

the use of tetraoctylammonium bromide to aid transfer of the AuCIT ions to the organic 

solvent, as it was felt that this role would be fulfilled by the phosphoniothiosulfate
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zwitterion. The dichloromethane-water system was used due to the solubility of the 

already synthesized cationic masked thiol ligands in DCM. No TOAB transfer agent 

was used due to the affinity of the phosphonium-gold nanoparticles to the aqueous 

phase. It would appear that the tetrachloroaurate anions (AuCU- ) play the transfer agent 

role in this case, and help to transfer the phosphonium containing ligands to the aqueous 

phase.

This chapter outlines the fabrication of the phosphonium-gold nanoparticles in 

three major sections. In section 6.2, the stabilisation of the gold nanoparticles using 

phosphonioalkyl-thiosulfate and -thioacetate ligands is described. In sections 6.3 and 

6.4, the stabilisation attempts of the gold nanoparticles using phosphioalkylselenide and 

the pyrenyl containing ligands are outlined, respectively. Each of these sections includes 

the experimental description, results and discussion of the related functionalised gold 

nanoparticle synthesis.
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6.2 Stabilisation of gold nanoparticles using phosphonioalkyl- 
thiosulfate and -thioacetate ligands

6.2.1 Experimental

6.2.1.1 Studies of the potential of the phosphonium containing compounds as 
protecting ligand precursors - Synthesis of 3-(methyIthio)propyl- 
triphenylphosphonium iodide (24)

Before the synthesis of the cationic phosphonium monolayer-protected gold 

nanoparticles using the phosphonium -zwitterions and -thioacetates, studies of the 

potential of these compounds as protecting ligands precursors were carried out.

In order to show the capacity of the phosphonioalkyl-thiosulfate and 

-thioacetate ligands to form the corresponding thiols during the synthesis of the 

functionalised gold nanoparticles, an alkylation reaction using 

triphenylphosphoniopropylthiosulfate zwitterion and iodomethane as starting 

materials was carried out under the same reductive conditions used for the preparation 

of the capped nanoparticles.

The alkylation of (5a) was carried out using the synthetic route shown in 

Scheme 7. Triphenylphosphoniopropylthiosulfate (5a, 0.5 mmol) was dissolved in 3 

mL of methanol. A freshly prepared aqueous solution of sodium borohydride (5 

mmol) was then added dropwise to the reaction flask, in order to allow formation of 

the zwitterion Ph3P+(CH2)3S“ (22). The mixture was stirred for 3 hour at room
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temperature, and then, iodomethane (23, 5mmol) was added. The resulting mixture 

was then stirred overnight. Progress of the reaction was monitored by TLC, using 

10% methanol : 90% dichloromethane as a mobile phase. The resulting mixture was 

extracted with dichloromethane, the organic phase was collected and after removing 

the solvent, the resulting compound (24) was initially purified by trituration with dry 

diethyl ether.

NaBH
MeOH, RT

CH3I (23) 

MeOH, N2
V

Scheme 7
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6.2.1.2 Synthesis of phosphonium-monolayer protected gold clusters using 
phosphonioalkyl-thiosulfate and -thioacetate compounds as protecting ligands in a 
two phase liquid-liquid system (dichloromethane : water)

For the syntheses of gold nanoparticles modified with a coating containing 

phosphonium cationic head groups, so called phosphonium monolayer protected clusters 

(phosphonium-MPCs), the triphenyl- and tributyl-phosphonioalkylthiosulfate zwitterions 

and triphenyl(3-thioacetylalkyl)phosphonium bromide and

(3-thioacetylpropyl)diphenylphosphine oxide were used as protecting ligands. The 

preparation technique (Scheme 8) was the same for all cases, as described below.

A solution of the phosphonium-containing compound corresponding to the 

protecting ligand was prepared in DCM (0.25 mmol, 14 mmol L '1) and potassium 

tetrachloroaurate (0.12 mmol, 7 mmol L'1) was then added to the solution. This was 

vigorously stirred for 10 minutes until the gold salt was totally dissolved. The reduction 

was carried out by adding dropwise a freshly prepared aqueous solution of sodium 

borohydride (3mL, 400 mmol L '1) with vigorous stirring. Immediately after the addition 

of the reducing agent, 15 mL of deionised water was added to the mixture, and the 

stirring was continued for a further 24 hours. DCM extractions (3x10 mL) were then 

carried out for the purification of the aqueous phase. Part of the original solutions was 

kept to carry out stability studies and the rest was freeze-dried to aid resuspension the 

gold nanoparticles in a suitable solvent for further applications.

108



P P h ,

P h
\ +  

P h — P-

p /

-(CH2)n —  S — S 0 3 + KA uCI4
NaBH4  2— *

H20/DCM, RT
PhsPv^-s^S-
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Scheme 8

6.2.1.3 Characterisation of the colloidal solutions of the phosphonio-monolayer 
protected gold nanoparticles

The samples of functionalised AuNPs with phosphonioalkyl-thiosulfate and 

-thioacetate ligands were analysed by UV-visible, transmission electron microscopy 

(TEM), nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy 

(XPS). The samples to be analysed by UV-visible spectroscopy were kept in their 

original form (nanoparticles dispersed in water). The samples to be analysed by the other 

techniques, were freeze-dried in order to remove the water and facilitate re-dispersal in 

suitable solvents for the various investigations.
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6.2.2 Results and Discussion

6.2.2.1 Studies of the potential of the phosphonium compounds as protecting 
ligand precursors - 3-(methylthio)propyI-triphenylphosphonium iodide (24)

Following the study of the gold nanoparticle-binding properties of the cationic 

thiols involving a phosphonium head group, the synthesis of 3-(methylthio)propyl- 

triphenylphosphonium iodide (24) was carried out, in order to prove the formation of 

Ph3P+(CH2)3S~ (22) in solution, which could bind to the gold nanoparticle surface. This 

synthesis involved, first the formation of 22 by the reaction of the corresponding 

phosphonioalkylthiosulfate zwitterion (5a) and sodium borohydride (NaBFL*), and then 

alkylation of this zwitterion intermediate (22) using methyl iodide to give 24.

The structure of 24 is shown in Figure 34. 24 was isolated as pale cream solid and 

the attempts to isolate 24 as a crystalline solid for X-ray analysis were unsuccessful. The 

NMR spectroscopy and MALDI-TOFMS positive ion mode (accurate analysis) 

supported the formulation of this compound as 3-(methylthio)propyl- 

triphenylphosphonium iodide. When studied by MALDI TOFMS in positive ion mode, a 

well-defined molecular ion corresponding to the 3-methylthiopropylphosphonium cation 

was observed.
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Figure 34. 3-(Methylthio)propyl-triphenylphosphonium iodide (24)

Formula: C 2 2 H 2 4 P S I ,  Formula Weight: 478.37 

Melting Point: 136-138 °C.

MALDITOFMS:

Elemental [M l

Theory 351.1336

Found 351.1307

831P NMR (CDC13)=24.3 ppm; S'H NMR (CDC13)=1.9 (3H,s), 2.8 (2H, t , J  = 6.2 Hz),

3.3 (2H,m), 3.8 (2H,m), 7.6-7.8 (15H,m) ppm.

The same results were obtained when the synthesis of 3-(methylthio)propyl- 

triphenylphosphonium iodide (24) was carried out using the
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phosphoniopropylthioacetate ligand as the starting material. The synthesis was carried 

out under the same conditions used as above which involved the generation of the 

phosphonioalkylthiosulfate zwitterion. According to the results obtained by NMR (831P 

NMR (CDCI3) = 24.3 ppm; 8 ‘H NMR (CDCI3) =1.9 (3H,s), 2.8 (2H,t), 3.3 (2H,m), 3.8 

(2H,m), 7.6-7.8 (15H,m) ppm) and MALDI TOFMS positive ion mode accurate 

analysis (found: 351.1342 [M4], required: 351.1312 [M4]), it could be assumed that the 

acetyl group is removed from the original structure of the ligand under the reductive 

conditions and, therefore, the thiolate Ph3P4(CH2)3S~ was formed in solution and then 

bound to the gold nanoparticle surface.

6.2.2.2 Synthesis of phosphonium-monolayer protected gold clusters using 
phosphonioalkyl-thiosulfate and -thioacetate compounds as protecting ligands in a 
two phase liquid-liquid system (dichloromethane : water)

Previous studies have indicated that gold nanoparticles and colloidal gold 

solutions have the ability to cleave the S-S bonds present in organic disulfides and 

alkylthiosulfates, yielding organic thiolates which then bind to the surface of the 

particle.19,47,48 Consequently, it was assumed that the S-S bond of the 

phosphonioalkylthiosulfate zwitterions would be cleaved under the reductive conditions 

used for the synthesis of the capped nanoparticles, to form the related 

phosphonioalkylthiolates, e.g., 22 (Scheme 7). This was confirmed by sodium 

borohydride reduction of the salt (5a), the resulting phosphonioalkylthiolate being 

trapped with iodomethane to form the salt (24). The preparation technique was the same
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for each of the phosphonioalkylthiosulfate zwitterions (5a-g, syntheses described in 

Chapter 3), and was as follows.

A solution of ligand was prepared in dichloromethane (DCM) and solid 

potassium tetrachloroaurate (0.5 mol equiv.) was then added to the solution. This was 

vigorously stirred for 4-6 hours until the gold salt was totally dissolved. The reduction 

was carried out by adding dropwise a freshly prepared aqueous solution of sodium 

borohydride with vigorous stirring. When the tetrachloroaurate was added to the 

solution of the ligand in DCM, the stirring organic solution turned yellow, and then 

became dark purple/blue after the NaBFC addition, indicating that the reduction had 

taken place. In the case of the triphenylphosphonioalkylthiosulfate (5a-d, n = 3, 4, 6, 

and 8), tributylphosphoniohexylthiosulfate (5g) zwitterions, and triphenyl(3- 

thioacetylpropyl)phosphonium (17a) and triphenyl(6-thioacetylhexyl)phosphonium 

bromides (17b) , when the stirring was stopped after 24 hours, the DCM layer was 

colourless and the aqueous phase was dark purple/blue, indicating that 

phosphonioalkylthiolate-capped nanoparticles were present in the aqueous phase 

(Figure 35).

DO
CD:e

V
KAuCI4 + ligand Stirring for 3 h g  |\laBH 4 so lu tion  H20  Stirring o v e rn ig h t

e;— I ■ " -O '" ---------- 4
■4 ■4 0 ■4 ▼■4 HjO ■4 "hjcT

DCM DCM DCM
r

DCM ~dcm~' DCM 1

Figure 35. Illustration of phase colour changes in each of the steps in the synthesis of
the phosphonium gold nanoparticles
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After 24 hours, the stirring was stopped, and due to the affinity of the 

phosphonium-MPCs for the aqueous phase, DCM extractions were carried out in order 

to remove the excess of the organic matter. Three DCM extractions were done, and all 

the extracts were monitored by TLC, using 10% methanol : 90% dichloromethane as 

mobile phase. In Figure 36, a total removal of the organic compound excess can be 

observed in the TLC plate, with the third DCM extraction.

1 2  3 4

Figure 36. TLC plate of the DCM extracts obtain after the synthesis 
of the phosphonium-MPCs solution in presence of triphenyl(3- 

thioacetylpropyl)phosphonium bromide. 1: DCM extraction No. 1, 
2: DCM extraction No. 2, 3: DCM extraction No. 3, 4: triphenyl(3- 

thioacetylpropyl)phosphonium bromide solution
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Essentially, the reduction and functionalised gold nanoparticle formation occur 

in DCM. However, when the water is added to the solution, an affinity of the 

phosphonium-MPCs for the aqueous phase was observed. For this reason, the excess of 

organic reagents could be removed with the DCM extractions. All the DCM extracts 

were collected and water extractions were carried out. The organic phase was dried 

using MgSC>4, and the DCM was then removed in order to weigh the remaining organic 

matter. 88% (WAV) of the phosphonium ligand was consumed during the functionalised 

gold nanoparticle formation.

The reaction time between thiosulfate ligands [Ph3P+(CH2)nS203"] and the 

tetrachloroaurate anion (AuCLf) was set to 4 hours, due to the aggregations observed 

when the sodium borohydride solution was added immediately after the gold salt 

dissolution (10 minutes). Coalescence of the particles occurred almost immediately, and 

the same observations were made in all the reactions involving 

phosphonioalkylthiosulfate zwitterions. Therefore, the reaction time was increased and 

the optimum was found to be 6 hours. In every case, during this time the colour of the 

solution changed from yellow to cloudy white.

According to Murray and co-workers48, who prepared gold nanoparticles 

functionalised with alkanethiosulfate, this yellow to colourless change is due to the 

formation of [-Au(I)-SR-]n polymers prior to the sodium borohydride addition. Brust41 

and Murray48 suggested that the ligand and the gold salt is allowed to react for 3 hours 

because at this stage of the reaction, a reduction of Au(III) to Au(I) occurs prior to the

115



formation of the polymer. Indeed, Murray and co-workers have been able to isolate and 

characterise the Au(I) polymer from one their reactions.

Murray and co-workers reported the possibility of different relative reactivities 

in the case of S-alkylthiosulfates with the gold salt, in comparison to the corresponding 

alkanethiols. No colour changes were observed in the reactions between RS2O3- and 

AuCU-, regardless of the reaction time. Consequently, they suggested that the reduction 

from Au(III) to Au(I) by the thiosulfate ligand that they used is either very slow or does 

not occur.48 Contrary to the observations of Murray and co-workers47, in the case of the 

reactions between phosphonioalkylthiosulfate zwitterions and the gold salt, colour 

changes from yellow to cloudy white were observed during the reaction time (6 hours). 

This experimental observation concurs with the suggestions made by Murray and Brust, 

and may indicate the formation of polymer species in solution at this stage of the 

reaction.

When 10-triphenylphosphoniodecylthiosulfate (5e) and

3-tributylphosphoniopropylthiosulfate (5f) were used, in the first instance a dark blue 

solution was observed. However, after 2 hours dark particles of aggregated colloidal 

gold were observed at the interface between the aqueous and organic phases, showing 

no affinity for either the dichloromethane or water. It would appear that as the carbon 

chain length increases to more than 8 in the triphenylphosphonium ligands, the 

formation of phosphonium monolayer-protected gold colloids that are stable in an 

aqueous medium becomes more difficult. Replacing the triphenylphosphonium cationic
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group by tributylphosphonium group also appears to destabilise the nanoparticles and 

this might be due to the head group packing. In the case of the triphenylphosphonium- 

containing gold nanoparticles, the inductive effect of the phenyl groups on the positive 

charge of the phosphonium head group and the inter- and intra-molecular pi-pi 

interactions may stabilise the packing of the ligands surrounding the gold nanoparticle 

surface. In the case of 3-tributylphosphoniopropylthiosulfate (5f), it would appear that 

the cationic phosphonium head groups repel each other and, therefore, there is no stable 

gold nanoparticle formation. However, in the case of 

6-tributylphosphoniohexylthiosulfate (5g), there is formation of stable nanoparticles and 

it might be due to the flexibility of the longer carbon chain of the ligand which might 

avoid the repulsion between the ligands attached to the gold nanoparticle core.

In contrast to the thiosulfate reactions described above, reactions of the 

thioacetates, triphenyl(3-thioacetylpropyl)phosphonium (17a) and triphenyl(6 - 

thioacetylhexyl)phosphonium bromides (17b) and tetrachloroaurate, no such 

observations were obtained. In these cases, there were no colour changes in the reaction 

mixtures after 6 hours of stirring. Therefore, the addition of the sodium borohydride 

solution was done immediately after dissolving the gold salt in the organic phase. After 

the addition of the reducing agent and the water to the reaction flask, the mixture was 

left stirring overnight. When the stirring was stopped after 24 hours, burgundy solutions 

of colloidal gold were obtained, with no evidence of aggregation of the particles.
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In the case of the synthesis of functionalised gold nanoparticles using (3- 

thioacetylpropyl)diphenylphosphine oxide (20) as protecting ligand, after the addition 

of sodium borohydride, a dark blue organic phase and a transparent aqueous phase were 

observed. It would appear that the gold nanoparticles functionalised with this phosphine 

oxide containing ligand have more affinity to the DCM, which is opposite to the other 

cases previously described. However, after 2 hours, complete aggregation and visible 

particles were observed at the bottom of the flask, making it impossible to use the 

solutions for further analysis and applications

6.2.2.3 Characterisation of the colloidal solutions of the phosphonio- monolayer 
protected gold nanoparticles

UV-visible spectroscopy

Evidence for the formation of gold nanoparticles was provided by UV-visible 

spectroscopy. A broad band centred at 524 nm was observed in the aqueous phase in the 

dark purple/blue solutions containing gold nanoparticles functionalised with 5a, 5c-d, 

5g and 17a-b (Figure 37), indicating that the particle sizes were between 5-10 nm in 

diameter, according to the values for other thiolate-capped gold nanoparticles reported 

in the literature.19
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Figure 37. UV-visible spectra of the functionalised gold nanoparticles solutions 
(different dilution factors) with 3-triphenylphosphoniopropylthiosulfate (5a, a), 

tributylphosphoniohexylthiosulfate (5g, b), 6-triphenylphosphoniohexylthiosulfate (5c, 
c) and 8-triphenylphosphoniooctylthiosulfate (5d, d) zwitterions, triphenyl(3- 

thioacetylpropyl)phosphonium (17a, e), and with triphenyl(6- 
thioacetylhexyl)phosphonium bromides (17b, f)

These experimental results show that the same particle sizes were obtained in all 

the solutions and this might be due to the same molar ratio ligandiKAuCUiNaBEE being 

used in the preparation of all the functionalised gold nanoparticles regardless of the 

nature of the protecting ligand. This particle size distribution was confirmed by TEM.
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All the samples of colloidal gold were freeze-dried in order to remove water and 

keep them stable for longer periods of time, and to enable their re-dispersal in suitable 

solvents for analyses using other analytical techniques.

— •Fresh solution of3C-phosphonium - 
AuNPs (water)

• Freezed dried 3C-phosphonium - 
AuNPs re-dispersed in water

a Freezed dried 3C-phosphonium - 
AuNPs re-dipersed in MeOH
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jQ 0.6

440  4 9 0  540 590 640  690  740  790  840 890

Wavelength (nm)

Figure 38. UV-visible spectra of the fresh solution of AuNPs functionalised with 
3-triphenylphosphoniopropyl thiosulfate zwitterion (5a-AuNPs, —) and freeze dried 

5a-AuNPs re-suspended in water (•) and methanol (a )
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All the solutions of phosphonium-gold nanoparticles obtained using 

phosphonium containing ligands were freeze-dried. They could be re-suspended in 

solvents such as DMSO, water, methanol, and ethanol. Attempts at re-suspending the 

freeze-dried particles in iso-propanol, were unsuccessful. The UV-visible spectra of the 

solutions (different concentrations) corresponding to the freeze-dried gold nanoparticles 

functionalised with 3-triphenylphosphoniopropyl thiosulfate zwitterion (5a-AuNPs) 

re-suspended in water and methanol are shown in Figure 38. No changes in the surface 

plasmon bands of the solutions obtained from the freeze-dried particles were observed 

when their spectra were compared to that of a freshly prepared solution. These results 

indicate that even after the freeze drying process, the 5a-AuNPs do not change their 

particle size. Similar results were obtained with the other phosphonium-gold 

nanoparticles.

Additionally, stability studies of the colloidal solution of gold nanoparticles 

functionalised with the 6-triphenylphosphoniohexylthiosulfate zwitterion (5c-AuNPs) 

was carried out in order to monitor possible changes in the surface plasmon band and 

therefore the particle size, in order to study the aging process of the phosphonium-gold 

nanoparticles and to determine the shelf-life of this colloidal solution. This experiment 

was carried out taking an aliquot of 2 mL of the 5c-AuNP solution every month for 6 

months and analysing it by UV-visible spectroscopy.

Figure 39 shows the UV-visible spectra corresponding to the fresh solution and 

the same colloidal solution after 1, 2, 3, 4, 5 and 6 months. No changes in the position
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of the surface plasmon bands were observed indicating that the particle size was the 

same over this period of time. However, after 6 months, particle aggregations were 

observed in the 5c-AuNP solution. Similar results were obtained for phosphonium- 

AuNPs prepared from thiacetate ligands (See Appendix A).
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Figure 39. UV-visible spectra of a solution of AuNPs functionalised with 
6-triphenylphosphoniohexyl thiosulfate zwitterion (5c-AuNPs), after 1, 2, 3, 4, 5, 

and 6 months (solutions made using different dilution factors)

Several attempts to synthesise functionalised gold nanoparticle using 

10-triphenylphosphoniodecylthiosulfate zwitterion were unsuccessful, as was in the 

case of the tributylphosphoniopropylthiosulfate zwitterion. After the addition of the
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sodium borohydride solution to the reaction mixture containing the gold salt and the 

ligand, a dark blue solution with a homogeneous appearance was observed in the 

organic phase (DCM). However, after the first hour the particles started to coalesce and 

after 2 hours of stirring, aggregation was complete, the aggregates remained at the 

interface between the aqueous and organic phases, and showed no affinity for either 

dichloromethane or water. An aliquot of the dark blue solution from the organic phase 

corresponding to the synthesis of functionalised gold nanoparticles using 

10-triphenylphosphoniodecylthiosulfate zwitterion (5e) was taken and analysed by UV- 

visible spectroscopy.

Evidence of the formation for nanoparticles in DCM during the first hour of 

reaction is shown in Figure 40. The surface plasmon band of the spectrum of this 

solution occurs at 592 nm indicating that the formation of gold nanoparticles was taking 

place in the organic phase. According to the literature,19’70 for AuNPs stabilised with 

sodium citrate with a mean diameter of 9, 15, 22, 48, and 99 nm, the SPB (maximum 

wavelength, Â ax) was observed at 517, 520, 521, 533, and 575 nm, respectively, in 

aqueous media. The formation of a band at 592 may suggest that the size of the 

prepared gold nanoparticles is greater than 100 nm, and these could act as a seed for the 

formation of larger particles.
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Figure 40. UV-visible spectrum of the dark blue solution (organic phase) 
corresponding to the attempts to prepare gold nanoparticle using 

10-triphenylphosphoniodecylthiosulfate zwitterion as the precursor of the 
protecting ligand (Sample analysed during the first 10 minutes of the reaction)

Particle size obtained by the UV-visible technique was confirmed using a 

Transmission Electron Microscopic (TEM) technique.
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Transmission Electron Microscopy (TEM)

The solutions of the gold nanoparticles functionalised with 

triphenylphosphoniopropylthiosulfate (5a) and triphenylphosphoniohexylthiosulfate 

(5c) zwitterions and triphenyl(3-thioacetylpropyl)phosphonium bromide (17a) were 

investigated by transmission electron microscopy (TEM). These gold nanoparticles 

were partially characterised using TEM (Zeiss, Cambridge University and Nano STEM, 

Sheffield Hallam University).
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Figure 41. TEM micrograph and the core-size histogram of the gold nanoparticles 
functionalised with triphenylphosphoniopropylthiosulfate zwitterion (5a)

The TEM images were obtained by dropping a solution of AuNPs dispersed in 

water onto a carbon-coated copper grid. A small piece of tissue was used to remove the
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excess of water and then the samples were left to stand overnight allowing the 

remaining solvent to evaporate. The copper grids used in this study were 1000 mesh. 

Highly uniform spherical nanoparticles of ca 5 nm can be observed in the TEM images 

and core-size histograms (Figures 41, 42 and 43) corresponding to the AuNPs 

functionalised with the triphenylphosphoniopropylthiosulfate (5a) and 

triphenylphosphoniohexylthiosulfate (5c) zwitterions and triphenyl(3- 

thioacetylpropyl)phosphonium bromide (17a), supporting the results obtained by the 

UV-visible spectroscopy. The colloidal solutions presented good stability over 6 months 

at room temperature. The solutions were monitored by UV-visible spectroscopy and no 

changes were observed in their spectra during this period.
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Figure 42. TEM micrograph and the core-size histogram of the gold nanoparticles 
functionalised with triphenylphosphoniohexylthiosulfate zwitterion (5c)
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All the TEM micrographs were obtained using low voltage (low kV values), 

between 12 and 30 kV, so as to minimise decomposition of the organic matter.

Diameter (nm)
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Figure 43. TEM micrograph and the core-size histogram of the gold nanoparticles 
functionalised with triphenyl(3-thioacetylpropyl)phosphonium bromide (17a)

Following the stability study of the 5c-AuNP solution by UV-visible 

spectroscopy, in which no changes in the position of the surface plasmon bands were 

observed over 6 months, the aged sample was analysed by TEM in order to confirm the 

UV results. After 6 months, particle aggregation was observed in the 5c-AuNP solution. 

Evidence of this can be seen in Figure 44. In the UV-visible spectrum corresponding to 

the aged solution, a shoulder between 700 and 800 nm can be observed indicating the 

possible formation of particles much bigger than 5 nm.
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Figure 44. UV-visible spectra of a fresh solution of functionalised AuNPs with 
6-triphenylphosphoniohexyl thiosulfate zwitterion (5c-AuNPs, •) 

and after 7 months (—). Solutions prepared using different dilution factors.

This result was confirmed by TEM analysis. In the corresponding micrograph 

and core-size histogram (Figure 45), a mixture of different particles in terms of size is 

observed. Particle size of around 5-20 nm and larger are present in the sample. In size, 

the larger particles vary between 35 and 65 nm. The aggregations observed in this 

solution after 6 months could be attributed to the presence of these bigger particles 

which act as the seeds for the growth of larger, observable particles during the aging
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process of the gold colloidal solution. The air-oxidation of thiolate ligands causes a 

de-protection of the gold nanoparticle surface. The latter can promote aggregation due 

to the plasmon-plasmon interactions between the gold nanoparticles and cause a shift in 

the surface plasmon absorption band to longer wavelengths.176,177

Figure 45. TEM micrograph and the core-size histogram of the gold nanoparticles 
functionalised with 6-triphenylphosphoniohexyl thiosulfate zwitterion (5c-AuNPs) 

corresponding to a solution aged for 7 months
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31P Nuclear Magnetic Resonance (31P NMR) spectroscopy of phosphonium-
functionalised gold nanoparticles

In order to characterise the ligands surrounding and protecting the gold 

nanoparticle surface, a 31P NMR analysis of the phosphonium-containing gold 

nanoparticles was carried out. A freeze-dried sample (8 mg) of gold nanoparticles 

functionalised with triphenyl(3-thioacetylpropyl)phosphonium bromide (17a-AuNPs) 

was taken and dissolved in 4 mL of DMSO. The sample was then placed in the NMR 

instrument to collect the signals corresponding to 31 P. After overnight scanning, a 

significant signal corresponding to a chemical shift corresponding to the phosphorus 

atom of the surface-bound triphenylphosphonioalkyl thiolate was observed, as it is 

shown in Figure 46.

"X1No significant change could be seen in the P NMR spectrum, between the 

chemical shift of the ligand as itself (spectrum obtained in DMSO) and that 

corresponding to the ligand coating the gold nanoparticle core. Only a difference of 0.1 

ppm in the chemical shifts is observed. This indicates that the phosphonium head group 

is in a similar chemical environment in both cases. However, the very slight difference 

in chemical shift could be due to the influence of the metal core on the chemical 

environment of the phosphonium containing ligand.

There is no interference of the excess of triphenyl(3- 

thioacetylpropyl)phosphonium bromide (17a) ligand, used in the synthesis of the 

corresponding gold nanoparticles, in this experiment, and the chemical shift of the P
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corresponding to the phosphoniopropylthioacetate ligand coating the gold nanoparticle 

surface is only due to the phosphorus of the ligand attached to the metal core. The 

excess of ligand was removed from the original gold colloidal solution (aqueous phase) 

with DCM extractions in order to avoid the interference of the signals corresponding to 

the free ligand in solution. Finally, it can be concluded from the evidence obtained in 

this P NMR experiment, that the chemical structure of the ligand stabilising the metal 

core is the same of the structure of ligand as itself and that at least the phosphonium 

head group is intact.
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Figure 46 .3 !P NMR spectra of the 17a-AuNPs and triphenyl(3- 
thioacetylpropyl)phosphonium bromide (17a)
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X-ray Photoelectron Spectroscopy (XPS)

X-ray photoelectron spectroscopy has been employed in this project to 

determine the ligand-substrate bond characteristics, such as S-Au linkage, for the gold 

nanoparticles functionalised with phosphonioalkylthiolate ligands. X-ray photoelectron 

spectroscopy (XPS) has been widely used to study numerous monolayer-protected 

metal cluster and self-assembled monolayer systems.48,49,59

XPS offers a direct chemical description of the surface layer (2-5 nm depth) of 

the sample. The binding energy measured by this technique is influenced by the electron 

density due to the chemical shift of a component peak, and the chemical state of 

individual elements can be deduced. Indeed, chemical bonding information or evidence 

of the oxidation states of individual elements can be obtained.178

XPS has been used to investigate the nature of the S-Au linkage in 

phosphonium-AuNP samples. The functionalised gold nanoparticle samples obtained 

using the 3-triphenylphosphonioproylthiosulfate zwitterion (5a-AuNPs) and 

triphenyl(3-thioacetylpropyl)phosphonium bromide (17a-AuNPs) as the source of the 

protecting ligands were used for the XPS analysis in this project. The freeze-dried 

samples were placed on a standard sample stud employing double sided adhesive tape 

and the takeoff angle was fixed at 90°. XPS peaks corresponding to Au and S were 

analysed at high resolution and deconvoluted to measure the contributions from each 

component.
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Figure 47 shows the XPS wide scan corresponding to the phosphonium-gold 

nanoparticles prepared using the 3-triphenylphosphoniopropylthiosulfate zwitterion 

(5a-AuNPs). In this spectrum, signals of gold (4p, 4d and 41), sulfur (2s and 2p), 

phosphorus (2p), carbon (Is), sodium (KLL, 2s and 2p), boron (Is), potassium (2s, 2p 

and 3p), chlorine (2s and 2p) and oxygen (Is and 2s) were observed. A wide scan 

corresponding to the phosphonium-AuNPs obtained using triphenyl(3- 

thioacetylpropyl)phosphonium bromide (17a-AuNPs), showed that the same peaks 

were observed (See Appendix B).
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Figure 47. XPS wide scan spectrum corresponding to the freeze-dried sample of gold 
nanoparticles functionalised with the 3-triphenylphosphoniopropylthiosulfate

zwitterion (5a-AuNPs)
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The high resolution Au4f spectra collected from the phosphonium-AuNP sample, 

5a-AuNP, is shown in Figure 48.
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Figure 48. XPS high resolution spectrum of Au 4f collected from the 
freeze-dried 5a-AuNP sample

A doublet with a peak-to-peak distance of about 3.6 eV was observed for the Au 

4f level. This Au 4f doublet (4f7/2 and 4fs/2) represents the standard measure of the gold 

oxidation state. The binding energies for the doublet were 84.0 and 87.6 eV. These 

values are similar to those reported by Yee and co-workers49 in surface chemistry 

studies of gold nanoparticles coated with dodecanethiol ligands by XPS (Figure 49).
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According to Heath and co-workers and their results obtained in the 

characterisation of hydrophobic and organically-soluble gold nanocrystals 

functionalised with primary amine (laurylamine) by XPS, this data is consistent with the 

Au° oxidation state, and therefore indicates the absence of Au(I).49,179 McNeillie and 

co-workers180 reported that if Au(I) is present in the sample, it would be expected to 

give rise to a peak, or at least a shoulder, on the Au° 4fs/2 peak at ca 84.9 eV.

S/An

Figure 49. XPS high resolution spectrum of Au 4f collected from 
dodecanethiol-AuNP sample. Binding energy values of Au 4f 

reported by Yee and co-workers49

Moreover, in accordance with Heath and co-workers,179 the absence of such a 

signal in the high resolution scan can allow as estimate that if charged Au atoms are 

present in the sample no more than 8% of the Au surface atoms are in an ionised state. 

They inferred that most of the ligand-Au interactions are of neutral charge and also
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suggested that the 8% representing the surface charge can help to increase the solubility 

of the particles in polar solvents such as water, methanol, or acetone.179
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Figure 50. XPS high resolution scan spectrum of S2P corresponding to 5a-AuNP

In the high resolution scan spectrum of S2P corresponding to 5a-AuNP shown in 

Figure 50, a binding energy corresponding to S 2p3/2 appeared at 162.9 eV. This wide 

scan of the sulfur atom is different when is compared to the sulfur wide scan 

corresponding to the thiosulfate ligand itself (3-triphenylphosphoniopropylthiosulfate 

zwiterion, 5a, Figure 51).
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Figure 51 XPS high resolution scan spectrum of S2P corresponding to the 
3-triphenylphosphoniopropylthiosulfate zwiterion (5a)

In Figure 51, two binding energy signals at 161.4 and 166.1 eV can be observed. 

The thiosulfate containing compounds (Bunte salts) possess sulfur in two different 

environments in terms of chemical structure and, consequently, with the 

3-triphenylphosphoniopropylthiosulfate zwitterion, two oxidation states of sulfur with 

different binding energies and equal intensities (or counts per seconds, CPS) were 

observed in the S 2p XPS wide scan spectrum. The lower binding energy at 161.4 eV in 

the doublet can be attributed to sulfur bound to a carbon atom. Fomasiero and
1 O 1

co-workers have found similar values for the sulfur atom contained in inorganic 

thiosulfates. They measured PbS2C>3 and Na2S2C>3, obtaining binding energies at 162.2
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and 161.7-162.5 eV, respectively. The higher binding energy at 166.1 eV in the doublet 

in Figure 51, can be assigned to the sulfur atom bound to the oxygen atoms of the 

thiosulfate group, and the binding energy of this signal is a little lower than the values 

reported for sulfur in inorganic thiosulfates (167.7 eV).181
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Figure 52. XPS high resolution spectrum of S2P collected from dodecanethiol-AuNP 
sample. Binding energy values of S2P reported by Yee and co-workers49

The value of the binding energy of S 2p3/2 at 162.9 eV corresponding to 

5a-AuNP (Figure 50) is similar to the binding energy of S 2p3/2 found reported in the 

literature and typical for organic thiolates binding to gold (162.0-162.9 eV) (Figure 

52).182’183 No signal due to the oxygen-containing sulfur species in the wide scan of S 2p 

corresponding to 5a-AuNP (Figure 50) was observed, indicating that the S-S bond of
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the 3-triphenylphosphoniothiosulfate zwitterion has been cleaved, leaving the 

phosphoniopropylthiolate species to interact with the gold nanoparticle surface.
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Figure 53. XPS high resolution spectrum of Au 4f collected from the 
freeze-dried 17a-AuNP sample

The high resolution Au4f and S2P spectra collected from the phosphonium-AuNP 

sample obtained using triphenyl(3-thioacetylpropyl)phosphonium bromide, 17a-AuNP, 

are shown in Figures 53 and 54 respectively. In Figure 53, a doublet with a peak-to- 

peak distance of about 3.7 eV was observed for the Au 4f level. The binding energies 

for the doublet were 84.1 and 87.8 eV (corresponding to 4f7/2 and 4fsa, respectively). 

These values are similar to those obtained in the analyses carried out with 5a-AuNP and
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also to those reported by Yee and co-workers49 in the surface chemistry studies of gold 

nanoparticles coated with dodecanethiol ligands by XPS (Figure 49).

In the high resolution scan spectrum of S2P shown in Figure 54 (a), a binding 

energy corresponding to S 2p3/2 appeared at 162.1 eV for the phosphonium-AuNP 

sample. This value was slightly higher than that of the S atom value found for the free 

thioacetate ligand [161.1 eV, see Figure 54 (b)]. The binding energy of S 2p3/2 = 162.1 

eV found in this analysis is similar to the values reported for thiolates binding to gold 

(162.0-162.9 eV) (Figure 52).182'183

Additionally, a signal at 167.0 eV was also observed in Figure 54 (a). According 

to the literature, this binding energy value can be attributed to the sulfur atom bonded to 

another sulfur atom, as a sulfur-sulfur bond, possibly due to the product of the air 

oxidation that such thiolate ligands can undergo in the presence of air.49 This result was 

expected since the sample of gold nanoparticles used in this analysis had been aged for 

4 months.
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Figure 54. XPS high resolution scan spectra of S2P corresponding to 17a-AuNPs (a) 
and the triphenyl(3-thioacetylpropyl)phosphonium bromide (b)



6.3 Attempts to stabilise gold nanoparticles using 
phosphonioalkylselenide compounds as protecting ligands

6.3.1 Experimental

6.3.1.1 Studies of the potential of the phosphonioalkylselenide compounds as 
precursors of the protecting ligands - Synthesis of 3-(methylseleno)propyl- 
triphenylphosphonium iodide (25)

Before attempting to prepare cationic phosphonium monolayer-protected gold 

nanoparticles using bis(3-triphenylphosphoniopropyl)diseIenide-di(selenocyanate) (15a) 

and 6-(selenocyano)hexyl-triphenylphosphonium selenocyanate (13b), studies of the 

potential of these compounds to act as protecting ligands precursors were carried out.

In order to show the capacity of the phosphonioalkylselenide ligands to form 

the corresponding selenoate species during the synthesis of the functionalised gold 

nanoparticles, an alkylation reaction using bis(3-

triphenylphosphoniopropyl)diselenide-di(selenocyanate) (15a) and iodomethane as 

starting materials was carried out under the same reductive conditions used for the 

preparation of the capped nanoparticles.

The alkylation of 15a was carried out using the following method: bis(3- 

triphenylphosphoniopropyl)diselenide-di(selenocyanate) (15a, 0.5 mmol) was dissolved 

in 3 mL of methanol. A freshly prepared aqueous solution of sodium borohydride (2 mL, 

5 mmol) was then added drop by drop to the reaction flask, in order to allow formation of
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the zwitterion Ph3P+(CH2)3Se (14a). The mixture was stirred for 1 hour at room 

temperature. The formation of 3-(methylseleno)propyl-triphenylphosphonium iodide (25) 

was achieved by the reaction of 15a and methyl iodide (23, 0.3 mL, 5mmol) under 

nitrogen and the mixture was stirred overnight at room temperature (Scheme 9). Progress 

of the reaction was monitored by TLC, using 10% methanol: 90% dichloromethane as a 

mobile phase. The resulting mixture was extracted with dichloromethane, the nonaqueous 

phase was collected and after removing the solvent, the resulting compound was initially 

purified by trituration with dry diethyl ether.

NaBK
MeOH, RT

CH3I (23) 

MeOH, N2

Scheme 9
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6.3.1.2 Attempts to synthesize gold nanoparticles using bis(3- 
triphenylphosphoniopropyl)diselenide-di(selenocyanate) (15a) and 6 - 
(selenocyano)hexyl-triphenylphosphonium selenocyanate (13b) as protecting ligands 
in a two phase liquid-liquid system (dichloromethane : water)

Having shown the capacity of the diselenide compound to act as potential 

protecting ligands, attempts to stabilise gold nanoparticles using the 

bis(3 -triphenylphosphoniopropyl)diselenide-di(selenocyanate) (15a) and

6-(selenocyano)hexyl-triphenylphosphonium selenocyanate (13b) were carried out. The 

preparation technique was the same for both cases and was as follows.

A solution of ligand was prepared in DCM (0.12 mmol, 7 mmol L '1; and 

0.25 mmol, 14 mmol L’1) and potassium tetrachloroaurate (0.12 mmol, 7 mmol L"1) was 

then added to the solution. This was vigorously stirred until the gold salt was totally 

dissolved. The reduction was carried out by adding dropwise a freshly prepared aqueous 

solution of sodium borohydride (3mL, 400 mmol L’1) with vigorous stirring, and 15 mL 

of deionised water was then added to the mixture.
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6.3.2 Results and Discussion

6.3.2.1 Synthesis of 3-(methyIseIeno)propyl-triphenyIphosphonium iodide

Previous studies have shown that the Se-Se and Se-OH bonds present in organic 

diselenides and alkylselenols can be cleaved in the presence of a metal surface and gold 

nanoparticles, enabling the formation of self assembled-monolayers (SAMs) and 

functionalised nanoparticles, respectively.

In order to study the capacity of compound 15a as a protecting ligand and to 

prove the formation of the zwitterion Ph3P+(CH2)3Se in solution, it was attempted to trap 

the latter by alkylation, to give 3-(methylseleno)propyl-triphenylphosphonium iodide 

(25). This was achieved by sodium borohydride reduction of the salt (15a), and alkylation 

of the resulting phosphonioalkylselenolate zwitterion with iodomethane to form 25  

(Scheme 9). Other workers have shown that alkyl selenocyanates also undergo reduction 

on treatment with sodium borohydride to form the related alkyl selenols.184

The structure of 2 5  is shown in Figure 55. Compound 2 5  was isolated as pale 

cream solid but attempts to isolate 25  as a crystalline solid suitable for X-Ray analysis 

were unsuccessful. However, NMR spectroscopy and electrospray mass spectrometry 

supported the formulation of this compound. When studied by MALDI TOFMS in 

positive ion mode (accurate mass analysis), an ion corresponding to the 

methylselenopropylphosphonium cation was observed.
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Figure 55. 3-(Methylseleno)propyl-triphenylphosphonium iodide (25)

Formula: C2 2 H2 4PSeI, Formula Weight: 525.26 

Melting Point: 140 °C.

MALDITOFMS:

Elemental [M l

Theory 399.0780

Found 399.0761

53iP NMR (CDC13) = 24.06 ppm, 8 ‘H NMR (CDCI3 ) = 1.8 (3H,s), 2.8 (2H, t, 

J =  6.2 Hz), 3.2 (2H,m), 3.9 (2H,m), 7.6-7.8 (15H,m) ppm.



According to the results obtained by NMR and MALDI TOFMS, it could be 

assumed that the Se-Se bond is cleaved under the reductive conditions, to form the 

selenoate Ph3P+(CH2)3Se- in solution, which might then bind to the gold nanoparticle 

surface.

63,2.2 Attempts to synthesize gold nanoparticles using 15a and 13b as protecting 
ligands in a two phase liquid-liquid system (dichloromethane : water)

Having demonstrated the potential of the diselenide compound to act as a 

precursor of the protecting ligand in the synthesis of monolayer-protected cationic 

phosphonium-gold nanoparticles, the first attempts to stabilise gold nanoparticles using 

the bis(3-triphenylphosphoniopropyl)diselenide-di(selenocyanate) (15a) and 

6-(selenocyano)hexyl-triphenylphosphonium selenocyanate (13b) were carried out.

The synthesis of the gold nanoparticles was carried out following the method 

previously described in section 6.2.1.2 of this chapter, via reduction of potassium 

tetrachloroaurate in a biphasic medium (dichloromethane:water) with an excess of 

sodium borohydride.41,48 A solution of the ligand was prepared in dichloromethane 

(DCM) and solid potassium tetrachloroaurate (Se/Au molar ratio, 1:1) was then added 

to the solution. This was vigorously stirred until the gold salt was totally dissolved. The 

reduction was carried out by adding dropwise a freshly prepared aqueous solution of 

sodium borohydride with vigorous stirring, under a nitrogen atmosphere. After 1 hour, 

the stirring was stopped and dark blue particles of aggregated colloidal gold were
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observed at the bottom of the flask. No evidence of stable gold nanoparticle formation 

was observed in both cases (15a and 13b).

Following this result, the molar quantity of the ligand was increased and a Se/Au 

molar ratio of 2:1 was used in order to assure the complete stabilisation of all the gold 

nanoparticles in solution. However, after the reduction and 2 hours of vigorous stirring, 

particles of aggregated colloidal gold were again observed at the bottom of the reaction 

vessel. Even with a further increase in the quantity of ligand, the formation of 

functionalised gold nanoparticles was not achieved. If stirring is continued overnight 

then the blue aggregates slowly re-dissolved, giving a pale yellow coloured solution.

The observation that neither 15a nor 13b facilitates the formation of stabilised 

gold nanoparticles is obviously disappointing. It can be assumed that the selenocyanate 

ions present in both 15a and 13b may be a complicating factor and it is well known that 

the cyanide ion, and other pseudo halides, have very high affinities for gold and are 

widely used for the dissolution, recovery and recycling of gold metal.185

Furthermore, it has been reported that treatment of gold® captopril (captopril = 

l-[(2S)-3-mercapto-3-methylpropionyl]-L-proline) with KSeCN or selenourea in 

aqueous solution produces unstable species that readily undergo disproportionation and 

decomposition. Selenocyanate complexes of gold® are comparatively rare and 

complexes of the type [(R3P)Au(SeCN)], formed through the reaction of [(R.3P)AuC1]
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with KSeCN in a biphasic water/dichloromethane system were found to be less stable 

thermally, and to air and moisture, than their thiocyanate analogues.186
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6.4 Stabilisation of gold nanoparticles using the diphenyl-l-
pyrenylphosphoniopropylthiosulfate zwitterion

In order to investigate the use of fluorescent phosphonioalkylthiosulfate 

zwitterions as protecting ligands for AuNPs, their interactions with DNA, and their 

potential use in fluorescence detection methods for biomolecule recognition, the 

synthesis of functionalised gold nanoparticles using diphenyl-1- 

pyrenylphosphoniopropyl thiosulfate zwitterion (11, section 3.2.2, Chapter 3) as 

precursor of the protecting ligand was carried out. Details of the preparation of the gold 

nanoparticles coated with this fluorescent dye (experimental part) and discussion of the 

subsequent results are presented in this section.

6.4.1 Experimental

6.4.1.1 Synthesis of phosphonium-monolayer protected gold clusters using diphenyl- 
1-pyrenylphosphoniopropyl thiosulfate zwitterion as protecting ligand

In the case of the diphenyl- 1-pyrenylphosphoniopropyl thiosulfate zwitterion 

(11), solubility problems were observed when this ligand was used during the 

functionalisation of gold nanoparticles. Due to its solubility in ethanol, the synthesis of 

pyrenylphosphonium-gold nanoparticles was carried out as follows.

A solution of the diphenyl-1-pyrenylphosphoniopropyl thiosulfate zwitterion was 

prepared in ethanol (0.25 mmol, 3 mmol L '1) and potassium tetrachloroaurate (0.12

150



mmol, 1.5 mmol L '1) was then added to the solution. This was vigorously stirred for 10 

minutes until the gold salt was totally dissolved and then, this was left stirring for an 

additional 4 hours. The reduction was carried out by adding dropwise a freshly prepared 

aqueous solution of sodium borohydride (3mL, 400 mmol L '1) with vigorous stirring, and 

15 mL of deionised water was then added to the mixture. After 24 hours, the stirring was 

stopped and a burgundy/blue solution was obtained.

6.4.1.2 Characterisation of the colloidal solutions of the pyrenylphosphonio- 
monolayer protected gold nanoparticles

The colloidal solution of AuNPs fimctionalised with diphenyl-1- 

pyrenylphosphoniopropyl thiosulfate zwitterion was analysed by UV-visible 

spectroscopy. Additionally, fluorescence measurements were carried out using a Hitachi 

(model F-4500) spectrophotometer, and collected for the pyrenylphosphonium-gold 

nanoparticles and the ligand on its own. The samples to be analysed by UV-visible 

spectroscopy and fluorimetry were kept in their original state (nanoparticles dispersed in 

ethanol). All the fluorescence measurements were carried out at room temperature, and 

during the interval of time selected to investigate possible changes in fluorescence 

emission in the aged solutions of pyrenylphosphonium-gold nanoparticles, these samples 

were kept sealed and protected from the light.
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6.4.2 Results and Discussion

In this case, pyrenylphosphonium-gold nanoparticles were prepared in ethanol, 

due to the solubility properties of the diphenyl-1-pyrenylphosphoniopropyl thiosulfate 

zwitterion, the latter being insoluble in water. Several attempts to synthesise these gold 

nanoparticles in a two phase liquid-liquid system (DCM : water), following the method 

previously used to synthesise the phosphonium-gold nanoparticles, were carried out. 

The attempts were unsuccessful including those in which the concentration of ligand 

was varied. However, aggregations were observed immediately after the addition of 

sodium borohydride to the reaction mixture. The coalesced particles remained at the 

interface between the aqueous and organic phases, showing no affinity for either 

dichloromethane or water. These aggregations could be due to the hydrophobicity of the 

diphenyl-1-pyrenylphosphoniopropyl thiosulfate ligand.

Hence, the preparation of the pyrenylphosphonium-gold nanoparticles was 

attempted in ethanol. However, with this synthetic method, the excess of the organic 

matter of the ethanolic solution could not be removed by extraction with suitable 

solvents (DCM, toluene and acetone), in which the ligand can be dissolved, due to the 

miscibility between these solvents and ethanol. In a further attempt, ethanol was 

removed from the solutions and a dark blue paste was obtained. This was rinsed with 

DCM, toluene and acetone. However, the paste started to clump and appear as a bulk 

material, and fine visible particles could be observed suspended in the solvent. These 

particles were allowed to settle and then the rinsing solvent was decanted. This 

procedure was repeated several times. Finally, the particles were dried under nitrogen
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and attempts were made to re-suspend them in ethanol, but no colloidal solution was 

observed.
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Figure 56. UV-visible spectra of diphenyl-1-pyrenylphosphoniopropyl thiosulfate 
zwitterion in ethanolic solution (3 mmol L"1, —), pyrenylphosphonium-gold nanoparticle

solution at t = 0 (•) and at t = 1 month (a )

At the end of the synthesis of the pyrenylphosphonium-gold nanoparticles in 

ethanol, a dark purple solution was obtained. The original colloidal solution of 

pyrenylphosphonium-gold nanoparticles was analysed by UV-visible spectroscopy in

153



order to monitor their stability. Evidence for the formation of colloidal gold 

nanoparticles was observed in the UV-visible spectrum (Figure 56) of the freshly 

prepared solution. A broad band at 520 nm was observed, indicating that the reduction 

of A(III) to Au(0) took place and that the particle size is in the range 5-10 nm, according 

to the literature.19 Figure 56 also shows the spectrum of the pyrenylphosphonium-gold 

nanoparticles at 1 month. No changes in surface plasmon band were observed during 

this period of time. However, within the second month, visible dark blue particles were 

seen in the ethanol solution, leaving the solution devoid of colloidal gold nanoparticles.

In Figure 56, the spectrum of the diphenyl-1-pyrenylphosphoniopropyl 

thiosulfate zwitterion in ethanolic solution (same concentration used for the synthesis of 

the functionalised gold nanoparticles, 3 mmol L '1) can also be seen. Absorption bands 

of the ligand do not interfere with the gold nanoparticle broad band at 520 nm. It can 

also be assumed that the absorption bands in the range of 260-380 nm present in the 

colloidal gold solution spectra are due to the pyrene units of the ligands coating the

1 87metallic surface.

The fluorescence spectrum of the diphenyl-1-pyrenylphosphoniopropyl 

thiosulfate zwitterion is displayed in Figure 57. All the fluorescence measurements of 

the nanoparticles and the ligand were carried out with an excitation wavelength fixed at 

390 nm. One strong emission band located at 410 nm is observed in Figure 57.
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The fluorescence spectrum of a fresh prepared pyrenylphosphonium-gold 

nanoparticle solution is shown in Figure 58. One emission band positioned at 410 nm is 

observed, which is the same as that of the diphenyl-1-pyrenylphosphoniopropyl 

thiosulfate zwitterion.
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Figure 57. Fluorescence spectrum (excitation wavelength fixed at 390 nm) of the 
diphenyl-1-pyrenylphosphoniopropyl thiosulfate zwitterion (11)

Moreover, a weak broad emission band ranging from 500 to 650 nm is observed 

in the spectrum of the gold nanoparticle solution (Figure 58). However, even the 

solutions having the same concentration of ligand, the intensities of the bands in this 

spectrum are much lower when compared to those corresponding to the ligand (Figure 

57), indicating that the fluorescence of the ligand is quenched after the functionalisation
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of the gold nanoparticle. According to Wang and co-workers187 and the results obtained 

in their photophysical property studies of alkanethiols with pyrene unit-capped gold 

nanoparticles, this can be due to weak excimer emmision of the pyrene units. It is well 

known that face-to-face arrangements of pyrene groups help the formation of
i 07

excimers. As a consequence, this weak excimer emission can indicate that most of the 

pyrenyl groups on one gold nanoparticle surface and between their neighbours (other 

particles in the same solution) are not orientated in a face-to-face way for the freshly 

prepared colloidal solution.
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Figure 58. Fluorescence spectrum (excitation wavelength fixed at 390 nm) of the 
pyrenylphosphonium-gold nanoparticle solution
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Apparently, the gold core is also responsible for the quenching of the excited

states of the pyrenyl groups due to a through-space (alkyl chain folding) energy transfer 

188process.
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Figure 59. Fluorescence spectra (excitation wavelength fixed at 390 nm) 
collected from solutions of the pyrenylphosphonium-gold nanoparticle aged for 48,120,

300 and 1080 hours

Fluorescence studies of aged solutions of pyrenylphosphonium-gold 

nanoparticles were also carried out. Fluorescence spectra were collected from solutions 

aged for 48, 120, 300 and 1080 hours and these are shown in Figure 59. Considerable 

enhancements in intensity of excimer emission were observed for the solutions as the
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aging time increased. However, the enhancements obtained in this study are quite small 

in comparison to those obtained by Wang and co-workers187 for the alkanethiols with 

pyrene unit-capped gold nanoparticle aged solutions (Figure 60).

In the case of the alkanethiols with pyrene unit-capped gold nanoparticles, a 

considerable enhancement is observed in the spectrum corresponding to the aged 

solution for 311 hours. It was also observed that, in this period of time, there were no 

changes in the shape of the emission bands corresponding to the thiols (360-440 nm)

• 1 R 7and the functionalised gold nanoparticles (450-550 nm). These investigators 

attributed the enhancements observed during this experiment to the re-arrangement of 

the pyrene units, in a face-to-face orientation, of the functionalised gold nanoparticles.
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Figure 60. Fluorescence spectra of alkanethiols with pyrene unit-capped gold 
nanoparticle solutions aged for 0, 17, 41, 71, 209 and 311 hours187
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However, in the case of the pyrenylphosphonium-gold nanoparticle aged 

solutions, changes in the shape and appearance of the new emission bands in the region 

between 500 and 650 nm (assigned to gold nanoparticles) were observed (Figure 59). 

These experimental observations might be due to changes in the nanoparticle sizes and 

the number of thiolate ligands on the metal core. It may be that the ligands are 

oxidising, de-protecting the nanoparticle surface and, therefore causing small 

aggregations, which could not be detected in the UV spectrum of an aged solution for 1 

month (Figure 56). The re-arrangement of the pyrenyl groups in a face-to-face manner 

in solution may be occurring, but, in this case, it would appear not to be relevant and the 

changes observed in the fluorescence spectra could not be attributed solely to this effect.

In overall, it can be concluded that stabilisation strategies have been 

successfully developed for the synthesis of a novel family of phosphonium- 

functionalised gold nanoparticles, as an alternative to those cationic gold nanoparticles 

based on ammonium species. It has also been shown that most of the 

phosphonium-containing ligands synthesised in this project are able to stabilise gold 

nanoparticle surfaces. The resulting cationic-phosphonium gold nanoparticles are 

dispersable in aqueous solution (except nanoparticles protected with pyrenyl-containing 

ligand) which is an advantage for their biological applications. The use of these 

phosphonium gold nanoparticles as substrates for biomolecule recognition is presented 

in Chapter 7.
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CHAPTER 7

Studies of Cationic Phosphonium-Gold 
Nanoparticles as Substrates for Biorecognition 

Using the Surface Plasmon Resonance Technique
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7.1 Introduction

As discussed in the introduction and previous chapters, one of the principal aims 

of this research project has been to investigate the potential of phosphonium- 

functionalised gold nanoparticles to act as biorecognition systems. It was concluded that 

the most effective way to do this would be to use the Biacore instrument, located in the 

Sheffield Hallam University Biomedical Research Centre, to investigate the interaction 

of phosphonium-functionalised gold nanoparticles and surfaces with biological 

molecules, e.g. DNA. The Biacore instrument relies on the surface plasmon resonance 

(SPR) phenomenon to provide sensitive, label-free, analysis of the interaction between a 

biomolecule and substrate in real-time.

A wide range of investigations has been reported in the literature concerning to 

the utilisation of metallic substrates189 and gold nanoparticles190 as sensing devices. 

However, few of these have used SPR technique to investigate the interactions with 

biomolecules. Several reports have also focused on improving the sensitivity of 

conventional SPR sensors for the detection of small molecules.191 For example, 

strategies that employ probe molecules with high molecular weights or high refractive 

index as part of the sensor chips, to bind the analytes (binding partner), have been 

reported,192 and Lyon and co-workers193 reported a more than 1000-fold enhancement in 

sensitivity using a gold nanoparticles-DNA conjugate as a probe molecule that binds an 

analyte DNA molecule captured on a sensor chip.
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Specific-sequence DNA detection is an important topic in the diagnosis of 

pathogenic and genetic diseases. Many detection techniques have been developed that 

are based on target hybridisation with radioactive, fluorescent and chemiluminescent 

types of labelled probes. In addition, there are indirect detection methods that rely on 

enzymes to generate colorimetric, fluorescent or chemiluminescent signals.106 

Functionalised gold nanoparticles have been shown to be useful in biomolecular 

recognition,49,109 and these provide advantages over conventional probes, such as 

fluorescent labels, for example, gold nanoparticles have narrower emission spectra than 

fluorescent probes, and obviate the need for radioactive species.

In this research project, a study has been made of the interaction between the 

phosphonium ligands on the gold nanoparticle surface carrying positive charges and the 

polyanionic DNA molecules in order to show their potential as substrates for 

biomolecule recognition and tagging. Recently, Rotello and co-workers194 have 

developed a method based on trimethylammonium-functionalised gold nanoparticles for 

peptide ligation employing electrostatic interaction as the key approach, and many of 

the applications of such materials have been outlined in the main introduction of this 

thesis.

All the interaction events between the phosphonium-functionalised gold 

nanoparticles and biomolecules, such as, DNA and RNA, were measured and monitored 

in real-time using the Biacore instrument. In order to facilitate understanding of the
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results obtained with these interaction study experiments, the principles of the SPR 

technique are described below.

7.1.1 Principles of the Surface Plasmon Resonance technique and the 
Biacore X instrument

A brief description of this technique is presented here. A detailed description of 

the technique and instrumentation can be found in reference 195. The real-time Biacore 

instrument monitors the association and dissociation of biomolecular complexes on a 

sensor surface as the interaction occurs. By covalently attaching one molecule (the 

ligand) to the surface, the interaction of another molecule in a solution (the analyte) 

with the ligand is followed. The measurements are carried out using conditions of 

continuous flow, where the sensor surface forms one wall of the flow cell. For almost 

all the applications, the surface can be regenerated and re-used for additional analyses. 

This technique is based on SPR and is an optical system that measures changes in 

refractive index occurring near to the surface of a sensor. The Biacore system can 

monitor changes in the surface concentration on a time scale of 0.1 s, which is sufficient 

for determination of kinetic rate constants in the range of 10‘3-5xl06 M'V1 for 

association and 10'1-10~5 s'1 for dissociation for typical biomolecular interactions.

This technique can be used to study interactions of proteins, protein conjugates, 

nucleic acids, lipid micelles, and even larger particles such as viruses and whole cells 

with the sensor. This technology can support a wide range of research areas, such as
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biochemistry, molecular biology, drug design, monoclonal antibody production and 

infectious disease research.

7.1.1.1 Biacore X instrument description

The Biacore X system consists of a processing unit with liquid and optical 

systems, a PC running Biacore X Control Software. Various types of sensor chips and a 

range of chemicals and reagents produced by Biacore, were used to carry out the real 

time interaction studies.

The Biacore X processing unit has the following components:

• A liquid delivery pump for maintaining a constant flow of liquid over the sensor 

chip surface.

• The Integrated Fluidic Cartridge (IFC) which contains liquid delivery channels, 

sample loops and valves.

• The detection unit, including optical and electronic components for measuring 

SPR response.

• Two flow cells formed by the IFC pressing against the sensor chip.

Pump

The pump is a syringe pump which provides accurate flow at rates down to 

1 pL/min. The stroke capacity is 500 pL. The pump takes liquid from a buffer reservoir 

and pumps it into the connector block inlet (Figure 61). The connector block is directly 

connected to the IFC. The pump is automatically refilled at the end of the stroke. In
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order to avoid refill interruptions in critical runs, the pump can be refilled at any time 

with a special command in the control software.

Connector
block

IFC

Eluent
pumpSensor Chip

Waste Running
buffer

Figure 61. Schematic illustration of buffer flow in Biacore X sysntem.193 

Connector block

The connector block has two inlet ports (Figure 62): a pump port with a screw- 

nipple fitting for the pump tubing (pump in), and an injection port for loading the 

sample loop (sample loop in). The inlets connect directly with flow channels in the IFC. 

There are two outlet ports on the connector block (Figure 62): sample loop out and flow
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cell out. Effluent from these ports normally runs to waste and can be collected in a 

beaker placed under the connector block. A micropipette tip can be fitted into the outlet 

ports to collect excess sample injected during loop loading or the recover effluent from 

the flow cell. Sample is injected into the injection port using a micropipette and 

disposable plastic tips. The port is shaped to seal against the pipette tip.

Flow cell Sample loop Sample loop
out in out

Pump milfll

Waste out

Figure 62. Connector block seen from above. The inset shows the sealing ferrule in the
inlet tubing connector.

Integrated Fluidic Cartridge (IFC)

The IFC consists of a series of channels and pneumatic valves encased in a 

plastic compartment, and serves to control delivery of liquid to sensor chip surface. The 

inlet/outlet side of the IFC is in direct contact with the connector block, while the flow 

cell part is pressed against the sensor chip. The sensor chip and the IFC together form 

two flow cells which can be used independently or connected in series for multichannel 

analysis (Figure 63). The IFC consists essentially of a direct flow channel from pump 

inlet to flow cell and a sample loop for injection volumes up to 100 pL, and provides
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two flow cells which can be used separately or in series. Serial flow allows 

simultaneous analysis of the same sample on two different surfaces, for in-line reference 

measurements or determination of two different analytes.

FC1

OUT 1“  
4 - 0 J

A IN

(FC2)

Single-channel flow path
(Single-channel analysis mode)

FC1

■c
FC2

A
Hi OUT

Multi-channel flow path
(Multi-channel analysis mode)

Figure 63. Diagram of single-channel flow path (flow cell 1, left), and multi-channel 
flow path (flow cells 1-2, right). Symbols O  and #  represent open and closed valves,

respectively.193

Sensor chips

Biacore has developed a range of sensor chips and the most used ones are the 

following:

• Sensor chip CM5 (Figure 64): general purpose chip coated with carboxy- 

methylated dextran to which biomolecules can be linked with a variety of 

established chemical methods (protocol described in Section 7.2, Chapter 7)

• Sensor chip SA: chip with streptavidin covalently immobilised on a dextran 

matrix for high affinity capturing of biotinylated ligands.

• Sensor chip HPA: chip with a hydrophobic surface allowing creation of lipid 

monolayers on the chip for study of membrane-related interactions.
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The sensor chip is mounted on a plastic support frame in a protective cassette. 

The cassette is inserted into the sensor chip port on the side of the processing unit. 

Software-controlled docking presses the sensor chip in place between the glass prism 

and opto-interface unit on one side and the IFC flow cell block on the other.

Figure 64. Sensor Chip CM5 consist in a glass slide coated with a thin gold film to 
which the carboxy-methylated dextran surface matrix is covalently bonded. The matrix 

surface forms one wall of the detector flow cell.195

Optical system

The glass side of the sensor chip (the outside wall of the flow cell) is pressed 

into contact with a glass prism in the optical unit. A silicone opto-interface between the 

sensor chip and the prism (Figure 65), matched in refractive index to the glass, ensures 

good optical coupling between the prism and the removable sensor chip.

Surface rtu 
Linker layc 
Gold film 
Glass sup;
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Light from a near-infrared light-emitting diode (LED) is focused through the 

prism on to the sensor chip surface in a wedge-shaped beam, giving a fixed range of 

incident light angles. Light reflected from the sensor chip is monitored by a linear array 

of light-sensitive diodes covering the range of incident light angles. The diodes are 

spaced with a resolution corresponding to approximately 0.1°, and computer 

interpolation algorithms determine the angle of minimum reflection (the SPR angel) to a 

high accuracy. By using a wedge of incident light and a fixed array of detectors, the 

SPR angle is monitored accurately in real time, with no physical movement of light 

source, sensor chip or detector.

Thermally insulated box

Optical unit

Opto-interface^ 
Sensor Chip

Connector
block

Integrated Fluidic Cartridge

Figure 65. The detection unit contains the optical unit which includes light source and 
detector, the opto-interface and removable sensor chip.195
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Temperature control

SPR measurements are sensitive to changes in temperature. It is important that a 

constant temperature is maintained at the sensor chip surface throughout the run. 

Temperature control in Biacore X uses Peltier elements to maintain a constant preset 

temperature at the sensor chip surface. The temperature control can keep a preset 

temperature in the range 4-40°C as long as the ambient temperature is not more than 

10°C above the operating temperature.

7.1.1.2 Sensorgram

The binding event between the ligand and analyte, and therefore, the 

accumulation of the latter on the surface of the sensor chip, are translated into an 

increase in refractive index. The changes in refractive index occurring during the 

injection of the analyte are monitored in real-time and, at the end, a plot called a 

sensorgram is obtained. In essence, a sensorgram is the response or resonance unit (RU) 

plotted against time (in seconds). A schematic diagram of a sensorgram is shown in 

Figure 66.
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Figure 66. Sensorgram (Figure taken from: http://www.biacore.com).
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7.1.2 Previous studies using surface plasmon resonance

Gold nanoparticles have been the most widely used metal for SPR detection due 

to their optical properties which make them suitable for sensing applications. Normally, 

these particles show an absorption band at ~520 nm which is caused by the excitation of 

plasmons by the incident light.19 Shifts in the position of this band occur due to changes 

in the dielectric constant taking place in the vicinity of the particle. Therefore, 

perturbations in the local dielectric constant (refractive index) of the surrounding media, 

for example, upon contact with a ligand, results in changes in colour which is translated 

into an absorption band shift,196 and provides a fundamental basis for detection analysis.

Perez-Luna and co-workers191 have reported a sensing method based on the gold 

nanoparticle plasmon resonance. They have been able to monitor specific recognition 

events of biomolecules employing gold nanoparticles functionalised with dextran, 

which is a polysaccharide, in solution. They have carried out further derivatisation of 

the dextran matrix, with proteins such as concanavalin A, in order to investigate their 

potential as glucose sensing substrates. They have also derivatised the carboxyl groups 

of the dextran coating the gold nanoparticles with (+)-biotinyl-3,6,9- 

trioxaundecanediamine to obtained biotinylated dextran which can interact with 

streptavidin or antibiotin and promote specific biomolecular recognition.191 The changes 

in absorbance at a fixed wavelength and in the absorbance spectra were monitored in 

order to investigate the binding events as a function of time. The results demonstrated 

that streptavidin and antibiotin induce particle aggregation, indicating specific 

biomolecular recognition. It has been shown that there was a low level of nonspecific
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interactions due to unreacted carboxyl groups. However, it was suggested that this effect 

can be reduced further by use of a suitable buffer.191

Sugimoto and co workers197 reported a polymer gel with immobilised gold 

nanoparticles, a so-called molecularly imprinted polymer (Au-MIP), as an SPR sensing 

material for detection or recognition of small molecules. Their strategy to fabricate the 

Au-MIP sensor chip was to immobilise gold nanoparticles functionalised with 11- 

mercaptoundecanoic acid on a dopamine-imprinted polymer-coated sensor chip 

(obtained by radical polymerisation on an allyl mercaptan-modified gold substrate). The 

use of gold nanoparticles was shown to enhance the signal intensity in comparison with 

a sensor chip without gold nanoparticles. The analyte binding process appeared to be 

reversible, allowing the re-use of the modified sensor chip.197

Chilkoti and co-workers196 developed a colorimetric sensor also based on gold 

nanoparticles to investigate biomolecular interactions in real time on a surface in a 

commercially available UV-visible spectrophotometer and a colorimetric end-point 

assay using an optical scanner. This sensor chip was reported to enable high-throughput 

screening of bimolecular interactions in real time. The fabrication of the sensor chip 

involved as a first step the formation of a self-assembled monolayer of the gold 

nanoparticles stabilised by sodium citrate on silanized glass. Subsequently, the 

immobilised nanoparticles were treated with mercaptopropionic acid, functionalising 

them with reactive carboxyl groups which could react with biotin. The sensor chip was
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used to study the specific binding of streptavidin and showed a concentration-dependent 

binding with a limit of detection of 16 nM.196

Following similar approaches, a novel strategy to use the cationic phosphonium 

gold nanoparticles as biorecognition substrates has been developed. These nanoparticles 

have been immobilised on commercially available CM5 and SA sensor chips, and then 

negatively charged biomolecules, such as, DNA and RNA were immobilised on these 

modified sensor chips. The binding events were monitored in real time by the Biacore 

system. Experimental details and results are outlined in the following sections.
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7.2 Experimental

All the experiments were carried out on a Biacore X SPR instrument (Figure 

67). The temperature of the instrument was set to 25 °C and the running buffer was the 

commercially available HBS-EP filtered and degassed buffer, which contains 0.01 

HEPES pH 7.4, 0.15 NaCl, 3 mM EDTA, 0.005% v/v surfactant P20.

Figure 67. Biacore X SPR instrument (Figure taken from: http://www.biacore.com).

The sensorgrams and data resulting from the experiments were recorded using 

the Biacore software. Before the Biacore instrument was used to record a sensorgram, 

the instrument was set to run HBS-EP buffer following the instructions displayed for the 

software on the PC screen. The flow rates used in the experiments were varied from 10 

to 50 pL-min'1 in order to find the best immobilisation conditions. Sample injections 

must be carried out while a sensorgram is running (buffer running through the flow 

cell). The sample injections were also performed following the injection command 

instructions displayed on the PC screen which, at the same time, indicate the exact 

volume to be injected.
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The samples were injected using the central injection port of the connector block 

of the instrument indicated as “sample loop in” in the figure 62. The injections were 

carried out using a micropipette of 100 pL capacity to deliver the amount of sample 

required. Once the exact amount of sample was loaded in the tip of the micropipette, 5 

pL of air was introduced to the tip and an extra 5 pL of sample was loaded into the 

pipette, in order to form an air bubble. The latter was used to remove any trapped 

material within the injection loop of the instrument corresponding to the previous 

injected samples. The sample was then slowly introduced through the injection port to 

reach the injection loop by capillary mode. Immediately after the sample was placed in 

the injection loop, the injection was initiated, instructing the instrument to inject by 

using the corresponding command button displayed in the screen desktop of the PC. 

Finally, the instrument was programmed to run a rinse cycle with the HPB-S buffer pH 

7.4 after each injection in order to remove unbound compounds. After this washing 

step, the sensorgram data were saved and the instrument was left idle to re-start.

Regular maintenance of the Biacore system was carried out in order to keep the 

instrument free from contamination such as microbial growth and absorbed 

biomolecules in the liquid handling system. Desorb and Sanitise procedures were 

performed weekly in order to clean the tubing of the flow cell channels. The Desorb 

procedure was carried out using two solutions contained in the BIAmaintenance Kit: 

Solution 1: 0.5% (w/v) SDS in water and Solution 2: 50 mM glycine-NaOH pH 9.5. 

The Sanitise procedure was performed using a solution of 1% of sodium hypochlorite. 

Both procedures were carried out following the instructions displayed for the software
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on the PC screen. It was also necessary to perform a Normalise procedure in order to 

stabilise the resonance signal from the flow cell, to compensate small differences when 

a new sensor chip was docked. A solution of 70% (w/w) glycerol in deionised water 

was used to carry out the normalisation.

All the interaction study experiments carried out using the Biacore X SPR 

system are summarised in Table 9. This table contains details, such as, flow rate, 

injected volume, sensor chip type, biomolecule type, gold nanoparticle, regeneration, 

and type of analysis (single-channel or multi-channel) of each of the experiments. The 

results and the discussion of these experiments are presented in Section 7.3 of this 

chapter.

The biotinylated DNA, RNA and cDNA samples used in this project were 

provided by Dr. Ahslee Perry, Bahare Vahabi and Antoine Fouillet, respectively, from 

the Biomedical Research Centre at Sheffield Hallam University. The biotinylated DNA 

was prepared by the biotinylated PCR process using a mixture of biotinylated dUTPs 

and regular dNTPs. This method yielded a biotinylated DNA sample (32 pg-mL'1) of a 

GC rich (-70%) 750 base pair fragment of AMOC gene. The RNA-containing sample 

(96 pg-mL'1) was a purified RNA extracted from diabetic rat bladder. The cDNA was 

prepared by the transcription of mRNA into cDNA, as the first step, and then an 

amplification of this cDNA using Real Time-PCR (BIO-RAD) reaction was carried out by 

combining the cDNA with the corresponding primers, MgCk and IX absolute SybrGreen 

(Abgene, UK). Real time PCR products were purified using Sigmaspin™ POST reaction
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purification column (Sigma, UK) previous utilisation. This method yielded a cDNA sample 

(54 pg-mL"1) of 100 base pair double-stranded DNA sequence.

The protocol for the biotinylated DNA immobilisation on SA sensor chip 

followed in experiment SPR1 (Table 9), was the method reported by Bailly and co­

workers.198 They immobilised 5-biotinylated DNA (25nM, samples in HBS-EP buffer) 

on the flow cell surface of an SA sensor chip by noncovalent capture. The protocol and 

the experimental conditions used in their work were the followings:

• The chip was prepared for use by conditioning with three to five consecutive 1 

minute injections of 1 M NaCl in 50mM NaOH followed by extensive washing 

with running buffer (HBS-EP, pH 7.4).

• One flow cell of the SA chip was used to immobilise DNA oligomer sample and 

the other one was left blank as a control.

• The flow rate used was 7 to 10 pL-min'1 and the sample injection volume was 30 

pL.

• And the SPR experiments were performed at 25 °C.

Bailly and co-workers reported that the amount of DNA immobilised was

approximately 350 RUs.198

The gold nanoparticles used in experiments SPR2, SPR4, SPR6 and SPR9, and 

SPR7 (Table 9) were the freeze-dried phosphonium-functionalised gold nanoparticles 

obtained from the synthesis using 3-triphenylphosphoniopropylthiosulfate (5a-AuNPs) 

and 6-triphenylphosphoniohexylthiosulfate (5c-AuNPs) zwitterions, respectively.
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Colloidal suspensions of each of these gold nanoparticles were prepared in deionised 

water and in running buffer (lmg-mL'1) to perform the SPR experiments. 

Commercially available citrate-functionalised gold nanoparticles (SIGMA gold colloid 

solution, absorbance 0.754, particle size range 5-10 nm) were used to carry out 

experiment SPR3 (Table 9). SA and CM5 sensor chip, running buffer HBS-EP (pH 7.4), 

and BIAmaintenance Kit were purchased from Biacore, Uppsala, Sweden.
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7.3 Results and Discussion

Experiment SPR1: immobilisation of biotinylated DNA on the SA 
sensor chip

In order to study the interaction of phosphonium gold nanoparticles with DNA, 

biotinylated DNA was immobilised on a streptavidin SA sensor chip as first step. 

However, before the modification of the streptavidin SA sensor chip (Experiment 

SPR1), five injections of a solution of 50 mM NaOH and 1M NaCl, called regeneration 

solution, were carried out in order to remove all the possible impurities present on the 

surface of the sensor chip, as suggested in the BIACORE user guide. The flow rate of 

20 pl-min'1 and multiple-channel analysis mode were used for this cleaning process. 

The injection volume of the regeneration solution was 30 pi for each injection.

The results of this cleaning process are shown in Figure 68. In this figure, three 

sensorgrams can be observed. FC1 and FC2 correspond to the association-dissociation 

curves resulting of the interaction between ions present in the cleaning solution and the 

streptavidin-dextran matrix of the sensor chip. FC1-FC2 represents the subtraction 

between FC1 and FC2 sensorgrams. After this process, the SA sensor chip should be 

free of non-specific species that could interfere with the ligation of the biotinylated 

DNA with the streptavidin.
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Figure 68. Sensorgrams resulting of the cleaning process of the SA sensor chip with a 
solution of 50 mM NaOH and 1M NaCl (FC1, FC2 and FC1-FC2)

Once the SA sensor chip was fully cleaned, one of the flow cells was modified 

with the biotinylated DNA (experiment SPR1), leaving the other one as a reference 

channel. The Biacore X instrument was set to run a sensorgram at 10 pl-min'1. The 

biotinylated DNA (analyte) was immobilised on the streptavidin (ligand) SA sensor 

chip following the protocol suggested by Bailly and co-workers198 (method described in 

Section 7.2, Chapter 7). The instrument was set to run the analyte in single-channel 

analysis mode in order to leave one of the flow cell channels free of DNA and use it as a 

control surface for further analysis.
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The result of the ligation is shown in Figure 69. The injection of the sample 

containing biotinylated DNA starts at 70 seconds and finishes at 180 seconds. An 

association curve can be observed in the sensorgram (event showed by the red circle in 

Figure 69). The signal of this curve did not recede even after the injection finished. The 

starting response value is 22,000 RU and the finishing value is 24,000 RU. This event 

showed that the biotinylated DNA has been bound to the streptavidin present on the 

surface of the S A sensor chip. The sharp peaks which can be observed between 110 and 

135 seconds on the sensorgram, could be due to other species present in the biotinylated 

DNA sample, such as, templates, enzymes and buffers. These species did not interfere 

with the rest of the experiment due to their dissociation at 135 seconds.

f : i
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Time
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Figure 69. Sensorgram resulting of the ligation of the biotinylated DNA to the 
streptavidin of the SA sensor chip (FC1)
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Experim ent SPR2: interaction between the phosphonium  gold
nanoparticles and the SA sensor chip modified with DNA

Studies of the interaction between the DNA (ligand) immobilised on the SA 

sensor chip and the phosphonium gold nanoparticles (analyte) were carried out by 

passing a gold colloid solution through both flow cell channels of the SA chip. The gold 

nanoparticles used in this experiment (experiment SPR2) were the freeze-dried particles 

obtained from the synthesis using 3-triphenylphosphoniopropylthiosulfate zwitterion 

(5a-AuNPs) as protecting ligand. The colloidal solution was made by re-suspending the 

dried nanoparticles in deionised water (lmg-mL'1). A flow rate of 50 pL-min"1 was used.
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Figure 70. Sensorgrams of interaction curves between 5a-AuNPs (analyte) and DNA 
modified SA sensor chip in real time (FC1, FC2, FC1-FC2)
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The results of this analysis are shown in Figure 70. Three sensorgrams can be 

observed in this figure. The injection of the sample containing the functionalised gold 

nanoparticles starts at 100 seconds and finishes at 200 seconds. In Figure 70, FC1 

sensorgram corresponds to the interaction between the 5a-AuNPs and the DNA 

immobilised on the stretptavidin-dextran matrix, FC2 sensorgram corresponds to the 

interaction between these gold nanoparticles and the streptavidin-dextran matrix 

(reference cell), and FC1-FC2 sensorgram corresponds to the specific interaction that 

occurred during the injection of the gold nanoparticles. Both FC1 and FC2 sensorgrams 

showed association curves. Changes in response at 200 seconds can be observed in FC1 

and FC2. At this time, the injection was finished and the running buffer was started to 

flow through the flow cells. The observed changes in response are due to the difference 

in refractive index between the sample solution and the running buffer.

According to Lolas and co-workers,199 the carboxy-methylated dextran matrix 

covalently attached to a gold substrate is negatively charged at pHs around 7. They 

suggested that this negatively charged hydrogel-covered surface can be used to 

immobilise positively charged proteins by electrostatic attraction forces and also for 

covalent coupling of various other ligands. The FC2 sensorgram showed the association 

event between the particles and the dextran matrix of the reference channel (non­

modified channel). Therefore, it would appear that the cationic 5a-AuNPs are not only 

interacting with the negatively charged DNA (immobilised on the SA chip), as showed 

in the FC1-FC2 sensorgram but also with the negatively charged dextran matrix. No 

evidence of dissociation can be observed in either case, FC1 and FC2, indicating that
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the gold nanoparticles are bound to the negatively charged carboxy-methylated matrix 

of the SA chip through ionic interactions.

Several attempts to remove the gold nanoparticles from the dextran matrix were 

carried out by injecting the same running buffer (HPB-S buffer pH 7.4) and the 

regeneration solution (50 mM NaOH and 1M NaCl). However, the use of these 

solutions did not remove the gold nanoparticles. Therefore, the interaction studies 

between DNA and the phosphonium gold nanoparticles could not be continued using 

the DNA modified SA sensor chip because the regeneration of the sensor chip was 

unsuccessful. Consequently, it was decided to try an alternative strategy and the 

interaction of polyanionic DNA with functionalised gold nanoparticles was 

investigated.

Experiment SPR3: interaction study between the commercially 
available citrate-functionalised gold nanoparticles and the SA sensor 
chip modified with DNA

Immobilisation experiments have been performed using commercially available 

citrate-functionalised gold nanoparticles (SIGMA gold colloid solution, absorbance 

0.754, size range: 5-10 nm), which has a similar particle size range to the 3-carbon 

chain phosphonium gold nanoparticles. This experiment (SPR3, Table 9) was done 

using the DNA-modified SA sensor chip and it was hoped that the experiment would 

show whether the immobilisation of the gold nanoparticles is by physical trapping or 

through electrostatic interaction between the positively charged phosphonium head
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groups of the coating ligands and the negatively charged dextran matrix of the SA senor 

chip under slightly basic conditions (pH 7.4).

The experimental conditions in this test were the same used in Experiment SPR2 

(Table 9). The Biacore X instrument was set to run a sensorgram at 50 pl-min'1. The 

instrument was set to the multiple-channel analysis mode in order to study the 

interaction between the citrate-functionalised gold nanoparticles with the DNA 

modified and the reference flow cell channels (FC1 and FC2). The injection volume of 

the SIGMA gold colloid solution was 30 pi.

The result of this experiment is shown in Figure 71. The injection started at 80 

seconds and finished at 180 seconds. During this period of time, no significant changes 

in response were observed either FC1 or FC2 sensorgrams. All the events recorded for 

both flow cells are the same, indicating that the citrate-stabilised gold nanoparticles do 

not bind to the dextran matrix and the DNA immobilised on the sensor chip. This result 

is the opposite of that observed for the 5a-AuNPs in the experiment SPR2. With this 

result, it can be concluded that the binding event observed in the experiment SPR2 is 

not due to physical trapping and the cationic phosphonium gold nanoparticles bind to 

the negatively charged carboxy-methylated dextran matrix through electrostatic 

interactions.

186



30000

26000

22000

16000

<4000

10000

6000

2000

-2000

-6000

-10000

-1

cafe JMSir. .  i.rri-^-araw.r'-Tue.aa.a'awr.a "AII
i

' |
.

FC2

-Cl  F<

30 60 90 120 150
Time

180 210 240 270 300

Figure 71. Sensorgrams of interaction curves between SIGMA gold nanoparticles 
(analyte) and DNA modified SA sensor chip in real time (FC1, FC2, FC1-FC2)

Experim ent SPR4: im m obilisation o f phosphonium gold nanoparticles 
on SA sensor chip

The aim of this experiment (SPR4, Table 9) was to immobilise the phosphonium 

gold nanoparticles on a SA sensor chip. A freeze-dried sample of 5a-AuNPs was used 

to prepare the colloidal solution (3mg of 5a-AuNPs in 3mL of running buffer, lmg/mL) 

to be injected. The flow rate was set to 50 pL-min'1 and 50 pL (instrument set volume : 

30 pL) of this suspension were placed in the sample loop, and then the instrument was 

instructed to run in single-channel analysis mode, leaving one of the flow cell channels 

as reference. The result of this experiment is shown in Figure 72.
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Figure 72. Sensorgram of interaction curve between 5a-AuNPs (analyte) and SA
sensor chip in real time (FC1)

In the sensorgram FC1, only an association curve was observed indicating that 

the particles are embedded on the streptavidin-dextran matrix on the surface of the 

sensor chip. This specific binding event is likely due to the electrostatic interaction 

between the positive charges on the functionalised gold nanoparticles and the negative 

charges of the carboxy-methylated dextran at pH 7.4. No evidence of dissociation was 

observed during or after the injection of the nanoparticle sample when the modified 

flow cell channel (FC1) was eluted with the running buffer. Two additional injections of 

5a-AuNPs were carried out using the same modified SA sensor chip. With these 

injections, an increase in response from around 20,000 to 46,000 RU was observed. 

Saturation was reached with the last injection. No increase in response was observed.
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Differences in background signal could be observed between the sensograms 

obtained in experiments SPR1, SPR3 and SPR4. These variations in response (RU) can 

be intrinsic to the manufaturing process of the sensor chips.

Experiment SPR5: interaction study between the phosphonium- 
functionalised gold nanoparticles immobilised on the SA sensor chip 
and RNA (as binding analyte)

Experiment SPR 5 was carried out in order to show that the phosphonium- 

fimctionalised gold nanoparticles embedded on the SA sensor chip can interact with 

negatively charged biomolecules, such as RNA. The phosphonium gold nanoparticle- 

modified SA sensor chip used for this experiment was the one obtained in experiment 

SPR4. The experimental details of experiment SPR5 are shown in Table 9. The flow 

rate was set to 50 pL-min"1 and 30 pL of a solution containing RNA (96 ng-pL'1) was 

injected. The instrument was run in multiple-channel analysis mode. The result of this 

experiment is shown in Figures 73, 74, 75, and 76. Figure 73 shows the sensorgrams of 

the binding events which occurred in both flow cells (FC1 and FC2) during the RNA 

sample injection and the sensorgram resulting of the subtraction of FC1 and FC2 which 

represents the specific interaction.
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Figure 73. Sensorgrams of interaction curves between RNA (analyte) and 5a-AuNP 
modified SA sensor chip in real time (FC1, FC2, FC1-FC2)

The sensorgram corresponding to FC1 (Figure 74), shows an association and 

dissociation event between the RNA (analyte) and the flow cell channel modified with 

phosphonium gold nanoparticles. It can be observed in sensorgram FC1 that the 

dissociation was not complete. The signal (47,500RU) did not reach the initial value 

(46,500 RU) in response when the injection was finalised at the time of 210 seconds. 

This indicates that the concentration of the RNA sample was too high for this trial, and 

some of the RNA was dissociated from the modified surface (FC1), while the rest of the 

injected RNA remained attached to the modified SA sensor chip. This observed 

dissociation is due to the saturation of RNA.
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Figure 74. Sensorgram of an association curve resulting of the interaction between 
RNA and the 5a-AuNPs immobilised on one of the channels of the SA sensor chip
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Figure 75. Sensorgram of an association-dissociation curve resulting of the interaction 
between RNA and the reference channel of the SA sensor chip (FC2)
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The sensorgram for to the interaction of the RNA and the non-modified matrix 

of the reference flow cell channel (FC2) is shown in Figure 75. As with FC1, an 

association-dissociation curve can be observed. When the injection is finished, after the 

binding event, the signal returns to the initial value in response (21,800 RU). The 

dissociation event is complete, indicating that the RNA is not bound to the streptavidin- 

dextran matrix. The specific interaction between the RNA and the cationic 

phosphonium gold nanoparticles FC1-FC2, is shown in Figure 76, and shows that the 

RNA is binding to the phosphonium gold nanoparticles embedded in the streptavidin- 

dextran matrix of the SA sensor chip.
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Figure 76. Specific binding curve resulting of the subtraction of sensorgrams FC1 and 
FC2 (FC1-FC2). Results obtained of the interaction study between RNA (analyte) and 

5a-AuNP modified SA sensor chip in real time.
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Experiment SPR6: immobilisation of 5a-AuNPs on CM5 sensor chip

Due to the results obtained in previous experiments, it was decided to use a 

carboxy-methylated dextran matrix sensor chip (CM5) instead of the SA chip. 

According to the Biacore SA sensor chip data sheet, this sensor chip is based on the 

same carboxy-methylated dextran matrix derivatised with tetrameric protein molecules, 

so-called streptavidin, which is used to anchor biotinylated molecules. Therefore, the 

presence of the streptavidin in the dextran matrix appeared to be unnecessary in this 

case and the CM5 sensor chip can represent an advantage over the use of the SA chip.

In principle, the phosphonium gold nanoparticles could be embedded in SA and 

CM5 sensor chips. However, the use of CM5 chip would help to avoid any possible 

non-specific interactions between the streptavidin molecules and polyanionic 

biomolecules such as, RNA and DNA, which can appear with the use of the SA sensor 

chip. Consequently, the following interaction studies between the gold nanoparticles 

embedded on the sensor chip and biomolecules were carried out using CM5 sensor 

chips and DNA as the binding partner. The DNA immobilisation strategy planned to be 

used in this project is shown in Figure 77. However, this experiment (SPR6) shows the 

results of the first step of this presented strategy which is the immobilisation of the 

phosphonium gold nanoparticles on the negatively charged carboxy-methylated dextran 

matrix of the CM5 sensor chip.
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Figure 77. Illustration of the strategy used to immobilise cDNA onto the
CM5 sensor chip

The particles immobilised on the CM5 sensor chip were the 5a-AuNPs. In this 

experiment, the freeze-dried particles were re-suspended in the same running buffer 

(HSB-EP, pH 7.4) instead of deionised water. The flow rate was set to 10 pL-min'1. To 

prepare the modified CM5 sensor chip, 30 pL of a re-suspended gold nanoparticle 

solution (1 mg-mL'1) were set to be injected in a single-channel analysis mode. After the 

injection of the colloidal solution, HBS-EP buffer pH 7.4 was run overnight at 20 

pL-min'1 through the modified flow cell channel (FC1) in order to remove the excess 

and unbound gold nanoparticles.

The result of this experiment is shown in Figure 78. An increase from 28,000 to 

74,000 RU in response was observed when the sample injection started. This 

association event indicated that the cationic gold nanoparticles were interacting with the 

negatively charged dextran matrix during the sample injection. No evidence of 

dissociation was observed indicating that the nanoparticles are bound permanently on 

the surface of the CM5 sensor chip.
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Figure 78. Sensorgram of an association curve resulting of the interaction between 
5a-AuNPs (analyte) on one of the channels of the CM5 sensor chip (FC1)

Experiment SPR7: immobilisation of 6C-phosphonium gold
nanoparticles on CM5 sensor chip

In this experiment, phosphonium gold nanoparticles with longer carbon chain 

coating ligands were immobilised on the carboxy-methylated dextran matrix of the 

CM5 sensor chip. Gold nanoparticles functionalised using 

6-triphenylphosphoniohexylthiosulfate zwitterion (5c-AuNPs) as precursors of the 

protecting ligand, were used in this test. A colloidal solution of 5c-AuNPs (1 mg-mL’1) 

was prepared by re-suspending the particles in the running buffer (HSB-EP, pH 7.4). 30 

pL of this solution were injected in single-channel analysis mode. The flow rate used in 

this experiment was 10 pL-min'1.
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Similar results to those found in the previous experiment (SPR6) were obtained 

when a same concentration solution (1 mg-mL'1) of 5c-AuNPs was injected to interact 

with the dextran matrix of the CM5 sensor chip (Figure 79). No evidence of dissociation 

was observed indicating that the phosphonium gold nanoparticles stabilised with longer 

carbon chain ligands can also bind permanently on the surface of the CM5 sensor chip.
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Figure 79. Sensorgram of an association curve resulting of the interaction between 
5c-AuNPs (analyte) on one of the channels of the CM5 sensor chip (FC1)

Experiment SPR8: interaction study between the 5a-AuNPs
immobilised on the CM5 sensor chip and DNA (as binding analyte)
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Once the phosphonium gold nanoparticles were immobilised on CM5 sensor 

chip, this modified chip was used to carry out qualitative studies of the capacity of these 

nanoparticles to interact with DNA. The modified CM5 chip used in this experiment 

was the sensor chip customized with 5a-AuNPs obtained in experiment SPR6. cDNA 

(54 pg-mL"1, 100 base-pair double-stranded DNA molecule) was the polyanionic 

biomolecule used as the binding partner (analyte). The same experimental conditions 

(SPR8, Table 9), sample volume and flow rate used in the previous interaction studies 

with the RNA and the modified SA sensor chip (experiment SPR5), were used in this 

experiment.

The results are shown in Figures 80, 81 and 82. Figure 80 shows the 

sensorgrams of the binding events that occurred in both flow cells (FC1 and FC2) 

during the cDNA sample injection and the sensorgram resulting from the subtraction of 

FC1 and FC2 which represents the specific interaction.

Figure 81 shows the sensorgram (FC1) corresponding to the interaction between 

the cDNA and the cationic gold nanoparticles embedded on the surface of the sensor 

chip. An association curve and an increase in response from 74,800 to 76,400 RU were 

observed. Once the injection finished, when the running buffer started to flush, the 

signal in response was the same (around 76,400 RU), and stable, indicating that the 

cDNA molecules were permanently bound on the modified CM5 sensor chip. This 

evidence indicates that the cationic phosphonium gold nanoparticles are interacting 

electrostatically with the negatively charged double stranded cDNA, and also indicates

197



R
es

po
ns

e 
(R

U
)

that this interaction is strong enough to keep the DNA linked to the positive charges 

corresponding to the gold nanoparticles on the surface of the CM5 sensor chip (Figure 

77).
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Figure 80. Sensorgrams of interaction curves between cDNA (analyte) and 5a-AuNP 
modified CM5 sensor chip in real time (FC1, FC2, FC1-FC2)
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Figure 82. Specific binding curve resulting of the subtraction of sensorgrams FC1 and 
FC2 (FC1-FC2). Results obtained of the interaction study between cDNA (analyte) and 

5a-AuNP modified CM5 sensor chip in real time.
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A sensorgram corresponding to the interaction of the cDNA and the non­

modified matrix of the reference cell (FC2) is shown in Figure 80. No considerable 

change in response was observed during the injection time indicating that the cDNA did 

not bind to the dextran matrix and its interaction with the nanoparticles on the surface 

was almost non-detectable. Figure 82 shows the specific interaction between the cDNA 

and the cationic gold nanoparticles resulting from the subtraction of FC1 and FC2. This 

experiment confirms the ability of the phosphonium gold nanoparticles to interact and 

bind negatively charged DNA.

Experiment SPR9: regeneration of modified CM5 sensor chip 
(obtained in experiment SPR8) and immobilisation of 5a-AuNPs on 
regenerated CM5 sensor chip

The cDNA immobilised on the CM5 sensor chip modified with 5a-AuNPs 

(sensor chip obtained in experiment SPR8), was regenerated using 15 % of formic acid 

aqueous solution, as recommended in the CM5 chip data sheet.200 100 pL of this 

regenerating solution were set to be injected in single-channel analysis mode (flow cell 

channel modified with 5a-AuNPs and cDNA, FC1) and run at a flow rate of 

20 pL-min'1. This regeneration process was carried out in order to remove the cDNA 

attached to the modified CM5 chip and re-use it for additional DNA immobilisation.

The result of this regeneration process is shown in Figure 83. The response 

before the injection of the formic acid solution was 58,000 RU. However, once the
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injection started at a time of 100 seconds, the signal continuously decreased until the 

injection finalised (29,000 RU). This decrease in response could due to the change in 

ionic conditions of the dextran matrix which might release part of the gold nanoparticles 

and cDNA from the matrix.

tooo: -

10D0Q -

0 100 200 • I600 800

time (s)

Figure 83. Sensorgrams resulting of the modified CM5 sensor chip regeneration 
process (using a solution of 15% formic acid, a) and the injection of a 5a-AuNP 

solution to the regenerated CM5 sensor chip (b)

With the previous evidence, the regenerated CM5 sensor chip was re-used to 

immobilise more cationic gold nanoparticles. This injection was carried out under the 

same experimental conditions (SPR9, Table 9) used for the immobilisation of 

phosphonium gold nanoparticles on the CM5 sensor chip (experiment SPR6) Once the 

injection of the regeneration solution finished, a fresh gold colloid solution was injected
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to the regenerated CM5 sensor chip. The result of this experiment is shown in the same 

Figure 83. The injection started at the time of 650 seconds and at this point an increase 

in response from 29,000 to 75,000 was observed, indicating that regenerated CM5 

sensor chip could be re-used to immobilise more cationic phosphonium gold 

nanoparticles and, therefore, more DNA molecules.

Further evidence for the immobilisation of the phosphonium gold nanoparticles 

onto the CM5 sensor chip can be observed in the image obtained using an optical 

microscope (Figure 84). In a non-modified CM5 sensor chip, two flow cell channels of 

white colour can be observed with the naked eye. After the gold nanoparticle 

immobilisation process in one of the channels of the sensor chip, a different colour can 

be observed. This experimental observation was confirmed by the optical microscope. 

The image was obtained by analysing of one of the CM5 sensor chips with 5a-AuNPs. 

In this image, a dark blue stain is observed on the right hand side (A) of the insert 

sensor chip. Therefore, this colour might correspond to the aggregated gold 

nanoparticles, which are known to have blue colour,19 immobilised on one of the 

channels of the chip. The left hand side (B) of the metal substrate is the section of the 

sensor chip which corresponds to the reference channel. Further studies, e.g. by AFM or 

XPS are necessary to confirm this visual observation. These techniques would provide a 

detailed topography of the modified and reference channels of the sensor chip.
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Figure 84. Image of the two channels (A and B) of the 5a-AuNP modified CM5 sensor
chip using and Optical Microscope

With this group of experiments based on the interactions studies using the 

Biacore X system, it has been shown that phosphonium-functionalised gold 

nanoparticles can be used as biomolecule anchoring systems, which augurs well for 

their future use as biorecognition systems. With the SPR system, it was possible to 

immobilise phosphonium gold nanoparticles on the CM5 sensor chip and observe the 

interaction between these cationic nanoparticles and negatively charged biomolecules, 

such as, RNA and DNA, in real time. The immobilisation events between nanoparticles 

and the negatively charged dextran matrix of the CM5 sensor chip, and between
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biomolecules and nanoparticles embedded on the sensor chip surface* were known to be 

a success due to the presence of association curves. It has also been shown that the 

modified CM5 sensor chips can be regenerated for further nanoparticle and DNA 

immobilisation. With all the evidences obtained in this part of the study, it is possible 

that this strategy can be used to develop an analytical technique to detect specific DNA 

sequences and possible mutations in their structure.
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CHAPTER 8

Conclusions and Future Work
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8.1 Conclusions

The results described in this thesis have clearly shown that the family of 

phosphonium-containing ligands synthesised in this study act as protecting ligands in 

the synthesis of monolayer protected-gold clusters. Phosphonium gold nanoparticles, of 

ca 5 nm in particle size, were obtained by the reduction of tetrachloroaurate salts in 

presence of the protecting ligands in a two-phase D C M i^O  system. Phosphonium-gold 

nanoparticles were shown to possess affinity for the aqueous phase. Their stability for 

up to 6 months was proved by UV-visible spectroscopy and TEM. These functionalised 

gold colloid solutions were freeze-dried in order to remove the water. The latter 

represents an advantage and provides the possibility to store the materials as stable 

solids for longer periods of time and enables their re-dispersal in suitable solvents for 

additional analyses. X-ray photoelectron spectroscopy determined the ligand-substrate 

bond characteristics for the gold nanoparticles functionalised with 

phosphonioalkylthiolate ligands, and binding energies corresponding to S-Au bond 

were observed.

In this study, the ability of the cationic phosphonium gold nanoparticles to 

interact with negatively charged biomolecules such as RNA and cDNA, by using the 

Biacore Surface Plasmon Resonance technique has also been demonstrated. The 

immobilisation of phosphonium-functionalised gold nanoparticles on commercially 

available dextran matrix-containing chips has been achieved. Using these modified 

sensor chips, RNA and cDNA were also successfully immobilised on this cationic 

phosphonium gold nanoparticle containing surface.
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8.2 Suggestions for future w ork

With all the evidence obtained from the qualitative studies carried out using the 

Biacore SPR technique, it would be interesting developing an analytical technique to 

detect specific DNA sequences and possible mutations in the chemical structure of these 

biomacromolecules. The first step in achieving this goal could be the immobilisation a 

single-stranded DNA on sensor chips modified with cationic phosphonium gold 

nanoparticles and then to study the interaction with a complementary strand (Figure 85).

Injection of the 
complementary 

single stranded-DNA

Detection of possible 
mutations and/or 

specific DNA sequences

Figure 85. Strategy for specific DNA sequences and mutations

Other workers have demonstrated the utility of phosphonium-containing 

molecules as transfection vectors and probes in mitochondrial medicine,12̂ it would be 

interesting to study the interaction of these phosphonium-functionalised gold 

nanoparticles synthesised here, and the parent phosphonium-thioacetate and thiosulfate 

ligands with cells, with a view to their potential use in diagnostics and targeted drug 

delivery.

Immobilisation of a 
single stranded-DNA
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Figure 86. UV-visible spectra of a solution of AuNPs functionalised with 
triphenyl(3-thioacetylpropyl)phosphonium bromide (17a), after 1, 3, and 6 months
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Figure 87. XPS wide scan spectrum corresponding to the freeze-dried sample of gold 
nanoparticles functionalised with the triphenyl(3-thioacetylpropyl)phosphonium

bromide (17a-AuNPs)
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